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ABSTRACT

In this thesis we develop methods and strategies for the design of advanced data-driven

monitoring, control, and optimization algorithms for addressing the problems of handling

severe faults and economically operating chemical processes while accounting for the

complex process dynamics and intricate variable interactions, including issues such as lack

of output measurements, process constraints and system uncertainty.

In the initial phase of this research, in an effort to better detect and identify process faults,

we propose a novel pattern matching based process monitoring approach. Traditional

multivariate statistical processes monitoring (MSPM) techniques like principal component

analysis (PCA) and partial least squares (PLS) are notwell-suited inmonitoring non-Gaussian

processes because the derivation ofT2 and SPE indices requires the approximate multivariate

Gaussian distribution of the process data. In this work, a novel pattern analysis driven

dissimilarity approach is developed by integrating multidimensional mutual information

(MMI) with independent component analysis (ICA) in order to quantitatively evaluate

the statistical dependency between the independent component subspaces of the normal

benchmark and monitored data sets. The new MMI based ICA dissimilarity index is derived

from the higher-order statistics so that the non-Gaussian process features can be extracted

efficiently. Moreover, the moving-window strategy is used to deal with process dynamics.

The multidimensional mutual information based ICA dissimilarity method is applied to

the Tennessee Eastman Chemical process. The process monitoring results of the proposed
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method are demonstrated to be superior to those of the regular PCA, PCA dissimilarity,

regular ICA and angle based ICA dissimilarity approaches.

Next, we address the problemof the unavailability of reliable andcomputationallymanageable

first-principles-based models by developing a data-based multi-rate modeling and control

approach. To this end, we consider the problem of multi-rate modeling and economic model

predictive control (EMPC) of electric arc furnaces (EAF), which are widely used in the

steel industry to produce molten steel from scrap metal. The two main challenges that we

address are the multi-rate nature of the measurement availability, and the requirement to

achieve final product of a desired characteristic, while minimizing the operation cost. To

this end, multi-rate models are identified that include predictions for both the infrequently

and frequently measured process variables. The models comprise local linear models and

an appropriate weighting scheme to capture the nonlinear nature of the EAF. The resulting

model is integrated into a two-tiered predictive controller that enables the target end-point to

be achieved while minimizing the associated cost. The EMPC is implemented on the EAF

process and the closed-loop simulation results subject to the limited availability of process

measurements and noise illustrate the improvement in economic performance over existing

trajectory-tracking approaches.

Finally, we consider the problem of variable duration economic model predictive control

(EMPC) of batch processes subject to multi-rate and missing data. To this end, we first

generalize a recently developed subspace-based model identification approach for batch

processes to handle multi-rate and missing data by utilizing the incremental singular value

decomposition technique. Exploiting the fact that the proposed identification approach is

capable of handling inconsistent batch lengths, the resulting dynamic model is integrated

into a tiered EMPC formulation that optimizes process economics (including batch duration).

Simulation case studies involving application to the energy intensive electric arc furnace
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process demonstrate the efficacy of the proposed approach compared to a traditional trajectory

tracking approach subject to the limited availability of process measurements, missing data,

measurement noise and constraints.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

A diverse assortment of industrial and commercial consumer products, that are vital for

fulfilling the requirements of modern society and routinely encountered by individuals on

a daily basis, are manufactured by the chemical process industries. These industries, faced

with the exorbitant demands of improved resource management, low energy consumption,

rigorous safety regulations, and minimal environmental impact, have transformed industrial

plants into a complex networked arrangement of processing units that are highly integrated

through material, energy and information flows. The more stringent operating conditions

accompanying this transformation have placed new constraints on the operating flexibility of

the process, and made the performance requirements for process plants increasingly difficult

to satisfy. The increased levels of integration and automation, however, have also rendered

process systems exceedingly susceptible to equipment malfunctions or sensor failures, which

if not appropriately handled can lead to dire consequences ranging from deficient product

quality specifications to complete plant shutdowns, incurring substantial economic losses,

and even catastrophic safety hazards to manufacturing facilities and plant personnel, as well

as environmental degradation. Therefore, monitoring, control, and optimization of industrial
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processes is critically important for maintaining product quality, optimizing profit, ensuring

plant safety, and improving energy efficiency and environmental sustainability.

The monitoring, control, and optimization of chemical processes involves employing models

that enable the algorithms to learn and derive critical operational decisions from the process

data being collected on-line. These models can be classified into two categories: (1)

mechanistic/first-principles models that have a structure based on fundamental or first-

principles knowledge of the system with parameters estimated from plant data; or (2)

data-driven/empirical models that incorporate a structure and parameters, both of which are

entirely identified exclusively from plant data. The important consideration is not the type

and nature of the model used, rather whether or not that employed process model, in terms

of its structure and assumptions, is appropriate or valid for the application. For example,

mechanistic or first-principles models impose a structure that embodies many engineering

assumptions about the underlying process system, whereas empirical models can readily

capture the dominant sources of variation and causality, provided that a sufficient amount of

data is available to adequately capture the complex relationships among process variables

and not hinder the identifiability of the model. Nevertheless, the limitations imposed by

the available data would also have a significant effect on the ability to accurately estimate

the mechanistic model parameters. Furthermore, mechanistic models may not be readily

available for many commercial processes and modeling of an integrated industrial process

with complex physical and chemical phenomena can be a challenging and time-consuming

endeavor, possibly resulting in a large-scale model that may be too computationally expensive

and intractable for real-time applications.

The above considerations provide a strong motivation for the development of data-driven

algorithms, derived from empirical models that are built using plant data, for the purposes

of monitoring, control, and optimization of chemical processes. To this end, in this thesis
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we develop methods and strategies for the design of advanced data-driven monitoring and

control systems that can account for the complex process dynamics and intricate variable

interactions, including issues such as process constraints and system uncertainty. This

sandwich thesis discusses the findings of research work that synergize tools from control

and systems theory, chemical engineering and computational sciences, to address important

process monitoring and control problems including: (1) building models for monitoring and

diagnosing dynamic processes using data mining and machine learning based computational

intelligence techniques; (2) developing a multi-rate subspace-based system identification

method to identify a dynamic linear time-invariant model from a finite number of noisy

data samples disrupted with unmeasured process variables and asynchronous data; and (3)

designing an economic model predictive controller for batch processes that is capable of

optimizing batch durations and achieving the desired final product end-point specification

by batch termination while minimizing the operating costs.

1.2 Research Objectives and Thesis Outline

First, we present one contribution in the area of detecting and isolating process faults. It

is widely recognized that faults are ubiquitous in process systems and chemical plants,

causing system upsets in other downstream process operations. As such, many process

measurement variables and feedback control loops may be identified as performing poorly,

even though these suspect variables are not the root cause of the fault. In Chapter 2, one

novel contribution in an effort to better detect and identify process faults is presented,

where we propose a novel pattern matching based process monitoring approach. Traditional

multivariate statistical processes monitoring (MSPM) techniques like principal component

analysis (PCA) and partial least squares (PLS) are notwell-suited inmonitoring non-Gaussian

processes because the derivation ofT2 and SPE indices requires the approximate multivariate
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Gaussian distribution of the process data. In this work, a novel pattern analysis driven

dissimilarity approach is developed by integrating multidimensional mutual information

(MMI) with independent component analysis (ICA) in order to quantitatively evaluate

the statistical dependency between the independent component subspaces of the normal

benchmark and monitored data sets. The new MMI based ICA dissimilarity index is derived

from the higher-order statistics so that the non-Gaussian process features can be extracted

efficiently. Moreover, the moving-window strategy is used to deal with process dynamics.

The multidimensional mutual information based ICA dissimilarity method is applied to

the Tennessee Eastman Chemical process. The process monitoring results of the proposed

method are demonstrated to be superior to those of the regular PCA, PCA dissimilarity,

regular ICA and angle based ICA dissimilarity approaches.

In Chapter 3, we consider the problem ofmulti-rate modeling and economic model predictive

control (EMPC) of electric arc furnaces (EAF), which are widely used in the steel industry

to produce molten steel from scrap metal. The two main challenges that we address are

the multi-rate nature of the measurement availability, and the requirement to achieve final

product of a desired characteristic, while minimizing the operation cost. To this end, multi-

rate models are identified that include predictions for both the infrequently and frequently

measured process variables. The models comprise local linear models and an appropriate

weighting scheme to capture the nonlinear nature of the EAF. The resulting model is

integrated into a two-tiered predictive controller that enables the target end-point to be

achieved while minimizing the associated cost. The EMPC is implemented on the EAF

process and the closed-loop simulation results subject to the limited availability of process

measurements and noise illustrate the improvement in economic performance over existing

trajectory-tracking approaches.
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In Chapter 4, we consider the problem of variable duration economic model predictive

control (EMPC) of batch processes subject to multi-rate and missing data. To this end, we

first generalize a recently developed subspace-based model identification approach for batch

processes to handle multi-rate and missing data by utilizing the incremental singular value

decomposition technique. Exploiting the fact that the proposed identification approach is

capable of handling inconsistent batch lengths, the resulting dynamic model is integrated

into a tiered EMPC formulation that optimizes process economics (including batch duration).

Simulation case studies involving application to the energy intensive electric arc furnace

process demonstrate the efficacy of the proposed approach compared to a traditional trajectory

tracking approach subject to limited availability of process measurements, missing data,

measurement noise and constraints.

Finally, Chapter 5 summarizes the main contributions of the research work, and recommen-

dations for related future work and research opportunities are presented.
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CHAPTER 2

PATTERN MATCHING BASED FAULT DETECTION AND

IDENTIFICATION†

2.1 Introduction

Process monitoring and diagnosis are crucially important for detecting abnormal operating

conditions, process upsets, equipment malfunctions, sensor failures, and other faults in

industrial plants in order to improve operational safety, product quality, environmental

sustainability, and profit margin. More than thousands of process variables are measured

and recorded continuously in industrial plants so that the process monitoring becomes a

challenging task. Meanwhile, the commonly used plant historians contain huge amounts of

process data that may be employed to build various kinds of models for process monitoring

[1]. Traditionally, univariate statistical process control (SPC) techniques have been used for

†The results in this chapter have been published in:

• M. M. Rashid and J. Yu. A new dissimilarity method integrating multidimensional mutual information

and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics

Intell. Lab. Syst., 115:44–58., 2012.
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monitoring industrial processes. Nevertheless, the highly correlated process measurements

in industrial plants often result in the failure of univariate methods [2].

Multivariate statistical process monitoring (MSPM) techniques like principal component

analysis (PCA) and partial least squares (PLS) have been widely used for fault detection and

diagnosis in industrial practice [3–6]. These kinds of methods first project the multivariate

and collinear data onto a lower dimensional subspace. Then the test statistics like T2 and

SPE are developed to monitor the multivariate data [7–11]. The effectiveness of these

conventional methods in detecting process abnormalities requires that the process data

approximately follow a multivariate Gaussian distribution for the derivation of control limits.

However, industrial data often obey a non-Gaussian distribution so that the PCA/PLS based

monitoring techniques become ill-suited [12]. Moreover, the regular PCA and PLS models

ignore time-varying dynamics in processes. Although dynamic PCA (DPCA) and dynamic

PLS (DPLS) have been introduced, they expand time-lagged variables into the data matrices

tomodel the time-varying process behavior [13]. The orders of time delay in process variables

are thus needed and it is not a trivial task in industrial applications. Furthermore, DPCA

and DPLS only consider cross-correlations and autocorrelations of process measurements

via time-shifted lags while the higher-order statistics are ignored. Alternatively, Fisher

discriminant analysis (FDA) is applied to distinguish between normal and faulty process

operations. However, labeled training data from both normal and faulty operating conditions

are required to build the initial model [14–18]. In addition, FDA may not be able to detect

new faults unless they already exist in the training data set. Meanwhile, machine learning

algorithms such as artificial neural networks (ANN) and support vector machines (SVM)

have been used for process monitoring. These supervised monitoring techniques also require

labeled data from normal and faulty operating conditions [19–21]. In industrial processes,

however, the historical data often do not have known class labels and thus these supervised
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monitoring methods may not be applicable. More recently, Gaussian mixture model (GMM)

method is proposed to monitor non-Gaussian processes by characterizing measurement data

with various multivariate Gaussian density functions. The data from the individual operating

modes are still assumed to follow a multivariate Gaussian distribution [22–24]. On the

other hand, independent component analysis (ICA) is adopted to decompose multivariate

data into linear combinations of statistically independent components (IC). ICA imposes

independency on latent variables beyond second-order statistics and thus can extract the

non-Gaussian features of process data [25–27]. Moreover, ICA based monitoring statistics

like I2 and SPE have been developed to describe the variability within the independent

component and residual subspaces [28]. However, those statistics do not take advantage of

pattern based analytics that can improve the process fault detection capability.

As alternative solutions, unsupervised pattern matching techniques are proposed to identify

similar patterns between multivariate time-series data sets. Various PCA based pattern

matching methods compare PC subspaces using similarity factors, which are developed

from the geometric angles between principal components [29, 30]. However, the PCA based

similarity factors only incorporate second-order statistics and are thus limited in feature

extraction of process data. Alternately, Eigenvalue decomposition of the covariance matrices

is used to determine the dissimilarity factor between two data sets [4]. Nevertheless, this

method suffers from the same issue that only the second-order statistics are taken into

consideration and thus the non-Gaussian features cannot be effectively extracted. More

recently, the dissimilarity method is extended to ICA for comparing two data sets using

independent components [31]. However, the dissimilarity index is calculated from the angles

among different ICs, which cannot efficiently characterize the non-Gaussian process features.

In this study, ICA is integrated with multidimensional mutual information (MMI) to measure

the statistical independency between two IC subspaces, which represents the subspace
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dissimilarity. The proposed approach does not require any assumptions regarding the

relationships among measurement variables and can deal with the process data following an

arbitrary probability density distribution. In contrast to the angle based dissimilarity factor,

the new multidimensional mutual information based dissimilarity takes into account the

higher-order statistics and thus can well capture the non-Gaussian features of process data.

Furthermore, a rolling window that moves over the monitored segment incrementally ensures

that the time-varying process dynamics are accounted for in the MMI based dissimilarity

approach.

The remainder of the article is organized as follows. Section 2.2 reviews the conventional ICA

based monitoring technique. Then the novel ICA and multidimensional mutual information

based dissimilarity method are developed for process monitoring in Section 2.3. Section 2.4

demonstrates the application of the new dissimilarity approach to the Tennessee Eastman

Chemical process and its comparison to the regularPCA, PCAdissimilarity, conventional ICA

and angle based ICA dissimilarity methods. The conclusions of this work are summarized

in Section 2.5.

2.2 Independent Component Analysis Based Process

Monitoring

Independent component analysis is a statistical technique for computing hidden factors

that underlies a set of measurement variables. ICA expresses n measurement variables

X =
[
x1(k), x2(k), . . . , xn(k)

]T at the k-th sampling instant as linear combinations of m

unknown independent components

x(k) =
m∑

j=1
a j s j(k) = As(k) (2.2.1)
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where A = [a1, a2, . . . , am] ∈ Rn×m is an unknown mixing matrix and S = [s1, s2, . . . , sm]T

are the independent components. The FastICA algorithm is used to estimate the mixing

matrix A and independent components Ŝ from the original data X [32, 33]. The solution is

equivalent to finding a demixing matrix W as follows

Ŝ = W X (2.2.2)

where the statistical independency between the reconstructed independent components Ŝ in

terms of negentropy is maximized. The initial step in the FastICA algorithm is whitening

that eliminates the cross-correlation between the measurement variables. This is expressed

as

z(k) = Qx(k) (2.2.3)

where Q is the whitening matrix and z(k) is the whitened data at the k-th sampling instant.

The transformation is given by

z(k) = Bs(k) (2.2.4)

where the orthogonal matrix B is computed iteratively such that the i-th independent compo-

nent has the maximized non-Gaussianity. Thus the projection of x(k) into the independent
component subspace can be estimated as

ŝ(k) = BTQx(k) (2.2.5)
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with the demixing matrix W = BTQ. An optimal number of ICs are selected to capture the

dominant characteristics of the process based upon the assumption that the rows of W with

the highest norm have the largest effect on the variation of S.

The I2 and SPE monitoring statistics are further defined as

I2(k) = ŝ(k)T ŝ(k) (2.2.6)

and

SPE(k) = e(k)T e(k) (2.2.7)

where ŝ(k) = W x(k) and e(k) = x(k) − x̂(k). The prediction, x̂(k), is calculated as

x̂(k) = QBTW x(k) (2.2.8)

The control limits for the I2 and SPE statistics can be computed using a kernel density

estimation for monitoring multivariate data.

2.3 ICA Based Dissimilarity Approach for Process

Monitoring

2.3.1 Angle Based ICA Dissimilarity Method

Conventional MSPM techniques like PCA and ICA do not specifically detect the dynamic

changes of relationships among differentmeasurement variables. In contrast, the dissimilarity
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approach can be used to monitor multivariate data by comparing latent variable subspaces

and extracting the hidden variable relationships.

Consider two data sets X1 ∈ Rn×k and X2 ∈ Rn×k , which consist of n variables and k samples.

Here X1 serves as normal benchmark set while X2 is the monitored set. Two different ICA

models can be built on X1 and X2 to obtain two sets of ICs, S1 and S2, respectively. It is

noted that the ICs are sorted in terms of L2-norm. Firstly the geometric angle between each

pair of ICs can be computed as

cos (θi) =
(s(i)1 )T (s

(i)
2 )s(i)1

 ·s(i)2

 (2.3.1)

where θi is the angle between the i-th independent components s(i)1 and s(i)2 [31]. Then, the

angle part of the dissimilarity index is expressed as

Dθ =
1
m

m∑
i=1

sin2 (θi) (2.3.2)

which is equivalent to

Dθ =
1
m

m∑
i=1

©«
1 −

©«
(s(i)T1 )(s

(i)
2 )s(i)1

 ·s(i)2


ª®®¬

2ª®®®¬
(2.3.3)

It is possible that the independent components have similar geometric orientations but quite

different magnitudes. Then a distance ratio factor for the IC subspaces is introduced as

follows

Ddist =
I2
2

I2
1

(2.3.4)
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where I2
1 and I2

2 are the mean values of the I2 test statistic for the two respective IC subspaces.

Hence, the angle based dissimilarity index is defined as

DA = Ddist · Dθ (2.3.5)

which integrates both the angle and distance portions.

A statistical control limit corresponding to the above angle based dissimilarity index can be

computed using the kernel density estimation for process monitoring.

2.3.2 Multidimensional Mutual Information Based ICA

Dissimilarity Method

The angle based dissimilarity index is based on the cross-correlation between the independent

components of the benchmark and monitored data sets. However, it does not take into

full consideration the higher-order statistics. Thus the non-Gaussian features underlying

the process cannot be effectively extracted. In this work, a novel method is proposed

to characterize the dissimilarity through the multidimensional mutual information based

statistical independency between the two IC subspaces corresponding to the benchmark

and monitored sets. The merit of MMI based dissimilarity index lies in its capability to

identify the non-Gaussian statistical relationship and hidden patterns of the benchmark and

monitored data. In this way, any abnormal features within the monitored set can be extracted

and alarmed precisely.

