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SCOPE AND CONTENTS:

We study the Coulomb effect on the proton-proton
low-energy scattering parameters when all other effects are
representéd by a separable potential.

For this purpose, we present a formulation for the
scattering of two particles via a separabie potential. We
treat the same problem when any potential, particularly a
Coulomb potenﬁial or a separable potential, is added to the
separable potential. The properties of gcattering from a
separable potential plus a (local or non-local) potential
lead us to the possibility of obtaining a one term separable
potential eqguivalent to a two term separable potential, and
a model for the nuclear potential as a sum of a separable
potential and a non-separable potential.

2

We determine, to the first order in'M%—-where 8

is the range of the separable potential, the parameters for

1

Yamaguchi's and Nagvi's separable potentials from proton-

proton scattering data. We use these parameters to calculate
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the low-energy proton-proton scattering parameters when the
Coulomb interaction is removed. Our results show that the
shape dependence of these parameters are somewhat larger than
obtained by Heller et al in their investigation on local
potentials. Implications of our results concerning the
charge symmetry and charge independence of the nuclear forces

are discussed.
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INTRODUCTION

_Since the hypothesis of Heisenberg and Condon (1),
strong interaction is believed to be charge independent, the
observed charge dependence shouid be accounted for by
electromagnetic corrections. Charge symmetry is based on the
equality of n - n and p - p forces; physically it states that,
in the absence of electromagnetic forces, a system of nucleons
behaves ecactly the same as its charée symmetric counterpart
in the same guantum mechanical state. This is generalized by
a stronger assumption, namely, charge independence, which
equates the n - p forces to that of p - p and n ~ n in the
same state (2).

A sensitive test of charge symmetry as well as charge
independence of the nuclear interaction is provided by
measurements of the low-energy nucleon-nucleon scattering
parameters in the lS state, namely the scattering length and
effective range. The advantage of using low-energy data is
that only S-waves are important and accurate phase-shift
determinations are possible (the tensor force is absent in
the lS state and the theoretical treatment is independent
of the shapé of the potentials to first order (2)).

At low energies, the Coulomb interaction between
the two nucleons is the major affect in breaking both charge

symmetry and charge independence (3). At higher energies, the



Coulomb effects are less important, but the splitting
between the p-n and p-p scattering lengths may be large.
This is because the lS~scattering leﬁgth is extremely
sensitive to the change in the potential.

In order to compare the scaftering parameters for
pP-p, p—-n, n-n, one thus has to femove the effect of the
Coulomb interaction for p-p. This is usually done by first
assuming a p-p nuclear potential, VS, which together with
the Coulomb potential, Vc’ reproduces the observed p-p

"

scattering data, and then, solving the Schrodinger equation

for Vs without including the Coulomb potential, to obtain

the scattering parameters. Thus, for the p-p system, there

are two sets of scattering parameters, sav, asc and rsc,

and a_and r_ . a and r are directly determined from the
S S sc sc »

observed phase shift and are supposed to be reproduced by
solving the Schrgdinger equation with (Vs + Vc). ag and ry
are the scattering parameters obtained only from VS. The
suffix sc implies that the relevant guantity comes from both
strong and Coulomb ;nteractions, whereas the quantity with
the suffix s is dué only to the strong nuclear interaction.
ag and r, are the parameters for p-p that can be meaning-
fully compared with those of n-n and p-n.

As is obvious from the definition of ag and r for
"p-p, they depend on the nuclear potential VS. Although this

dependence on VS is believed to be very small, we now reguire

a very precise knowledge of ag and Ty because all that



concerns us about change'eymmetry or change independence
are vefy small differences between quantities for p-p, p-n
and n-n. Also the experimental data now available are very
accurate so that even a very slight dependence of ag and r,
on V, can be meaningfully detected.

This problem, say the shape dependence of ag and rs
has been examined for various local potentials that fit
the p-p scattering data by Heller, Signel and Yodes (4).

They found

ag = ~(16.6 to 16.9)F

to be the  spread of the probable value of ag- Incidentally,
our a, corresnonds to Heller et al's an which fhey call the
n-n scattering length. For clearity, we distinguish a and
®an”

In addition to the effect of the Coulomb interaction,
there are innumerable differences between p-p and n-n
interactions (2, 5). Hence, removing the effect of the
Coulomb interaction in the p~p scattering does not give the
n-n scattering. It only gives quantities wh ich cen be
compared with corresponding quantities for n-n.

The prime purpose of this thesis is to estimate

ag and ry when the stfong nuclear interaction is represented
by a non-local, separable potential. This problem was
investigated by Harrington (6) who assumed a simple
Yamaguchi-type se?arable potential.

We interupt our discussion of charge symmetry and



charge independence to briefly discuss the significance
of separable potentials. We define a separable potential

a non-local potential which has the special form V(;,z') =
g(f) g(?) or a sum of several separable terms. The functions
"g(r)'s are called the form factors of the separable potentials.

When separable potentials are inserted in the
Lippmann—Schwinger'integral egquations for the off-energy-
shell two-nucleon partial wave scattering amplitude, the
kernel of this equation becomes degenerate (or separable).
Hence, the Lippman-Schwinger equatiog can be solved
algebraically. The off-shell behavicour of the scattering
amplitude is determined by the choice of the form factors of
the separable potentials which can be made from a model for
phase~éhift (7-11). Separable potentials are extremely use-
ful for three-body calculations since they reduce the Fadeev
equations to an effective one-body problem; that is, they
reduce the set of two dimensional integral eugations to a
set of one dimensional integral equations (12).

When a Coulqmb potential is added to a separable
potential, it is shown by Harrington (6) that the most
important property of the separable potential is preserved;
namely, the solution of the Lippman-Schwinger equation can
be given in élosed form. The two particle scattering matrix

T=T + T

c sc* The main Coulomb effects are_included in Ts

c
which can be obtained from the Ty matrix corresponding to
the separable potential alone by replacing the form factors

of the separable potential by their modified form factors.



If, instead of adding the Coulombvpotential,vwe add a
separable potential in order to have a two-term separable
potential, we should arrive at the same results. We
consider in this thesis the possibility of obtaining a one-
term separable potential which is equivalent to a two-term
separable potential. Of course, we can also add any non-
separable pbtential to a separable potential, arriving at an
‘equivalent separable potential'.

DéSpite of their successes ip accounting for many
properties of nucleon-nucleon scattering fow atary and the
three-body problem, separable potentials seem to be purely
phenomenological if not unrealistic. However, as shown by
Lo&elace (13), the T-matrix or, equivalently, the potential,
near the resonances and bound states, is indeed separable.
In view of the important property of scattering from a seper-
able potential plus a (separable or non-sevarable) potential
as mentioned in the last paragraph, we call explain the
separability of the nucleon-nucleon potential by saying that
the latter is a sum of a separable potential and a non-
separable potential. The separable part represents the
resonances, bound states and other unknown effects of the
nucleon-nucleon system. In this thesis we shall briefly
consider this possible model for nucleon-nucleon potential.

We now return to the problem of determining ag and
r_ for p-p scattering. A simple one-attractive term separable

S

potential used by Harrington (6) is not sufficient to describe



the behaviour of the lS phase shift and does not provide
a good fit to high energy p-p data. Hence, his results for
a, = -17.9 F, which is appreciably different from the value
obtained by Heller et al, should be taken with a grain of
salt. We have extended Harrington's work and consider
separable potentials which fit the p-p scattering data up to
about 300 MeV. We'have tried two separable potentials; one
is Naqgvi's type and the other is a'modified Tabakin's type'.
The general format of this thesis is as follows.
In part II, we will give briefly thé general formulation for
scattering of two particles via a separable potential and then
apply it to the calculation of the scattering length and
effective range for Yamaguchi's, Nagvi's, Tabakins' and
modified Tabakin's potentials. The same problem is treated in
moré detail in part III where another potential is added to
the separable potential. We consider scattering from a
separable potential plus an repulsive Coulomb potential,
and from two separable potentials, which leads us to a
model for the nucleon-nucleon potential as a separable
potential plus a non-separable potential. We use the
approximation proposed by Harrington to relate the ag and
T, to the corresponding proton—proton.parameters. Numerical

results and a discussion will be given in part IV.



