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LAY ABSTRACT 

 

The over-treatment of prostate cancer patients is a significant concern, as 

recent clinical trials has shown that it can lead to significant patient morbidity. 

Although the Gleason Scoring system is a powerful predictor of lethal or indolent 

disease, a significant proportion of men who present with early stage Gleason 

Score 7 tumours experience poorer prognosis than expected. The goal of this 

study is to develop and optimize a gene signature that can be utilized on Gleason 

Score 7, intermediate risk prostate cancer patients to differentiate them into good 

and poor outcome groups. We hypothesize that this signature will be able to 

accurately predict outcome in a separate retrospective cohort of prostate cancer 

patients. In short, our study hopes to provide proof-of-principle that through the 

use of gene signatures, it is possible to better differentiate prostate cancer patients 

into different outcome groups so that they may receive more appropriate treatment 

specific to their disease type.   



iv 
 

ABSTRACT 

The Gleason Score (GS) is a powerful predictor of outcome among 

prostate cancer patients. Patients with tumours graded with a GS of 2 to 6 have a 

much greater chance of survival compared to those with a GS of 8 to 10. A 

significant proportion (~40%) of men present with early stage GS 7 tumours 

(indicating intermediate risk) for whom prognosis is highly variable.  

Three gene signatures were derived from publicly available gene 

expression profiles of prostate cancers from the Swedish Watchful Waiting 

cohort: 1) The Genomic Grade Index consisted of the top 24 genes discriminating 

between high (8, 9 & 10) and low (≤ 6) GS tumours, 2) The Lethal Gene Score 

consisted of the top 24 genes discriminating between lethal and indolent disease 

within GS 7 tumours only, and 3) The network-based gene signature consisted of 

88 genes.  

When these gene signatures were tested in silico on the gene expression 

profiles of GS 7 patients in both the SWW and the Mayo cohort, patients were 

stratified into high and low risk for recurrence. These results demonstrate that 

gene signatures are capable of differentiating low risk and high risk patients 

within GS 7 tumours.  

The prognostic capacity of our gene signature will be tested prospectively 

in a retrospective collection of archived prostate cancer tissue blocks from a phase 

3 clinical trial, and it is hypothesized that the patients can be stratified into good 
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and poor outcome groups. NanoString Technology will be used to quantify 

mRNA values for the signature genes on selected paraffin blocks. Expression 

values of candidate genes will be correlated with patients’ long-term follow-up 

information to derive a clinically meaningful signature. Outcome will be defined 

as biochemical recurrence or metastatic event. 

The goal of this study is to identify multiple genes whose expression could 

be formulated into a clinically applicable assay, the implementation of which 

could serve to better stratify intermediate risk prostate cancer patients for 

appropriate treatment.  
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INTRODUCTION 

1.1 Epidemiology of Prostate Cancer 

According to the most recent publication by Canadian Cancer Statistics, 

approximately 2 in 5 Canadians will develop cancer in their lifetime and about 1 

in 4 will die of cancer. Prostate cancer is the most commonly diagnosed cancer in 

Canadian men as of 2015, accounting for roughly 23.9% of estimated new cancer 

cases. 10.1% of the estimated deaths due to cancer are expected to be from 

prostate cancer. This makes it the third most common cause of cancer death next 

to lung and colorectal cancer (Cancer Canada Statistics, 2015). 

There are many risk factors for prostate cancer, some better understood 

and documented than others. For instance, age and race are well-known, 

endogenous risk factors. It has been consistently shown that prostate cancer is 

seldom diagnosed in men younger than 50 years old (the average age of diagnosis 

being 67) and the highest incidence rates belong to African-American men 

(Siegel, Miller, & Jemal, 2015; Bostwick et al., 2004). Family history is also an 

important, well-established risk factor to consider, as first-degree relatives of men 

with prostate cancer have twice the risk of developing prostate cancer compared 

to the general population (Siegel, Miller, & Jemal, 2015; Eeles et al., 2014). 

Exogenous factors such as diet and environmental agents which can disrupt 

androgen homeostasis are also thought to be risk factors, though results from 

various studies have been inconsistent (Bostwick et al., 2004). Ultimately, 

prostate cancer poses a significant burden to men's health and the need to both 
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identify and mitigate risk factors is an important part of reducing the future 

prevalence of prostate cancer. 

1.2 Prostate Cancer 

 There are a number of histological subtypes of prostate cancer, the most 

common being prostatic adenocarcinoma which is defined as cancer of epithelial 

cells originating from glandular tissue. Prostate cancer patients are typically 

categorized into low, intermediate, or high risk for poor outcomes such as 

recurrence and death. Clinical factors such as Gleason Score (GS), serum 

prostate-specific antigen (PSA), and tumour stage help determine which risk 

group patients should fall under. Patients diagnosed with low-risk disease can be 

safely placed under watchful waiting, while those diagnosed with high-risk 

disease are candidates for more aggressive treatments such as radical 

radiotherapy, adjuvant hormonal therapy, or radical prostatectomy. Determining a 

prostate cancer patient's risk status using clinical models is a relatively 

straightforward task, but does not always predict long-term outcome (Sboner et 

al., 2010; Markert, Mizuno, Vazquez & Levine, 2011). This is especially the case 

in patients diagnosed with intermediate risk disease, which will be the focus of 

this study. The uncertainty of long-term outcome is problematic because it may 

lead to patients and healthcare providers opting for aggressive therapies when in 

actuality, a more conservative approach would have been more appropriate. Over-

treatment of indolent prostate cancer is a significant concern, as clinical trials 

have shown that up to 48 prostate cancer patients must be treated in order to 
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prevent a single prostate cancer related death (Schröder et al., 2009). Preventing 

over-treatment is difficult due to our limited ability to differentiate between 

indolent and aggressive tumours at the time of diagnosis, despite our established 

clinical methods. As mentioned above, there are three main predictive markers for 

prostate cancer outcome: tumour grade or GS, PSA levels, and tumour stage. Each 

marker is described below. 

1.3 PSA Testing 

 PSA is a serine protease secreted by the prostate in order to liquefy 

seminal fluid by digesting clotting proteins released by the seminal vesicles (Lilja, 

Ulmert, & Vickers, 2008). It is expressed by the KLK3 gene, which is located on 

human chromosome 19q13.3-13.4, a region that has been associated with prostate 

cancer risk (Cicek, Liu, Casey, & Witte, 2005).  

It is normal for trace amounts of PSA to be found in the blood where it 

holds no catalytic activity due to the presence of protease inhibitors. Changes in 

the prostate's size, architecture due to aging, infections, benign prostate diseases 

or cancer can cause excess PSA to leak into the circulatory system (Helfand et al., 

2013). For this reason, PSA screening is a tool used, in conjunction with other 

clinical factors, to indicate the presence of prostate abnormality and guide prostate 

cancer management. It is important to recognize the utility of PSA as a marker of 

prostate cancer, but also realize that there are confounding factors to using this 

marker. Normal levels of serum PSA are considered to be between 1.0 and 4.0 
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ng/ml, though studies have shown that advanced stages of prostate cancer can be 

found within normal values and, conversely, the absence of prostate cancer can be 

found in above-normal PSA values (Thompson et al., 2004). Low levels of PSA 

in advanced stages of prostate cancer are relatively rare (Lee et al., 2010; 

Leibovici et al., 2007).   

Elevated PSA levels can also be used as an indication of prostate cancer 

recurrence after treatment, which is referred to as an event called biochemical 

failure or biochemical recurrence (BCR). Although rising PSA levels after 

treatment are an established indication for recurrence, there are several definitions 

to describe BCR, which all vary on the threshold PSA value obtained one month 

after radical prostatectomy and the number of subsequent rises in PSA thereafter 

(Lilja, Ulmert & Vickers, 2008; Stephenson et al., 2006). A well-known and 

accepted definition for BCR was created by the American Society for Therapeutic 

Radiology and Oncology (ASTRO). In 1996, ASTRO held a consensus 

conference to generate a definition of BCR after external beam radiotherapy. The 

ASTRO definition states that PSA failure occurs after three consecutive PSA 

rises, with a failure date defined as the midpoint between the dates of the last 

nonmeasureable PSA value to the first rise great enough to provoke therapy (R.K. 

Institute, 1997). Houston and Vancouver definitions differ in elements such as the 

number of consecutive PSA rises post-nadir and the amount of time allowable 

between each rise (Pickles, Kim-Sing, Morris, Tyldesley, & Paltiel, 2003). A 

large randomized trial called the European Randomized Study of Screening for 
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Prostate Cancer (ERSPC) conducted in the 1990's investigated the effects of PSA 

testing on mortality rates from prostate cancer in 162,243 men. They found that 

the rate of prostate cancer death fell by 20% following the introduction of PSA 

screening, but was associated with a risk of over-diagnosis (Schröder et al., 2009). 

At this time, PSA testing is not currently recommended in Canada as a 

population-based screening test (Canadian Cancer Statistics, 2015).  

1.4 Gleason Score 

The Gleason Score (GS) was invented by Donald F. Gleason, a pathologist 

in the 1960's, in order to histologically grade prostatic carcinoma and predict 

patient prognosis (Gleason & Mellinger, 1974). A diagram of the original and 

current GS patterns is shown in Figure 1. Gleason pattern 1 refers to well 

differentiated, closely packed, uniform, medium-sized acini or glands, resembling 

normal prostate tissue. Gleason pattern 2 resembles Gleason pattern 1, though 

glands are more loosely arranged with minimal infiltration at the edge of the 

tumour nodule. Gleason pattern 3 consists of glands with ragged, poorly defined 

edges that are usually irregularly separated. Gleason pattern 4 includes fused 

microacinar glands, ill-defined glands and now include cribriform and 

glomeruloid patterns (as per the 2014 ISUP update). Gleason pattern 5 shows 

highly undifferentiated glands with central necrosis surrounded by papillary, 

cribriform, or solid masses.  
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The Gleason Scoring system works by adding together the most dominant 

pattern with the second most dominant pattern to yield a GS between 2 and 10. It 

is denoted as the primary pattern + secondary pattern, for instance, GS (3 + 5) 8. 

If only one pattern is found, it is deemed both the primary and secondary pattern. 

For example, a tumour containing only pattern 4 would be given a GS of (4 + 4) 8 

resulting in a tumour classified as GS 8 (Epstein et al., 2005).  

A tumour given a score between 2 and 6 is considered to be low risk for 

poor outcome, whereas a tumour given a score between 8 and 10 is considered to 

be high risk for poor outcome. A GS of 7 is classified as intermediate risk and can 

be further classified into GS 3 + 4 or 4 + 3. Although the GS has proven to be 

highly reliable in terms of recognizing tumour heterogeneity, it is limited in that it 

does not account for the multifocality of prostate cancer. Different tumour regions 

can have GS's that do not agree with the overall score. Despite this fact, many 

studies base their information on the largest tumour foci (Arora et al., 2004). In an 

untreated cohort of early stage prostate cancer patients, those diagnosed with GS 6 

had a 10 year survival of approximately 80% while patients with GS 8 or higher 

had a 10 year survival of 20-30%. Patients with GS 7 tumours had a 10 year 

survival of approximately 60% (Figure 7) (Sboner et al., 2010).  

