SYNTHESES AND STRUCTURES OF RHENIUM(VII) AND MANGANESE(VII) OXIDE FLUORIDES, MANGANESE(V, IV) FLUORIDES, AND THE FIRST OXIDE OF XENON(II)

SYNTHESES AND STRUCTURES OF RHENIUM(VII) AND MANGANESE(VII) OXIDE FLUORIDES, MANGANESE(V, IV) FLUORIDES, AND THE FIRST OXIDE OF XENON(II)

by
Maria V. Ivanova
A Thesis
Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
McMaster University
© Copyright by Maria V. Ivanova, 2016

AUTHOR:
SUPERVISOR:

NUMBER OF PAGES:

Maria V. Ivanova, B.Sc. (McMaster University)
Professor Gary J. Schrobilgen
xxxvii, 406

Ph.D. Thesis - Maria V. Ivanova

Abstract

This Thesis extends the chemistry of group VII transition metal oxide fluorides, namely $\mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{MnO}_{3} \mathrm{~F}$. The fundamental chemistry of $\mathrm{ReO}_{3} \mathrm{~F}$ has been significantly extended with the development of its high-yield and high-purity synthesis. This has been achieved by solvolysis of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in anhydrous HF (aHF) followed by reaction of the water formed with dissolved F_{2} at room temperature. The improved synthesis has allowed the Lewis acid and fluoride-ion donor-acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ to be further investigated. The Lewis acid-base complex, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, was obtained by dissolution of $\mathrm{ReO}_{3} \mathrm{~F}$ in aHF at room temperature and was characterized by vibrational spectroscopy with aid of quantum-chemical calculations and single-crystal X-ray diffraction at -173 ${ }^{\circ} \mathrm{C}$. The HF molecules are F-coordinated to rhenium, representing the only known example of an HF complex with rhenium. The study of the fluoride-ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ resulted in the syntheses and characterization of the $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-},\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$, and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anions. The $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion was obtained as the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$salt by the reaction of stoichiometric amounts of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ solvent. The anion was structurally characterized in $\mathrm{CH}_{3} \mathrm{CN}$ solution by 1D and 2D ${ }^{19} \mathrm{~F}$ NMR spectroscopy and in the solid state by Raman spectroscopy and a single-crystal X-ray structure determination of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$. The structure of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion consists of three $\mathrm{ReO}_{3} \mathrm{~F}$ units linked to each other through dicoordinate bridging fluorine atoms $\left(\mathrm{F}_{\mu}\right)$ and a central tricoordinate bridging oxygen atom $\left(\mathrm{O}_{\mu 3}\right)$. Calculated vibrational frequencies and Raman intensities of the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}\left(C_{3 \mathrm{v}}\right)$

anions ($M=\operatorname{Re}, T c$) have been used to assign the Raman spectrum of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$. The fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anions have been synthesized by the reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ with CsF and KF in aHF, and by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with NOF. Additionally, the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion has been synthesized by the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\left[\mathrm{NH}_{4}\right] \mathrm{F}$ in aHF. Both anions were characterized by Raman spectroscopy in the solid state and single-crystal X-ray diffraction. The calculated vibrational frequencies of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ and $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{v}}\right)$ anions were used to assign the Raman spectra of $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$, respectively. The rhenium atoms in the open-chain, fluorine-bridged $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion and the monomeric $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion are six-coordinate with a facial arrangement of the oxygen ligands. The fluoride-ion donor properties were established by the reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ with excess AsF_{5} and $\mathrm{SbF}_{5} / \mathrm{SO}_{2} \mathrm{ClF}$. Both reactions resulted in the formation of white friable solids, μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$. The $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salt is stable at room temperature and decomposes to $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{5}\right]$, when maintained at $45{ }^{\circ} \mathrm{C}$ under dynamic vacuum. The $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$, however, slowly decomposes at $0{ }^{\circ} \mathrm{C}$ to $\mathrm{ReO}_{3} \mathrm{~F}$ and AsF_{5}. Both products were characterized by Raman spectroscopy in the solid state with aid of quantum-chemical calculations. The vibrational analyses revealed that the geometry of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ is consistent with a trigonal pyramidal arrangement of oxygen atoms around rhenium, whereas in $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}, \mathrm{ReO}_{3} \mathrm{~F}$ interacts with one of the AsF_{5} molecules through an O-bridge, which represents the first example of such type of bonding. The reactions of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$

Ph.D. Thesis - Maria V. Ivanova
with $\mathrm{CH}_{3} \mathrm{CN}$ resulted in the formation of the white salts, $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=$ As, Sb), which were characterized by Raman spectroscopy.

The reactivity of $\mathrm{ReO}_{3} \mathrm{~F}$ has been extended to the synthesis of a new $\mathrm{Re}(\mathrm{VII})$ oxide fluoride, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, which was synthesized by the reaction of 1:3 molar ratio of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$. The compound, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, a rare example of an O-bridged rhenium oxide fluoride, has been characterized by singlecrystal X-ray diffraction and solid-state Raman spectroscopy. The vibrational assignments of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ were confirmed by ${ }^{18} \mathrm{O}$-enrichment and quantumchemical calculations.

The improved synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ has also led to the synthesis and characterization of the novel $[\mathrm{XeOXeOXe}]^{2+}$ cation as its $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$salt by the low-temperature reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ and XeF_{2} in aHF. The $[\mathrm{XeOXeOXe}]^{2+}$ cation provides an unprecedented example of a xenon(II) oxide and a noble-gas oxocation as well as a rare example of a noble-gas dication. The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ consists of a planar, zigzag-shaped $[\mathrm{XeOXeOXe}]^{2+}$ cation ($C_{2 \mathrm{~h}}$ symmetry) that is fluorine bridged through its terminal xenon atoms to two $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions. The Raman spectra of the natural abundance and ${ }^{18} \mathrm{O}$-enriched $[\mathrm{XeOXeOXe}]^{2+}$ salts are consistent with a centrosymmetric ($C_{2 \mathrm{~h}}$) cation geometry. Quantum-chemical calculations were used to aid in the vibrational assignments of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ and to assess the bonding in $[\mathrm{XeOXeOXe}]^{2+}$ by NBO, QTAIM, ELF, and MEPS analyses. Ion pair interactions occur through $\mathrm{Re}-\mathrm{F}_{\mu^{-}--\mathrm{Xe} \text { bridges, which are predominantly electrostatic }}$ in nature and result from polarization of the F_{μ}-atom electron densities by the exposed

Ph.D. Thesis - Maria V. Ivanova
core charges of the terminal xenon atoms. Each xenon(II) atom is surrounded by a torus of xenon valence electron density comprised of the three valence electron lone pairs. The positive regions of the terminal xenon atoms and associated fluorine bridge bonds correspond to the positive σ-holes and donor interactions that are associated with "halogen bonding".

The reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with noble-gas fluorides, KrF_{2} and XeF_{6}, have been studied as the possible synthetic routes to MnOF_{5} and $\mathrm{MnO}_{2} \mathrm{~F}_{3}$. The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} yielded a red solid, which was isolated as a crystalline solid at room temperature and its crystal structure was assigned to manganese(V) fluoride, MnF_{5}. The crystal structure of polymeric MnF_{5} consists of MnF_{6}-octahedra which are transcoordinated through fluorine bridges. The geometrical parameters of MnF_{5} could not be reliably determined due to unresolved twinning issues. The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in the presence of $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ yielded a red-orange solid mixture of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ (soluble in HF) and MnF_{3} (insoluble in HF). The HF solution of the solid mixture was characterized by ${ }^{19} \mathrm{~F}$ NMR spectroscopy and the resonance observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum was preliminary assigned to $\left[\mathrm{MnF}_{6}\right]^{-}$by comparison with the chemical shift observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathrm{MnO}_{3} \mathrm{~F}$. Additionally, $\mathrm{MnO}_{3} \mathrm{~F}$ was characterized by ${ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}$ COSY NMR and ${ }^{55} \mathrm{Mn}$ NMR spectroscopies, the latter provided the first ${ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}\right)$ coupling constant. The $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ salt was also characterized by single-crystal X-ray diffraction. The resulting octahedral geometry is imposed by symmetry, therefore, the anticipated Jahn-Teller distortion, which would result in $D_{4 \mathrm{~h}}$ symmetry for the $\left[\mathrm{MnF}_{6}\right]^{-}$anion, could not be observed. The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} resulted in the
isolation of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$. Both salts were characterized by lowtemperature single-crystal X-ray diffraction. The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salt was additionally characterized by low-temperature Raman spectroscopy with the aid of quantum-chemical calculations, whereas the assignment of the known Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ has been improved in the present work.

ACKNOWLEDGEMENTS

I sincerely thank Professor Gary J. Schrobilgen as my primary supervisor in learning the day-to day operations of the laboratory, for providing me with interesting and exciting avenues of research, as well as for his insight, guidance, enthusiasm, patience, and confidence in me.

I would like to thank the other members of my supervisory committee, Professors Kalaichelvi Saravanamuttu and David J. Emslie for their support, useful discussions, and interest in my research projects.

A heartfelt thanks to Dr. Hélène P. A. Mercier for her expertise and advice throughout the course of this work concerning vibrational analysis, refinement of the single-crystal X-ray diffraction data solutions, mentoring in quantum-chemical calculations. Also a special thanks for her help in development of my scientific writing skills.

I appreciate Prof. Tian Lu, Beijing Kein Research Center for Natural Sciences, Beijing, P. R. China for taking the time to provide me with his advice and guidance related to AIM and ELF calculations as implemented in Multiwfn 3.3.8.

I would like to thank Dr. Michael J. Hughes and Dr. Tobias Köhner for their initial training in experimental work and setting up quantum-chemical calculations, respectively.

Thanks also to other past and present members of the Schrobilgen research group, namely, Dr. Gregory L. Smith, John R. DeBackere, James T. Goettel, Jamie S. Haner, and Dr. Matic Lozinšek.

For their help in their respective fields, I appreciate help of Dr. Jim Britten (X-ray crystallographic facilities), Dr. Steve Kornic (NMR and spectroscopy facilities), and Michael Palme (Chemistry Glassblowing Shop).

I would like to acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Education and Training Ontario Graduate Scholarship (OGS), and the McMaster University Department of Chemistry and Chemical Biology for financial support in the form of bursaries and scholarships over the years.

A special thanks to my husband Nikolai Goupinets for his patience, understanding, incredible support, and full confidence in my abilities. Thanks a lot to my mother Liudmila Vorontsova for devoting her personal life to support my goal to become a scientist. Thanks also to my parents-in-law Veniamin and Galina Goupinets, to be there for me, when I needed their help. Finally, I would like to thank my children Sophia L. and Dimitry V. Goupinets for their appreciation of my hard work and for forgiving me the hours I could not spend with them.

PREFACE

The following Chapters have been published in whole by the American Chemical Society (ACS). The NMR chemical shift calculations for $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$were done by Dr. Tobias Köchner.

Chapter 3: Ivanova, M. V.; Köchner, T.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2013, 52, 6806-6819.
Chapter 6: Ivanova, M. V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2015, 137, 13398-13413.

LIST OF ABBREVIATIONS AND SYMBOLS

General

ax	axial
eq	equatorial
FT	Fourier transform
FEP	perfluoriethylene/perfluoropropylene copolymer
IR	infrared
Kel-F	chlorotrifluoroethylene
VSEPR	valence shell electron pair repulsion
N.A.	natural abundance (isotopic)
i.d.	inner diameter
o.d.	outer diameter
in.	inch

Raman Spectroscopy

$\Delta \nu$	frequency
cm^{-1}	wavenumber
v	stretching mode
δ	in-plane bend
ρ_{w}	wagging mode
ρ_{r}	rocking mode

ρ_{t}	twisting mode
o.o.p.	out-of-plane
i.p.	in-plane

Nuclear Magnetic Resonance Spectroscopy

NMR	nuclear magnetic resonance
ppm	parts per milion
δ	chemical shift
I	nuclear spin quantum number
J	scalar coupling constant, in Hz
Hz	Hertz, or cycles per second
$\Delta v_{1 / 2}$	line width at half height

X-ray Crystallography

$\alpha, b, c, \alpha, \beta, \gamma$	unit cell parameters
V	unit cell volume
λ	wavelength
μ	absorption coefficient
ρ	density
Z	molecules per unit cell
mol. wt.	molecular weight
F	structure factor

R_{1}	conventional agreement index
$w R_{2}$	weighted agreement index

Computational

DFT

NBO

AIM
ELF

MEPS
density functional theory natural bond orbital

Atoms in Molecules electron localization function molecular electrostatic potential surface

TABLE OF CONTENTS

page

CHAPTER 1: INTRODUCTION

1.1. Technetium(VII) and Rhenium(VII) Oxide Fluorides ... 1

1.1.1 Syntheses and Characterization of Technetium and Rhenium Oxide
Pentafluorides 1
1.1.2 Fluoride Ion Donor-Acceptor Properties of $\mathrm{MOF}_{5}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$ 4
1.1.3 Synthesis and Characterization of Technetium and Rhenium Dioxotrifluorides 5
1.1.4 Fluoride Ion Donor-Acceptor and Lewis Acid Properties of $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ 7
1.1.5 Syntheses and Characterization of $\mathrm{TcO}_{3} \mathrm{~F}$ and $\mathrm{ReO}_{3} \mathrm{~F}$ 10
1.1.6 Fluoride Ion-Acceptor Properties of $\mathrm{MO}_{3} \mathrm{~F}(\mathrm{M}=\mathrm{Tc}$, Re), Lewis Acid Properties of $\mathrm{ReO}_{3} \mathrm{~F}$ and Fluoride Ion-Donor Properties of $\mathrm{TcO}_{3} \mathrm{~F}$ 13
1.1.7 The - OTeF_{5} Derivatives of $\mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{ReOF}_{5}$, and $\mathrm{ReO}_{3} \mathrm{~F}$ 17
1.2. Manganese(VII) Trioxide Fluoride and Its Reactivity 18
1.3. Fluorides of Manganese, Technetium, and Rhenium 19
1.3.1. Fluorides of Rhenium and Technetium 19
1.3.2. Manganese Fluorides 20
1.3.3. Lewis Acid Properties of MnF_{4} 23
1.3.4. Reaction of MnF_{4} with the Noble-Gas Fluorides, $\mathrm{KrF}_{2}, \mathrm{XeF}_{2}$, and XeF_{6} 24
1.3.5. Existing Evidence for MnF_{5} and Theoretical Studies 26
1.4. Purpose and Scope of Present Work. 26
CHAPTER 2: EXPERIMENTAL SECTION
2.1 Experimental Techniques 30
2.1.1. Dry Box and Vacuum Line Techniques 30
2.1.2. Preparative Apparatus and Sample Vessels 32
2.2. Synthesis and Purification of Starting Materials 35
2.2.1. \quad Sources and Purification of Gases: $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{F}_{2}, \mathrm{Xe}$, and Kr 35
2.2.2. Purification of Solvents: Anhydrous $\mathrm{HF}, \mathrm{SO}_{2} \mathrm{ClF}, \mathrm{CH}_{3} \mathrm{CN}$ 35
2.2.3. Purification of $\mathrm{SbF}_{3}, \mathrm{SbF}_{5}, \mathrm{BF}_{3}, \mathrm{CsF}$, and $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ 39
2.2.4. Syntheses of Starting Materials: $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}, \mathrm{AsF}_{5}, \mathrm{ONF}$, $\mathrm{K}\left[\mathrm{ReO}_{4}\right],\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right], \mathrm{Re}_{2}{ }^{16 / 18} \mathrm{O}_{7}, \mathrm{XeF}_{2}, \mathrm{KrF}_{2}, \mathrm{XeF}_{6}, \mathrm{ReO}_{2} \mathrm{~F}_{3}$, $\mathrm{Re}^{16 / 18} \mathrm{O}_{3} \mathrm{~F}$, and $\mathrm{MnO}_{3} \mathrm{~F}$ 41
2.3. Synthesis and Characterization of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}$
$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ and Attempted Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]$ $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]$ from $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ Solvent 49
2.3.1. Synthesis of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ 49
2.3.2. Crystal Growth of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and KF-4HF 50
2.3.3. Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ 51
2.3.4. Crystal Growth of $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \text { and }}\right.$ $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ 52
2.3.5. Attempted Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]$ from $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ Solvent 53
2.4. Syntheses and Characterization of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, $\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \quad[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \quad \mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \quad\left(\mathrm{M}=\quad \mathrm{K}, \quad\left[\mathrm{NH}_{4}\right]\right)\right.$, $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ 53
2.4.1. Synthesis of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 54
2.4.2. Crystal Growth of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ 55
2.4.3. Crystal Growth of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ 56
2.4.4. Synthesis of $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ 56
2.4.5. Crystal Growth of $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ 58
2.4.6. Syntheses of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, $\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 58
2.4.7. Crystal Growth of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right), \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ 59
2.4.8. Synthesis of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ and Crystal Growth of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ 60
2.5. Syntheses of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5},\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ 61
2.5.1. Synthesis of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ 61
2.5.2. Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ 62
2.5.3. Syntheses and Crystal Growth of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right]$ $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ 62
2.5.4. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with AsF_{5} in aHF 64
2.5.5. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ by the $1: 1$ Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in aHF 64
2.5.6. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$ by the $1: 2$ Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in aHF 65
2.5.7. Attempted Synthesis of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ by the $2: 1$
Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in aHF 66
2.5.8. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with BF_{3} in aHF 67
2.5.9. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with BF_{3} 67
2.6. Synthesis and Characterization of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]$$\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$68
2.6.1. Synthesis and Crystal Growth of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right][\mu-$ $\left.\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 68
2.7. Reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with Noble-Gas Fluorides, KrF_{2} and XeF_{6} 71
2.7.1. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF 71
2.7.2. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF 73
2.7.3. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} in aHF: Syntheses of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Crystal Growths 75
2.7.4. Synthesis and Crystal Growth of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 2 \mathrm{HF}$ 77
2.8. X-ray Crystallography 78
2.8.1. Crystal Growth 78
2.8.2. Low-Temperature Crystal Mounting 80
2.8.3. Data Collection 83
2.8.3.1. Bruker SMART APEX II Diffractometer 83
2.8.3.2. Solution and Refinement of Structures 84
2.9. Raman Spectroscopy 86
2.10. Nuclear Magnetic Resonance Spectroscopy 87
2.10.1. NMR Instrumentation and Spectral Acquisitions 87
2.10.2. NMR Sample Preparation 87
2.11 Quantum-Chemical Calculations 88
CHAPTER 3: THE SYNTHESIS AND LEWIS ACID PROPERTIES OF ReO ${ }_{3}$ F AND THE X-RAY CRYSTAL STRUCTURES OF (HF) $)_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ AND $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$
3.1. Introduction 91
3.2. Results and Discussion 93
3.2.1. Syntheses of $\mathrm{ReO}_{3} \mathrm{~F}$, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, and $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}}\right.$ $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ 93
3.2.2. NMR spectroscopy 98
3.2.3. X-ray Crystallography 101
3.2.3.1. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ 102
3.2.3.2. $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ 102
3.2.3.3. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ 110
3.2.4. Raman spectroscopy 113
3.2.4.1. $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ 113
3.2.4.2. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ 119
3.2.5. Computational Results 121
3.2.5.1. Calculated Structures of $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$ 121
3.2.5.2. Natural Bond Orbital (NBO) Analyses 124
3.3. Conclusion 126
CHAPTER 4: SYNTHESES AND STRUCTURAL CHARACTERIZATION OF THE $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$AND $\mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ ANIONS AND $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$
4.1. Introduction 128
4.2. Results and Discussion 131
4.2.1. Syntheses of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{Cs},[\mathrm{NO}], \mathrm{K}\right.$, and $\left.\left[\mathrm{NH}_{4}\right]\right)$, $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 131
4.2.1.1. $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 132
4.2.1.2. $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ 133
4.2.1.3. $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 134
4.2.1.4. Synthesis of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ 135
4.2.2. X-ray Crystallography 135
4.2.2.1. $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ 142
4.2.2.2. $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 143
4.2.2.3. $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ 145
4.2.3. Raman spectroscopy 146
4.2.3.1. $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$ 149
4.2.3.2. fac $-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ 158
4.2.3.3. $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ 160
4.2.4. Computational Results 161
4.2.4.1. Geometry Optimizations for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-},\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$, fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$, mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$, and $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ 161
4.2.4.2. Calculated Vibrational Spectrum of mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and Comparison with That of $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ 164
4.2.4.3. NBO Charges, Wiberg Valencies, and Bond Indices 165
4.3. Conclusion 166
CHAPTER 5: FLUORIDE ION-DONOR PROPERTIES OF ReO3 F
5.1. Introduction 168
5.2. Results and Discussion 169
5.2.1. Attempted Syntheses of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$, $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)_{2}\right]\left[\mathrm{SbF}_{6}\right],\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ in aHF 169
5.2.2. Syntheses of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ 171
5.2.3. Syntheses of $\left[\mathrm{O}_{3} \operatorname{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$. 172
5.2.4. Computational Results 173
5.2.4.1. Calculated Structures of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (1), $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ (2), and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(3) 173
5.2.5. Raman spectroscopy 185
5.2.5.1. $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right](\mathbf{1})$ 189
5.2.5.2. $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}(2)$ 190
5.2.5.3. $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(3) 191
5.2.6. NBO Charges, Wiberg Valecies, and Bond Indices 193
5.2.6.1. $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (Figure 5.1a) 194
5.2.6.2. $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ (Figure 5.1b) 194
5.2.6.3. $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(Figure 5.1c) 196
5.3. Conclusion 196
CHAPTER 6: $[\mathrm{XeOXeOXe}]^{2+}$, THE MISSING OXIDE OF XENON(II); SYNTHESIS, RAMAN SPECTRUM, AND X-RAY CRYSTAL STRUCTURE OF[XeOXeOXe] $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$
6.1. Introduction 198
6.2. Results and Discussion 201
6.2.1. Synthesis of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 201
6.2.2. X-ray Crystallography 205
6.2.3. Raman spectroscopy 214
6.2.4. Computational Results 219
6.2.4.1. Geometry Optimizations 220
6.2.4.2. Natural Bond Orbital (NBO) Analyses 222
6.2.4.3. QTAIM Analyses 224
6.2.4.4. Electron Localization Function (ELF) Analyses 230
6.2.4.5. Molecular Electrostatic Potential Surface (MEPS Analyses) 235
6.3. Conclusion 238
CHAPTER 7: REACTION OF MnO_{3} F WITH NOBLE-GAS FLUORIDES, KrF_{2} and XeF_{6}
7.1. Introduction 240
7.2. Results and Discussion 242
7.2.1. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF 242
7.2.2. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} in aHF 246
7.2.3. ${ }^{19} \mathrm{~F}$ and ${ }^{55} \mathrm{Mn}$ NMR Spectroscopy 247
7.2.4. X-ray Crystallography 251
7.2.4.1. MnF_{5} 251
7.2.4.2. $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]$ 255
7.2.4.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ 257
7.2.5. Raman spectroscopy 261
7.2.5.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (4) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (3). 264
7.2.6. Computational Results 268
7.3. Conclusion 270

Ph.D. Thesis - Maria V. Ivanova

CHAPTER 8: CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK
8.1 Conclusions 272
8.2. Future Work 275
8.2.1. Development of the Fluoride Ion Donor-Acceptor Properties of $\mathrm{TcO}_{3} \mathrm{~F}$ 275
8.2.2. Further Development of the $\mathrm{MnO}_{3} \mathrm{~F}$ Chemistry 276
8.2.3. Improved Synthesis of MnF_{5} and the Development of Its Fundamental Chemistry 277
8.2.4. Synthesis of FXeOXeOXeF and the $[\mathrm{FXeOXeOXe}]^{+}$cation 278
REFERENCES 280
APPENDIX A 299
APPENDIX B 314
APPENDIX C 338
APPENDIX D 359
APPENDIX E 383

LIST OF TABLES

1.1. Neutral Fluorides and Fluoro-Anions of Technetium and Rhenium........................ 21
2.1. Summary of Selected X-Ray Data Collection Parameters 85
2.2. Summary of Parameters Used for NMR Data Acquisition 88
3.1. Experimental Raman Frequencies and Intensities for $\mathrm{ReO}_{3} \mathrm{~F}$ and $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and Calculated Vibrational Frequencies, Intensities, and Assignments for Monomeric $\mathrm{ReO}_{3} \mathrm{~F}$95
3.2. Summary of Crystal Data and Refinement Results for $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}$ $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}, \quad\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right], \quad(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, and KF. 4 HF103
3.3. Experimental Bond Lengths (\AA) and Bond Angles (deg) for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} . \mathrm{HF}$ and Calculated Bond Lengths (A) and Bond Angles (deg) for Monomeric $\mathrm{ReO}_{3} \mathrm{~F}$.
3.4. Experimental Structural Parameters for the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ Anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ and Calculated Structural Parameters for the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$Anions106
3.5. Experimental Raman Frequencies and Intensities for the $\left[\left\{\mathrm{ReO}_{3}(\mu\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ Anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ and Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ Anions116
3.6. NBO Natural Charges, Natural Bond Orders, and Valencies for the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-} \quad(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$ Anions.125
4.1. Summary of Crystal Data and Refinement Results for $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$
(1), $\quad \mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$
(2), $\quad \mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{HF}$
(3),
$\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ (4), and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ (5)136
4.2. Experimental Geometrical Parameters for the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Anion in $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and Calculated Bond Lengths and Bond Angles for $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$. 137
4.3. Experimental and Calculated $\left(C_{3 \mathrm{v}}\right)$ Bond Lengths (\AA) and Bond Angles (deg) for the fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion 139
4.4. Experimental Geometrical Parameters for $(\mu-\mathrm{F})_{4}\{[\mu-$$\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \quad$ in $\quad(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ - andCalculated Geometrical Parameters for $(\mu-\mathrm{F})_{4}\{[\mu-$$\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)$140
4.5. Experimental Raman Frequencies and Intensities for $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right](\mathrm{M}=$ [NH_{4}], K, Cs, [NO]) and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for the Hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ Anion 151
4.6. Experimental Raman Frequencies and Intensities for $\mathrm{M}_{2}\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ ($\mathrm{M}=\mathrm{Cs}$, $[\mathrm{NO}]$) and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for $\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ 154
4.7. Selected Experimental Raman Frequencies and Intensities for $(\mu-$$\mathrm{F})_{4}\left\{\left[\mu{ }^{18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \quad$ in $\quad(\mu-\mathrm{F})_{4}\{[\mu-$$\left.\left.{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Raman andInfrared Frequencies, Intensities, and Assignments for $(\mu-\mathrm{F})_{4}\{[\mu-$$\left.\left.{ }^{18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$.. 1555.1. Selected Experimental Raman Frequencies and Intensities andCalculated Vibrational Frequencies, Intensities, and Assignments forthe $\left[\mathrm{ReO}_{3}\right]^{+}$Cation in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ Ion-Pair $\left(C_{\mathrm{s}}\right)$... 175
5.2. Selected Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for$\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) 2 \mathrm{AsF}_{5}\left(C_{\mathrm{s}}\right)$176
5.3. Experimental Raman Frequencies and Intensities for the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$Cation in $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF} \mathrm{F}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ and Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$Cation 177
5.4. Selected Calculated Bond Lengths and Bond Angles of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right] \quad$ (1), $\quad \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5} \quad$ (2), and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(3) 180
6.1. Summary of Crystal Data and Refinement Results for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 206
6.2. Experimental and Calculated Geometrical Parameters for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2} \quad\left(C_{\mathrm{i}}\right), \quad[\mathrm{XeOXeOXe}]^{2+} \quad\left(C_{2 \mathrm{~h}}\right), \quad$ and FXeOXeOXeF (C_{i}) 207
6.3. Selected Experimental and Calculated Vibrational Frequencies, ${ }^{16 / 18} \mathrm{O}$ Isotopic Shifts $\left(\Delta v^{16 / 18}\right)$, and Assignments for $[\mathrm{XeOXeOXe}]^{2+}$ in $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. 217
6.4. Selected Experimental and Calculated Vibrational Frequencies, ${ }^{16 / 18} \mathrm{O}$ Isotopic Shifts $\left(\Delta \nu^{16 / 18}\right)$, and Assignments for Gas-Phase $[\mathrm{XeOXeOXe}]^{2+}$ 218
6.5. QTAIM Density of all Electrons (ρ_{b}), Laplacian of Electron Density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, Energy Density $\left(H_{\mathrm{b}}\right)$, QTAIM Delocalization Indexes (δ), QTAIM Atomic Populations (\bar{N}), and ELF Basin Populations (\bar{N}) in $[\mathrm{XeOXeOXe}]^{2+}, \mathrm{FXeOXeOXeF}$, and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 226
7.1. Summary of Crystal Data and Refinement Results for MnF_{5} (1), $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ (2), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right] \quad$ (3), $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right] \quad$ (4), and $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ (5) 252
7.2 Experimental Bond Lengths and Bond Angles for Polymeric MnF_{5} and Calculated Bond Lengths and Bond Angles for the Hypothetical [$\left.\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{2 \mathrm{~h}}\right)$ Anion 253

