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SCOPE AND CONTENTS: 

We study the Coulomb effect on the proton-proton 

low-energy scattering parameters when all other effects are 

represented by a separable potential. 

For this purpose, we present a formulation for the 

scattering of two particles via a separable potential. We 

treat the same problem when any potential, particularly a 

Coulomb potential or a separable potential, is added to the 

separable potential. The properties of scattering from a 

separable potential plus a (local or non-local) potential 

lead us to the possibility of obtaining a one term separable 

potential equivalent to a two term separable potential, and 

a model for the nuclear potential as a sum of a separable 

potential and a non-separable potential. 

Me 2 -1 
~'Ve determine, to the 	first order in - - where S

13 

is the range of the separable potential, the parameters for 

Yamaguchi's and Naqvi's separable potentials from proton-

proton scattering data. We use these parameters to calculate 
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the low-energy proton-proton scattering parameters when the 

Coulomb interaction is removed. Our results show that the 

shape dependence of these parameters are somewhat larger than 

obtained by Heller et al in th~ir investigation on local 

potentials. Implications of our results concerning the 

charge sym.'lletry and charge independence of the nuclear forces 

are discussed. 
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I. INTRODUCTION 

Since the hypoth~sis of Heisenberg and Condon (l) , 

strong interaction is believed to be charge independent, the 

observed charge dependence should be accounted for by 

electromagnetic corrections. Charge symmetry is based on the 

equality of n - n and p - p forces; physically it states that, 

in the absence of electromagnetic forces, a system of nucleons 

behaves ecactly the same as its charge symmetric counterpart 

in the same quantum mechanical state. This is generalized by 

a stronger assumption, namely, ch~rge independence, which 

equates the n - p forces to that of p - p and n - n in the 

same s·tate (2) . 

A sensitive test of charge symmetry as well as charge 

independence of the nuclear interaction is provided by 

measurements of the low-energy nucleon-nucleon scattering 

lparameters in the S state, namely the scattering length and 

effective range. The advantage of using low-energy data is 

that only S-waves are important and accurate phase-shift 

determinations are possible (the tensor force is absent in 

1the s state and the theoretical treatment is independent 

of the shape of the potentials to first order (2)). 

At low energies, the Coulomb interaction between 

the two nucleons i::; the major affect in breaking both charge 

symmetry and charge independence (3). At higher energies, the 

l 
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Coulomb effects are less important, but the splitting 

between the p-n and p-p scattering lengths may be large. 

This is because the 1 s-scattering length is extremely 

sensitive to the change in the potential. 

In order to compare the scattering parameters for 

p-p, p-n, n-n, one thus has to remove the effect of the 

Coulomb interaction for p-p. This is usually done by first 

assuming a p-p nuclear potential, Vs, which togetl.1er with 

the Coulomb potent.ial, V , reproduces the observed p-pc 
II 

scattering data, and then, solving the Schrodinger equation 

for Vs' without including the Coulomb potential, to obtain 

the scattering parameters. Thus, _for the p-p system, there 

are two sets of scattering parameters, say, asc and rsc' 

and a and r . a and r are directly determined from the 
s s sc sc . 

observed phase shift and are supposed to be reproduced by 
II 

solving the Schrodinger equation with (V + V ) . a and r 
s c s s 

are the scattering parameters obtained only from V . The s 

suffix sc implies that the relevant quantity comes from both 

strong and Coulomb interactions, whereas the quantity with 

the suffix s is due only to the strong nuclear interaction. 

a and r are the parameters for p-p that can be meaning­s s 

fully compared with those of n-n and p-n. 

As is obvious from the definition of a and r for s s 

p-p, they depend on the nuclear potential V . Although this s 

dependence on V is believed to be very small, we now require
s 

a very precise knowledge of a and r , because all that s s 
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concerns us about change synuuetry or change independence 

are very small differences between quantities for p-p, p-n 

and n-n. Also the experimental data now available are very 

accurate so that even a very slight dependence of a s and r s 

on v s can be meaningfully detected. 

This problem, say the shape dependence of a s and r s 

has been examined for various local potentials that fit 

the p-p scattering data by Heller, Signel and Yodes ( 4) • 

They found 

as= -(16.6 to 16.9)F 

to be the· spread of the probable value of a . Incidentally,s 

our a corresoonds to Heller et alts a which they call the s - nn 

n-n scattering length. For clearit~we distinguish a and s 

a nn 

In addition to the effect of the Coulomb interaction, 

there are innumerable differences between p-p and n-n 

interactions (2, 5). Hence, removing the effect of the 

Coulomb interaction in the p-p scattering does not give the 

n-n scattering. It only gives quantities wh ich can be 

compared with corresponding quantities for n-n. 

The prime purpose of this thesis is to estimate 

a and r when the strong nuclear interaction is representeds s 

by a non-local, separable potential. This problem was 

investigated by Harrington (6) who assumed a simple 

Yamaguchi-type separable potential. 

We interupt our discussion of charge symmetry and 
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charge independence to briefly discuss the significance 

of separable potentials. We define a separable potential 

-+ -+ 
a non-local potential which has the special form V(r,r') = 

-+ -+
g(r) g(~) or a sum of several separable terms. The functions 

g(r) 's are called the form factors of the separable potentials. 

When separable potentials are inserted in the 

Lippmann-Schwinger integral equations for the off-energy­

shell two-nucleon partial wave scattering amplitude, the 

kernel of this equation becomes degenerate (or separable) . 

Hence, the Lippman-Schwinger equation can be solved 

algebraically. The off-shell behaviour of the scattering 

amplitude is determined by the choice of the form factors of 

the separable potentials which can be made from a model for 

phase-shift (7-11) . Separable potentials are extremely use-

ful.for three-body calculations since they reduce the Fadeev 

equations to an effective one-body problem; that is, they 

reduce the set of two dimensional integral euqations to a 

set of one dimensional integral equations (12). 

When a Coulomb potential is added to a separable 

potential, it is shown by Harrington (6) that the most 

important property of the separable potential is preserved; 

namely, the solution of the Lippman-Schwinger equation can 

be given 1n closed form. The two particle scattering matrix 

T = T + T The main Coulomb effects are included in T c sc sc 

which can be obtained from the T matrix corresponding to s 

the separable potential alone by replacing the form factors 

of the separable potential by their modified form factors. 
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If, instead of adding the Coulomb potential 1 we add a 

separable potential in order to have a two-term separable 

potential, we should arrive at the same results. We 

consider in this thesis the possibility of obtaining a one-

term separable potential which is equivalent to a two-term 

separable potential. Of course, we can also add any non-

separable potential to a separable potential, arriving at an 

'equivalent separable potential'. 

DeSpite of their successes in accounting for many 

properties of nucleon-nucleon scattering f'toF' ~1l<Y 0"'" vC th .p_ 

three-body problem, separable potentials seem to be purely 

phenomenological if not unrealist~c. However, as shown by 

Lovelace (13), the T-matrix or, equivalently 1 the potential, 

near the resonances and bound states, is indeed separable. 

In view of the important property of scattering from a seper­

able potential plus a (separable or non-seoarable) potential 

as mentioned in the last paragraph, we can explain the 

separability of the nucleon-nucleon potential by saying that 

the latter is a sum.of a separable potential and a non-

separable potential. The separable part represents the 

resonances, bound states and other unknown effects of the 

nucleon-nucleon system. In this thesis we shall briefly 

consider this possible model for nucleon-nucleon potential. 