In 2005, the International Society of Urological Pathology (ISUP) held a 

consensus conference on the Gleason Grading System in order to address 

inconsistencies and controversies that had arisen over the decades (Epstein et al., 

2005). A schematic of the 2005 changes can be found in Figure 2. These changes 
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were based on the increase in radical prostatectomy specimens which require the 

grading of multiple nodules within the same prostate, the current use of 

immunohistochemical staining, and newly described variants of adenocarcinoma 

such as ductal adenocarcinoma or pseudohyperplastic adenocarcinoma. In 2014, 

further changes were made to the scoring system that reclassified certain 

morphological patterns from Gleason pattern 3 to Gleason pattern 4 (Epstein et 

al., 2016). Furthermore, it was agreed upon that instead of a scoring system 

ranging from 2 – 10, a more straightforward system ranging from 1 – 5 would be 

used. This addressed the confusion arising from situations where GS 7 would be 

reported without differentiating between 3 + 4 and 4 + 3, and the fact that scores 

below GS 6 were virtually no longer assigned. This also addressed patients' 

reactions to hearing GS 6 which sounds more threatening that "low grade" or 

"Gleason Group 1". Table 1 details the new Gleason scoring patterns. These 

changes are expected to be used henceforth. In order to help with the transition in 

clinics, the new scoring system will be reported alongside the traditional Gleason 

Scores starting 2015 until it has become more widely utilized. For the purposes of 

this report, however, the previous version of the GS will be referenced.  

The above mentioned changes to the Gleason Scoring system had 

profound effects on the distribution of GS 6 and GS 7 tumours, since 

morphologies typically classified as pattern 3 became pattern 4. A study 

reviewing over 3000 radical prostatectomies, needle core biopsies, and TURP 

specimens found that after the changes implemented by ISUP in 2005, the number 
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of GS 6 cancers decreased from 48% to 22% while GS 7 cancers increased from 

26% to 68% (Huang et al., 2014). The revisions in 2014 included even more 

morphologies reclassified as pattern 4 instead of 3 and so presumably, the 

distribution has changed even more.  

In this study, diagnostic tumours graded as GS 6 prior to 2014 were not re-

graded using the new ISUP standard, which now consider glomeruloid glands and 

cribriforming, both regardless of morphology, as pattern 4 instead of 3 (Epstein et 

al., 2016). Had they been re-graded, the number of GS 7 tumours available for this 

study would likely be much larger since current standards for scoring would have 

reclassified many GS 6 cancers into GS 7. The GS 7 tumours obtained for this 

study were, however, re-graded using current standards to ensure that they were 

truly GS 7 tumours.  

1.5 Tumour Stage 

Tumour stage refers to the extent of prostate cancer spread at the time of 

diagnosis and is referenced using the tumour-node-metastasis (TNM) staging 

system. Approximately 75% of newly diagnosed prostate cancer patients present 

with localized disease (T1 or T2) (Cooperberg et al., 2004). PSA testing and 

tumour grade (GS) are detailed above. These three factors taken together are able 

to stratify patients into low, intermediate, and high risk of death from prostate 

cancer following surgery or radiotherapy (Table 2). Low risk patients can be 

safely followed with an active surveillance approach, though some patients opt for 
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prostatectomy (Klotz et al., 2010). High risk patients can receive radical 

radiotherapy and adjuvant hormonal therapy. Patients of intermediate risk disease 

are the most clinically heterogeneous group who are treated with either radical 

prostatectomy, radical radiotherapy, and adjuvant hormonal therapy (D'Amico et 

al., 2011).  

1.6 Cribriforming and Intraductal Carcinoma 

 As mentioned above, one significant change to the Gleason grading 

system in 2005 was re-classifying small and large cribriform glands. Cribriform 

patterns have been associated with adverse outcomes in GS 7 patients after radical 

prostatectomy (Kweldam et al., 2015). Although intraductal carcinoma is not a 

listed morphology in the Gleason scoring, it is associated with high GS, advanced 

tumour stage, BCR, and metastasis (Kweldam et al., 2015). One study 

demonstrated that cribriforming and intraductal carcinoma found in diagnostic 

biopsies are associated with worse disease-specific survival and that including the 

two statuses in a predictive model resulted in better prognostic capability 

(Kweldam et al., 2016). With this in consideration, cribriform and intraductal 

carcinoma statuses were also evaluated in our study.  

1.7 Prognostic Gene Signatures 

 Precision medicine is rapidly gaining attention in the field of healthcare, 

an approach whereby prevention and treatment are formulated in the context of 

the individual's molecular genetics or cellular composition (Collins & Varmus, 
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2015). One such example is the use of prognostic gene signatures in further 

differentiating patients based on the genetic profile of their tumour into different 

clinical outcome groups. For instance, a significant amount of research has been 

conducted on gene signatures for breast cancer (Sotiriou & Pusztai, 2009; 

Wirapati et al., 2008). In 2013, Prosigna's Breast Cancer Prognostic Gene 

Signature Assay was approved by the United States FDA, a test that measures the 

expression levels of 50 target genes in hormone receptor positive tumours to help 

predict risk of recurrence (Nielsen et al., 2014). Another prognostic and predictive 

gene signature in use for ER positive breast cancer is Oncotype Dx (Paik et al., 

2004). 

Studies focusing on developing gene signatures typically explore genes 

involved in key cancer biological capabilities, better known as the Hallmarks of 

Cancer (Hanahan & Weinberg, 2011). In the context of prostate cancer, many 

research groups have investigated and identified prognostic biomarkers for 

outcome. The phosphatase with tensin homology (PTEN) gene is a well-known 

and commonly studied tumour suppressor that negatively regulates the 

phosphatidylinositol 3-kinase (PI3K) signalling pathway (Stambolic et al., 1998). 

This pathway is known to drive cell proliferation and survival. Therefore, the 

absence of PTEN, allows for PI3K effectors such as protein kinase B (PKB, also 

known as AKT) to be activated and induce tumorigenesis (Cully, You, Levine & 

Mak, 2006). Alterations of PTEN have been observed in many different types of 

tumours and it is estimated to be involved in 30% of primary prostate cancers and 
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63% of metastatic prostate cancers (Wang & Dai, 2015). Cuzick et al. have 

investigated the prognostic value of PTEN loss in men with localized prostate 

cancer in predicting prostate cancer death and found that in a univariate analysis, 

PTEN loss was a significant predictor (HR: 3.51; p<0.05) (2013). It also proved to 

be a significant predictor in a multivariate analysis with GS and PSA levels; 

however, these results were only reflective of men with low risk prostate cancer, 

defined in this study as GS 6 or below, low PSA levels or low Ki-67 staining. 

Ding et al. investigated a gene signature consisting of four genes which 

demonstrated that PTEN, in conjunction with SMAD4, SPP1, and cyclin D1 were 

prognostic for lethal metastasis and BCR (2011). Recently, a meta-analysis of 

somatic copy number alterations in prostate cancer patients demonstrated an 

association between PTEN deletion and higher levels of overall genomic 

alterations (Williams, Greer & Squire, 2014). This suggests that PTEN may have 

a role in the genetic integrity of other regions of the genome.  

TMPRSS2 and ERG are often studied concurrently since fusion occurs 

frequently between the two genes on chromosome 21 in prostate cancer (Tomlins, 

2008). Found in approximately 50% of prostate cancer patients, the 

TMPRSS2:ERG fusion gene causes significant up-regulation of the ERG pathway 

which accelerates prostate cancer growth by increasing cell invasion and 

inhibiting prostate epithelial differentiation (Shah & Chinnaiyan, 2009; Yin et al., 

2011). The TGF-β/SMAD3 signaling pathway plays a significant role in 

regulating normal and cancerous prostate cells through proliferation, 
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differentiation and apoptotic processes. Fang et al. were able to demonstrate that 

increased activity of ERG due to fusion with TMPRSS2 induced transcriptional 

activity of TGF-β/SMAD3 pathway by stabilizing the phosphorylated SMAD3 

protein (2014). Since the TMPRSS2:ERG gene fusion is so common in prostate 

cancer, one study attempted to find associations between the fusion gene and 

clinical or pathological characteristics that may assist in predicting prognosis 

(Krstanoski et al., 2016). Using FISH analysis on 148 prostate cancer patients, it 

was found in 42% cases, but had no association with age, preoperative PSA 

levels, or GS, which was also reflected in other studies (Magi-Galluzzi et al., 

2011; Pettersson et al., 2012); however, TMRPSS2:ERG fusion was reported to 

be significantly associated with stage 3 tumours. Though it cannot be conclusively 

said that this fusion gene can predict prognosis, it may be an asset when used in 

conjunction with other genes such as in a gene signature. 

Research groups interested in developing gene expression signatures often 

analyze microarray datasets from watchful waiting studies in order to ascertain 

associations between patients' molecular signatures and their clinical outcomes. 

Markert et al. recognized that some patients with a lower risk GS such as 6 or 7 

still developed aggressive disease and experienced poorer survival outcomes than 

expected (2011). As a result, Markert et al. examined three published prognostic 

gene signatures: 1) the embryonic stem cells (ESC) signature, 2) the induced 

pluripotent stem cells (iPSC) signatures, and 3) the polycomb repressive complex-

2 (PRC2), and applied them to two independent datasets: a cohort of the SWW 
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(n=281) and the Memorial Sloan-Kettering cohort (n=150). They reported that 

tumours with a high expression of ESC genes were associated with poor survival 

and high GS tumours, while tumours with a high expression of PRC2 genes 

tended to be found in low GS tumours. When the researchers included the status 

of p53 and PTEN along with the above mentioned signatures, they found even 

more striking results. Patients undergoing watchful waiting with tumours 

expressing ESC genes and absence of p53 and PTEN had a 3.2-fold increased 

mortality risk compared to patients in other groups. This trend was also reflected 

in GS 6 or 7 patients, but at 2.7 times increased risk for mortality.  

A discovery study attempted to examine the gene expression profiles of 

6100 genes for patients in the Swedish Watchful Waiting cohort (Sboner et al., 

2010). They were unable to determine a molecular model that performed 

significantly better than established clinical models to differentiate patients who 

died of cancer from patients who survived more than 10 years without metastasis. 

This study did report one significant association, ERG rearrangement, with 

lethality. Studies conducted prior to 2012 published promising results, but like 

many subsequent gene expression signature studies in prostate cancer, they lacked 

the necessary level of power  or were not able to demonstrate clear superiority 

over established clinical factors (Penney 2011; Best 2003, Lapointe 2004; Singh 

2004; True 2006). 