7.3 Experimental Bond Lengths, Contacts, and Bond Angles for $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ and Calculated Bond Lengths and Bond Angles for $\left[\mathrm{MnF}_{6}\right]^{-}$
 256

7.4. Selected Experimental Bond Lengths, Contacts, and Bond Angles for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (2) and Selected Calculated Bond Lengths and Bond Angles for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ (3) and $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ (4) .258
7.5. Experimental Raman Frequencies and Intensities for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (4) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (3) and Calculated Vibrational Frequencies, Intensities and Assignments for $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ (7) and $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)(6)$... 265
A1. Experimental Raman Frequencies and Intensities for the $\left[\mathrm{ReO}_{4}\right]^{-}$ Anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right], \mathrm{K}\left[\mathrm{ReO}_{4}\right]$, $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$, and $\mathrm{Na}\left[\mathrm{ReO}_{4}\right]$ and the Calculated Vibrational Frequencies and Intensities for the $\left[\mathrm{ReO}_{4}\right]^{-}$Anion 306

A2. Correlation Diagram for the Vibrational Modes of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$ in $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$307

A3. Correlation Diagram for the Vibrational Modes of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\right.$ $\left.\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ Anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$308

A4. Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ Anions.309

A5. Experimental Geometrical Parameters for the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ Anion in $\mathrm{K}\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right] \cdot 1.5 \mathrm{TcO}_{3} \mathrm{~F}$ and Calculated Geometrical Parameters for the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$Anions312

B1. Experimental Geometrical Parameters for $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Geometrical Parameters for $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ 315
B2. Experimental Raman Frequencies and Intensities for $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.{ }^{18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\right.$ $\left.\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.{ }^{16 / 18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ 327
B3. Calculated Vibrational Frequencies and Infrared and Raman Intensities for mer $-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ 331
B4. Calculated Vibrational Frequencies and Infrared and Raman Intensities for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer $\left(C_{\mathrm{s}}\right)$ 332
B5. Correlation Diagram for the Vibrational Modes of the fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion in $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 333
B6. Calculated Bond Lengths and Bond Angles for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer 335
B7. Calculated Bond Lengths and Bond Angles for fac- and mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ 336
B8. NBO Natural Charges and Wiberg Valencies and Bond Indices for the Hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ Anion $\left(C_{4 \mathrm{v}}\right)$ 336
B9. NBO Natural Charges and Wiberg Valencies and Bond Indices for the $\left[\text { fac }-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion $\left(C_{3 \mathrm{v}}\right)$ 337
B10. NBO Natural Charges and Wiberg Valencies for $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)$ 338
C1. Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{ReO}_{3}\right]^{+}$cation $\left(C_{3 \mathrm{v}}\right)$ 339
C2. Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion $\left(C_{\mathrm{s}}\right)$ 340
C3. Calculated Bond Lengths and Bond Angles for $\mathrm{CH}_{3} \mathrm{CN}\left(C_{3 \mathrm{v}}\right)$ 341
C4. Experimental Raman Frequencies and Intensities and CalculatedVibrational Frequencies, Intensities, and Assignments for$\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$342
C5. Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for μ - $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ 345
C6. Experimental Raman Frequencies and Intensities for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3) and $\mathrm{CH}_{3} \mathrm{CN}$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$and $\mathrm{CH}_{3} \mathrm{CN}$ 348
C7. Calculated Bond Lengths and Bond Angles for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ 350
C8. Calculated Bond Lengths and Bond Angles for the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion $\left(C_{\mathrm{s}}\right)$ 352
C9. Calculated Bond Lengths and Bond Angles for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$ $\left(C_{3 \mathrm{v}}\right)$ 353
C10. NBO Charges and Wiberg Valencies for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and μ - $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ 356
C11. Wiberg Bond Indices for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and μ - $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ 357
C12. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{ReO}_{3} \cdot 3 \mathrm{NCCH}_{3}\right]^{+}$ 357
C13. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{ReO}_{3}\right]^{+}$ 358
C14. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$ 358
C15. NBO Charges and Wiberg Valencies and Bond Indices for $\mathrm{CH}_{3} \mathrm{CN}$ 358
D1. Selected Experimental and Calculated Bond Lengths and Contacts for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ and Corresponding Bond Valences 362
D2. Experimental and Calculated (B3LYP, C_{i}) Vibrational Frequencies for $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{6 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 363
D3. Experimental and Calculated (PBE1PBE, C_{i}) Vibrational Frequencies for $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe} 1^{6 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 369
D4. Calculated (B3LYP, $C_{2 h}$) Raman and Infrared Frequencies, Intensities, and Assignments for $[\mathrm{XeOXeOXe}]^{2+}$.373

D5. Calculated (PBE1PBE, $C_{2 h}$) Raman and Infrared Frequencies, Intensities, and Assignments for [XeOXeOXe$]^{2+}$374

D6. Calculated Raman and Infrared Frequencies, Intensities, and Assignments for the $\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{4}\right)\right]^{-}$Anion $\left(C_{1}\right)$375

D7. Calculated (B3LYP, C_{i}) Raman and Infrared Frequencies, Intensities, and Assignments for FXeOXeOXeF377

D8. Calculated (PBE1PBE, C_{i}) Raman and Infrared Frequencies, Intensities, and Assignments for FXeOXeOXeF 378
D9. Natural Population Analysis Charges, Natural Atomic Orbital Bond Orders, and Valences for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2} \quad\left(C_{\mathrm{i}}\right)$, $[\mathrm{XeOXeOXe}]^{2+}\left(C_{2 \mathrm{~h}}\right)$, and FXeOXeOXeF $\left(C_{\mathrm{i}}\right)$379

D10. QTAIM Density of all Electrons (ρ_{b}), Laplacian of Electron Density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, Energy Density $\left(H_{\mathrm{b}}\right)$, QTAIM Delocalization Indexes (δ), QTAIM Atomic Populations (\bar{N}), and ELF Basin Populations (\bar{N}) in $[\mathrm{XeOXeOXe}]^{2+}$, FXeOXeOXeF, and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2} \ldots ~ 381$
E1. Selected Experimental and Calculated Bond Lengths and Bond Angles for the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and $\left[\mathrm{XeF}_{5}\right]^{+}$cations in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$390

E2. Experimental Bond Lengths, Contacts, and Bond Angles for $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]$ in the Crystal structure of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ and Calculated Bond Lengths and Bond Angles for $\left[\mathrm{MnF}_{6}\right]^{2-}$392

E3. Experimental Raman Frequencies and Intensities for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$
E4. Experimental Raman Frequencies and Intensities for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$.

E4. Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for the

LIST OF FIGURES

1.1. The X-ray crystal structure of $\mathrm{ReO}_{3} \mathrm{~F}$. 13
1.2. Asymmetric unit of $\left.\mathrm{K}\left[\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right] \cdot 1.5 \mathrm{TcO}_{3} \mathrm{~F}$ 14
1.3. View of the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}$cation 16
2.1. Schematic diagram of metal vacuum line system 31
2.2. Glass vacuum line 33
2.3. Hydrogen fluoride distillation apparatus 36
2.4. Apparatus used for the vacuum transfer of $\mathrm{SO}_{2} \mathrm{ClF}$ solvent 38
2.5. Apparatus used for the vacuum transfer of $\mathrm{CH}_{3} \mathrm{CN}$ solvent 40
2.6. Reactor used for the preparation of $\mathrm{Re}_{2} \mathrm{O}_{7}$ 43
2.7. The stainless stell hot-wire reactor used for the preparation of KrF_{2} 45
2.8. Low-temperature crystal growing apparatus 79
2.9. Low-temperature crystal mounting apparatus 81
2.10. Enlarged view of the crystal mounting apparatus 82
3.1. The ${ }^{19} \mathrm{~F}$ NMR spectra (470.599 MHz) of the (a) $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$and (b)$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions in $\left[\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$, respectively, recorded at $27{ }^{\circ} \mathrm{C}$ in$\mathrm{CH}_{3} \mathrm{CN}$100
3.2. Structural unit in the X-ray crystal structure of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ with thermal ellipsoids drawn at the 30% probability level 105
3.3. The $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion in the crystal structure of$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$; thermal ellipsoids areshown at the 50\% probability level .. 108
3.4. Calculated structures of the (a) $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and (b) $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions 108
3.5. Raman spectrum of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ obtained from the solvolysis of $\mathrm{ReO}_{3} \mathrm{~F}$ in aHF and isolated by removal of aHF under dynamic vacuum at $-78^{\circ} \mathrm{C}$ 114
3.6. Raman spectrum of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ recorded at $-160{ }^{\circ} \mathrm{C}$ under frozen $\mathrm{CH}_{3} \mathrm{CN}$ using 1064-nm excitation 115
4.1. (a) A part of the oligomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion in the crystal structure of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated structure of the hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ anion 138
4.2. (a) The $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion in the crystal structure of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated structure of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion 139
4.3. (a) The $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ molecule in the crystal structure of $(\mu-\mathrm{F})_{4} \quad\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated structure of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ 141
4.4. Raman spectrum of crystalline $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 147
4.5. Raman spectrum of a solid mixture of crystalline $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. 148
4.6. Raman spectra of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation for natural abundance (lower trace) and $\sim 97 \%{ }^{18} \mathrm{O}$-enriched (upper trace) 150
5.1. The energy-minimized structures of (a) $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, (b) the μ - $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ adduct and (c) the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct- cation 174
5.2. Raman spectrum of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 186
5.3. Raman spectrum of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 187
5.4. Raman spectrum of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{AsF}_{6}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation.188
6.1. (a) The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated gasphase structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$
6.2. Raman spectra of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation for natural abundance (lower trace) and $\sim 97 \%{ }^{18} \mathrm{O}$-enriched (upper trace)215
6.3. Contour maps of the charge density showing the bond paths and the intersection of the interatomic surfaces (top) and charge density contour maps of the Laplacian distribution (bottom) in (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) FXeOXeOXeF, and (c) $[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. .225
6.4. ELF isosurface plots at $\eta(\mathbf{r})=0.60$ (B3LYP/aug-cc-pVDZ(-PP)) for
(a) $[\mathrm{XeOXeOXe}]^{+}$and (b) $[\mathrm{FXeOXeOXeF}]$.231
6.5. Reduction of the localization diagrams for (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, and (c) FXeOXeOXeF showing the ordering of localization nodes and the boundary isosurface values232
6.6. Calculated molecular electrostatic potentials at the 0.001 electron bohr ${ }^{-3}$ surfaces of (a) the $[\mathrm{XeOXeOXe}]^{2+}$ cation, (b) FXeOXeOXeF, and (c) the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair236
7.1. (a) The ${ }^{19} \mathrm{~F}$ NMR spectrum (470.51 MHz) of $\mathrm{MnO}_{3} \mathrm{~F}$; (b) The ${ }^{55} \mathrm{Mn}$ NMR spectrum (123.98 MHz). All spectra were recorded in HF solvent at $25^{\circ} \mathrm{C}$248

7.2. The ${ }^{9} \mathrm{~F}-{ }^{55} \mathrm{Mn}$ COSY NMR spectrum $\left({ }^{19} \mathrm{~F}, 470.51 \mathrm{MHz} ;{ }^{55} \mathrm{Mn}, 123.98\right.$
MHz) of $\mathrm{MnO}_{3} \mathrm{~F}$ recorded in HF solvent at $25^{\circ} \mathrm{C}$. 250
7.3. (a) The ${ }^{19} \mathrm{~F}$ NMR spectrum $(470.56 \mathrm{MHz})$ of the product formed in the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in HF . The spectrum was recorded in HF at $25^{\circ} \mathrm{C}$. and is tentatively assigned to $\left[\mathrm{MnF}_{6}\right]^{-}$.
7.4. (a) The repeat unit in the crystal structure of MnF_{5}; thermal ellipsoids are shown at the 50% probability level. (b) The calculated structure of the hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$anion254

7.5. (a) The $\left[\mathrm{MnF}_{6}\right]^{-}$anion in the crystal structure of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ showing the
K^{+}contacts around the MnF_{6}-octahedron. Thermal ellipsoids are
shown at the 50% probability levels for both compounds. (b) The
calculated structure of the $\left[\mathrm{MnF}_{6}\right]^{-}$anion. 256
7.6. (a) A portion of the crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ showing the
contacts around the $\left[\mathrm{MnF}_{6}\right]^{-}$anion. Thermal ellipsoids are shown at
the 50% probability level. The symmetry-related $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation is
omitted for clarity. (b) A portion of the calculated structure of
$\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ showing the contacts around the MnF_{6}
octahedron. The remaining $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations are omitted for clarity. 259
7.7. (a) View of a dimeric ring in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$; thermal ellipsoids are drawn at the 50% probability level. (b) A portion of the calculated structure of $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ showing the contacts around the $\left[\mathrm{MnF}_{6}\right]^{-}$anion 260
7.8. Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 262
7.9. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064- nm excitation 263
A1. Raman spectrum of $\mathrm{ReO}_{3} \mathrm{~F}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 300
A2. The X-ray crystal structure of KF•4HF 303
A3. A view of the crystal packing in $\left[N\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})] \cdot \mathrm{CH}_{3} \mathrm{CN}$ along the c-axis of the unit cell 304
 304
A5. The calculated structures of the (a) $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and (b) $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions 308
B1. Crystal structure of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ 318
B2. The (a) $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$and (b) $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anions in the crystal structures of $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{HF}$ and $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$, respectively. Packing diagrams for (c) $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{HF}$ and (d) $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$ are shown along the c - and a-axes, respectively 320
B3. The packing diagram for $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ is shown along the b-axis 321
B4. The coordination environment around the K^{+}cation in the crystal structure of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ 322
B5. Raman spectrum of crystalline $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 323
B6. Raman spectrum of crystalline $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 324
B7. Raman spectrum of a solid mixture of crystalline $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, crystalline $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 325
B8. Raman spectrum of a solid mixture of crystalline $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ recorded at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation 326
B9. Calculated Structures of the (a) fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ and (b) mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$ anions 331
B10. Calculated Structure of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer $\left(C_{\mathrm{s}}\right)$ 332
B11. Raman spectrum of solid $\mathrm{Re}_{2} \mathrm{O}_{7}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 334
C 1 . Calculated structure $\left(C_{3 \mathrm{v}}\right)$ of the $\left[\mathrm{ReO}_{3}\right]^{+}$cation 339
C 2 . Calculated structure $\left(C_{\mathrm{s}}\right)$ of the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion 340
C3. Calculated structures $\left(C_{3 v}\right)$ of the (a) $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]_{3}\right\}^{2-}$ and (b) $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}$ ion-pairs 341
C4. Calculated structure ($C_{3 \mathrm{v}}$) of $\mathrm{CH}_{3} \mathrm{CN}$ 341
C5. Calculated transitional state of the " $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]$ " structure $\left(C_{\mathrm{s}}\right)$ 354
C6. Calculated structure of the " $\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]-$ anion" $\left(C_{2 \mathrm{v}}\right)$ 354

C7. Raman spectrum of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ recorded on a crystalline material under frozen $\mathrm{CH}_{3} \mathrm{CN}$ at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation
 355

D1. A view of the crystal packing in $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ along the a-axis of the unit cell360

D2. The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ showing the immediate coordination environments around $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2)}$ in the structural unit361

D3. The calculated structures of (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) FXeOXeOXeF,
and (c) $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$ 364

D4. Relief map representations of the electron densities in the plane of (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) FXeOXeOXeF, and (c) the F---XeOXeOXe---F moiety of the ion pair, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]_{2}$380
D5. ELF isosurface plots, $\eta(\mathbf{r})=0.60$ for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ 382
E1. Raman spectrum of $\mathrm{MnO}_{3} \mathrm{~F}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 384
E2 Raman spectrum of a red oil under frozen solution that resulted from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF. The spectrum was recorded at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation 385
E3. Raman spectrum of the isolated product resulting from the reaction of$\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF. The spectrum was recorded at $-150{ }^{\circ} \mathrm{C}$using 1064-nm excitation386
E4. Raman spectrum of the product resulting from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF 387E5. Raman spectrum of the product resulting from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF388

E6. Raman spectrum of a solid mixture comprised of $\mathrm{MnO}_{3} \mathrm{~F}$, $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and XeOF_{4} and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}$ (see Section 7.2.2) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation389
E7. Crystal structure of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ showing the coordination environment around (a) the K^{+}cation and (b) the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion. 393
E8. Packing of MnF_{5} along the c-axis 394
E9. Packing of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ along the b-axis 395
E10. View showing contacts around the K^{+}cation in the crystal structure of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ 395
E11. Packing of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ along the b-axis 396
E12. The coordination around the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation in the crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ 397
E13. Packing of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ along the b-axis 398
E14. Raman spectrum of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation 399

LIST OF SCHEMES

3.1. Proposed reaction pathway leading to the formation of the [\{ $\operatorname{ReO}_{3}(\mu-$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion97
6.1. Proposed Reaction Pathway Leading to the Formation of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$203

A1. An alternative proposed reaction pathway leading to the formation of the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion in $\mathrm{CH}_{3} \mathrm{CN}$ solvent.301

A2. A plausible reaction pathway leading to the formation of the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion in aHF solvent302

Ph.D. Thesis - Maria V. Ivanova

CHAPTER 1

INTRODUCTION

1.1. Technetium(VII) and Rhenium(VII) Oxide Fluorides

The highest oxidation state among the group VII elements, +7 , is stabilized by several oxides and oxide fluorides in this group: $\mathrm{M}_{2} \mathrm{O}_{7}(\mathrm{M}=\mathrm{Mn}, \mathrm{Tc}$, Re$), \mathrm{MOF}_{5}, \mathrm{MO}_{2} \mathrm{~F}_{3}$, $\mathrm{MO}_{3} \mathrm{~F}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$, and $\mathrm{MnO}_{3} \mathrm{~F}$ and their corresponding oxide fluoride cations and anions. The relative ease with which the +7 oxidation state is attained can be associated with the high oxophilicity of group VII transition metals. The stabilization of the highest oxidation states of group(VII) results from extensive $\mathrm{p} \pi-\mathrm{d} \pi$ back bonding between filled p orbitals of the oxygen ligands and empty d orbitals of the metal atom. The +7 oxidation state is also stabilized in ReF_{7}, representing only the second known heptafluoride in the periodic table; the other being IF_{7}. In contrast to $\operatorname{Re}(\mathrm{VII})$ fluorides, ReF_{7} and $\left[\operatorname{ReF}_{6}\right]^{+}$, MnF_{7} and TcF_{7} are presently unkown.

1.1.1 Syntheses and Characterization of Technetium and Rhenium Oxide Pentafluorides

Technetium oxide pentafluoride was synthesized as a volatile orange solid (m.p. $57-58{ }^{\circ} \mathrm{C}$) by Schrobilgen and co-workers ${ }^{1,2}$ by the reaction of $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ with excess KrF_{2} in aHF (eq 1.1). It was characterized in the solid state by Raman and single-crystal X-ray

$$
\begin{equation*}
\mathrm{TcO}_{2} \mathrm{~F}_{3}+\mathrm{KrF}_{2} \longrightarrow \mathrm{TcOF}_{5}+1 / 2 \mathrm{O}_{2}+\mathrm{Kr} \tag{1.1}
\end{equation*}
$$

diffraction, in solution by ${ }^{19} \mathrm{~F}$ and ${ }^{99} \mathrm{Tc}$ NMR and Raman spectroscopies, and in the gasphase by infrared spectroscopy. The low-temperature ${ }^{19} \mathrm{~F}$ NMR spectrum showed a well-
resolved doublet and a quintet corresponding to the equatorial (364.1 ppm) and axial (62.0 ppm) fluorine atoms, respectively. The ${ }^{99} \mathrm{Tc}$ NMR spectrum recorded at $35{ }^{\circ} \mathrm{C}$ in aHF and at $30{ }^{\circ} \mathrm{C}$ in $\mathrm{SO}_{2} \mathrm{ClF}$ showed resonances at 394.5 and 433.8 ppm relative to CFCl_{3}, which are broadened by the partially quadrupole collapsed spin-spin coupling with the ${ }^{99} \mathrm{Tc}(100 \%$ abundance) nucleus. Technetium oxide pentafluoride has a pseudooctahedral geometry; however, the crystal structure suffers from a twofold disorder with respect to a pseudo-mirror plane that contains one of the $\mathrm{F}_{\mathrm{e}}-\mathrm{Tc}-\mathrm{F}_{\mathrm{e}}$ axes $\left(\mathrm{F}_{\mathrm{e}}\right.$, equatorial fluorine atom). ${ }^{2}$ The location of two undistorted $\mathrm{Tc}-\mathrm{F}_{\mathrm{e}}$ bond lengths (1.81(1) \AA) allowed the calculation of the $\mathrm{Tc}-\mathrm{F}_{\mathrm{a}}$ (F_{a}-axial fluorine atom) and $\mathrm{Tc}-\mathrm{O}$ bond lengths $(1.90(1) \AA$) and (1.67(1) \AA).

The synthesis of ReOF_{5} (m.p. $34.5^{\circ} \mathrm{C}$, b.p. $55^{\circ} \mathrm{C}$) was reported for the first time by Aynsley, Peacock, and Robinson, ${ }^{3}$ who synthesized ReOF_{5} in admixture with $\mathrm{ReO}_{2} \mathrm{~F}_{3}$, by the fluorination of ReO_{2} or $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ at $100{ }^{\circ} \mathrm{C}$ (eq 1.2 and 1.3). Rhenium oxide

$$
\begin{align*}
& 2 \mathrm{ReO}_{2}+4 \mathrm{~F}_{2} \xrightarrow{100^{\circ} \mathrm{C}} \mathrm{ReOF}_{5}+\mathrm{ReO}_{2} \mathrm{~F}_{3}+1 / 2 \mathrm{O}_{2} \tag{1.2}\\
& 2 \mathrm{~K}\left[\mathrm{ReO}_{4}\right]+5 \mathrm{~F}_{2} \xrightarrow{100^{\circ} \mathrm{C}} \mathrm{ReOF}_{5}+\mathrm{ReO}_{2} \mathrm{~F}_{3}+2 \mathrm{KF}+5 / 2 \mathrm{O}_{2} \tag{1.3}
\end{align*}
$$

pentafluoride (a minor cream-colored product) was separated from $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ (major product) by sublimation and analyzed for rhenium and fluorine. The fluorination of $\mathrm{ReOF}_{4}, \mathrm{ReO}_{2}$, and ReO_{3} at high temperatures also resulted in the formation of ReOF_{5} (eqs $1.4,1.5$, and 1.6 , respectively). ${ }^{4}$

$$
\begin{array}{ll}
\mathrm{ReOF}_{4}+1 / 2 \mathrm{~F}_{2} & \xrightarrow{300^{\circ} \mathrm{C}} \mathrm{ReOF}_{5} \\
\mathrm{ReO}_{2}+3 \mathrm{~F}_{2} & \xrightarrow[25 \mathrm{~h}]{250^{\circ} \mathrm{C}} \mathrm{ReOF}_{5}+1 / 2 \mathrm{O}_{2}+1 / 2 \mathrm{~F}_{2} \tag{1.5}
\end{array}
$$

$$
\begin{equation*}
2 \mathrm{ReO}_{3}+4 \mathrm{~F}_{2} \xrightarrow[17 \mathrm{~h}]{20{ }^{\circ} \mathrm{C}} \mathrm{ReOF}_{5}+\mathrm{ReO}_{2} \mathrm{~F}_{3}+{ }^{3} / 2 \mathrm{O}_{2} \tag{1.6}
\end{equation*}
$$

Recently, ReOF_{5} was synthesized by fluorination of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with ClF_{3} (eq 1.7). ${ }^{5}$ The reaction begins at $-100{ }^{\circ} \mathrm{C}$ and proceeds with gas evolution and formation of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ as

$$
\begin{equation*}
6 \mathrm{Re}_{2} \mathrm{O}_{7}+20 \mathrm{ClF}_{3} \xrightarrow[24 \mathrm{~h}]{\mathrm{HF}} 12 \mathrm{ReOF}_{5}+15 \mathrm{O}_{2}+10 \mathrm{Cl}_{2} \tag{1.7}
\end{equation*}
$$

the reaction intermediate which is converted to ReOF_{5} at room temperature.
Rhenium oxide pentafluoride has also been characterized in low-temperature matrices by UV-vis spectroscopy, ${ }^{6}$ infrared ${ }^{6,7}$ and Raman spectroscopies, ${ }^{7}$ solid state infrared spectroscopy, ${ }^{8}$ and mass spectrometry. ${ }^{4}$ The vibrational studies established that ReOF_{5} has $C_{4 \mathrm{v}}$ symmetry. Bartlett et al. ${ }^{9}$ confirmed the $C_{4 \mathrm{v}}$ geometry of ReOF ${ }_{5}$ based on a ${ }^{19}$ F NMR study and concluded that the axial $\mathrm{Re}-\mathrm{F}$ bond is more polar, and thus longer than the equatorial $\operatorname{Re}-\mathrm{F}$ bond lengths based on the relative chemical shifts of the axial (quintet, -362 ppm) and the equatorial (doublet, -160 ppm) fluorine ligands. The structural parameters of ReOF_{5} were determined from a gas-phase electron diffraction study, ${ }^{10}$ but the axial and equatorial $\operatorname{Re}-\mathrm{F}$ bond lengths were refined as a single parameter and consequently could not be differentiated. A normal coordinate analysis ${ }^{11}$ of the ReOF_{5} vibrational frequencies indicated that the axial $\mathrm{Re}-\mathrm{F}$ bond is shorter than the equatorial $\operatorname{Re}-\mathrm{F}$ bonds, which contradicts the above ${ }^{19} \mathrm{~F}$ NMR findings. A recent singlecrystal X-ray structure determination of $\mathrm{ReOF}_{5}{ }^{12}$ unambiguously established that ReOF_{5} $\left(C_{4 v}\right)$ has a monomeric structure with the axial $\operatorname{Re}-F$ bond being longer than the equatorial $\mathrm{Re}-\mathrm{F}$ bonds.

1.1.2 Fluoride Ion Donor-Acceptor Properties of $\mathrm{MOF}_{5}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$

The fluoride ion-donor properties of ReOF_{5} and TcOF_{5} were studied by reaction of $\mathrm{MOF}_{5}(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$ with AsF_{5} and SbF_{5}, and resulted in the formation of the $\left[\mathrm{ReOF}_{4}\right]\left[\mathrm{AsF}_{6}\right],{ }^{13} \quad\left[\mu-\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],{ }^{2} \quad\left[\mu-\mathrm{F}\left(\mathrm{ReOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],{ }^{13}$ and $[\mu-$ $\left.\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]^{2}$ salts (eqs $1.8-1.10$). The $\left[\mathrm{ReOF}_{4}\right]\left[\mathrm{AsF}_{6}\right]$ salt was characterized by

$$
\begin{align*}
& \mathrm{ReOF}_{5}+\mathrm{xs} \mathrm{AsF}_{5} \longrightarrow\left[\mathrm{ReOF}_{4}\right]\left[\mathrm{AsF}_{6}\right] \tag{1.8}\\
& 2 \mathrm{MOF}_{5}+2 \mathrm{SbF}_{5} \longrightarrow\left[\mu-\mathrm{F}\left(\mathrm{MOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right](\mathrm{M}=\mathrm{Re}, \mathrm{Tc}) \tag{1.9}\\
& 2 \mathrm{TcOF}_{5}+\mathrm{AsF}_{5} \longrightarrow\left[\mu-\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right] \tag{1.10}
\end{align*}
$$

mass spectrometry and Raman spectroscopy. ${ }^{13}$ The dinuclear $\left[\mu-\mathrm{F}\left(\mathrm{MOF}_{4}\right)_{2}\right]^{+}$cations were characterized by Raman spectroscopy and single-crystal X-ray diffraction and were shown to consist of two fluorine-bridged MOF_{4} units with the oxo ligands located trans to the bridging fluorine atom. ${ }^{2,13}$ The $\left[\mu-\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$ and $\left[\mu-\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]$ salts were also characterized by ${ }^{19} \mathrm{~F}$ and ${ }^{99} \mathrm{Tc}$ NMR spectroscopy. ${ }^{2}$

The synthesis of the $\left[\mathrm{TcOF}_{6}\right]^{-}$anion has been attempted by reaction of $\mathrm{Cs}\left[\mathrm{TcO}_{2} \mathrm{~F}_{4}\right]$ with KrF_{2} in aHF, TcOF_{5} with CsF in $\mathrm{CH}_{3} \mathrm{CN}$, and by fusion of TcOF_{5} with dry CsF at 60 ${ }^{\circ} \mathrm{C} .{ }^{14}$ The reaction in aHF revealed that TcOF_{5} is a weaker fluoro-acid than aHF and, as a result, only $\mathrm{Cs}\left[\mathrm{HF}_{2}\right]$ was formed. The reaction of TcOF_{5} with CsF in $\mathrm{CH}_{3} \mathrm{CN}$ and the fusion reaction resulted in reduction of TcOF_{5} by the solvent or its decomposition, respectively. In contrast, ReOF_{5} reacts with $\mathrm{NOF},{ }^{15} \mathrm{NO}_{2} \mathrm{~F}^{15}$ (eq 1.11) and CsF^{16} (eq 1.12)

$$
\begin{align*}
& \mathrm{ReOF}_{5}+\mathrm{NOF} / \mathrm{NO}_{2} \mathrm{~F} \longrightarrow\left[\mathrm{NO} / \mathrm{NO}_{2}\right]\left[\mathrm{ReOF}_{6}\right] \tag{1.11}\\
& \mathrm{ReOF}_{5}+\mathrm{CsF} \xrightarrow{60^{\circ} \mathrm{C}} \mathrm{Cs}\left[\mathrm{ReOF}_{6}\right] \tag{1.12}
\end{align*}
$$

to form $\left[\mathrm{ReOF}_{6}\right]^{-}$. The $\left[\mathrm{ReOF}_{6}\right]^{-}$anion $\left(C_{5 \mathrm{v}}\right)$ was characterized by Raman ${ }^{15,16}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopies ${ }^{15,16}$ and by single-crystal X-ray diffraction. ${ }^{16}$ The solid state geometry of the $\left[\mathrm{ReOF}_{6}\right]^{-}$anion is a pentagonal bipyramid $\left(C_{5 v}\right)$ with the oxygen atom in an apical position.