We now return to the problem of determining a and s 

rs for p-p scattering. A simple one-attractive term separable 

potential used by Harrington (6) is not sufficient to describe 
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1the behaviour of the S phase shift and does not provide 

a good fit to high energy p-p data. Hence, his results for 

as = -17.9 F, which is appreciably different from the value 

obtained by Heller et al, should be taken with a grain of 

salt. We have extended Harrington's work and consider 

separable potentials which fit the p-p scattering data up to 

about 300 MeV. We have tried two separable potentials; one 

is Naqvi's type and the other is a'modified Tabakin's type'. 

The general format of this thesis is as follows. 

In part II, we will give briefly the general formulation for 

scattering of two particles via a separable potential and then 

apply it to the calculation of the scattering length and 

effective range for Yamaguchi's, Naqvi's, Tabakins' and 

modified Tabakin's potentials. The same problem is treated in 

mor~ detail in part III where another potential is added to 

the separable potential. We consider scattering from a 

separable potential plus an repulsive Coulomb potential, 

and from two separable potentials, which leads us to a 

model for the nucleon-nucleon potential as a separable 

potential plus a non-separable potential. We use the 

approximation proposed by Harrington to relate the as and 

rs to the corresponding proton-proton parameters. Numerical 

results and a discussion will be given in part IV. 



II. SCATTERING FROH A SEPARABLE POTENTIAL 

A. General Formalism 

In this section, we shall study the properties of 

two particles of ma,sses m and rt interacting via a separable1 2 

potential. 

We suppose that the total hamiltonian of the system 

can be separated into: 

H = H + V (1)
0 s 

v1here H is the free·-hamil tonian and V is the interaction 
0 s 


which we assume to be separable. 


Let I¢ > the complete set of free-particles state, 
a 

+ +
and .1 x- > the outgoing and ingoing· exact state. Then lv- > 

a " a 

is related to l¢a> by: 

lx± > = 1~ > + G ±(s) v I¢ > (2)
a a s s a 

where 

G (s) = (S - H ± iE:)-l (3) 
s " 

with s, the energy of the system. 


The S-matrix elements are defined as: 


- + 

s = < x8 Ix"' > ( 4)
s,Sa ... 

which can be shown to obey the equation (Ref. 14): 

S = <¢ 0 1¢"'>- 2nio(s - S )T (5)
s,Sa ~ ~ 8 a s,Sa 

7 
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where 

Ts a~= <~alvslx:> ( 6) 
If.''-" f.J '-"' 

the operator T defined by:s 

T = <~QIT I¢> ( 7)
s,Ba f.J s a 

obeys the integral 	equation (Ref. 14): 

Ts = V + V G+(s)T (8)s s 0 s 

where G (s) is the free particle resolvent
0 

G~ (s) = .( s - H ± 	 i c ) -l ( 9)
0 

In this work, we shall be concerned only with uncoupled 

partial sta·tes; the vector spherical harmonic decompositions 

of the potential and the scattering operator are: 

v = s 

(10) 

T = ~ Iy]\1 >TSJ <YM I 
s "'L,S,J,M 'LSJ s,L LSJ 

Substituting (10) 	 into (8) we obtain an equation for TSJL s, 

TSJ VSJ VSJ SJ = + G (s)T L 	 (ll)s,L s,L s,L 0 s, 

Now we write VSJ as the sum of N separable terms:s,L 

N SJ /..SJ SJI 	 (12)VSJ I g . > <gLi= 2:: Ll Li
s,L i=l 

SJ s~ b 1where some of the function g, . (k) = <k gL~> may e equa to
-.LJl 'I l 

zero. 
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From (2) , we can deduce that the wave function is 

related to T matrix as: 
s 

(13) 

Substituting (12) into (11) we can easily show that T8J 
Sf 1I 

has a separable form similarly to (12). In momentum space, 

the equation (11) becomes: 

TsJ- < 1 I 1 ) , SJ sJ (k 1) • (k)
s,L s,( ' ( = l:i ALi gLi gLi 


2 SJ ( ) 

SJ q gLi q

(k I)+ 1:. _l_2 J )..LS~ gL i s ( k ) --- s (=97")-+---.-i-1:; dq· (14) 
l 2TI l 

Equation (14) is the Fredhom 1 s integral equation with degen­

erate kernel, the solution of it hai the form (Appendix B) 

TSJ (E,k 1 ,k) = SJ (k I I) KSJ ( ) SJ {k) 
·s ,L l:ij gLi Lij s gLj 

(15) 

Dropping the indeces LSJ, we obtain for the matrix K 
• 

K(s) =A- AJ(s) K(E) (16) 

where A is the diagonal matrix: 

A •. = o.. A.. (17)
lJ lJ· l 

and the density of the matrix J(s) are given by: 

k.
2 dk g. (k). gj(k)1 . JJ .. (s) = ( 18)-ilJ s(k) - s - iE:

2TI r0 
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Solving 	 (16) for K(s) we. get: 

K ( s) = 	[1 + AJ ( s) ] 
-1 

A (19) 

We write the 'on-shell' partial waves amplitude as: 

ia 8 J (k)
s,L= ~kn sin oSJ (k) e 	 ( 2 0) ,... 	 s,L 

With (20) substituted into (15) we have: 

2 .t-SJ (k) io~~L(k). _ ~ SJ SJ SJ
sin us,L 	 e - ~ij gLi(k) KLij gLj (k)ilk 

( 21) 
From (21) we see that: 

oSJ (k) 	 = -arg{det[l + ALSJ JLSJ[s(k)]]} (22) . s, L 

Frbm the T matrix (15) we can easily write down the wave s 

function, the desired cross-section. From the phase-shift 

oSJL(k) 	 we can derive analytic expressions for the scatterings, 

length and effective range r etc. s 

B. Applications 

To illustrate some of the features of the formulas 

developed so far, we shall apply them to the simple problem 

of calculating the S-wave phase shift for separable poten­

ials proposed by Yamaguchi (Ref. 7), Naqvi (Ref. 10), 

Tabakin. We shall compute the scattering length and effec­

tive range for these potentials. 

1. 	 Yamaguchi's Potential 

The most simple form of the singlet separable 
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potential was first proposed by Yamaguchi in 1954: 

<k' jv00 lk'> = Ag(k') g(k) ( 23)s,o 

where 
1g(k) = (24) 

Equation (15) gives: 

T~~0 (s,k' ,k) = Ag(k') g(k)K ( 25) 

with 

K = (26)
1 + AJ (s) 

where 
oo g2 g2(g)dg1J[s(k)] = (27)2 s (g) - s (k) - is

2n J
0 

Relation (22) gives: 

Re ( 1 + AJ)
cobS = (28)

s AimJ 

k2 
Noting that s(k) = 2il where p is the reduced mass, we can 

write (26) as: 

J (k) = p
2 (29) 
'IT 

Using the representation: 

p 
= 

l 
(30) 

where P denotes the Cauchy_ principal value, we obtain: 

( 31) 
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Re J(k) = ~ p ( 3 2)2
'IT 

Re J(k) 

The .integral (31) can be evaluated by using a coutour 

integration. The result is: 

(33) 

From this: 

= 27f (k2 + .Q2)2- 1 (02- k2)kcotos(k) ~- ~ 2S ~ (34) 

To calculate the scattering length and effective range, we 

expand (33) in power series of k; the zero and second order 

in k give: 

1 2'IT s= s4 - ( 35)a s ~A 2 

1 4'IT 1 r = s2 - ( 36)2 s ~A 2S 

2. Naqvi's Potential 

We now apply our formulation to a more general 

separable potential with two terms. This potential has the 

general form (8). 

with 

gl(k) 

. g 2 (k) 

= 

= 

1 

k2 + s2 

. 2 
[(k-a) + 

k2 

s 
2 J [ (k + a)2 + S2] 