Mutual information is a quantitative measure of statistical dependency between two random

variables estimated from entropy [34, 35]. In contrast to cross-correlation, it takes into

account the higher-order statistics and is able to capture the non-Gaussianity of stochastic
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systems. Firstly, the Shannon’s entropy of a random variable x can be estimated as

H(x) = −
∫
x

p(x) log p(x)dx (2.3.6)

where p(x) is the probability density function of x. The higher entropy value indicates that

the more statistical information is contained within x. If unbiased estimates for the log

probability density function log p(xi) for each observation are available, then the entropy of

the random variable x can be estimated as

H(x) = − 1
N

N∑
i=1

log p(xi) (2.3.7)

Moreover, the entropy of the random variable x ordered by descending magnitudes can be

computed using a simple numerical technique as follows

H(x) ≈ 1
N − 1

N∑
i=1

log
[
x(i + 1) − x(i)] + ψ(1) − ψ(N) (2.3.8)

where ψ(·) denotes the digamma function [35]. Then, mutual information is referred to

the information sharing between two random variables x1 and x2 and can be computed as

follows

I(x1, x2) =
∫
x1

∫
x2

p(x1, x2) log
(

p(x1, x2)
p(x1)p(x2)

)
dx1dx2 (2.3.9)

where p(x1, x2) is the joint probability density function while p(x1) and p(x2) are the marginal

probability density functions of x1 and x2, respectively. The above mutual information index

can be rewritten as

I(x1, x2) = H(x1) + H(x2) − H(x1, x2) (2.3.10)
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where H(x1) and H(x2) are the marginal entropies of x1 and x2 while H(x1, x2) denotes the
joint entropy of both variables as

H(x1, x2) = −
∫
x1

∫
x2

p(x1, x2) log p(x1, x2)dx1dx2 (2.3.11)

The complex integrals in Eq. (2.3.10) are difficult to solve analytically. Instead, a l-nearest

neighbor based strategy can be used to estimate the mutual information numerically. Initially,

an estimate of entropy based on nearest-neighbor distances in the sample space is derived

for improved computational efficiency as follows

H(x) =
N∑

i=1
(N · ρi) + ln 2 + C (2.3.12)

where ρi represents the distance from the i-th sample to its nearest neighbor, N is the number

of points and C is the Euler-Mascheroni constant [36]. This approach of l-nearest neighbor

statistics is extended to compute mutual information between high-dimensional spaces. The

multidimensional mutual information between the two IC subspaces S1 and S2 corresponding

to the benchmark and monitored data sets is expressed as follows

I(S1, S2) = ψ(l) −
1
l
− 〈ψ(nS1) + ψ(nS2)〉 + ψ(N) (2.3.13)

where N is the size of the data sets, nS1 and nS2 represent the numbers of samples in

proximity to the nearest neighbors within each IC subspace, l is the number of nearest

neighbors identified through data clustering, 〈·〉 denotes the averages over all observations
in the data sets, and ψ(·) is the digamma function defined as

ψ(x) = Γ(x)−1dΓ(x)/dx (2.3.14)
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with Γ(x) denoting the Gamma function [34].

Hence, the multidimensional mutual information between the two IC subspaces can be

computed to quantify the dissimilarity between the benchmark and monitored data sets.

Consider the benchmark data set Xb ∈ Rn×w and the monitored data set Xm ∈ Rn×r , both of

which consist of n variables. The moving window of width w can be incremented throughout

the monitored data set for the dynamic monitoring purpose. Firstly, an ICA model is built

on the benchmark data with Sb denoting its corresponding IC subspace. Simultaneously,

the moving-window based ICA models are developed from the subsets of monitored data

with a series of IC subspaces S(1)m , S(2)m , . . . , S(r)m obtained. Fig. 2.3.1 illustrates the moving

window strategy for updating the monitored IC subspaces. Then, the multidimensional

mutual information based dissimilarity index DMMI is defined as follows to evaluate the

statistical dependency between the benchmark and monitored IC subspaces

DMMI(i) =
I2
m(i)
I2
b

· 1
I(Sb, S

(i)
m )

(2.3.15)

where i denotes the i-th moving window on the monitored data set, I(Sb, S
(i)
m ) is the multidi-

mensional mutual information between the benchmark and monitored IC subspaces while

I2
b and I2

m(i) are the ICA based I2 statistics of those two subspaces. The larger dissimilarity

index value indicates the stronger statistical independency and the more distinct hidden

patterns of the monitored set compared to the normal benchmark set. Thus the monitored

operation has the higher tendency to be abnormal and in this way the process faults can be

detected.

The proposed DMMI index determines the statistical dependency between the independent

component subspaces and then captures the non-Gaussian features in the data sets. It should

be emphasized that the statistical dependency is different from the cross-correlation as
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Figure 2.3.1: Illustration of Moving Window Strategy for Multidimensional Mutual Infor-
mation Based ICA Dissimilarity Method

the former depends on the higher-order rather than the second-order statistics so that the

process non-Gaussianity can be well characterized. With the set of moving window based

dissimilarity index values computed, the kernel density estimation can be used to estimate

the corresponding control limit for abnormal event detection. The kernel density estimator

is defined as

f̂h(DMMI) =
1

Nh

N∑
i=1

K
(

DMMI − DMMI(i)
h

)
(2.3.16)

where h is the bandwidth and K denotes the Gaussian kernel function

K(u) = 1√
2π

e
(
− 1

2 u2
)

(2.3.17)

with u representing an arbitrary data point [37]. The fault alarms are triggered as long as the

MMI based dissimilarity index values are above the estimated control limit. Otherwise, the
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process operation is considered as normal. A schematic diagram of the proposed monitoring

approach is shown in Fig. 2.3.2 and the detailed step-by-step procedure is summarized below

1) Specify the moving window width w and set the initial iteration number as i = 1;

2) Build ICA model on the selected benchmark data Xb ∈ Rn×w;

3) Extract the IC subspace Sb corresponding to the benchmark set;

4) Select the moving window based subset of the monitored data Xm ∈ Rn×r as X (i)m ∈
Rn×w;

5) Build ICA model using current monitored data subset X (i)m ;

6) Extract the IC subspace S(i)m for the i-th monitored window;

7) Estimate the multidimensional mutual information I(Sb, S
(i)
m ) between the benchmark

and monitored data sets;

8) Compute the multidimensional mutual information based dissimilarity index DMMI(i).

9) Increment i = i + 1 and return to step 3). Stop the iterations at the last sampling point

in the monitored set.

10) Estimate the corresponding control limit of DMMI(i) for continuous monitoring and

fault detection

2.4 Process Monitoring Application

2.4.1 Tennessee Eastman Chemical Process

The Tennessee Eastman Chemical process (TEP) is used in this study to evaluate the utility

of the proposed monitoring method. The process flow diagram is shown in Fig. 2.4.1 and it
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is composed of five major unit operations including chemical reactor, condenser, a recycle

compressor, vapor/liquid separator and stripper [38]. The process produces two liquid

products, G and H, from four gaseous reactants A, C, D and E along with a byproduct of F.

An inert gaseous component, B, is also present in the reactant mixture and enters mainly

through the C stream. The reactor product stream is cooled through a partial condenser and

fed to a vapor/liquid separator for component separation. Further, the vapor stream exiting

the separator is recycled to the reactor feed stream through a compressor. A fraction of

the recycle stream is purged to prevent accumulation of inert and byproduct in the process.

Meanwhile, the condensed components from the separator (stream 10) are pumped into a

stripper. The products, G and H, exiting the stripper are further processed in the downstream

operation. This process contains total 41measured and 12manipulated variables. In addition,

the process has 20 pre-defined abnormal operation events as listed in Table 2.4.1 and consists

of six operating modes given in Table 2.4.2.

In this research, the 22 continuous measurement variables as listed in Table 2.4.3 are selected

for process monitoring purpose and the sampling time of 0.05h is used. Moreover, the process

is essentially open-loop unstable and thus a decentralized control strategy is adopted for

closed-loop operation stability [39]. A data set of 300 normal samples is generated to train

the models or serve as the benchmark set. Then, four test cases mixed with various types

of process faults are designed to compare different monitoring methods. The detailed test

scenarios are described in Table 2.4.4. Each of the test cases contains both normal and

different types of faulty operation data. In this study, the window width of the dissimilarity

methods is set to 25 while the confidence level for computing the control limits of different

approaches is fixed at 95%.
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Figure 2.4.1: Process Flow Diagram of Tennessee Eastman Chemical Process
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Table 2.4.1: Predefined Faults of Tennessee Eastman Chemical Process

Fault No. Description

1 Step in A/C feed ratio, B composition constant
2 Step in B composition, A/C ratio constant
3 Step in D feed temperature (stream 2)
4 Step in reactor cooling water inlet temperature
5 Step in condenser cooling water inlet temperature
6 A feed loss (step change in stream 1)
7 C header pressure loss (step change in stream 4)
8 Random variation in A+C feed composition (stream 4)
9 Random variation in D feed temperature (stream 2)
10 Random variation in C feed temperature (stream 4)
11 Random variation in reactor cooling water inlet temperature
12 Random variation in condenser cooling water inlet temperature
13 Slow drift in reaction kinetics
14 Sticking reactor cooling water valve
15 Sticking condenser cooling water valve
16 Unknown disturbance
17 Unknown disturbance
18 Unknown disturbance
19 Unknown disturbance
20 Unknown disturbance

Table 2.4.2: Six Operation Modes of Tennessee Eastman Chemical Process

Operating Mode G/H Mass Ratio Production Rate (Stream 11)

1 50/50 7038 kg/h G and 7038 kg/h H
2 10/90 1408 kg/h G and 12669 kg/h H
3 90/10 10000 kg/h G and 1111 kg/h H
4 50/50 Maximum
5 10/90 Maximum
6 90/10 Maximum
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Table 2.4.3: Monitored Variables of Tennessee Eastman Chemical Process

Variable No. Variable Description

1 A Feed (stream 1)
2 D Feed (stream 2)
3 E Feed (stream 3)
4 A and C Feed (stream 4)
5 Recycle Flow (stream 8)
6 Reactor Feed (stream 6)
7 Reactor Pressure
8 Reactor Level
9 Reactor Temperature
10 Purge Rate (stream 9)
11 Separator Temperature
12 Separator Level
13 Separator Pressure
14 Separator Underflow (stream 10)
15 Stripper Level
16 Stripper Pressure
17 Stripper Underflow (stream 11)
18 Stripper Temperature
19 Steam Flow
20 Compressor Work
21 Reactor Coolant Temperature
22 Condenser Coolant Temperature
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Table 2.4.4: Four Test Cases of Tennessee Eastman Chemical Process

Case No. Test Scenario

Case 1

Normal operation from the 1st to 100th samples
Step in reactor cooling water inlet temperature from the 101st to 200th
samples
Normal operation from the 201st to 300th samples
Random variation in reactor cooling water inlet temperature from the 301st
to 400th samples

Case 2

Normal operation from the 1st to 100th samples
Slow drift in reaction kinetics from the 101st to 200th samples
Normal operation from the 201st to 300th samples
Sticking reactor cooling water valve from the 301st to 400th samples

Case 3

Normal operation from the 1st to 100th samples
Step in A/C feed ratio, B composition constant from the 101st to 140th
samples
Normal operation from the 141st to 240th samples
A feed loss from the 241st to 319th samples
Normal operation from the 320th to 419th samples
Slow drift in reaction kinetics from the 420th to 519th samples

Case 4

Normal operation from the 1st to 100th samples
Step in B composition, A/C ratio constant from the 101st to 200th samples
Normal operation from the 201st to 300th samples
C header pressure loss from the 301st to 347th samples
Normal operation from the348th to 447th samples
Sticking condenser cooling water valve from the 448th to 532nd samples
Normal operation from the 533rd to 632nd samples
Unknown disturbance from the 633rd to 732nd samples
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2.4.2 Comparison of Process Monitoring Results

In the first test case, the plant starts with normal operation and then followed by the first

fault of a step change in reactor cooling water inlet temperature during the period from the

101st through the 200th samples. After that, the process operation returns to the normal

conditions and lasts 100 samples before the second process fault occurs with the increased

random variations in the reactor cooling water inlet temperature. The process monitoring

results of the various methods including PCA, angle based PCA dissimilarity, ICA, angle

based ICA dissimilarity and multidimensional mutual information based ICA dissimilarity,

are depicted in Figs. 2.4.2 to 2.4.6, respectively. It is observed that the PCA and angle based

PCA dissimilarity methods cannot isolate the non-Gaussian features of the monitored data,

resulting in low fault detection rates of below 25%, as shown in Fig. 2.4.7. It should be

noted that average fault detection and false alarm rates of the T2 and SPE statistics for the

PCA method and I2 and SPE indices for the ICA approach are used for the methodology

evaluation and comparison. It can be readily seen from Fig. 2.4.4 that the ICA based I2 and

SPE statistics are unable to identify the process faults reliably. Though some of the faulty

points are captured in the I2 or SPE plot, there is a long delay in triggering the fault alarms

that result in a poor average fault detection rate of only 28.0%. Meanwhile, the angle based

ICA dissimilarity index, as shown in Fig. 2.4.5, has improved fault detection capability with

the fault detection rate of 42.0%. However, its performance is much worse than the proposed

multidimensional mutual information based ICA dissimilarity method, which results in the

highest fault detection rate of 95.0%. The superior fault detection capacity of the MMI

based ICA dissimilarity method is attributed to its inherent feature to account for the process

non-Gaussianity through the entropy based statistical dependency instead of the essential

cross-correlation. On the other hand, its false alarm rate is as low as 3.5% indicating its

satisfactory performance in minimizing both the type-I and type-II errors in fault detection.
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The PCA, PCA based dissimilarity and the angle based ICA dissimilarity methods have much

worse false alarm rates greater than 7.0%. The high false alarm rates can be caused by the

second-order statistics driven monitoring indexes that partially mismatches the non-Gaussian

process patterns. The proposed MMI based dissimilarity approach demonstrates the best

overall performance among the monitoring methods in terms of both fault detection and

false alarm rates.

For the second test case, the normal operation of the plant is mixed with two different types of

faults, which are a slow drift error in reaction kinetics from the 101-st to the 200-th samples

and a sticking reactor cooling water valve from the 301-st to the 400-th samples. The rest of

process data are collected under normal operating conditions. Figs. 2.4.8 and 2.4.9 show the

PCA and angle based PCA dissimilarity methods. It is readily seen that the PCA method has

a lengthy delay in alarming the faults while the PCA dissimilarity method cannot characterize

the normal and faulty operating conditions. Thus, low fault detection rates for the PCA and

PCA dissimilarity methods in comparison to the other methods are seen. The ICA based I2

and SPE plots, as shown in Fig. 2.4.10, indicate that most of the faulty samples fall below

the corresponding control limit lines resulting in an average fault detection rate of as low as

29.3%. Specifically for the drift error, the SPE index has a long delay of over 50 samples

before triggering the fault alarms while the I2 index misses a vast majority of the faulty

samples. As shown in Fig. 2.4.11, the angle based ICA dissimilarity method does not appear

to be much better in detecting the faulty points than the ICA method. Its fault detection

rate is only 38.5% with more than 60% of faulty samples are undetected. In contrast, the

monitoring result of the multidimensional mutual information based ICA dissimilarity index

is shown in Fig. 2.4.12. It is obvious that the new dissimilarity method is able to accurately

alarm the faulty operation with the high fault detection rate of 94.0%. Meanwhile, its false

alarm rate is only 5.0% and much lower than that of the angle based ICA dissimilarity
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Figure 2.4.2: Monitoring Results of PCA Method in Test Case 1 of Tennessee Eastman
Chemical Process
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Figure 2.4.3: Monitoring Results of PCA Dissimilarity Method in Test Case 1 of Tennessee
Eastman Chemical Process
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Figure 2.4.4: Monitoring Results of ICA Method in Test Case 1 of Tennessee Eastman
Chemical Process
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Figure 2.4.5: Monitoring Results of Angle Based ICA Dissimilarity Method in Test Case 1
of Tennessee Eastman Chemical Process
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Figure 2.4.6: Monitoring Results of Multidimensional Mutual Information Based ICA
Dissimilarity Method in Test Case 1 of Tennessee Eastman Chemical Process
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Figure 2.4.7: Comparison of Fault Detection and False Alarm Rates for PCA, PCA Dis-
similarity, ICA, Angle Based ICA Dissimilarity and Multidimensional Mutual Information
Based ICA Dissimilarity Methods
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method (12.0%) and PCA based dissimilarity method (13.6%). It should be noted that the

abnormally low false alarm rate (0.3%) of the ICA method is due to its insensitivity to the

process faults. In this case, the MMI based ICA dissimilarity method still performs the best

among all the monitoring approaches.

A more complex test scenario is considered in the third case, which involves three different

types of process faults (a step error, a feed loss, and a slow drift error) among the normal

operation periods. The fault detection results of the various process monitoring methods are

shown in Figs. 2.4.13 to 2.4.17, respectively. It is seen that the T2 and SPE statistics of the

PCA based monitoring method cannot handle the dynamic and non-Gaussian data resulting

in the poor monitoring performance seen. Although the feed loss fault is detectable, the

fault is alarmed after nearly half the faulty samples are misclassified as normal. Similar

to PCA, the PCA based dissimilarity index also cannot extract the non-Gaussian features

for monitoring, resulting in a low fault detection rate of of just 26.6%. Moreover, the

ICA based I2 index misses most of the faulty samples with extremely low fault detection

capacity. Though the SPE index has relatively higher sensitivity to the three types of faults,

the long delays of fault detection are still unacceptable. The average fault detection rate of

ICA monitoring method is only 24.7%. The angle based ICA dissimilarity method leads

to a similar fault detection rate of 29.7% with many undetected faulty samples especially

during the abnormal operation events of feed loss and drift error, as shown in Fig. 2.4.16.

Meanwhile, its false alarm rate is as high as 13.7%. The MMI based ICA dissimilarity

approach, however, shows the strongest fault detection capability along with the highest fault

detection rate of 93.2% while the lowest false alarm rate of 2.0%. As easily observed from

Fig. 2.4.17, the DMMI index is able to distinguish between the normal and faulty operations

with high accuracy, which apparently cannot be achieved by the monitoring methods.
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Figure 2.4.8: Monitoring Results of PCA Method in Test Case 2 of Tennessee Eastman
Chemical Process

Page 35 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Sample

D
P

C
A

Drift Error Valve Stiction

Figure 2.4.9: Monitoring Results of PCA Dissimilarity Method in Test Case 2 of Tennessee
Eastman Chemical Process
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Figure 2.4.10: Monitoring Results of ICA Method in Test Case 2 of Tennessee Eastman
Chemical Process

Page 37 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

200

Sample

D
A

Drift Error Valve Stiction

Figure 2.4.11: Monitoring Results of Angle Based ICA Dissimilarity Method in Test Case 2
of Tennessee Eastman Chemical Process
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Figure 2.4.12: Monitoring Results of Multidimensional Mutual Information Based ICA
Dissimilarity Method in Test Case 2 of Tennessee Eastman Chemical Process
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Figure 2.4.13: Monitoring Results of PCA Method in Test Case 3 of Tennessee Eastman
Chemical Process
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Figure 2.4.14: Monitoring Results of PCA Dissimilarity Method in Test Case 3 of Tennessee
Eastman Chemical Process
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Figure 2.4.15: Monitoring Results of ICA Method in Test Case 3 of Tennessee Eastman
Chemical Process
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Figure 2.4.16: Monitoring Results of Angle Based ICA Dissimilarity Method in Test Case 3
of Tennessee Eastman Chemical Process
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Figure 2.4.17: Monitoring Results of Multidimensional Mutual Information Based Dissimi-
larity Method in Test Case 3 of Tennessee Eastman Chemical Process
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In the last test case, the normal process operation is mixed with four types of abnormal

events, which are step change in B composition and A/C ratio, C head pressure loss, valve

stiction of condenser cooling water flow, and an unknown process disturbance. Similar to

the previous cases, the PCA and PCA dissimilarity methods fail to accurately detect the

faulty samples, as seen in Figs. 2.4.18 and 2.4.19, respectively. The PCA based methods

cannot extract the non-Gaussian features of the measurement data with only the pressure loss

fault being detected with reasonable accuracy, resulting in low overall fault detection rates

of below 20%. Also, it is noted that the false alarm rate of the PCA dissimilarity method is

the highest among all other methods at over 15.0%. Moreover, the ICA method does not

perform well in fault detection, as seen in Fig. 2.4.20. The I2 statistic is insensitive to most

types of faults except the pressure loss that is partially detected. Similarly, the SPE index can

identify the pressure loss but has substantial delays in detecting valve stiction and unknown

disturbance. Hence, an average fault detection rate of 20.0% is obtained from the ICA based

monitoring method along with the false alarm rate of 5.9%. As a comparison, the angle based

dissimilarity method does not perform significantly better than ICA method in capturing

process abnormalities with only slightly higher fault detection rate of 34.6%. Despite an

improvement over ICA method, the angle based dissimilarity index still misses over 60%

of faulty samples without any alarms. Moreover, the false alarm rate of the angle based

dissimilarity method is the second highest among the monitoring approaches. In contrast,

the multidimensional mutual information based dissimilarity approach leads to much better

monitoring results than the other two methods. As shown in Fig. 2.4.7, its fault detection

rate reaches 92.2% while the false alarm rate is as low as 4.3% even in the most complex

test scenario with four different types of faults. This case further verifies the superiority of

the MMI based ICA dissimilarity method with respect to the conventional approaches in

process monitoring and fault detection.
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Figure 2.4.18: Monitoring Results of PCA Method in Test Case 4 of Tennessee Eastman
Chemical Process
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Figure 2.4.19: Monitoring Results of PCA Dissimilarity Method in Test Case 4 of Tennessee
Eastman Chemical Process
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Figure 2.4.20: Monitoring Results of ICA Method in Test Case 4 of Tennessee Eastman
Chemical Process
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Figure 2.4.21: Monitoring Results of Angle Based ICA Dissimilarity Method in Test Case 4
of Tennessee Eastman Chemical Process
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Figure 2.4.22: Monitoring Results of Multidimensional Mutual Information Based ICA
Dissimilarity Method in Test Case 4 of Tennessee Eastman Chemical Process
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2.5 Conclusions