In order for prognostic gene signatures to transition into a robust clinical 

assay, their prognostic capabilities must be analytically validated to provide 
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reproducible, accurate results, predict clinically relevant end points, and 

demonstrate equal performance quality for many patient types (Cullen et al., 

2014). While the above mentioned studies have presented promising results that 

aid in our understanding of molecular genetics and tumour progression in prostate 

cancer, only a few have led to the development of a robust clinical assay that has 

been approved for clinical use. A study conducted by Klein et al. investigated a 

17-gene assay to predict prostate cancer aggressiveness which involved testing the 

multi-gene expression signature on retrospectively collected needle biopsies of 

low to intermediate risk prostate tumours (Klein et al., 2014). The outcome 

measures of this study include clinical recurrence, prostate cancer death, and 

adverse pathology at prostatectomy. It was reported that the assay was able to 

improve prediction of BCR after radical prostatectomy as well as discrimination 

between high-grade and low-grade prostate cancer patients undergoing active 

surveillance. A similar study conducted by Cullen et al. also investigated the same 

17-gene assay on its ability to associate gene expression with biochemical and 

metastatic recurrence for low to intermediate risk prostate cancer (Cullen et al., 

2014). This study reported that the assay was able to predict time to BCR, 

metastasis and adverse pathology after radical prostatectomy for patients with 

Gleason pattern ≥4. As a result, a commercially available assay developed by 

Genomic Health, named OncotypeDX Prostate, was introduced. The OncotypeDX 

Prostate test is a multi-gene RT-PCR expression assay developed for formalin-

fixed paraffin embedded (FFPE) prostate needle-core biopsies that measures the 
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expression of 17 signature genes, 12 of which are cancer-related genes associated 

with stromal response pathways, androgen signaling pathways, and a proliferation 

pathway. The remaining 5 genes are housekeeping genes. The test is available for 

recently diagnosed prostate cancer patients who fall under low risk or 

intermediate risk, meeting the criteria outlined in Table 3.  

Two other genetic tests are available for prostate cancer patients. Myriad 

Genetics offers a commercially available FDA-approved prostate test called 

Prolaris which evaluates the expression of cell cycle progression genes. 31 cell 

cycle progression genes and 15 housekeeping genes are tested using qRT-PCR to 

produce a final cell cycle progression score. This score was found to be highly 

predictive for BCR and prostate cancer-specific mortality in radical prostatectomy 

patients and prostate cancer-specific mortality after a median follow-up time of 

almost 10 years in active surveillance patients (Bishoff et al., 2014). Prolaris is 

available to patients who are diagnosed with very low risk or low risk disease, 

which are typically characterized by a GS ≤ 6, tumour stage ≤ T2a, and PSA ≤ 

10ng/mL. Decipher, developed by GenomeDx Biosciences Inc., is another genetic 

test available to prostate cancer patients, though it has not been FDA-approved. It 

examines the expression levels of 22 genes associated with cell proliferation and 

differentiation, cell structure, adhesion and motility, cell cycle progression, and 

mitotic processes, and can be performed on FFPE tissue from radical 

prostatectomies. It was reported that Decipher is able to predict BCR and 

metastasis after radical prostatectomy, but only in higher risk disease (Erho et al., 
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2013). A summary of the above-mentioned information on prostate cancer genetic 

tests can be found in Table 3 and Table 4. Clearly, there are available genetic 

tests for low risk and high risk prostate cancer patients, but an absence of a 

clinically validated, FDA-approved test specifically for intermediate risk, GS 7 

patients.  
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RATIONALE 

 

 Our interest is in intermediate risk, GS 7 patients; that is, patients with GS 

7 tumours confined to the prostate with low circulating levels of PSA (<100 

ng/mL). GS 7 is the second most frequently diagnosed score in prostate cancer 

patients, accounting for approximately 40% of all incident prostate cancers. 

Patients with intermediate risk prostate cancer are a heterogeneous cohort in that it 

is difficult to determine their prognosis. One study found that approximately 60% 

of these patients are expected to have excellent long-term outcome, but the other 

40% will recur despite optimal current treatment (Sboner et al., 2010). The 

difficulty in differentiating intermediate risk patients likely to recur from those 

likely to have indolent disease can lead to over-treatment and subsequently, 

significant patient morbidity. Much work has been conducted on furthering our 

understanding of prostate cancer and finding biomarkers for outcome to better 

stratify prostate cancer patients. Although many are in development, there is 

currently no prognostic gene signature or clinical assay available to stratify GS 7 

patients to allow for more appropriate treatment.  
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BACKGROUND - PROGNOSTIC GENE SIGNATURE DISCOVERY 

 

Our lab is interested in addressing the need for a prognostic gene signature 

to reduce over-treatment of prostate cancer patients. To develop this gene 

signature, Dr. Robin Hallet, a post-doctoral fellow in the Hassell lab, conducted 

the initial discovery phase experiments in silico to identify potential prognostic 

gene signatures of interest. Three gene signatures were derived from publically 

available gene expression profiles of the SWW cohort. This study was conducted 

in Örebro and South East Health Care Regions of Sweden from 1977 to 1999 and 

involved over 1,200 prostate cancer patients undergoing watchful waiting. Dr. 

Hallet's signature was based on the gene expression profiles of a small cohort of 

the SWW patients studied (Sboner et al., 2010). This was a cohort of 281 patients: 

83 patients with GS 6 tumours, 117 patients with GS 7 tumours and 81 patients 

with GS 8-10 tumours. Up to 30 years of clinical follow-up information was 

available, all patients had prostate-localized disease at diagnosis (T1-T2) and all 

were followed by observation alone. The dataset can be downloaded on NCBI's 

gene expression omnibus using the keyword "Swedish Watchful Waiting prostate 

cancer progression". 

In the first signature, termed the Genomic Grade Index (GGI), the top 25 

genes, identified using a PAM algorithm, were associated with either low risk GS 

6 (n = 83) patients and high risk GS 8 to 10 patients (n = 81). 10-fold cross 

validation was utilized. GS 7 tumours were not included in the identification of 

this signature. This signature was then tested on the GS 7 patients (n = 117) and it 
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was found to be significantly associated with good outcome (HR: 1.9; 

*p=0.0054). The results are found in Figure 3. 

The second approach, termed the Lethal Gene Score (LGS), consisted of 

the top 25 genes that differentiated between indolent and lethal disease within 

only GS 7 patients. Patients with indolent disease (n = 22) were defined as those 

who were alive and well 10 years after diagnosis, while patients with lethal 

disease (n = 6) were defined as those who died within 2 years of diagnosis. The 

prognostic power of the LGS was tested on the remaining 89 GS 7 patients who 

were not included in the initial analysis and it was found to be significantly 

associated with good outcome (HR: 1.7; *p < 0.025). The results are found in 

Figure 4.  

Taken together, it was found that the GGI and the LGS led to improved 

prognostic stratification of GS 7 tumours (HR: 2.7; *p<0.0001). As shown in the 

Figure 5, the 10 year survival of high risk GS 7 patients was approximately 30% 

while low risk GS 7 patients was approximately 70%. This was reflected in both 

GS 4 + 3 patients and GS 3 + 4 patients. The combined signature will henceforth 

be referred to as GGI+LGS. 

An additional analysis was conducted on the GS 7 patients of the SWW 

cohort using a network-based approach. Network-based medicine is a concept 

introduced by Barabasi and Albert that applies the understanding of complex 

interactions in diverse systems, such as computers, to the field of medicine and 
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genetics. In his publication in 1999, he noted contemporary science's difficulties 

in describing systems composed of enormous amounts of proteins and genes and 

the chemical interactions between them (Barabasi & Albert, 1999). He proposed 

that despite having a wealth of knowledge about individual cellular components, 

the key to understanding diseases and functional abnormalities lies in 

understanding the complex interactions between proteins, nucleic acids, and other 

small molecules. Furthermore, he proposed that the manifestation of disease 

phenotypes were unlikely the result of abnormalities found in single genes and 

more likely a result of the malfunction of biological components interacting with 

each other in a complex network. In addition, by using a network-based approach 

that accounts for the interactions of gene products, the potential for noise and false 

positives is decreased (Barabasi, Gulbahce, & Loscalzo, 2010). As a result, Dr. 

Hallet used a network-based approach to determine additional genes that might be 

prognostic in a cohort of GS 7 SWW patients (n = 177), utilizing tumour scores 

obtained using Illumina K6 DASL gene expression technology. To identify 

prognostic genes, a univariate cox-regression analysis was conducted on each 

oligonucleotide probe comprising the 6K gene panel. 366 probes were identified 

that were significantly associated with outcome in the GS 7 cohort of patients 

(p<0.05), and subsequently mapped as nodes onto the human functional protein 

interaction network (Reactome). 88 genes were found to be significantly 

associated with outcome, consisting of 10 distinct network modules (Wu, Feng, & 

Stein, 2010). Each module contained between 7 to 10 genes which corresponded 
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to a specific biological pathway. A univariate cox-regression analysis on each 

separate module demonstrated that each one was significantly associated with 

patient outcome (Table 5). Taken together, it was found that the mean of the 10 

individual module scores demonstrated even better prognostic capabilities than 

each individual module. Using these 88 genes, it was found that GS 7 patients 

were accurately stratified into high risk and low risk groups resembling the 

survival curves of low risk GS 6 and high risk GS 8 patients respectively (Figure 

6). The prognostic capacity of the network gene signature was then tested in silico 

on patients of the Mayo Clinic cohort, a study which also examined the gene 

expression profiles of 545 patients with early stage prostate cancer with a median 

follow-up time of 16.9 years (Erho et al., 2013). Similar results were obtained in 

that GS 7 patients were accurately stratified into a group at high risk for poor 

outcome and a group at low risk for poor outcome. Those patients deemed high 

risk GS 7 by the signature had outcomes that resemble patients with GS 8 tumours 

while those patients identified by the signature as low risk had outcomes that 

resembled those patients with GS 6 tumours.  

With these encouraging results, we hope to validate the strength of our 

signature genes in the FFPE tumour tissue of prostate cancer patients. For both the 

GGI and the LGS signatures, 24 of the 25 genes were ultimately selected for 

NanoString analysis; code sets were unable to be made for one gene from each 

signature. Although there were no common genes between the GGI and the LGS, 

both signatures contained 4 genes that were also found in the Network signature. 3 
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additional genes were also included in the analysis: PTEN, TMPRSS2, and ERG, 

and 6 housekeeping genes were used. In total, our prognostic gene signature 

consists of 141 genes.  
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OBJECTIVES 

 

The in silico discovery phase has identified 3 gene signatures that have 

demonstrated an ability to divide intermediate risk prostate cancer patient samples 

into more prognostically relevant subgroups. By improving prognosis, treatment 

plans that are better suited for individual patients can be pursued. Promising 

assays that are commercially available have been recently developed to improve 

stratification for low-risk GS prostate cancer; however, no such assay exists for 

patients with intermediate risk, GS 7 tumours. 