( 3 8) 

Although these general form of g 1 (k) and g 
2 

(k) give 
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excellent agreement with experiment (Ref. 8 ) , when applied 

to scattering from separable potential plus coulomb potential, 

they give rise to very complicated transcendental functions 

which are difficult to 	deal with analytically. For simpli­
v 

fication, we follow Naqri to take: 

gl (k) = 
k2 

1 

+ B2 
( 3 9) 

k2 
g2(k) = 

(k2 + B2)2 
( 4 0) 

At low energy the potential should be attractive, A~ is 

taken to be negative and the for~ g1 (k) and g (k) were2

chosen so that in (37) the first term predominates the second 

at low energies. As experimental, S phase shift change sign 

at about 240 Mev, the value of is adjusted to give repul­A2 

sive phase-shift at 240 Mev, we have, according to (22): 

1 + Al Jll(k) A1Jl2{k) 
- -arg Dos = -arg 

A2 X J2l(k) 1 + A2 J22(k) 

(41) 
where 

r 2 2 g dg gl (g)
llJll (k) = 	 ( 4 2)2 2 k2 .1T g - - lE: 

0 

g dg gl(g). g2 (g) 
Jl2(k) = J21 (k) = 2 

]J 

2 k2 . 
( 43) 

7f g - - lE:r 2 

0 
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oo 2 2 
g dg g2(g) 

J22(k) = v (44)2 2 k2 . 
'IT g ..... - lE:J0 

Noting that: 

g2(k) = (1 + 82 ~) gl (k) ( 4 5)
2

d8 

It is easy to see that: 

82 I 

Jl2(k) = Jl(k) + 2 J 1 (k) { 46) 

d,J
with J' = --· and 

d8 2 ' 

I 4 I I 

J22(k) = Jl (k) + 82 J1 (k) + 6
8 

Jl 
. (k) ( 4 7) 

we obtain, after some tedious calculations: 

Re D(k)cot 0 = s Im D(k) 


2
I I I 

Re -- (~) 2 _8_(2 ~)}D(k) Bo 0.1 + AI + Al A2 ­2 K 2 8232K

I 1 2 2 84 
Im D(k) = 1 + Ao{A1 + A [1+-8- + -]2 K K2 

I I I 

Al A2 8 A2 8K
+ (2 - -)} + [~

2K2 8232 887 

I Iv= = A ~ A1 AI"1T"'A2 . 21T 

82 k22 ­k2I< -- + 8 A = 
' 0 248K

k 
Bo .( 4 8)22K
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Expanding (48) in power series of k, we again obtain the 

expression for the scattering length and effective range. 

We find: 

4 A .
1 

= ~(1 + _2_) -1{1 + 
a s Al 32S 3 

(49) 
I I I 

A A Al A2
~(1 }

3 + --4> + 2 64S 8Al (16) s

I 

2 A A.1 _2_) -1{_1 [3 A2 
-r = 2~-(1 + --,2 s 3 3 

Al 32S 4S 8Al 

I I I (50) 
5A2 !.. 5A2 

+ --] + _1(4 + --) (- _!_) }
3 4 a32S 4S 16S 3 s 

These expressions agree with the ones given by Naqvi for the 

scattering length and effective range. Note that if we let 
I 

= 0, we reproduce the expressions (35) and (36) corres­A2 


ponding Yamaguchi's potential. 


3. Tabakin's potential 

We now apply our formula to a one term separable 

potential containing both repulsive and attractive terms 

proposed recently by Tabakin (Ref. 15): 

<k' jv00 jk> = g(k') g(k) (51)s,o 

with 

g(k) (52) 
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We need the integral: 

oo. g2 dg g2(g)J(k) = ]J 	 (53)2 2 k2 .
1T J0 

g - - lE: 

As before, we have: 

Q_. 

Im J(J:) = J.lk~cr (.K) 	 (54)
21T {} 

Re J(k) = -~ p Joo g2 dg g2(g) (55)
2 2 k2

1T g ­
0 

•ro 	 calculate (55) f we make a fractional decomposition for 

2 2 g g (g) and use contour integration. The result is: 

7 
Re J(k) = E 0. J. (k)

l li=l 

where 
2 2 

= 2ap ( S - b y) i = a01 02 

2 = 2ac(S - b y) ; = 2a(crS + yT)03 	 04 

05 = S2; 06 = 2yS; 07 = y 2 

k2 + b2 
a = (d2 - b2) c 

4 b4a + 

k 2b - a 4 

s = k2 + (d2 - b2) c 
c 	 4 b4a + 

k2 b2+ cy = -1 - (d2 - b2) 
4 + b4 

4 
p = 

b2 
= - cr; l = a 

a 

4 	 4b4 	 b4a + 	 a + 
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J4(k) 

J6(k) 

6 
g dg = t-~12 -(k6+a 6 ) + 3a2k 2 (k 2+a 2 ) 

-(-g..,...4+-a--47-)-,2=-""-(g-=2~_-k-2-) 16 n a (k4+a4)2 

(56) 

The scattering length and effective range are: 

1 
-r = 2 s 

(57) 
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12 b 5 63 05 06 3+- -(--- 04 - + 07)4 5 .2 4 -2 + 4 a a a 4a 

A.'d2k2 
c(k2 d2)(-al)}; (A I = ~) (58)

2a8b2 c 1f 
s 

4. Modified Tabakin's Potential 

Tabakin's potential, when the Coulomb potential is 

added, give rise to very highly transcendental functions 

which make our analysis diffic·ult. For simplification, we 

shall modify Tabakin's potential as: 

g(k) = 

= 

where 2k2 + a k2 - b2 
c 
2 

c 
2 (59)t1 = t2 = 

b2 b2a a 

In this case: 

llt . 2 - k2 llt2 b2 - k21 aRe J(k) = -- + 
'IT 2 'IT 24a(a + k2) 4b(b2 + k ) 

(6 0) 
2lltlt2 ab - k+ TI(a +b) (a2 + k2) (b2 + k2) 

The scattering length and effective range are given by: 

t t2 tlt21 2 (ab)4[ 1 + A' (-1 + + ]= a A I k 4a3 3 s c 4b ab(a+b) 

tib21 2 a2b2(a2+b2) 
-r . {2 + A1 [­= 2 s I' 2k4 4a 3 (a 2+b )c 
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( 6 2) 




III. SCATTERING FROM A SEPERABLE POTENTIAL AND A POTENTIAL 

A. General Formalism 

In this section, we shall apply the conventional 

formulation of scattering from two potentials to the case 

where at least one of the potentials is separable. We shall 

study the properties of two particles of mass m and1 m2 

interacting via a potential V = Vs +.Va where Vs is a 

separable potential and V is any potential, local or non a 


local. 