A novel multidimensional mutual information based dissimilarity index is proposed and

integrated with independent component analysis to monitor non-Gaussian processes in

this article. The presented approach uses entropy based mutual information to assess

the dissimilarity between the multidimensional independent component subspaces of the

benchmark and monitored sets. The higher-order statistics underlying the dissimilarity index

can help extract the non-Gaussian features and quantify the statistical dependency between

IC subspaces on a moving-window basis. Thus the non-Gaussian dynamic processes can be

effectively monitored through the continuous comparison between the normal benchmark

and monitored data sets. The MMI based ICA dissimilarity method is applied to four test

cases of the Tennessee Eastman Chemical process. The comparison of monitoring results

demonstrates that the new mutual information based dissimilarity index is superior to regular

PCA, angle based PCA dissimilarity, conventional ICA and angle based ICA dissimilarity

methods with the most reliable fault detection capability. Future work may focus on the

fault diagnosis part through the dissimilarity based pattern identification to isolate the faulty

variables.
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CHAPTER 3

MULTI-RATE MODELING AND ECONOMIC MODEL

PREDICTIVE CONTROL†

3.1 Introduction

Electric arc furnaces (EAF) play a prominent role in the steel industry and are widely used

for recycling scrap metal. Operated primarily as batch processes (a batch is referred to as

a heat), EAFs melt the scrap and adjust the chemical composition of the molten metal to

obtain steel of the desired product grade. The required melting of steel scrap results in a

highly energy intensive process, necessitating efficient operation. Given that the feed to

the EAF, from recycled steel, comes from diverse sources with obscure compositions that

vary significantly, efficient operation can only be achieved via an online measurement and

†The results in this chapter have been published in:

• M. M. Rashid, P. Mhaskar, and C. L. E. Swartz. Multi-rate modeling and economic model predictive

control of the electric arc furnace. J. Proc. Cont., 40:50–61, 2016.

• M. M. Rashid, P. Mhaskar, and C. L. E. Swartz. Economic model predictive control of the electric arc

furnace using data-driven multi-rate models. In Proceedings of the 2016 American Control Conference,

Boston, MA, 2016.
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feedback control strategy. Closed-loop control of the EAF, however, presents a challenging

problem due to the lack of on-line measurements of key process variables. This complicates

both the model development and control implementation steps.

One approach to modeling and control of the EAF process in particular [40–44], and batch

processes [45, 46] in general, is to develop first-principles/mechanistic models, and use them

for the purpose of optimization. Note that while a first-principles model provides excellent

predictive capabilities when sufficient measurements are available to uniquely estimate the

associated parameters, the resultant optimization problem is often quite computationally

complex, and difficult to solve and implement in real-time. To address these challenges,

recent results have exploited the structure of the optimization problem to identify the shape

of the optimal constraints, which can then be parameterized and readily updated online

[47, 48]. More recently, the concept of reachability regions is used to implement model

predictive control strategies where the controller, instead of trying to drive the process to

the desired end-point at all computation times, guides the process through the reachability

regions (computed off-line) [49, 50]. Another effort to shift the computational effort to an

offline step includes design of explicit model predictive control involving multi-parametric

programming, where the state of the system is represented as a vector of parameters so that

the optimal solution for all possible realizations of the state vector can be pre-computed as

explicit functions [51, 52]. While these approaches mitigate the online computation aspect

of the problem, the problem of developing and implementing a first-principles model-based

controller remains a challenging task.

The first-principles model-based control approaches typically require initialization of the

nonlinear process models using an effective state estimator so that the necessary feedback

control actions can be applied. However, inferring the states of the EAF process based on the

available process data is not a trivial task due to the lack of frequent on-line measurements.
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Furthermore, the fast convergence of the state estimator from initialization errors and the

ability to handle measurement noise are critical, and may not be achieved with the limited,

infrequent sampling rate for the EAF process variables.

One approach to address these practical problems is through use of simpler, data-driven

model-based controller. However, in developing data-driven models, the identification

experiments traditionally utilized to build empirical models, while suitable for identification

at steady-state operating conditions, are often too expensive to justify for batch systems. In

particular, identification techniques that require the implementation of a pseudo-random

binary sequence (PRBS) on the process, may result in off-spec product, and thus wastage

of expensive batches, making them economically infeasible. Thus, for batch systems, the

available plant data is essentially limited to the historical databases comprised of prior batches

(possibly augmented with a limited number of identification experiments). Furthermore, the

process dynamics of batch systems are typically highly nonlinear, and they are not operated

around an equilibrium point, thus making conventional system identification approaches,

where a single linear model is identified, ill-suited for identifying an accurate dynamic model.

One general strategy to describe nonlinear behavior while retaining the simplicity of linear

models is to partition/cluster the training data into a number of different regions, identify local

linear models for each region, and combine them with appropriate weights in an attempt

to describe the global nonlinear behavior. This idea has been formalized in piece-wise

affine (PWA) [53], Takagi, Sugeno, and Kang (TSK) [54], and operating-regime based [55]

modeling. Recently, a new multi-model approach, specific to batch processes, was proposed

that unifies the concepts of dynamic modeling, latent variable regression techniques, fuzzy c-

means clustering, and multiple local linear models in an integrated framework to capture the

nonlinear nature of batch data [56]. The key delineating aspects of the work are the integration

of the clustering algorithm used to partition the training data, the use of latent variable tools
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to estimate the model parameters, and the utilization of a generalized continuous weighting

function that is entirely data dependent and does not require precise process knowledge

[56]. Additionally, the resulting model is readily applicable in an online optimization

framework [57]. The model development in these approaches, however, assumes the process

measurements to be available at the same sampling rate, motivating the need to generalize

these results for the case of the EAF process, where measurements are available at different

sampling rates.

Regardless of the nature of the model used, the control problem can benefit from utilizing

notions of economic control recently proposed for continuous processes [58–62]. The

key idea in these developments is that the controller determines the set-point internally

to satisfy the prescribed economic objective, and requires a rigorous analysis to ensure

stability is preserved. In contrast, the batch control problem requires driving the process

to a target that is often not a steady-state, but is the desired end-point. Online control of

EAF processes therefore stands to gain from incorporation of economic considerations in

the control implementation. Motivated by the above considerations, this work addresses

the problem of economic model predictive control (EMPC) of the electric arc furnace

using data-driven models. To this end, we first review the electric arc furnace process,

and present a first-principles model that we utilize as a test-bed to implement and validate

the proposed approach. We also review the existing data-driven multi-model approach

for batch process control in Section 3.2. Subsequently, multi-rate models are proposed

in Section 3.3.1 that incorporate infrequent and frequent measurements to improve the

predictions of the process variables. In Section 3.3.2, multi-rate models for the EAF process

are computed. In Section 3.4.1 a two-tiered economic MPC is developed. In the first tier,

the best achievable product (in terms of meeting product specifications) is determined by

penalizing the deviation of the end-point variables from the desired target, while accounting
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for the input constraints in the optimization problem. Then, in the second layer, the optimal

inputs are computed where the best achievable end-point (computed using the first layer)

is imposed as a constraint, with economic requirements specified in the objective function.

The proposed two-tiered economic MPC method and the closed-loop simulation results

demonstrating its effectiveness are presented in Section 3.4.2. The conclusions of this work

are summarized in Section 3.5.

3.2 Preliminaries

Adescription of the electric arc furnace process is provided below, followed by the description

of the test-bed model, and the aspects of the simulation designed to replicate practical

application issues. Then a review of an existing data-driven multi-model approach for batch

process control is presented.

3.2.1 Electric Arc Furnace Process

The EAF is a batch process that involves a series of distinct operating phases that include the

initial charging of the batch, followed by preheating, melting and tapping of the furnace. The

scrap charge is generally comprised of a variety of sources selected based on a number of

factors such as the availability of each scrap source and the desired product grade. Typically,

two or three loads of scrap are charged in each batch depending on the bulk density of the

scrap and the volume of the furnace. The furnace chargemay also be supplementedwith some

direct reduced iron (DRI) or pig iron for chemical balance and to improve production yields.

Once the batch is charged, the EAF is preheated through natural gas combustion to raise the

temperature of the steel. Subsequent to preheating, electrodes are lowered into the furnace

and the electric power is turned on to an intermediate voltage while the electrodes bore into

Page 57 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

the scrap. The voltage is increased once a sufficient amount of molten steel is formed at the

base of the arc and the electrodes are submerged into the melt to avoid damage to the furnace

walls. During the initial stages of the meltdown, a high voltage is selected that allows for

more energy to be transferred to the surrounding scrap. As the batch approaches completion,

a lower voltage arc is preferred to avoid damage to the exposed furnace walls. Moreover,

slag is foamed during the EAF operation by lancing carbon and oxygen to form carbon

monoxide gas that bubbles through the slag layer. The foaming slag cloaks the arc, thereby

protecting the furnace walls from arc radiation and improving the energy efficiency. During

the batch operation, impurities such as phosphorus, sulfur, aluminum, silicon, manganese

and carbon are removed from the steel as they react with oxygen and float into the slag. After

a predefined batch duration, the temperature and carbon content of the steel are measured

to determine whether further inputs are needed to reach the desired end-point specifications

[43, 44]. Once the desired steel composition and temperature are obtained, the vessel is

tapped and the molten steel is poured into a ladle for transport to the downstream units for

further processing.

In this work, we focus on the melting process (see Fig. 3.2.1 for a schematic of an EAF

during the melting stage). To this end, we utilize a first-principles model as a test-bed

[41, 63]. The model describes the melting process by using a total of 14 state variables and

six manipulated variables. The model parameters were estimated using operating data from

an industrial EAF [63]. While the model is focused on the melting process, and does not

capture all the details of the EAF process, it is sufficiently detailed and validated through real

plant data, making it an excellent candidate to adapt and utilize as a test-bed to implement

and evaluate the proposed approach.

In the steel industry, accurate, reliable and low-maintenance sensors for continuous on-line

measurement are typically not available for many of the EAF process variables because of
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the harsh operating environment, extreme temperatures and highly corrosive nature of the

molten steel. Recognizing the limited availability of process measurements in practice, in

this work the measurements available to build the data-driven model and to implement the

proposed control approach include infrequent and frequent measurement variables where the

infrequent measurements related to the slag and molten steel are available with a sampling

time of 11 min while the frequent measurements corresponding to the off-gas composition

are available with a sampling time of 1 min. A list of the infrequent and frequent process

measurement variables are given in Tables 3.2.1 and 3.2.2, respectively, and the manipulated

inputs are listed in Table 3.2.3. In keeping with typical EAF batch runs, each batch of the test-

bed simulation is run for a duration of 66 min, which results in 7 infrequent measurements

and 67 frequent measurements.

Another important feature necessary to make the test-bed application realistic is to recognize

the significant variability of the feed caused by the various scrap sources of diverse steel

grades. To replicate this variability across the batches, the initial concentrations of the

species within the molten steel are assumed to have a variance of 50% with respect to the

nominal values. On the other hand, the EAF processes are run by utilizing lime and dolime

that is bought from suppliers, thus the resulting slag formed has lesser variability. Therefore,

the initial conditions for the concentrations of the species within the slag are assumed to

have a variance of 10% with respect to the nominal values (note though that as the EAF

Table 3.2.1: List of Infrequent Measurement Variables of the EAF Process

Variable Description Units

T Temperature of Molten Steel K
xFe Mass Fraction Iron in Molten Steel kg/kg
xC Mass Fraction Carbon in Molten Steel kg/kg
xSlag Mass Fraction Lime/Dolime in Slag kg/kg
xFeO Mass Fraction Iron Oxide in Slag kg/kg
xSiO2 Mass Fraction Silicon Dioxide in Slag kg/kg
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Figure 3.2.1: An Illustrative Diagram of the EAF Process

Table 3.2.2: List of Frequent Measurement Variables of the EAF Process

Variable Description Units

P Relative Pressure Pa
xCO Mass Fraction Carbon Monoxide in Gas kg/kg
xCO2 Mass Fraction Carbon Dioxide in Gas kg/kg
xN2 Mass Fraction Nitrogen in Gas kg/kg

batch progresses, the slag composition does vary significantly owing to the variance in

the molten metal composition). Finally, the initial temperatures of the molten steel and

scrap during the nascent period of the EAF are highly dependent on the tightly controlled

pre-processing steps taken prior to the commencing of the melting phase. The initial values

of the temperatures are thus assumed to have a modest variance of 10% with respect to the

nominal initial conditions.

Additionally, to ensure the EAF test-bed is characteristic of real industrial processes, the

measurements are assumed to be corrupted by uncorrelated noise that is Gaussian distributed

with zero-mean and appropriate variances. The noise variances are established such that the

average signal-to-noise ratio in the measurements is approximately 30 dB, representative of
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Table 3.2.3: List of Manipulated Variables and Corresponding Input Costs for the EAF
Process

Variable Description Units Costs Units of Cost

mgas Off-gas Turbine Flow kg/s 4.6296 × 10−5 $ · kg−1

mO2 Oxygen Lanced kg/s 0.01749 $ · kg−1

mDRI DRI Additions kg/s 0.0900 $ · kg−1

mSlag Slag Additions kg/s 0.0600 $ · kg−1

E Electric Arc Power kW 0.0625 $ · kWh−1

mC Carbon Injected kg/s 0.2500 $ · kg−1

the typical measurement noise encountered in industrial practice due to random errors in the

instrumentation.

From a control standpoint, the objective in EAF processes is to achieve a desired end-point,

which like many batch processes typically corresponds to a non-equilibrium point, by batch

termination. In industrial practice, the EAF process is typically operated until the carbon

content is reduced below the desired level and the molten steel temperature is greater than the

required temperature for pouring into ingot molds or casting. In addition, it is necessary to

maintain the slag at the proper chemical composition to minimize over-oxidation of the bath.

These primary targets are often used by plant operators to evaluate the EAF batch maturity

[64]. In this work, we determine the desired end-points based on the attributes of the molten

steel product obtained using the EAF simulation test-bed and standard operating policies.

To this end, we explicitly characterize the end-point targets through the melt temperature

(Tt f ≥ 1830 K), mass fraction of carbon in the molten steel (xC,t f ≤ 0.0047 kg/kg) and the
mass fraction of iron oxide in the slag (xFeO,t f ≤ 0.475 kg/kg). Moreover, the architecture

of industrial EAFs usually incorporate water-cooled furnace walls and roof panels to avoid

damage due to overheating. Path constraints that limit the maximum achievable temperature

of the molten steel (Tt ≤ 1950 K, t ∈ [0, t f ]) ensure that the furnace temperature is within

an operating region that takes safety considerations into account. In addition, the relative
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pressure within EAFs is typically maintained to be negative (Pt ≤ 0 Pa, t ∈ [0, t f ]) so as to
prevent exposure of harmful chemicals to plant operators and retain the hazardous gaseous

emissions within the furnace.

Aswithmany industrial batch processes, the commonly used operating policy involves limited

feedback applied primarily by experienced plant operators and typically does not take into

account end-point projections or explicit economic considerations. Another less commonly

used operating strategy is through tracking suitable trajectories of the measurable process

variables, where the variable trajectories to be tracked are the ones that historically generated

on-spec product. As an experienced plant operator is untenable in this study, trajectory-

tracking control is implemented as a surrogate to the operator in order to mimic typical

industrial EAF operation where reference profiles of the measurement variables are closely

followed to ensure the constraints are satisfied during normal batch operation. The tracking

objective is traditionally accomplished for a set of measurable process variables related

to the desired end-point targets using local controllers that invoke classic (linear) control

approaches such as local proportional-integral (PI) controllers. In this work, to generate the

database of historical batches, four PI control loops are used to track the melt temperature,

mass fraction of carbon in the molten steel, the mass fraction of iron oxide in the slag and

the relative pressure inside the reactor. In keeping with the frequency of measurement of

three of these variables, and for the sake of consistency, PI control calculations are done

at the same frequency (i.e., corresponding to the times that the infrequent measurements

become available). A detailed breakdown regarding the PI control loops, the manipulated

variables that are paired with the controlled variables and the corresponding controller

parameters are given in Table 3.2.4. The trajectories to be tracked are the conventional

operating profiles that if closely followed result in steel product that meets the desired

end-point targets. Nevertheless, PI controllers remain inherently based on a decentralized
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(single-input-single-output) framework that is not well suited to account for the complex

multivariable interactions among the various control loops, process constraints, economic

objectives and optimality.

In contrast to trajectory-tracking control, an industrially relevant cost functional that explicitly

takes the process economics (e.g., operating cost or profit) into consideration can be used

to determine the control actions that not only satisfy the desired end-point targets but also

obtain economic optimality. As such, the economic objective we formulate in this work

represents the total operating expense of an EAF run, thus penalizing energy and resource

consumption over the entire batch duration to operate the EAF in an economically optimal

fashion while ensuring the constraints are satisfied. The nominal costs for the manipulated

inputs are given in Table 3.2.3 [65]. We also take into account input bounds due to the

physical limitations of the system, such as the maximum arc voltage or oxygen lanced into

the melt.

3.2.2 Data-based Batch Process Modeling and Control

For the proposed data-driven modeling and control approach, we generalize a recently

developed multi-model approach that incorporates multiple local dynamic linear models and

fuzzy c-means clustering based MPC [56, 57], where it is assumed that the measurements

Table 3.2.4: List of PI Control Loop Pairings and the Corresponding Controller Parameters
for the EAF Process

Controlled Manipulated Parameters
Variable Variable KC τI

T E 50.0 20.0
xC mC 2.0 10.0
xFeO mO2 3.0 5.0
P mgas 0.5 3.0
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are all available with the same frequency. We next review the modeling approach in

Section 3.2.2.1, and the control design in Section 3.2.2.2.

3.2.2.1 Multi-model Approach

The modeling approach in [56, 57] is predicated on the idea that a nonlinear process can be

approximated by appropriately combining linear models that are valid around the point of

linearization. To this end, local linear models are first developed. As one choice of the local

linear models, the following form is used:

ŷk =

ny∑
i=1

Aiyk−i +

nu∑
j=1

B juk− j + ν (3.2.1)

where A and B are coefficient matrices for the output and input variables denoted by y ∈ Rp

and u ∈ Rm with corresponding lag orders ny and nu, respectively, and ν is a bias term. The

model can be written in a concatenated form as follows

ŷk = C


x∗k

1p×1


(3.2.2)

where 1p×1 denotes a vector of ones with length p and

C =
[
A1 . . . Any B1 . . . Bnu ν

]
(3.2.3)

with

x∗k =
[
yT

k−1 . . . yT
k−ny uT

k−1 . . . uT
k−nu

]T
(3.2.4)

The matrix of model coefficients in Eq. (3.2.2) can be determined using ordinary least

squares (OLS) [56, 57]. However, OLS may not precisely determine robust regression
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coefficients when the process data is highly correlated or co-linear, which leads to ill-

conditioning problems and imprecise model coefficients. The drawbacks of OLS regression

can be addressed by using latent variable regression techniques such as principal component

regression or partial least squares (PLS) regression.