The objective of this work is to prospectively validate our prognostic gene 

signatures, discovered by Dr. Hallet, which collectively consist of 141 genes using 

a retrospective cohort of prostate cancer patients on whom long term follow-up 

data is available. The 141 genes will be tested on intermediate risk, GS 7 prostate 

cancer patients enrolled in the National Cancer Institute of Canadian Clinical 

Trials Group (NCIC-CTG) PR5 randomized trial, with the expectation that it will 

be able to stratify this patient population into a group at high risk and a group at 

low risk for biochemical and metastatic recurrence. These objectives will be met 

by: 

1. Collecting FFPE tumour samples from various Ontario heath care 

centres 
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2. Rescoring samples' H&E slides to confirm GS and obtain additional 

pathological information (presence of cribriforming, intraductal 

carcinoma, etc.)  

3. Perform RNA extraction 

4. Perform NanoString nCounter analysis on previously identified (n=141) 

genes  

5. Test prognostic capacity of gene signatures against each other and 

against clinical information obtained from tumour samples and clinical 

trial notes  

  



M.Sc. Thesis – B. Li; McMaster University – Medical Science.  

25 
 

METHODS 

 

5.1 The PR5 Trial and Accrual of FFPE Samples 

 The PR5 trial was a prospective randomized trial conducted between 1995 

and 1998 in 8 Ontario regional cancer centres and 8 additional Canadian centres, 

coordinated by the Ontario Clinical Oncology Group and the NCIC-CTG (Lukka 

et al., 2005). It investigated two different fractionation schedules for patients with 

localized prostate cancer. A total of 936 men with early stage (T1 or T2) prostatic 

adenocarcinoma were randomized into either 66 Gy in 33 fractions over 45 days 

or 52.5 Gy in 20 fractions over 28 days. Clinical follow-up information on all 

patients was collected until 2008, resulting in a median follow-up of over 12 

years.  

The primary outcome of this trial was biochemical failure which was 

defined as any one of the following events: PSA failure as outlined by the 

Houston definition, clinical evidence of metastasis (local and/or distant), 

commencement of hormonal therapy, or death due to prostate cancer. Low, 

medium, and high risk GS patients were included in this study ranging between 

GS 2 to GS 9. Patients were excluded if they presented the following: a PSA level 

of more than 40 ng/ml, previous therapy for prostate carcinoma (other than 

biopsy), or prior or active malignancy not including non-melanoma skin cancer, 

colon cancer, or thyroid cancer treated at least 5 years before the trial and 

presumed cured. After treatment, patients were examined at 4 weeks, 6 months, 
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and every 6 months thereafter. Each visit included an update on medical history 

and physical examination with a digital rectal exam (DRE). PSA levels were 

measured starting at the first 6-month post-treatment examination. FFPE blocks 

were obtained from the diagnostic core biopsies from each patient.  

260 patients with GS 7 intermediate risk prostate cancer from the PR5 trial 

were chosen for this study. These patients’ original diagnostic prostate core 

biopsy samples were housed in their original pathology departments of their host 

institutions and not centrally collected as part of the trial protocol; thus, a 

significant amount of time for the purposes of this study was dedicated to 

collection of these tissue samples from approximately 30 health care institutions 

across Ontario. The REB at Hamilton Health Sciences approved the collection of 

FFPE prostate biopsy blocks from the PR5 trial. In addition, 15 health care centres 

requested submission of a separate application specific to their REB. 

5.2 Rescoring H&E slides 

An H&E stained slide was made from each FFPE block and scored by the 

study pathologist, Dr. Anita Bane. The following information was obtained from 

each slide: GS (if GS 7, whether it was GS 3+4 or 4+3), type of biopsy (needle-

core biopsy or TURP), number of cores containing tumour, length (mm) of 

tumour tissue involved per core, percentage of biopsy area containing tumour, 

presence of cribriforming, presence of intraductal carcinoma, and whether cores 

displayed discontinuation greater than 5 mm. Scoring was done using the updated 
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2005 ISUP Gleason Grading System. It should be noted that some health care 

centres did not allow the release of FFPE blocks, but agreed to provide H&E 

slides and sections. A copy of our sectioning protocol was provided to those 

centres to follow.  

5.3 RNA Extraction 

Four different RNA extraction kits from Roche, Qiagen, Promega, and 

NanoString were compared for their ability to extract the highest amount of RNA 

from test samples of prostate and breast FFPE tissue. Based on the results shown 

in Figure 9, Promega's ReliaPrep
TM

 kit was chosen for this study. As previously 

mentioned, the top slide was stained with H&E and scored by the study 

pathologist. During this scoring step, tumour areas were measured and marked. In 

most cases, 10 sections at 5 μm thickness were obtained from each prostate FFPE 

block for RNA extraction. In others, specifically blocks containing less than 3 mm 

in length of tumour, 12 sections of similar thickness were obtained to account for 

anticipated low levels of extracted RNA.  

RNA extraction was conducted in an RNAse-free environment. Tumour 

tissue was manually dissected from unstained slides using an RNase-free razor 

blade and placed in a microcentrifuge tube. Typically, RNA extraction protocols 

for FFPE tissue include a primary step in which paraffin is dissolved from the 

tissue. In accordance with Promega's ReliaPrep
TM

 kit, the majority of the excess 

paraffin was manually removed, but trace amounts were added along with tumour 
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tissue into the microcentrifuge tube, which was filtered out in later steps. RNA 

concentrations were determined using BioDrop. The majority of samples were 

normalized to 13 μL containing 250 ng of RNA for NanoString analysis. In some 

cases, it was not possible to meet the 250 ng of RNA even when additional 

sections were included; however these samples of lower RNA yield fell within the 

recommended minimum range of volume for successful NanoString analysis 

(between 150-200 ng). A260/280 levels were also determined using BioDrop. 

RNA A260/280 values greater than 1.8 are considered to be an indication of high 

RNA purity (Boeckx et al., 2011; Fleige & Pfaffl, 2006). A small number of 

samples were analyzed using the Bioanalyzer to examine RIN values and 

nucleotide length.   

5.4 NanoString Analysis 

 Moved to discussion section ---->   For every gene target of interest, two 

50 base sequences are made that are complementary to a 100 base target region. 

The first 50 base pairs are covalently linked to a biotin molecule and is called the 

capture probe. The other pair is covalently linked to a colour-coded molecular bar 

code and is called the reporter probe. A solution-based hybridization is formed in 

the presence of excess probe in order to pair up the two probes with the target of 

interest. Up to 800 probe pairs can be formed in a single reaction. The hybridized 

complexes are purified via an automated liquid handling robot and bound to a 

streptavidin surface for imaging. The hybridized complexes are elongated and 

immobilized in order to be read by the digital analyzer. The scanner then 
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individually counts the number of bar codes hybridized to a single RNA or DNA 

molecule. Since there is no amplification process, a single molecule is equal to a 

single count. This allows for a high degree of precision and sensitivity over a 

large dynamic range. A final sample size of 75 was obtained, consisting of 

samples that were not flagged for content normalization. 

5.5 Test Prognostic Gene Signatures 

 The primary interest of this project is the prognostic capacity of the 

GGI+LGS and the Network signature to predict BCR or metastatic event. 

Specifically, it would be interesting to know which of the two signatures are 

superior. In addition, which of the 2 components that makes up the GGI+LGS is 

superior and which of the 10 components that make up the Network signature is 

superior. A univariate cox regression analysis will be conducted to determine any 

association between gene expression and hazard for BCR or metastatic event. 

 The secondary interest of this project is whether morphological 

information obtained from scoring H&E slides is superior for predicting BCR or 

metastatic event. A univariate cox regression analysis will be conducted to 

determine any association between tumour length and poor outcome. A chi-

squared test of independence will be conducted to determine whether GS or the 

presence of cribriforming or intraductal carcinoma is associated with poor 

outcome. Furthermore, it would be interesting to know whether the addition of 

well-studied prostate cancer genes such as PTEN, TMPRSS, and ERG could 
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enhance the prognostic capacity of our established gene signatures, since many 

studies have alluded to their importance in prostate cancer development. Although 

these three genes were not included in the initial in silico discovery phase, they 

were added to the NanoString nCounter analysis and are included in the total 141 

tested genes. A univariate cox regression analysis will be conducted to explore the 

above. A summary of the primary and secondary questions can be found on the 

following page.  
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Primary Questions 

1. Is the GGI+LGS signature able to accurately predict patients at a high risk 

for BCR or metastatic event? 

2. Is the Network signature able to accurately predict patients at a high risk 

for BCR or metastatic event? 

3. Which of the two, between the GGI and the LGS, is able to accurately 

predict patients at a high risk for BCR or metastatic event?  

4. Which of the 10 individual modules that make up the Network signature is 

able to accurately predict patients at a high risk for BCR or metastatic 

event.  

Secondary Questions 

1. Is the predictive capacity of the GGI+LGS improved when combined with 

the Network signature? 

2. Is the predictive capacity of the GGI+LGS or Network signature improved 

when combined with PTEN, TMPRSS, and ERG? 

3. Is the predictive capacity improved if both signatures together are 

combined along with PTEN, TMPRSS, and ERG?  

4. Is GS superior to our gene signatures when predicting BCR or metastatic 

event? 

5. Is the presence of cribriforming and intraductal carcinoma associated with 

patients at a higher risk of BCR or metastasis? 
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6. Is the total length of tumour measured on a needle core biopsy associated 

with outcome? 
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RESULTS 

6.1 Accrual and Data Collection 

 

27 Ontario healthcare centres were contacted, 15 of which required re-

approval from their respective REB's. Clinical follow-up information was 

collected from each case which included date of birth, date of first consultation, 

date of BCR, date of metastasis, and date of death. Due to technical difficulties, 

not all healthcare centres were able to locate or deliver the blocks required. It was 

conservatively estimated that we would amass a total of 60% (n = 156) of the 260 

GS 7 patients enrolled in the PR5 trial. A final total of 132 FFPE blocks were 

recovered from the associated Ontario health care centres.  

12 patient blocks were found to have an ineligible GS, either less than or 

greater than a GS of 7. 9 cores did not contain any viable prostate tissue for 

analysis. 27 samples did not contain adequate amounts of RNA within the range 

of 150-200 ng required for NanoString analysis. 9 samples were flagged by 

NanoString’s nCounter software for failing to meet normalization criteria. A final 

total of 75 samples containing enough GS 7 tumour tissue for RNA extraction and 

analysis through NanoString were obtained. Accrual results are illustrated in 

Figure 8.  