Let l~a>; lr~> eigenstate of H and Va respectively
0 

and 1~±> the outgoing and ingoing exact states, eigenstates
a 


of : 


H = H + V + V (1)o s a 

+
The formal relations between lr~> and l~a> is 

+ +
lr-> = I~>+ G-(s) vI~> ( 2)

a a a a a a 

+
and between ~~-> and I~ > is: 

a a 

( 3) 

where 

G±(s)
a = (s a - H 

0 
- v a ± . )-1

lE: ( 4) 

G±(s) = (s a - H ± . )-1
lE: (5) 

20 
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Relation (3) can be manipulated as: 

( 6) 


which may be an obvious result if we start with the complete 

The S-matrix elements are defined as: 

(7) 


Inserting (6) into (7) we get: 

-, + -, + v lr+>8 = <r r > + <r s G (s )
sa f3 a 6 s a 

++ <r~lvs G+(s
6

) v lr >s 	 a 

-+ <r~lvs G ( s f3) G+(s ) v lr+> (8)
a s a 

Now·we use the identity: 

for the second and the third terms in equation (8), we obtain: 

8 = <r r >-, + 

sa f3 a 


+ 1 
<r;l<l + v G+(s ) ) v lr+> 

s -s +is 	 s a s a 
a 	 f3 


1
+ 	 G+ (s ) v)lr+>s <r;lvs(l + 	 ( 9)- s +is 	 f3 s a 
a f3 
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The last term can be written as: 

p 

s 
a 

where we have chosen arbitrarily to write 'principal value' 

as the instruction for handling the apparent singularity 

at Sa - s 
8

. If now in the second and the third term we 

write: 

s 
a 

1 = s 
p 

- s + iTio(s - s )
a B a e 

We see that the entire last term in the equation (9) is 

cancelled and we have: 

(10)
X[T + T )

sa,Ba a,Bo: 

with 

(11) 

(12) 

The matrix elements T B is just the scattering amplitudea, a 

corresponding to scatterin~ from the potential Va. We are 

interested mainly in T which can be written as: sa, sa 

T (s ) = < r -BIVs + V G+ (s ) V ) I T'- + > (13)sa, Ba s a s a 

The operator Tsa defined as: 

T = V + V G+(s) V (14)
sa s s s 
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Obeys the integral equation: 

(15)T = Vs + Vs G+(s) T sa a sa 

+
Assuming the set lr-> is complete, the equation (15) may

a 

be written as: 

(16)
1+ l: 

Y s - sa + ic: 
y 

where S~ is the eigenvalue of the Hamiltonian Ha = H + Va.
0 

In the absence of the potential V , V leads to an integrala s 

equation with degenerate kernel wh.ose solutions are simple. 

In the presence of the potential V , equation (16) shows that a 

we are led to an integral equation with V replaced by:s 

v ( ±) 
sa, Sa = (17) 

N 
}:; 

i=l 

where we have introduced a representation {~ }. Because 
~ 

Vs is separable: 

(18) 

Equation (17) shows that Vsa is also separable. Our problem 

is now reduced to the scattering problem from a separable 

potential which we have studied in Chapter II. 

We should like to point out here that, instead of writing 

(3) as (6), we write it as: 

(19) 
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We obtain, instead of (lo), the similar equation: 

(20) 


with 

T · = <~ lv lx+> ( 21)
s,Sa S s a 

T = < V I~ + 
> (22)

as,Sa Xs I a a 

The operator T has been studied in Chapter II, T satisfies s as 

an equation similar to equation (15): 

= Va + va G+(s) T (23)
s as 

Equation (23) is not necessarily an integral equation with 

degenerate kernel due to Va being not necessarily separable . 
.. 

But if Va is a separable potential with M terms, then Va + Vs 

is separable potential with N + M terms, then our formalism 

for scattering from two separable potentials is not necessary. 

We shall indicate later that, a two term separable potential 

or many terms separable potential may be equivalent to one term 

separable potential as far as the phase-shift is concerned. 

B. Sca~tering from a Separable 

Potential: and ·.the. Coulomb Potential 

To illustrate the formulation developed so far, we 

shall study the problem of scattering from a separable 
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from a separable potential and the Coulomb potential. This 

problem was first treated by Harrington. 

To avoid the complications due to the extra bound 

states, we assume the Coulomb interaction is repulsive. We 

also cut off the Coulomb potential at a shielding radius R. 

We can then replace Va in the above formulae by Vc' the 

Coulomb potential. Tc is just the usual Coulomb scattering 

operator. Our main object of interest is T . sc 

In momentum space, the partial matrix elements 

satisfies the integral equation (Appendix A) . 

TSJ = (s,k 1 ,k) = v8 J ( +) (k I k)
sc,L sc,L ' 

oo 
2d VSJ(-) (k 1 ,q) TSJ L(s,q,k)

q g sc,L sc,+ 1 
2 

J2n S (k) - S ( q) + i E 

0 

( 24) 

With V (k 1 ,k) ·defined by:sc 


2
v8 J . (k I k) q dqsc,L ' 

( 25) 

SJ- SJ SJ+ 
< r CL (k I ) Iq I > vs 'L (q I 'q) < q Ir CL- (k) > 

where the partial Coulomb states lr~~L> is defined by: 

(26) 

The unitary condition T is satisfied if we write the on­sc 

shell Coulomb and total partial scattering matrix elements, 

respectively as: 

io 8 J (k)
2n . ~SJ e c,LTSJ (k k) = -J.lk Sln (27)c,L ' u c,L 
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io 8 J (k)
c,LTSJ (k k) + TSJ L[s (k) ,k,k)] + ·~ sin oSJ (k) ec,L ' sc, . yk c,L 

where o~~L(k) and o~J(k) are real phase-shifts~ Substituting 

the expression for v:~L(k',q) in (25) we obtain: 

iosJL (k') 
VSJ (k' k) = e c,

sc,L ' 


,. ,SJ SJ. (k') SJ (k)
i· ALi gc,Ll gc,Li ~ 
( 2 8) 

Where we have defined: 

±ioSJL(k)SJ c, oo 2d SJ ( ) <g I rSJ±> g·c, L'l 
e q q gLi g c,L (29)

f0 

From (28), it is clear that V Lis also separable. The sc, 

Coulomb wave function in configuration space has been studied 

by Yost, Wheeler and Breit (Ref. 16). We are concerned here 

with modified Coulomb wave functions, i.e. solution of the 

" Schrodinger equation with a cut off rather than the exact 

Coulomb potential, which satisfies the asymptotic condition: 

, (k 9-TI
vl £ (k, r) Sln r - - + 0 

0 
(k))

r->-oo 2 C,x., 

2For kR>> L(L + 1) + n (k) and r<R: 

= (2i)-L-l CL(n) Min, !(2ikr) (30) 

where M.k · (z) is the Whittaker function. 
'y 

1--Tin 
e 2 (31) 
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is the barrier penetration factor, and: 

n = n (k) = ( 3 2) 

The radial Coulomb wave function F!(kr) has the 

asymptotic form: 

F
0 

(kr) ~ sin(kr - nln2kr - ~ lw + aL) ( 33) 

where a 1 , usually known as the Coulomb phase-shift, is 

given by: 

aL = arg r(L 4 1 +in) (34) 

The exact value of 8c,L depends on the nature of the cut off. 

For k not to small, we expect (Ref. 14) 

= oL - nln2kR L << kRa c,L ( 35) 
8 = 0 L >> kR
c,L 

In orde~ to make use of these known results for 
SJ 

Coulomb wave function, it is convenient to express the g L' (k)c, l 

defined by (29) in terms of the configuration space Coulomb 

wave functions. 

Using the matrix elements for the transformations 

from {q} representation to {r} representation and the expan­

sian of Coulomb waves, we can write (29) as: 

SJ 1 SJ 
g L. (k) = J q2dq 9Li (q)c, l 22n 

(36) 

iq.r .L 
X f e l WL (kr) dr 
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1ng iq · r · · f 1 · f t · then 

simplifying with the aid of the closure relation for y~(n) 

we obtain: 

Expand · e 1n ser1cs o 1armon1c unc 1ons 1 

SJSJ . (k) GL,i (r} wL(k,r) ( 3 7)gc,Ll 

with 

= {-)L fooGLSJ. (r) (38)
,l 2TI 2 ­

0 

jL(kr) is spherical Bessel Functions.. 