In PLS regression, the regressor matrix (X) of the measurement variables and response

matrix (Y ) are mean centered and scaled to unit variance and then projected onto orthogonal

subspaces comprised of nA-pairs of latent variables. The pre-processing gives each variable

equal importance during model identification while the bias term becomes redundant.

Mathematically, PLS regression involves the decomposition of the regressor and response

matrices into a summation of the outer products of the nA score and loading vectors as

follows

X =
nA∑
i=1

ti pT
i + EX (3.2.5)

= TPT + EX

Y =
nA∑
i=1

riqT
i + EY (3.2.6)

= RQT + EY

where t and r are the scores for the projection of the input and output data matrices onto

the respective subspaces whose orientation is defined by the vectors p and q. Moreover, the

matrices T , P, R and Q succinctly express the PLS decomposition with EX and EY as the

residual matrices, resulting in estimated model coefficients C = f (P,T,Q).

Although PLS-based approaches to building dynamical models enables utilizing sound

statistical techniques in the model parameter estimation, as a standalone model, it yields
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a good, but local linear model. To characterize the process behavior over the entire range

of operation, the inclusion of multiple models in an integrated approach is necessary. One

such approach involves the partitioning of the historical database of training batches into

nL clusters so that the corresponding linear models can be identified for each cluster [56].

Using fuzzy c-means clustering, the dataset can be partitioned into clusters by assigning an

arbitrary i-th data sample the membership values µl,i, which represents the degree to which

the i-th sample belongs to the l-th cluster. The membership values must satisfy the following

conditions

µl,i ∈ [0, 1] ∀ l ∈ [1, nL] (3.2.7)
nL∑
l=1

µl,i = 1 ∀ i ∈ [1, nobs] (3.2.8)

where nobs represents the total number of observations within the training dataset. The

majority of fuzzy clustering algorithms is based on reducing the total variance in the data

from cluster centers, which is expressed by minimizing the following nonlinear objective

function

min
cl
J =

nobs∑
i=1

nL∑
l=1

µ2
l,i

x∗i − cl
2 (3.2.9)

where cl denote the cluster center vectors to be determined. The membership values µl,i are

then related to the cluster centers cl as follows

µl,i =

x∗i − cl

−2

∑nL

l ′=1

x∗i − cl ′
−2 (3.2.10)

which shows that the degree to which the data sample x∗i belongs to the cluster l is inversely

proportional to the squared distance between the respective point and the cluster center.

Therefore, a fuzzy c-means clustering based continuous weighting function can be developed
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and incorporated with the dynamic modeling approach to integrate multiple local linear

models into a global nonlinear model as follows

ŷk =

nL∑
l=1

ωl,k
©«

ny∑
i=1

Al,iyk−i +

nu∑
j=1

Bl, juk− j + νl
ª®¬

(3.2.11)

=

nL∑
l=1

ωl,kCl


x∗k

1p×1


(3.2.12)

where the weighting ωl,k are given by

ωl,k =

x∗k − cl

−2

∑nL

l ′=1

x∗k − cl ′
−2 (3.2.13)

The final form of the model combines the local linear models with weights to effectively

describe the global nonlinear dynamics [56, 57], under the assumption of measurements

available at the same frequency. A nonlinear model of this type is well suited to predict the

dynamic process behavior and thus can be used for variable trajectory-tracking applications

in predictive controllers.

3.2.2.2 Trajectory-tracking Predictive Control

A predictive controller for tracking reference trajectories for batch processes is presented

in this section. The control action at each sampling instance is computed by solving the

following optimization problem

min
u∈U

J =
nP∑
k=1

ŷk − yrefk

2

Qw

+‖∆uk ‖2Rw
(3.2.14)
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ŷk =

nL∑
l=1

ωl,k
©«

ny∑
i=1

Al,i ŷk−i +

nu∑
j=1

Bl, juk− j + νl
ª®¬

ŷ0 = yt

(3.2.15)

where u ∈ Rm denotes the vector of constrained input variables, taking values in a nonempty

convex setU ⊆ Rm. The first term in the objective function penalizes discrepancies between

the predicted output trajectories ŷ and the reference trajectories yref over the prediction

horizon nP and the second term is a move suppression term that penalizes the magnitude

of input changes [56, 57]. Further, Qw is a positive semi-definite symmetric matrix used

to penalize the deviations of the outputs from their nominal values and Rw is a strictly

positive definite symmetric matrix to penalize changes in the manipulated variables. The

predictive model in the MPC formulation, specifically the nonlinear weighting function,

makes this optimization problem a nonlinear program. While the trajectory-tracking control

paradigm has been successfully applied in many applications, the primary objective in batch

processes is to reach a desired end-point by batch termination. In many instances, the initially

optimal state variable trajectories to be tracked may be rendered suboptimal in the presence

of measurement noise or process disturbances. On the other hand, directly accounting for

process economics to compute the control actions can achieve economic optimality that may

not be readily attainable through traditional tracking control techniques.

3.3 Data-driven Multi-rate Model

In this section, we propose a multi-rate modeling framework and apply it to the EAF process.
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3.3.1 Multi-rate Model Formulation

To model multi-rate sampled systems, we propose a novel formulation in which the frequent

process measurements are used along with the infrequent measurements for developing

effective and reliable multi-rate models. To this end, consider a multi-input multi-output

nonlinear system where y℘1 ∈ Rp1 and y℘2 ∈ Rp2 denote the vector of infrequent and frequent

measurement variables, respectively, and u ∈ Rm denotes the vector of constrained input

variables. Typically, the number of infrequent measurement variables are greater than the

frequent measurement variables (p1 ≥ p2). Further, given that in-between an infrequent

sampling interval, there are γ frequent sampling instances, let k1 and k2 be the indexes for

the sampling instances of the infrequent and frequent measurements with nK as the final

infrequent sampling instance. Along the lines of Eqs. (3.2.11) and (3.2.12), local linear

models for the infrequent measurement variables can be developed as follows

ŷ
℘1
k1 |k2−1 =

n℘1
L∑

l=1
ω
℘1
l,k1

©«
n℘1
y∑

i=1
A℘1

l,i y
℘1
k1−i +

γk1−k2∑
is=1

As,℘2
l,is

ŷ
℘2
γk1−is

+

γk1−ns,℘2
y∑

i′s=γk1−k2−1
As,℘2

l,i′s
y
℘2
γk1−i′s

+

n℘1
u∑

j=1
B℘1

l, j uk1− j + ν
℘1
l

ª®®¬
(3.3.1)

where ŷ℘1
k1 |k2−1 denotes the predicted vector of infrequent measurements at the k1-th sampling

instant given the frequent measurement variables until the (k2 − 1)-th frequent sampling

instance for k2 − 1 ∈ (
γk1, γ (k1 − 1)] , uk1 is the vector of inputs, ω

℘1
l,k1

is the weight given

to the l-th model of the n℘1
L total models for predicting the infrequent measurements, A℘1

l,i

and As,℘2
l,is

denote the model coefficients for incorporating information from the infrequently

and frequently sampled measurements, B℘1
l, j denotes the model coefficients for the input

variables and ν℘1
l the bias term for the l-th model. Further, n℘1

y is the lag order for the

infrequent measurement variables, ns,℘2
y is the lag order for the supplementary frequent
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measurement variables used in predicting the infrequent measurement variables and n℘1
u is

the lag order for the manipulated variables. Since measurements are only available until the

(k2 − 1)-th frequent sampling instance, predicting the future infrequently sampled variables

requires either estimates or measurements, or both (depending on the respective infrequent

and frequent sampling instances in consideration), of the frequently sampled variables,

which is incorporated through the respective summations over the estimated and measured

frequently sampled variables. The weights ω℘1
l for predicting the infrequent measurements

are dependent on the cluster centers c℘1
l and given by

ω
℘1
l,k1
=

x℘1,∗
k1
− c℘1

l

−2

∑n℘1
L

l ′=1

x℘1,∗
k1
− c℘1

l ′

−2 (3.3.2)

with

x℘1,∗
k1
=

[
y
℘1
k1−1

T
. . . y

℘1

k1−n℘1
y

T
y
℘2
γk1−1

T
. . . y

℘2

γk1−ns,℘2
y

T uk1−1
T . . . uk1−n℘1

u

T
]T

(3.3.3)

and the cluster centers can be determined using the n℘1
obs samples by solving the nonlinear

optimization problem

min
c℘1
l

J =
n℘1
obs∑

i=1

n℘1
L∑

l=1

(
µ
℘1
l,i

)2x℘1,∗
i − c℘1

l

2
(3.3.4)

where the membership of the samples is defined by

µ
℘1
l,i =

x℘1,∗
i − c℘1

l

−2

∑n℘1
L

l ′=1

x℘1,∗
i − c℘1

l ′

−2 (3.3.5)
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Estimates of the infrequent measurements variables, however, require either estimates or

measurements of both the infrequent and frequent variables as formalized in Eq. (3.3.1).

Modeling the infrequentmeasurements alonewithout considering the frequentmeasurements

can result in a model with inadequate predictive performance because of the long delays

between sampling instances during which the operating dynamics can vary significantly.

In this work, the proposed data-driven multi-rate models are developed such that all the

available processmeasurements are used to obtain themost accurate predictions. In particular,

while past frequently measured variables are used to predict future frequently measured

variables, the future infrequently measured variables are predicted using both the past

infrequently measured variables, and the past frequently measured variables (see Fig. 3.3.1

for an illustration). Since the key process variables are typically measured infrequently,

accurate predictions and effective output-feedback control significantly benefits from the

integrated modeling approach.

Therefore, another model that predicts the frequent measurement variables can be developed

as follows

ŷ
℘2
k2 |k2−1 =

n℘2
L∑

l=1
ω
℘2
l,k2

©«
n℘2
y∑

i=1
A℘2

l,i y
℘2
k2−i +

n℘2
u∑

j=1
B℘2

l, j uk2− j + ν
℘2
l

ª®®¬
(3.3.6)

· · · · · · · · ·

Lagged Frequent Measurements

Infrequent Measurements
+

ŷ
℘1
k1

ŷ
℘1
k1+1ŷ

℘2
k2

ŷ
℘2
k2+1

Figure 3.3.1: An Illustration of the Multi-rate Modeling Approach for Infrequent and
Frequent Variables
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where ŷ℘2
k2 |k2−1 denotes the predictions of the frequentmeasurements given pastmeasurements

and ω℘2
l,k2

is the weight given to the l-th model of the n℘2
L total models for predicting the

frequent measurements, A℘2
l,i and B℘2

l, j are the model coefficients and ν℘2
l the bias term for

the l-th model with n℘2
y as the lag order for the frequent measurement variables and n℘2

u as

the lag order for the manipulated variables. The weights ω℘2
l are dependent on the cluster

centers c℘2
l and given by

ω
℘2
l,k2
=

x℘2,∗
k2
− c℘2

l

−2

∑n℘2
L

l ′=1

x℘2,∗
k2
− c℘2

l ′

−2 (3.3.7)

with

x℘2,∗
k2
=

[
y
℘2
k2−1

T
. . . y

℘2

k2−n℘2
y

T uk2−1
T . . . uk2−n℘2

u

T
]T

(3.3.8)

and the cluster centers can be determined using the n℘2
obs samples by solving the nonlinear

optimization problem

min
c℘2
l

J =
n℘2
obs∑

i=1

n℘2
L∑

l=1

(
µ
℘2
l,i

)2x℘2,∗
i − c℘2

l

2
(3.3.9)

where the membership of the samples is defined by

µ
℘2
l,i =

x℘2,∗
i − c℘2

l

−2

∑n℘2
L

l ′=1

x℘2,∗
i − c℘2

l ′

−2 (3.3.10)

The model coefficients in Eqs. (3.3.1) and (3.3.6) can be determined using PLS regression

(see Remark 3.1 on the identification aspects of the model parameters and Remark 3.2 for

comparison with principal component analysis based models). A formulation of a general

approach is presented here for handling multi-rate measurements that takes advantage of both

infrequent and frequent measurements to improve the prediction accuracy of the models. It

should be noted that between two infrequent measurements, several frequent measurements
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become available and help with the prediction of the infrequent measurement. However, no

infrequent measurement becomes available between two frequent measurements, therefore

there is no benefit in incorporating these infrequent measurements in the model for predicting

the frequent measurements.

Remark 3.1. The accurate estimation of the model parameters often requires a select

number of identification batches where a suitable excitation signal is added onto the nominal

inputs to establish a measured response. Due to their prevalence, digitally generated signals

that can be readily implemented are attractive for identification purposes. However, the

optimal amount of stimulus required to receive an appropriately excited output response

and the adequate number of excited response data samples is an important issue for further

consideration and outside the scope of the present work. In the present work, the predictive

ability of models is verified by k -fold cross-validation.

Remark 3.2. In contrast to the principal component analysis based approaches where

a single linear time-varying model is built (around nominal trajectories), the proposed

formulation focuses on developing multiple local linear models that are not indexed with

time. One benefit of the proposed approach therefore is that batches of the same duration

(or identifying a variable that can be used for indexing) are not needed. Furthermore, when

identifying linear time varying models (even in the latent variable space), the number of

matrices that need to be identified equals the number of sampling instances. In the present

approach, on the other hand, the number of models is not necessarily equal to the number

of sampling points, but can be picked via the process of cross-validation.

Remark 3.3. The first-principles-based model that is used as a test-bed to collect process

data only describes the melting phase of the EAF process [41]. Therefore, the model has only

one distinct dynamic phase and the state variables evolve throughout the batch operation

because of the changing operating dynamics. More detailed models that cover a wider

duration of the EAF process operation are currently in development. Future modeling and

Page 73 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

control work will focus on explicitly handling the discrete nature of the process dynamics

and its application to the detailed process model.

3.3.2 Electric Arc Furnace Modeling Results

To develop the multi-rate models for the EAF process measurements, a database of historical

batches was initially generated. To this end, the deterministic EAF process model was

simulated to generate 23 normal operation batches from different initial conditions. In

addition to the normal operation batches, seven identification batches are used to augment

the database. For five of these batches, a low-amplitude pseudo-random binary sequence

(PRBS) signal is added to the input value computed by the PI controller, except for the last

actuation. In the last two, batches, the PRBS signal was added all the way through. In

the identification batches, not adding the PRBS to the final actuation allows the last input

actuation to be able to compensate for disturbances in the system and achieve product that

meets the desired end-point target specifications, which enables many of the identification

batches to result in on-spec product. The PRBS signal added to the manipulated inputs,

shown in Fig. 3.3.2, consisted of varying amplitude through the course of the batch. This

identification approach was observed to result in good input signal excitation for developing

accurate models. It was also verified that all seven identification batches still resulted in

on-spec product. Note that unlike conventional batch processes, identification batches of

the EAF process do not necessarily result in wasted product because after the identification

experiments are completed, further input actions can be made to correct for the end-point

targets and recover the product, thus mitigating the drawbacks of running identification

batches.
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Figure 3.3.2: Manipulated Variables of the EAF Process for Selected Identification Batches
with a Low-amplitude Pseudo-random Binary Sequence Signal
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The identification procedure for the local linear models was as follows. For a given lag

structure, the number of clusters was varied from nL = 1 to 40. For each choice of nL , the

batch data was partitioned into regressor X and regressed Y matrices, decomposed using

PLS, and clustered using fuzzy c-means clustering. Since the model weights were then

known, multiple ARX models were estimated simultaneously using PLS. The models were

built using k -fold cross-validation with k = 7. The goodness of each fit was judged using the

weighted root-mean-square error (RMSE) in predicting back the validation samples, where

the weights for the controlled variables (variables with end-point constraints) are twice the

weights for the other variables.

The proposed multi-rate models are compared against a single model, identified using

the multi-model approach reviewed in Section 3.2.2.1, that predicts all available process

variables at only the infrequent sampling instances. The minimum weighted RMSE values

obtained using the cross-validation are provided in Table 3.3.1. The lag structure, number

of clusters and the number of latent variables (nA) for the multi-rate models and the single

model that yielded the lowest weighted RMSE values are also presented. It should be noted

that all the frequent measurements available between infrequent sampling instances are used

to augment the regressor matrix for predicting the infrequent variables. In contrast, the

single model only predicts future variables using the past variables at only the infrequent

sampling instanceswithout incorporating anyof the frequentmeasurements available between

infrequent sampling instances. Moreover, 10 new batches (not used during the model

development) are simulated for validation purposes. The model validation results for the

infrequent and frequent variables are shown in Tables 3.3.2 and 3.3.3 (respectively) and the

corresponding output of the multi-rate models, single model and actual profile trajectories

from the mechanistic model for a set of new initial conditions are shown in Figs. 3.3.3

and 3.3.4.
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The prediction by the data-based model is an open-loop prediction where the predictions

throughout the batch are not corrected and the model errors are allowed to accumulate over

the entire batch duration. It is readily observed that the single model that predicts all the

process variables at only the infrequent sampling instances does not predict the variables

well, resulting in higher weighted RMSE values. Additionally, since the model validation

results involved open-loop predictions, the multi-rate models are expected to further improve

accuracy over the single model when predictions of the frequent variables are substituted for

the preferred available measurements. Accordingly, the single model will not be considered

further as its capability, and that of a predictive controller derived from it, will falter in

relation to the multi-rate models. Overall, the proposed multi-model approach captured the

nonlinear nature of the EAF and provided relatively reliable predictions.

3.4 Economic Model Predictive Control

In this section, we propose a two-tiered economic model predictive control algorithm and

then implement it on the EAF process test-bed.

Table 3.3.1: Data-driven Modeling Results for Both Single and Multi-rate Model

Model Type Weighted Variable Lags
nL nARMSE Infrequent Frequent Manipulated

Single - 0.3721 1 1 1 22 7

Multi-rate Infrequent 0.2882 1 1 1 29 5
Frequent 0.0150 - 1 1 3 13
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Figure 3.3.3: Model Validation Results for the Infrequent Measurement Variables of the
EAF Process
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Figure 3.3.4: Model Validation Results for the Frequent Measurement Variables of the EAF
Process
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Table 3.3.2: Model Validation Results for the Infrequent Measurement Variables of the EAF
Process

Variable Weighted RMSE UnitsSingle Model Multi-rate Model

T 19.0585 12.6981 K
xFe 0.0016 0.0012 kg/kg
xC 0.0027 0.0024 kg/kg
xSlag 0.0124 0.0087 kg/kg
xFeO 0.0296 0.0133 kg/kg
xSiO2 0.0033 0.0024 kg/kg

Table 3.3.3: Model Validation Results for the Frequent Measurement Variables of the EAF
Process

Variable Weighted RMSE UnitsSingle Model Multi-rate Model

P 3.6173 0.2269 Pa
xCO 0.0404 0.0092 kg/kg
xCO2 0.0219 0.0103 kg/kg
xN2 0.0232 0.0103 kg/kg

3.4.1 Economic Model Predictive Control Formulation

The key idea of the proposed economic MPC is to use a tiered economic model predic-

tive control framework to achieve an acceptable (on-spec) end-point while optimizing an

economics-based cost function. To this end, let ydes be the desired product end-point. In

the first tier, the EMPC computes the best (in terms of satisfaction of product specifica-

tions) achievable end-point at each infrequent sampling instance by solving the following

optimization problem

min
u∈U

J1 =
ŷe − ydes

2
Ψ

(3.4.1)
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ŷe = g
(
ŷ
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where ŷe = g
(
ŷ
℘1
nK

)
defines the batch end-point characteristics through the estimates of

the measurement variables at the last sampling instant, u ∈ Rm denotes the vector of

constrained input variables, taking values in a nonempty convex set U ⊆ Rm with U B
{u ∈ Rm : umin ≤ u ≤ umax}, umin ∈ Rm and umax ∈ Rm denote the lower and upper bounds

on the manipulated input, respectively, and Ψ is a positive definite matrix used to penalize

the squared deviation of the end-point variables with respect to the desired end-point

values. Further, Y℘1 ∈ R℘1 and Y℘2 ∈ R℘2 denote the constraints on the infrequent and

frequent measurement variables, respectively, and y
℘1
t and y

℘2
t provide the initialization of

the optimization problem at the current process conditions. The multi-rate models utilize

the available process measurements to predict the variables at the next sampling instance,

while latter sampling instances incorporate estimates of the process measurements to predict

the entire process variable trajectories over the prediction horizon.