1.1.3. Syntheses and Characterization of Technetium and Rhenium Dioxotrifluoride

The high-yield synthesis of pure yellow $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ was achieved by Schrobilgen and Mercier, ${ }^{17}$ who reacted $\mathrm{Tc}_{2} \mathrm{O}_{7}$ with XeF_{6} in aHF at room temperature (eq 1.13-1.18).

$$
\begin{align*}
& \mathrm{Tc}_{2} \mathrm{O}_{7}+4 \mathrm{HF} \xrightarrow{\mathrm{HF}} 2 \mathrm{TcO}_{3} \mathrm{~F}+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right] \tag{1.13}\\
& {\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right]+\mathrm{XeF}_{6} \xrightarrow{\mathrm{HF}} \mathrm{XeOF}_{4}+4 \mathrm{HF}} \tag{1.14}\\
& \mathrm{TcO}_{3} \mathrm{~F}+\mathrm{XeF}_{6} \xrightarrow{\mathrm{HF}} \mathrm{TcO}_{2} \mathrm{~F}_{3}+\mathrm{XeOF}_{4} \tag{1.15}\\
& {\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right]+\mathrm{XeOF}_{4} \xrightarrow{\mathrm{HF}} \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}} \tag{1.16}\\
& \mathrm{TcO}_{3} \mathrm{~F}+\mathrm{XeOF}_{4} \xrightarrow{\mathrm{HF}} \mathrm{TcO}_{2} \mathrm{~F}_{3}+\mathrm{XeO}_{2} \mathrm{~F}_{2} \tag{1.17}\\
& \mathrm{XeO}_{2} \mathrm{~F}_{2} \longrightarrow \longrightarrow \mathrm{XeF}_{2}+\mathrm{O}_{2} \tag{1.18}
\end{align*}
$$

The solvolysis of $\mathrm{Tc}_{2} \mathrm{O}_{7}$ in aHF initially produced $\mathrm{TcO}_{3} \mathrm{~F}$ along with water as a byproduct (eq 1.13), which subsequently reacted with XeF_{6} to form XeOF_{4} (eq 1.14). Both XeF_{6} and XeOF_{4} further reacted with $\mathrm{TcO}_{3} \mathrm{~F}$ to yield $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ (eqs 1.15 and 1.17). Xenon dioxide difluoride, formed in eqs 1.16 and 1.17 , decomposed to XeF_{2} and O_{2} which were removed under dynamic vacuum.

Technetium dioxide trifluoride was characterized by Raman spectroscopy, ${ }^{17}{ }^{19} \mathrm{~F}$ and ${ }^{99}$ Tc NMR spectroscopy, ${ }^{18}$ and single-crystal X-ray diffraction. ${ }^{17}$ The X-ray crystal
structure consists of open chains of cis-fluorine bridged $\mathrm{TcO}_{2} \mathrm{~F}_{4}$ units, where Tc is in a pseudo-octahedral environment and the bridging fluorine atoms are trans to the oxygen atoms. However, in $\mathrm{SO}_{2} \mathrm{ClF}$ solution, $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ forms cyclic fluorine bridged trimers $\left({ }^{19} \mathrm{~F}\right.$ NMR: $\mathrm{F}_{\mathrm{t}}, 76.2 \mathrm{ppm} ; \mathrm{F}_{\mathrm{b}},-148.6 \mathrm{ppm} ;{ }^{99} \mathrm{Tc}$ NMR: 211.0 ppm$)$.

High-purity $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ was synthesized in high yield by the room-temperature fluorination of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with XeF_{6} in aHF which is analogous to that used for the preparation of $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ (eq 1.13-1.18). ${ }^{19}$ The synthesis of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ by reaction of $\mathrm{ReO}_{3} \mathrm{Cl}$ with XeF_{2} (eq 1.19) avoids handling XeF_{6}, whose hydrolysis product, XeO_{3}, is explosive.

$$
\begin{equation*}
2 \mathrm{ReO}_{3} \mathrm{Cl}+3 \mathrm{XeF}_{2} \xrightarrow{\mathrm{HF}} \mathrm{ReO}_{2} \mathrm{~F}_{3}+2 \mathrm{Xe}+\mathrm{O}_{2}+\mathrm{Cl}_{2} \tag{1.19}
\end{equation*}
$$

Rhenium dioxide trifluoride also forms as a product from the fluorination of ReO_{2} (eq 1.2), ${ }^{3} \mathrm{~K}\left[\mathrm{ReO}_{4}\right]$ (eq 1.3), ${ }^{3} \mathrm{ReO}_{3}$ (eq 1.6), ${ }^{4}$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ (eq 1.20). ${ }^{6}$

$$
\begin{equation*}
\mathrm{Re}_{2} \mathrm{O}_{7}+4 \mathrm{~F}_{2} \xrightarrow[16 \mathrm{~h}]{20{ }^{\circ} \mathrm{C}} 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}+3 / 2 \mathrm{O}_{2}+\mathrm{F}_{2} \tag{1.20}
\end{equation*}
$$

Rhenium dioxide trifluoride was characterized in the gas-phase by UV-vis, ${ }^{6}$ infrared, ${ }^{6,20}$ and Raman ${ }^{20}$ spectroscopies, mass spectrometry, ${ }^{4}$ by ${ }^{19}$ F NMR ${ }^{18}$ spectroscopy in $\mathrm{SO}_{2} \mathrm{ClF}$ solution, and in the solid state by Raman spectroscopy, ${ }^{19,21}$ and single-crystal X-ray diffraction ${ }^{9,21}$. It has been shown by ${ }^{19} \mathrm{~F}$ NMR spectroscopy that $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ has several modifications, which include open-chain oligomeric, cyclic trimeric and tetrameric compounds. ${ }^{18}$ Additionally, small amounts of the pentanuclear oligomer were also observed. ${ }^{18}$ Four structural modifications, two fluorine-bridged open chain-type ${ }^{19,21}$ and two fluorine-bridged cyclic (trimers and tetramers), ${ }^{21}$ have also been crystallographically characterized. In all of the above cases, the rhenium atoms occur in pseudo-octahedral
environments and the fluorine-bridge atoms are located trans to the doubly-bonded oxygen atoms.

1.1.4 Fluoride Ion Donor-Acceptor and Lewis Acid Properties of $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ and $\operatorname{ReO}_{2} \mathbf{F}_{3}$

The fluoride ion-donor properties of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ have been studied by the room-temperature reactions of $\mathrm{MO}_{2} \mathrm{~F}_{3}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$ with $\mathrm{PnF}_{5}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ and $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ in aHF (eq 1.21) and resulted in the isolation and characterization of the $\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$

$$
\begin{equation*}
\mathrm{MO}_{2} \mathrm{~F}_{3}+\mathrm{PnF}_{5} \xrightarrow{\mathrm{HF}}\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right] \tag{1.21}
\end{equation*}
$$

salts and $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{XeO}_{2} \mathrm{~F}_{2} \cdot{ }^{22}$ Additionally, the $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right] \cdot 2 \mathrm{HF}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ salts have been obtained as products resulting from the solvolysis reactions of $\mathrm{TcO}_{3} \mathrm{~F}$ with $\mathrm{PnF}_{5} /$ aHF (eq 1.22). ${ }^{23}$ The $\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]^{22,23}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{XeO}_{2} \mathrm{~F}_{2}{ }^{22}$ salts were

$$
\begin{equation*}
\mathrm{TcO}_{3} \mathrm{~F}+\mathrm{PnF}_{5} \xrightarrow{\mathrm{HF}}\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right] \tag{1.22}
\end{equation*}
$$

characterized by Raman spectroscopy and single-crystal X-ray diffraction. The structures of the $\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ salts consist of infinite chains of alternating $\mathrm{MO}_{2} \mathrm{~F}_{2}$ and SbF_{6} units, which are bridged through fluorine atoms. As observed in the crystal structures of $\mathrm{MO}_{2} \mathrm{~F}_{3}$ $(M=T c, R e),{ }^{17,19,21,23}$ the metal centers are in pseudo-octahedral environments with the oxygen atoms bonded cis to one another and the fluorine bridge atoms bonded trans to the oxygen atoms. The structure of $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{XeO}_{2} \mathrm{~F}_{2}$ consists of infinite chains of $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ that run parallel to the c-axis and bridge to the $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ chains through long $\mathrm{Tc}-\mathrm{F} \cdots \mathrm{Xe}$ contacts $\left(2.848(8) \AA\right.$). Additionally, the $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ chains interact through long Xe$\cdots \mathrm{F} \cdots \mathrm{Xe}$ bridge contacts. This arrangement is in marked contrast with that observed in the crystal
structure of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$, where the $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ molecules interact through long $\mathrm{Xe} \cdots \mathrm{O} \cdots \mathrm{Xe}$ bridges. ${ }^{24}$

The aHF solutions of $\left[\mathrm{MO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ were studied by ${ }^{19} \mathrm{~F}$ and ${ }^{99} \mathrm{Tc}$ NMR spectroscopy and $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{CH}_{3} \mathrm{CN}$ solutions of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ were studied by ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectroscopy, respectively. The peaks in the ${ }^{19} \mathrm{~F}$ (109.2 ppm at $\left.-84{ }^{\circ} \mathrm{C}\right)$ and ${ }^{99} \mathrm{Tc}\left(140.3 \mathrm{ppm}\right.$ at $\left.-84^{\circ} \mathrm{C}\right)$ spectra of $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]^{22}$ are more deshielded than those in the ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}$ (25.3 and 37.3 ppm in $\mathrm{CH}_{3} \mathrm{CN}$ at 30 ${ }^{\circ} \mathrm{C}$) and $\left[\mathrm{TcO}_{2} \mathrm{~F}_{4}\right]^{-}$(sharp triplet at -14.1 ppm and partially collapsed triplet at -18.7 ppm assigned to the fluorine atoms located trans and cis to oxygen ligands, respectively; $\mathrm{CH}_{3} \mathrm{CN}$ at $30{ }^{\circ} \mathrm{C}$; $23{ }^{\circ} \mathrm{C}$ in HF) ${ }^{25}$ and ${ }^{99} \mathrm{Tc}$ NMR spectrum of $\mathrm{TcO}_{3} \mathrm{~F}$ (43.7 ppm in aHF at $\left.23{ }^{\circ} \mathrm{C}\right)^{26}$ which is consistent with the formation of the $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]^{+}$cation. Dissolution of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ in $\mathrm{SO}_{2} \mathrm{ClF}$ resulted in dissociation and self-association of the salt yielding the fluorine-bridged dinuclear $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right]^{+}$cation, whereas in $\mathrm{CH}_{3} \mathrm{CN}$, the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ salt formed the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}\right]^{+}$adduct-cation. ${ }^{22}$

The study of the fluoride ion-acceptor properties of $\mathrm{MO}_{2} \mathrm{~F}_{3}(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$ resulted in the isolation and characterization of the $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{-}(\mathrm{M}=\mathrm{Re}, \mathrm{Tc}),\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right]^{-}$, and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions. Salts of the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anion were synthesized by fusion of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ with alkali metal fluorides ($\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) at $120-150{ }^{\circ} \mathrm{C}^{27}$ and by reactions of the alkali and alkaline metal perrhenates, $\mathrm{A}\left[\mathrm{ReO}_{4}\right]$ and $\mathrm{A}\left[\mathrm{ReO}_{4}\right]_{2}(\mathrm{~A}=\mathrm{Na}, \mathrm{K}$, $\mathrm{Rb}, \mathrm{Cs}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$, and $\mathrm{Ag}\left[\mathrm{ReO}_{4}\right]$ with $\mathrm{BrF}_{3} .{ }^{28}$ The formation of the above salts was confirmed by chemical ${ }^{28}$ and elemental analyses ${ }^{27,28}$ and infrared spectroscopy. ${ }^{27}$ The $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{-}$anion were the products of the reactions of $\mathrm{MO}_{2} \mathrm{~F}_{3}(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$ with alkali
metal fluorides ($\mathrm{Re}: \mathrm{Li}, \mathrm{Na}, \mathrm{Cs} ;{ }^{19} \mathrm{Tc}: \mathrm{Li}, \mathrm{Cs}^{25}$) and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F}^{19,25}$ (eq 1.23) and the reaction of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ with XeF_{6} (eq 1.24) in aHF. ${ }^{19}$ Both, $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-19}$ and $\left[\mathrm{TcO}_{2} \mathrm{~F}_{4}\right]^{-25}$

$$
\begin{align*}
& \mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{A} /\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F} \xrightarrow{\mathrm{HF}} \mathrm{~A} /\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \tag{1.23}\\
& \mathrm{XeF}_{6}+\mathrm{ReO}_{2} \mathrm{~F}_{3} \xrightarrow{\mathrm{HF}}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \tag{1.24}
\end{align*}
$$

were characterized by ${ }^{19} \mathrm{~F}$ NMR and Raman spectroscopies and single-crystal X-ray diffraction. ${ }^{19,25}$ The $\left[\mathrm{TcO}_{2} \mathrm{~F}_{4}\right]^{-}$anion was also characterized by ${ }^{99} \mathrm{Tc}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy. ${ }^{25}$ The structures of the $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{-}$anions consist of cis-dioxo arrangements of $\mathrm{M}-\mathrm{O}$ bonds. The equatorial $\mathrm{M}-\mathrm{F}$ bonds are located trans to oxygen atoms and are longer than the axial $\mathrm{M}-\mathrm{F}$ bonds due to the trans-influence of the oxygen atoms. ${ }^{17}$

The dinuclear and trinuclear anions, $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right]^{-}$and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\right.$ $\left.\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-19}$, were synthesized by increasing the $\mathrm{ReO}_{2} \mathrm{~F}_{3}: \mathrm{F}^{-}$molar ratios to two and three (eq 1.25 and 1.26), respectively. Both anions were characterized by Raman

$$
\begin{align*}
& 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{KF} /\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F} \xrightarrow{\mathrm{HF}} \mathrm{~K} /\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right] \tag{1.25}\\
& 3 \mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{CsF} \xrightarrow{\mathrm{HF}} \mathrm{Cs}\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \tag{1.26}
\end{align*}
$$

spectroscopy and single-crystal X-ray diffraction. In addition, the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right]^{-}$anion was characterized in solution by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The structures of the $[\mu$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right]^{-}$and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions are open chains, where the $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ units are connected through fluorine bridges located trans to doubly bonded oxygen ligands. As observed in the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anion, ${ }^{19}$ the oxygen ligands are located cis to each other and the Re-F bonds are elongated due to the trans-influence of the oxygen atoms. ${ }^{17}$

The Lewis acid properties of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ were demonstrated by the formation of the $\mathrm{ReO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}{ }^{19}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}{ }^{25}$ adducts, which were
characterized by Raman and ${ }^{19} \mathrm{~F}$ NMR spectroscopies. The $\mathrm{TcO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}$ adduct was also characterized by ${ }^{99} \mathrm{Tc},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectroscopy. ${ }^{25}$

1.1.5. Syntheses and Characterizations of $\mathrm{TcO}_{3} \mathrm{~F}$ and $\mathrm{ReO}_{3} \mathrm{~F}$

Pertechnyl fluoride, $\mathrm{TcO}_{3} \mathrm{~F}$ (m.p. $18.3{ }^{\circ} \mathrm{C}$; b.p. $100{ }^{\circ} \mathrm{C}$), was first synthesized as a yellow compound in 1962 by Selig and Malm ${ }^{29}$ by fluorination of technetium dioxide with fluorine gas in a nickel tube at $150{ }^{\circ} \mathrm{C}$ (eq 1.27). Selig and co- workers ${ }^{30}$ also

$$
\begin{equation*}
\mathrm{TcO}_{2}+\mathrm{F}_{2} \xrightarrow{150^{\circ} \mathrm{C}} \mathrm{TcO}_{3} \mathrm{~F} \tag{1.27}
\end{equation*}
$$

synthesized $\mathrm{TcO}_{3} \mathrm{~F}$ by solvolysis of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{TcO}_{4}\right]$ in aHF (eq. 1.28) and studied the

$$
\begin{equation*}
\left[\mathrm{NH}_{4}\right]\left[\mathrm{TcO}_{4}\right]+\mathrm{aHF} \longrightarrow \mathrm{TcO}_{3} \mathrm{~F}+\left[\mathrm{NH}_{4}\right] \mathrm{F}+\mathrm{H}_{2} \mathrm{O} \tag{1.28}
\end{equation*}
$$

resulting pale yellow solution by Raman, infrared, and ${ }^{19} \mathrm{~F}$ NMR spectroscopy. Mercier and Schrobilgen ${ }^{17}$ obtained $\mathrm{TcO}_{3} \mathrm{~F}$ by solvolysis of $\mathrm{Tc}_{2} \mathrm{O}_{7}$ in aHF. The most recent synthesis of $\mathrm{TcO}_{3} \mathrm{~F}$ was reported by Seppelt and co-wokers, ${ }^{23}$ who reacted $\mathrm{K}\left[\mathrm{TcO}_{4}\right]$ with aHF in the presence of BiF_{5}. Technetium trioxide fluoride was isolated from stable $\mathrm{K}\left[\mathrm{BiF}_{6}\right]$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{BiF}_{6}\right]$ salts at $-78^{\circ} \mathrm{C}($ eq 1.29) and characterized by Raman

$$
\begin{equation*}
\mathrm{K}\left[\mathrm{TcO}_{4}\right]+3 \mathrm{HF}+2 \mathrm{BiF}_{5} \longrightarrow \mathrm{TcO}_{3} \mathrm{~F}+\mathrm{K}\left[\mathrm{BiF}_{6}\right]+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{BiF}_{6}\right] \tag{1.29}
\end{equation*}
$$

spectroscopy and single-crystal X-ray diffraction. Technetium trioxide fluoride crystallizes as a dimer with bridging fluorine atoms trans to oxygen atoms. The Tc atom is in a pseudo-octahedral environment formed by five primary ligand bonds and an additional long contact (2.282(1) \AA) with an oxygen atom of a neighboring dimer. When BiF_{5} was used in stoichiometries ranging between $1: 2$ and $1: 3$, monomeric $\mathrm{TcO}_{3} \mathrm{~F}$ cocrystallized with the $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ chains, where $\mathrm{TcO}_{3} \mathrm{~F}$ molecules interact with the $\mathrm{TcO}_{2} \mathrm{~F}_{3}$
chains through two long Tc---F contacts to complete the octahedral coordination sphere of the technetium atoms.

Although high-yield syntheses of $\mathrm{ReOF}_{5}{ }^{5}$ and $\mathrm{ReO}_{2} \mathrm{~F}_{3}{ }^{19}$ are well established and several other low-yield synthetic routes are found in the literature, a reliable high-yield, high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ was unknown. The first synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ was reported by Wiechert, ${ }^{31}$ who prepared $\mathrm{ReO}_{3} \mathrm{~F}$ by reacting $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ with aHF according to eq 1.30 .

$$
\begin{equation*}
\mathrm{K}\left[\mathrm{ReO}_{4}\right]+2 \mathrm{HF} \xrightarrow{\mathrm{HF}} \mathrm{KF}\left(\text { and } / \text { or } \mathrm{KHF}_{2}\right)+\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \tag{1.30}
\end{equation*}
$$

However, isolation of the product was unsuccessful because $\mathrm{ReO}_{3} \mathrm{~F}$ hydrolyzed to form $\mathrm{H}\left[\mathrm{ReO}_{4}\right]$ and HF in the reverse reaction (eq 1.31) when HF was removed under vacuum.

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { HF removed }} \mathrm{H}\left[\mathrm{ReO}_{4}\right]+\mathrm{HF} \tag{1.31}
\end{equation*}
$$

Engelbrecht and Grosse ${ }^{32}$ synthesized yellow $\mathrm{ReO}_{3} \mathrm{~F}$ (m.p. $147{ }^{\circ} \mathrm{C}$; b.p. $164{ }^{\circ} \mathrm{C}$) by reaction of $\mathrm{ReO}_{3} \mathrm{Cl}$ with aHF (eq 1.32) and isolated it by vacuum sublimation. Perrhenyl

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{Cl}+\mathrm{aHF} \xrightarrow{\mathrm{HF}} \mathrm{ReO}_{3} \mathrm{~F}+\mathrm{HCl} \tag{1.32}
\end{equation*}
$$

fluoride has also been obtained by refluxing finely divided $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ in IF_{5} in the presence of trace amounts of aHF and at $100{ }^{\circ} \mathrm{C}$ (eq 1.33). ${ }^{33}$ All by-products, IF_{5} and $\mathrm{IO}_{2} \mathrm{~F}$ (eq 1.34), were removed under dynamic vacuum. Selig and El- Gad, ${ }^{34}$ in their investigations

$$
\begin{align*}
& \mathrm{K}\left[\mathrm{ReO}_{4}\right]+\mathrm{IF}_{5} \xrightarrow{\mathrm{HF}, 100^{\circ} \mathrm{C}} \mathrm{KF}+\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{IOF}_{3} \tag{1.33}\\
& 2 \mathrm{IOF}_{3} \xrightarrow{\mathrm{HF}} \mathrm{IF}_{5}+\mathrm{IO}_{2} \mathrm{~F} \tag{1.34}
\end{align*}
$$

of reaction 1.30, prepared solutions of $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in aHF (eqs $1.30,1.35$) and

$$
\begin{equation*}
\mathrm{Re}_{2} \mathrm{O}_{7}+2 \mathrm{HF} \xrightarrow{\mathrm{HF}} 2 \mathrm{ReO}_{3} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \tag{1.35}
\end{equation*}
$$

studied these solutions directly by means of Raman and NMR spectroscopy. The assigned Raman frequencies of $\mathrm{ReO}_{3} \mathrm{~F}$ in HF solution suggested $C_{3 v}$ as the point symmetry for the
assumed $\mathrm{ReO}_{3} \mathrm{~F}$ monomer. ${ }^{34}$ Rhenium trioxide fluoride is also a product of the reactions of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with ReF_{7} (3.6:1 molar ratio) (eq 1.36) ${ }^{4}$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ with ReOF_{5} (eq 1.37) ${ }^{27}$ at

$$
\begin{align*}
& \mathrm{Re}_{2} \mathrm{O}_{7}+\mathrm{ReF}_{7} \xrightarrow{150^{\circ} \mathrm{C}, 20 \mathrm{~h}} \mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{ReO}_{2} \mathrm{~F}_{3} \tag{1.36}\\
& \mathrm{ReOF}_{5}+2 \mathrm{Re}_{2} \mathrm{O}_{7} \xrightarrow{150-200^{\circ} \mathrm{C}} 5 \mathrm{ReO}_{3} \mathrm{~F} \tag{1.37}
\end{align*}
$$

high temperatures. Fluorination of a 1:1 mixture of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and KBr with an excess of BrF_{3}

$$
\begin{equation*}
\mathrm{Re}_{2} \mathrm{O}_{7}+\mathrm{KBr}+2 \mathrm{BrF}_{3} \xrightarrow{\mathrm{BrF}_{3}} 2 \mathrm{ReO}_{3} \mathrm{~F}+1 / 2 \mathrm{O}_{2}+\mathrm{Br}_{2}+\mathrm{KBrF}_{4} \tag{1.38}
\end{equation*}
$$

(eq 1.38), ${ }^{20} \mathrm{~K}\left[\mathrm{ReO}_{4}\right]$ with XeF_{2} in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ (eq 1.39), ${ }^{35}$ and ReO_{3} with F_{2} (eq 1.40) ${ }^{21}$ have also resulted in the formation of $\mathrm{ReO}_{3} \mathrm{~F}$.

$$
\begin{align*}
& \mathrm{K}\left[\mathrm{ReO}_{4}\right]+\mathrm{XeF}_{2} \xrightarrow{\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}: \mathrm{ICl}} \mathrm{ReO}_{3} \mathrm{~F}+1 / 2 \mathrm{O}_{2}+\mathrm{KF}+\mathrm{Xe} \tag{1.39}\\
& \mathrm{ReO}_{3}+\mathrm{F}_{2} \xrightarrow{<150^{\circ} \mathrm{C}} \mathrm{ReO}_{3} \mathrm{~F}, \mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{ReOF}_{5} \tag{1.40}
\end{align*}
$$

Seppelt ${ }^{21}$ reviewed the known syntheses of $\mathrm{ReO}_{3} \mathrm{~F}$ and reinvestigated the known reactions (eqs 1.30, 1.32, 1.33, 1.36, and 1.40), concluding that all of these synthetic approaches do not yield $\mathrm{ReO}_{3} \mathrm{~F}$ in high purity.

Rhenium trioxide fluoride was characterized in the gas phase UV-vis, ${ }^{6}$ infrared, ${ }^{6,20}$ and Raman spectroscopy, ${ }^{20}$ and mass spectrometry, ${ }^{4,21}$ in solution by Raman ${ }^{34}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy, ${ }^{21,34}$ and in the solid state by Raman spectroscopy, ${ }^{21}$ and single-crystal X-ray diffraction. ${ }^{21}$ The crystal structure of $\mathrm{ReO}_{3} \mathrm{~F}$ consists of infinite polymer chains, where the $\mathrm{ReO}_{3} \mathrm{~F}$ units are bridged to each other through an oxygen and a fluorine atom maintaining the pseudo-octahedral environments around the Re atoms (Figure 1.1). The crystal structure was solved as a superposition of three sets of X-ray data with several light atoms being non-positively defined and therefore the refinement and structure may be problematic.

Figure 1.1. The X-ray crystal structure of $\mathrm{ReO}_{3} \mathrm{~F}$. Reproduced with permission from Ref 21.

1.1.6. Fluoride Ion-Acceptor Properties of $\mathrm{MO}_{3} \mathrm{~F}(\mathrm{M}=\mathrm{Tc}$, Re), Lewis Acid

Properties of $\mathrm{ReO}_{3} \mathrm{~F}$ and Fluoride Ion-Donor Properties of $\mathrm{TcO}_{3} \mathbf{F}$

Although $\mathrm{TcO}_{3} \mathrm{~F}$ is the first oxide fluoride of technetium to have been synthesized, its chemistry is the least studied among the technetium(VII) oxide fluorides. While exploring the possibility of a simple synthesis for $\mathrm{TcO}_{3} \mathrm{~F}$, Seppelt ${ }^{23}$ investigated the fluoride-ion acceptor properties of $\mathrm{TcO}_{3} \mathrm{~F}$ by reacting $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{TcO}_{4}\right]$ with aHF. Large yellow cubic-shaped crystals were grown by slow cooling of the solution to $-30{ }^{\circ} \mathrm{C}$. The crystal structure of the product corresponded to $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right] \cdot 1.5 \mathrm{TcO}_{3} \mathrm{~F}$, which crystallized as a "cluster", where one $\mathrm{K} /\left[\mathrm{NH}_{4}\right]^{+}$cation interacts with three fluorine atoms of three $\mathrm{TcO}_{3} \mathrm{~F}$ molecules and two fluorine atoms of two trimeric $\left[\left\{\mathrm{TcO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions. The trimeric $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion (Figure 1.2) consists of three $\mathrm{TcO}_{3} \mathrm{~F}$-moieties linked to each other through dicoordinate bridging fluorine atoms and a central tricoordinate bridging fluorine atom, so that the coordination environment of each Tc is pseudo-octahedral. A striking feature of the "cluster" is the cis positions of

Figure 1.2. Asymmetric unit of $\left.\mathrm{K}\left[\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right] \cdot 1.5 \quad \mathrm{TcO}_{3} \mathrm{~F}$. Reproduced with permission from ref. 23.
the two bulky $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions which provide a significant amount of space to accommodate three $\mathrm{TcO}_{3} \mathrm{~F}$ molecules.