Solution of the integral equation (24) can be written 

under the form (Appendix B) 

i OSJ (k I) 
TSJ ( k' k) = e c,L

sc,L s, ' 

SJ SJ SJ isSJL(k) 
z: gcrLl' (k') 'L._ .. (s) g I. (k)e c,,lJ c,_,J 

(39) 

The matrix , .. is defined by:
lJ 

T(S) = 1 + AI(s) -lA (40) 

where A is the diagonal matrix 

). .. = o.. ).. ( 41)
lJ lJ l 

and the elements of matrix I(s) are given by: 

= _1_ foo k2dk gc,i (R). gc,j (k) 
I .. (s) 2 (J) . ( 42)
lJ 2 TI s ( - s - ls 

0 

From (39) and (42) we see that, except for the 

Coulomb phase factors, T~~,L(s,k',k) can be obtained from 
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d . SJ t ' 1 ' th b fh L-ma r1x e ements 1n e a sence ot.e correspon 1ng T 
. s ' 

the Coulomb SJpotential merely by replacing gL .
,l 

SJby g L'. 
. c, l 

Now, from (27) and (39) we deduce that: 

( 4 3) 

In examining the argument of (39), we can see early that: 

oSJ = -arg· {det[l + ALSJ ILSJ(s)]} ( 4 4)c,L 

We have arrived at the results of Coulomb + short range 

potential scattering originally stud1ed by Yost, Wheeler and 

Breit. In general the exact nature of the Coulomb screening 

is not known. As long as R is much longer than the range 

of V , however, under ~ost experimental conditions, the s 

differential cross-section is given accurately by (Ref. 14, 

page 263) : 

dcr 2 = If (e)+ f (e)l ( 45)dsi c sc 

where 
)_ crL1f = IL(2L + 1) sin crL e PL (cos)c k 

2iG"" 
f 1 

IL(2L + 1) sin 0 e 
i~sc,L + 

Lp L ( vt_,J vtl. ')= sc k sc,L 

C. Scattering From Two Separable Potentials 

In applications of separable potentials to Nucleon-

Nucleon scattering, it is generally found that a many term 

separable potentials gives better agreements with experiments 

than a single term separable potential ( Ief. 8 ) . To obtain 
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agreements with experimental phase-shifts up to 300 MeV, 

a two-term separable potential seems to account for known 

behaviours. As we have pointed out, as far as the phase-

shift is concerned, the usual formulation for scattering 

from two potentials shows that a two terms separable poten­

tial may be equivalent to a one term separable potential. 

Let us now study the scattering problem via two separable 

potent.ials V + U which, for simplification, we assume to s s 

be single term separable potentials. 

Again we replace V~ in section A by Us. Equations 

(10), (11) become: 

( 4 7) 


where 

T Q "' = < ¢ Ju Ix+> ( 4 8) 
jJU. 8 s C( 

{49) 


Jx(±)> are the outgoing and ingoing states in the absence 
C( 

of V , which we have studied in chapter II. s 

,~J (s ,k 1 ,k) = w~J + ( k 1 
, k) 

SJ- I . SJ
WL (k ,q) 'L (s,q,k)rq2dq 

s(k)- s(q) +is 
0 

(50) 
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where 

W~J ± ( k I 1 k) :::: 1 
2

2n 
(51) 

SJ- I SJ SJ+<xL (k') q'> usiL(q'lq)<qlxL -(k)> 

SJ
where the partial wave lxL > 1 according to equation (13) 

Chapter II is given by :1 

or 

I SJ<q xr; (k) > -- <qi~~J(k)> 

oo <q! ~-~~J (k) > SJ'+ 1 q'2dq' S{q') TL [s(k) 1 q,q']2 - s(k) +is
2n J0 

(52) 

Now; if we write the on-shell TL and TL as in equation (27) 1 

we find that we are led to an equivalent problem of scattering 

from a one-term separable potential whose form factor is 

given by (See equation 2 9) : 

±iousJL (k) 
oo 

SJ e 1 2 SJ SJ± 
q dq gL (q)<qlxL (k) (53)gu 1L 

J0 

where gL(q) is the form factor of the potential Us and 

~~L(k). is the partial phase-shift due to the potential Us 

alone. 

We have shown that a two term separable potential is 

equivalent to a one term separable potential whose form 
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factor is obtained from one of two form-factors of the 

original two term separable potential by an integral 

transformation as (52). In doing this, we here assumed, 

as we did with the Coulomb states, the set lx±(k)> is 

complete. 

Our work here may have two applications. Firstly, a 

one term separable potential is always easier to handle 

than a t\-10 term separable potential. For some classes of 

problems whichare too complicate to solve with a many term 

separable potential, we would then like to have a one term 

separable potential equivalent to it and work with this 

equivalent single term potential. Secondly, we can check 

with,the conventional formulation f6r scattering from two 

potentials is exact. For two separable potentials, this 

problem 1s very easy because we can solve the problem, first 

exactly as scattering from two term separable potentials, and 

then, as scattering from two separable potentials; we then 

compare the results of our two approaches. 

For a two term separable potential, we would choose 

our set {¢} the one corresponding to the term which yields 

a rather completeness for {¢}. This term, in an intuitive 

way, would dominate over the other term in the range of 

interaction. If {¢} is complete, we would expect consis­

tencies because mathematically we can use any complete set 

as our base for description of our system. 
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D. Nucleon-Nucleon Potentials 

Despite thek comparable success in Nucleon-Nucleon 

scattering analysis and three body calculations, separable 

potentials are purely phenomonological, if not unrealistic. 

The only theoretical justification for separable potentials 

is, as shown by Lovelace (Ref. 13), the approximation of the 

T matrix as separable near the resonances and bound states 

Now, in our analysis, scattering from a separable plus any 

potential is equivalent to scatterin~ from a "modified 

separable potential''. This suggests an explanation for the 

validity of separable potentials as Nucleon-Nucleon poten­

tials. We imagine the Nucleon-Nucleon potentials contain 

a separable part which represents resonances, bound states 

and other unkown effects which we can approximate the potentials 

as separable, and a non separable part which is, for example, 

a local theoretical potential 

v = v + v (54)
s a 

It is obvious that V depends on V • The most s a 

simple idea is that we can take for V a local theoretical a 

potential (Yukawa, OPEP, TPEP, etc ..• ). V is not known 
s 

and again can be taken phenomenologically. In actual analysis 

this, of course, is not a clever approach because if (54) 

is equivalent to a pheonomological separable potential, we can 

simply take V as a separable potential for a much easier 

analysis. However, by studying the Vs in (54) we can have 
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some understandings about the resonances and bound states 

if we believe in Lovelace's arguments. Anyway, we like to 

offer here only an explanation for Nucleon-Nucleon poten­

tials as separable potentials. 

F. Applications 

We now apply some of the formulas developed in 

section B to the simple problem of calculating the 

phase-shift of scattering from a sep'arable pot.ential plus the 

Coulomb potential. We shall first treat a single one term 

separable potential of Yamaguchi's type, than a two term 

separable potential proposed by Naqvi and a single term 

separable potential containing repulsive and attractive parts 

(modified Tabakin's potential). 

1. Yamaguchi's Potential 

In Chapter II we have applied our formulas to a 

simple single separable potential of Yamaguchi's type. 