Subsequent to obtaining the end-point that best satisfies the product specifications, ŷ∗e , the

next tier computes the optimal (from an economic perspective) input moves, albeit with

the constraint that the best product specifications should still be achieved. The second tier
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of the EMPC solves an optimization problem to determine the optimal input trajectory by

minimizing an economic objective function at the infrequent sampling instances as follows

min
u∈U

J2 = δ ·
nK−1∑

i=k1−1
λT ui (3.4.3)

s.t.




ŷ
℘1
k1 |k2−1 =

n℘1
L∑

l=1
ω
℘1
l,k1

©«
n℘1
y∑

i=1
A℘1

l,i y
℘1
k1−i +

γk1−k2∑
is=1

As,℘2
l,is

ŷ
℘2
γk1−is

+

γk1−ns,℘2
y∑

i′s=γk1−k2−1
As,℘2

l,i′s
y
℘2
γk1−i′s

+

n℘1
u∑

j=1
B℘1

l, j uk1− j + ν
℘1
l

ª®®¬
ŷ
℘2
k2 |k2−1 =

n℘2
L∑

l=1
ω
℘2
l,k2

©«
n℘2
y∑

i=1
A℘2

l,i y
℘2
k2−i +

n℘2
u∑

j=1
B℘2

l, j uk2− j + ν
℘2
l

ª®®¬
ŷ℘1 ∈ Y℘1, ŷ℘2 ∈ Y℘2

h
(
ŷ
℘1
nK, ŷ

∗
e

)
≤ 0

y
℘1
k1−1 = y

℘1
t , y

℘2
k2−1 = y

℘2
t

(3.4.4)

where h
(
ŷ
℘1
nK, ŷ

∗
e

)
≤ 0 denotes end-point constraints that are appropriately relaxed as an

interval with ŷ∗e as a bound (see Remark 3.4 for more details on the end-point constraint

relaxation), δ is the hold-time for the control action and λ ∈ Rm are the operating costs

associated with the manipulated variables. The two-tiered economic MPC approach allows

for a framework that can handle distinct and competing objectives and deal with the trade-

off between them without resorting to using arbitrary penalty weights (see Remark 3.5).

In both tiers of the proposed approach, the models used and the process constraints are

identical, while the objective function for the first tier is end-point optimization and for the

second tier is economic MPC with the optimal end-point as an additional constraint. The

feasibility of this optimization problem is in general not guaranteed, but hard constraints are

incorporated so even if the target end-point may not be reached, no safety violations will
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occur. Additionally, if the optimization problem is infeasible, it suggests that for the current

batch, safety constraints cannot be satisfied, and thus may require an earlier termination

of the batch to avoid safety issues. On the other hand, if it is possible to meet the safety

requirements, the first tier computes the solution that best achieves the desired target. The

second tier is then guaranteed to be feasible, and in the worst case scenario be as economic

as the first tier solution.

In summary, the two-tiered EMPC strategy uses the data-driven multi-rate models to predict

the behavior of the batch dynamics over a receding horizon. The control problem is

solved at each infrequent sampling instance to determine the best achievable end-point

target (the nearest to the desired end-point) and the economically optimal path to reach the

optimal end-point using the identified multi-rate models and the process constraints, and

only the control action of the current infrequent sampling interval is implemented with the

calculation repeated at subsequent sampling instances using new measurements and updated

plant information. A block diagram of the two-tiered economic MPC approach is shown in

Fig. 3.4.1.

Remark 3.4. Recognizing that the optimal end-point from the first layer is the best end-point

that we can reach, we implement the constraint as an interval that is bounded on one end by

the best achievable end-point (as given by the first tier) and bound on the other end by the

extreme limit the variable can obtain. Thus the constraints always include a target known

to be feasible. The added flexibility of the relaxed end-point constraints, however, allows

achieving a better economic optimum if at all possible while ensuring the constraints are

satisfied.

Remark 3.5. The typical control objective in batch processes is to minimize the deviation

between the product end-point and the desired target within the finite batch duration. Another

control objective routinely involved in batch process control is to optimize the process
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ydes

End-point Optimization

min
u∈U

J1 =
ŷe − ydes

2
Ψ

Economic MPC

min
u∈U

J2 = δ ·
nK−1∑

i=k1−1
λT ui

Batch Process

Ûx = f (x, u)
y℘1 = g1(x), y℘2 = g2(x)

Disturbances

ŷ∗e

ut

y
℘1
t , y

℘2
t

Figure 3.4.1: A Flow Diagram of the Two-tiered Economic Model Predictive Control
Approach

economics while constraining the end-point to satisfy the desired specifications. These

two competing objectives (minimize end-point deviation and optimize economics) when

considered simultaneously result in a multi-objective optimization problem with inherent

complexities in negotiating the possible trade-offs between the competing objectives. To

address this issue without resorting to the compromise of using arbitrary penalty weights,

the two-tiered EMPC approach is proposed that is capable of first determining the best

attainable end-point and then subsequently optimizing the operating economics of reaching

that optimal achievable end-point. Similar tiered optimization approaches were used in [66]

in a hierarchical supervisory control scheme and in [67] in optimal operation under partial

plant shutdown.

Remark 3.6. The two-tiered EMPC framework using the proposed data-driven multi-rate

models is relatively tractable in contrast to the first-principles model-based control designs.

Nevertheless, for embedded systems with fast dynamics where the sampling times are in milli-

or nanoseconds and thus the computational time can be prohibitive, the two-tiered EMPC
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can be implemented such that the first-tier is only solved occasionally in order to update the

best achievable end-point, as appropriate, to assist with the computation time.

Remark 3.7. Existing EMPC formulations [58–62] have shown promising results in the

context of continuous systems. However, the fact that the desired end-point in batch processes

is typically not an equilibrium point precludes the direct implementation of these EMPC

techniques. Note also that any economic benefits achieved through the proposed two-tier

formulation rely on the ability to reach (or get close to) the process specification by following

different paths (and thus following different manipulated input trajectories). If the process

dynamics are such that there exists only one unique path to the desired end-point, then the

first and second tier optimization problems will both yield identical results, but no worse

than the solution obtained at the first tier.

3.4.2 Economic Model Predictive Control Results

Closed-loop simulations for ten new initial conditions were performed using the proposed

two-tired economic MPC design, and the performance was compared against the standard

EAF operating approach involving PI controllers described in Section 3.2. The two-layers of

the EMPCwere executed consecutively at every infrequent sampling instance. All new initial

conditions for the closed-loop results were obtained from the same distribution as the initial

conditions in the training data. A representative set of closed-loop simulation results (batchno.

3) is presented in Figs. 3.4.2 and 3.4.3 for the infrequent and frequent process measurements,

respectively. The closed-loop trajectories of the end-point constrained variables and the

corresponding intervals of the end-point constraints are shown in Fig. 3.4.2 as well. For

instance, the end-point constraint for the temperature in Fig. 3.4.2(a) is represented as an

interval with the lower limit as the optimal end-point obtained from the first tier of the

EMPC and the upper limit as the path constraint for the temperature imposed for safety
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considerations. Similarly, the end-point constraints for the mass fractions of carbon and iron

oxide in Fig. 3.4.2(c) and (e), respectively, are represented as intervals with the upper limits

obtained from the first tier of the EMPC and the lower limits as zero, which are the minimum

physically realizable values of the concentration measurements. The desired end-points

were selected based on desired attributes of the steel product as discussed in Section 3.2.1.

Although both the EMPC and the standard control approaches are able to meet the desired

product quality, the proposed economic MPC controller offered a significant cost advantage

of approximately $5.7372 × 103 compared to $6.2020 × 103 for the standard approach, an

average savings of $464.75 per batch or approximately 7.49% improvement per batch. The

poor performance of the PI controllers can be attributed to the fact that they are inherently

based on a decentralized (single-input, single-output) framework that does not account for

interactions among the various control loops. Furthermore, the conventional PI control also

does not explicitly take into consideration process constraints and optimality.

The proposed economic MPC design was efficiently solvable with the average CPU time

required to solve the two-tiredMPC optimization problemwith the longest prediction horizon

as 3.9983 s (maximum 9.2665 s) using GAMS with IPOPT as the solver on an Intel Dual Core

machine with 4 GB RAM. The closed-loop input profiles are shown in Fig. 3.4.4 and it is

readily observed that the EMPC approach recognizes that in certain instances, the end-point

constraints can still be achieved while maintaining the manipulated variables close to their

lower bounds, due to which the operating costs of the EMPC approach are significantly lower.

Overall, the simulation results demonstrated the advantages of implementing the proposed

two-tiered economic predictive controller over standard operating policies.
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Figure 3.4.2: Comparison of the Trajectories for the Infrequent Measurement Variables
Obtained from the Proposed Economic MPC and Conventional Method (The inset in subplot
(c) zooms in to show the end-point constraint is satisfied)
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Figure 3.4.3: Comparison of the Trajectories for the Frequent Measurement Variables
Obtained from the Proposed Economic MPC and Conventional Method
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Figure 3.4.4: Closed-loop Profiles of the Manipulated Variables Obtained from the Proposed
Economic MPC and Conventional Method for a Selected Batch of the EAF Process
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3.5 Conclusion

This work considers the problem of data-based model development and economic model

predictive control of the electric arc furnace. To this end, a multi-rate modeling approach

is developed for the infrequent and frequent process measurements that efficiently incorpo-

rates the available measurements, the simplicity of local linear models, the data extraction

capabilities of latent variable methods, and the use of appropriate clustering and weight-

ing techniques to capture the nonlinear time-varying dynamics of the EAF process. By

exploiting the enhanced capability of multi-rate data-driven models, a two-tiered economic

MPC is proposed that ensures the desired product end-point specifications are satisfied

and minimizes an economics-based cost function. The implementation of the multi-rate

data-driven modeling approach and the economic MPC framework subject to measurement

noise, constraints and desired end-point targets is illustrated on a electric arc furnace test-bed

simulation process.
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CHAPTER 4

MULTI-RATE SUBSPACE-BASED SYSTEM IDENTIFICATION

AND ECONOMIC MODEL PREDICTIVE CONTROL†

4.1 Introduction

The competitive economic climate has compelled the chemical and manufacturing industries

inmost industrialized countries to pursue improved economicmargins through the production

of low volume, higher-value added specialty chemicals andmaterials, such as advanced alloys,

polymers, herbicides, insecticides, pharmaceuticals and biochemicals, that are manufactured

predominantly in batch processes. Managing and regulating the operation of these batch

processes is essential to ensure their safe and reliable function, and to guarantee that they

produce consistent and high-quality products. Nevertheless, the control and optimization

†The results in this chapter have been submitted for publication in:

• M. M. Rashid, P. Mhaskar, and C. L. E. Swartz. Handling multi-rate and missing data in variable

duration economic model predictive control of batch processes. AIChE J., (submitted).

• M. M. Rashid, P. Mhaskar, and C. L. E. Swartz. Handling multi-rate and missing data in

system identification. In Proceedings of the 2017 American Control Conference, Seattle, WA, 2017.,

(submitted).
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of batch processes through the application of mathematical programming problems, such

as model predictive control (MPC) and optimization in general, is complicated by the

lack of on-line sensors for measuring critical process variables, the finite duration of

the process operation, the presence of significant nonlinear dynamics, the absence of

equilibrium operation, and the challenges associated with developing accurate models that

can characterize all the complex physical and chemical phenomena occurring in these

processes. While several of these have been addressed to varying degrees in the recent

past, handling missing data in process modeling and exploiting variable batch duration for

improved process economics remains an opportunity for further research as discussed below.

One approach for modeling of batch processes involves the development of first-principles or

mechanisticmodels that can then be used for the purposes of optimization and control [43–45].

While advancements in hardware and software (for instance, efficient numerical algorithms for

optimizing dynamic systems andnew implementation paradigms) are continuously increasing

the available computational power and efficiency, thereby improving the tractability of the

fundamental model-based optimization problems, the development and implementation of

first-principles model-based controllers remains challenging. Compared to first-principles

models, increased availability of historical process data make it amenable to develop data-

driven models that are simple enough to make model-based control design practical. One

successful and widely adopted approach is that of causal dynamic models identified using

latent variable [68, 69] methods that can be readily integrated into an on-line optimization

framework, where at each sampling instant a finite horizon optimal control problem is

solved, yielding an optimal control sequence that achieves desired closed-loop performance.

However, the latent variable approaches available in the literature can not readily deal

with batches of variable duration (especially in the context of control) due to the inherent

time-varying nature of the underlying models.
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In recent contributions, a multi-model approach is proposed [56] and extended to multi-rate

sampled data [70] that unifies concepts of dynamic modeling, latent variable regression

techniques, fuzzy clustering and multiple local linear models in an integrated framework to

capture the nonlinear nature of batch data, albeit using time-invariant models. More recently,

subspace-based system identification methods that offer numerically reliable state-space

models for complex systems directly from measured data [71–74] have been adapted for the

purpose of model identification and control for batch processes [75].

The fundamental operation in subspace model identification is projection, which may

emanate from prudent numerical techniques like singular value decomposition (SVD) or

even QR factorization [71, 72, 74, 76–78]. However, an adverse consequence of their

convenience is that the algorithms are incapable of directly handling the multi-rate nature of

the measurement availability, missing data and incongruous batch process data. Although

recent work has studied the problem of system identification of linear time-invariant models

under non-ideal sampling conditions with missing input and output data, the resulting

approaches typically involve solving complicated optimization problems such as nuclear

norm-based structural rank minimization [78, 79] and maximum likelihood estimation

through expectation-maximization algorithms [80]. The area of batch process control thus

stands to gain from a computationally tractable alternative that retains the strengths of the

of subspace identification modeling approach.

Predictive control algorithms that make explicit use of a (deterministic first-principles-based

or empirical data-driven) process model in the optimization of a cost function to obtain

the optimal control signal have been widely proposed and successfully implemented in the

process industries. One excellent approach for the application of MPC in regulating batch

processes utilizes time-indexed latent variable methods for trajectory tracking, where the

correlation between subsequent measurement samples are employed to predict the dynamic
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evolution of the process through the use of a missing data algorithm [68, 69]. As stated

earlier, the time indexed model necessitates that all batches are of equal duration, which is

often enforced through data alignment algorithms. While possible for monitoring, alignment

of variables for an ongoing batch remains an unaddressed problem. Another method is

based on tracking the necessary conditions of optimality, where an optimality criteria-based

parameterization of the input profiles is used to design a multivariable feedback scheme

along with model adaptation to track the first-order optimality conditions, thereby driving

the system towards optimality [81, 82]. More recently, the concept of reachability regions

is used to implement model predictive control strategies where the controller, rather than

driving the process to the desired end-point at all computation times, guides the process

through a set of precomputed states that ensure the end-point is satisfied at batch termination

[49, 50]. Existing batch control approaches, especially those based on data driven models,

have thus far not utilized batch duration as a decision variable.

An energy intensive batch process where both the challenge of multi-rate and missing

data, and the opportunity of variable duration control is exemplified is the electric arc

furnace (EAF) process that is widely employed in steelmaking, using electricity to melt

post-consumer scrap metal to produce new steel. The process provides significant reductions

in the labor, energy and environmental costs of steelmaking over conventional blast furnaces

that forge steel out of iron ore, coal and natural gas. Despite these efficiency gains, the EAF

process requires generating tremendous amounts of heat to recycle the scrap steel, while the

industrial sector struggles with electricity costs that are exorbitantly high [43]. The energy

efficiency and economics of the EAF process can hence be improved by leveraging new

technologies in optimization and advanced control systems. However, the harsh environment

and high corrosiveness of molten steel mean that on-line measurements of the molten

steel temperature and chemical composition are often disrupted with unmeasured process
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variables andmissing data, thus makingmany prior existingmodeling and control approaches

inapplicable. Note that the control objective of the arc furnace, analogous to other batch

processes, deals with the effective allocation of a set of limited resources over a finite time

duration [83, 84]. When considering competing criteria and from an industrial perspective

where the prevailing incentive is of an economic nature (often stated in terms such as cost,

revenue, profit or investment payback time or rate of return), the multi-objective optimization

problem for the EAF process is to economically reach the desired product end-point target at

the termination of the batch. While recent contributions have demonstrated the advantages

of economic model predictive control of the EAF process under the assumption that all

batches are of equal durations [70], using a data-driven model that is capable of handling

variable batch lengths opens new and beneficial possibilities of optimizing the operation of

batches with variable durations.

Motivated by the above considerations, in this chapter we develop a system identification

method that handles multi-rate and missing data for variable duration economic model

predictive control (EMPC) and apply it to the EAF process. The remainder of the chapter

is organized as follows. In Section 4.2, we briefly define the class of multi-rate sampled

batch processes considered in this work, and review the conventional subspace-based system

identification technique and representative MPC approach for completeness. Following

the preliminaries, in Section 4.3 we present the novel subspace-based system identification

approach for identifying a dynamic model with incomplete measurements and missing data.

The system identificationmethod is based on a subspace formulation and uses the incremental

singular value decomposition approach, as opposed to conventional SVD, to compute a state

realization and identify a dynamic model of the process from measurements complicated by

missing and multi-rate data. In Section 4.4, the resulting dynamic model is integrated into

a tiered economic model predictive control formulation for optimizing process economics
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with varying batch durations, where solutions to computationally tractable mixed-integer

quadratic programming problems achieve the desiredfinal product end-point specifications by

batch termination while minimizing the operating costs. Following the proposed multi-rate

modeling and variable duration EMPC formulation, in Section 4.5 we describe the electric

arc furnace process, and present the model development and validation simulation results.

Furthermore, we present the corresponding closed-loop simulation results that illustrate

the use and effectiveness of the proposed multi-rate subspace-based system identification

technique and EMPC framework through implementation on the EAF process, subject to

the limited availability of process measurements, missing data, measurement noise and

constraints. Finally, we conclude this article with some remarks in Section 4.6.

4.2 Preliminaries

In this section we first provide a brief description of the general class of batch processes that

are considered in the study. Then, we succinctly review the conventional subspace-based

system identification and economic model predictive control approach for batch processes.

4.2.1 Problem Statement

In this work, we consider a class of multi-rate sampled batch processes, such as the EAF

process, that have measurements available at different sampling frequencies. For notational

convenience, consider that the variables yφ1 ∈ Rpφ1 and yφ2 ∈ Rpφ2 denote the vector

of frequent and infrequent measurements, respectively, and u ∈ Rm denotes the vector

of constrained input variables, taking values in a nonempty convex set U ⊆ Rm with

U B {u ∈ Rm : umin ≤ u ≤ umax}, umin ∈ Rm and umax ∈ Rm denote the lower and upper

bounds on the manipulated input, respectively. The sets �φ1 and �φ2 are the sampling
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instances where either the frequent or infrequent measurements are available. Note that

the infrequent measurements typically also include all the output variables available at the

frequent sampling instances. The specific problem we address in the manuscript is the

subspace-based model identification for batch processes that handles multi-rate and missing

data and variable duration batch control.

4.2.2 Subspace Identification

In this subsection, we briefly review the conventional subspace-based state-space system

identification [76, 77] methods used to determine the system matrices of a discrete-time

state-space model using synchronous data, where a model of the following form is identified:

xk+1 = Axk + Buk

yk = Cxk + Duk

(4.2.1)

The subspace-based system identification techniques utilize Hankel matrices constructed

from the process measurements and manipulated inputs. To establish these Hankel matrices,

define a pi × 1 vector of stacked output measurements as

yk |i =
[
yT

k yT
k+1 · · · yT

k+i−1

]T
(4.2.2)

where i is a user-specified parameter greater than the observability index or, for simplicity,

the system order n. Similarly, define a vector of stacked input variables as uk |i. Through

the repeated iterative application of the state equations (Eq. (4.2.1)), it is straightforward to

verify the expression for the stacked quantities:

yk |i = Γi xk +Φiuk |i (4.2.3)
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where:

Γi =



C

CA
...