IiT.

SCATTERING FROM A SEPARABLE POTENTIAL

A. General Formalism

In this section, we shall study the properties of

two particles of masses my and m, interacting via a separable

2
potential.
We suppose that the total hamiltonian of the system

can be separated into:

H=H_ +V (1)
o s

where Hy is the free-~hamiltonian and VS is the interaction
which we assume to be separable.

Let |¢d> the complete set of free-particles state,
and inu> the outgoing and ingoing exact state. Then lXia>

is related to |¢a> by:
+
lx™ > = ]®a> + G (s) VS!¢Q> (2)

where
1

G (s) (s - H + ie) (3)

with s, the energy of the system.
The S-matrix elements are defined as:

_ -+
Ss,Ba - <XB |Xa> (4)

which can be shown to obey the equation (Ref. 14):

Ss,Bd ='<¢e|¢d> - 2ﬂié(SB - Sa)Ts,eu (5)



where
S . +
TS,'BOL - '<¢B!VS!XOL> (6)

the operator TS defined by:
Ts o = <PglTgle,> (7)

obeys the integral equation (Ref. 14):

_ +
T, = Vg + Vg GO(S)TS (8)

where Go(s) is the free particle resolvent
Gi(s) = (s - u * ie)”? (9)
In this work, we shall be concerned only with uncoupled

partial states; the vector spherical harmonic decompositions

of the potential and the scattering operator are:

M SJ M
V. = )} lY >V <Y I
s L,S,J,M LSJ 's,L. "LSJ
(10)
M SJ M
T, = 5 Y o > To <Y
. s . L,S,J,M LsJ "s,L "LSJ
. . . . . SJ
Substituting (10) into (8) we obtain an equation for TS 1,
!
SJ  _ .SJ SJ SJ
Ts,L . VS,L +_Vs,L Go(S)Ts,L (11)
. SJ '
Now we write VS 1, @s the sum of N separable terms:
14
N sJ SJ SJ
v89 = 3 (9547 M3 “9ril (12)
s,L .
i=1
. . SJ ST
- where some of the function gLi(k) = <ngLi> may be equal to

Zero.



From (2), we can deduce that the wave function is

related to Ts matrix as:

[6,> + Go(s) T_|o > (13)

x>
o

Substituting (12) into (11) we can easily show that TzJI

has a separable form similarly to (12). 1In momentum space,

the equation (11) becomes:

SJ : _ SJ SJ ., :
Ts,L(S’k k) = Ly ‘i 903 (k )_gLi(k)
2 ST )
1 VST ST ) a 9p; 9
ni i S(k) =~ s(9) + it

dg (14)

N
3

Equation (14) is the Fredhom's integral equation with degen-

erate kernel, the solution of it has the form (Appendix B)

SJ 1] —— SJ [ SJ . SJ
TS’L (E,k',k) = Zij 9r; (&' KLij (s) 91,4 (k)
(15)
Dropping the indeces LSJ, we obtain for the matrix K
K(s) = A - AJ(s) K(E) (16)
where A is the diagonal matrix:
= §.. A (17)

ij iy "i
and the density of the matrix J(s) are given by:

. w‘kz.dk gj(k)]gj(k)
Tigle) = =5 S (18)

[¢)
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Solving (16) for K(s) we get:

K(s) = [1 + AJ(s)1 % A (19)

We write the 'on-shell' partial waves amplitude as:

. .SJ

. is (k) '

sJ 2% _._ .SJ s,L

Ts,L = ﬁE"Sln GS’L(k) e (20)

With (20) substituted into (15) we have:
1§57

(k)
2 : sJ LV h) SJ SJ
3 sin SS’L(k) e =<5 gLi(k) KLij ng(k)
(21)
From (21) we see that:
SJ _ SJ .SJ A
.6s,L(k) = —~arg{det[l + AT OIT [s(k)11} (22)

From the TS matrix (15) we can easily write down the wave

function, the desired cross—section. From the phase-shift

GEJL(k) we can derive analytic expressions for the scattering
14

length and effective range ry etc.

B. Applications

To illustrate some of the features of the formulas
developed so far, we shall apply them to the simple problen
of calculating the S-wave phase shift for separable poten-
ials proposed by Yamaguchi (Ref. 7), Nagvi (Ref. 10),

Tabakin. We shall compute the scattering length and effec-
tive range for these potentials.
1. Yamaguchi's Potential

The most simple form of the singlet separable



11

potential was first proposed by Yamaguchi in 1954:

<! VO k"> = ag (k") g(k) (23)
1O :
where ,
gk = (24)
k™ + B

Equation (15) gives:

ToOo (s/k' k) = g (k') g(K)K (25)
with
R
K = 775505 (26)
where -
Jls(x)] = % o” 9%(9)dg (27)
S T 02 s(g) - s(k) - ic

o]

Relation (22) gives:

_ _Re(l + AJ)
coté = S (28)
k2
Noting that s(k) = §§~where p is the reduced mass, we can
write (26) as:
I(k) = YN R (29)
U (g7 + 87) (g7 - k™ - ie)
0
Using the representation:
P o .
— = — —— — im §{(x - x.) (30)
X = Xg X T Xg T it o
where P denotes the Cauchy principal value, we obtain:
...... k
Im J(k) = E— (31)
2w (k2 n 52)2
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2
dg
Re J(k) = &, p d (32)
2 .
: (g% + 8% %% - ¥%)
[¢]
The‘integral (31) can be evaluated by using a coutour
integration. The result is:
‘ 2 2
B -~ k
Re J(k) = f— — (33)
2
4y 8 (g% - k2)2
From this:
2% .2 . 0202 1,2 .2

To calculate the scattering length and effective range, we
expand (33) in power series of k; the zero and second order

in k give:

1 2m 4 B

a T uA B 2 (35)
s N

1 _ 4r 2 1

2. Nagvi's Potential
We now apply our formulation to a more general
separable potential with two terms. This potential has the

general form (8).

~ 1 OO — 1 ]
<k ]VS,O|k> = Algl(k)_gl(k )y + ngz(k),gz(k ) (37)

with

(38)

oy e | N
2 [(k - o) + 821[(k + )2 + 82

Although these general form of_gl(k) and gz(k) give
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excellent agreement with experimeht (Ref. 8 ), when applied
to scattering from separable potential plus coulomb potential,
they give rise to very complicated transcendental functions
which are difficult to deal with ahalytically. For simpli-

v ,
fication, we follow Naqri to take:

il

91 (k) == (39)

92 K) =~ (40)

At low energy the potential should be attractive, A, is

taken to be negative and the fofm gl(k) and gé(k) were

chosen so that in (37) the first term predominates the second
at low energies. As experimental, S phase shift change sign
at about 240 Mev, the value of Az is adjusted to give repul-

sive phase—shift at 240 Mev, we have, according to (22):

s - 1+ Al Jll(k) lilz(k) ~
g = Targ z -arg D
A2 X le(k) 1+ AZ J22(k)
(41)
where
0 2 2
Y g~ dg gy (9)
Ik = = R (42)
. L) g - k7 - 1e
o)
o 2
e g dg»gl(g)'gz(q) .

wz g” - k¥ - ie



@ 2 2
97 dg g5(9)

g2 - k2 - ie

i

=1]'¥:'.