Preliminary evidence for the fluoride ion-acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ has been reported. Kuhlman and Sawodny ${ }^{36}$ synthesized and isolated the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion as a colorless $\mathrm{K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salt (eq 1.41) and characterized it at room temperature by Raman

$$
\begin{equation*}
\mathrm{K}\left[\mathrm{ReO}_{4}\right]+\mathrm{KF}+\mathrm{IF}_{5} \xrightarrow{\mathrm{IF}_{5}} \mathrm{~K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]+\mathrm{IOF}_{3} \tag{1.41}
\end{equation*}
$$

and infrared spectroscopies. The $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion has also been synthesized by the fusion of alkali metal fluorides with $\mathrm{ReO}_{3} \mathrm{~F}$ at elevated temperatures to give yellow $\mathrm{A}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salts (eq 1.42$)^{27}$ and by fluoride ion displacement of DMF from the $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{DMF})_{2}$ adduct

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{AF} \xrightarrow{100-160^{\circ} \mathrm{C}} \mathrm{~A}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right] \quad(\mathrm{A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}) \tag{1.42}
\end{equation*}
$$

(eq 1.43) by reaction with $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to form yellow-grey $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right](1.44) .{ }^{37}$ The products of both reactions were characterized by

$$
\begin{align*}
& \mathrm{Re}_{2} \mathrm{O}_{7}+2 \mathrm{HF}+4 \mathrm{DMF} \longrightarrow 2 \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{DMF})_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1.43}\\
& \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{DMF})_{2}+2\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F} \longrightarrow\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]+2 \mathrm{DMF}\right. \tag{1.44}
\end{align*}
$$

infrared spectroscopy.
A meridional isomer $\left(C_{2 v}\right)$ was proposed for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-},{ }^{27,36,37}$ based on the number of $\mathrm{Re}-\mathrm{O}$ stretching bands observed in the infrared and Raman spectra. This assignment is, however, in marked contrast with the observed facial $\left(C_{3 v}\right)$ geometries of the $\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right]^{2-}$ ${ }^{38}$ and $f a c-\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-39}$ anions, which were unambiguously confirmed in the solid state by single-crystal X-ray diffraction. Additionally, the geometry of the $f a c-\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-}$anion has been established in solution by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

Attempts to synthesize the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with various alkali metal fluorides in 1:1 molar ratios and heating the mixtures to the melting point of $\mathrm{ReO}_{3} \mathrm{~F}$ were unsuccessful due to the thermal instabilities of the products at the synthesis temperature. ${ }^{27}$ Although the synthesis of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion was reported, a salt containing the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion remained unknown.

The Lewis acid properties of $\mathrm{ReO}_{3} \mathrm{~F}$ have been studied and resulted in the isolation and characterization of several rhenium trioxide fluoride adducts: $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{CH}_{3} \mathrm{CN},{ }^{19}$ $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{O},{ }^{21} \quad \mathrm{ReO}_{3} \mathrm{~F} \cdot 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O},{ }^{21}$ and $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O} .{ }^{21}$ The adducts, $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}^{19}$ and $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{O},{ }^{21}$ have been shown by single-crystal X-ray crystallography to possess facial arrangements of oxygen atoms and trans-oxo coordination of the Lewis bases to the rhenium atom.

Among the series of $\mathrm{Tc}(\mathrm{VII})$ oxide fluorides, $\mathrm{TcO}_{3} \mathrm{~F}$ has been shown to act as a fluoride ion-donor. Schrobilgen and co-workers ${ }^{26}$ reacted $\mathrm{TcO}_{3} \mathrm{~F}$ with AsF_{5} in aHF solution and studied this solution by ${ }^{99} \mathrm{Tc}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy. They concluded that the $\left[\mathrm{TcO}_{3}\right]^{+}$cation $\left(D_{3 \mathrm{~h}}\right)$ formed based on high-frequency shifts of the ${ }^{99} \mathrm{Tc}$ and ${ }^{17} \mathrm{O}$ resonances ($\left.{ }^{99} \mathrm{Tc}, 161 \mathrm{ppm} ;{ }^{17} \mathrm{O}, 1214 \mathrm{ppm}\right)$ relative to those of $\mathrm{TcO}_{3} \mathrm{~F}\left({ }^{99} \mathrm{Tc}, 44 \mathrm{ppm}\right.$; $\left.{ }^{17} \mathrm{O}, 1048 \mathrm{ppm}\right)$. A subsequent study of this reaction revealed that $\mathrm{TcO}_{3} \mathrm{~F}$ undergoes solvolysis in $\mathrm{PnF}_{5} / \mathrm{aHF}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ media to form $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ salts (eq 1.22). ${ }^{23}$

Strongly bonded $\left[\mathrm{ReO}_{3}\right]^{+}$and $\left[\mathrm{TcO}_{3}\right]^{+}$moieties are known and were characterized in $\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right) \mathrm{ReO}_{3},{ }^{40}\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}$(Figure 1.3), ${ }^{41}\left[\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{ReO}_{3}\right]^{+},{ }^{42}$ and $\left[\mathrm{TcO}_{3}\right]\left[\mathrm{SO}_{3} \mathrm{~F}\right],{ }^{43}$ respectively. In all of the above salts, $\left[\mathrm{MO}_{3}\right]^{+}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$ is metalbonded to the ligands and displays a trigonal pyramidal arrangement of oxygen atoms.

Figure 1.3. View of the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}$cation. Reproduced with permission from ref. 41a.

1.1.7 The - OTeF_{5} Derivatives of $\mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{ReOF}_{5}$, and $\mathrm{ReO}_{3} \mathrm{~F}$

The chemistries of $\mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{ReOF}_{5}$, and $\mathrm{ReO}_{3} \mathrm{~F}$ have been extended by use of the pentafluoroorthotellurate ligand, $-\mathrm{OTeF}_{5}$, which resembles fluorine in its ability to stabilize the high oxidation states of the elements (the electronegativities of F and the OTeF_{5} group are estimated at $3.98{ }^{44}$ and $3.88,{ }^{45}$ respectively, on the Pauling scale).

The $-\mathrm{OTeF}_{5}$ derivative of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ has been synthesized by reaction of ReF_{7} with $\mathrm{B}\left(\mathrm{OTeF}_{5}\right)_{3}$ in $\mathrm{CFCl}_{3}\left(\right.$ eq 1.45). ${ }^{46}$ The product was isolated as a yellow liquid (m.p. -63.5

$$
\begin{equation*}
\mathrm{ReF}_{7}+\frac{5}{3} \mathrm{~B}\left(\mathrm{OTeF}_{5}\right)_{3} \xrightarrow{50^{\circ} \mathrm{C}, 3 \mathrm{~d}} \mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}+\frac{5}{3} \mathrm{BF}_{3}+2 \mathrm{TeF}_{6} \tag{1.45}
\end{equation*}
$$

${ }^{\circ} \mathrm{C}$ and b.p. $30{ }^{\circ} \mathrm{C}$). The elemental analysis, room-temperature Raman and ${ }^{19} \mathrm{~F}$ NMR spectra; however, did not provide a definitive structural assignment.

Schrobilgen et al. ${ }^{47}$ synthesized $\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}$ by the room-temperature reaction of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ with $\mathrm{B}\left(\mathrm{OTeF}_{5}\right)_{3}$ in Freon-114 (eq 1.46) and provided its unambiguous structural

$$
\begin{equation*}
\mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{B}\left(\mathrm{OTeF}_{5}\right)_{3} \xrightarrow{\text { Freon-114 }} \mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}+\mathrm{BF}_{3} \tag{1.46}
\end{equation*}
$$

characterization in the solid state by Raman spectroscopy and in solution by ${ }^{19} \mathrm{~F}$ and ${ }^{125} \mathrm{Te}$ NMR spectroscopy. The product was shown to possess a trigonal pyramidal geometry with oxygen atoms lying in the equatorial plane. Additionally, $\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}$ was shown to react with $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{OTeF}_{5}\right]$ in $\mathrm{SO}_{2} \mathrm{ClF}$ yielding a light yellow solid, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{4}\right]$ (eq 1.47), ${ }^{47}$ which was characterized by ${ }^{19} \mathrm{~F}$ and ${ }^{125} \mathrm{Te}$ NMR

$$
\begin{equation*}
\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}+\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{OTeF}_{5}\right] \xrightarrow{\mathrm{SO}_{2} \mathrm{ClF}}\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{4}\right] \tag{1.47}
\end{equation*}
$$

and Raman spectroscopies and single-crystal X-ray diffraction. The structural analysis of the anion revealed pseudo-octahedral coordination around rhenium with two oxygen and
two $-\mathrm{OTeF}_{5}$ ligands occupying equatorial positions and two $-\mathrm{OTeF}_{5}$ ligands occupying axial positions.

Turowsky and Seppelt ${ }^{48}$ synthesized the pentafluoroorthotellurate derivative of ReOF_{5} by reaction of $\mathrm{ReO}\left(\mathrm{OTeF}_{5}\right)_{4}$ with $\mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2}$ (eq 1.48) in $\mathrm{SO}_{2} \mathrm{ClF}$. In contrast

$$
\begin{equation*}
\mathrm{ReO}\left(\mathrm{OTeF}_{5}\right)_{4}+1 / 2 \mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2} \xrightarrow{\mathrm{SO}_{2} \mathrm{ClF}} \mathrm{ReO}\left(\mathrm{OTeF}_{5}\right)_{5} \tag{1.48}
\end{equation*}
$$

with $\mathrm{ReO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}$, the oxygen atom in $\mathrm{ReO}\left(\mathrm{OTeF}_{5}\right)_{5}$ occupies the axial position as observed in its crystal structure.

Huppmann ${ }^{49}$ claimed the synthesis of $\mathrm{ReO}_{3}\left(\mathrm{OTeF}_{5}\right)$ as a lime green solid by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\mathrm{B}\left(\mathrm{OTeF}_{5}\right)_{3}$. The structural assignments were based on the percent composition of F , number of $\mathrm{Re}-\mathrm{O}$ stretches and AB_{4} pattern of the $-\mathrm{OTeF}_{5}$ group observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum, and $\mathrm{m} / \mathrm{z}=476\left(\mathrm{M}^{+}\right)$obtained from the mass spectrum.

1.2. Manganese(VII) Trioxide Fluoride and Its Reactivity

In contrast with $\mathrm{Tc}(\mathrm{VII})$ and $\operatorname{Re}(\mathrm{VII})$, for which several oxide fluorides are known, the only known oxide fluoride of $\mathrm{Mn}(\mathrm{VII})$ is $\mathrm{MnO}_{3} \mathrm{~F}$. It is a dark-green liquid (m.p. $-38{ }^{\circ} \mathrm{C}$), which, in the pure state, explosively decomposes to $\mathrm{MnF}_{2}, \mathrm{MnO}_{2}$, and O_{2} at temperatures above $0{ }^{\circ} \mathrm{C}$. Manganese trioxide fluoride dissolves in aHF forming a deep-green solution, which slowly decolorizes with decomposition to MnF_{2} and O_{2} at temperatures above 0 ${ }^{\circ} \mathrm{C} .{ }^{31,32}$

Manganese trioxide fluoride can be prepared by reaction of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ with aHF (eq 1.49), ${ }^{31,32} \mathrm{HSO}_{3} \mathrm{~F}$ (eqs 1.50), ${ }^{32} \mathrm{IF}_{5}$ (eq 1.51), ${ }^{50} \mathrm{IF}_{7}$ (eq 1.52), ${ }^{35}$ and XeF_{2} (eq 1.53). ${ }^{35}$

$$
\begin{align*}
& \mathrm{K}\left[\mathrm{MnO}_{4}\right]+4 \mathrm{HF} \longrightarrow \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{KF}+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right] \tag{1.49}\\
& \mathrm{K}\left[\mathrm{MnO}_{4}\right]+2 \mathrm{HSO}_{3} \mathrm{~F} \longrightarrow \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{K}\left[\mathrm{SO}_{3} \mathrm{~F}\right]+\mathrm{H}_{2} \mathrm{SO}_{4} \tag{1.50}\\
& \mathrm{~K}\left[\mathrm{MnO}_{4}\right]+\mathrm{IF}_{5} \longrightarrow \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{IOF}_{3}+\mathrm{KF} \tag{1.51}\\
& \mathrm{~K}\left[\mathrm{MnO}_{4}\right]+\mathrm{IF}_{7} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{IOF}_{3}+\mathrm{KF}+\mathrm{F}_{2} \tag{1.52}\\
& \mathrm{~K}\left[\mathrm{MnO}_{4}\right]+\mathrm{XeF}_{2} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{Xe}+\mathrm{KF}+1 / 2 \mathrm{O}_{2} \tag{1.53}
\end{align*}
$$

The reactions of the lower oxidation state oxo-anions, $\mathrm{K}_{2}\left[\mathrm{MnO}_{4}\right]$ and $\mathrm{K}_{3}\left[\mathrm{MnO}_{4}\right]$ with IF_{5} or HF also yield $\mathrm{MnO}_{3} \mathrm{~F} .{ }^{35}$ Permanganyl fluoride reacts with gaseous HCl to form $\mathrm{MnO}_{3} \mathrm{Cl}$. There is also evidence for the existence of $\mathrm{MnO}_{3} \mathrm{~F} \cdot \mathrm{HF} ;{ }^{51}$ however, it is unreactive towards $\mathrm{PnF}_{5}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ in $\mathrm{aHF} .{ }^{43}$ Permanganyl fluoride was characterized in the gas-phase by UV-vis, ${ }^{6,52,53}$ microwave, ${ }^{54,55}$ infrared, ${ }^{6,52,56-58}$ photoelectron, ${ }^{59}$ and resonance Raman ${ }^{60}$ spectroscopy and in the solid state by infrared spectroscopy. ${ }^{61}$ The above spectroscopic findings revealed a monomeric structure for $\mathrm{MnO}_{3} \mathrm{~F}\left(C_{3 \mathrm{v}}\right)$, which shows two strong $\mathrm{O} \rightarrow \mathrm{Mn}$ and $\mathrm{F} \rightarrow \mathrm{Mn}$ charge transfer transitions in the UV-vis spectrum at 15,500 and $33,300 \mathrm{~cm}^{-1} .6$ The monomeric structure of $\mathrm{MnO}_{3} \mathrm{~F}$ has been confirmed by single-crystal X-ray diffraction; ${ }^{62}$ however, the $\mathrm{Mn}-\mathrm{F}$ bond length could not be determined due to a O / F positional disorder.

1.3. Fluorides of Manganese, Technetium, and Rhenium

1.3.1. Fluorides of Rhenium and Technetium

The known high-oxidation-state technetium and rhenium fluorides, their syntheses

Ph.D. Thesis - Maria V. Ivanova
and methods of characterization are summarized in Table 1.1. Topics relating to the chemistries of rhenium and technetium fluorides having oxidation states below VII, which are beyond the scope of the present research work, are not discussed.

1.3.2. Manganese Fluorides

Manganese fluorides have been isolated and characterized in the $+2,+3$, and +4 oxidation states. The lowest oxidation state manganese(II) fluoride, MnF_{2}, precipitates as a pale pink solid upon addition of F^{-}to aqueous solutions containing Mn^{2+} ions. ${ }^{121}$ Manganese difluoride has a rutile structure (Mn-F, 2.131(6) and 2.104(9) \AA) ${ }^{122}$ and a pale pink color which arises from electronic transitions between lower- and higher-lying d orbitals, which are otherwise forbidden in case of octahedral symmetry. ${ }^{121}$ It is a fluorideion acceptor, which forms complexes with alkali metal fluorides, $\mathrm{A}\left[\mathrm{MnF}_{3}\right]$ and $\mathrm{A}_{2}\left[\mathrm{MnF}_{4}\right]$ $(\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}) .{ }^{121,123}$ Grey MnF_{3} is most conveniently prepared by reaction of MnF_{2} with F_{2} in aHF at room temperature. ${ }^{124}$ It has a fluorine-bridged chain structure consisting of MnF_{6} octahedra (Mn-F: 2.106(4), 1.923(5), 1.830(4) \AA). The MnF_{6} octahedra are tetragonally distorted by the Jahn-Teller effect and share all their corners with adjacent octahedra by means of fluorine bridges. ${ }^{125-127}$ The structure of MnF_{3} was also studied in matrix ${ }^{128,129}$ and in the solid ${ }^{124}$ state by infrared and Raman spectroscopies, and by hightemperature gas-phase electron diffraction. ${ }^{130}$ The experimental geometrical and vibrational data were interpreted with the aid of quantum-chemical calculations. ${ }^{131,132}$ Manganese trifluoride acts as a fluoride-ion acceptor in reactions with alkali metal

Ph.D. Thesis - Maria V. Ivanova
Table 1.1. Neutral Fluorides and Fluoro-Anions of Technetium and Rhenium

Fluoride	Color	Method of Preparation	Characterization	Ref.
Oxidation State VII				
ReF_{7}	yellow	$\mathrm{Re}+\mathrm{F}_{2}$ at $300{ }^{\circ} \mathrm{C}$	IR, Raman, ${ }^{19}$ F NMR, neutron and electron diffraction	63-70
$\left[\operatorname{ReF}_{6}\right]^{+}$	white	$\mathrm{ReF}_{7}+\mathrm{SbF}_{5}$	IR, Raman, MS, X-ray powder photography	13, 71-74
$\left[\mathrm{ReF}_{8}\right]^{-}$	yellow	$\mathrm{ReF}_{7}+\mathrm{CsF}, \mathrm{NOF}, \mathrm{NO}_{2} \mathrm{~F}$	X-ray, Raman, ${ }^{19} \mathrm{~F}$ NMR	15,75
Oxidation State VI				
ReF_{6}	yellow	$\mathrm{Re}+\mathrm{F}_{2}$ at $125^{\circ} \mathrm{C}$	X-ray, Raman, IR, UV-vis,	64, 76-84
$\left[\mathrm{ReF}_{7}\right]^{-}$	orange	$\mathrm{ReF}_{6}+\mathrm{AF}(\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$	Raman, IR,	85-87
$\left[\mathrm{ReF}_{8}\right]^{2-}$	violet	$\mathrm{ReF}_{6}+2 \mathrm{AF}(\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}), 2 \mathrm{NOF}, 2 \mathrm{NO}_{2} \mathrm{~F}$	X-ray, Raman, IR	15, 75, 87-89
TcF_{6}	yellow	$\mathrm{Tc}+\mathrm{F}_{2}$ at $350-400^{\circ} \mathrm{C}$	X-ray, Raman, IR	79-83, 90-92
$\left[\mathrm{TcF}_{7}\right]^{-}$	yellow	$\mathrm{TcF}_{6}+\mathrm{NO}_{2} \mathrm{~F}$	IR, X-ray powder	92, 93
$\left[\mathrm{TcF}_{8}\right]^{2-}$	off white	$\mathrm{TcF}_{6}+2 \mathrm{NOF}$	IR, X-ray powder	93
Oxidation State V				
ReF_{5}	green	$\mathrm{ReF}_{6}+\mathrm{W}(\mathrm{CO})_{6}$ in $\mathrm{WF}_{6} ; \mathrm{ReF}_{6}+\mathrm{PF}_{3} ; \mathrm{ReF}_{6}+\mathrm{Si}$	MS, IR, X-ray powder	94-96
$\left[\mathrm{ReF}_{6}\right]^{-}$	white	$\begin{aligned} & \mathrm{ReF}_{6}+2 \mathrm{AX}(\mathrm{~A}=\mathrm{Na}, \mathrm{~K}, \mathrm{Rb}, \mathrm{Cs} ; \mathrm{X}=\mathrm{Br}, \mathrm{I}) \text { in } \mathrm{SO}_{2} \\ & \mathrm{ReF}_{5}+\mathrm{CsF} \end{aligned}$	X-ray powder, Raman	97-101
TcF_{5}	yellow	$\mathrm{Tc}+\mathrm{F}_{2}$ at $350-400^{\circ} \mathrm{C}$	Raman, X-ray powder, MS	92, 102-104
[TcF_{6}]	yellow	$\mathrm{TcF}_{6}+\mathrm{ACl}(\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}), \mathrm{NO}$	IR, X-ray, Raman	$\begin{aligned} & 92,93,99,102 \text {, } \\ & 105 \end{aligned}$
Oxidation State IV				
ReF_{4}	blue	$\mathrm{ReF}_{6}+\mathrm{W}(\mathrm{CO})_{6}$; thermal decomp. of $\mathrm{ReF}_{5} ; \mathrm{ReF}_{5}+$ Si ; hot fillament $+\mathrm{ReF}_{6}$;	MS, IR, X-ray powder	94, 96
$\left[\operatorname{ReF}_{6}\right]^{2-}$	white	$\begin{aligned} & {\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{ReI}_{6}\right]+\mathrm{A}\left[\mathrm{HF}_{2}\right](\mathrm{A}=\mathrm{Na}, \mathrm{~K}, \mathrm{Rb}, \mathrm{Cs}) \text { at } 250} \\ & \left.{ }^{\circ} \mathrm{C} ; \mathrm{K}_{2} \mathrm{ReO}_{4}\right]+\mathrm{KI}+\mathrm{K}\left[\mathrm{HF}_{2}\right] \text { at } 700{ }^{\circ} \mathrm{C} ; \mathrm{ReF}_{6}+2 \mathrm{KI} \end{aligned}$	Raman, IR, X-ray powder	101, 106-116
$\left[\mathrm{TcF}_{6}\right]^{2-}$	lavender	$\begin{aligned} & \mathrm{K}_{2}\left[\mathrm{TcX}_{6}\right]+\mathrm{K}\left[\mathrm{HF}_{2}\right] 250^{\circ} \mathrm{C},(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}) ; \\ & \mathrm{K}_{2}\left[\mathrm{TcBr}_{6}\right]+\mathrm{AgF} \end{aligned}$	IR, X-ray powder	$\begin{aligned} & 107-110 \\ & 117-120 \end{aligned}$

fluorides, forming the violet $\mathrm{A}_{3}\left[\mathrm{MnF}_{6}\right], \mathrm{A}_{2}\left[\mathrm{MnF}_{5}\right]$, and $\mathrm{A}\left[\mathrm{MnF}_{4}\right](\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$ salts. ${ }^{121}$

The highest oxidation state manganese fluorides that are known are in the +4 oxidation state and consist of neutral MnF_{4} and the fluoro-anions, $\left[\mathrm{MnF}_{5}\right]^{-},\left[\mathrm{MnF}_{6}\right]^{2-}$, and [$\left.\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]^{-}$. High-purity MnF_{4} is most conveniently prepared in high yield by fluorination of MnF_{2} with F_{2} in aHF under UV light (eq. 1.54) ${ }^{124}$ or by oxidation of MnF_{2} with KrF_{2}

$$
\begin{equation*}
\mathrm{MnF}_{2}+\mathrm{F}_{2} \xrightarrow{25^{\circ} \mathrm{C}, \mathrm{HF}} \mathrm{MnF}_{4} \tag{1.54}
\end{equation*}
$$

(see section 1.3.4). ${ }^{133}$ Manganese tetrafluoride was also a product of several synthetic procedures summarized by Rakov, Khaustov, and Ostropikov ${ }^{134}$ in their study of the fluorination rate of powdered MnF_{3} by gravimetric methods at $450-540^{\circ} \mathrm{C}$.

Manganese tetrafluoride has been characterized by magnetic measurements, ${ }^{124,135-138}$ infrared ${ }^{124,138}$ and Raman spectroscopies, ${ }^{124}$ mass spectrometry, ${ }^{138}$ and single-crystal Xray diffraction. ${ }^{139}$ Crystalline MnF_{4} is dimorphic: tetragonal $\alpha-\mathrm{MnF}_{4}$ or rhombohedral β MnF_{4}. The building blocks of $\alpha-\mathrm{MnF}_{4}$ are tetramers consisting of MnF_{6} octahedra that are connected through cis-fluorine bridges. The tetramers are also interconnected to give a three-dimensional framework with terminal and bridging $\mathrm{Mn}-\mathrm{F}$ bond lengths ranging between $1.677(1)-1.704(1) \AA$ and $1.845(2)-1.948(1) \AA$, respectively. Although the unit cell parameters of $\beta-\mathrm{MnF}_{4}$ have been reported, the structural parameters have not yet been defined. ${ }^{139}$

Manganese tetrafluoride is $10.5 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathrm{MnF}_{3},{ }^{140}$ decomposing by F_{2} elimination to MnF_{3} according to eq 1.55. The equilibrium fluorine

$$
\begin{equation*}
\mathrm{MnF}_{4} \longrightarrow \mathrm{MnF}_{3}+1 / 2 \mathrm{~F}_{2} \tag{1.55}
\end{equation*}
$$

pressure above MnF_{4} at room temperature was 10^{-9} bar, however, the decomposition temperature is ambiguous with the lowest decomposition temperatures reported at $52{ }^{141}$ and $70{ }^{\circ} \mathrm{C}^{142}$ with the highest decomposition temperature reported at $320{ }^{\circ} \mathrm{C} .{ }^{143}$

1.3.3. Lewis Acid Properties of MnF_{4}

The fluoride ion-acceptor properties of MnF_{4} have been studied and resulted in the syntheses and characterizations of the $\left[\mathrm{MnF}_{6}\right]^{2-},{ }^{124,144-161}\left[\mathrm{MnF}_{5}\right]^{-},{ }^{123,162-164}$ and $\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]^{-}$ ${ }^{165}$ anions.

The alkali metal salts of $\left[\mathrm{MnF}_{6}\right]^{2-}$ are most conveniently prepared in high yields by reaction of $\mathrm{MnF}_{2} / \mathrm{AF}(\mathrm{A}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb})$ with F_{2} in aHF under UV light at room temperature. ${ }^{124}$ Several other synthetic methods that yield $\mathrm{A}_{2}\left[\mathrm{MnF}_{6}\right]$ have been reviewed by Mazej ${ }^{124}$ and Christe. ${ }^{144}$ Alkaline earth and transition metal salts were synthesized by the high temperature reaction of $\mathrm{BaMnO}_{4},{ }^{145} \mathrm{SrMnO}_{3},{ }^{145}$ and $\mathrm{CaCl}_{2} / \mathrm{MnCl}_{2}$ and $\mathrm{MgCl}_{2} / \mathrm{MnCl}_{2}{ }^{145}$ and $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2} / \mathrm{X},{ }^{146} \mathrm{ZnCl}_{2} / \mathrm{X},{ }^{146} \mathrm{HgCl}_{2} / \mathrm{X},{ }^{146} \mathrm{Ag}\left[\mathrm{MnO}_{4}\right] / \mathrm{X},{ }^{146}$ $\mathrm{CdCO}_{3} / \mathrm{X}\left(\mathrm{X}=\left[\mathrm{NH}_{4}\right]\left[\mathrm{MnF}_{3}\right]\right)^{146}$ mixtures with fluorine gas. The $\left[\mathrm{NO}_{2}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salt was synthesized by fluorination of $\mathrm{MnF}_{2} / \mathrm{NO}_{2} \mathrm{~F}$ mixture with excess fluorine gas above 200 ${ }^{\circ} \mathrm{C} .{ }^{147}$ The $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion has also been synthesized by electrolytic oxidation of $\mathrm{HF}(40 \%) /\left[\mathrm{NH}_{4}\right] \mathrm{F}$ suspensions of $\mathrm{MnF}_{3}{ }^{148}$ or $\mathrm{MnF}_{2}{ }^{149}$ and by metathesis reactions of (i) $\left[\mathrm{NH}_{4}\right]\left[\mathrm{SbF}_{6}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{MnF}_{6}\right]$ in aHF at room temperature ${ }^{150}$ and (ii) $\left[\mathrm{O}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{MnF}_{6}\right]$ in aHF at $-78 .{ }^{151}$

The $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion was fully characterized by Raman, ${ }^{124,150-154}$ infrared, ${ }^{150,152-154}$ UV-vis, ${ }^{152}$ and electronic ${ }^{153-156}$ spectroscopies, X-ray powder photography, ${ }^{157-160}$ and
single-crystal X-ray diffraction. ${ }^{160,161}$ The single-crystal X-ray diffraction studies revealed that the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion has two phases: cubic $\left(\mathrm{Cs}^{+} ; \mathrm{K}^{+}\right.$and $\mathrm{Rb}^{+}, 100$ to $70{ }^{\circ} \mathrm{C}$) and hexagonal $\left(\mathrm{K}^{+}, \mathrm{Rb}^{+}, 40^{\circ} \mathrm{C}\right)$.