CAi−1



Φi =



D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAi−2B CAi−3B · · · D


Consider the block Hankel matrix for the outputs

Yi =
[
y1|i y2|i · · · yns |i

]

and similarly define Ui as a block Hankel matrix of inputs [72, 74, 77, 78]. Then, it is clearly

evident that Yi is given by

Yi = Γi Xi +ΦiUi (4.2.4)

where

Xi =
[
x1 x2 · · · xns

]

The next step in the system identification methods is to estimate either the extended observ-

ability matrix or the state sequence, followed by computing the system matrices [76, 85]. We

first review the conventional approach where the extended observability matrix is identified

to estimate the system matrices, and subsequently we provide a brief overview of the later

approach where the state sequence is identified to estimate the model.
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4.2.2.1 Extended Observability Matrix Approach

The basic underlying idea of some common system identification methods is the orthogonal

projection matrix on the null space of Ui as

Π⊥UT
i

= I −UT
i

(
UiUT

i

)−1
Ui (4.2.5)

Multiplying Eq. (4.2.4) by the projection matrix Π⊥
UT
i

yields

YiΠ
⊥
UT
i

= Γi XiΠ
⊥
UT
i

(4.2.6)

where YiΠ
⊥
UT
i

can be readily computed using prudent numeral algorithms such as LQ fac-

torization. An efficient implementation of this scheme is the multi-input, multi-output

output-error state-space (MOESP) algorithm, where an estimate of Γi is obtained through

the dominant left singular vectors ofYiΠ
⊥
UT
i

. Moreover, numerous variations of this approach

(for instance, multiplying the matrix YiΠ
⊥
UT
i

with instrumental variables and/or nonsingular

weight matrices before computing the SVD) are proposed to improve the consistency of

the estimate. Four major variants of this method are PO-MOESP (past outputs MOESP),

N4SID (numerical algorithms for subspace state-space system Identification), IVM (in-

strumental variable method) and CVA (canonical variate analysis) approach, which differ

by the choice of weight matrices that pre- and post-multiply the matrix YiΠ
⊥
UT
i

ΨT , where

Ψ =
[
UT

j YT
j

]T
∈ R2 j×ns is the instrumental variable matrix constructed by combining the

Hankel matrices of ‘past’ inputs and outputs [72, 74, 77, 78]. Once an estimate of Γi has

been determined from the dominant left singular vectors of W1YiΠ
⊥
UT
i

ΨTW2, where W1 and

W2 denote the weight matrices, a system realization can be calculated in a multitude of

ways. One approach for computing the system realization involves retrieving estimates of
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system matrices A and C from Γi, while estimates of B and D can be computed by solving a

least-squares problem [77, 78].

The key step in the classical subspace methods described above is the SVD of the matrix

W1YiΠ
⊥
UT
i

ΨTW2 to estimate the extended observability matrix (Γi). However, the rank of

the matrix Γi may not be equal to the order of the system, a phenomenon known as rank

cancellation. Although the estimate of the extended observability matrix Γi is correct and

consistent as the number of data samples tends to infinity, for a finite number of data samples,

as is the case in batch data where a sufficient quantity data may not be available, there is no

guarantee of optimality [78, 79]. Furthermore, the classical system identification approaches

are limited to measurements sampled at the same frequency and can not readily handle

missing or unmeasured data. Consequently, in this work we use an alternative subspace

approach that first estimates the state sequence and then computes the system matrices in

order to model the multi-rate sampled batch processes.

4.2.2.2 State Sequence Approach

We now review one particular example of a system identification approach that first estimates

the matrix of states [71]. In this approach, the input and output data are divided into ‘past’

and ‘future’ measurements as follows

U2i =


Up

U f


, Y2i =


Yp

Yf


where the matrices Up ∈ Rmi×ns and U f ∈ Rmi×ns are referred to as the past and future input

Hankel matrices, andYp ∈ Rpi×ns andYf ∈ Rpi×ns are referred to as the past and future output
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Hankel matrices, respectively. It is readily shown that Yf and Yp are given by the relations

Yf = Γi X f +ΦiU f

Yp = Γi Xp +ΦiUp

where Xp and X f are the past and future states that are yet to be identified. One approach

to estimating the state sequence involves computing the intersection between the past and

future data given by

span
(
X f

)
B row space

©«


Yf

U f


ª®®®¬
∩ row space

©«


Yp

Up


ª®®®¬

which provides an estimate of the future states X f [71]. Once an estimate of X f is known, it

is straightforward to calculate a system realization through solving a least-squares problem

since X f , Yf and U f are all known. More details on the derivation of this result and the

application of this system identification approach to batch processes are provided in the next

section.

Remark 4.1. Beyond the non-iterative subspace-based state-space system identification

techniques that are readily implemented using efficient algorithms such as SVD and QR-

decomposition, other system identification techniques for modeling uniformly sampled pro-

cesses include the maximum likelihood estimation (MLE) approach and the closely related

prediction error methods (PEM). These MLE and PEM approaches solve a (possibly)

non-convex optimization problem to identify a system realization. Furthermore, they have

well-established theoretical properties including asymptotically achieving the Cramér-Rao

lower bound, and extensively studied theoretical underpinnings for practical considera-

tions such as variance and bias distributions [80, 86, 87]. Their theoretical advantages in
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addressing important practical issues such as error analysis and performance trade-offs

notwithstanding, the practical implementation of MLEmethods is not always straightforward

due to the embedded non-convex optimization problem (which may be poorly conditioned

as a result of the chosen model parametrization) [77, 80, 86]. Moreover, the identification

approach involvingMLE is more meaningful for continuous processes because sufficient data

collected around a nominal operating point enables the estimators to achieve consistency and

asymptotic efficiency [80, 86]. In contrast, batch processes are typically not operated around

an equilibrium operating point and a sufficient quantity of data may not be available for

the finite duration of batch processes, making consistency and efficiency difficult to achieve

under the limited data conditions of batch processes.

Remark 4.2. The multi-rate model structure for batch processes that we identify in this

work is similar to the form considered by Raghavan et al. [86] in the context of continuous

processes through maximum likelihood estimation. In this work, we extend the multi-rate

modeling problem to the application of batch processes through subspace-based system

identification techniques that avoid solving complex and possibly non-convex optimization

problems. Furthermore, themulti-rate state-space realization obtained through the subspace-

based system identification techniques can be employed as an initialization for a batch specific

MLE formulation to obtain a solution with possibly strong theoretical properties including

consistency and asymptotic efficiency.

4.2.3 Model Predictive Control

In this subsection, we provide a standard formulation of a representative MPC to illustrate

the paradigm of end-point control for batch processes. In a typical batch MPC, the control

action at each sampling instance is computed by solving an optimization problem of the
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following form:

min
u∈U

J = δ ·
nt−1∑
i=k

cT ui (4.2.7)

s.t.




xk+1 = Axk + Buk

ŷk = Cxk + Duk

ŷ ∈ Y
ŷnt = ydes

where u ∈ Rm denotes the vector of constrained input variables, taking values in a nonempty

convex setU ⊆ Rm. The objective function minimizes the costs of the manipulated inputs,

thus penalizing resource usage. While the end-point-based economic model predictive

controllers have demonstrated improved economic operation in various applications, the

control paradigm typically does not consider batches of varying durations. This is due to the

fact that the model utilized in the above predictive control framework often originates from

system identification techniques that can not handle multi-rate sampled measurements and

missing data.

4.3 Multi-rate System Identification with Missing

Data

In this section, we propose a novel multi-rate subspace-based system identification algorithm

for batch processes that uses the incremental singular value decomposition (iSVD) to compute

a realization of the state sequence since regular SVD is inapplicable in subspace-based system

identification from Hankel matrices composed of multi-rate measurements with missing data.

Recognizing the multi-rate nature of the data, we pose the problem as one of identifying a
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discrete-time, linear time-invariant state-space model of the following form:

xk+1 = Axk + Buk

ŷ
φ1
k = Cφ1 xk + Dφ1uk, ∀k ∈ �φ1

ŷ
φ2
k = Cφ2 xk + Dφ2uk, ∀k ∈ �φ2

(4.3.1)

where x ∈ Rn denotes the state vector of the identified model. Consider that there are

nb batches of varying durations and define a vector of stacked multi-rate sampled output

measurements as

yk |i =
[
y
φ2
k

T
y
φ1
k+1

T · · · yφ1
k+i−1

T
]T

(4.3.2)

Then for an arbitrary batch b of the nb total batches, with nb
s + 2i − 1 input and output data

samples, we develop the output Hankel matrices for the b-th batch as follows

Y b
f =

[
yi+1|i yi+2|i · · · yi+nbs |i

]
(4.3.3)

Y b
p =

[
y1|i y2|i · · · ynbs |i

]
(4.3.4)

where i is a user-specified parameter that is greater than the observability index or the system

order. It should be noted that yk |i in this case is composed of vectors of stacked output

measurements that include both the infrequent and frequent measurements, as shown in

Eq. (4.3.2). Each output Hankel matrix for an arbitrary batch (batch no. b of nb total batches)

is of size pi×nb
s where the entries in the block Hankel matrices corresponding to unmeasured

variables at the frequent sampling instances are left empty. The partitioning of the data

into Y b
p and Y b

f is sometimes referred to as past and future. Define Ub
f and Ub

p as input

block Hankel matrices similar to Eqs. (4.3.3) and (4.3.4), respectively. The individual block
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Hankel matrices of the various batches are then assembled together as

Yf =
[
Y1

f Y2
f · · · Y nb

f

]
(4.3.5)

and similarly to create Yp, U f and Up. It was proposed by Moonen et al. [71], who showed

that a realization of the unknown system states can be obtained through computing the

intersection of the past input-output and the future input-output spaces via the application of

singular value decomposition, as we will show below.

From Moonen et al. [71], it is readily shown that Yf and Yp are given by the relations

Yf = Γi X f +ΦiU f (4.3.6)

Yp = Γi Xp +ΦiUp (4.3.7)

where

X f =

[
x(1)i+1 · · · x(1)

i+n(1)s
x(2)i+1 · · · x(2)

i+n(2)s
x(nb)i+1 · · · x(nb)

i+n
nb
s

]

Xp =

[
x(1)1 · · · x(1)

n(1)s
x(2)1 · · · x(2)

n(2)s
xnb

1 · · · x(nb)
n
nb
s

]

Note that Γi andΦi are defined in terms of the full output measurement vector available at

the infrequent sampling times using the multi-rate state-space model of Eq. (4.3.1) as

Γi =



Cφ1

Cφ1 A
...

Cφ1 Ai−1


Page 105 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

Φi =



Dφ1 0 · · · 0

Cφ1 B Dφ1 · · · 0
...

...
. . .

...

Cφ1 Ai−2B Cφ1 Ai−3B · · · Dφ1


while keeping the missing data at the frequent sampling instances as empty entries in the

block Hankel matrices. This ensures that the equations are properly specified and that

the resulting state sequence is uninterrupted and congruous, a necessary requirement for

estimating the system realization. Further, X f can be related to Xp as follows

X f = Ai Xp + ∆iUp (4.3.8)

where ∆i is the reversed extended controllability matrix given by

∆i =

[
Ai−1B Ai−2B · · · AB B

]

Solving for X f in Eq. (4.3.6) yields

X f =

[
Γ†i −Γ†i Φi

] 
Yf

U f


(4.3.9)

where Γ†i denotes the Moore-Penrose matrix inverse of Γi. Eq. (4.3.9) implies that the row

space of X f is contained within the row space of
[
YT

f UT
f

]T
. Similarly, solving for Xp in

Eq. (4.3.7) and substituting into Eq. (4.3.8) gives

X f =

[
AiΓ†i ∆i − AiΓ†i Φi

] 
Yp

Up


(4.3.10)
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which implies that the row space of X f is equally containedwithin the row space of
[
YT

p UT
p

]T
.

Therefore, the intersection between the past and future data given by

span
(
X f

)
B row space

©«


Yf

U f


ª®®®¬
∩ row space

©«


Yp

Up


ª®®®¬

(4.3.11)

For the present case of multi-rate sampled measurements as well as missing data, however,

traditional SVD of the Hankel matrices can not be determined because the Hankel matrices

are composed of multi-rate sampled output measurements, and thus this intersection cannot

be computed using singular value decomposition of the two spaces as is done in traditional

subspace identification to compute an estimate of the states X f [71]. Therefore, in this work,

we propose the use of incremental singular value decomposition algorithm to compute the

intersection between Hankel matrices, and thus the estimate of the states X f , where the

Hankel matrices are composed of multi-rate sampled measurements with missing data.

Remark 4.3. The conventional subspace model, based on the underlying assumption that

each measurement or data vector is a linear combination of a small number of principal

component vectors or singular vectors, is widely used to build prediction models. In contrast

to the conventional subspace models, the subspace-based state-space system identification

approach considered in this work identifies a dynamic model from a subspace realization that

also constitutes the state sequence underlying the observed data. Consequently, a dynamic

state-space model is identified in this work for the purposes of predictive control.

Remark 4.4. The system identification procedure requires that the manipulated inputs are

persistently exciting signals, which corresponds to the fact that the projection matrix Π⊥
UT
i

can be computed and that the matrix inverse in Eq. (4.2.5) exists. Nevertheless, the criteria

for ensuring that the inverse exists amounts to the input block Hankel matrix being full rank
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[71, 72, 77]. In this work, we consider this rank criteria to determine whether the inputs are

persistently exciting, similar to the procedure in conventional system identification.

Remark 4.5. Alternative approaches for handling multi-rate sampled data as missing values

include interpolation techniques that impute values for the missing variables. The prediction

capability of such missing data interpolation techniques is inherently predicated on the

efficiency of the underlying model used to infer the unknown values. Moreover, the selection

of a specific type of model to infer the values of the unknown data is not trivial, and is

the whole point of the modeling exercise. Thus filling these unobserved data and then

determining a subspace model is inconsistent with the notion of estimating an linear time-

invariant subspace model. Furthermore, to simply down-sample the measurements to a

common sampling frequencymeans that the frequentmeasurement samples available between

infrequent sampling instances are discarded. Thus the relevant process information that

could be used to identify a model and to implement frequent feedback control anachronisms

is neglected. In contrast, the proposed approach uses all available information as best as

possible.

In this work, in order to calculate the intersection between two spaces that contain many

missing variables, we employ the use of an incremental singular value decomposition [88, 89].

We will briefly review the key equations involved in the incremental SVD algorithm for

completeness. Although the iSVD algorithm has been used to compute the principal

components or singular values by identifying a subspace of low dimension given a data

set consisting of missing values, the approach has not been utilized to identify a dynamic

state-space model from the data. In the proposed approach, after the iSVD is used to compute

the intersection between the subspaces of the past and future Hankel matrices, as shown in

Eq. (4.3.11), the regular singular value decomposition is applied to the resulting intersection

space to compute the state sequence.
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To dealwith themissing data in an arbitrary vector νt ∈ Rnv of amatrix [ν1 ν2 . . . νt . . . νT ] to
be factorized using SVD in which only the components indicated by the setΩt ⊂ {1, . . . , nv}
are measured or known, we observe the following subvector at iteration t:

(νt)Ωt
=

(
Ūwt

)
Ωt

(4.3.12)

where wt is a known weight vector, Ū is an orthonormal matrix and the subscript Ωt on a

matrix or vector is used to indicate restriction to the rows indicated byΩt . Given initial SVD

matrices Ut , Σt and Vt at some sampling instant t, we can calculate the SVD of a vector νt

with missing data by computing wt and rt as the least-squares weight and residual vector,

respectively, defined with respect to only the set of observed indices Ωt as follows

wt = arg min
wt

(Utwt)Ωt
− (νt)Ωt

2

2

rt = νt −Utwt

Noting that

[
UtΣtVt νt

]
=

[
Ut

rt

‖rt ‖

] 
Σt wt

0 ‖rt ‖



Vt 0

0 1



T

(4.3.13)

and computing the SVD of the update matrix:


Σt wt

0 ‖rt ‖


= ÛΣ̂V̂T (4.3.14)
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and setting

Ut+1 =

[
Ut

rt

‖rt ‖

]
Û (4.3.15)

Σt+1 = Σ̂ (4.3.16)

Vt+1 =


Vt 0

0 1


V̂ (4.3.17)

while retaining only the ñ largest singular values yields an update of the initial SVD, taking

into account the new vector of measurements νt , which had missing data within it. The

procedure is then repeated in order to incorporate the next vector νt+1 in the incremental

SVD factorization. Therefore, the missing data incremental SVD algorithm can be applied

to compute an estimate of the states X̃i and ultimately the model matrices.

Remark 4.6. By definition, only the observable part of the system can be identified from the

manipulated inputs and measured outputs, therefore the multi-rate system
(
A,

[
Cφ1,Cφ2

] )
is

always observable. The order of the identified system ñ is selected based on how well the

validation data is predicted, and the system order is always chosen so that the system (A, B)
is controllable [71, 72, 77].

Remark 4.7. Note that the conventional subspace-based system identification procedure can

not handle missing values, and the standard model is built using the correct corresponding

values of the inputs. In contrast, the proposedmulti-rate subspace-based system identification

techniques utilizes the incremental singular value decomposition algorithm to identify a state

sequence and thus the state-space model parameters, while avoiding the use of missing data

imputation. Since, the incremental SVD algorithm computes the decomposition of matrix

with arbitrarily missing values, the approach is not limited to just measurements sampled at

different frequencies. The approach thus readily accommodates missing input values in the

present application.
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4.4 Variable Duration Economic Model Predictive

Control

In this section, we propose a novel two-tiered economic model predictive control algorithm

capable of handling batches of varying durations. The proposed economic model predictive

control formulation employs a tiered framework to achieve product that satisfies the end-

point target while optimizing an economics-based cost function. To this end, the first tier

of the EMPC computes the optimal achievable end-point that satisfies the desired product

specifications at each sampling instance by solving the following mixed-integer quadratic

programming problem

min
u∈U, nt

J1 =
ŷe − ydes

2
Ξ

(4.4.1)

s.t.




xk+1 = Axk + Buk

ŷ
φ1
k = Cφ1 xk + Dφ1uk, ∀k ∈ �φ1

ŷ
φ2
k = Cφ2 xk + Dφ2uk, ∀k ∈ �φ2

ŷφ1 ∈ Yφ1, ŷφ2 ∈ Yφ2

ŷe = g
(
ŷ
φ1
nt

)

where ŷe = g
(
ŷ
φ1
nt

)
defines the batch end-point characteristics through the estimates of

the output measurement variables at batch termination (nt), u ∈ Rm denotes the vector

of constrained input variables, taking values in a nonempty convex set U ⊆ Rm, Ξ is a

positive definite matrix used to penalize the squared deviation of the predicted end-point

variables with respect to the desired end-point values,Yφ1 ⊆ Rφ1 andYφ2 ⊆ Rφ2 denote the

constraints on the infrequent and frequent measurement variables, respectively, ydes denotes

the desired end-point target specified by plant operators and nt is the batch duration.
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Subsequent to obtaining the optimal achievable end-point ŷ∗e that best satisfies the desired

product specifications ydes, the next tier computes the economically optimal trajectory of

manipulated input variables, albeit constricted with an additional constraint to satisfy the

optimal achievable end-point product specifications. The second tier of the EMPC solves a

mixed-integer quadratic programming problem to determine the optimal manipulated input

trajectory by minimizing an economic objective function at every sampling time as follows

min
u∈U, nt

J2 = δ ·
nt−1∑
i=k

cT ui + cT
∆u∆u2

i (4.4.2)

s.t.




xk+1 = Axk + Buk

ŷ
φ1
k = Cφ1 xk + Dφ1uk, ∀k ∈ �φ1

ŷ
φ2
k = Cφ2 xk + Dφ2uk, ∀k ∈ �φ2

ŷφ1 ∈ Yφ1, ŷφ2 ∈ Yφ2

h
(
ŷ
φ1
nt , ŷ

∗
e

)
≤ 0

where h
(
ŷ
φ1
nt , ŷ

∗
e

)
≤ 0 denotes end-point constraints that are appropriately relaxed to an

interval with ŷ∗e as a end-point restricting bound, δ is the sampling time or hold-time for

the control action, c ∈ Rm and c∆u ∈ Rm denote the operating costs associated with the

manipulated variables and the rate of change of the manipulated input variables given by ∆u.