Jog (K)

Noting that:

g, k) = (1 + 8% L) g (x)

dg
It is easy to see that:
g2
le(k) = Jl(k) + o5 Jl(k)
with J' = gij; and
dg

4 1

_ 2 ! g |
J22(k) = Jl(k) + B Jl(k) + J. (k)

6 1

we obtain, after some tedious calculations:

_ _Re D(k)
cot ss T Im D(k)
. () { ] l(k2)2 1 1 B (
Re D(k) = B {r, + A (5% + A, A, —=
o 1 2K N ) 32K2
_ ' ' 282 84
Im D(k) = 1 + Ao{kl + x2[1+—i~ + ;E]
i t 1

A Ay B K Ay B g
32 K B K 88

1 1

Ll Xy o1t

2

32 82 (16)2 8 K2
[P T 1)
AoT Aty T AT
2 2
K r_kz + BZ,AO =}B ; K
48K
_ k
Bo - 2

(2 - B

14

(44)

(45)

(46)

(47)

(48)
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Expanding (48) in power series of k, we again obtain the

expression for the scattering length and effective range.

We find:
1
4 A,
-t e- 2 g 2T
(49)
1 1 L ]
A A Ae A
3 =) 4 22
48 8y (16) 78
1 L [}
1. 22 Ay a1 M Ay
5rg = (1 4+ —=5) {—3[3 - —%
A 328 48 81,
1 t 1 (50)
51 A 52
+—351 4 —p(4+ —5 (- 7))
328 48 168 s

These expressions agree with the ones given by Nagvi for the
scattering length and effective range. Note that if we let
A; = 0, we reproduce thé expressions (35) and (36) corres-
ponding Yamaguchi's potential.
3. Tabakin's potential

We now apply our formula to a one term separable

potential containing both repulsive and attractive terms

proposed recently by Tabakin (Ref. 15):

<k'lvg?0|k> = g(k') g(k) (51)

with

2
g = (k% - k%) S L (52)
C
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We need the integral:
2 2
Jky = 4 | 9499 (9 (53)
0 g7 - k7 - ie
0
As before, we have:
‘ 2
Im 3 () = ey o (R)  (54)
Re J(k) = —5 P g gg g éq) (55)
T g k

To calculate (55), we make a fractional decomposition for

92 92(9) and use contour integration, The result is:

7
Re J(k) = iil 5i Ji(k)
where
2 2
61 = 20p (B - b7y); 62 = g
_ 2 _
63 = 2at{B - b7y); 64 = 20 (cf + v1)
- a2, - ] - L2
65_8156'_2Y8167"‘Y
2 2k<2:+b2
a = (a7 = b"7) 7 7}
a + b
2 4
kb - a
B=k2 + (@° - b%) & y
a + b
2 2 kz + b2
Y=—l_-(d_b)”~'4 4
a + b
S -
P Z ] o T = 77 ]



L. r‘x’
g (k) = =5 p
" )
(¢}
i )
¢}
U (00
! )
(o]
f
I, (k) = —% p
" )
U foo
J5 (k) = —5 P
™
0
rOO
Je (k) = —% p
. ki
‘0
rOO
= X
T, (k) = . p

The scattering

N S
a
S
+
o
2 s
+

17

dg - _ _M 1
(G%452) (g2-x2) 2nb |22
o2dg _ 4 b2l
(G202 2 (gPok?) | D (2202
 dg w7 x%+a?
(g4+a4)(g2—k2) avad kt+a
gzdg - Wz a2-x2
(@%rat) (q2-12) 13 Tl
g2dg _u/7 32522kt ok Bra?t
2 - 2
(hrahy 2 (g2-2) dan T 4 4, a7
g4dg _ w2 a6~k6+3k2a2(a2"k2)
(G122 (g?-x2y Teua 2 (28 h) 2
g%aqg _ w7 ~x%4a®) + 32%2 (x%4a?)
(G2t 2(g22, Tema xhrah) 2
(56)
length and effective range are:
2a%p* R T
R S s S ¥
AtkTd b
¢ (57)
/2 b3 3% . % %
B T T Ty Sy S TR R
a a 4a
ga8b2'{2 + ilfmil - ig
L
XK2d4 b3 2 4
c
L s % %y
23Ut T gt T
a a at 432



$ 8

5

Y2 b 3 5
S-S S RV B

a a a

2,2
Atd%k |
ol - -hy o =
2a b s

4, Modified Tabakin's Potential

—_—

8¢

B[ W

2

4a

Au
I

18

(58)

Tabakin's potential, when the Coulomb potential is

added, give rise to very highly transcendental functions

which make our analysis difficult. For simplification, we

shall modify Tabakin's potential as:

g (k)
(x2 + a?) (k2

+ b?)

where

In this case:

Re J (k) = +

(59)

T 4a(a? + k%) T 4p (% + k2
(60)
Sty t, ab - k2

.
m(a + b) 2 + k2)(b2 + ok

2)

(a

The scattering length and effective range are given by:

1 2 .ab. 4 R t %)
- Fi - ')T—i- (E-) [1 + A« 3 + 3 + ]
s c da 4b ab (a+b)
2.2
L 2 2202 (a%4b2) L
3T = T 3T ) 2+3 - —575—
k da” (a"+b")

C



t2a2 t? + t2a
_ 2 L1t
453 (n%+b2)  2ab(a?+b?)
t.t. (a’+b%-ab) Yk 2
+ l 2 - : C (___];}
ab(a+b) (a+b?)  a?b?(a?+b?) 2g
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SCATTERING FROM A SEPERABLE POTENTIAL AND A POTENTIAL

A. General FPormalism

In this section, we shall apply the conventional

formulation of scattering from two potentials to the case

where at least one of the potentials is separable. We shall
study the properties of two particles of mass my and m,
interacting via a potential V = VS'+'Va where VS is a
separable potential and Va is any potential, local or non
local.

Lét |¢u>; lrzg eigenstate_of HO and Va respectively
and |W§> the outgoing and ingoing exact states, eigenstates
of :

H=H_ +V_+V (1)
The formal relations between |F§> and |¢ > is
+ +
It > = lo > + G, (s,) va]¢a> (2)

+ ’ \
and between |¥ > and [¢ > is:

|w§> = |¢a> + éi(s&) (Vg +-V,) l%> (3)

where
Gi(s) = (s, - H_ - v_+ie) t (4)
¢t (s) (5)

l
n
1
S =
+
"
m
i

20



21
Relation (3) can be manipulated as:
T +
Iwu> = |r >+ G (s) v |r > (6)

which may be an obvious result if we -gstart with the complete
+

set |ro>.
o

The S-matrix elements are defined as:

-t

SBa - <w8\wa> (7)
Inéerting (6) into (7) we get:
g = Tl rgleteg) v Irh
* <F;IVS G+(SB) VSIFZ>
+ <rglvg 67 (s)) G+(sa) vslr:> (8)

Now ‘'we use the identity:

c*(s)

il

Gf(s) + Gi(s) VS G:(s)

1l

* + +
Gu(s) + Ga(s) VS G (s)

for the second and the third terms in equation (8), we obtain:

.|_

Sgq = <rBlra>
1 + + +
+ s <PB|(1 + Vg, G (s )) v |r >
a B
1 - + ’ +
+ 5;:—§E:IE-<PBIVS(1 + G (sy) VS)]Fa> (9)

- + + +
(s .
+ <rB]vS G (s,) G (s) vs[ra>



The last term can be written as:

P

S -5

C ok
) - G (S )) V
o B

PR TR +
<rB|vS(G (S, SIP“>

where we have chosen arbitrarily to write 'principal value'
as the instruction for handling the apparent singularity
at S = S_. If now in the second and the third term we

write:

)

= + ins(s - S
o B

Sa - S8 + 1€ Sa - Sﬁ

We see that the entire last term in the equation (9) is

cancelled and we have:

Ssa = <¢ul¢8> - 2w16(sa - SB)
(10
x [T + T ] )
sa,Ba a,Ba
with
_ +
Ta,ga = <¢B|Va|1a> (11)
- + .
Tsa,pa = <F8|Vslwa> (12)
The matrix elements’Ta 8 is just the scattering amplitude
14

corresponding to scattering from the potential Va' We are

interested mainly in TSa B which can be written as:
’

- + +
Tsa,sa(s) = «FBIVS +V, G (s ) v > (13)

The operator Tyq defined as:

— + 3
Tsa =V, +V,G (s) v (14)
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Obeys the integral equation:

o+
= 15
Tsa Vg + Vy Ga(s) Tsa (15)

Assuming the set ]F§> is complete, the equation (15) may

be written as:

. +
sa,Ba FB!Vlea> ‘
(16)
+ 7 S N
y S - s@ 4 3¢ B! 's' vy sa,yo

where S? is the eigenvalue of the Hamiltonian H o= HJ + V.
In the absence of the potential Var Vg leads to an integral
equation with degenerate kernel whose solutions are simple.

In the presence of the potential Vs equation (16) shows that

we are led to an integral equation with VS replaced by:

(%) = ¥ <T Ig > V <g IF(i)> (17)
sa,fBu B!=v S,HV v a
pv
where we have introduced a representation'{gu}. Because
VS is separable:
N )
L= ) . .1 E 18
souv = L5 <€ lgy> Al<g;l€v> (18)

Equation (17) shows that Vaa is also separable. Our problem
is now reduced to the scattering problem from a separable
potential which we have studied in Chapter II.

We should like to point out here that, instead of writing

(3) as (6), we write it as:

+ + + +
- = - - - - 19
v, X,> * G (s) Valxu> (19)
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We obtain, instead of (10), the similar equation:

Sao = <¢d|¢s> - 2wisls_ - SB]
(20)
[Tas,Ba + TS,Ba]
with e ’
. +
Ts, 80 = <¢B|Vslxa> ‘ (21)
— +
Tas,Ba - <X8!valwa> (22)

The operator Ts has been studied in Chapter II, TaS satisfies

an equation similar to equation (15):

_ +
T =V, + Vv, Gs(s) T, o (23)

Equation (23) is not necessarily an integral equation with
degenerate kernel due to Va being not necessarily separable.
But if Vg is a separable potential with M terms, then A VS
is separable potential with N + M terms, then our formalism

for scattering from two separable potentials is not necessary.
We shall indicate lazater that, a two term separable potential
or many terms separable potential may be equivalent to one term

separable potential as far as the phase-shift is concerned.

B. Scattering from a Separable

Potential:and -the. Coulomb: Potential

To illustrate the formulation developed so far, we

shall study the problem of scattering from a separable
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from a separable potential and the Coulomb potential. This
problem>was first treated by Harrington.

To avoid the complications due to the extra bound
states, we assume the Coulomb iﬁteraction is repulsive. We
also cut off the Coulomb potential at a shielding radius R.
We can then replace Va in the above formulae by Vc' the
Coulomb potential. Tc is just the usuai Coulomb scattering
operator. Our main object of interest is Tsc'

In momentum space, the partial matrix elements

satisfies the integral equation (Appendix A).

sy _ ' SJ(+) .
Toe = (s/k',%) = voo Tl (k' k)
© 2 SJ(-) SJ
+ 1 a dg. Vsc L (k'rq) sc L(S’q k)
2n2 s(k) - s{(qg) + ie
0
(24)
With Vsc(k',k)»defined by:
SJ . 1 2. 2
Veo,p (k' ik) = 52 g~ dg q-dq
' 0 o (25)
ST+
<F(S:i (k") |g'> V p(atra)<glroy g (k)
where the partial Coulomb states IFgJL> is defined by:
’.
M SJ
Ite> = 2 ypep 000 (26)
C L,S,0,M LSJ c,L

The unitary condition TSC is satisfied if we write the on-
shell Coulomb and total partial scattering matrix elements,
respectively as:

ié (k)
(27)



. SJ
SJ 18, 4 (k)

sc,L

2T

[s(k),k,k)] + ok

sJd . sJ
Tc,L(k’k) + T sin GCIL(k) e

SJ

SJ
where GCIL(k) and 6L

(k) are real phase-shifts. Substituting

the expression for ViJ
- I

L(k',q) in (25) we obtain:
sJ |
is (k")
v (kt,k) = e ST
sc,L
o ST
sJ SJ sJ 218 1 (1)
| (k') g . (k) !
i Li “¢c,L1i c,L1 (28)
Where we have defined:
C ST - %
/ST eilGC,L(k) _ 1 2ag 57 (g) <g|rSTEs (29)
%c,Li » 2 169 9,197 911
(¢}
From (28), it is clear that Veo 1, is also separable. The
1

Coulomb wave function in configuration space has been studied
by Yost, Wheeler and Breit (Ref. 16). We are concerned here
with modified Coulomb wave functions, i.e. solution of the

n

Schrodinger equation with a cut off rather than the exact

Coulomb potential, which satisfies the asymptotic condition:

L

wz(k,r) T oroo sin (kr - =t GC,Q(k))
For kR>> L(L + 1) + n2(k) and r<R:
WL(k,r) = FL(kr)
= D) 7" o () min, %(Zikr) (30)
where Mk ﬁ(z) is the Whittaker function.
Flnn
c.m =22+t r@a 1 - i) e ? (31)
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is the barrier penetration factor, and:

n = n(k) = (32)

The radial Coulomb wave function Fg(kr) has the
asymptotic form:

F_(kr) = sin(kr - nln2kr - %- In + o) (33)

where Tq usually known as the Coulomb phase-shift, is
~given by:

op = arg T(L + 1 + 1in) (34)

The exact value of 8 depends on the nature of the cut off.

L
I
For k not to small, we expect (Ref. 14)

oc,L T 1 nln2kR L << kR (35)
6C,L = 0 L >> kR
In order to make use of these known results for
SJ
Coulomb wave function, it is convenient to express the Io Li(k)
, : ,

defined by (29) in terms of therconfiguration space Coulomb
wave functions.

Using the matrix elements for the transformations
from'{q} representation to {r) representation and the expan-

sion of Coulomb waves, we can write (29) as:

1 2 SJ
(k) = 52 q dqngi(q)

SJ
c,Li

g

(36)

x| gta-¥ ;L wL(kr) dr
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Expanding et T

in series of harmonic functions, then
simplifying with the aid of the closure relation for y%(Q)

we obtain:

4 SJ

S
gC?Li(k) = % | TdE G, () wy (kT (37)
o]
with )
cSJ (r) = (—)E 24 SJ( ) i (or) (38)
L,i 2 q dq 9gy;9) I (g

jL(kr) is spherical Bessel Functions.
Solution of the integral equation (24) can be written

under the form (Appendix B)