In this section we repeat the same procedure except we 

replace g(k) by gc(k) and J(k) by I (k) with 

oo 2 2 
q dq gc(q) 

I(k) = 11 (55)2 	 2 k2 .
Tr q - - lEJ0 

Using (38) 

1 r q
G (r) = 	-2- sin (qr)dr (56) 

2n r 

0 
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The sine-t' orrier transform (56) can be obtained easily : 

1 -BrG (r) = e 
4Tir 

Then (37) becomes: 

1 g (k) = Joo ~-Br w (kr)dr
c k 0 

0 (57) 

1 = oo e'"'Br C (n)M. ,1 (2ikr)
2ki 0 lr) 2J0 

The Laplace transform of Whittaker function is given in 

standard table ( Fef. 22) : 

-1 k
2ntan B 

= g(k) C (n) e (58)
0 

with 
1 

= ( 2Tin )2 (59)
2Tin e - 1 

We can write the integral (37) explicitly as: 
-1 q 

oo 2 2 4ntan s 
q dq C (n) e 

I(k) = ll 0 ( 6 0)2 
1T (q2 + B2)2(q2 k2 _ iE)J

0 

-'1 ('f

In the q-plane, tan ~ has two branch points at q = iB
B 

and q = -is. Here we realize that the Coulomb interaction 

has the effect that it can change a pole of V into the branch s 

cuU point. To calculate I(k) we 

iB 
must cut the q plane in a 

~~·------~----~~~---k k convenient way and choose 

-1 q
the value of tan ~ in

B 

Fig. 1 
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~ 

a Rieman plane. It was shown ( Pef. 17) that the Coulomb 

effect enters the dispersion relation in a way that if the 

left hand singularities in the neutron-neutron problem are 

represented by a single pole, then the proper statement of 

charge symmetry is that there will be a series of branch 

points in proton-proton problems. 

Using (44) we obtain: 

Pe(l +\I)
cot sc(k) = (61) 

\Imi 
. -1 k

with 4ntan S2
C (n) e]lk 0Im I(k) (62)= 21f 

I€ I (k) R = ]l- 2 (63) 
1f 

-1 q 1 for all q in theThe factor 4ntan S = 
]lele2 

case s << 1. In this case the above formulas can be
-.L a4ntan .:.!.. 

considerably simplified by expanding the factor e S 

which occurs in the integral (46) to obtain a perturbation 

for Re I (k) . 

The first term in the expansion is : 

2 2 
q dq c ( n ( q) )

0 
Ro(k) ~ ) p r 

0 
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f 

co 2
C 

0 
(n)dq 

2 k2q -
0 

(64) 

The first integral of (47) can be calculated with 

the aid of an integral representation of the ~-function. It 

can be verified that (Ref. 22) 

llele2 B 
~[n(B)] = ln ( ) - ·--'-·- ­

B 2ve1e 2 
( 65) 

·. B2 dq c 
0 

2 [n (q) ] 

\18 21e ~r 
0 

The second integral can be obtained by differentiating 

(48) with respect to B. The last ·i~tegral is given by the 

formula: 

h ( n ( k) ) - Re ~ (-in ) - 1 n n 

( 66) 

p fco dq c; (n (.a) ) 
= 

)1e 1 e 2 TI q2 _ k2 

0 

The next term in the expansion is: 

co -l g 2 
. . P . qdq .tan B C (n(q))

0 (67)= 4llele2 	--2 --~2----~2~2~~2----~2~ 
TI (q + B ) (q - k )J0 

..\181 e2 
We note that we shall keep terms only to order B 1 

)1ele2 2 )1ele2 
ignoring terms of order ( B ) ln ( · B ) 1 we can then 

replace c;(n(a)) by 1 1 the integral becoming elementary. 

-1
To avoid the difficulties due to the branch points of tan 
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~ we consider the integrals, 

z ln (1 - { fldz 
K = p f+oo 

(z2 + S2)2( 2 2 _ k2) 

-oo 
which can be shown: 

8~eie 2 iK 
Rl(k) = 2 

1f 

Using a contour integral in the z-plane (Appendix C) we 

obtain: 

Now, consistent with our approximation we write: 

(69) 

where r is the ~uler constant; r = 0.577215 .... With the 

aid of (65), (66), (68) and (69) we obtain: 

R- Re I(a) = 

( 7 0) 

Substituting (45) and (52) into (44), we obtain: 

k C~(n) cot osc + 2~e 1e 2 h(n} = 

4ve1e 2 ...:.l ~) 
-- k cot o s (1 k tan S 
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where k cot 6 is given by (II-32). The left hand side is s 

the function used for the effective range expansion for the 

presence of Coulomb potential (Ref. 23). Expanding the 

right hand side of (53) in power series of k, we obtain the 

formulas for scattering length and effective range: 

( 71) 

l l 
-r = -r [l2 sc 2 s 

(7 2) 

where a and r are given by (II-35) and (II-36).
s s 

2. Naqvi's Potential 

The form factors of this potential are given by 

(II-39). From (58) we have: 

( 7 3) 

From (II-45) we deduce that: 

gc (k) = (1 + B2 ~) g 1(k) (74)
2 dB2 c, 

Then: 2 2 
q g 1 (k)1 r c,= dq = I(k) ( 7 5)-2 s(q) - s(k) - is2rr 

0 

where I(k) is given by (62) and (70. 
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From: 

. s 2 . d 
= (1 +- -) gel(k) ( 7 6) 

2 dS2 

we obtain: 

(X) 2 
q dq gel(q) gc2(q)l

Il2(k) = 121 (k) = 2 s(q) - s(k) - is
2n J0 (77) 

·s2 = I (k) + - J I (k) J• = dJ 
2 2dS 

From: 

2 ( .
gc2 k) 

( 7 8) 

we obtain: 
4

2 sr (k) =J(k) + S ._1 1 (k) +6J11 (k) +R(k) (79)
22 

where, to the first order in a 

2 24 q dq gel (q)a S rR(k) = (80)3-2 2 22TI (q + S )(s(q) - s(k) - is) 
0 

In obtaining (79) we have used t.he relations. 

1 + 2 
g~l(k) = gel (k)

k2 s2+ 

II (l + a) (2 + a)
gel(k) = gel (k)

(k2 + S2)2 

llele2a·· 2 
2g~l (k) - gel(k) gil (k) ~ gel (k) j cK = -- ­

el sk2 s2+ 

( 81} 
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If we write I(k) as: 

I(k) = A + i B 

2s2 k2- '4aS
A = + ai{h(n) + ln --K- + r}

2 K .4SK

'k -1 k]B = c;(n) exp[4n tan2 s2K

k2 s2K = + (82) 

then: 

Re D(k)cot o · (k) = ( 83)sc Im D(k) 

where D(k). is the matrix defined as in (II-41) 

42
Re D ( k) = l + AlA + A2{A + s A ' + ~ (1 + ~ ) p," 

4 
Im D(k) = >.'B + ;~. 2'{B + s2 B' + Lc1 + ~)B"}

l 6 3 

(84) 

Let us write A as: 

( 8 5) 

where A ,A are defined by comparing (85) with (82).
0 1 

Putting (85) into (84) and maJdng use of (79), (80), 

(82), one can show, with some tedious manipulations, 
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that: -1 k
. 2 (Re D) 4ntan B 

0 2cot a = sc (Im D/B) K e 

( 8 6) 
· 4aB 2 

- 2aB{ln ----K- + r} 

where (Re D)o is obtained from (84) by discarding the terms 

aA in the expressions of A, A' and J\. II • Explicitly:1 

2 4
2B(Re D) = 1 + A {A]_ + AI [ 1 - --+ L(l + ~)]

0 0 2 .K 3K2 

A I A I B+ 1 2 
32K2 

A.'B 22 1 K_.!S._ + ~(-1 + _.!S._) - (1 + ~-) (2 + S2)+ 7 2 K 2 3i
BB 2B 

B4 y2a 2K+ (1 + ~) - -(5 - -'-)}
3 ?- 46 !:<2 2S 

2 4 2 4 
1 1 { -1 ( 1 -j- B a ~) aB B--}+ Al A2 2 r7" I6 2K­ 616S K.<: K2 KS/. 