Remark 4.8. In this work, we penalize the rate of change of the input variables through the

term cT
∆u∆u2

i in the objective function. Another approach to minimize the difference between

successive inputs involves penalizing the absolute value of the input change as cT
∆u |∆ui |,

thus reformulating the optimization of the second tier into a linear programming problem.

Regardless of the specific formulation used, the rate of change of the input variables may

need to be penalized in the proposed economic MPC to mitigate the abrupt input moves that

arise as a result of the shorter batch durations preferred from a cost perspective.
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Remark 4.9. There have been several recent results focusing on EMPC including those

that allow a non-quadratic cost function where the assumption of positive definiteness of

the cost is not satisfied [59, 60]. In order to ensure that the closed-loop system resulting

from the application of an economic MPC algorithm does in fact converge to the optimal

equilibrium operating point, dissipativity conditions have been employed that are shown to

be sufficient for optimal steady-state operation of a system as well as for convergence and

stability analysis [58–62]. The key feature that differentiates continuous processes from

batch and semi-batch processes, such as the EAF process, is that continuous processes have

an equilibrium operating point whereas batch processes are typically not run long enough

to reach a steady-state (and the steady-state is typically not the desired target point anyway).

This precludes the direct implementation of these EMPC techniques on batch processes, and

necessitates the development of batch specific control algorithms.

Remark 4.10. Considerable effort has been devoted in recent years to improve the compu-

tational tractability of model-based optimization problems through the derivation of convex

formulations and by employing algorithms that exploit the underlying structure of the prob-

lem [47, 48]. Other attempts to avoid the challenges of on-line computing have involved

moving the heavy computations off-line, where time and computational power are much

more abundant, thus limiting the on-line operations to expedited decisions and simpler

calculations. One such approach is multi-parametric programming, which generates off-line

a register of explicit control laws to be employed on-line based on the estimated states of

the system [90]. Furthermore, advanced-step MPC strategies are proposed that solve the

detailed optimization problem in the background between sampling instances, assuming

the computations can be completed within one sampling time, and apply sensitivity-based

updates on-line when measurements become available [91, 92]. Another approach is the

real-time nonlinear iteration scheme, which uses a continuation Newton-type framework

and solves one quadratic programming problem at each iteration, thus allowing for multiple
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active set changes and ensuring that the nonlinear MPC algorithm performs at least as

well as a linear MPC approach [93]. Another method is based on tracking the necessary

conditions of optimality, where an optimality criteria-based parameterization of the input

profiles is used to design a multivariable feedback scheme along with model adaptation to

track the first-order optimality conditions, thereby driving the system towards optimality

[81, 82]. More recently, the concept of reachability regions is used to implement model pre-

dictive control strategies where the controller, rather than driving the process to the desired

end-point at all computation times, guides the process through a set of precomputed states

that ensure the end-point is satisfied at batch termination [49, 50]. Note that the proposed

approach poses minimal online computational issues due to the fact that the underlying

model is linear.

4.5 Application to the Electric Arc Furnace

In this section, we first describe the electric arc furnace process, followed by simulation

results that demonstrate the efficiency of the proposed approach to identify models from

multi-rate sampled data and missing measurements using the test bed EAF process. Finally,

the identified multi-rate subspace-based model is integrated into the proposed economic

model predictive control framework, and the closed-loop simulation reuslts demonstrate the

improvement in economic performance through the minimization of operating costs and

optimization of batch durations.

4.5.1 Electric Arc Furnace Process

Integrated steel mills typically use the electric arc furnace process to produce steel pre-

dominantly from recycling post-consumer scrap, and occasionally using supplementary iron
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sources such as direct reduced iron (DRI). The EAF process is a batch process, a batch is

referred to as a heat, with a duration time of about one to two hours. A heat of an electric arc

furnace begins with scrap metal being placed inside the furnace. The furnace will generally

have some molten steel in place from the preceding heat in order to aid in the melting of

the scrap metal. Once the furnace is charged with the scrap metal, a high intensity electric

arc, which is typically the largest energy contributor in the melting operation, is discharged

from electrodes into the furnace in order to melt the scrap metal. After a significant amount

of scrap has been melted, oxygen gas and raw carbon are injected into the molten steel

that react within the molten steel to create iron oxide and carbon monoxide. The injected

oxygen and carbon also serve to foam slag on the surface of the molten steel through the

diffusion of carbon monoxide, which aids in the removal of oxides and impurities from the

molten steel. Furthermore, the foamed slag also serves as an insulator retaining heat, thus

improving the efficiency of the steel production [41, 43]. Once the desired steel composition

and temperature are obtained, the heat is tapped and the molten steel is transported to

downstream operations for further processing.

The electric arc furnace operational challenges that we address in this study are the subspace-

based identification of state-space models and the economically optimal control of the

EAF process, subject to multi-rate and missing measurements. To this end, we utilize a

first-principles mechanistic model as a test bed to implement and evaluate the efficiency of

the proposed modeling and control approach. Specific details regarding the structure and

configuration of the test bed mechanistic model can be found in previous studies [70], and

are omitted here for brevity.

Recognizing the limited availability of process measurements in practice, in this work the

measurements available to build the data-drivenmodel and to implement the proposed control

approach include infrequent and frequent measurement variables, where the infrequent
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measurements related to the slag and molten steel are sampled twice as slowly as the frequent

measurements corresponding to the off-gas composition that are available at each sampling

instance. A list of the infrequent and frequent process measurement variables are given in

Tables 3.2.1 and 3.2.2, respectively, and the manipulated inputs along with the associated

costs are listed in Table 3.2.3. Furthermore, each historical heat has a duration of 70 min and

a sampling time of δ = 1 min for the frequent measurements. Additionally, the variability

of the feed, measurement noise and conventional decentralized trajectory-tracking control

schemes of the EAF process are kept consistent with previous studies [70]. In this work,

the desired end-point attributes of the heat at batch termination are explicitly characterized

through the melt temperature (Tt f ≥ 1890 K), mass fraction of carbon in the molten steel

(xC,t f ≤ 0.005 kg/kg) and the mass fraction of iron oxide in the slag (xFeO,t f ≤ 0.378 kg/kg).
Moreover, path constraints that limit the maximum achievable temperature of the molten

steel (Tt ≤ 2000 K, t ∈ [0, t f ]) and the relative pressure within EAFs (Pt ≤ 0 Pa, t ∈ [0, t f ])
for safety considerations are considered as well.

4.5.2 Electric Arc Furnace Modeling Results

A historical database of past heats is generated to evaluate the efficacy of the multi-rate

system identification procedure. To this end, a deterministic EAF process model is simulated

to generate 50 normal operation batches of varying durations starting from diverse initial

conditions. The heats are terminated between 62 min and 70 min, depending on whether the

aforementioned end-point target criteria are satisfied. To represent practical measurement

issues, 10% of the manipulated input variables have a missing input value, where the input

value transmitted to the actuators was not recorded. In addition to the normal operation

heats, five identification batches are used to augment the database, where a low-amplitude
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pseudo-random binary sequence (PRBS) signal is added to the input values computed by

the proportional-integral (PI) controllers.

In addition to the batches used for modeling purposes, a total of 50 additional heats are

simulated for model validation purposes. For an objective evaluation of the multi-rate

system identification procedure, we compare our proposed approach to a standard system

identification method that predicts all available process variables at only the infrequent

sampling instances. The number of states to incorporate in the standard infrequent-only

model and proposedmulti-rate model is determined through evaluating the root-mean-square

error (RMSE) in predicting back the validation samples, which yielded 17 states for the

proposed multi-rate modeling approach and 15 for the standard infrequent-only model. The

model validation results for the measurement variables are given in Table 4.5.1 and the

corresponding output predictions of the multi-rate model, standard infrequent-only model

and actual variable profile trajectories from the test bed for a set of new initial conditions are

shown in Figs. 4.5.1 and 4.5.2. For training batches, the subspace identification approach

generates state trajectories for all batches, thus determining the initial subspace state for each

batch. For a new batch, however, the underlying subspace state is unknown, requiring a state

observer to first estimate the process state to in turn be able to predict the states and measured

outputs forward in time and validate the model [94]. To this end, we utilize a multi-rate

Kalman filter, which incorporates an on-line real-time adaptive learning algorithm to provide

updated state estimates. In some sense, estimating the underlying state of the model can be

thought of as a ‘learning’ of the new batch conditions. The shaded area until 20 min on

the plots represents the initial phase of the heat where feedback from the measurements is

used to correct the state estimates until convergence. For the proposed multi-rate models, a
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multi-rate Kalman filter is implemented as

x̂−k = Ax̂k−1 + Buk

P−k = APk−1 AT +Q

Lφ1
k = P−k Cφ1T

(
Cφ1 P−k Cφ1T

+ Rφ1
)−1

x̂k = x̂−k + Lφ1
k

(
y
φ1
k − Cφ1 x̂−k

)
Pk =

(
I − Lφ1

k Cφ1
)

P−k




∀k ∈ �φ1

or

Lφ2
k = P−k Cφ2T

(
Cφ2 P−k Cφ2T

+ Rφ2
)−1

x̂k = x̂−k + Lφ2
k

(
y
φ2
k − Cφ2 x̂−k

)
Pk =

(
I − Lφ2

k Cφ2
)

P−k




∀k ∈ �φ2

where Lφ1 and Lφ2 denote the Kalman gains for the infrequent and frequent sampling

instances, respectively, and x̂− and x̂ denote the prior and posterior state estimates with error

covariances P− and P, respectively. Furthermore, the positive-definite matrices Q and R

denote the covariances of the process disturbances and measurement noise, which can be

tuned to improve the Kalman filter performance. For validation purposes, the convergence

of the state estimates is evaluated using the error covariances to determine the point at which

the Kalman filtering update of the states is stopped and subsequent predictions are made in

an open-loop fashion where the predictions throughout the batch are not corrected and the

model errors are allowed to accumulate over the entire batch duration. This is to test the

ability of the model to predict reasonable future behavior for a candidate input profile, and

thus establish its utility for feedback control purposes. Note that the state sequence for the

model validation results, and in the development of predictive controllers, is not initialized

arbitrarily. Rather, the state estimates obtained during the model development procedure
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(Eq. (4.3.11)) for one of the training batches are used to initialize the state estimates (instead

of initializing them at zero), which results in faster convergence.

It is readily observed that the standard system identification approach that neglects the

frequent measurement variables does not predict the process variables well, resulting in

higher RMSE values. Note that the only variable predicted well by the standard approach is

the silicon dioxide in the slag, which is not a end-point target controlled variable. Accordingly,

we do not consider the standard infrequent-only model to be sufficiently accurate to drive a

predictive controller, and is hence not utilized further in this study.

4.5.3 Economic Model Predictive Control Results

The closed-loop simulation of 50 new initial conditions is performed using the proposed

economic model predictive controller, and the performance of the proposed approach is

compared against standard EAF operating policies involving PI control. The conventional

PI control approach used as a comparison in this work involves closely tracking reference

variable trajectories based on a historical batch that produced steel of the desired end-point.

Details on the pairing of the controlled and manipulated variables, and the associated PI

tuning parameters are available in Rashid et al. [70]. Furthermore, batches controlled using

the conventional PI trajectory tracking approachwere allowed to be terminated earlier than the

duration of the reference batch if the end-point targets are satisfied in a shorter batch duration.

All of the new initial conditions for evaluating the closed-loop performance of the proposed

approach are obtained from the same distribution as the initial conditions in the training data.

The batch termination time is allowed to vary in a predefined set nt = {62 min, . . . , 70 min},
and the two-tiers of the proposed EMPC are executed consecutively at each sampling instance

through explicit enumeration. The first tier of the economic MPC determines the optimal
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Figure 4.5.1: Model Validation Results for the Infrequent Measurement Variables of the
EAF Process
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Figure 4.5.2: Model Validation Results for the Frequent Measurement Variables of the EAF
Process
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Table 4.5.1: ModelValidation Results for the Infrequent andFrequentMeasurementVariables
of the EAF Process

Measurement
Type Variable RMSE UnitsInfrequent-only Model Multi-rate Model

Infrequent
Measurements

T 22.4722 8.8419 K
xFe 0.0025 0.0012 kg/kg
xC 0.0013 0.0004 kg/kg

xSlag 0.0111 0.0090 kg/kg
xFeO 0.0139 0.0124 kg/kg
xSiO2 0.0026 0.0032 kg/kg

Frequent
Measurements

P 0.3863 0.1333 Pa
xCO 0.0289 0.0208 kg/kg
xCO2 0.0133 0.0094 kg/kg
xN2 0.0158 0.0112 kg/kg

end-point for a given batch duration, and if a feasible solution exists, the second tier computes

the economically optimal inputs. The most economical input variable trajectory with the

lowest cost is implemented on the EAF process, and the tiered EMPC problem is solved at

subsequent sampling instances with a shrinking horizon and with updated state estimates.

A representative set of closed-loop simulation results (batch no. 7) is presented in Figs. 4.5.3

and 4.5.4 for the infrequent and frequent process measurements, respectively. The closed-

loop trajectories of the end-point target variables and the corresponding intervals of the

end-point constraints are shown in Fig. 4.5.3 as well. Although both the proposed EMPC and

the standard PI control approach are able to meet the desired product quality, the proposed

economicMPC controller offered a significant cost advantage of approximately $5.5794×103

compared to $6.3632 × 103 for the standard approach, an average savings of $783.80 per

batch or approximately 12.32% improvement per batch. Furthermore, the average heat

duration obtained through the proposed EMPC is 64.96 min, a 5.86% shorter batch duration

compared to the conventional PI control approach.
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Figure 4.5.3: Comparison of the Trajectories for the Infrequent Measurement Variables
Obtained from the Proposed Economic MPC and Conventional Method
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Figure 4.5.5: Closed-loop Profiles of the Manipulated Variables Obtained from the Proposed
Economic MPC and Conventional Method for a Selected Batch of the EAF Process
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The proposed economic MPC design was efficiently solvable with the average CPU time

required to solve both the mixed-integer quadratic programming problems involved in the

tiered approachwith the longest prediction horizon as 4.42 s (maximum 4.97 s) using MATLAB

on an Intel Core i7 machine with 8 GB RAM. Although the proposed EMPC formulation

uses the subspace-based model and thus is computationally tractable, the efficiency of the

optimization problem can be improved by parallelization [95] where the EMPC problems for

varying batch termination times are solved in parallel using multiple CPU cores. The closed-

loop input profiles are shown in Fig. 4.5.5 and it is readily observed that the EMPC approach

recognizes that in certain instances, the end-point constraints are capable of being satisfied

while maintaining the manipulated variables close to their lower bounds, due to which the

operating costs of the EMPC approach are significantly lower. Overall, the simulation results

demonstrated the advantages of implementing the proposed economic predictive controller

over the standard operating policies.

4.6 Conclusion

In this work we develop a novel multi-rate subspace-based system identification and variable

duration economic model predictive control framework for batch systems, and apply it to

the electric arc furnace process. The system identification method uses the incremental

singular value decomposition to identify a dynamic model from a finite number of noisy data

samples disrupted with unmeasured process variables and asynchronous data. Furthermore,

the proposed identification approach is capable of handling inconsistent batch lengths to

optimize batches with variable durations. The identified dynamic model is integrated into a

tiered EMPC formulation, where solutions to computationally tractable problems achieve

the desired final product end-point specification by batch termination, while minimizing

the operating costs. The proposed multi-rate modeling and EMPC framework are imple-
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mented on the EAF process, and simulation case studies demonstrate the efficacy of the

proposed approach subject to the limited availability of process measurements, missing data,

measurement noise and constraints.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter, the subsequent sections summarize the contributions of the research work,

followed by suggestions for related future work.

5.1 Conclusions

In the initial phase of this research, in an effort to better detect and identify process faults,

we propose a novel pattern matching based process monitoring approach. Traditional

multivariate statistical processes monitoring (MSPM) techniques like principal component

analysis (PCA) and partial least squares (PLS) are notwell-suited inmonitoring non-Gaussian

processes because the derivation ofT2 and SPE indices requires the approximate multivariate

Gaussian distribution of the process data. In this work, a novel pattern analysis driven

dissimilarity approach is developed by integrating multidimensional mutual information

(MMI) with independent component analysis (ICA) in order to quantitatively evaluate

the statistical dependency between the independent component subspaces of the normal

benchmark and monitored data sets. The new MMI based ICA dissimilarity index is derived

from the higher-order statistics so that the non-Gaussian process features can be extracted

efficiently. Moreover, the moving-window strategy is used to deal with process dynamics.
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The multidimensional mutual information based ICA dissimilarity method is applied to

the Tennessee Eastman Chemical process. The process monitoring results of the proposed

method are demonstrated to be superior to those of the regular PCA, PCA dissimilarity,

regular ICA and angle based ICA dissimilarity approaches.

In Chapter 3, we consider the problem ofmulti-rate modeling and economic model predictive

control (EMPC) of electric arc furnaces (EAF), which are widely used in the steel industry

to produce molten steel from scrap metal. The two main challenges that we address are

the multi-rate nature of the measurement availability, and the requirement to achieve final

product of a desired characteristic, while minimizing the operation cost. To this end, multi-

rate models are identified that include predictions for both the infrequently and frequently

measured process variables. The models comprise local linear models and an appropriate

weighting scheme to capture the nonlinear nature of the EAF. The resulting model is

integrated into a two-tiered predictive controller that enables the target end-point to be

achieved while minimizing the associated cost. The EMPC is implemented on the EAF

process and the closed-loop simulation results subject to the limited availability of process

measurements and noise illustrate the improvement in economic performance over existing

trajectory-tracking approaches.

In Chapter 4, we consider the problem of variable duration economic model predictive

control (EMPC) of batch processes subject to multi-rate and missing data. To this end, we

first generalize a recently developed subspace-based model identification approach for batch

processes to handle multi-rate and missing data by utilizing the incremental singular value

decomposition technique. Exploiting the fact that the proposed identification approach is

capable of handling inconsistent batch lengths, the resulting dynamic model is integrated

into a tiered EMPC formulation that optimizes process economics (including batch duration).

Simulation case studies involving application to the energy intensive electric arc furnace
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process demonstrate the efficacy of the proposed approach compared to a traditional trajectory

tracking approach subject to limited availability of process measurements, missing data,

measurement noise and constraints.

5.2 Future Work

The contributions and results of this thesis suggest the following topics for future work:

1. on-line adaption of linear time-invariant models resulting from subspace-based system

identification approaches;

2. fault detection and isolation and fault-tolerant control of batch processes.

Below, a summary of the research potential, important developments and main contributions

in these future research areas is provided.

Mostmodel predictive control systems discussed in literature are derived frommodels that are

developed under the assumption of flawless communications among the sensors, controllers

and actuators, along with continuous or synchronous measurement sampling. However,

many industrial processes are operated with little instrumentation and thus the reliable and

frequent process measurements that are necessary to implement feedback control are simply

not available. The main contribution of this work will be the design of an on-line adaptive

model updating scheme and feedback control framework for processes with insufficient output

measurement availability due to instrumentation challenges. The addition of an adaptive

element to model-based control designs, where the model parameters are updated on-line at

each sampling instant, is a popular approach for handling system uncertainty and improving

closed-loop performance. The adaptive update of a first-principles deterministic model

involves the estimation of a subset of the uncertain, possibly time-varying, model parameters.
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In contrast, the entire set of model parameters is typically updated in the adaptation of

empirical data-driven models that are commonly obtained through subspace-based system

identification approaches. Regardless of the nature of the model, the key to successful on-

line adaptive models is a well-designed real-time, recursive parameter estimation algorithm.