. ST
is (k")
SJ . _ c,L
Tsc,L(s’k k)Y = e
. SJ
. ig (k)
sSJ ' SJ SJ c,L
z-gc,Li(k ) IL,lj(S) gc,Lj(k)e
' (39)
The matrix 53 is defined by:
-1
T(s) = 1 + AI(s) A (40)
where A is the diagonal matrix
Aew = 6. A, (41)
ij ij "i
and the elements of matrix I(s) are given by:
L [T x%ax g L (®) g LX)
. (s) = ‘ 2r) (42)
ij 21T2 s(k) - s - ie )

o
From (39) and (42) we see that, except for the

Coulomb phase factors, T (s,k',k) can be obtained from

1]

wn
(OIS

'L



the corresponding TgJL—matrix elements in the absence of
: 14
SJ

the Coulomb potential merely by replacing giJ. by g ..
. ,l : ClLl
Now, from (27) and (39) we deduce that:
SJ _ .83 ., .SJ

In examining the argument of (39), we can see early that:

sT _ ___ sJ _SJ -
GC,L = —~arg {det[l + AL I (s) 1} (44)

We have arrived at the results of Coulomb + short range
potential scattering originally studied by Yost, Wheeler and
Breit. 1In general the exact nature of the Coulomb screening
is not known. As long as R is much longer than the range

of V. r however, under most experiﬁental conditions, the

differential cross-section is given accurately by (Ref. 14,

page 263) :
do _ 2 :
qo = |f.(8) + £, (8)] (45)
where
1 iog,
fc = ¥ ZL(2L + 1) sin op € PL(cos)
1) + 2iG
1 . + sc,L L
fSc =K ZL(ZL + 1) sin 6sc,L e PL(MD

C. Scattering From Two Separable Potentials

In apblications of séparable potentials to Nucleon-
Nucleon scattering, it is generally found that a many term
separable potentials gives better agreements with experiment
than a single term separable potential (Rf. 8§ ). To obtain

P

S
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agreements with experimentél phase-shifts up to 300 MeV,
a two—térm separable potential seems to account for known
behaviours. As we have pointed out, as far as-the phase-
shift is concerned, the usual fbrmulation for scattering
from two potentials shows that a two terms separable poten-
tial may be equivalent to a one term separable potential.
'Let us now study the scattering problem via two separable
potentials‘]s + US which, for simplification, we assume to
be single term separable potentials.

Again we replacé vy in section A by US. Equations

(10), (11) become:

Sga = <¢d|¢s> - 2nigls - s ]

8
(47)
X[TBa + TBa]
where

.|_
T = <tplUglx,> B

L
Too = <XBjVS|Wu> (49)

|Xéi)> are the outgoing and ingoing states in the absence

of Vs’ which we have studied in chapter II.

SJ SJ+ ‘
TL (s, k', k) = WL (k',k)
L7 qPaq W Tk, <5V (s,q,K)
L1 I L
272 s(k) - s(q) + ie

(50)



31

' o (51)

SJI- ST +
<xz (k") [a'> US?L(q‘,q)<q]xiJ (k) >

where the partial wave IXiJ>, according to equation (13)

Chapter II, is given by :

87 00 = 17005 + i 116 00>

or

<qlx§J(k)> = <ql¢iJ(k)>

o

-t

2, o <2l (0>

‘ ' sJ
T3 SR A R RN R T

T, FS(k),q,q']

N
=

0
(52)

Now; if we write the on-~shell TL and t, as in equation (27),

L
we find that we are led to an equivalent problem of scattering
from a one-term separable potential whose form factor is
given by (See equation 29) :
. .SJ
sy oy, (0 1 2

= SJ SJ+
9,n © =52 | @ dg gr" (@) <q|x{ (k) (53)

0

where_gL(q) is the form factor of the potential US and

8y L(k).is the partial phase-shift due to the potential U
14

alone.

We have shown that a two term separable potential is

equivalent to a one term separable potential whose form
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factor is obtained from one of two form-factors of the
original two term separable potential by an integral
transformation as (52). In doing this, we here assumed,
as we did with the Coulomb states, the set Ixi(k)> is
complete. -

Our work here may have two applications. Firstly, a
~one term separable potential is always easier to handle
than a twé term separable potential. For some classes of
problems whichare too complicate to solve with a many term
separable potential, we would theﬂ like to have a one term
separable potential equivalent to it and work with this
equivalent single term potential. Secondly, we can check
with,the conventional formulation for scattering from two
potentials is exact. For two separable potentials, this
problem is very easy because we can solve the problem, first
exactly as scattering from two term separable potentials, and
then, as scattering from two separable potentials; we then
compare the results of our twobapproaches.

For a two term separable potential, we would choose
our set {¢} the one/corresponding to the term which yields
a rather completeness for {¢}. This term, in an intuitive
way, would dominate over the other tefm in the range of
interaction. If {¢} is complete, Qe would expect consis-
tencies because mathematically we can use any complete set

as our base for description of our system.
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D. Nucleon-Nucleon Potentials

Iespite their comparable success in Nucleon-Nucleon
scattering analysis and three body calculations, separable
potentials are purely phenomonological, if not unrealistic.
The only theoretical justification for separable potentials
is, as shown by Lovelace (Ref. 13), the approximation of the
T matrix as separable near the resonances and bound states
Now, in our analysis, scattering from a separable plus any
potential is equivalent to scattering from a "modified
separable potential”. This suggests an explanation for the
validity of separable potentials as Nucleon-Nucleon poten-
tials. We imagine the Nucleon-Nucleon potentials contain
a separable part which represents resonances, bound states
and other unkown effects which we can approximate the potentials

as separable, and a non separable part which is, for example,

a local theoretical potential :

V=V_ +V (54)
S a

It is obvious that Vg depends on Va. The most
simple idea is that we can take for Va a local theoretical
potential (Yukawa, OPEP, TPEP, etc...). Vs is not known
and again can be taken phenomonologically. In actual analysis
 this, of course, is not a clever approach because if (54)
is equivalent to a pheonomological separable potential, we can
simply take V as a separable potential for a much easier

analysis. However, by studying the Vg in (54) we can have
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some understandings about the resonances and bound states

if we believe in Lovelace's arguments.

Anyway we like to

offer here only an explanation for Nucleon-Nucleon poten-

tials as separable potentials.

F. Applications

We now apply some of the formulas developed in

section B to the simple problem of calculating the

phase-shift of scattering from a separable potential plus the

Coulomb potential. We shall first treat a single one term

separable potential of Yamaguchi's type, than a two term

separable potential proposed by Nagvi and a single term

separable potential containing repulsive and attractive parts

(modified Tabakin's potential).

1. Yamaguchi's Potential

In Chapter II we have applied our formulas to a
simple single separable potential of Yamaguchi's type.
In this section we repeat the same procedure except we

replace g(k) by gc(k) and J(k) by I(k) with

© 2 2
" g dg gc(q)
Ik) = = 5
T q
[¢]
Using (38) :
G(r) = % > :

sin (gr)dr

(55)

(56)



35

The sine-Forrier transform (56) can be obtained easily:

» G(r)

il

Then (37) becomes :

efsr wo(kr)dr

i
Fon kot

9 (k)

© . (57)

_ 1 t _-=Br s
= 5%T e Co(n)Min'%(Zlkr)

0

The Laplace transform of Whittaker function is given in

standard table (Ref. 22) :

| 2ntan”t %
g (k) = g(k) C_(n) e (58)
with
21 1
Co(n) = (;E;H'j~z)2 (59)
We can write the integral (37) explicitly as:
- 5 9 4ntan—l %
, y g“dg Co(n) e (60)
I(k) = —&
2] @+ 8 2(a? - k2 - ie)

o
In the g-plane, tanml % has two branch points at g = iB
and q = -if. Here we realize that the Coulomb interaction

has the effect that it can change a pole of VS into the branch

CUE\N;E point. To calculate I (k) we
‘ s must cut the g plane in a
-k —ig ] k convenient way and choose
| { ' the value of tanfl % in
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a Rieman plane. It was shown (Ref. 17) that the Coulomb
effect enters the dispersion relation in a way that if the
left hand singularities in the neutron-neutron problem are
represented by a single pole, then the proper statement of
charge symmetry is that there will be a series of branch
points in proton-proton problems.