The $\left[\mathrm{MnF}_{5}\right]^{-}$anion was synthesized by fluorination of $\mathrm{A}\left[\mathrm{MnF}_{3}\right] \quad\left(\mathrm{A}=\mathrm{Na},{ }^{162}\right.$ $\mathrm{K},{ }^{123,162,163} \mathrm{Rb},{ }^{162}$ and Cs^{123}) at $450{ }^{\circ} \mathrm{C}$ and fluorination of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ with $\mathrm{BrF}_{3}{ }^{163}$ and characterized by X-ray powder diffraction, ${ }^{163}$ magnetic measurements, ${ }^{123}$ and electronic spectroscopy. ${ }^{164}$

The dinuclear hexafluoromanganate(IV) anion, $\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]^{-}$, was synthesized as a ruby-red solid by treating MnO_{2} or $\mathrm{MnF}_{\mathrm{n}}(\mathrm{n}=2-4)$ with a $\mathrm{F}_{2} / \mathrm{O}_{2}$ gas mixture at $350-550$ ${ }^{\circ} \mathrm{C}$. The $\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]^{-}$anion was characterized by magnetic measurements, elemental analysis, Raman spectroscopy, and single-crystal X-ray diffraction. ${ }^{165}$ The structure of the anion consists of double chains of MnF_{6} octahedra which have a layered arrangement with the cations located between the layers.

Manganese tetrafluoride behaves as a Lewis acid in its reaction with pyridine, yielding $\mathrm{MnF}_{4} \cdot \mathrm{NC}_{5} \mathrm{H}_{5} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{162}$ The latter compound was characterized by elemental analysis, infrared spectroscopy, and magnetic measurements. The Lewis base properties of MnF_{4} were investigated by reaction of MnF_{4} with SbF_{5}, which resulted in the formation of $\mathrm{MnF}_{4} \cdot 4 \mathrm{SbF}_{5} \cdot{ }^{166} \mathrm{The}_{\mathrm{MnF}}^{4}$ $\cdot 4 \mathrm{SbF}_{5}$ adduct was only characterized by infrared spectroscopy.

1.3.4. Reactions of MnF_{4} with the Noble-Gas Fluorides, $\mathrm{KrF}_{2}, \mathrm{XeF}_{2}$, and XeF_{6}

In contrast with the fluoride-ion acceptor properties of MnF_{4}, considerable scope
remains for the investigation of its fluoride-ion acceptor properties toward noble-gas fluorides.

Manganese difluoride has been shown to react with KrF_{2} in aHF to form dark red oily $2 \mathrm{KrF}_{2} \cdot \mathrm{MnF}_{4}$ and $\mathrm{KrF}_{2} \cdot \mathrm{MnF}_{4}$ which are stable below -45 and $-25^{\circ} \mathrm{C}$, respectively. ${ }^{133}$ The stoichiometric compositions of these adducts have been determined by examining their weight-loss versus time of pumping curves at $-45^{\circ} \mathrm{C}$. The decompositions of both adducts yielded pure $\mathrm{MnF}_{4}, \mathrm{KrF}_{2}, \mathrm{Kr}$, and F_{2}.

Manganese difluoride has also been shown to react with XeF_{2} and XeF_{6}. The reaction of XeF_{2} with MnF_{2} resulted in the formation of $\mathrm{XeF}_{2} \cdot \mathrm{MnF}_{4}$ (eq 1.56), which was

$$
\begin{equation*}
\mathrm{MnF}_{2}+n \mathrm{XeF}_{2} \xrightarrow{130^{\circ} \mathrm{C}} \mathrm{XeF}_{2} \cdot \mathrm{MnF}_{4}+(n-2) \mathrm{XeF}_{2}+\mathrm{Xe} \tag{1.56}
\end{equation*}
$$

isolated by removal of excess XeF_{2} at $-196,-80^{\circ} \mathrm{C}$, and room temperature. ${ }^{167,168}$ The 1:2 adduct, $\mathrm{XeF}_{2} \cdot 2 \mathrm{MnF}_{4}$, was obtained by pumping $\mathrm{XeF}_{2} \cdot \mathrm{MnF}_{4}$ under dynamic vacuum at 120 ${ }^{\circ} \mathrm{C}$. The reaction stoichiometry was determined by comparing the weights of all reactants and products. The isolated compounds were characterized by X-ray powder diffraction, infrared spectroscopy, magnetic measurements, and elemental analyses.

The $4 \mathrm{XeF}_{6} \cdot \mathrm{MnF}_{4}$ adduct ${ }^{169,170}$ was synthesized by reaction of MnF_{2} with XeF_{6} at 60 ${ }^{\circ} \mathrm{C}$ and isolated under dynamic vacuum at $0{ }^{\circ} \mathrm{C}$. The decomposition of $4 \mathrm{XeF}_{6} \cdot \mathrm{MnF}_{4}$ occurred under dynamic vacuum in stages at room temperature, 60 , and $140^{\circ} \mathrm{C}$ and resulted in the formation of $n \mathrm{XeF}_{6} \cdot \mathrm{MnF}_{4}(n=2,1,0.5)$, which have been characterized by X-ray powder diffraction, infrared spectroscopy, magnetic measurements, and elemental analyses.

The reaction between $\left[\mathrm{NH}_{4}\right]\left[\mathrm{MnF}_{3}\right]$ and XeF_{6} (eq 1.57) resulted in the formation of

$$
\left[\mathrm{NH}_{4}\right]\left[\mathrm{MnF}_{3}\right]+n \mathrm{XeF}_{6} \xrightarrow{0 \text { to } 60{ }^{\circ} \mathrm{C}}\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right]+\mathrm{XeF}_{x}+\mathrm{Xe}+\mathrm{XeF}_{6}
$$

$$
\begin{equation*}
n \geq 15, x=2,4 \tag{1.57}
\end{equation*}
$$

the yellow, room-temperature stable $\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right]$ salt. ${ }^{171}$ The product was characterized by chemical analyses, magnetic susceptibility measurements, thermogravimetric studies, and infrared and room temperature Raman spectroscopy.

1.3.5. Existing Evidence for MnF_{5} and Theoretical Studies

Indirect evidence was found for MnF_{5} by mass spectrometry experiments while investigating the reactions of MnF_{3} and MnF_{4} with F_{2} gas. ${ }^{172,173}$ Although the $\left[\mathrm{MnF}_{4}\right]^{+}$ cation, which contains manganese in the +5 oxidation state, was detected in the mass spectrum, the origin of this cation, MnF_{4} or MnF_{5}, is unclear. Manganese pentafluoride was proposed to exist in the gas phase with the MnF_{5} bond dissociation energy, D_{0} $\left(\mathrm{MnF}_{4}-\mathrm{F}\right)$, and the standard enthalpy of formation, $\Delta_{\mathrm{f}} H^{\mathrm{o}}\left(\mathrm{MnF}_{5}, \mathrm{~g}\right)$, being 172 ± 15 and $-1062 \pm 15 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. ${ }^{173}$ It was also proposed that MnF_{5} can be isolated in crystalline state at low temperature.

1.4. Purpose and Scope of Present Work

The present research expands the fundamental chemistry of group VII transition metal oxide fluorides. A significant body of the present research focuses on the fundamental chemistry of $\mathrm{ReO}_{3} \mathrm{~F}$. The latter will be explored by the syntheses and characterization of its oxide and oxide fluoride derivatives. Additionally, the chemical reactivity of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{MnO}_{3} \mathrm{~F}$ will be investigated as possible routes to the syntheses of
the $\mathrm{Xe}(\mathrm{II})$ oxides, new $\operatorname{Re}(\mathrm{VII})$ and $\mathrm{Mn}(\mathrm{VII})$ oxide fluorides, and $\mathrm{Mn}(\mathrm{V})$ fluorides, respectively.

In contrast to the well-established chemistries of ReOF_{5} and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$, the fundamental chemistry of the remaining known rhenium(VII) oxide fluoride, $\mathrm{ReO}_{3} \mathrm{~F}$, is the least investigated due to the absence of a reliable high-yield, high-purity synthesis of this oxide fluoride. In view of the previous dubious claim that the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion possesses meridional symmetry, ${ }^{27,36,37}$ the development of a reliable high-yield and high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ provides an opportunity to resynthesize salts of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion and to unambiguously characterize its geometry by single-crystal X-ray diffraction in conjunction with Raman spectroscopy. The availability of pure $\mathrm{ReO}_{3} \mathrm{~F}$ in macroscopic amounts would allow expansion and deepening of our understanding of its Lewis acid behavior and fluoride-ion acceptor properties by synthesizing and characterizing previously unknown adducts and anions derived from $\mathrm{ReO}_{3} \mathrm{~F}$.

The present research also investigates the reactivity of $\mathrm{ReO}_{3} \mathrm{~F}$ with Lewis acids such as $\mathrm{BF}_{3}, \mathrm{AsF}_{5}$, and SbF_{5}. The latter study is expected to yield the mononuclear $\left[\mathrm{ReO}_{3}\right]^{+}$and/or the dinuclear $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)\right]^{+}$cation stabilized by the weakly coordinating $\left[\mathrm{BF}_{4}\right]^{-},\left[\mathrm{PnF}_{6}\right]^{-}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$, and $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$anions.

By analogy with the reaction of XeF_{2} with $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right]$ which yielded the first xenon(II) oxide fluoride, $[\mathrm{FXeOXeFXeF}],{ }^{+}{ }^{174}$ and considering the solvolytic behavior of $\mathrm{ReO}_{3} \mathrm{~F}$ under fluoro-basic conditions, the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with XeF_{2} will be investigated as a possible means to transfer oxygen to xenon(II). The reaction of $\mathrm{ReO}_{3} \mathrm{~F}$
with $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ will also be investigated with the goal to prepare new "mixed" rhenium(VII) oxide fluorides.

Considering expected similarities between the chemistries of rhenium and technetium, as is observed for other pairs of row 5 and 6 transition elements, the development of rhenium oxide fluoride chemistry is expected to provide valuable insights into technetium chemistry, which is generally less developed due to the radioactivity of its long-lived isotope, ${ }^{99} \mathrm{Tc}\left(100 \%\right.$ abundant, $\left.0.29 \mathrm{MeV} \beta^{-}, \mathrm{t}_{1 / 2}=2.12 \times 10^{5} \mathrm{yr}\right)$. For example, detailed knowledge of the reactivity and properties of $\mathrm{TcO}_{3} \mathrm{~F}$ and its weakly radioactive analogue, $\mathrm{ReO}_{3} \mathrm{~F}\left({ }^{187} \mathrm{Re}, 62.6 \% ; \leq 0.008 \mathrm{MeV} \beta^{-}, \mathrm{t}_{1 / 2}=7 \times 10^{10} \mathrm{yr}\right)$, is of particular interest to the nuclear industry for the removal of ${ }^{99} \mathrm{Tc}$, a high-abundance fission product that must be removed from re-enriched UF_{6} prior to refabrication into nuclear fuel elements composed of $\mathrm{UO}_{2} .{ }^{175}$ The latter process is heavily reliant upon the ability of $\mathrm{TcO}_{3} \mathrm{~F}$ to be absorbed on solid fluoride ion donor surfaces. Thus, fluoride ion donor-acceptor properties of $\mathrm{TcO}_{3} \mathrm{~F}$ and $\mathrm{ReO}_{3} \mathrm{~F}$ are of considerable interest in this field of applied research as well as to fundamental chemistry.

A final goal of the present research concerns the syntheses of the missing d^{0} manganese oxide fluorides. This entails studies of the O / F methasesis reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} and KrF_{2} as possible synthetic routes to new manganese oxide fluorides, such as MnOF_{5} and $\mathrm{MnO}_{2} \mathrm{~F}_{3}$, by analogy with the syntheses of $\mathrm{TcOF}_{5}{ }^{1,2}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3} .{ }^{17}$ The latter reactions could result in the formation of high-valent $\mathrm{Mn}(\mathrm{V})$ and $\mathrm{Mn}(\mathrm{VI})$ fluorides by oxidative elimination of O_{2}. The reduction of $\mathrm{Mn}(\mathrm{VII})$ oxide fluorides is an alternative approach to previously known syntheses of high-valent manganese fluorides by oxidation
of MnF_{2} with $\mathrm{XeF}_{2}, \mathrm{XeF}_{6}$, and $\mathrm{KrF}_{2} .{ }^{167-171}$ The highest oxidation state of manganese that has been attained as the result of the latter oxidation reactions is +4 , which implies that a kinetic barrier hinders further oxidation of $\mathrm{Mn}(\mathrm{IV})$ to $\mathrm{Mn}(\mathrm{V})$ or (MnVI). Therefore, the reduction of $\mathrm{Mn}(\mathrm{VII})$ by reaction with noble-gas fluorides, such as XeF_{6} and KrF_{2}, could be the only viable synthetic route to the syntheses of $\mathrm{Mn}(\mathrm{V})$ or $\mathrm{Mn}(\mathrm{VI})$ fluorides.

Structural characterizations of the compounds synthesized in this study will be achieved by use of Raman and ${ }^{19} \mathrm{~F}$ spectroscopies, single-crystal X-ray diffraction, and quantum-chemical calculations in conjunction with Atoms in Molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses.

CHAPTER 2

EXPERIMENTAL SECTION

2.1. Standard Techniques

2.1.1. Drybox and Vacuum Line Techniques

The compounds used and prepared during the course of this work were moistureand temperature sensitive, and were handled under rigorously anhydrous conditions on glass and metal vacuum line systems or in the nitrogen atmosphere of a dry box (Vacuum Atmospheres Model DLX, oxygen and moisture $<0.1 \mathrm{ppm}$) equipped with a glass cryowell. Low-temperature additions of potentially reactive solids were carried out in the dry box by use of a metal Dewar filled with 4.5 mm copper plated steel spheres (air rifle shot) that had been previously cooled to ca. $-140{ }^{\circ} \mathrm{C}$ in the glass cryowell $\left(-196^{\circ} \mathrm{C}\right)$ of the dry box.

Transfers of volatile corrosive compounds and aggressively fluorinating solvents (e.g., HF and AsF_{5}) were carried out on metal vacuum lines constructed mainly from nickel and 316 stainless steel and fitted with 316 stainless steel valves (Autoclave Engineers Inc., Figure 2.1), which were themselves fitted with grease-free PTFE packings. Pressures were measured at ambient temperatures using MKS Model PDR-5B pressure transducers having inert wetted surfaces constructed of Inconel. The dynamic range of the pressure transducers was $0-1150$ torr with an accuracy of ± 0.5 torr over the entire pressure range. Two Edwards two-stage E2M8 direct-drive vacuum pumps functioned as a rough pump and as a high vacuum pump. The rough pump was primarily used to remove volatile fluoride compounds by pumping through a fluoride/fluorine trap

Figure 2.1. Schematic Diagram of the Metal Vacuum Line System: (A) outlet to liquid nitrogen and charcoal (Norit) traps followed by a two-stage direct-drive rotary vacuum pump (Edwards, E2M8) - hard vacuum, (B) outlet to soda lime and liquid nitrogen traps followed by a two-stage direct-drive rotary vacuum pump (Edwards, E2M8) - rough vacuum, (C) dry nitrogen inlet, (D) fluorine inlet, (E) MKS Model PDR-5B pressure transducer ($0-1000$ torr), (F) MKS Model PDR-5B pressure transducer ($0-10$ torr), (G) Bourdon pressure gauge $\left(0-1500\right.$ torr), (H) ${ }^{3} / 8$-in. 316 stainless steel high pressure valve (Autoclave Engineers, 30BM6071),
 connectors, (M) $1 / 4$-in. o.d., $1 / 8$-in. i.d. nickel tube, (N) hot-wire reactor connection. Reproduced with permission from ref 14 .
consisting of a stainless steel column packed with a soda lime absorbent (Fisher Scientific, 4-8 mesh), followed by a glass liquid nitrogen trap to remove any CO_{2}, water and other volatile products generated in the soda lime trap. The second vacuum pump provided a high vacuum source (ca. 10^{-4} torr) and was fitted with a glass liquid nitrogen trap and copper column, immediately before the pump, packed with activated charcoal (Norit).

Transfers of volatile compounds that did not attack glass were carried out on Pyrex glass vacuum lines (Figure 2.2) equipped with grease-free 6-mm J. Young glass stopcocks which were fitted with PTFE barrels. Vacuum (ca. 10^{-4} torr) was achieved using a single vacuum pump (Edwards two-stage E2M8 direct-drive) connected through a glass liquid nitrogen trap. Pressures inside the glass vacuum lines were monitored using a mercury manometer when backfilling reaction vessels.

2.1.2. Preparative Apparatus and Sample Vessels

All synthetic work was carried out in reactors constructed from lengths of $1 / 4-\mathrm{in}$. o.d. FEP tubing which were heat-sealed at one end and heat-flared $\left(45^{\circ} \mathrm{SAE}\right)$ at the other. The tubing was connected to Kel-F valves, encased in aluminum housings, using brass flare fittings. All vessels were then connected to a glass vacuum line using $1 / 4-\mathrm{in}$. stainless steel Swagelok Ultra-Torr unions fitted with Viton O-rings and were rigorously dried by pumping (a minimum of 6 h) under dynamic vacuum. Vessels were then connected to the metal vacuum line using a $1 / 4-\mathrm{in}$. PTFE Swagelok union and passivated with ca. 1000 torr of F_{2} for ca. 12 h . Once passivated, vessels were evacuated under dynamic vacuum to

Ph.D. Thesis - Maria V. Ivanova

remove all volatile impurities and back-filled with dry N_{2} (ca. 1000 torr) prior to use. Similarly, connections made to a metal vacuum line were dried under dynamic vacuum and passivated with F_{2} gas overnight. Connections made to a glass vacuum line were dried under dynamic vacuum overnight. The glass vessels used to handle less corrosive materials were dried under dynamic vacuum for a minimum of 8 hr and were periodically heated (flamed out) with a Bunsen burner while under vacuum.

Nuclear magnetic resonance spectra were acquired using sample tubes prepared from 4-mm o.d. FEP tubing. One end of each tube was heat-sealed using the end of a heated thin-walled 5-mm o.d. glass NMR tube, while the other end was fused to ca. 5 cm of $1 / 4$-in. o.d. $1 / 8$-in i.d. thick-walled tubing. The open end was flared ($45^{\circ} \mathrm{SAE}$) for connection to a Kel-F valve. Prior to acquisition of the NMR data, the sample tubes were heat-sealed under dynamic vacuum using a nichrome wire resistance furnace of appropriate diameter.

Low-temperature Raman spectra of solids (ca. -140 to $-150{ }^{\circ} \mathrm{C}$) were recorded on samples prepared in thin-walled $1 / 4$-in. o.d. FEP tubing.

All connections to vacuum lines were made using thick-walled $1 / 4$-in. o.d. ${ }^{3 / 16}$-in i.d. FEP tubing in conjunction with either a $1 / 4$-in. PTFE Swagelock unions outfitted with PTFE compression fittings (front and back ferrules) or $1 / 4-\mathrm{in}$. stainless steel Swagelock Ultra-Torr connectors outfitted with stainless steel compression fittings and Viton rubber O-rings.

Ph.D. Thesis - Maria V. Ivanova

2.2. Synthesis and Purification of Starting Materials

2.2.1. Sources and Purification of Gases: $\mathbf{N}_{2}, \mathrm{Ar}, \mathrm{F}_{2}, \mathrm{Xe}$, and Kr

House nitrogen gas was generated by boiling off liquid nitrogen (Air Liquide) and was further dried through a freshly regenerated bed of type $4 \AA$ molecular sieves. Highpurity nitrogen gas (Praxair, 99.999\%) and argon gas (VitalAire, 99.999\%) were also employed for the back pressuring of reaction vessels and were used without further purification. Technical grade fluorine gas (Air Products, >98 \%) and ultra-high purity Xe (Air Products, 99.995%) and Kr (Air Products, 99.995%) were used without further purification.

2.2.2. Purification of Solvents: Anhydrous $\mathrm{HF}, \mathrm{SO}_{2} \mathrm{ClF}, \mathrm{CH}_{3} \mathrm{CN}$

HF. Commercial anhydrous hydrogen fluoride (Harshaw Chemical Co.) was purified by addition of ca. 5 atm of F_{2} gas to a commercial HF sample contained in a nickel can and was allowed to stand for a minimum of ca. 48 h prior to use, converting residual water to HF and O_{2}. The reactor was subsequently cooled to $-196{ }^{\circ} \mathrm{C}$ and all volatiles, such as O_{2} and F_{2}, were removed under dynamic vacuum. After removal of O_{2} and excess F_{2} at $-196{ }^{\circ} \mathrm{C}$, anhydrous HF (aHF) was distilled into a dry Kel-F storage vessel equipped with a Kel-F valve and stored at room temperature for future use. Transfer of HF was accomplished by vacuum distillation from the Kel-F storage vessel, on a metal vacuum line, through a vacuum submanifold constructed from FEP, as shown in Figure 2.3.

Figure 2.3. Hydrogen fluoride distillation apparatus. (A) Kel-F storage vessel containing HF. (B) FEP reaction vessel fitted with a Kel-F valve. (C) Kel-F valve connected to vacuum manifold. (D) $1 / 4-$ in. Teflon union. Reproduced with permission from ref 14 .
$\mathbf{S O}_{\mathbf{2}}$ CIF. Sulfuryl chloride fluoride (Allied Chemical Co., Baker and Adams Division, $>90 \%$, ca. 100 g crude material) was purified by fractional distillation through two FEP U-tube traps cooled to -78 and $-90{ }^{\circ} \mathrm{C}$, respectively, effectively removing the inert impurity $\mathrm{SO}_{2} \mathrm{~F}_{2}$. The remaining $\mathrm{SO}_{2} \mathrm{ClF}$ was then condensed into an FEP U -tube containing ca. 80 g of SbF_{5} at $-78{ }^{\circ} \mathrm{C}$ and slowly warmed to room temperature with vigorous mixing to remove SO_{2} by adduct formation with $\mathrm{SbF}_{5}\left(\mathrm{SO}_{2} \cdot\left(\mathrm{SbF}_{5}\right)_{\mathrm{n}}\right)$, which is known to rapidly reduce xenon compounds. The purified $\mathrm{SO}_{2} \mathrm{CIF}$ was then transferred to an FEP U-tube cooled to $-78^{\circ} \mathrm{C}$ and containing dried KF . Again, the mixture was slowly warmed to room temperature with vigorous mixing and allowed to stand with periodic mixing at room temperature for at least 2 h to remove any residual HF. The sample was again cooled to $-78^{\circ} \mathrm{C}$ and condensed into a $11 / 4-\mathrm{in}$. o.d. FEP reaction vessel containing $\mathrm{XeF}_{2}(1.7 \mathrm{~g})$ for 24 h to ensure all impurities, in particular SO_{2}, with reducing properties were oxidized $\left(\mathrm{SO}_{2}+\mathrm{XeF}_{2} \longrightarrow \mathrm{SO}_{2} \mathrm{~F}_{2}+\mathrm{Xe}\right)$. Finally, $\mathrm{SO}_{2} \mathrm{ClF}$ was condensed by dynamic pumping at $-78{ }^{\circ} \mathrm{C}$ into a glass vessel, outfitted with a $6-\mathrm{mm}$ J. Young all glass stopcock, onto a bed of dry KF. The purity of the sample was assessed by ${ }^{1} \mathrm{H},{ }^{17} \mathrm{O}$, and ${ }^{19} \mathrm{~F}$ NMR spectroscopy of a neat sample recorded at $-80^{\circ} \mathrm{C}$, in which only a small amount of $\mathrm{SO}_{2} \mathrm{~F}_{2}$ (ca. 2%) was found. Transfers were performed using a glass vacuum line by vacuum distillation of $\mathrm{SO}_{2} \mathrm{ClF}$ through a submanifold comprised of a Y-shaped glass connection to the reaction vessel (Figure 2.4). The sample was stored at room temperature until used.
$\mathbf{C H}_{3} \mathbf{C N}$. Acetonitrile (Caledon, HPLC Grade) was purified according to the literature method, ${ }^{176}$ stored over molecular sieves in a glass vessel outfitted with a grease-

Figure 2.4. Apparatus used for the vacuum transfer of $\mathrm{SO}_{2} \mathrm{ClF}$ solvent: (A) $250-\mathrm{mL}$ glass vessel equipped with a grease-free $6-\mathrm{mm}$ J. Young PTFE/glass stopcock outfitted with PTFE barrel, (B) bed of dry, powdered KF, (C) glass Yconnector, (D) 6-mm J. Young PTFE/glass valve, (E) FEP reaction vessel fitted with a Kel-F valve, and (F) stainless steel Swagelok Ultra-Torr Union. Reproduced with permission from ref 14.
free $6-\mathrm{mm}$ J. Young glass/PTFE stopcock, and transferred under static vacuum using a glass vacuum line and a glass Y-piece into a smaller glass dispensing vessel outfitted with a grease-free $6-\mathrm{mm} \mathrm{J}$. Young glass/PTFE stopcock. Acetonitrile was then dispensed, under static vacuum using a glass vacuum line and a glass Y-piece, into individual reaction vessels (Figure 2.5).

2.2.3. Purification of $\mathrm{SbF}_{3}, \mathrm{SbF}_{5}, \mathrm{BF}_{3}, \mathrm{CsF}$, and $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$

$\mathbf{S b F}_{3}$. Antimony trifluoride (Aldrich, 98%) was purified as previously described ${ }^{177}$ by sublimation under dynamic vacuum and transferred into the dry box prior to use.
$\mathbf{S b F}_{5}$. Antimony pentafluoride (Ozark-Mahoning Co.) was purified by the literature method ${ }^{178}$ and stored in a glass vessel.
$\mathbf{K}\left[\mathbf{M n O}_{4}\right]$ and $\mathbf{B F}_{3}$. Potassium permanganate (Shawinigan) and boron trifluoride (Matheson) were used without further purification.

CsF. Cesium fluoride (CsF, ICN-KCK Laboratories Inc., 99.9\%) was dried by fusion in a platinum crucible, followed by immediate transfer of the melt to a dry box port which was immediately evacuated. Upon transferring to a nitrogen atmosphere dry box and solidification, the sample was ground to a fine powder in a dry mortar and pestel and stored in a PFA container inside the dry box until used.

Figure 2.5. Apparatus used for the vacuum transfer of $\mathrm{CH}_{3} \mathrm{CN}$ solvent: (A) 200-mL glass vessel equipped with a grease-free $6-\mathrm{mm}$ J. Young PTFE/glass stopcock outfitted with PTFE barrel, (B) $\mathrm{CH}_{3} \mathrm{CN}$, (C) glass Y-connector, (D) 6-mm J. Young PTFE/glass valve, (E) FEP reaction vessel fitted with a Kel-F valve, and (F) stainless steel Swagelok Ultra-Torr Union. Reproduced with permission from ref 14.

2.2.4. Syntheses of Starting Materials: $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right] F,} \mathrm{AsF}_{5}, \quad \mathrm{ONF}, \mathrm{K}\left[\mathrm{ReO}_{4}\right]\right.$, $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right], \mathrm{Re}_{2}{ }^{16 / 18} \mathrm{O}_{7}, \mathrm{XeF}_{2}, \mathrm{KrF}_{2}, \mathrm{XeF}_{6}, \mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{Re}^{16 / 18} \mathrm{O}_{3} \mathrm{~F}$, and $\mathrm{MnO}_{3} \mathrm{~F}$

$\left[\mathbf{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathbf{F}$. The naked fluoride ion source, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$, was prepared according to the literature method ${ }^{179}$ and was stored in an FEP tube inside a dry box until used.
$\mathbf{A s F}_{5}$. Arsenic pentafluoride was prepared as previously described, ${ }^{180}$ by direct fluorination of purified AsF_{3} with purified F_{2} in a nickel can. The AsF_{5} was used directly from the reaction can without further purification.