Each H&E slide was scored by the study pathologist. Regions of tumour 

were circled for RNA extraction and additional pathological characteristics were 

recorded. Examples of scored slides are shown in Figure 12. 3 of the 75 samples 
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were TURP biopsies instead of needle-core, but were nonetheless included for 

RNA extraction and subsequent analysis. Tumour length ranged from 1 mm to 48 

mm. Samples containing much smaller amounts of tumour compared to others, 

such as those with 3 mm or less, were given two additional sections when possible 

to compensate for expected lower RNA extraction values. This was not done if the 

additional sections would exhaust all tissue in the FFPE block. Full results of 

rescoring are outlined in Table 3. 24 cases of cribriforming and 4 cases of 

intraductal carcinoma were found. Examples of each morphology are illustrated in 

Figure 13 and Figure 14. Gleason Grade 3 and Gleason Grade 4 morphologies 

are illustrated in Figure 15.  

RNA extraction was completed using the Promega ReliaPrep
TM

 kit. 

Quantity and quality of RNA was examined using BioDrop. The average 

concentration of RNA extracted was 38.67 ng/µL at a standard deviation of 28.43 

ng/µL. The integrity of the RNA, established using the A260/280 value, was an 

average of 1.85 with a standard deviation of 0.06. Full results of the extraction are 

outlined in Table 7. 12 test samples were analyzed using the Bioanalyzer and 

results can be found in Figure 11. As expected, RIN values were found to be 

extremely low; however, high RIN values are not required for a successful 

NanoString analysis. The average percentage of RNA molecules greater than 300 

base pairs was 22.5%. Despite these suboptimal values, NanoString analysis can 

proceed because concentration values were met, at a reasonably and consistently 

high purity level. Samples were stored in –80 degrees Celsius and transported to 
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the Farncombe Metagenomics Facility at McMaster University for NanoString 

analysis.  

6.2 Data Analysis – Normalization 

NanoString results are viewed on NanoString’s nCounter software. 

nCounter’s first normalization step involves normalizing all gene expression 

values to an External RNA Control Consortium positive control in order to assess 

technical performance. Typically, 6 different positive controls are spiked into the 

experiment. It is expected to see decreasing counts starting from Positive Control 

A to Positive Control F. Negative controls should contain uniformly low counts, 

as observed. A table of the data at a log10 based scale is shown below in Figure 10 

which reflects the obtained results. The geometric means of the positive control 

values were calculated for each sample which was then used to calculate a 

normalization factor. This factor was then applied to each gene expression value 

obtained in the experiment, including housekeeping genes.  

The second step involves normalizing all gene expression values to the 

housekeeping genes which involved the same mathematical process of taking the 

geometric mean of each sample's expression values to calculate a normalization 

factor. This factor was then applied to each gene expression value obtained in the 

experiment. The expectation is that housekeeping genes will be uniformly 

expressed in all tissue types since these genes are responsible for basic cell 

maintenance. Recent studies conducted on the utility of housekeeping genes, 



M.Sc. Thesis – B. Li; McMaster University – Medical Science.  

36 
 

particularly a common one such as GAPDH, have found variability of their 

expression levels which puts into question their use in gene expression analysis 

(Eisenberg & Levanon, 2013); however, this variability was observed across 

different types of tissue, not within the same type. It is recommended that 

combinations of genes are used as a reference (Sharan, Vaiphei, Nongrum, 

Keppen, & Ksoo, 2015). It is acceptable that in this study, our housekeeping 

genes are used because the only tissue type in question is prostate tissue. 

Expression values were graphed and can be found in Figure 16 which 

demonstrates that there was uniform expression of housekeeping genes across all 

75 samples. Once normalized gene expression values were obtained, all data was 

then log2-transformed in order to decrease the range of expression levels which 

expanded over several orders of magnitude (Kreil & Russell, 2005).  

6.3 Data Analysis 

Data was analyzed using the SPSS Statistics software, PASW Statistic 18. 

A univariate cox regression analysis was conducted to explore the utility of our 

gene signatures in predicting BCR or metastatic event. Significance was 

established at p-values < 0.05. Statistical results of the analysis for primary and 

secondary questions can be found in Table 8 and Table 9.  

 An examination of the primary questions showed that when taken 

separately, the expression values of the GGI+LGS signature were significantly 

associated with outcome (HR: 0.100; *p=0.002; 95%CI: 0.024-0.427) while the 

expression values of the Network signature were not (HR: 0.306; p=0.155; 
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95%CI: 0.060-1.563). Each signature was subsequently broken down into its 

components and analyzed. From the GGI+LGS, a significant prognostic 

association was found between the GGI signature and outcome (HR: 0.178; 

*p=0.000423; 95%CI: 0.068-0.465) suggesting that each unit increase of GGI 

expression is associated with an 82.2% decrease in hazard for poor outcome. 

When the Network signature was separated into its 10 modules, 3 modules were 

found to be statistically significant for their ability to predict outcome. M1, 

consisting of epigenetic genes, was associated with 49.4% decreased hazard for 

poor outcome when highly expressed (HR: 0.506; *p=0.006; 95%CI: 0.311-

0.824). M3, consisting of genes related to TGF-β, integrin, growth factor receptor 

signaling, was associated with a 45.4% decrease in hazard for poor outcome when 

highly expressed (HR: 0.546; *p=0.006; 95%CI: 0.354-0.844). M7, consisting of 

genes related to epigenetics, was associated with a 72.2% increase in hazard for 

poor outcome when highly expressed (HR: 1.722; *p=0.013; 95%CI: 1.124-

2.638). 

 Secondary questions addressed the utility of our gene signatures if 

signatures were combined or altered and if clinical factors were superior to gene 

signatures for prognosis. A combined signature of both the GGI+LGS and the 

Network signature yielded a statistically more significant result compared to when 

they are taken separately (HR: 0.022; *p=0.002; 95%CI: 0.002-0.216). The 

addition of well-studied prostate cancer genes such as PTEN, TMPRSS, and ERG 

did not improve the utility of either gene signatures, taken separately (Network – 
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HR: 0.821; p=0.220; 95%CI: 0.599-1.126) (GGI+LGS – HR: 0.808; p=0.179; 

95%CI: 0.592-1.103) or together (HR: 0.762; p=0.162; 95%CI: 0.520-1.115). 

Clinical factors were also examined for their prognostic capacity. GS, either 3 + 4 

or 4 + 3, was not found to be significantly associated with outcome (HR: 1.090; 

p=0.806; 95%CI: 0.546-2.177). Total tumour length was found to be associated 

with a greater risk for poorer outcome (HR: 1.044; *p=0.020; 95%CI: 1.007-

1.082). A chi-squared test for independence was conducted to examine whether 

the presence of cribriforming and intraductal carcinoma is associated with a 

higher hazard for outcome. No significant association was found for cribriforming 

(χ
2
=0.874; p=0.457) or intraductal carcinoma (χ

2
=0.705; p=0.622). Figure 18 – 

22 outline the average expression levels of all signature genes, categorized by 

their respective signatures.   
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DISCUSSION 

This study was designed to investigate the capacity of our pre-established 

prognostic gene signatures for predicting BCR or metastatic event in GS 7 

prostate cancer patients using their archival, diagnostic FFPE tissue. A total of 

141 genes were analyzed using NanoString technology. Pathologic tumour 

variables were also explored for their prognostic capacity. Table 10 outlines all 

genes involved and Table 6 outlines the morphological results from slide review 

and GS.  

The principal finding of this study was that the gene expression levels of 

the GGI+LGS were associated with BCR or metastatic event (HR: 0.100; *p = 

0.002). Each unit increase of the average expression of GGI+LGS genes led to a 

90% decrease in risk for poor outcome. The GGI signature (HR: 0.178; *p = 

0.000423) had a greater contribution to the GGI+LGS’s predictive capacity than 

the LGS signature (HR: 0.595; p = 0.362), demonstrating that for every unit 

increase of average expression of GGI genes, there was an 82.2% decrease in risk 

for poor outcome. As shown in Figure 18, the top two most highly expressed 

genes were PTTG1 and DYNC1I1.  

PTTG1 overexpression is typically associated with endocrine-related 

tumour formation and metastasis, though its downstream effects are still being 

investigated (Lin et al., 2015; Castilla et al., 2014). In a normal cell, expression of 

PTTG1 is only up-regulated during an active cell cycle, which suggests its 
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involvement in cellular proliferation. The exact molecular mechanisms of how 

PTTG1 promotes proliferation are still not fully understood although there is 

some evidence that PTTG1 is linked to TGF-β signalling pathways through 

downstream regulation of SMAD3 (Huang et al., 2014). Many studies have 

observed its oncogenic effects when overexpressed; however it is also known to 

be involved in DNA damage repair, apoptosis, and angiogenesis (Castilla et al., 

2014). In fact, PTTG1’s overexpression has been linked to both promotion and 

inhibition of apoptosis (Vlotides, Eigler & Melmed 2007). Based on our results, it 

seems that PTTG1 overexpression contributes to an overall protective effect in 

our cohort of patients, which is contrary to evidence suggesting that it is a key 

player in cancer growth models. One study found that high PTTG1 protein levels 

were associated with higher apoptotic induction in a prostate cell line, but only 

after paclitaxel treatment (Castilla et al., 2014). It is reasonable to hypothesize that 

the consequences of high PTTG1 protein levels are dependent on additional 

factors, such as the progression of mitosis. When it is stopped due to the presence 

of mitosis-interrupting treatments, high PTTG1 levels may then induce the cell to 

undergo apoptosis rather than cellular growth when mitotic function is normal. 

This ideal environment where one is able to observe PTTG1’s protective effects 

may well be found in the tumours of the PR5 patients who were treated with 

radiation. Cellular growth can be halted when cancer cells are radiated, either 

through the production of free radicals which damage DNA or through direct 
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DNA damage. This would provide the right conditions for PTTG1 to illicit its 

apoptotic effects.  

DYNC1I1 is one of several protein coding genes that are involved in the 

linkage of a motor protein, cytoplasmic dynein, to other intracellular components. 

Together, they contribute to intracellular transportation via cellular microtubules 

and organelle positioning. Cytoplasmic dynein also plays an essential role during 

cell division including centrosome separation and spindle positioning 

(Raaijmakers & Medema, 2014). Although the current literature lacks studies 

conducted directly on cytoplasmic dynein’s role in prostate cancer development 

and progression, one study has suggested that spindle and nuclear movement are 

impaired in cancer cells (Bierle et al., 2015). Another interesting study on 

cytoplasmic dynein 1 examined its mechanism of action on a known anti-tumour 

molecule, Amblyomin-X, a protein isolated from the salivary glands of a tick. 