(87) 

2Im D K = A' + AI (~) 2 -1- AI AI _B_(2 - -)
B 1 2 K 1 2 2 f3232K

2B2 
+ a- [A (- 11 + ~)

K 2 6 K 

B3 K2 y3 
- AI AI (2 - 2K + -'--)]

1 2 K3 -B2 + 
;B4 16S 6 (88) 

We repeat that (86) is valid only to the first order 

in a . For completeness, we give here: 

K2 
. p B k2 

A' = - ~A + -[-+ --] ( 89)
K 3 4 B2K 8S 
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2 2

]1(3 3 KA" §_A ~)= - {16 4(3 +K 4 
 B2TIK s 

( 9 0) 

k2 K2 
- a[3 - 2 -]}

? 2B 4 


Expanding (86) in power series of k, we find: 


1 1 2
+ -r k + •.• (91)
a 2 sc sc 

with: 

1 = (1 - 4 a ) ( ~ _l) - 2 a ·s (1 n 4 a + r ) (9 2)
a aosc 

1 -r
2 sc ( 9 3) 

where 

= 

(9 4) 
AI A AI AI 


{l + _1 [1 2 ( 1 _ a ) ] + 1 2 1 + 6 a } 

03 -6- 2+ -8, 

4 jJ "'1 

2

1 
-r = ~[1 +2 0 A'

1 


AI 


{-1[3
3
4B 

Al 
+ ·_.. - [ 4 


4B 4 


AI 


a 2 A2 1 

- I'+ --( ­6 3 2
1 16B
 

AI 

. 2 77

IT'(l a')3 
.. 1 


·s (16) 

3a)]-l 


AI 


+ _2_(1 + 16r:_)]
3


328 3 


.A 2 . . SA 2 . 1 

+ r- (3 a ) + -- ( 1 - 1 0 a ) ] (- -) }

3
1 16B ao 

(9 5) 

a and r are, by definition, the scattering length and sc sc 
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effective range respectively. We note that if we let a = 0, 

a
0 

and r 
0 

becomes the as and rs corresponding to Nagvi's 

potential studied in section II-B. 

3. 	 Modified Tabakin's Potential 

This potential is given by (II-59). We have: 

g (k) = 	tl gel (k) + t2 9c2(k)c 
-1 kC (n) 2ntan ­

gel (k) = 
k2 

0 
~ e a. 

2+ a 

c 
0 

(n) 2ntan-1 
b 
k 

gc2(k) = e 
k2 + b2 

(97) 

In this case: 

( 9 8) 

where r 1 (k) and r 2 (k) are given by relation (70) and 

2 2 
2n[tan-l ~ + tan-l ~) 

q dq C (n)e
0 

( 9 9) 

= XJ(k) 	 + YK(k) 

where 
2tlt2 

yX = = 2 b2a -1 q -1 q)2 [tan + tan2 2 	 a b q dq c 	 ( n) er 0J (k) = 	 11 p
2 	 2 

7f 	 (q + b2)(q2 k2) 
0 	 (10 0)-1 a -1 q)[tan 3.. 	 + tan 

r 
2 22 	 a b q dq C	 (n)e . 

K(k) = _E.. p 0 


2 
 (q2 + b 2) ( q2 - k2)7f 

0 
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We obtain immediately: 

Im I (k) = ]Jk g2(k) (101)2TI C 

. ]Jele2 ]Jele2
Assum1ng a , b << 1, we can e~pand the factor 

exp[2 (tan-l ~ + tan-l ~)) to obtain a perturbation series 

for r (k).3 

(102) 

Using (65), (66), we obtain: 

J (k) = 
0 

(103)
pele2 ]Jele2 

+ --- [ ln ( b ) - '¥ ( n ) Jb 

The-next term in the expansion is: 

2 -1 a
2pe qdq C (n) tan t1 e 2 0 = --~P 

(q2 + a2) (q2 _ k2)TI 

(104)
2 -1 q

qdq C
0 

(n) tan b 

(q2 + b2) (q2 - k2) 

Using an contour integration, we obtain: 

]Jele2 b 2 
.J (k) = {ln [ 4 ( 1 + -) ) + 2ln (ab)1 2 22TI(a + k ) a 

(105) 
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rrhen 

J(k) = h ( n) 

To obtain K(k), we interchange a~ bin (106). Set: 

From (99) and (100) we obtain: 

2	 2E(a2 - b ) 	 s(a - b 2 )
+ K(a) K(b) h(n) 	 + K(a) K(b} [1n(2E(a +b)) 

-I1 1n[K(a) K(b)) 	 + r]} (107) 

From 	 (99): 

t )1 2 k2 
Re I(k) = 1 {-a~----+ Eh(n) + s[1n(4sa)

2 	 4a
1rK (a) 

.· 
t2 	 2 k2 

- 1nK (a) · + r] } + {a + E h ( n ) 4a 
TIK

2 (b) 

+ 	 E [ 1n ( 4 sb) - 1nK (b) + f] 

2ab - k
{ 2 (a +b)+ sh(n} + s[1n(2s(a +b)) 

- ~- 1n 	K(a) K(b) + r]} (108) 
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As before: 

1 + XRe I (k)
cot osc(k) = (109)),Jm(k) 

The scattering length and effectiv~ range are given 

explicitly as: 

4
l 2a 4 2 2 2 2 2 

a ):' b [t
1

b (l + ·. ~) + t 
2

a (l + ~)]-
sc 

(llO) 

l 
-r = 2 sc 

t 1b + t 2a 
+ 

2ab(a 2 + b 2 ) 

t22tlt2 + b2a - ab l+ E: A I {+ 2 }ab(a + b) a2 + b a2(a2 + b2) 

b2 t24s
[2(ln - + r) - -] + a 2 b2(a2 + b2)a 

2tlt2a l
X [ 2 ( ln ~ + r) - --] 

2 
+ [ln(2s(- + !.) )

b a bb2 a2b2 
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{lll) 



IV. NUMERICAL RESULTS AND DISCUSSION 

The proton-proton scattering length and effective 

range are very accurately determined from experiment (18), 

in our notation they read: 

asc = - 7.786 F, rsc = 2.840 F. 

These are consistent with the expressions for asc 

and r corresponding to Yamaguchi's potential, equationssc 


(III-71) and (III-72), if: 


(1)
B = 1.081273 F-l. 

For Naqvi's potential, we have adjusted the ratio 
;>..2 . 
-- 1n terms of B such that the S-wave phase shift has a 
A.l 

change of sign at 240 MeV. Equations (III-92) and (III-93) 


then give the observed asc and rsc if: 


-1B = 1.368914 F (2) 

;>..2 = - 2.637038 

Il 
Using these parameters, we found, for Yamaguchi's potential: 

as = - 17.596854 F, r
5 

= 2.969 F 

and for Naqvi's potential: 

a = - 18.151 F, r = 2.930 F (3)
5 s 
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which are only slightly different from the previous values 

for Yamaguchi's potential. This is not surprising if we 

recall that, in Naqvi's potential, the attractive term, 

identical with Yamaguchi's potential, dominates the 

repulsive term at low energies, and that the Coulomb effect 

is less important at high energies. 

If we compare these values with Heller et al's 

results for local potential [a = - (16.6 16.9)F], we s 

may conclude that the value of as for a non-local potential 

is smaller than that for a local potential. 

For the difference rs - r , we obtain 0.09F which sc 

is much larger than the previous values, about 0.03 F, given 

by Breit (20) and by Noyes (21). Some difficulties in the 

theoretical interpretation of the difference between the 

effective range for p-p and p-n have been pointed out by 

Noyes (21) and by Leung and Nogami (5). Our r leads to a s 

larger difference bet•tTeen p-p and p-n. 