ONF. The synthesis of ONF was based on the published methods ${ }^{181}$ using more rigorously purified starting materials. Nitrosyl fluoride, ONF, was prepared by twice reacting NO $(0.0905 \mathrm{~mol})$ and $\mathrm{F}_{2}(0.0417 \mathrm{~mol})$ in a nickel reactor $(65 \mathrm{~mL})$ to give a combined yield of $8.63 \mathrm{~g}(0.176 \mathrm{~mol})$ of ONF. Trace amounts of $\mathrm{O}_{2} \mathrm{NF}(\mathrm{ca} .0 .2 \%)$ and ONF_{3} (ca. 0.8%) found in the sample were estimated by recording the ${ }^{19} \mathrm{~F}$ NMR spectrum of a sample of the neat liquid product at $-80^{\circ} \mathrm{C}$. Transfers of ONF were carried out using a fluorine-passivated FEP submanifold (dedicated to this use) that was passivated once with ONF prior to transfer to an intermediate FEP vessel. This served to verify that passivation of the submanifold was complete. In the event of incomplete passivation, a distinct blue to light blue color appeared in the intermediate vessel that resulted from reaction of ONF with residual moisture and/or unpassivated metal surfaces to give intense blue $\mathrm{N}_{2} \mathrm{O}_{3}$. This procedure also allowed a controlled amount of ONF to be metered into the reaction vessel.
$\mathbf{K}\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$. The $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ salts were prepared and purified using procedures analogous to those used for preparation and purification of
pertechnetates. ${ }^{26}$ These salts were subsequently dried under vacuum for 48 h . The salts were stored in glass vessels inside a dry box.
$\mathbf{R e}_{\mathbf{2}}{ }^{\mathbf{1 6 / 1 8}} \mathbf{O}_{7}$. Synthesis of dirhenium heptoxide was carried out in a $15-\mathrm{mm}$ o.d. quartz reaction tube equipped with a $6-\mathrm{mm}$ J. Young glass valve equipped with a Teflon barrel (Figure 2.6). Rhenium powder (Cleveland Refractory Metals, 325 mesh; $2.178 \mathrm{~g}, 11.70$ mmol) was added to the bottom of the reaction tube. Vessel was then connected to the metal vacuum line using a $1 / 4$-in. PTFE Swagelock union. Reduction of the metal powder surface was achieved by heating rhenium powder with a natural gas-oxygen torch in the presence of successive aliquots of $\mathrm{H}_{2}\left(800-1000\right.$ torr) followed by removal of $\mathrm{H}_{2} \mathrm{O}$ under vacuum while the quartz vessel was still hot. The reduction was repeated until water evolution ceased (no condensation was visible on the vessel walls when the reactor was cooled to room temperature). The metal powder was then reduced with two further aliquots of H_{2} and flamed dried under dynamic vacuum. The metal powder was then quantitatively converted to $\mathrm{Re}_{2} \mathrm{O}_{7}$ by addition of successive aliquots of high-purity oxygen gas (Air Liquide, 99.995%), which had been further dried by passing it through a copper coil immersed in dry ice. The metal was heated to a dull red to yellow color with a natural gas-oxygen torch until combustion ceased. Dirhenium heptoxide condensed on the reaction walls as a bright yellow crystalline material in the cooler regions of the reactor. The procedure was repeated until all the powder metal had been converted to $\mathrm{Re}_{2} \mathrm{O}_{7}$. After complete combustion, the vessel was evacuated and $\mathrm{Re}_{2} \mathrm{O}_{7}$ was melted and purified by static vacuum distillation into a $8-\mathrm{mm}$ outer diameter quartz side arm attached to the reaction vessel. The powdered solid was stored in a dry box until used. The synthesis of

Figure 2.6. Reactor used for the preparation of $\mathrm{Re}_{2} \mathrm{O}_{7}$: (A) 9-mm o.d. quartz tube, (B) graded quartz to Pyrex seal, (C) 6-mm J. Young PTFE/glass valve, (D) front-end view showing the vertical loading tube and the horizontal recovery tube. Reproduced with permission from ref 14.
${ }^{18}$ O-enriched $\mathrm{Re}_{2} \mathrm{O}_{7}$ was achieved by combustion of Re powder (Cleveland Refractory Metals, 325 mesh) in ${ }^{18} \mathrm{O}_{2}$ (Isotec, Inc.; 95-99\% ${ }^{18} \mathrm{O}$), and was similar to that used for the synthesis of natural abundance $\mathrm{Re}_{2} \mathrm{O}_{7}$ except that the scale of the reaction was reduced by approximately one-eighth.
$\mathbf{X e F}_{2}$. Xenon difluoride was prepared according to the literature method ${ }^{182}$ and stored in a Kel-F tube inside a dry box until needed.
$\mathbf{K r F}_{2}$. Krypton difluoride was prepared by use of 316 stainless steel hot-wire reactor (Figure 2.7) equipped with a nickel filament, similar to that originally described ${ }^{183}$ and subsequently modified. ${ }^{184}$ The filament was fabricated from a $1 / 16$-in nickel rod tightly wound about a second length of $1 / 16$-in rod that was, in turn, coiled and stretched into a helix. In a typical preparation, the hot-wire reactor was pressurized with 1000 torr (50 mmol) of krypton and then cooled to $-196{ }^{\circ} \mathrm{C}$ in a 20-L Dewar. After reaching thermal equilibrium, the reactor was pressurized with 25 torr of F_{2} and the DC power supply for the nickel filament was adjusted to ca. 6 V and 30 A (the filament was dull red in color under these conditions). The F_{2} pressure increased to ca. 45 torr after the power supply was tuned on and was regulated between 35 and 45 torr by the periodic addition of F_{2} during the synthesis. The decline in F_{2} pressure was used to monitor the production of KrF_{2}, and additional amounts of $\mathrm{Kr}(1.0$ to 2.0 mmol$)$ were condensed into the reactor when the rate of KrF_{2} production significantly slowed. Upon completion of the reaction (ca. 12 h), F_{2} was removed under dynamic vacuum at $-196^{\circ} \mathrm{C}$. The excess Kr and crude KrF_{2} were recovered as a pink solid (the coloration arises from chromium oxide fluoride

Ph.D. Thesis - Maria V. Ivanova

contamination; most likely $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ which is leached from the surfaces of the stainless steel reactor) by allowing the reactor to slowly warm to room temperature while dynamically pumping the volatile contents through a $1 / 2$-in o.d. FEP U-trap $\left(-196^{\circ} \mathrm{C}\right)$. The $\mathrm{Kr} / \mathrm{KrF}_{2}$ mixture was then warmed to $-78{ }^{\circ} \mathrm{C}$ under dynamic vacuum to remove the unreacted Kr . The crude KrF_{2} was purified by briefly warming the sample to $0{ }^{\circ} \mathrm{C}$ and flash distilling off the more volatile chromium oxide fluorides. The remaining colorless KrF_{2} was finally warmed to room temperature and rapidly sublimed into ${ }^{3} / 8$-in o.d. FEP tube equipped with a Kel-F valve, where it was stored under 1000 torr of N_{2} or Ar at -78 ${ }^{\circ} \mathrm{C}$ until used. This synthesis typically yields of ca. 3 to 4 g of pure KrF_{2}.
$\mathbf{X e F}_{6}$. Xenon hexafluoride was synthesized by a method similar to that outlined by Chernick and Malm. ${ }^{186}$ Xenon (620 torr) was condensed into a nickel vessel (825 mL) at $-196{ }^{\circ} \mathrm{C}$, followed by the condensation of excess F_{2} gas (13000 torr) $\left(\mathrm{Xe}: \mathrm{F}_{2}=1: 22\right.$ molar ratio) reaching a total pressure of 56 atm at room temperature. The mixture was heated to $250{ }^{\circ} \mathrm{C}$ for 24 h and slowly cooled $47{ }^{\circ} \mathrm{C}$ over a period of 72 h before turning off the furnace and allowing the mixture to cool to room temperature. The nickel can, containing XeF_{6} and excess F_{2}, was reconnected to the metal vacuum line through the FEP U-trap and cooled to $-196{ }^{\circ} \mathrm{C}$. The pressure of excess F_{2} gas was slowly released through a Utrap precooled to $-78{ }^{\circ} \mathrm{C}$ into a 5 L Monel storage vessel used to recover and recycle fluorine gas. Xenon hexafluoride was condensed in the FEP U-trap at $-78{ }^{\circ} \mathrm{C}$ and the remaining unreacted F_{2} was removed from the U-trap under vacuum at $-78{ }^{\circ} \mathrm{C}$. The product was vacuum distilled into a ${ }^{1 ⁄ 2}$-in o.d. FEP storage vessel equipped with a Kel-F valve. The purity was assessed using Raman spectroscopy.

Ph.D. Thesis - Maria V. Ivanova
$\mathbf{R e}^{\mathbf{1 6 / 1 8}} \mathbf{O}_{\mathbf{2}} \mathbf{F}_{3}$. Dirhenium heptoxide, $\operatorname{Re}_{2} \mathrm{O}_{7},(0.2670 \mathrm{~g} ; 0.5511 \mathrm{mmol})$ was weighted inside a dry box into a 114 -in. o.d. FEP reactor. The reactor was connected to a metal vacuum line and ca. 0.35 mL of aHF was condensed onto the solid at $-196^{\circ} \mathrm{C}$ and the contents of the reactor were warmed to room temperature until all $\mathrm{Re}_{2} \mathrm{O}_{7}$ dissolved forming a pale yellow solution. The solution was frozen inside a dry box in a metal Dewar filled with 4.5 mm copper plated steel spheres (air rifle shot) that had been previously cooled to ca. $-140{ }^{\circ} \mathrm{C}$ in the glass cryowell $\left(-196{ }^{\circ} \mathrm{C}\right)$ of the dry box. Xenon difluoride, $\mathrm{XeF}_{2},(0.2799 \mathrm{~g} ; 0.1653 \mathrm{mmol})$ was weighed into the reactor. The reactor was very quickly removed from the dry box and connected to a metal vacuum line by means of a U-trap. The U-trap and all connections were passivated with ca. 1000 torr of F_{2} for several hours. The contents of the reactor were then warmed to room temperature at which temperature all solids dissolved to form a pale yellow solution. As the color of the solution changed to yellow-orange, the reaction mixture rapidly evolved gas (O_{2} and Xe), which was periodically released into a vacuum manifold. Over ca. 4 h , a white solid precipitated from the solution, which became very pale yellow to colorless, and gas evolution had ceased. The contents of the reactor were left under aHF and 1 atm of N_{2} at room temperature overnight to ensure that the starting material completely reacted. The solvent was subsequently removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$, leaving behind a white friable solid. The solid was warmed to room temperature and only XeF_{2} that remained was also removed under dynamic vacuum. The purity of the solid was checked by Raman spectroscopy. Synthesis of the ${ }^{18} \mathrm{O}$ enriched sample used $0.1627 \mathrm{~g}(0.3358$ mmol) of $\mathrm{Re}_{2}{ }^{18} \mathrm{O}_{7}$.

Ph.D. Thesis - Maria V. Ivanova

$\mathbf{R e}^{\mathbf{1 6 / 1 8}} \mathbf{O}_{\mathbf{3}} \mathbf{F}$. Inside a dry box, $\mathrm{Re}_{2} \mathrm{O}_{7}(0.1399 \mathrm{~g}, 0.2887 \mathrm{mmol})$ was weighed into a $1 / 4$-in. o.d. FEP reactor equipped with a Kel-F valve. Anhydrous HF (ca. 1 mL) was condensed onto the solid at $-196{ }^{\circ} \mathrm{C}$. The solvolysis reaction was allowed to proceed at room temperature, giving a yellow solution. Three aliquots of F_{2} (ca. 1050 torr each) were added to the reactor at 24 h intervals over 72 h at $-78{ }^{\circ} \mathrm{C}$ followed by warming to room temperature. Anhydrous HF solvent was removed under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$. The resulting solid complex, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, was further pumped in stages at $-40,-20,0^{\circ} \mathrm{C}$, and room temperature to remove weakly associated and coordinated HF. Further pumping at $50^{\circ} \mathrm{C}$ ensured complete removal of HF and resulted in a pale yellow, friable solid. The Raman spectrum of the product was in excellent agreement with the previously published spectrum of $\mathrm{ReO}_{3} \mathrm{~F} .{ }^{21}$ Syntheses of the ${ }^{18} \mathrm{O}$ enriched samples used similar amounts of $\operatorname{Re}_{2}{ }^{18} \mathrm{O}_{7}$.
$\mathbf{M n O}_{3} \mathbf{F}$. In a typical synthesis, $\mathrm{K}\left[\mathrm{MnO}_{4}\right](\sim 0.11 \mathrm{~g}, \sim 0.70 \mathrm{mmol})$ was weighed into a $1 / 4-$ in. o.d. FEP reactor equipped with a Kel-F valve and was connected to a glass vacuum line and dried under dynamic vacuum over a period of 24 h . Anhydrous HF (ca. 0.5 mL) was condensed onto the solid at $-196{ }^{\circ} \mathrm{C}$. The reactor was subsequently pressurized with ca. 1050 torr of F_{2} gas at $-78^{\circ} \mathrm{C}$. After the reagents were warmed to -20 ${ }^{\circ} \mathrm{C}$, solvolysis yielding a two-phase solution occurred. The dense metallic green bottom layer and the deep green transparent top layer consisted of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $\mathrm{MnO}_{3} \mathrm{~F} / \mathrm{HF}$, respectively. The reaction temperature was maintained at $-18 \pm 2{ }^{\circ} \mathrm{C}$ for ca. 6 h , after which it was cooled to $-78{ }^{\circ} \mathrm{C}$ for ca. 18 h . Two additional aliquots of F_{2} (ca. 1050 torr each) were added to the reactor at 24 h intervals over 36 h at $-78^{\circ} \mathrm{C}$ and the synthetic
steps following F_{2} addition were repeated each time. When the reaction of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ with $\mathrm{aHF} / \mathrm{F}_{2}$ was deemed to be complete, the $\mathrm{MnO}_{3} \mathrm{~F} / \mathrm{aHF}$ mixture was isolated by distillation into a separate reactor maintained $-196{ }^{\circ} \mathrm{C}$. The $\mathrm{aHF} / \mathrm{MnO}_{3} \mathrm{~F}$ solution was subsequently warmed to $-20{ }^{\circ} \mathrm{C}$ and allowed to cool to $-78{ }^{\circ} \mathrm{C}$, at which temperature deep green needles of $\mathrm{MnO}_{3} \mathrm{~F}$ grew over a period of ca. 1 h . The Raman spectrum was recorded on the crystalline material under frozen aHF.

2.3. Synthesis and Characterization of $(\mathbf{H F})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and $\left[\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ and Attempted Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]$ from $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ Solvent

2.3.1. Synthesis of (HF) $)_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$

Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.0587 \mathrm{~g}, 0.2318 \mathrm{mmol})$ was weighed into a $1 / 4$-in. o.d. FEP reactor equipped with a side arm and a Kel-F valve. Anhydrous HF (ca. 1 mL) was condensed onto $\mathrm{ReO}_{3} \mathrm{~F}$ at $-196{ }^{\circ} \mathrm{C}$. Upon warming the reaction mixture to room temperature, the solid rapidly dissolved, yielding a yellow solution. Cooling of the solution to $-78{ }^{\circ} \mathrm{C}$ resulted in the deposition of a crystalline white solid. Raman spectra were recorded on the crystalline solid under frozen aHF and on the solid that was subsequently isolated by removal of aHF under dynamic vacuum at $-78^{\circ} \mathrm{C}$. Both spectra were identical and confirmed the formation of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$.

The $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ complex was also obtained in solution from three separate room-temperature aHF (ca. 1 mL) solvolysis reactions of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right](0.0996 \mathrm{~g}, 0.3713$ $\mathrm{mmol}), \mathrm{K}\left[\mathrm{ReO}_{4}\right](0.1343 \mathrm{~g}, 0.4641 \mathrm{mmol})$, and $\mathrm{Re}_{2} \mathrm{O}_{7}(0.1071 \mathrm{~g}, 0.2211 \mathrm{mmol})$. The
solutions were subsequently cooled to $-78{ }^{\circ} \mathrm{C}$, which resulted in the deposition of crystalline white solids. The Raman spectra of these solids, which were recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$, and unit cell determinations of the single crystals confirmed the formation of (HF) $)_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$.

2.3.2. Crystal Growth of $(\mathbf{H F})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and $\mathrm{KF} \cdot 4 \mathrm{HF}$

$(\mathbf{H F})_{2} \mathbf{R e O}_{3} \mathbf{F} \cdot \mathbf{H F}$. Crystals of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ were grown from a pale yellow solution obtained by dissolving $\mathrm{ReO}_{3} \mathrm{~F}(0.0587 \mathrm{~g}, 0.2318 \mathrm{mmol})$ in aHF at room temperature. The solution was prepared in a $1 / 4$-in. o.d. FEP T-shaped reactor, which was pressurized with ca. 1 atm of dry nitrogen at $-78^{\circ} \mathrm{C}$. The solution was slowly cooled to $-36{ }^{\circ} \mathrm{C}$ inside a crystal growing apparatus (Figure 2.8), ${ }^{185}$ whereupon colorless plates formed over a period of $4-5 \mathrm{~h}$. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $-196{ }^{\circ} \mathrm{C}$. The crystalline product was dried under dynamic vacuum at $-44^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. A crystal of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ having the dimensions $0.37 \times 0.33 \times 0.06 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.

KF-4HF. Crystals of KF•4HF were grown from a pale yellow solution obtained by dissolving $0.1343 \mathrm{~g}(0.4641 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ in ca. 2 mL of aHF at room temperature. The solution was prepared in a $1 / 4-\mathrm{in}$. o.d. FEP T-shaped reactor which was pressurized with ca. 1 atm . of dry nitrogen at $-78^{\circ} \mathrm{C}$. The solution was slowly cooled to $-71{ }^{\circ} \mathrm{C}$ inside a low-temperature crystal growing apparatus (Figure 2.8), ${ }^{185}$
whereupon colorless plates formed over a period of 4-5 h. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $196^{\circ} \mathrm{C}$. The crystalline product was dried under dynamic vacuum at $-78^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. A crystal of KF•4H having the dimensions $0.04 \times 0.17 \times 0.16 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.

2.3.3. Synthesis of $\left[N\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$

Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.0484 \mathrm{~g}, 0.1912 \mathrm{mmol})$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}(0.0182 \mathrm{~g}$, 0.1958 mmol) were weighed into a $1 / 4-$ in. o.d. FEP reactor at room temperature. The solids were removed from the dry box and cooled to and maintained at $-78^{\circ} \mathrm{C}$ until dry $\mathrm{CH}_{3} \mathrm{CN}$ was condensed onto the solids at $-196{ }^{\circ} \mathrm{C}$. A white solid commenced to form upon warming the sample to $-40{ }^{\circ} \mathrm{C}$. The reactor was slowly warmed to $-20{ }^{\circ} \mathrm{C}$, at which temperature the solid became light beige in color. The solid had partial solubility at -10 ${ }^{\circ} \mathrm{C}$, however, complete dissolution was only attained at room temperature. Acetonitrile was removed under dynamic vacuum at $-40^{\circ} \mathrm{C}$ and the product was completely dried by further pumping at room temperature. The low-temperature Raman spectrum of the dried
 $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$, and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] .{ }^{19}$

2.3.4. Crystal Growth of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ and $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]}\right.$ $\left[\mathbf{N}\left(\mathbf{C H}_{3}\right)_{4}\right]_{2}\left[\left\{\operatorname{ReO}_{\mathbf{3}}(\boldsymbol{\mu}-\mathbf{F})\right\}_{\mathbf{3}}\left(\boldsymbol{\mu}_{3}-\mathbf{O}\right)\right] . \quad$ Crystals of $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.}\right.$

 $\mathrm{O})] \cdot \mathrm{CH}_{3} \mathrm{CN}$ were grown from a bright yellow solution obtained by dissolution of 0.0694 g of a reaction mixture containing $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$, and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ (see Syntheses of $\mathrm{ReO}_{3} \mathrm{~F}$, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$, and $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.}\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature. The solution was prepared in a $1 / 4$-in. o.d. FEP T-shaped reactor followed by pressurization with ca. 1 atm of dry nitrogen. Cooling the solution to $-1{ }^{\circ} \mathrm{C}$ inside a crystal growing apparatus (Figure 2.8$)^{185}$ resulted in the formation of colorless plates over a period of 1.5-2 h. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $196{ }^{\circ} \mathrm{C}$. The crystalline product was dried under dynamic vacuum at $-5^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. A crystal of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ having the dimensions $0.24 \times 0.12 \mathrm{x}$ $0.06 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.$\left[\mathbf{N}\left(\mathbf{C H}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$. Crystals of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ were obtained from the reaction of $\mathrm{ReO}_{3} \mathrm{~F}(0.0368 \mathrm{~g}, 0.1454 \mathrm{mmol})$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}(0.0273 \mathrm{~g}, 0.2935 \mathrm{mmol})$ at $-35{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in a $1 / 4-\mathrm{in}$. o.d. FEP T-shaped reactor. The white solid partially dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature forming a pale yellow solution. The solution was cooled to $-3{ }^{\circ} \mathrm{C}$ inside a crystal growing apparatus, ${ }^{185}$ whereupon colorless block-shaped crystals formed over a period of 3-4 h. The solution was further cooled to $-5^{\circ} \mathrm{C}$ for 1 h to ensure that crystallization is complete. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $-196{ }^{\circ} \mathrm{C}$. The crystalline product
was dried under dynamic vacuum at $-5^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. A crystal of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ having the dimensions $0.15 \times 0.30 \times 0.31 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.

2.3.5. Attempted Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]$ from $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathbf{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathbf{F}$ in $\mathrm{CH}_{3} \mathbf{C N}$ Solvent

Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.0853 \mathrm{~g}, 0.3369 \mathrm{mmol})$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}(0.0110 \mathrm{~g}$, 0.1179 mmol) were weighed into a ${ }^{1 / 4}$-in. o.d. FEP reactor equipped with a side arm and a Kel-F valve. The solid mixture was removed from the dry box and maintained at $-78{ }^{\circ} \mathrm{C}$ until dry $\mathrm{CH}_{3} \mathrm{CN}$ was condensed onto the mixture at $-196{ }^{\circ} \mathrm{C}$. A white solid formed upon warming to $-35{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed in stages to $-20,-10{ }^{\circ} \mathrm{C}$, and room temperature, at which temperature the product showed partial solubility. The low-temperature Raman spectrum of the precipitated product under $\mathrm{CH}_{3} \mathrm{CN}$ corresponded to a mixture of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ and $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$.
2.4. Syntheses and Characterization of $\mathrm{Cs}\left[\operatorname{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right],[\mathrm{NO}]\left[\operatorname{ReO} \mathbf{O}_{3} \mathrm{~F}_{2}\right]$, $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right), \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.{ }^{16 / 18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$

Although the syntheses of the fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(\mathrm{Cs}^{+},[\mathrm{NO}]^{+}\right.$, and $\left.\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(\mathrm{Cs}^{+},[\mathrm{NO}]^{+}, \mathrm{K}^{+},\left[\mathrm{NH}_{4}\right]^{+}\right)$anions were reproduced several times, the above salts always formed in admixtures with the corresponding salts of the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$and/or $[\mu-$

Ph.D. Thesis - Maria V. Ivanova
$\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]^{-}$, and $\left[\mathrm{ReO}_{4}\right]^{-}$anions. The Raman frequencies and intensities of individual salts were assigned by comparison of the various Raman spectra recorded on the product mixtures resulting from the same reaction and/or the Raman spectra recorded on product mixtures resulting from different reactions. Additionally, the Raman bands were assigned by comparison with the previously published Raman frequencies and intensities for the $\mathrm{M}\left[\mathrm{ReO}_{4}\right]\left(\mathrm{M}=\left[\mathrm{NH}_{4}\right], \mathrm{K}, \mathrm{Cs}\right),{ }^{187} \mathrm{M}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{19}\left(\mathrm{M}=\left[\mathrm{NH}_{4}\right], \mathrm{K}, \mathrm{Cs}\right)$, and $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]^{19}$ salts.

Crystals of $\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right](\mathrm{M}=\mathrm{K}$, [$\left.\mathrm{NH}_{4}\right]$, $[\mathrm{NO}]$, Cs) and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were grown from their corresponding $\mathrm{SO}_{2} \mathrm{ClF}$ and aHF solutions at room temperature by static distillation of aHF into the side arms of the reactors that were precooled to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath). The colorless crystals of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right] \quad\left(\mathrm{M}=\mathrm{K}, \quad\left[\mathrm{NH}_{4}\right], \quad[\mathrm{NO}], \quad \mathrm{Cs}\right), \quad \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ were isolated by heat-sealing the side arms at $-196{ }^{\circ} \mathrm{C}$ and any residual solvent was removed under dynamic vacuum. The portion of the reactor containing the dry crystalline product was backfilled with dry N_{2} and stored at $-78{ }^{\circ} \mathrm{C}$ until the crystals could be mounted on the diffractometer.

2.4.1. Synthesis of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

In a typical synthesis, $\mathrm{ReO}_{3} \mathrm{~F}(0.0638 \mathrm{~g}, 0.2519 \mathrm{mmol})$ and $\mathrm{CsF}(0.0385 \mathrm{~g}, 0.2534$ mmol) corresponding to a $1: 1$ molar ratio and $\mathrm{ReO}_{3} \mathrm{~F}(0.0918 \mathrm{~g}, 0.3626 \mathrm{mmol})$ and CsF $(0.0953 \mathrm{~g}, 0.6273 \mathrm{mmol})$ corresponding to a 1:2 molar ratio were weighed into two separate $1 / 4$-in. o.d. FEP T-shaped reactors inside a dry box. Anhydrous HF (ca. 0.3 and 0.4 mL ,
respectively) was condensed onto the solids at $-196^{\circ} \mathrm{C}$. The reactions proceeded at room temperature, yielding pale yellow solutions. When the solutions were cooled to $-78{ }^{\circ} \mathrm{C}$, a small amount of the colorless crystalline material formed in both reactors. The Raman spectra of these crystalline products under frozen aHF corresponded to only $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$. Subsequently, both reactors were rewarmed to $-78{ }^{\circ} \mathrm{C}$ at which temperature aHF was removed under dynamic vacuum, leaving white solid products behind. The white products were subsequently dried under dynamic vacuum at room temperature. The low-temperature Raman spectra were assigned to the $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ salts for both $1: 1$ and 1:2 molar ratios of $\mathrm{ReO}_{3} \mathrm{~F}$ and CsF . The product mixtures were subsequently re-dissolved in aHF at room temperature and crystals of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ were grown by static distillation of aHF into a pre-cooled side arm in admixture with $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{Cs}\left[\mathrm{ReO}_{4}\right], \mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ salts, which precipitated as white solids. The Raman spectra, where bands corresponding to $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, respectively, appear as the most intense bands were chosen for further vibrational analyses.

2.4.2. Crystal Growth of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$

Crystals of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ were grown from a pale yellow solution prepared by reacting $\mathrm{ReO}_{3} \mathrm{~F}(0.0522 \mathrm{~g}, 0.2062 \mathrm{mmol})$ with $\mathrm{CsF}(0.0652 \mathrm{~g}, 0.4292 \mathrm{mmol})$ in aHF (ca. 0.4 mL$)$. Colorless block-shaped crystal of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ grew over a period of 72 h . A crystal of $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ having the dimensions $0.07 \times 0.12 \times 0.21 \mathrm{~mm}^{3}$ was selected for a lowtemperature X-ray structure determination.

2.4.3. Crystal Growth of $\operatorname{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$

Crystals of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ were grown from a pale yellow solution prepared by reacting $\mathrm{ReO}_{3} \mathrm{~F}(0.0602 \mathrm{~g}, 0.2376 \mathrm{mmol})$ with $\mathrm{CsF}(0.0698 \mathrm{~g}, 0.4597$ mmol) in aHF in a $1 / 4$-in. o.d. FEP reaction vessel equipped with a side arm (T-shaped reactor) ${ }^{X}$ and fitted with a Kel-F valve. The main arm of the reaction vessel containing the solution was placed inside the glass dewar of the crystal growing apparatus precooled to $-33{ }^{\circ} \mathrm{C}$ and the temperature of the dewar and contents was slowly lowered to $-40^{\circ} \mathrm{C}$ to induce slow crystal growth. Colorless plates formed over a period of 5-6 h. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $-196{ }^{\circ} \mathrm{C}$. The crystalline products were dried under dynamic vacuum at $-45^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. The portion of the reactor containing the dry crystalline products were backfilled with dry N_{2} and stored at $-78^{\circ} \mathrm{C}$ until the crystals could be mounted. A crystal of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ having the dimensions $0.11 \times 0.27 \times 0.33 \mathrm{~mm}^{3}$ and a crystal of $\mathrm{Cs}[\mu-$ $\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}$] having the dimensions $0.12 \times 0.31 \times 0.31 \mathrm{~mm}^{3}$ were selected for a lowtemperature X-ray structure determination.

2.4.4. Synthesis of $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$

$\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathbf{F}_{3}\right]\right.$. Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.1071 \mathrm{~g}, 0.4230 \mathrm{mmol})$ was weighed into a $1 / 4-\mathrm{in}$. o.d. FEP reactor equipped with a side arm and a Kel-F valve. The transfer of excess NOF was carried out by passing it through a fluorine-passivated FEP submanifold (dedicated to this use) that was passivated twice with NOF prior to its condensation into an intermediate

Ph.D. Thesis - Maria V. Ivanova

FEP vessel at $-196{ }^{\circ} \mathrm{C}$. This served to verify the passivation of the submanifold was complete. In the event of incomplete passivation, a distinct blue to light blue color appeared in the intermediate vessel that resulted from the reaction of NOF with residual moisture and/or unpassivated metal surfaces, to give intense blue $\mathrm{N}_{2} \mathrm{O}_{3}$.