Amblyomin-X is able to inhibit proteasomes, leading to pro-apoptotic effects and 

decreased tumour growth. The study found that cytoplasmic dynein was a 

significant contributor to Amblyomin-X uptake into human tumour cell lines and 

delivery to its primary target, the proteasome (Pacheco et al., 2015). These studies 

suggest that DYNC1I1 may play an important role in maintaining the integrity of 

intracellular and nuclear dynamics, which may allow for normal processes such as 

proper mitosis and apoptosis to occur. Furthermore, maintaining such dynamics 

may be conducive to the delivery of important cancer treatments, perhaps ones 

that resemble the chemical structure of Amblyomin-X.  
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It is important to note that the success of a prognostic gene signature is 

dependent on the sum of all signature genes rather than the individual genes 

themselves. Therefore, it may be more meaningful to examine the overall 

pathways associated with the GGI signature, rather than individual genes, and 

compare them with existing pathways of prognostic gene signatures that are 

commercially available. Cell cycle progression, immune signalling, cellular 

organization, and proliferation pathways encompass majority of the genes listed in 

the GGI signature which happens to closely align with the pathways of interest for 

assays such as Oncotype Dx, Prolaris, and Decipher (Table 12). Although this is 

not conclusive evidence, it nonetheless suggests that the GGI signature may be 

heading in the right direction, towards the goal of becoming a commercially 

available prognostic gene signature for prostate cancer patients.  

There was no association between the expression values of the Network 

signature and outcome (HR: 0.306; p = 0.155; 95% CI: 0.060-1.563). It was 

surprising that the network signature as a whole was unable to predict outcome, 

since our preliminary in silico analysis on the Mayo Cohort, as described on page 

16, was able to demonstrate a high degree of utility. A closer examination of each 

individual module was conducted and subsequently, only 3 out of 10 modules 

were found to be predictive of outcome: M1, M3, and M7. M1 and M7 consist of 

genes involved in epigenetic processes, although each had opposite effects on risk 

for outcome. High expression of M1 genes was associated with a decrease in risk 

for poor outcome, but high expression of M7 genes was associated with an 
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increase in risk for poor outcome. This was inconsistent with the in silico results 

which suggested high expression of all modules was associated with decreased 

risk. M3, consisting of genes largely involved in TGF-β, integrin, growth factor 

receptor signaling, was associated with a decrease in risk for poor outcome when 

highly expressed. A likely reason for M7’s observed results might be the fact that 

the in silico analysis used metastasis or cancer-specific death as an outcome rather 

than metastasis or BCR. Unfortunately, metastatic events in this cohort of patients 

were particularly low, at 6.7% (n = 5) and the causes of death were not available. 

BCR, although an important prognostic tool, may not be the best surrogate 

endpoint for cancer-specific death or even metastasis. Despite these observations, 

the Network signature may very well be a useful one, but only when attempting to 

predict certain endpoints. Although the Network signature modules are not meant 

to be examined in isolation, it was interesting to observe that two modules 

specifically relating to epigenetic processes were statistically significant in 

predicting outcome. Epigenetic aberrations are important cellular events, 

particularly in cancer biology, by which heritable external or environmental 

factors such as DNA methylation, chromatin remodeling and microRNAs, alter 

phenotypic expression without altering the genome. In the context of prostate 

cancer, epigenetic events may play a significant role in disease initiation and 

progression; global hypomethylation or low levels of 5-methylcytosine, has been 

found in advanced metastatic prostate tumours and hypothesized to contribute to 

cancer via activation of proto-oncogenes and disruption of chromosomal stability 
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(Chiam, Ricciardelli, & Bianco-Miotto, 2014). More recently, a signature 

investigating 52 differentially methylated sites found evidence supporting its 

predictive capacity, suggesting its applicability to stratifying GS 7 patients into 

better outcome groups (Geybels et al., 2016). Other therapies focusing on 

disrupting epigenetic-related enzymes and proteins have been observed to slow 

cancer cell growth are now being investigated in clinical trials (Graça et al, 2016).   

The combined utility of the GGI+LGS and the Network signature (HR: 

0.022; *p = 0.001; 95%CI: 0.002-0.216) seemed to be superior to each signature 

when tested alone, although it was only marginally better than when GGI+LGS 

was analyzed alone (HR: 0.100; *p = 0.002). Surprisingly, the inclusion of PTEN, 

TMPRSS2, and ERG lead to no significant associations with outcome. PTEN 

deletions and TMPRSS2:ERG fusions are commonly found in prostate cancer 

tumours and are well-known for being associated with oncogenic processes. 

PTEN deletions, although uncommon in early stage prostate cancer (< GS 7), has 

been reported to predict development of metastasis and prostate cancer specific 

mortality (Mithal et al., 2014). Perhaps one reason why this association was not 

observed may be the fact that PTEN expression in this cohort of patients was 

relatively high in comparison. The average expression level of all 141 genes was 

7.76 ± 2.43 units while the average expression of PTEN was 9.79 ± 2.13, which 

may even be evidence that PTEN was up-regulated. Given the expression values, 

it is likely that the PTEN gene was active. Even if its expression values had been 

closer to zero, it still would have been necessary to investigate whether the PTEN 
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gene was either truly deleted or if its expression was simply suppressed. 

Furthermore, 73.3% of our GS 7 cohort was lower grade (3 + 4) which may 

decrease the number of potential PTEN deletions since they are typically 

associated with high grade prostate tumours.  

TMPRSS2:ERG rearrangements and their association with prognosis is 

more controversial since its expression has been linked to both low grade and high 

grade tumours; however, more recent studies have suggested that expression 

levels of TMPRSS2-ERG and ERG are more common in aggressive tumours 

(Hernández et al., 2016). There are a few possibilities to explain our results. 

Firstly, the expression level of TMPRSS2 in isolation is not likely to be associated 

with outcome since its primary function, when rearranged with the ERG gene, is 

to act as a promoter (Tomlins et al., 2008). TMPRSS2 is normally highly 

expressed in prostate epithelial tissue, though in our cohort, its expression levels 

(6.96 ± 1.34) seem to be on the lower end, relative to housekeeping genes and 

signature genes. ERG expression was relatively higher (10.85 ± 0.96), though this 

is insufficient evidence that this is a result of a fusion with TMPRSS2. To directly 

confirm the presence of fusion, one would be required to perform 5’ RNA ligase-

mediated rapid amplification of cDNA ends (RLM-RACE) analysis and 

sequencing of the product using RT-PCR (Demichelis et al., 2007). 

It was interesting to observe that our gene signatures appeared to be 

superior to GS in predicting outcome, a finding reflected in other studies on 

prognostic gene signatures in prostate cancer (Erho et al., 2013). Although the GS 
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has maintained its reputation as a powerful prognostic marker in the clinical 

setting, these findings suggest that supplementing it with gene expression analysis 

can be a significant improvement on predictive capacity.  

The presence of cribriforming and intraductal carcinoma was also 

recorded. As per the 2005 changes to the Gleason Grading System, small and 

large cribriform, ill-defined glands, and glomeruloid glands were redefined as GS 

4. Cribriform growths have recently been shown in case-control study on GS 7 

prostate cancer patients to be strong predictors for BCR, distant metastasis, and 

disease-specific death (Kweldam et al., 2015). The same study also noted the 

presence of intraductal carcinoma and its association with distant metastasis and 

BCR; however, intraductal carcinoma is associated with high-grade cancer and so, 

low counts are expected in this study (Van der Kwast et al., 2012). A chi-squared 

test of independence showed no significant association between the two 

morphologies and outcome.  

The total length of tumour was found to be significantly associated with 

outcome (HR: 1.044; p = 0.020; 95% CI: 1.007-1.082), though the association 

was weak. Per unit increase of the average total length of tumour was linked to a 

4.4% increase in risk for outcome. These results are not so surprising, since 

intuitively, greater tumour mass is expected to be a sign of more advanced disease 

and hence, poorer outcome. One research group investigated the prognostic value 

of tumour volume in radical prostatectomy specimens and reported that total 

tumour and index tumour volumes were significant predictors of BCR (Shin et al., 
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2016). Due to the nature of needle-core biopsies, it is reasonable to question 

whether the length of tumour in this biopsy method is an accurate reflection of 

total tumour volume. Sometimes, parts of the tumour may be missed or 

unreachable. However, one study comparing greatest tumour length, greatest 

tumour percentage, and total tumour length reported that total tumour length in 

needle-core biopsies is indeed the best way of measuring tumour extent for small-

volume prostate cancers (Kajikawa et al., 2016).  

Another important finding of our study is the success of gene expression 

analysis using archival FFPE needle-core biopsies. FFPE is a valuable resource in 

the field of oncology and NanoString's compatibility with FFPE samples is one of 

the reasons why it is an ideal method to reliably quantify mRNA molecules from a 

small amount of RNA. Other types of analysis are impeded by difficulties that 

NanoString is able to bypass. Such examples include low yield of extracted 

nucleic acids and the nucleic acid degradation resulting from formalin fixation. It 

is well known that the process of embedding tissue into formalin blocks leads to 

the degradation of RNA which makes gene expression studies difficult. For 

instance, oxygen and hydroxyl radicals in formalin can lead to crosslinks between 

nucleic acid molecules, as well as high temperatures of the wax during the 

embedding process, can both lead to unwanted changes to RNA which then 

impairs molecular analysis (Knudson et al., 2016). We were able to circumvent 

those anticipated barriers with the use of NanoString technology, which has 

consistently proven its ability to provide accurate and reliable quantification of 
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RNA from FFPE blocks. In addition, NanoString nCounter technology is ideal for 

RNA extracted from FFPE material because it does not require amplification, it 

targets regions as small as 100 bases, and can measure up to 800 genes with small 

amounts of sample RNA (100 ng). The technology is simple and hands-off, 

reducing the chances of laboratory errors. Numerous studies have been published 

detailing the reliability of utilizing NanoString nCounter technology on FFPE 

samples (Tyekucheva et al., 2015; Veldman-Jones et al., 2014; Northcott et al., 

2012; Kulkarni, 2011). 

NanoString published an article in Nature Biotechnology in 2008 

comparing the nCounter gene expression system against the Affymetrix GeneChip 

and TaqMan PCR on assaying over 500 gene expression levels. Results showed 

that NanoString technology was, in terms of detection sensitivity and accuracy of 

mRNA, superior to Affymetrix and equal to TaqMan PCR (Geiss et al., 2008). 

Subsequently, many other researchers began testing this method against standard 

ones for quantifying gene expression and found that NanoString was, at the very 

least, able to deliver equally satisfactory results (Veldman-Jones et al., 2014; 

Kolbert et al., 2013; Adam et al., 2016). These advantages are largely based on 

NanoString’s ability to measure RNA directly without any enzymatic 

amplification steps which are normally required in RT-PCR. In the absence of an 

amplification step, gene-specific or 3’ biases are no longer a concern which allow 

for the calculation of RNA expression using individual molecules (Geiss et al., 

2008). Moreover, RT-PCR calculates expression from the number of enzymatic 



M.Sc. Thesis – B. Li; McMaster University – Medical Science.  