On the other hand, the neutron-neutron scattering 

length has been determined by an analysis of the final-state 

interaction of the nuclear reaction involving two neutrons: 

(4) 

with the result: 

ann = - (16.1 ± l.S)F {5) 

which agrees with our and with Heller et al's value for a • s 

However, a combination of the experimental results for the 

McMASTER UNIVERSITY LIBRARY 
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energy distribution and the angular distribution of the 

reaction (19): 

~ + d + n + n + y (6) 

yields a somewhat different value, 

ann = - (18.42 ± 1.53)F (7) 

which is closer to:our value for as than it is to Heller 

et al's. 

We have also attempted a similar parameter deter­

mination for the 'modified Tabakin's potential'. Unfortu­

nately, we have not obtained a result due to some difficulties 

in solving the system of simultaneous equations {III-110) 

and (III-111) numerically. It seems to possess highly 

unstable solutions and does not meet with the conditions for 

convergence required by existing elementary interation 

methods. 

With the value for S we obtained for Yamaguchi's 
. ].lele2

and Naqvi's potent1als, S << 1, the perturbation 

expansion used in our analysis should be valid. Of course, 
].lele2 

one can go to higher orders in B , but this does not seem 

to improve our results. For a two or more term separable 

potential, the computation of the analytical expressions 

for the scattering length and effective range, especially 

in the presence of the Coulomb interaction, is extremely 

involved. To simplify the computation, a one term separable 

potential equivalent to a two term separable potential, as 
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discussed in section (III-C), could be used. 

We would like to point out here that an integral of 

type as found in equation (III-60) can be calculated exactly 

by making use of a summation formula due to plana (20). This 

would mean that our problem can be solved exactly. However, 

one may have difficulties in evaluating the residues at the 

singularities of encountered functions. 
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APPENDIX A 

INTEGRAL EQUATION FOR T
sc,L 

We rewrite the equation for T 
sc 

1+ 	L c<k 1 
(·-) jv jk"(--)>c T c(E,k",k) 

k" E + is - E(k") 8 8 

( 1) 

We make partial-wave decompositions of the matrix element. 

A A 

T (e,k 1 ,k) EL(2L +1) PL(k 1 .k) Tsc,L(E,k 1 ,k)sc 

v(±) (k 1 ,k)c<k 1 
(-) jv jk±> = E(2L + 1) PL (k I • k)

s c 	 sc,L
L 

A A 

T 	 (k I 'k) = E(2L + 1) PL(k 1 .k) T L(k',k)c 	 c,
L 

A 

<k 1 jV jk> = LL(2L + 1) PL(k 1 .k) V T(k',k)
s 	 sc, .u 

( 2) 

Substituting (2) into integral equation (1) we get: 

1+ 	 E (2L + 1) PL(k 1 .k") V~~~L(k 1 ,k")
L 1 L" k" E + is - E(k") 

X 	 (2L 1 + 1) PL' (k".k) T sc, L" (E,k" ,k) 

( 3) 
A 

Replacing the Lk" by the integral 1. 
3 
k"2 dk" d~(k".k), 

(2n)J 
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The second term of equation (3) becomes: 

A A A 

E. J ( 21.~ + 1) (2L' + 1) PL(k 1 .k") PL(k".k) drl(k".k) 
LL' 

2x J v ( +) (k I k") · ·r L I (E, k", k) k" dk"
sc,L ' sc, 

( 4) 

Using the addition theorem 

2L + 1 PL (k I 'k") = 
4n 

•. A A A A 

and replacing PL(k",k) =.1---;r;;:-- Y~, (k".k), the first integral 
2L 1 +1 

of (4) becomes: 

Then the integral (4) becomes: 

_L (2L , 1 4 1r Yo 
EL n2 + l) V2L + 1 L

2

2
V (·-) (k 1 k") T (E k" k) k" dk"scmL ' sc,L' ' '· 

E + iE: - E(k") 

1 A A 

= -- E (2L + 1) PL· (k' ,k)
22n L 

v(-) (k' k") 

SC 1 L ' k 112dR 11
--- T L'(E,k 1 ,k)sc, .

E - E(k") + iE: 
(5) 

Substituting (5) into equation (3) then equating the 
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coefficient of PL we obtain the integral equation for T 
sc 1 L 

+ ( .k 1T L(E 1 k' 1 k) = V L 1 k)
SCI SCI 

.: f;,' k " 2 .. dk II v ( - ) (k I k ".) T ( E k I k ) .1 . . '- s c L . I s c I L '. I . I 

+ -­
21T2. E ·-; E(k") + ic 

(6) 



APPENDIX B 


SOLUTION OF THE INTEGRAL EQUATION FOR T

sc,L 

Substituting V in the integral equation forsc,L 

T we obtainsc,L 

i 0 L (k I ) iocL(k)
= c, "'T L(E,k' 1 k) e 	 AL . g L . (k' ) g L . (k) e

SCI 	
l..· 

l . 1 1 C, 1 1 C 1 1 1 

io I (k I)1 	 C 1dk" E { g I . (k I ) e r+ 	2 C 1 'I l2n f i 


-io (k II) 

c 1 L g . (k") e 	 k"2 

c,L,l 
X } T L[E,k" 1 k) 

E + i - E(k") sc, 

(1) 

This is Fredham 1 s integral equation with desenerate kernel 

whose solution has the form (22): 

i 0 L (k I )c,
T L{E,k',k) = e 

SCI 

-io L (k)c,C. e 
X L { g . (k I ) [1 -- .+ 1~---------]A. c,L,l

l 	 2n2 g . (k) L,l 
c 1 L,l 

io L(k)c,
X 	 g L . (k) } e 

C 1 1l 

which can be put under the form: 

io c, L (k 1
) 


T sc, L(E 1 k' 1 k} = e 

-io L (k}


cl
ci e . . .. 

X 	 L. { g L . (k I) [ 1 + 2 ] 0 .. AL . 
. cl ll 2-rr ( ) lJ ll
lJ· · 	 .. g L . k 

C 1 1l 

io (k}
C 1 1J

X 	 g L . (k) } e c, ,l 
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if we set: 
-io {k)

c,Le ____.] ·.s .. A.L . 
lJ 'lg L . (k)

c' 'J. 

Then the solution of (1) 	 can be set as: 

io L(k')c,
T L(E,k',k) = e sc, 

io L{k)c,"' (k') T.<L.) (E) (k) eX L.. • • g L . 	 g L .lJ c, ,l lJ c, ,J 

{2) 

•ro determine T •. we substitute (2) fnto (1), replace the]_J 

simple summation in V~~) by a double sum, then equate the 

corresponding coefficients. We obtain: 

T ~~) (L) = o. . AL . 
lJ lJ 'l 

oo 2 

j
 q dq gc,L,n(q) gc,L,m(q)
o A. l+ E mn L, n 2 n 2mn 	 E + ic - E(q) 
0 

( 3) 

(L) ("1::')
X T. • "'' lJ 

In matrix notation, we obtain from (3) for the matrix T 

(dropping the index L) the equation: 

T(E) =A- AI{E) T(E) 	 ( 4) 

where A is the diagonal 	matrix: 

A .. = 8 .. A.. (5)
lJ lJ l 
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and the 

Solving 

elements of the matrix I(E) are given by: 

r 2 g .. (k) g .. (k)
1 

);:_ dk 
I .. C,l C 1 J = -2lJ 21T e(k) - E - iE: 

0 

( 4) we get: 

( 6) 

T (E) = [1 + AI(E)]-lA (7) 
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