The reactor was warmed to $-20^{\circ} \mathrm{C}$ and was held at this temperature until all, but trace amounts, of $\mathrm{ReO}_{3} \mathrm{~F}$ had reacted and a white solid formed (ca. 4 days). The Raman spectrum was assigned to $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and to trace amounts of unreacted $\mathrm{ReO}_{3} \mathrm{~F}$, $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, which were assigned by comparison with the Raman spectra of known $\left[\mathrm{ReO}_{4}\right]^{-187}$ and $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-19}$ salts. The solid mixture was isolated as a white solid by removal of residual NOF under dynamic vacuum over a period of ca. 8 h at $-78^{\circ} \mathrm{C}$. Upon distillation of aHF into the reactor, a portion of the white solid mixture dissolved at $-78^{\circ} \mathrm{C}$. The Raman spectrum of the insoluble solid under frozen aHF was assigned to $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$. When aHF was removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$, a soluble product, which deposited on top of unsolvolyzed [NO$]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, proved to be $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ by Raman spectroscopy.
$[\mathbf{N O}]\left[\mathrm{ReO}_{3} \mathbf{F}_{2}\right]$. Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.0659 \mathrm{~g}, 0.2601 \mathrm{mmol})$ was weighed into a $1 / 4$-in. o.d. FEP reactor equipped with a side arm and a Kel-F valve. The transfer of excess NOF was carried out as described above. The reactor was warmed to $-20^{\circ} \mathrm{C}$ and was held at this temperature until all $\mathrm{ReO}_{3} \mathrm{~F}$ reacted (ca. 2 days) and white $\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$ formed in admixture with $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$. Pumping off residual NOF at $-78,-20^{\circ} \mathrm{C}$, and room temperature for 19 h , provided a white solid mixture of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$, which was confirmed by Raman spectroscopy. A Raman
spectrum, where the bands corresponded to by-products, $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$, were at concentration that were too low to be observed was used for the vibrational analysis.

2.4.5. Crystal Growth of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$

Crystals of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ were grown from a pale yellow solution obtained by dissolution of a reaction mixture prepared as described above (see Synthesis of $\left.[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\right)$ in aHF (ca. 0.3 mL) at room temperature. Additionally, the crystals of one of the reaction by-products, $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, also grew. Colorless blocks of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and colorless plate-like crystals of $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ grew over a period of 48 h . A crystal of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ having the dimensions $0.05 \times 0.13 \times 0.21 \mathrm{~mm}^{3}$ was selected for a lowtemperature X-ray structure determination and a crystal of $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ having the dimensions $0.09 \times 0.23 \times 0.26 \mathrm{~mm}^{3}$ was selected for the unit cell determination.

2.4.6. Syntheses of $M\left[\operatorname{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

Inside a dry box, $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right](0.09959 \mathrm{~g}, 0.3713 \mathrm{mmol})$ and $\mathrm{K}\left[\mathrm{ReO}_{4}\right](0.1343 \mathrm{~g}$, 0.4641 mmol) were weighed into their respective $1 / 4-\mathrm{in}$. o.d. FEP reactors equipped with a side arm and a Kel-F valve. Anhydrous HF (ca. 1.5 mL) was condensed onto each solid at $196{ }^{\circ} \mathrm{C}$ and the reactions were allowed to proceed at room temperature and resulted in yellow solutions. Upon cooling the solutions from -71 to $-78{ }^{\circ} \mathrm{C}, \mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{HF}$ crystallized in both reactors as was confirmed by Raman spectroscopy. White solid mixtures of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{M}\left[\mathrm{ReO}_{4}\right], \mathrm{M}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right], \mathrm{M}\left[\operatorname{ReO}_{2} \mathrm{~F}_{4}\right],\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were isolated in their corresponding reactors by removal of aHF under dynamic vacuum at -
$78{ }^{\circ} \mathrm{C}$ and room temperature as confirmed by Raman spectroscopy. The product mixtures were subsequently re-dissolved in aHF at room temperature and the resultant yellow solutions were used for crystal growth. The Raman spectra were recorded on the crystalline material isolated in admixture with the precipitated white solid(s). A Raman spectrum, where the bands corresponded to a mixture of $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were of highest intensity was used for vibrational analysis.

2.4.7. Crystal Growth of $\mathbf{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right), \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathbf{F}_{3}\right)_{2}\right]$

$\left[\mathbf{N H}_{4}\right]\left[\mathrm{ReO}_{3} \mathbf{F}_{2}\right]$ and $\left[\mathbf{N H}_{4}\right]\left[\boldsymbol{\mu}-\mathbf{F}\left(\mathbf{R e O}_{\mathbf{2}} \mathbf{F}_{3}\right)_{2}\right]$. Crystals of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ were grown from a pale yellow solution obtained by dissolution of a mixture containing $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right],\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and/or $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$, and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ in aHF (see Syntheses of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\left.\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right)$. In the process, the crystals of one of the reaction by-products, $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$, also grew. Colorless plates of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ grew over a period of 72 h . A crystal of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ having the dimensions $0.16 \times 0.19 \times 0.37$ mm^{3} and $0.12 \times 0.31 \times 0.28 \mathrm{~mm}^{3}$ were selected for a low-temperature X-ray structure determination and a unit cell determination, respectively.
$\mathbf{K}\left[\mathrm{ReO}_{\mathbf{3}} \mathbf{F}_{\mathbf{2}}\right]$ and $\mathbf{K}\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}\right]\left[\mathrm{ReO}_{3} \mathbf{F}_{3}\right]$. Crystals of $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were grown from a pale yellow solution obtained by dissolution of a reaction mixture containing $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \quad \mathrm{K}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and/or $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right], \quad \mathrm{K}\left[\mathrm{ReO}_{4}\right]$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ (see Syntheses of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$).

Colorless crystalline blocks of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ grew over a period of 72 h . Crystals of $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ having the dimensions $0.10 \times 0.11 \times 0.11 \mathrm{~mm}^{3}$ and $0.18 \times 0.25 \times 0.32 \mathrm{~mm}^{3}$, respectively, were selected for a low-temperature X-ray structure determination.

2.4.8. Synthesis of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ and Crystal Growth of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$

Inside a dry box, $\mathrm{ReO}_{3} \mathrm{~F}(0.0401 \mathrm{~g} 0.1580 \mathrm{mmol})$ and $\mathrm{ReO}_{2} \mathrm{~F}_{3}(0.1304 \mathrm{~g}(0.4739$ mmol) were weighed into $\mathrm{a}^{1 / 4}$-in. o.d. FEP T-shaped reactor equipped with a side arm and a Kel-F valve. The solid mixture was removed from the dry box and maintained at $-78{ }^{\circ} \mathrm{C}$ until $\mathrm{SO}_{2} \mathrm{ClF}$ was condensed onto the solids at $-78{ }^{\circ} \mathrm{C}$. The solid mixture slowly dissolved upon warming the reactor to room temperature forming a colorless solution. The product was isolated as colorless needle-shaped crystals by static distillation of the solvent into the reactor side arm, which had been pre-cooled to $-78{ }^{\circ} \mathrm{C}$ under ca. 1 atm of dry N_{2} followed by removal of the solvent under dynamic vacuum. The reactor was consequently backfilled with ca. 1 atm of dry N_{2} and a Raman spectrum was recorded on the crystalline compound. The dry crystalline product was stored at $-78{ }^{\circ} \mathrm{C}$ until the crystals could be mounted. A crystal of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ having the dimensions $0.024 \times 0.036 \times 0.121 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination. The ${ }^{18} \mathrm{O}$-enriched sample, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{18} \mathrm{O}\left(\operatorname{Re}^{18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, was synthesized from enriched $\mathrm{Re}^{18} \mathrm{O}_{3} \mathrm{~F}(0.0485 \mathrm{~g}, 0.1936 \mathrm{mmol})$ and $\mathrm{Re}^{18} \mathrm{O}_{2} \mathrm{~F}_{3}(0.1598 \mathrm{~g}$, 0.5807 mmol).

Crystals of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ were grown from a $\mathrm{SO}_{2} \mathrm{ClF}$ solution of the product formed in the reaction of $\mathrm{ReO}_{3} \mathrm{~F} 0.0401 \mathrm{~g}(0.1580 \mathrm{mmol})$ with $\mathrm{ReO}_{2} \mathrm{~F}_{3} 0.1304 \mathrm{~g}(0.4739 \mathrm{mmol})$. Colorless, needle-shaped crystals of $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ having the dimensions $0.024 \times 0.036 \times 0.121 \mathrm{~mm}^{3}$ were selected for a low-temperature X-ray structure determination.

2.5. Syntheses of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5},\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]$ $\left[\mathbf{P n F}_{6}\right](\mathbf{P n}=\mathbf{A s}, \mathbf{S b})$

2.5.1. Synthesis of $\boldsymbol{\mu}-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$

In the dry box, $0.0916 \mathrm{~g}(0.3616 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ was weighed into a $1 / 4$-in. o.d. FEP T-shaped reactor equipped with a Kel-F valve. An excess of AsF_{5} (860 torr, 0.9598 mmol) was condensed onto $\mathrm{ReO}_{3} \mathrm{~F}$ at $-196^{\circ} \mathrm{C}$. An insoluble, dense white solid started to form upon warming to $-50{ }^{\circ} \mathrm{C}$, but the reaction was completed after reacting $\mathrm{ReO}_{3} \mathrm{~F}$ with AsF_{5} at $-20{ }^{\circ} \mathrm{C}$ until no $\mathrm{ReO}_{3} \mathrm{~F}$ remained. Excess AsF_{5} was removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$. The white solid was found to be unstable toward dissociation into the starting materials at $0^{\circ} \mathrm{C}$, however, the reaction is reversible at $-78^{\circ} \mathrm{C}$. Complete removal of AsF_{5} under dynamic vacuum at room temperature led to the formation of $\mathrm{ReO}_{3} \mathrm{~F}$, which was confirmed by low-temperature Raman spectroscopy. The white solid was identified as $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$. This compound is insoluble in aHF up to $-25{ }^{\circ} \mathrm{C}$, at which temperature solvolysis takes place, yielding $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{AsF}_{6}\right]$. The μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ salt is also insoluble in $\mathrm{SO}_{2} \mathrm{CIF}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2.5.2. Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$

In the dry box, $0.2454 \mathrm{~g}(0.9692 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ was weighed into a $1 / 4$-in. o.d. FEP reactor equipped with a Kel-F valve. Antimony pentafluoride, SbF_{5}, (0.8386 g, 3.399 mmol) was condensed onto $\mathrm{ReO}_{3} \mathrm{~F}$ at $-196^{\circ} \mathrm{C}$. Subsequently ca. 0.8 mL of $\mathrm{SO}_{2} \mathrm{ClF}$ (see Figure 2.4) was condensed onto a mixture of SbF_{5} and $\mathrm{ReO}_{3} \mathrm{~F}$ at $-78^{\circ} \mathrm{C}$. The reactor was allowed to warm to room temperature, at which temperature the solid became white over period of 1 h . The solvent and excess SbF_{5} were removed under dynamic vacuum at room temperature leaving a dry friable solid behind. The Raman spectrum of the solid (0.7596 $\mathrm{g}, 0.8408 \mathrm{mmol})$ was attributed to $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$. The $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salt is insoluble in $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solid slowly decomposes to $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{5}\right]$ at temperature above $40^{\circ} \mathrm{C}$.

2.5.3 Syntheses and Crystal Growth of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$

The $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salts were prepared in their corresponding $1 / 4-$ in. o.d. FEP T-shaped reactors from $0.0572 \mathrm{~g}(0.2259 \mathrm{mmol})$ and 0.0907 $\mathrm{g}(0.3582 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ as described in sections 2.6.1 and 2.6.2, respectively. Acetonitrile (ca. 0.5 mL) was distilled onto both solids at $-196^{\circ} \mathrm{C}$. The contents of both reactors were subsequently warmed to room temperature, at which temperature both solids dissolved forming viscous yellow solutions. The Raman spectra recorded on the products precipitated at $-78{ }^{\circ} \mathrm{C}$ were assigned to $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$. Both compounds were isolated as white solids by removal of $\mathrm{CH}_{3} \mathrm{CN}$ under dynamic

Ph.D. Thesis - Maria V. Ivanova

vacuum at room temperature. The Raman spectra of the dry products were identical to those recorded under frozen $\mathrm{CH}_{3} \mathrm{CN}$.

Crystals of both salts were grown from their respective yellow solutions from -10 to $-15^{\circ} \mathrm{C}$ in low-temperature baths over a 4 to 5 h period under ca. 1 atm of dry nitrogen. The crystals of both compounds were isolated by decanting the solvent at $-15^{\circ} \mathrm{C}$ under dry nitrogen into the side arms of the FEP vessels, which were immersed in liquid nitrogen, followed by drying of the crystalline products under dynamic vacuum at $-15^{\circ} \mathrm{C}$ before the side arms were heat-sealed under dynamic vacuum at $-196^{\circ} \mathrm{C}$. The portion of the reactor containing the dry crystalline products were backfilled with dry N_{2} and stored at $-78{ }^{\circ} \mathrm{C}$ until the crystals could be mounted. The examination of the crystalline products under microscope revealed that the crystals were covered in residual frozen solvent that could not be pumped off at $-15{ }^{\circ} \mathrm{C}$. This resulted in failed attempts to mount isolated single crystals. An attempt to remove the solvent at temperatures above $-15^{\circ} \mathrm{C}$ resulted in formation of white solid.

An attempt to dissolve the mixture of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ and $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ salts in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in formation of a colorless suspension under a yellow solution. The reaction content was left at $-78^{\circ} \mathrm{C}$ for ca. 3 weeks, however, no crystals grew over this period of time.

2.5.4. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with AsF_{5} in aHF

Inside a dry box, $0.1031 \mathrm{~g}(0.4072 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ was weighed into a $1 / 4$-in. o.d. FEP T-shaped reactor equipped with a Kel-F valve. Anhydrous HF (ca. 0.3 mL) was condensed onto the solid at $-196^{\circ} \mathrm{C}$. Rhenium trioxide fluoride readily dissolved at room temperature giving rise to a yellow solution. The solution was cooled to $-196^{\circ} \mathrm{C}$ and one equivalent of AsF_{5} (400 torr, 0.414 mmol) was condensed into the reactor. An insoluble, dense white solid began to form at $-78{ }^{\circ} \mathrm{C}$. The low-temperature Raman spectrum of the solid revealed that the only product of the reaction at $-78{ }^{\circ} \mathrm{C}$ was $\mathrm{ReO}_{2} \mathrm{~F}_{3} .{ }^{19}$ Upon warming the reaction mixture to room temperature, excess AsF_{5} reacted with $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ forming the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{AsF}_{6}\right]^{22}$ salt.

2.5.5. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ by the $\mathbf{1 : 1}$ Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in aHF

Rhenium trioxide fluoride ($0.0547 \mathrm{~g}, 0.2162 \mathrm{mmol}$) was transferred inside a N_{2} filled dry box onto a frozen HF solution of $\mathrm{SbF}_{5}(0.045 \mathrm{~g}, 0.2069 \mathrm{mmol})$ contained in a $1 / 4$-in. o.d. FEP T-shaped reactor fitted with a Kel-F valve. The SbF_{5} solution had been prepared by distilling ca. 0.5 mL of HF onto $\mathrm{SbF}_{3}(0.0367 \mathrm{~g}, 0.2069 \mathrm{mmol})$ followed by the addition of 1000 torr of F_{2} every $1 / 2 \mathrm{~h}$ for $11 / 2 \mathrm{~h}$. The reactor was quickly removed from the dry box and allowed to warm up to $-78{ }^{\circ} \mathrm{C}$, at which temperature a white solid formed. The solid was subsequently warmed to room temperature, at which temperature
the reaction was complete. The low-temperature Raman spectrum of the solid corresponded to $\mathrm{ReO}_{2} \mathrm{~F}_{3} .{ }^{19}$

2.5.6. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$ by the $\mathbf{1 : 2}$ Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathbf{F}$ with SbF_{5} in $\mathbf{a H F}$

Rhenium trioxide fluoride ($0.14013 \mathrm{~g}, 0.7840 \mathrm{mmol}$) was transferred inside a N_{2} filled dry box onto a frozen HF solution of $\mathrm{SbF}_{5}(0.09926 \mathrm{~g}, 0.3920 \mathrm{mmol})$ contained in a $1 / 4$-in. o.d. FEP T-shaped reactor fitted with a Kel-F valve. The SbF_{5} solution had been prepared by distilling ca. 0.5 mL of aHF onto $\mathrm{SbF}_{3}(0.09926 \mathrm{~g}, 0.3920 \mathrm{mmol})$ followed by the addition of 1000 torr of F_{2} every $1 / 2 \mathrm{~h}$ for 3 h . The reactor was quickly removed from the dry box and allowed to warm to $-78{ }^{\circ} \mathrm{C}$. The reaction commenced at $-78^{\circ} \mathrm{C}$ with the formation of an insoluble white product, which was isolated at $-78^{\circ} \mathrm{C}$ under dynamic vacuum. The Raman spectrum recorded on the product corresponded to $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$ and a rhenium oxide fluoride, which was tentatively assigned to $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2} \cdot \mathrm{HF}\right]\left[\mathrm{SbF}_{6}\right]$. The product mixture was subsequently warmed to $-60^{\circ} \mathrm{C}$ and kept at this temperature for ca. 30 min . The Raman spectrum recorded on the solid corresponded to $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{22}$ Finally, the contents of the reactor were warmed to room temperature and droplets of liquid (presumably aHF) appeared on the reactor's wall. The Raman spectrum of the room temperature solid also corresponded to $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{22}$

2.5.7. Attempted Synthesis of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ by the 2:1 Molar Ratio Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in aHF

Rhenium trioxide fluoride ($0.0999 \mathrm{~g}, 0.3946 \mathrm{mmol}$) was transferred inside a N_{2} filled dry box onto a frozen aHF solution of $\mathrm{SbF}_{5}(0.043 \mathrm{~g}, 0.1973 \mathrm{mmol})$ contained in a $1 / 4-$ in. o.d. FEP T-shaped reactor fitted with a Kel-F valve. The SbF_{5} solution had been prepared by distilling ca. 0.5 mL of HF onto $\mathrm{SbF}_{3}(0.03527 \mathrm{~g}, 0.1973 \mathrm{mmol})$, followed by the addition of 1000 torr of F_{2} every $1 / 2 \mathrm{~h}$ for $11 / 2 \mathrm{~h}$. The resulting SbF_{5} was in slight excess ($8 \mathrm{~mol} \%$) relative to $\mathrm{ReO}_{3} \mathrm{~F}$. The reactor was quickly removed from the dry box and allowed to warm successively to $-78,-50$, and $-40^{\circ} \mathrm{C}$, until the reaction was complete. The white solid mixture that had formed dissolved at room temperature forming a pale yellow solution. The Raman spectrum of the products that precipitated from the pale yellow solution at $-78{ }^{\circ} \mathrm{C}$ was assigned to $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$, $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, and an unidentified rhenium oxide fluoride.

Crystals of $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$ were grown from the pale yellow solution (see section 2.6.4.) in a $1 / 4$-in. o.d. FEP T-shaped reactor that was placed at a 45° angle with respect to the horizontal plane in a Dewar containing a dry ice/acetone bath. The previous solution, which was saturated at ca. $-15^{\circ} \mathrm{C}$, was slowly cooled from -15 to $-25^{\circ} \mathrm{C}$ over the course of 6 h . When crystal growth was deemed complete, the reactor was quickly transferred into a crystal growing apparatus ${ }^{185}$ that was previously cooled to $-25{ }^{\circ} \mathrm{C}$. Colorless crystals were isolated by decanting the solvent at $-35{ }^{\circ} \mathrm{C}$ under dry nitrogen into the side arm of the FEP vessel, which was immersed in liquid nitrogen. This was followed by drying of the crystalline product under dynamic vacuum at $-35{ }^{\circ} \mathrm{C}$
before the side arm was heat-sealed under dynamic vacuum at $-196^{\circ} \mathrm{C}$. The portion of the reactor containing the dry crystalline product was backfilled with dry N_{2} and stored at -78 ${ }^{\circ} \mathrm{C}$ until the crystals were mounted. A crystal of $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$ having the dimensions $0.168 \times 0.189 \times 0.340 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination. Attempted crystallization of an unidentified rhenium oxide fluoride at temperatures between $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ was unsuccessful.

2.5.8. Attempted Synthesis of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with BF_{3} in aHF

Inside a N_{2} filled dry box, $0.0711 \mathrm{~g}(0.2808 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ was weighed into a $1 / 4-$ in. o.d. FEP T-shaped reactor equipped with a Kel-F valve. Anhydrous HF (ca. 0.3 mL) was condensed onto the solid at $-196{ }^{\circ} \mathrm{C}$. Rhenium trioxide fluoride, $\mathrm{ReO}_{3} \mathrm{~F}$, readily dissolved at room temperature giving rise to a yellow solution. The solution was cooled to $-196{ }^{\circ} \mathrm{C}$ and a sixfold excess of BF_{3} was condensed onto the $\mathrm{ReO}_{3} \mathrm{~F}$ at $-196{ }^{\circ} \mathrm{C}$. An insoluble, dense, white solid formed upon warming to $-78{ }^{\circ} \mathrm{C}$. Excess BF_{3} was then removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$. The low-temperature Raman spectrum of the solid corresponded to $\mathrm{ReO}_{2} \mathrm{~F}_{3} .{ }^{19}$ When all BF_{3} was removed under dynamic vacuum at room temperature, some unreacted $\mathrm{ReO}_{3} \mathrm{~F}$ still remained in the reactor.

2.5.9. Attempted Syntheses of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ by the Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with BF_{3}

Inside a N_{2} filled dry box, $0.0465(0.1836 \mathrm{mmol})$ of $\mathrm{ReO}_{3} \mathrm{~F}$ was weighed into a ${ }^{1 / 4-}$ in. o.d. FEP T-shaped reactor equipped with a Kel-F valve. Boron trifluoride, BF_{3}, (1052

Ph.D. Thesis - Maria V. Ivanova
torr) was condensed directly onto $\mathrm{ReO}_{3} \mathrm{~F}$ at $-196{ }^{\circ} \mathrm{C}$ in the absence of a solvent. The contents of the reactor were warmed to $-78{ }^{\circ} \mathrm{C}$ and maintained at this temperature for ca . 24 h . When the temperature of the reaction mixture was gradually increased to $80{ }^{\circ} \mathrm{C}$, $\mathrm{ReO}_{3} \mathrm{~F}$ remained inert towards BF_{3}. The Raman spectrum of the solid corresponded to unreacted $\mathrm{ReO}_{3} \mathrm{~F}$.

2.6. Synthesis and Characterization of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}{ }^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

2.6.1. Synthesis and Crystal Growth of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}{ }^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

The salt, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, was synthesized by reaction of XeF_{2} with $\mathrm{ReO}_{3} \mathrm{~F}$ (Chapter 6, eqs 6.1-6.5). A range of reactant ratios was explored to determine if other xenon(II) oxide cations could be formed; however, only [XeOXeOXe] $[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ was isolated. The following molar ratios of reactants were investigated: $\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=2.11: 1.00,[0.1208 \mathrm{~g}, 0.7136 \mathrm{mmol}: 0.0857 \mathrm{~g}, 0.3385 \mathrm{mmol}] ; 1.19: 1.00$, [$0.0570 \mathrm{~g}, 0.3366 \mathrm{mmol}: 0.0694 \mathrm{~g}, 0.2827 \mathrm{mmol}] ; 1.18: 1.00,[0.0893 \mathrm{~g}, 0.5275 \mathrm{mmol}:$ $0.1132 \mathrm{~g}, 0.4471 \mathrm{mmol}], 1.14: 1.00[0.0638 \mathrm{~g}, 0.3769 \mathrm{mmol}: 0.0839 \mathrm{~g}, 0.3315 \mathrm{mmol}]$, $1.02: 1.00[0.0546 \mathrm{~g}, 0.3222 \mathrm{mmol}: 0.0805 \mathrm{~g}, 0.3179 \mathrm{mmol}]$, and $0.56: 1.00[0.0361 \mathrm{~g}$, $0.2131 \mathrm{mmol}: 0.0964 \mathrm{~g}, 0.3806 \mathrm{mmol}] ; \mathrm{XeF}_{2}: \mathrm{Re}^{18} \mathrm{O}_{3} \mathrm{~F}=1.00: 0.66$, $[0.1706 \mathrm{~g}, 1.007$ mmol: $0.1701 \mathrm{~g}, 0.6717 \mathrm{mmol}]$.

The general synthetic procedure follows: Anhydrous HF (ca. 0.3 mL) was condensed into a $1 / 4-$ in. o.d. FEP reactor at $-196^{\circ} \mathrm{C}$. Inside a dry box, aHF was frozen in a metal Dewar filled with 4.5 mm copper plated steel spheres (air rifle shot) that had been cooled to ca. $-140{ }^{\circ} \mathrm{C}$ in the glass cryowell of the dry box with liquid N_{2}. Rhenium

Ph.D. Thesis - Maria V. Ivanova

trioxide fluoride, $\mathrm{ReO}_{3} \mathrm{~F}$, was weighed into the reactor, and its frozen contents were briefly warmed to room temperature whereupon $\mathrm{ReO}_{3} \mathrm{~F}$ dissolved to form a pale yellow solution. The solution was immediately refrozen at $-140^{\circ} \mathrm{C}$, and XeF_{2} was weighed into the reactor. The reactor and its frozen contents were rapidly removed from the dry box and warmed to $-30^{\circ} \mathrm{C}$ at which temperature the reactants dissolved over a period of ca. 5-10 min forming a pale-yellow solution. As the reaction proceeded to completion (2-4 h), the color of the solution changed to bright yellow-orange. Upon completion of the reaction, a red-orange, microcrystalline powder irreversibly precipitated, and the supernatant decolorized when the yellow-orange solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Lowtemperature Raman spectra were obtained for the dry red-orange solids that formed when XeF_{2} and $\mathrm{ReO}_{3} \mathrm{~F}$ (2.11:1.00, 1.18:1.00) had fully reacted. The solids were isolated by removal of HF under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ and were assigned to [XeOXeOXe][μ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$.

Low-temperature Raman spectra were also recorded for the red-orange solids that formed when XeF_{2} and $\mathrm{ReO}_{3} \mathrm{~F}(1.19: 1.00,1.14: 1.00)$ were only partially reacted at -30 ${ }^{\circ} \mathrm{C}$. The red-orange precipitates were obtained when the reaction mixtures were cooled to $-78{ }^{\circ} \mathrm{C}$ (see above) and frozen under their yellow-orange supernatants at $-140{ }^{\circ} \mathrm{C}$. The frozen supernatants contained unreacted XeF_{2} and $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2}$, which were not observed when the laser was focused on the red-orange precipitates. The Raman spectra of the dry products and those recorded under the frozen HF solutions were identical and were assigned to $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. The solution samples were subsequently slowly warmed to room temperature for ca. 5 min , whereupon they decomposed. Their

Ph.D. Thesis - Maria V. Ivanova
solute mixtures were isolated by removal of HF and residual XeF_{2} under dynamic vacuum at room temperature. The Raman spectra of the resulting mixtures corresponded to $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and unreacted $\mathrm{ReO}_{3} \mathrm{~F}$.

The decomposition of solid $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ was also investigated. The product was obtained from the reaction of a $1: 1.33$ molar ratio of $\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}$ [$0.0689 \mathrm{~g}, 0.4068 \mathrm{mmol}: 0.1373 \mathrm{~g}, 0.5423 \mathrm{mmol}]$ in aHF and was isolated by removal of HF under dynamic vacuum at $-78^{\circ} \mathrm{C}$. Warming the solid to room temperature for 1 h resulted in a solid, white mixture. The Raman spectrum of the mixture corresponded to $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and XeF_{2}. The ${ }^{18} \mathrm{O}$-enriched salt, $\left[\mathrm{Xe}^{18} \mathrm{OXe}{ }^{18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, was synthesized from enriched $\mathrm{Re}^{18} \mathrm{O}_{3} \mathrm{~F}$ using the aforementioned procedure $\left(\mathrm{Re}^{18} \mathrm{O}_{3} \mathrm{~F}, 0.1627\right.$ $\left.\mathrm{g}, 0.3358 \mathrm{mmol} ; \mathrm{XeF}_{2}, 0.1706 \mathrm{~g}, 1.007 \mathrm{mmol}\right)$.

Crystals of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ were grown in $1 / 4$-in. i.d. FEP reaction vessels equipped with side arms to give T-shaped reaction vessels that were fitted with Kel-F valves. Crystals grew as red-orange plates upon cooling bright yellow-orange HF solutions of $\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}$ ($0.56: 1.00$ and $1.02: 1.00$) from -30 to $-35{ }^{\circ} \mathrm{C}$ in a lowtemperature bath over a 5 h period under ca. 1 atm of dry nitrogen. Upon completion of crystal growth, the supernatants were decanted into the side arms of the reactors, which had been cooled to $-196{ }^{\circ} \mathrm{C}$. The crystalline products were dried under dynamic vacuum at $-50{ }^{\circ} \mathrm{C}$ before the side arms containing the frozen supernatants were heat-sealed off under dynamic vacuum. The crystalline products were stored at $-78^{\circ} \mathrm{C}$ under 1 atm of dry nitrogen until suitable crystals could be mounted on the X-ray diffractometer. Redorange colored plates having the dimensions $0.045 \times 0.058 \times 0.097 \mathrm{~mm}^{3}\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=\right.$
$0.56: 1.00)$ and $0.052 \times 0.176 \times 0.320 \mathrm{~mm}^{3}\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=1.02: 1.00\right)$ were selected for structure determinations.