49 
 

reactions which makes it vulnerable to inaccurate results even in cases of minimal 

contamination. Lastly, NanoString is much more time and resource efficient 

which likely contributes to a decrease in variability. This study adds to the 

understanding that advancements in technology can and will improve our ability 

to tap into the potential of FFPE tissue for gene expression analysis.   
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LIMITATIONS 

 

 The lack of power due to small sample size was a clear limitation in this 

study. The estimated sample size of 160 could not be met due to various logistical 

circumstances, including but not limited to inaccessible archived FFPE blocks, 

incorrectly scored tissue, and a lack of viable tissue in obtained blocks. Due to 

recent changes to the Gleason Scoring System in 2014 that reclassified some 

tumour morphologies characteristic of GS 3 to GS 4, it might have been 

worthwhile to rescore all the GS 6 patients from the PR5 cohort since it is 

expected that a number of them would now be considered GS 7. This alternative, 

however, would not be possible due to limited resources.  

With regards to the inaccessibility of archival tissue, REB applications 

were required for almost every healthcare facility in possession of archival tissue 

blocks, a process that proved to be time intensive and costly. Each REB had 

different procedures and regulations which made time management difficult, 

seeing as some REB’s requiring an inordinate amount of time to deliver samples. 

A centralized REB for the province of Ontario dedicated to retrospective tissue 

studies would have been a significant improvement, especially considering how 

common FFPE studies are.  

There were also some limitations regarding the accuracy of the final sum 

of GS 7 samples, not pertaining to the 2014 Gleason Scoring changes. Firstly, 

although needle core biopsies are the current standard in prostate diagnosis, this 
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procedure is not able to address the heterogeneity and multifocal nature of 

prostate tumours which may ultimately mask the true GS of a tumour (Knudsen et 

al., 2016; Boutros et al., 2015). Secondly, reproducibility can be difficult between 

pathologists when utilizing the GS which may have also altered the final sample 

size (Chang, Autio, Roach, & Scher, 2014). Overall, these factors may have 

reduced the power of this study, though most likely to a small degree.  

Another limitation of this study centres on the specific use of the SWW 

microarray data to generate our prognostic gene signatures. Perhaps the signatures 

were inherently overfit for the specific population involved in the SWW cohort 

and was unable to perform as well in other types of population such those patients 

living in Canada involved in the PR5 trial. This highlights the importance of re-

testing in another cohort of patients to ascertain whether our signatures can be 

applied to a broader scope of patients. Furthermore, the prostate tumours of the 

SWW cohort were scored using a much outdated Gleason Scoring criteria and 

likely affected the prognostic strength of our signatures. If possible, the SWW 

cohort should be reclassified into their appropriate GS group according to current 

GS standards. RNA is particularly sensitive to external factors such as freeze-thaw 

events which had to occur during transportation between labs and so, final gene 

expression values obtained may be imprecise. Specific to freeze-thaw events, this 

limitation can be addressed by using dry ice and using a more time-efficient 

method of transportation to reduce the degree of thawing. Interestingly, one study 

compared different degrees of automation for RNA extraction from archival FFPE 
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tissue and found that a fully automated method led to the best reproducibility in 

gene expression analysis (Bohmann et al., 2009). This level of automation likely 

eliminated the possibility of technical errors and reduced the presence of 

contaminants which may cause unwanted alterations in the RNA extraction 

process. These improvements parallel those which have been demonstrated 

through NanoString technology, which has essentially automated and simplified 

conventional gene expression assays. If resources were available to allow for a 

completely hand-off approach to RNA extraction, we may have observed more 

accurate results.  

Understandably, resources are often scarce and improvements that are 

resource intensive may not be possible; however, it is imperative that the pre-

analytical phase of the total testing process is rigorously established in order to 

reduce errors, particularly considering that most errors originate in pre-analytics 

(Da Rin, 2009). Developing easy-to-follow procedures, providing training, 

improving information technology, and introducing automation are just some 

examples of reducing sample collection and handling errors. This project touched 

on several pre-analytical factors such as the ideal environment to obtain an ideal 

number and thickness of tissue sections required for RNA extraction. Factors that 

were not discussed and perhaps were out of our control include details regarding 

the prostate biopsy and the method of fixing the tissue in blocks. When 

transitioning into a commercially available assay, the pre-analytic phase should be 
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clearly outlined so as to reduce total testing process errors and enable analysis of 

high quality and standardized samples.  

Although NanoString nCounter has proven its ability to address limitations 

that would have been present in other gene expression techniques, there are some 

setbacks that are noteworthy regarding accuracy and normalization. Each 

NanoString experiment quantifies 10 samples at a time, meaning that a study 

including over 100 samples would require over 10 submissions (10 samples each). 

Variations within each submission were not accounted for and an investigation 

into any differences that might exist between submissions would be important for 

knowing whether the final gene expression data is reliable.  
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

Our study has shown that prognostic gene signatures can improve on our 

current methods of predicting prostate cancer patient outcome by adding crucial 

information about patients’ tumours’ genetic composition. Although the results in 

our prognostic gene signature discovery phase were not exactly reflected in this 

study, several subcomponents of our signatures were able to predict risk for 

outcome at a statistically significant level. High levels of gene expression 

associated with intracellular protein transport, apoptosis, immune processing, and 

co-chaperones, were observed to be associated with a decrease in risk for BCR or 

metastasis. In fact, it was shown that these gene signatures were even better than 

established predictive indicators such as GS or cell morphology; however, the low 

statistical power of this study should be noted along with the abovementioned 

limitations which may have affected the accuracy of our results. Despite these 

barriers, our study is evidence that there are some clear differences between low 

risk GS 7 patients and high risk GS 7 patients at the genetic level and that these 

differences can be exploited to obtain a better understanding of their prognostic 

outcome. At the very least, our study offers a compelling stance that prognostic 

gene signatures have an important role to play in clinical diagnosis and treatment 

decisions for intermediate risk prostate cancer patients.  

It is also worthwhile to highlight the success of our gene expression study 

using archival FFPE tumour tissue, a method that is commonly reported to 
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involve many difficulties both molecularly and technically. The greatest barrier in 

this study related to FFPE blocks was largely in the retrieval process, an issue that 

will face any Ontario research group planning to study archival FFPE tissue 

located in multiple healthcare locations. From a health economics standpoint, such 

barriers should be addressed to improve medical research efficiency, especially 

since it is all done in the interest of future patients’ well-being. On that note, it is 

difficult to refute the fact that archived FFPE tumour tissue is and will be a 

valuable resource for large-scale research on prognostic gene signatures in the 

field of oncology. NanoString technology was also able to prove its worth in 

terms of producing high-quality quantification results on archival FFPE tissue, 

particularly from samples with extremely low amounts of RNA and without the 

use of any amplification steps. Our study contributes to the growing opinion that 

one can opt for NanoString’s nCounter technology for high-quality and reliable 

gene expression analysis in lieu of conventional and perhaps outdated methods.  

 Our hope is that our research will contribute to the future development of a 

commercially available clinical assay specific to GS 7 intermediate risk prostate 

cancer patients that can better stratify them into appropriate treatment groups. The 

next step towards these goals is to test our signatures on a larger cohort of more 

recent GS 7 prostate cancer patients to both improve statistical power and its 

external validity.   
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TABLES AND FIGURES 
 

Figure 1. Schematic diagram comparing original 1974 Gleason Scoring system 

with updated 2015 Gleason Grading System  

 

(Epstein et al., 2016) 
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Figure 2. Schematic diagram of Gleason Scoring System after 2005 ISUP 

modifications 
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Figure 3. Stratification of GS 7 patients from SWW cohort using GGI signature 

 

 

25 genes were found that differentiated between low (GS 6) and high (GS 8-10) 

grade GS tumours. Using these genes, GS 7 patients of the SWW cohort were 

accurately stratified into high and low risk (HR: 1.9, *p<0.05).  
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Figure 4. Stratification of GS 7 patients from SWW cohort using LGS signature 

 

 

25 genes were found that differentiate between good (at least 10 year survival) 

and poor outcome (death before 2 years). Using these genes, GS 7 patients of the 

SWW Cohort were accurately stratified into high and low risk (HR: 1.7, *p<0.05). 

 

  

LGS – Gleason Score 7 
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Figure 5. Stratification of GS 7 patients from SWW cohort using a combined 

GGI+LGS signature 

 

A combined index of the GGI and the LGS was able to stratify GS 7 patients of 

the SWW cohort more accurately into high and low risk. Dotted line indicates 10 

year mark (HR: 2.7, *p<0.0001) 
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Figure 6. Stratification of GS 7 patients from SWW cohort using Network 

signature 

 

88 genes were identified using a network based approach which accurately 

stratified GS 7 patients of the SWW cohort into high risk and low risk groups. 

Survival curves of low risk GS 6 and high risk GS 8 were superimposed onto the 

graph, showing high similarity to the two stratified GS 7 groups. 
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Figure 7. Survival curves of an untreated cohort of SWW patients  
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Figure 8. Sample accrual outlining the number of included and excluded samples 
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Figure 9. RNA extraction results comparing four different extraction kits  
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Figure 10. Positive and Negative Normalization on a log10 Scale of Final 

NanoString Analysis 
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Figure 11. Bioanalyzer results outlining RIN Score of 12 prostate samples 
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Figure 12. Example of two H&E stained scored needle-core prostate biopsy slides  
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Figure 13. Morphology of intraductal carcinoma at 5X and 20X magnification 
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Figure 14. Morphology of cribriforming at 5X and 20X magnification 
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Figure 15. Morphology of Gleason grade 3 and Gleason grade 4 at 5X and 20X magnification 
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Figure 16. Log2 expression values of housekeeping genes 
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Figure 17. Network signature module map outlining intra- and inter-module interactions between 10 modules 
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Figure 18. Log2 Expression values of GGI and LGS signatures 
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Figure 19. Log2 expression levels of Network signature 
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Figure 20. Expression levels of PTEN, TMPRSS2, and ERG 
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Table 1. Updated Gleason Scoring method 

 

Traditional 

Gleason Score 
New Prognostic Group 

≤ 6 1 – only individual discrete well-formed glands 

3 + 4 = 7 

2 – predominantly well-formed glands with lesser 

component of poorly-formed/fused/cribriform glands 

4 + 3 = 7 

3 – predominantly poorly-formed/fused/cribriform glands 

with lesser component of well-formed glands* 

4 + 4 = 8 

3 + 5 = 8 

5 + 3 = 8 

4 – only poorly-formed/fused/cribriform glands; 

predominantly well-formed glands and lesser component 

lacking glands**; predominantly lacking glands and 

lesser component of well-formed glands** 

9 & 10 

5 – lacks gland formation (or with necrosis) with or 

without poorly formed/fused/cribriform glands* 

 