Using (44) we obtain :

cot sc(k) _Pe(l + A1) (61)
AImI
with 5 4ntan_l k
B
) uk Co(n) e
Im I(k) = S 5 55 (62)
(k™ + 87)
4ntan_l %

L7 dfag clint@) e
ke I(k) = R= ) P (63)

2 2.2, .2 2
™ (g™ + B7) " (g” - k7)
8]
dypye.e _
The factor 4ntan 1 % = —~—%—3 tan 1 % << 1 for all g in the
pe. e

case 1 % << 1. In this case the above formulas can QE o
4ntan §

considerably simplified by expanding the factor e
which occurs in the integral (46) to obtain a perturbation
for Re I (k).

The first term in the expansion is:

q*aq Ci(n(q))
R (k) = — P 3 553 5
© 5 (@° + 8°)“ (g - k%)
[o]
2 " e (n(a@)dg
_ k U o
% + g2) ¢ (g2 + %)
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o 2 ' 2
| 2 Co(n(q))qu . k2 p | Co(n)dq
B2 + k2 Tr2 (q2 + 82)2 (82 + k2)2 32 q2 _ k2
o o

(64)
The first integral of (47) can be calculated with
the aid of an integral representation of the ¥-function. It

can be verified that (Ref. 22)

. ue.e o

172 B
YIn(B)] = 1In ( ) -
B 2uele2
| (65)
o 2
_ B2 1 dg Co[n(q)]
uele2 m q2 + B2

o
The second integral can be obtained by differentiating

(48) with respect to B. The last integral is given by the

formula:
h(n(k)) = Re¥(-in) - 1n n
(66)
o 2
_ k2 P dgq Co(n(a))
He e, m q2 _ k2
(¢}
The next term in the expansion is:
o [T aag tan™h € 2 (n(a) -
R, (k) = 4dpye,e., — 67
1 172 2 2,2, 2 2
e N C R S R CEIE NI
(o}
- neqe,
We note that we shall keep terms only to order g’

S ue.e . ue.e
ignoring terms of order ( é 2)2 In (- é 2

replace Cg(n(a)) by 1, the integral becoming elementary.

Y, we can then

To avoid the difficulties due to the branch points of tam_l
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%, we consider the integral

fﬁ..z.ln.(l f,i:EOdZ
K=P" 5 52 2B 5
(z= + B7) " (z7 - k%)
which can be shown:
R () =48ue1e2 ik
1 : 2

m
Using a contour integral in the z-plane (Appendix C) we

obtain:

-2 2
Rl(k) _ ﬂuelez[“ 12 + 1n 4 - ln[g + g ) + 2 1n B] (68)
28 B + k

Now, consistent with our approximation we write:

(69)

where I is the BEuler constant; T = 0.577215.... With the
aid of (65), (66), (68) and (69) we obtain:
Re T (a) = us {B - K + 172 In(n)

1 (82 + x?%)2 48

o)
"

¥€1€2 [1n (4ueje,B) - 1In(z% + k%) + 1)

+
B

(70)

Substituting (45) and (52) into (44), we obtain:

k Co(n) cot ésc + 2uele2 h(n) =

m4ﬁe.e A
_ . 172 =1 k
= k cot 55(1 —5 tan B)'

- 2,.2
- 2uele2[ln(4uele28) - In(B +k“)]
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where k cot S g is given by (II-32). The left hand side is
the function used for the effective range ekpansion for the
- presence of Coulomb potential (Ref. 23). Expanding the

right hand side of (53) in powér series of k, we obtain the

formulas for scattering length and effective range:

1 1 dueye,
i o F /)
sc s
. (71)
: - due.e.
172
- 2pele2[ln( 3 ) + T
' due-.e
1 _ 1 _ 172
Fse T 3T ) !
(72)
2ue.e
172 2
+o—J1 - =]
82 3BaS
where a and r_ are given by (II-35) and (II-36).
2. Nadvi's Potential
The form factors of this potential are given by
(r1-39). From (58) we have:
Zntan—'1 %
From (I1I-45) we deduce that:
i 2 d .~
gey (k) = (1 + 8% =) g (k) (74)
dB
Then: - 5 9
1 ¢ gcl(k)
Ill(k) 5 dgq SO — s = is = I (k) (75)

27
0

where I(k) is given by (62) and (70.
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From:
_ 'Bz“d
9oy (K) 9y (K) = (1 + 55 —=5) g4 (k) (76)
dg
we obtain:
w2
I, (k) = I,.,(k) = 1 .quq‘gCl(q)>gC2(q)
12 21 21T2 s{q) - s(k) - ie
° (77)
A,B2 ag ,
= I (k) "‘-‘*Z-J'(k) i J! =
dg”
From: .
4 4
2 0y = o2 2 B2 B a2 "
gc2(k) h gcl t 8 (gcl) g 6(gcl) * 3(2gcl 9e1 gcl)
(78)
we obtain:
2 84
122(]{) = J(k) + 87 J' (k) + —= JI" (k) + R(k) (79)
where, to the first order in o
. et [ q*dg g2, (@)
R(k) = 3 — 7 5 ) (80)
27 (g7 + ") (s(g) - s(k) - 1ie)

In obtaining (79) we
1
gcl(k)

9oy (K)

250, 09) -

qcl(k) qgl(k>fx

0o

have used the relations.

1+ 2
= 5% g _, (k)
k2 + 62 cl
(1 + a) (2 + «)
= g ., (k)
02 4 522 el
Lo o uese
o - 2 _ 172
2 4 2 Iop (K) 9= —3

(81)



41

If we write I (k) as:

I(k) = A+ 1 B
L2 2 L2
a=f K B +m By
48K K ’
B = Cg(n).¥E§ expl4n tan T %]
2K
K = k% + g2 (82)
then: o
- _ _ Re D(k)
cot Gsc(k) = T D (k) (83)
where D(k) is the matrix defined as in (II-41)
i '2> 84 . o
- — ] ] t n
Re D(k) =1 + AlA + AZ{A + BTA' + “6'(1 + -3-)2-\
84 o 3 2 2
1 rx > 7 "o i s 1 —- ]
+ )\l)\z 3 (1 + 3)(2\.A BB") 2(A B )}
2 84 o
= ! 1 1 LS o ]
Im D(k) A1B+ >\2{B+ B“B' + 6(l+3)B }
34 o
1ty 1 P el " n - TRt
+ Al)\z 3 (1 + 3) (AR" + A"B) 3A'B!'}
(84)
Let us write A as:
A =2A_+ oA (85)

where A _,A
o

(82),

| are defined by comparing (85) with (82).