Although some of the subspace-based system identification algorithms have been modified

for on-line adaption, the approaches are limited to situations where the complete set of

output measurements are available frequently. Accordingly, the main contributions in this

phase of research will involve the adaption of linear time-invariant state-space models under

non-ideal sporadic sampling situations.

Chemical processes routinely suffer from both severe faults and numerous minor process

disturbances that have significant accumulated effects on production outages and excess

resource use over time. Furthermore, the strong interactions between integrated process

components (i.e., sensors, actuators, controllers, and units) profoundly influence the inher-

ent stability and robustness properties of closed-loop systems and pose serious reliability,

continuity, controllability, and stability issues. The problems of fault detection and isolation

(FDI), fault-tolerant control (FTC), and fault-accommodating control design have been an

active research topic within the process control community over the last decade. In the

FDI framework, abnormal operating conditions are detected by setting a (fixed or variable)

threshold on residual signals, where the diagnostic residual signals are generated through

the use of an observer-based approach. As a complement to FDI, the traditional reactive

fault-tolerant control method reconfigures the control system in an effort to minimize the

impact of a faulty sensor, actuator, or process component. A new and less extensively studied

extension to fault-accommodating control schemes deals with proactive fault-tolerant control

approaches, where appropriate actions are taken before an incipient fault occurs to predict
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and minimize the negative effects of impending fault scenarios, which can help to avoid

process shutdowns, product deterioration, or more serious catastrophic losses.

Despite the potential benefits of fault detection and isolation and fault-handling control of

continuous chemical processes, limited studies have extended these techniques to batch pro-

cesses. Batch processes are typically characterized by strong process nonlinearity, transient

operating dynamics, lack of equilibrium operating conditions, batch-to-batch variations,

multiple operating phases, and system uncertainty, which pose significant challenges for the

on-line state estimation and residual generation methodologies. In this research work, the

main contributions will involve the FDI of batch processes through the use of time-varying

residuals that also account for system uncertainty. Other potential research directions in

this field include the development of a proactive fault-tolerant control approach for batch

processes to mitigate the consequences of potential impending faults, and the extension of

the FDI and FTCmethods to processes with the limited availability of output measurements.

Page 133 of 144





LIST OF REFERENCES

[1] J. Yu and S.J. Qin. Multiway Gaussian mixture model based multiphase batch process

monitoring. Ind. Eng. Chem. Res., 48:8585–8594, 2009.

[2] J.F. MacGregor and T. Kourti. Statistical process control of multivariate processes.

Control Eng. Practice, 3:403–414, 1995.

[3] K.A. Kosanovich, K.S. Dahl, and M.J. Piovoso. Improved process understanding

using multiway principal component analysis. Ind. Eng. Chem. Res., 35:138–146,

1996.

[4] M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno. Statistical process monitoring based

on dissimilarity of process data. AIChE J., 48:1231–1240, 2002.

[5] J. Flores-Cerrillo and J.F. MacGregor. Multivariate monitoring of batch processes

using batch-to-batch information. AIChE J., 50(6):1219–1228, 2004.

[6] X. Liu, U. Kruger, T. Littler, L. Xie, and S. Wang. Moving window kernel PCA for

adaptive monitoring of nonlinear processes. Chemometrics Intell. Lab. Syst., 96:

132–143, 2009.

[7] B.M. Wise and N.B. Gallagher. The process chemometrics approach to process

monitoring and fault detection. J. Proc. Cont., 6:329–348, 1996.

Page 135 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[8] B.R. Bakshi. Multiscale PCA with application to multivariate statistical process

monitoring. AIChE J., 44:1596–1610, 1998.

[9] C.-C. Ku and K.Y. Lee. Diagonal recurrent neural networks for dynamic systems

control. IEEE Trans. Neural Net., 6:144–156, January 1995.

[10] B. Lennox, G.A. Montague, H.G. Hiden, G. Kornfeld, and P.R. Goulding. Process

monitoring of an industrial fed-batch fermentation. Biotechnology and Bioengineering,

74(2):125–135, 2001.

[11] S.J. Qin. Statistical process monitoring: Basics and beyond. J. Chemomotrics, 17:

480–502, 2003.

[12] E.B. Martin and A.J. Morris. Non-parametric confidence bounds for process

performance monitoring charts. J. Proc. Cont., 6:349–358, 1996.

[13] W. Ku, R.H. Storer, and C. Georgakis. Disturbance detection and isolation by dynamic

principal component analysis. Chemometrics Intell. Lab. Syst., 30:179–196, Nov

1995.

[14] L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault diagnosis in chemical processes

using Fisher discriminant analysis, discriminant partial least squares, and principal

component analysis. Chemometrics Intell. Lab. Syst., 50:243–252, 2000.

[15] L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault Detection and Diagnosis in

Industrial Systems. Advanced Textbooks in Control and Signal Processing. Springer-

Verlag, London, Great Britain, 2001.

[16] L.H. Chiang and R.J. Pell. Genetic algorithms combined with discriminant analysis

for key variable identification. J. Proc. Cont., 14:143–155, 2004.

Page 136 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[17] J. Yu. Localized Fisher discriminant analysis based complex chemical process moni-

toring. AIChE J., 57:1817–1828, 2011.

[18] J. Yu. Multiway discrete hidden Markov model-based approach for dynamic batch

process monitoring and fault classification. AIChE J., 2011. DOI: 10.1002/aic.12794.

[19] L.H. Chiang, M.E. Kotanchek, and A.K. Kordon. Fault diagnosis based on Fisher

discriminant analysis and support vector machines. Computer Chem. Eng., 28:

1389–1401, 2004.

[20] J. Yu. A Bayesian inference based two-stage support vector regression framework for

soft sensor development in batch bioprocesses. Computer Chem. Eng., 41:134–144,

2012.

[21] K.S. McClure, R.B. Gopaluni, T. Chmelyk, D. Marshman, and S.L. Shah. Nonlinear

process monitoring using supervised locally linear embedding projection. Ind. Eng.

Chem. Res., 53:5205–5216, 2014.

[22] J. Yu and S.J. Qin. Multimode process monitoring with Bayesian inference-based

finite Gaussian mixture models. AIChE J., 54:1811–1829, 2008.

[23] J. Yu and S.J. Qin. Multiway Gaussian mixture model based multiphase batch process

monitoring. Ind. Eng. Chem. Res., 48:8585–8594, 2009.

[24] J. Yu. A nonlinear kernel Gaussian mixture model based inferential monitoring

approach for fault detection and diagnosis of chemical processes. Chem. Eng. Sci., 68:

506–519, 2012.

[25] H. Albazzaz and X.Z. Wang. Statistical process control charts for batch operations

based on independent component analysis. Ind. Eng. Chem. Res., 43:6731–6741,

2004.

Page 137 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[26] Y. Zhang. Enhanced statistical analysis of nonlinear processes using KPCA, KICA

and SVM. Chem. Eng. Sci., 64:801–811, 2009.

[27] P.P. Odiowei and Y. Cao. State-space independent component analysis for nonlinear

dynamic process monitoring. Chemometrics Intell. Lab. Syst., 103:59–65, 2010.

[28] J.-M. Lee, C.K. Yoo, and I.-B. Lee. Statistical process monitoring with independent

component analysis. J. Proc. Cont., 14:467–485, 2004.

[29] A. Singhal and D.E. Seborg. Pattern matching in historical batch data using PCA.

IEEE Cont. Sys. Mag., 22:53–63, Oct 2002.

[30] A. Singhal andD.E. Seborg. Evaluation of a patternmatchingmethod for the Tennessee

Eastman challenge process. J. Proc. Cont., 16:601–613, Jul 2006.

[31] Z. Ge and Z. Song. Process monitoring based on independent component analysis-

principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res.,

46:2054–2063, 2007.

[32] A. Hyvärinen. Fast and robust fixed-point algorithms for independent component

analysis. IEEE Trans. Neural Net., 10:626–634, 1999.

[33] A.Hyvärinen andE.Oja. Independent component analysis: algorithms andapplications.

IEEE Trans. Neural Net., 13:411–430, 2000.

[34] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Phys.

Rev. E., 69:066138, Jun 2004.

[35] A. Kraskov, H. Stögbauer, R.G. Andrzejak, and P. Grassberger. Hierarchical clustering

using mutual information. EPL, 70:278–284, 2005.

[36] M. Vejmelka and M. Paluš. Inferring the directionality of coupling with conditional

mutual information. Phys. Rev. E., 77:026214, 2008.

Page 138 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[37] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

Oxford, UK, 1995.

[38] J.J. Downs and E.F. Vogel. A plant-wide industrial process control problem. Computer

Chem. Eng., 17:245–255, Mar 1989.

[39] N.L. Ricker. Decentralized control of the Tennessee Eastman challenge process. J.

Proc. Cont., 6:205–221, 1996.

[40] A. Gosiewski and A. Wierzbicki. Dynamic optimization of a steel-making process in

electric arc furnace. Automatica, 6:767–778, 1970.

[41] J.G. Bekker, I.K. Craig, and P.C. Pistorius. Modelling and simulation of an electric

arc furnace process. ISIJ Int., 39:23–32, 1999.

[42] D.J. Oosthuizen, I.K. Craig, and P.C. Pistorius. Economic evaluation and design of an

electric arc furnace controller based on economic objectives. Control Eng. Practice,

12:253–265, 2004.

[43] R.D.M. MacRosty and C.L.E. Swartz. Dynamic modeling of an industrial electric arc

furnace. Ind. Eng. Chem. Res., 44:8067–8083, 2005.

[44] R.D.M. MacRosty and C.L.E. Swartz. Dynamic optimization of electric arc furnace

operation. AIChE J., 53:640–653, 2007.

[45] D. Shi, N.H. El-Farra, M. Li, P. Mhaskar, and P.D. Christofides. Predictive control of

particle size distribution in particulate processes. 61:268–281, 2006.

[46] P.D. Christofides, N.H. El-Farra, M. Li, and P. Mhaskar. Model-based control of

particulate processes. Chem. Eng. Sci., 63:1156–1172, 2008.

[47] B. Chachuat, A. Marchetti, and D. Bonvin. Process optimization via constraints

adaptation. J. Proc. Cont., 18:244–257, 2008.

Page 139 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[48] B. Chachuat, B. Srinivasan, and D. Bonvin. Adaptation strategies for real-time

optimization. Computer Chem. Eng., 33:1557–1567, 2009.

[49] S. Aumi and P. Mhaskar. Safe-steering of batch process systems. AIChE J., 55:

2861–2872, 2009.

[50] S. Aumi and P. Mhaskar. Robust model predictive control and fault handling of batch

processes. AIChE J., 57:1796–1808, 2011.

[51] P. Rivotti and E.N. Pistikopoulos. Constrained dynamic programming of mixed-

integer linear problems by multi-parametric programming. Computer Chem. Eng., 70:

172–179, 2014.

[52] P. Rivotti and E.N. Pistikopoulos. A dynamic programming based approach for explicit

model predictive control of hybrid systems. Computer Chem. Eng., 72:126–144, 2015.

[53] X. Jin and B. Huang. Robust identification of piecewise/switching autoregressive

exogenous process. AIChE J., 56:1829–1844, 2010.

[54] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to

modeling and control. IEEE Trans. Syst. Man Cybern., 15:116–132, 1985.

[55] N.M. Fletcher, A.J. Morris, G. Montague, and E.B. Martin. Local dynamic partial

least squares approaches for the modelling of batch processes. Can. J. of Chem. Eng.,

86:960–970, 2008.

[56] S. Aumi and P. Mhaskar. Integrating data-based modeling and nonlinear control tools

for batch process control. AIChE J., 58:2105–2119, 2012.

[57] S. Aumi, B. Corbett, T. Clarke-Pringle, and P. Mhaskar. Data-driven model predictive

quality control of batch processes. AIChE J., 59:2852–2861, 2013.

Page 140 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[58] M. Diehl, R. Amrit, and J.B. Rawlings. A Lyapunov function for economic optimizing

model predictive control. IEEE Trans. Auto. Cont., 56:703–707, 2011.

[59] M. Heidarinejad, J. Liu, and P.D. Christofides. Economic model predictive control of

nonlinear process systems using Lyapunov techniques. AIChE J., 58:855–870, 2012.

[60] R. Amrit, J.B. Rawlings, and L.T. Biegler. Optimizing process economics online

using model predictive control. Computer Chem. Eng., 58:334–343, 2013.

[61] M. Ellis, H. Durand, and P.D. Christofides. A tutorial review of economic model

predictive control methods. J. Proc. Cont., 24:1156–1178, 2014.

[62] M. Ellis and P.D. Christofides. On finite-time and infinite-time cost improvement of

economic model predictive control for nonlinear systems. Automatica, 50:2561–2569,

2014.

[63] J.G. Bekker. Modelling and control of an electric arc furnace off-gas process. Master’s

thesis, University of Pretoria, South Africa, 1999.

[64] P. Clerici, F. Dell’Acqua, J. Maiolo, and S. Vittorio. Tenova’s intelligent arc furnace

‘iEAF’ – Concept and technical overview. Steel Times Int., May/June 2008.

[65] C. Wang, M. Larsson, C. Ryman, C.-E. Grip, J.-O. Wikström, A. Johnsson, and

J. Engdahl. A model on CO2 emission reduction in integrated steelmaking by

optimization methods. Int. J. Energy Res., 32:1092–1106, 2008.

[66] C.L.E. Swartz. An algorithm for hierarchical supervisory control. Computer Chem.

Eng., 19:1173–1180, 1995.

[67] Z. Chong and C.L.E. Swartz. Optimal operation of process plants under partial

shutdown conditions. AIChE J., 59:4151–4168, 2013.

Page 141 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[68] J. Flores-Cerrillo and J.F. MacGregor. Latent variable MPC for trajectory tracking in

batch processes. J. Proc. Cont., 15:651–663, 2005.

[69] M. Golshan, J.F. MacGregor, M.-J. Bruwer, and P. Mhaskar. Latent variable model

predictive control (LV-MPC) for trajectory tracking in batch processes. J. Proc. Cont.,

20:538–550, 2010.

[70] M.M. Rashid, P. Mhaskar, and C.L.E. Swartz. Multi-rate modeling and economic

model predictive control of the electric arc furnace. J. Proc. Cont., 40:50–61, 2016.

[71] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle. On- and off-line

identification of linear state-space models. Int. J. Control, 49:219–232, 1989.

[72] M. Jansson and B. Wahlberg. On consistency of subspace methods for system

identification. Automatica, 34:1507–1519, 1998.

[73] R. Shi and J.F. MacGregor. Modeling of dynamic systems using latent variable and

subspace methods. J. Chemom., 14:423–439, 2000.

[74] S.J. Qin. An overview of subspace identification. Computer Chem. Eng., 30:

1502–1513, 2006.

[75] B. Corbett and P. Mhaskar. Subspace identification for data-driven modeling and

quality control of batch processes. AIChE J., 62:1581–1601, 2016.

[76] B. De Moor P. Van Overschee. Subspace Identification for Linear Systems: Theory,

Implementation, Applications. Kluwer Academic Publishers, Norwell, MA, USA,

1996.

[77] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1999.

Page 142 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[78] Z. Liu, A. Hansson, and L. Vandenberghe. Nuclear norm system identification with

missing inputs and outputs. Sys. Cont. Let., 62:605–612, 2013.

[79] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation

with application to system identification. SIAM J. Mat. Anal. Appl., 31:1235–1256,

2009.

[80] S. Gibson and B. Ninness. Robust maximum-likelihood estimation of multivariable

dynamic systems. Automatica, 41:1667–1682, 2005.

[81] B. Srinivasan and D. Bonvin. Real-time optimization of batch processes by tracking

the necessary conditions of optimality. Ind. Eng. Chem. Res., 46:492–504, 2007.

[82] D. Bonvin and B. Srinivasan. On the role of the necessary conditions of optimality

in structuring dynamic real-time optimization schemes. Computer Chem. Eng., 51:

172–180, 2013.

[83] B. Srinivasan, S. Palanki, and D. Bonvin. Dynamic optimization of batch processes: I.

Characterization of the nominal solution. Computer Chem. Eng., 27:1–26, 2003.

[84] B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki. Dynamic optimization of batch

processes: II. Role of measurements in handling uncertainty. Computer Chem. Eng.,

27:27–44, 2003.

[85] P. Van Overschee and B. De Moor. A unifying theorem for three subspace system

identification algorithms. Automatica, 31:1853–1864, 1995.

[86] H. Raghavan, A.K. Tangirala, R.B. Gopaluni, andS.L. Shah. Identification of chemical

processes with irregular output sampling. Control Eng. Practice, 14:467–480, 2006.

[87] R.B. Gopaluni. Nonlinear system identification under missing observations: The case

of unknown model structure. J. Proc. Cont., 20:314–324, 2010.

Page 143 of 144



M.M. Rashid, Ph.D. Thesis Chemical Engineering | McMaster University

[88] L. Balzano and S. J. Wright. On GROUSE and incremental SVD. In Compu-

tational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th

International Workshop on, pages 1–4, St. Martin, 2013.

[89] L. Balzano and S.J. Wright. Local convergence of an algorithm for subspace

identification from partial data. Found Comput Math, 15:1279–1314, 2015.

[90] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear quadratic

regulator for constrained systems. Automatica, 38:3–20, 2002.

[91] X. Yang and L.T. Biegler. Advanced-multi-step nonlinear model predictive control. J.

Proc. Cont., 23:1116–1128, 2013.

[92] J. Jäschke, X. Yang, and L.T. Biegler. Fast economic model predictive control based

on NLP-sensitivities. J. Proc. Cont., 24:1260–1272, 2014.

[93] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for nonlinear

optimization in optimal feedback control. SIAM J. Cont. Opt., 43:1714–1736, 2005.

[94] D.J. Kozub and J.F. MacGregor. State estimation for semi-batch polymerization

reactors. Chem. Eng. Sci., 47:1047–1062, 1992.

[95] I.D. Washington and C.L.E. Swartz. Design under uncertainty using parallel

multiperiod dynamic optimization. AIChE J., 60:3151–3168, 2014.

Page 144 of 144


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Research Objectives and Thesis Outline

	2 PATTERN MATCHING BASED FAULT DETECTION AND IDENTIFICATION
	2.1 Introduction
	2.2 Independent Component Analysis Based Process Monitoring
	2.3 ICA Based Dissimilarity Approach for Process Monitoring
	2.3.1 Angle Based ICA Dissimilarity Method
	2.3.2 Multidimensional Mutual Information Based ICA Dissimilarity Method

	2.4 Process Monitoring Application
	2.4.1 Tennessee Eastman Chemical Process
	2.4.2 Comparison of Process Monitoring Results

	2.5 Conclusions

	3 MULTI-RATE MODELING AND ECONOMIC MODEL PREDICTIVE CONTROL
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Electric Arc Furnace Process
	3.2.2 Data-based Batch Process Modeling and Control
	3.2.2.1 Multi-model Approach
	3.2.2.2 Trajectory-tracking Predictive Control


	3.3 Data-driven Multi-rate Model
	3.3.1 Multi-rate Model Formulation
	3.3.2 Electric Arc Furnace Modeling Results

	3.4 Economic Model Predictive Control
	3.4.1 Economic Model Predictive Control Formulation
	3.4.2 Economic Model Predictive Control Results

	3.5 Conclusion

	4 MULTI-RATE SUBSPACE-BASED SYSTEM IDENTIFICATION AND ECONOMIC MODEL PREDICTIVE CONTROL
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Problem Statement
	4.2.2 Subspace Identification
	4.2.2.1 Extended Observability Matrix Approach
	4.2.2.2 State Sequence Approach

	4.2.3 Model Predictive Control

	4.3 Multi-rate System Identification with Missing Data
	4.4 Variable Duration Economic Model Predictive Control
	4.5 Application to the Electric Arc Furnace
	4.5.1 Electric Arc Furnace Process
	4.5.2 Electric Arc Furnace Modeling Results
	4.5.3 Economic Model Predictive Control Results

	4.6 Conclusion

	5 CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.2 Future Work

	LIST OF REFERENCES