*For cases with > 95% poorly-formed/fused/cribriform glands or lack of 

glands on a core or at radical prostatectomy, the component of < 5% well-

formed glands is not factored into the grade 

**Poorly-formed/fused/cribriform glands can be a more minor component 

 

 

(Epstein et al., 2016) 
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Table 2. Risk Stratification for prostate cancer patients based on GS, PSA, and tumour stage 

 

 

(Rodrigues, 2012)  
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Table 3. Commercially available prognostic gene signatures for prostate cancer patients  

Test Name Eligibility Criteria Sample Requirements  Number of Genes 

OncotypeDX Prostate 

Cancer Test 

Recently diagnosed 

early-stage prostate 

cancer 

GS 6 or less  

GS 7 (3+4), but only 

if tumour involvement 

less than or equal to 

33% of biopsy mass 

PSA less than 20 

Tumour stage of T1 or 

T2 

 

FFPE needle core biopsies of 

prostate 

12 cancer genes 

5 housekeeping genes 

Prolaris  Patients in Active 

Surveillance or have 

received radical 

prostatectomy 

FFPE needle core biopsies of 

prostate  

7 slides, 3-5 μm thickness 

with at least 0.5mm of 

tumour length 

31 cell cycle 

progression genes 

15 housekeeping 

genes  

Decipher Patients who have 

received radical 

prostatectomy 

FFPE tissue from radical 

prostatectomy with highest 

Gleason grade 

22 genes relating to 

various process of 

interest  
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Table 4. Outline of the uses of different commercially available RNA testing panels 

 Decipher Oncotype Dx Prolaris 

Cancer recurrence after RP (BCR) - Yes Yes 

Metastasis after RP Yes - Yes 

PCa-specific mortality after RP Yes - Yes 

PCa progression (PCa-specific 

mortality) in AS population 

- Yes Yes 

 

 (Na, Wu, Ding, & Xu, 2016) 
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Table 5. Summary of 10 Network signature modules 

 

Module Biological Pathway Hazard Ratio P-value 

0 Immune Signalling 1.7 2.8 E-8 

1 Epigenetics 1.9 5.7 E-9 

2 Protein Regulation 1.9 8.0 E-9 

3 TGF-β, Integrin, Growth Factor 

receptor signaling 

1.7 7.6 E-7 

4 Immune Signalling 1.6 1.0 E-4 

5 Transcription 1.7 1.2 E-6 

6 Transcription 1.6 3.6 E-5 

7 Epigenetics 1.6 5.4 E-6 

8 TGF-β, Integrin, Growth Factor 

receptor signaling 

1.6 3.5 E-5 

9 TGF-β, Integrin, Growth Factor 

receptor signaling 

1.5 1.7 E-5 

Combination N/A 3.9 3.1 E-15 

 

Each module is associated with a specific biological pathway. Hazard ratios and p-values show that each 

module is significantly associated with patient outcome. A combination of the modules leads to greater association. 
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Table 6. H&E slide scoring results of final 75 samples 

 Count Percentage 

Total Sample Size 75 100% 

Gleason Score 

3 + 4 

4 + 3 

 

55 

20 

 

73.3% 

26.7% 

Biopsy Type 

Needle-core 

TURP  

 

72 

3 

 

96% 

4% 

Presence of Cribriforming 

Yes 

No 

 

48 

27 

 

64% 

36% 

Presence of Intraductal Carcinoma 

Yes 

No 

 

2 

73 

 

2.7% 

97.3% 

BCR 

Yes 

No 

 

35 

40 

 

46.7% 

53.3% 

Total Extent of Tumour (mm) 

1 – 10  

11 – 20 

21 – 30 

30 < 

N/A (TURP Biopsy)  

 

31 

26 

11 

4 

3 

 

41.3% 

34.7% 

14.7% 

5.3% 

4% 
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Table 7. RNA extraction results of final 75 samples using BioDrop  
 

RNA Extraction 

 
Concentration 

(ng/μL) 

Mean 

Median 

Standard Deviation 

Highest 

Lowest  

38.67 

28.43 

29.2 

154.00 

7.17 

RNA A260/A280 Value 

Mean 

Median 

Standard Deviation 

Highest 

Lowest 

1.85 

1.85 

0.06 

2.06 

1.71 
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Table 8. Univariate Cox Regression Analysis Results on Primary Questions 
 

 95% CI 

Signatures B p value HR Lower Upper 

GGI+LGS -2.301 0.002 0.100 0.024 0.427 

Network -1.183 0.155 0.306 0.060 1.563 

GGI -1.725 0.000423 0.178 0.068 0.465 

LGS -0.520 0.362 0.595 0.195 1.817 

M0 -0.297 0.346 0.743 0.401 1.378 

M1 -0.681 0.006 0.506 0.311 0.824 

M2 -0.158 0.678 0.854 0.404 1.804 

M3 -0.605 0.006 0.546 0.354 0.844 

M4 -0.108 0.685 0.898 0.533 1.512 

M5 -0.372 0.145 0.690 0.418 1.137 

M6 0.011 0.973 1.011 0.526 1.945 

M7 0.543 0.013 1.722 1.124 2.638 

M8 0.190 0.427 1.210 0.756 1.936 

M9 0.242 0.481 1.274 0.650 2.497 
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Table 9. Univariate cox regression results on secondary questions 

 

 95% CI 

Signatures B p value Exp(B) Lower Upper 

GGI+LGS & 

Network 

-3.804 0.001 0.022 0.002 0.216 

GGI+LGS & 

PTEN & 

TMPRSS & 

ERG 

-0.213 0.179 0.808 0.592 1.103 

Network & 

PTEN & 

TMPRSS & 

ERG 

-0.197 0.220 0.821 0.599 1.126 

GGI+LGS & 

Network & 

PTEN & 

TMPRSS & 

ERG 

-0.272 0.162 0.762 0.520 1.115 

Gleason 

Component  

(3+4 or 4+3)  

0.086 0.806 1.090 0.546 2.177 

Total 

Tumour 

Length 

1.044 0.020 1.044 1.007 1.082 
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Table 10. Complete gene list of 141 genes  

 

  
GGI LGS Housekeeping 

Genes 

Additional 

Genes 

Network Signature 

ALOX15B BAIAP2 ACTB ERG AMH ICAM1 PSMD8 

BCAS1 COL9A2 GAPDH PTEN ANP32A IL2RA RBBP5 

BIRC5 DLGAP1 GUSB TMPRSS2 APCS IL8 RBBP7 

BMP6 ENO1 HPRT1  BAG1 IRF5 RBM5 

CCL17 FOXD1 PGK1  BCR ITGAX REL 

DHFR GFPT2 TUBB  BMP4 KHDRBS1 RFC3 

DNCI1 GP1BB   CCNE2 KHDRBS3 RING1 

EHHADH INPP4B   CD40 LMNB1 RNF2 

ESM1 LRPAP1   CD44 MAP2K4 RNPS1 

EYA1 MDK   COL3A1 MAPK8 RPL23 

GPR116 MLLT3   COL4A6 MELK RRM2 

HOXB7 PIP5K1B   COL9A2 MLLT3 RUVBL1 

KCNN2 PLA2G7   DNAJB1 MMP15 SAP30 

KHDRBS3 PTK6   DNMT1 NCBP2 SDHB 

MT1A RBM4   DUSP9 NHP2L1 SHC3 

MT1G RYR2   ENG OGDH SIAH1 

PAH SEMA3F   ENO1 PCNA SMAD6 

PTTG1 SH3BGRL   EPRS PDGFC SMAD7 

SERPINB10 SLC1A1   ERCC5 PHC2 STK17B 

SPAG5 SLC39A14   FCER1G PIK3R2 SYCP2 

SPRR3 SP100   FGF4 POLD1 TERF1 

SSTR3 SRP9   FGFR1 POLR2C TFCP2 

TOP2A TACC1   FGFR2 PRIM1 TRAF2 

UBE2C VGF   FKBP1A PRPF8 TRIM21 

    FLNB PSMB7 UBE2D2 

    GADD45A PSMD1 UBE2D3 

    HDAC9 PSMD12 UGCG 

    HIST1H2AC PSMD14 YAF2 

    HIST1H2BJ PSMD6  

    HSPA2 PSMD7  
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Table 11. Complete gene list of Network-based signature genes categorized into the respective 10 modules and 

associated outcome 

Module 0 Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7 Module 8 Module 9 

Immune 
Signalling 

Epigenetics 
Protein 

Regulation 

TGF-β, 
Integrin, 

Growth Factor 
receptor 
signaling 

Immune 
Signalling 

Transcription Transcription Epigenetics 

TGF-β, 
Integrin, 
Growth 
Factor 

receptor 
signaling 

TGF-β, 
Integrin, 
Growth 
Factor 

receptor 
signaling 

Genes Associated with Poor Outcome as established in in silico analysis 

CCNE2 ANP32A KHDRBS3 AMH HSPA2 NCBP2 DNMT1 COL9A2 BCR PHC2 

PSMD1 APCS SIAH1 COL3A1 MAPK8 NHP2L1 ENO1 DUSP9 FGF4 RING1 

PSMD8 HDAC9 UBE2D2 ENG SYCP2 RNPS1 POLD1 FLNB PIK3R2  

RRM2 HIST1H2AC UBE2D3 FKBP1A    TRAF2   

 HIST1H2BJ  MMP15       

 LMNB1  SMAD6       

 MELK         

 TERF1         

Genes Associated with Good Outcome as established in in silico analysis 

EPRS RBBP7 BAG1 SMAD7 CD40 ERCC5 GADD45A COL4A6 FGFR1 MLLT3 

ICAM1 RUVBL1 DNAJB1 BMP4 FCER1G POLR2C PCNA ITGAX FGFR2 RBBP5 

OGDH SAP30 KHDRBS1 CD44 IL2RA PRPF8 PRIM1 MAP2K4 PDGFC RNF2 

PSMB7  STK17B  IL8 RBM5 RFC3  SHC3 TFCP2 

PSMD12  TRIM21  IRF5 RPL23    YAF2 

PSMD14    UGCG      

PSMD6          

PSMD7          

REL          

SDHB          
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Table 12. Pathways associates with the GGI Signature compared to pathways involved in 3 commercially available 

prognostic gene signatures 

 

GGI Signature Oncotype Dx Prolaris Decipher 
Cell Cycle Progression Cellular Organization Cell Cycle Progression Cell Cycle Progression 

Cellular Organization Proliferation  Cellular Organization 
Proliferation Stromal Response  Proliferation 

Immune Response Androgen Signaling  Immune Response 
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