Putting (85) into (84) and making use of (79), (80),

one can show, with some tedious manipulations,
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that: _
..2(ReD,)O 5 dntan

cot 5sc - (Im D/B) K"e

1k
B

, (86)
Sug?
K

~ 248 {1n + T}

where (Re D)O is obtained from (84) by discarding the terms

ahy in the expressions of A, A' and A". Explicitly:

P N N
— ' 1 - b X
(Re D) | = 1 + A {h] + aj[1 - Z—+ Kz(l + 3))
.5
Alals CaBPatal 2
P22 2-5 - —2 2 - S a0+ Hn
32K B 6k 28° 168 g
ALE 2
r 2 v Xy oS arher
K® 88 28
B4 2
U S ICI il
X 8% 28
| 2 4 4
PPy + g - B - 25 B
168°K K KB
(87)
Im D kz 2 B K
= A 4+ AL (=) + AN —(2 - =)
B 1+ 2R 1'2 7,2 52
2 2
B _11 ., 28
oty Dyt Tt )
3 2 3
Sy B e - B e )
K % 88" 168 (88)

We repeat that (86) is valid only to the first order

in a. For completeness, we give here:

| 22
at= -2+ MK, Xy (89)
k3 8p B
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) 2 2
" 6 - ue 3 K k
A" = 2 A - (= 2.3 + &)
K 1TK4 16 84 B2
(90)
, .2 2
- al3 - 2 5 - Ko
B 2B
Expanding (86) in power series of k, we find:
2 | R T | 2
kCJ(n)cot Sge T 2ah(n) = Tt 5T K+ .- (91)
sc
with: _
1 1, .. -
-7 = (1 - 4o) (- g—)— 208 (1n 40 + T) (92)
sC ' o
L L1 - 4y (L 4o 1, , 20
oo = (1 4a)(2ro) + 2( 3 ) + 3 (93)
38 o
where
4 Al Al
A =-2B e 2e 2 - 307t
1 1
o Xl Al 168
(94)
: p A Adal
1+ ——%[1 + §f%(1 - a)] + 162 T, ga}
48 1 B (16)
2 Al Al
2
=2 et 2 2 -zt
] 1 168
Al Al : Al o
{203 - grr (1 - ey v 2w 20
48 -1 328 3
Al A, . .. 5\ | -
+ it 422G + —20 - 100)] (- 2D
48 S} 168 o
(95)

ag o and oo @rey by definition, the scattering length and
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effective range respectively. We note that if we let o = 0,
a, and r, becomes the ag and ry corresponding to Nagvi's
potential studied in section II-B.

3. Modified Tabakin's Potential

This potential is given by (II-59). We have:

gc(k) = tl gcl(k) + t2 ch(k)
,.Co(n) 2ntan"l §
g1 (K) = 55— ¢ '
cl k2 + a2
. C () 2ntan_l k
_ o} . b
g 2(k) = 53 e
k¥ + b (97)
In this case:
Re I (k) = Il(k) + Iz(k) + 13(k) (98)

where Il(k) and Iz(k) are given by relation (70) and

© 9 5 2n[ta:r1—l % + tam-_1 %]
2ut. t g dg CZ(n)e
T30 = %213 R 53 3
u _ (g” + a”) (g” + b7)(g” - k7)
(o]
(99)
= XJ(k) + YK(k)
where
2t
X = 12 = - Y
a2 - b -1 -1
2 [tan % + tan %]
‘ q dq C (e . . 7
J (k) =
(@ + b2) (4% - ¥?)
_ . (100)
2 [tan 1 % + tan 1 %]
g 61q1 (2 ( mMe .
K(k) =
(@® + b%) (g% - ¥?)



45

We obtain immediately:

[\

Im I(k) = %ﬁ_gc(k) (101)

st

He e, ue e,

Assuming ' b << 1, we can expand the factor

a

exp[2 (tan_l % + tan"l %)] to obtain a perturbation series

for I3(k).

o o | a’dq ¢ (n(a)) o2,
J (k) = —5 P 102
o 2 2 + 22) (2 - 1%

Using (65), (66), we obtain:

B ue, e
I (k) = —— B - 2y L2 ()
r(a® + k%)
ne. e ve.e (103)
172 172
+ - 5 [In( 5 Yy — ¥(n)l
The-next term in the expansion is:
2uele2 [ qgdg Cz(n) ‘i:an—l 4
o a
Iy (k) = 7 T > NP 5
T J (g + a”) (g= - k7)
0
‘ _ (104)
2ue. e (7 gdg C2(n) tan 1g
172 e} b
+ > P > NP 5
m (g + %) (g™ - k7)
J !,
Using an contour integration, we obtain:
. pe.e
3, (k) = 21 2 Qnfa(1 + g)z] + 21n(ab)
2w (a” + k7)
(105)

~In[ (k% + a%) (k% + b1}



46

Then
o . pe.e
1
J(k) = s {%—+ _”g_% h (n)
. T(a”™ + k)
se.e (106)

+ i 2 [1n@e(a + b)) - % In(kZ + a%) (k% + b2) + 1}
To obtain K(k), we interchange a » b in (106). Set:

K(a) = k2 + a® ; K(b) = k% + b2 ; ¢ = pe.e

From (99) and (100) we obtain:

2ut.t
172 o1 b a
I (k) = {’_'[-r i) - ]
3 (a2 b2) 2 "K(b) K(a)
2 2 2 2
e{a” - b“) e{a” - b7)
+ K (a) K (5) h(n) + R (3) K(b)[ln(Zz-:(a + b))
- %— In[K(a) K(b)) + rl} (167)
From (99):
L u 2 2
Re I(k) = —— (225 4 ch(n) + clln(4ea)
a
7K™ (a)
t 2 2
- InK(a) + 11} 4~ (22K w en(n)
7K" (b)
2utlt2
Cab - k2 |
{m + eh(n) + e€[In(2¢(a + b))

| % In K{a) K(b) + T1} (108)
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As before:

_ _ 1+ ARe T(k)

cot ésc(k) S Im () (109)
The scattering length and effective range are given
explicitly as:
o1 _2at b b2 (1 + 25) 4 t.al(1l + 28172
a PR 1 ca’ 2 b
sc ,
2 -
.t 2
1+ % . .t3 . _btlti b
423 gp3  2abP(a t+ Db)
2 2
t t
el =n v )+ 2an 254
4 4 b
a b
2t.t ;
s 52 aneed v by v (110)
b a b _
R b.2'( 24 e p? @ o+ 28 + ot a? o+ 2872
27 sc At a 1 a 2 b
t2b2 , t2a2 t.b + t,a
. 1 2 1 2
U I I I DO R I 3, 2
4a” (a” + b7) 4b~ (a”™ + b7) 2ab{(a”™ + b7)
2
£t a? + b2 - aby . vy t
ab(a + b) 22 4 p2 2222 + p?)
2 2
(2(n 22+ 1) - Pl 4 iy
a b” (a” + b")
: o2 2t .t . ‘
de a 172 1 1
X[2{(1ln T + ) - ’*—2-] + 5Ty [ln(ZE(g + 5))
b ab
1. A 2 2¢
T - 51+ s 5— {7 (1 + =)



2 2€ ; " 2e
+ tya (1 + ——b—)}{tl(l + ~5) + tz(]_ +

T 2e -
B
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(111)



IV. NUMERICAL RESULTS AND DISCUSSION

The proton-proton scattering length and effective
range areAvery accurately determined from experiment (18},

in our notation they read:

dge T~ 7.786 F, Toe = 2.840 F.

These are consistent with the expressions for age

and oo corresponding to Yamaguchi's potential, equations

(IIT-71) and (III-72), if:

A

m

- 9.33 x 412(0.2316)°F 3,

1 (1)
1.081273 F .

w
il

For Nagvi's potential, we have adjusted the ratio
A
Tg in terms of B8 such that the S-wave phase shift has a
1
change of sign at 240 MeV. ZEguations (III-92) and (III-93)

then give the observed a and oo if:

sSC
AqH 2 3,=3
- = e ZL.QBX 47 (0-2316) F v
g = 1.368914 F* (2)
i% = - 2.637038
Ay

Using these parameters, we found, for Yamaguchi's potential:

ag = = 17.596854 F, ry = 2.969 F
and for Nagvi's potential:
a = -18.151 F, r_ = 2.930 F (3)

S S
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which are only slightly different from the previous values
for Yamaguchi's potential. This is not surprising if we
recall that, in Nagvi's potential, the attractive term,
identical with Yamaguchi's potential, dominates the
repulsive term at low energies, and that the Coulomb effect
is less important at high energies.

If we compare these values with Heller et al's
results for local potential [as = - (16.6 16.9)F], we
may conclude that the value of ag for a non-local potential
is smaller than that for a local potential.

s We obtain 0.09F which

For the difference r_ =~ r
s sc

is much larger than the previous values, about 0.03 F, given
by Breit (20) and by Noyes (21). Some difficulties in the
theoretical interpretation of the difference between the
effective range for p-p and p-n have been pointed out by
Noyes (21) and by Leung and Nogami (5). Our ry leads to a
larger difference between p-p and p-n.

On the other hand, the neutron-neutron scattering
length has been determined by an analysis of the final-state
interaction of the nuclear reaction involving two neutrons:

3 3

H” + d ~ He™ + 2n (4)

with the result:
a =" (16.1 + 1.5)F {5)

which agrees with our and with Heller et al's value for ag-

However, a combination of the experimental results for the

McMASTER UNIVERSITY LIBRARY
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energy distribution and the angular distribution of the

reaction (19):
T +d+n+n+y (6)
yields a somewhat different value,

an =" (18.42 + 1.53)F (7)

which is closer to our value for ag than it is to Heller
et al's.

We have also attempted a similar parameter deter-
mination for the 'modified Tabakin's potential'. Unfortu-
nately, we have not obtained a result due to some difficulties
in solving the system of simultaneous equations (III-110)
and (III-111) numerically. It seems to possess highly
unstable solutions and does nct meet with the conditions for
convergence required by existing elementary interation
methods.

With the value for 8 we obtained for Yamaguchi's

ue,e,
and Naqgvi's potentials,

<< 1, the perturbation
expansion used in our analysis should be valid. Of course,
ne;e,
B 7
to improve our results. For a two or more term separable

one can go to higher orders in but this does not seem

potential, the computation of the analytical expressions

for the scattering length and effective range, especially

in the presence of the Coulomb interaction, is extremely
involved. To simplify the computation, a one term separable

potential equivalent to a two term separable potential, as
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discussed in section (III-C), could be used.

We would like to point out here that an integral of
type as found in equation (ITI-60) can be calculated exactly
by making use of a summation formula due to plana (20). This
would mean that our problem can bevsolved exactly. However,
one may have difficulties in evaluating the residues at the

singularities of encountered functions.
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APPENDIX A

INTEGRAL EQUATION FOR T
. sc,L
We rewrite the equation for T
Too (Brk' k) = c<k' (=) [V [k (+)>
, g - - : .
+ 3 o<k (=) [V k" (=)y T  (E k" k)

k" E + ie - E(k")
(1)

We make partial~wave decompositions of the matrix element.

A

" ! " 1
ZL(2L +1) ?L(k .k) Tsc,L(L’k k)

Tsc‘e,k',k)

P(2L + 1) P (k'.k) V(i)L(k',k)

c<k'(—)|VS|ki> ’ co

C

. - R ;
T, (k' k) = E(ZL + 1) Pp(k'k) T (k7K
] — . 1 . 1
<k' [V lk> = £ (2L + 1) P (k'.k) Vee,p (' rk)

(2)

Substituting (2) into integral equation (1) we get:

. i (+)
F — ) )
2(2L + 1) P (k' k) o, = 2y (2L + 1) P (k',k) VSC'L(k k)
+ 0z S S (2L, + 1) P (ﬁ' ﬁ") v () (k' ,k")
L ° sc,L '

L'L" k" E + ie - E(k")
[ An 0 "
x (L' + 1) Ppo(k".k) Ty (B k"K)
(3)
1

Replacing the %, by the integral J ;-f§kﬂ2 dk" de(k".k),
(2m)
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The second term of equation (3) becomes:

5 (2L + 1) (2L" + 1) pL(kf.ﬁ") P (k".k) aa(x
L' .

e

, sc,L(k k7)) T

se v (BErkiik) k
14

- Using the addition theorem

m=L
2L, + 1 S my m¥ =, 0 m,
—“ZF~—'PL(k kM) =2 Yo (k'.k) YL(k k)

m=-1,
and replacing Pi(k",k) =/ 4w-ﬁ'Yg,(k".k), the firs

2L7+1
of (4) becomes:

(25 + 1) P (k'.k") Pp(K".k) dn(k".k) = 4n

Then the integral (4) becomes:

lA
L 2Tr2

(2L + 1) V2L4}_T vy

z

® (-) ' n T 02
VscmL(k kM) TSC,L'(E'k (k) k"Tdk

45
2LY +

56

n.ﬂ)

" 2dk n

(4)

t integral

(@]
il YL(S L'

"

E + ie - E(k")

1

2ﬂ2

5 (2L + 1) pL(i',ﬁ)

=

o ("') 1 1"
\Y/ (', k")
X R T (B, ', k) K"

4
E - E(k") + ie SC:D

2

Substituting (5) into equation (3) then equating th

del

(5)

e
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coefficient of P, we obtain the integral equation for Too L
14
T (E,k',k) = Vi (K',k)
sc, L' "0 T Tse,L ’
.‘ *® w2 4 u (_) t ] ; t
. 1 k" 7dk vsc,L(k 'kj)'TSC/L(E'k 1 k)
2. ‘

27 E - E(k") + ie
‘ | (6)



APPENDIX B
SOLUTION OF THE INTEGRAL EQUATION FOR Tsc 1,
1

Substituting Vsc L in the integral eguation for
14

Tsc,L we obtain

160 L(k') ié
Tsc,L(E’k k) = e Z1 AL i gc,L,i(k ) gc,L,i(k)e
is (k")

+ 12 d]‘:" E {g I (k') e C,I.l

2’]T C, l,l -

-1 (k™)

gc L l(kll) e CIL k"2

x —=t } T, [ [E/X",K)
E+ i - E(k") ’

(1)

This is Fredham's integral equation with decenerate kernel

whose solution has the form (22):

ié (k")
Yy = c,/L
Tsc,L(E’k 1K) e
~1i8 (k)
| Ci e c, L

x £ {g (k') [10+ TA.

. c,L,1 2 L,1

i 27 gc,L,i(k)

is (k)
c,L
X gc,L,i(k)} €
which can be put under the form:
id (k")
i (E,k', k) = e CrP
sc,L
—16c L(k)

. Cie o :

r t :

X EA9c,p, 1 KDL+ (k)]éij~AL,1
J 9e,1,i
is (k)

C,L
X gc,L,i(k)} ¢
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if we set:

—16C,L(k)
- Ci.e ...... , ]'3_ S '(L)(E)
gc,L,i
Then the solution of (1) can be set as
is (k")
ot - c,L
Tsc,L(E’k k) = e
_ 16 (k)
(L) 10, L
¥ 4
X 2339¢,1,1 ) T4y B) g, g g(k) e

(2)

To determine %jj we substitute (2) into (1), replace the

()

simple summation in VsL by a double sum, then equate the
corresponding coefficients. We obtain:
(L) _
Tig ()= 855 Ay
® g%aq g (@) g (q)
1 c,L,n"" c,L,m
I 6mn %L n 2
mn T 27 E + ie - E(q)
0]
(3)
(L)
X Tij ()
In matrix notation, we obtain from (3) for the matrix =t
(dropping the index L) the equation:
T(E) = A - AI(E) 1 (E) (4)
where A is the diagonal matrix:
= §,. A, (5)

ij iy Ti
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and the elements of the matrix I(E) are given by:

© _2 i
. 1 kK dL?gcyi(k)*gc;j(k) )
11 pp2 e(k) - E ~ ie '
o - :
Solving (4) we get:
_ -1 .
T(E) = [1 + AI(E)] A (7)
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