2.7. Reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with Noble-Gas Fluorides, KrF_{2} and XeF_{6}

2.7.1. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF

Manganese trioxide fluoride was prepared as described in Section 2.2.4, using $0.1078 \mathrm{~g}(0.6821 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$. The deep green HF solution of $\mathrm{MnO}_{3} \mathrm{~F}$ and $\mathrm{Mn}_{2} \mathrm{O}_{7}$ was distilled into a separate $1 / 4$-in. o.d. FEP T-shaped reactor equipped with a Kel-F valve at $-196{ }^{\circ} \mathrm{C}$. The reactor was subsequently warmed to $-78{ }^{\circ} \mathrm{C}$ and was stored at this temperature under 1 atm of dry nitrogen until KrF_{2} could be added. The reactor was evacuated at $-196^{\circ} \mathrm{C}$ and excess KrF_{2} was condensed into the reactor at $-196^{\circ} \mathrm{C}$ in small aliquots. After each addition of KrF_{2}, the reactor and contents were warmed to room temperature, resulting in rapid evolution of condensable (Kr) and non-condensable $\left(\mathrm{O}_{2}\right)$ gases, which were periodically released into a vacuum manifold after temporarily quenching the reaction at $-196{ }^{\circ} \mathrm{C}$. The solution turned pale pink over a period of ca. 3 h and a small amount of pink-red oil also formed. The reaction was quenched by cooling the reactor to $-196{ }^{\circ} \mathrm{C}$. The Raman spectrum, recorded on the oil under the frozen solution, was assigned to KrF_{2} (464 and $131 \mathrm{~cm}^{-1}$) and an unknown manganese fluoride (weak bands assignable to Mn-F stretches occurred at 732,727 sh, 596 sh, 584 sh, 578 cm^{-1}, see Figure E1, Appendix E). The reactor was subsequently connected to the metal vacuum line and the reaction was allowed to proceed until the solution and the oil colors turned red-violet and gas evolution ceased. The Raman spectrum was recorded on the
isolated product after removal of HF under dynamic vacuum at room temperature (see Figure E2, Appendix E) and was similar to that of $\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right] .{ }^{139}$

A fresh aliquot of aHF (ca. 0.3 mL) was distilled onto the solid at $-196^{\circ} \mathrm{C}$ and the contents of the reactor were allowed to warm to room temperature. While the solution remained red-violet in color, a small amount of grey solid immediately precipitated. The grey solid was separated by decanting the supernatant and the solid into the side arm and then decanting the supernatant back into the main tube of the reactor. Crystallization was attempted by allowing the supernatant to stand at $-78{ }^{\circ} \mathrm{C}$; however, no crystalline material formed. The grey solid was then transferred back into the red-violet solution. This unexpectedly resulted in the dissolution of the grey solid and the color of the solution changed from red-violet to very pale green. The resulting solution was allowed to stand at $-78{ }^{\circ} \mathrm{C}$ for ca. 24 h , but no crystals grew at this temperature. Needle-shaped red crystals (ca. <1 \%); however, grew under ca. 1 atm of N_{2} over a period of 24 h by static distillation of the solvent into the precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ side arm of the reactor. A very small amount of friable pale pink/grey solid was also observed. Two red crystals having the dimensions $0.08 \times 0.13 \times 0.28 \mathrm{~mm}^{3}$ and $0.06 \times 0.11 \times 0.16 \mathrm{~mm}^{3}$ were selected for structure determinations. Both crystal structures suffered from twinning issues, therefore, only preliminary solutions revealing the presence of MnF_{5} could be obtained. Subsequent attempts to reproduce the above synthesis of MnF_{5} failed. Instead, and based on their characteristic colors, the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF only resulted in the formation of MnF_{3} and MnF_{4}.

2.7.2. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF

A mixture of $\mathrm{MnO}_{3} \mathrm{~F}, \mathrm{Mn}_{2} \mathrm{O}_{7}$, and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ was prepared as described in Section 2.2.4., using $0.1026 \mathrm{~g}(0.6492 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$. Excess KrF_{2} was condensed into the reactor in small portions at $-196^{\circ} \mathrm{C}$. After each addition of KrF_{2}, the contents of the reactor were warmed to room temperature, resulting in the rapid evolution of condensable (Kr) and non-condensable $\left(\mathrm{O}_{2}\right)$ gases, which were periodically released into the vacuum line manifold after temporary cooling of the solution to $-196{ }^{\circ} \mathrm{C}$ and followed by pumping at $-196{ }^{\circ} \mathrm{C}$. Over ca. 4 h , the solution became orange and a dark red oil separated and settled to the bottom of the reaction vessel. An attempt to record a Raman spectrum on the red oil under the frozen solution failed due to the very weak scattering ability of the product. The reactor was connected to a vacuum line and the orange product was isolated by removal of HF under dynamic vacuum at $-78^{\circ} \mathrm{C}$ and subsequent drying at room temperature. The broad Raman spectrum of the dry material was assigned to a new manganese fluoride or a mixture of manganese fluorides (see Figure E3, Appendix E).

The product was transferred into a $1 / 4$-in. i.d. FEP T-shaped reaction vessel fitted with a Kel-F valve. Anhydrous HF (ca. 0.2 mL) was condensed onto the solid resulting in the deposition of a small amount of grey solid under a clear orange solution. Crystals of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ grew as colorless to pale pink cubes upon cooling of the orange HF solution from -25 to $-35{ }^{\circ} \mathrm{C}$ in a crystal-growing apparatus over a 4 h period under ca. 1 atm of dry nitrogen. Upon completion of crystal growth, the supernatant was decanted into the side arm of the reactor, which had been cooled to $-196{ }^{\circ} \mathrm{C}$. The crystalline product was

Ph.D. Thesis - Maria V. Ivanova

dried under dynamic vacuum at $-40{ }^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. The crystalline product was stored at $-78{ }^{\circ} \mathrm{C}$ under 1 atm of dry nitrogen until suitable crystals could be mounted on the X-ray diffractometer. A crystal having the dimension $0.11 \times 0.11 \times 0.12 \mathrm{~mm}^{3}$ was selected for structure determination.

In a subsequent attempt, $0.0353 \mathrm{~g}(0.2234 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ was dissolved in aHF (ca. 0.3 mL) yielding $\mathrm{MnO}_{3} \mathrm{~F}, \mathrm{Mn}_{2} \mathrm{O}_{7}$, and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$. The reactor was subsequently pressurized with 1080 torr of F_{2} gas at $-78^{\circ} \mathrm{C}$. The reactor and contents were maintained under F_{2} at $-78{ }^{\circ} \mathrm{C}$ for ca. 24 h . Krypton difluoride ($0.0754 \mathrm{~g}, 0.6191 \mathrm{mmol}$) was condensed into the reactor in small aliquots at $-196{ }^{\circ} \mathrm{C}$. The reaction was carried out as described above. The Raman spectrum (see Figure E4, Appendix E) of the orange product $(0.0392 \mathrm{~g})$ that was isolated at room temperature showed several broad bands that were in common with those described above (see Figure E3, Appendix E) and three sharp bands corresponding to $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]\left(601,516,309 \mathrm{~cm}^{-1}\right)$. An attempt to crystallize the product mixture from HF while maintaining the solution at $-78^{\circ} \mathrm{C}$ over a 48 h period and by very slow removal of HF at $-78^{\circ} \mathrm{C}$ under dynamic vacuum failed.

All other attempts to synthesize $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ in HF resulted in the formation of yellow $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 2 \mathrm{HF}$ (identified by determination of the crystallographic unit cell and by Raman spectroscopy) and a grey, insoluble material that is presumed to be MnF_{3}.

2.7.3. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} in aHF: Syntheses of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Crystal Growths

On a metal vacuum line, $0.3275 \mathrm{~g}(1.335 \mathrm{mmol})$ of XeF_{6} was sublimed into a $1 / 4$-in. o.d. FEP weighing vessel. The weighing vessel was connected through a $1 / 4$-in. o.d. x $1 / 8$ in. i.d. FEP h-shaped connector to a reaction vessel containing a $\mathrm{MnO}_{3} \mathrm{~F} / \mathrm{HF}$ solution prepared from $0.0642 \mathrm{~g}(0.4062 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ (see 2.2. Synthesis of $\mathrm{MnO}_{3} \mathrm{~F}$) and maintained at $-78{ }^{\circ} \mathrm{C}$. Xenon hexafluoride was sublimed from the weighing vessel into the reaction vessel pre-cooled to $-196^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed from -78 to $15{ }^{\circ} \mathrm{C}$ over a period of 5 days; however, $\mathrm{MnO}_{3} \mathrm{~F}$ and XeF_{6} did not react at the above temperatures as indicated by Raman spectroscopy. The reactor was subsequently warmed to room temperature, at which temperature a slow reaction took place accompanied by very slow gas evolution. The reaction was quenched after ca. 1 h by cooling the reaction mixture to $-78{ }^{\circ} \mathrm{C}$. The Raman spectrum recorded on the solids precipitated under frozen aHF corresponded to $\mathrm{MnO}_{3} \mathrm{~F}, \mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}, \mathrm{XeOF}_{4}{ }^{188}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}{ }^{188,189}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (Figure E5, Appendix E). The reaction mixture was subsequently warmed to room temperature and was kept at this temperature until the solution turned from dark green to orange, indicating that the reaction had gone to completion. The yellow product was isolated by removal of aHF under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$. The color of the product changed from yellow to orange upon warming the sample above $-50^{\circ} \mathrm{C}$; the color change was reversible when cooled to low temperature. The Raman spectrum corresponded to a mixture of $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}, \mathrm{XeOF}_{4}{ }^{188}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}{ }^{188,189}$ (white solids) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (orange solid).

Ph.D. Thesis - Maria V. Ivanova

Crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ were grown from a bright orange solution obtained by dissolution of XeF_{6} and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ that had been synthesized in Section 2.7.4. in ca 0.4 mL of aHF at $-10^{\circ} \mathrm{C}$ under 1 atm of N_{2}. Cooling the solution to $-15{ }^{\circ} \mathrm{C}$ inside a crystal growing apparatus (Figure 2.8$)^{185}$ resulted in the formation of bright orange needles over a period of 3-4 h. The solution was subsequently cooled to $-60^{\circ} \mathrm{C}$ which resulted in a second growth of colorless needle-shaped crystals. The supernatant was decanted into the precooled $\left(-196^{\circ} \mathrm{C}\right)$ side arm of the reaction vessel upon completion of crystal growth. The crystalline products were dried under dynamic vacuum at $-65{ }^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. The low-temperature Raman spectrum was recorded on the crystalline material confirming the formation of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right], \mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$, and $\mathrm{XeOF}_{4}{ }^{188}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}{ }^{188,189}$ (Figure 7.1). A crystal of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (orange needle) having the dimensions $0.069 \times 0.117 \times 0.502 \mathrm{~mm}^{3}$ and a crystal of $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$ (colorless needle) was selected for a low-temperature X-ray structure and unit cell determinations, respectively.

For the synthesis of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right], 0.2528 \mathrm{~g}(1.0307 \mathrm{mmol}), \mathrm{XeF}_{6}$ was allowed to react with a $\mathrm{MnO}_{3} \mathrm{~F} /$ aHF solution prepared from $0.0543 \mathrm{~g}(0.3436 \mathrm{mmol})$ of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ (see Section 2.2) yielding $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ as described above. The reactor containing $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ was connected to a vacuum line and XeF_{6} was removed under dynamic vacuum at room temperature over a period of ca. 8 h . The Raman spectrum of the final product corresponded to the previously known $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (yellow at $-78{ }^{\circ} \mathrm{C}$ and orange at $\left.>-50{ }^{\circ} \mathrm{C}\right) .{ }^{171}$

Ph.D. Thesis - Maria V. Ivanova

A bright orange solution of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ was prepared by dissolving the solid in ca 0.3 mL of aHF at room temperature under 1 atm of N_{2}. The orange needle-shaped crystals were grown by removal of aHF by static distillation into a precooled ($-78{ }^{\circ} \mathrm{C}$) side arm of the FEP reaction vessel. The side arm containing the supernatant was then cooled to $-196{ }^{\circ} \mathrm{C}$ and subsequently heat-sealed off under dynamic vacuum. The crystalline material was characterized by low-temperature Raman spectroscopy (Figure E6, Appendix E). A crystal of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ having the dimensions $0.058 \times 0.143 \mathrm{x}$ $0.169 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.

2.7.4. Synthesis and Crystal Growth of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot \mathbf{2 H F}$

The salt, $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 2 \mathrm{HF}$, was always obtained as a by-product of the solvolysis reaction of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ in aHF and crystallized by allowing the solution to stand at $-78{ }^{\circ} \mathrm{C}$ for ca 48 h . Upon completion of crystal growth, the supernatant was decanted into the side arm of the reaction vessel, which had been precooled to $-196^{\circ} \mathrm{C}$. The crystalline product was dried under dynamic vacuum at $-65^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum at $-196{ }^{\circ} \mathrm{C}$. The lowtemperature Raman spectrum was recorded on the crystalline solid (Figure E7, Appendix E) A crystal of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 2 \mathrm{HF}$ having the dimensions $0.169 \times 0.171 \times 0.177 \mathrm{~mm}^{3}$ was selected for a low-temperature X-ray structure determination.

Ph.D. Thesis - Maria V. Ivanova

2.8. X-ray Crystallography

2.8.1. Crystal Growth

Unless otherwise noted, crystals for structure determination by single-crystal X-ray diffraction were grown in the low-temperature crystal growing apparatus depicted in Figure 2.8. The following procedure summarizes the general approach used to grow crystals from solutions using the thermal gradient method. The solvent (ca. 0.5 mL) was condensed onto the compound (ca. 0.3 mmol) at $-196^{\circ} \mathrm{C}$ that had been synthesized in situ in one arm of a $1 / 4$-in o.d. FEP T-shaped reactor fitted with a Kel-F valve. The reactor was warmed to just initiate dissolution, and while maintained at that temperature, the reactor was attached to a vacuum line and pressurized to ca. 1 atm with dry nitrogen. The arm containing the solution was inclined at ca. 5° from the horizontal inside the glass dewar of a crystal growing apparatus ${ }^{185}$ which had been previously adjusted to the same temperature. The temperature was then lowered by slowly increasing the flow of cold gaseous nitrogen over a period of time, usually several hours, whereupon crystals began to grow on the walls of the FEP vessel. The reactor was then held for a further period of time to allow for more complete crystallization. Crystals were isolated by decanting the solvent under dry nitrogen into the side arm of the FEP vessel which was immersed in liquid nitrogen, followed by evacuation and vacuum drying of the crystalline product under dynamic vacuum before the side arm containing the supernatant was heat-sealed off the vessel containing the dried

Ph.D. Thesis - Maria V. Ivanova

crystalline product. The crystals were selected at $-104 \pm 2{ }^{\circ} \mathrm{C}$ for low- temperature X-ray structure determination and were mounted in a cold stream $\left(-173{ }^{\circ} \mathrm{C}\right)$ on a goniometer head as described in the next section.

2.8.2. Low-Temperature Crystal Mounting

Because the majority of compounds investigated in this work were thermally unstable and/or moisture sensitive, their crystals were mounted at low temperature using the apparatus depicted in Figures 2.9 and 2.10. The reaction vessels containing the samples were first cut open below the Kel-F valve under a flow of dry argon gas, using an inverted glass funnel, while maintaining the sample at $-78{ }^{\circ} \mathrm{C}$. The sample was then quickly dumped into the aluminum trough of the crystal mounting apparatus under a stream of dry argon, precooled $\left(-104 \pm 2{ }^{\circ} \mathrm{C}\right)$ by the regulated passage of dry nitrogen gas flow through a 5-L dewar filled with liquid N_{2} (Figure 2.9). The temperature inside the trough was measured using a copper-constantan thermocouple positioned in the sample region of the trough. Crystals were then selected using a stereo-zoom microscope and mounted on a glass fibre (0.05 to $0.1-\mathrm{mm}$ o.d.) using perfluorinated polyether oil (Ausimont Inc., Fomblin Z15 or Z25) which served as an adhesive upon freezing at low temperature. The glass fibre had been previously mounted with epoxy cement to a copper pin fitted to a magnetic base and affixed to the end of a magnetic wand (Hampton Research). The magnetic wand could be fastened to an adjustable support stage such that samples could be inspected in the dry nitrogen cold stream under the stereo-zoom microscope once affixed to the glass fibre. The mounted crystal and magnetic pin were

Figure 2.9. Low-temperature crystal mounting apparatus. (A) Nitrogen inlet. (B) Glass sleeve for ambient nitrogen flow. (C) Liquid N_{2} dewar. (D) Adjustable support stage. (E) Silvered dewar (glass). (F) Aluminum trough. (G) Stereozoom microscope. Reproduced with permission from ref 185.
ธ
Figure 2.10. (a) Enlarged view of the crystal mounting apparatus; (A) ambient nitrogen gas flow inlet, (B) glass sleeve for ambient nitrogen gas flow, (C) adjustable support stage, (D) aluminum trough, (E) silvered glass jacketed dewar, (F) magnetic-tipped wand affixed to (G) the magnetic-based copper
 transfer of the copper pin-fibre assembly with adhered crystal from the support stage to the goniometer head. Reproduced with permission from ref 185.

quickly (ca. 5 to 10 s) transferred from the crystal mounting apparatus to the magnetic mount of the goniometer by means of a cryotongs (Hampton Research) which had been precooled in liquid N_{2} prior to use. The crystals were maintained at low temperature on the goniometer head by a cold N_{2} gas flow provided by a Molecular Structure Corporation cryostat system.

2.8.3. Data Collection

2.8.3.1. Bruker SMART APEX II Diffractometer

The crystallographic data acquired during the course of this Thesis were collected using Bruker SMART APEX II diffractometer, which was equipped with Oxford Cryosystems low-temperature cryostream accessory that provided a stream of cold, gaseous N_{2} for low-temperature data collection. The instrument was controlled by a Cryostream Controller 700 (Oxford Cryosystems).

The Bruker SMART APEX II diffractometer was equipped with an APEX II 4K CCD area detector and a triple-axis goniometer, controlled by the APEX2 Graphical Use Interface (GUI) software, ${ }^{190}$ and a sealed tube X-ray source (Mo target) emitting $\mathrm{K} \alpha$ radiation monochromated $(\lambda=0.71073 \AA)$ by a graphite crystal. A Bruker Triumph curved crystal monochromator with a $\operatorname{Mo} \mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation source was also used. Diffraction data were collected at $-173{ }^{\circ} \mathrm{C}$ and consisted of a full ϕ-rotation at a fixed $\chi=54.74^{\circ}$ with 0.36°, followed by a series of short ω scans at various φ settings to fill the gaps for $\left(\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}, \quad\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]\right.$, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}, \mathrm{KF} \cdot 4 \mathrm{HF}, \mathrm{K}\left[\mathrm{MnF}_{6}\right], \mathrm{MnF}_{5},\left(\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\right)_{\infty},\left(\mathrm{M}=[\mathrm{NO}], \mathrm{Cs}, \mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$,
$\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ (Table 2.1) and of ω-scans collected at 0.5^{0} intervals at fixed $\chi=54.74^{\circ}$ for $\left([\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2},(\mu-\mathrm{F})_{4}\{[\mu-\right.$ $\left.\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}\right),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $[\mathrm{K} \cdot 2 \mathrm{HF}]_{2}\left[\mathrm{MnF}_{6}\right]$ (Table 2.1). The crystal-to-detector distance ranged from 4.951 to 4.955 cm , and the data collection was carried out in a 512×512 pixel mode using 2×2 pixel binning. Processing of the raw data was completed using the APEX2 GUI software, ${ }^{190}$ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots. The program SADABS ${ }^{191}$ was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on the intensity ratios of redundant reflections.

2.8.3.2. Solution and Refinement of Structures

The XPREP ${ }^{192}$ program was used to confirm the unit cell dimensions and the crystal lattices. The final refinements were obtained by introducing anisotropic parameters for all the atoms except hydrogen, an extinction parameter, and the recommended weight factor. The maximum electron densities in the final difference Fourier maps were located around the heavy atoms. All calculations were performed using the SHELXTL-plus, ${ }^{192}$ software package for the structure determination, refinement, and molecular graphics. Structure solutions were obtained by direct methods which located the $\mathrm{Re}, \mathrm{Mn}, \mathrm{Xe}, \mathrm{Sb}, \mathrm{K}$, and Cs atoms. Successive difference Fourier syntheses revealed the positions of the carbon, nitrogen, oxygen, and fluorine atoms.

Table 2.1. Summary of Selected X-Ray Data Collection Parameters

Compound	Total Number of Frames	
	ω	ϕ
($\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$	900	771
$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$	900	158
$(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$	1250	3046
KF.4HF	1000	1010
$\mathrm{K}\left[\mathrm{MnF}_{6}\right]$	900	727
MnF_{5}	900	1466
$\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$	418	
$\left([\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\right)_{\infty}$	900	2193
$\left(\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]_{\infty}\right.$	720	2193
$\left(\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\right)_{\infty}$	1124	3197
$\left(\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\right)_{\infty}$	900	727
$\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$	2351	2514
$\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$	900	1466
([XeOXeOXe] $\left.] \mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$	4040	
$\left.(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}\right)$	4188	
$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$	2020	720
$\left[\mathrm{XeF}_{2}\right]_{2}\left[\mathrm{MnF}_{6}\right]$	3636	720
$[\mathrm{K} \cdot 2 \mathrm{HF}]_{2}\left[\mathrm{MnF}_{6}\right]$	2424	

The space group choice was confirmed using Platon from the WinGX software package. ${ }^{193}$

The hydrogen atoms could not be located in the case of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and KF. 4 HF , but their positions were calculated in the case of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})] \cdot \mathrm{CH}_{3} \mathrm{CN}$, $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$. In the case of the $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ structure, the axial oxygen and fluorine atoms are positionally disordered, although not related by symmetry. A similar disorder was observed for the HF molecules. Attempts to resolve the O / F positions into two components were unsuccessful. The possibility of twinning was also explored. The initial solution and refinement of the $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ structure in the tetragonal $P 4 / \mathrm{n}$ space group resulted in a
relatively high $\mathrm{w} R_{2}$ value ($c a .20 \%$) and $F_{\text {obs }}$ being higher than $F_{\text {calcd }}$. Moreover, the $\mathrm{SO}_{2} \mathrm{ClF}$ molecule was found to be positionally disordered (50/50) between two orientations. Because there is one symmetry axis in the $P 4 / \mathrm{n}$ space group, the structure was resolved in the monoclinic $P 2 / n$ space group, "mimicking" the higher symmetry tetragonal $P 4 / \mathrm{n}$ space group as a result of pseudomerohedral twinning (BASF $\sim 41 \%$). With the introduction of the twin matrix (0010-10-100) characteristic of a pseudomerohedral twin, the refinement gave rise to a drastic drop in R_{1} to 0.0273 , indicating the correct law had been applied.

2.9. Raman Spectroscopy

Low-temperature Raman spectra were recorded on a Bruker RFS 100 FT Raman spectrometer employing a quartz beam splitter and a liquid-nitrogen cooled Ge diode detector. The 1064-nm line of a Nd-YAG laser was used for excitation with a laser spot of $<0.1 \mathrm{~mm}$ at the sample and configured such that only the 180°-backscattered radiation was detected. The scanner velocity was 5 kHz and the wavelength range was 5894 to $10394 \mathrm{~cm}^{-1}$ relative to the laser line at $9394 \mathrm{~cm}^{-1}$, resulting in a spectral range of 3501 to $-999 \mathrm{~cm}^{-1}$. Fourier transformations were processed using a Blackman Harris 4-term apodization and a zero-filling factor of 2 . Typical acquisitions used $1.0 \mathrm{~cm}^{-1}$ resolution and a laser power of 300 mW for all samples, except $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, ([XeOXeOXe] $[\mu$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, and $\left.(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}\right)$, for which a power of 500 mW was used. The acquisitions involved 600 scans for strongly scattering samples and 1200-1600 scans for weakly scattering samples. Low-temperature spectra were acquired
using a Bruker I0121 low-temperature accessory which provided temperatures ranging from -130 to $-150{ }^{\circ} \mathrm{C}$ for routine samples, with an estimated error of $\pm 1^{\circ} \mathrm{C}$.

2.10. Nuclear Magnetic Resonance Spectroscopy

2.10.1. NMR Instrumentation and Spectral Acquisitions

 $\mathrm{CH}_{3} \mathrm{CN}$ (1) was acquired on a Bruker Avance II 600 MHz NMR spectrometer, equipped with a TBI-Z probehead and BCU05 temperature unit. The spectrum was externally at 25 ${ }^{\mathrm{o}} \mathrm{C}$ referenced to CFCl_{3}. The ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathrm{MnO}_{3} \mathrm{~F}$ (2) and a new manganese fluoride (3) and ${ }^{55} \mathrm{Mn}$ (4) and ${ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn} \operatorname{COSY}$ (5) spectra of $\mathrm{MnO}_{3} \mathrm{~F}$ were acquired on a Bruker Avance II 500 MHz NMR spectrometer equipped with a Brucker $5-\mathrm{mm}$ combination ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}$ probe, or a Bruker 5-mm broad band inverse probe. The ${ }^{55} \mathrm{Mn}$ NMR spectrum was externally referenced at $25{ }^{\circ} \mathrm{C}$ to $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$. The ${ }^{19} \mathrm{~F}$ NMR spectra were externally referenced at $25{ }^{\circ} \mathrm{C}$ to CFCl_{3}. The chemical shift convention used is that a positive (negative) sign indicates a chemical shift to high (low) frequency of the reference compound. A summary of spectroscopic parameters used for the spectra acquired for this Thesis is provided in Table 2.2. Spectra in the present study often used Gaussian multiplication to enhance spectral resolution.

2.10.2. NMR Sample Preparation

Samples of product mixtures resulting from the reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ in $\mathrm{CH}_{3} \mathrm{CN}$ (containing the reaction products, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$

Table 2.2. Summary of Parameters Used for NMR Data Acquisition

Parameters $^{\text {a }}$	(1)	(2)	(4)	(5)		(3)
	${ }^{19} \mathrm{~F}$	${ }^{19} \mathrm{~F}$	${ }^{55} \mathrm{Mn}$	${ }^{19} \mathrm{~F}$	${ }^{55} \mathrm{Mn}$	${ }^{9} \mathrm{~F}$
SF (MHz)	564.686	470.51	123.98	470.51	123.98	470.56
TD	128	8192	65536	8192	256	65536
SW (kHz)	85	9	0.8	9	2	25
RD (s)	0.77	0.81	0.33	0.44	0.07	1.31
Hz/pt	0.64	1.14	3.05	1.14	7.26	0.76
PW ($\mu \mathrm{s}$)	4.53	8.07	15	8.07		8.07
NS	128	128	1024	16		1024
LB (Hz)	1.0	5.0	100	5.0		15.0

${ }^{a}$ The abbreviations denote spectral frequency (SF), time domain (TD), sweep width (SW), pulse width (PW), relaxation delay (RD), line broadening (LB), and number of scans (NS).
F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN},\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$, and $\left[\mathrm{N}_{\left.\left.\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]\right) \text { were prepared in } 1 / 4 \text {-in. }}^{\text {. }}\right.$ o.d. FEP reactors as described above. NMR samples were prepared by transfer of the reaction mixture solutions under anhydrous conditions into 4-mm o.d. FEP NMR sample tubes which were then outfitted with Kel-F valves as previously described. ${ }^{194}$ The NMR sample tubes were connected to a glass vacuum line through their valve assemblies, cooled to $-196^{\circ} \mathrm{C}$, heat-sealed under dynamic vacuum, and stored at $-196^{\circ} \mathrm{C}$ until NMR spectra could be obtained. Samples were rapidly dissolved at room temperature just prior to data acquisition at $27{ }^{\circ} \mathrm{C}$. When recording the spectra, the $4-\mathrm{mm}$ o.d. FEP tubes were inserted into $5-\mathrm{mm}$ o.d. thin-wall precision glass NMR tubes (Wilmad).

2.11. Quantum-Chemical Calculations

All calculations were performed using the Gaussian 03^{195} or Gaussian 09^{196} software packages. Geometries were fully optimized using density functional theory

Ph.D. Thesis - Maria V. Ivanova

(B3LYP and PBE1PBE) and aug-cc-pVTZ (O, F, Mn), aug-cc-pVDZ (O, F), aug-cc-pVTZ(-PP) (Re, Tc, As, Sb), aug-cc-pVDZ(-PP) (Re, Xe), and def2-SVP (Mn, F) basis sets. The combined use described is indicated by aug-cc-pVT(D)Z(-PP). Basis sets were obtained online from the EMSL Basis Set Exchange (https://bse.pnl.gov/bse/portal). ${ }^{197-199}$ Fundamental vibrational frequencies were calculated along with Raman intensities. Natural bond orbital analyses were performed with the NBO program (version 6.0). ${ }^{200}$ The molecular electrostatic potential surfaces (MEPS) were calculated using the cubegen utility as implemented in G09 and formatted Gaussian 09 checkpoint files as input. The G09 checkpoint files were created upon optimization of the geometries at the B3LYP (PBE1PBE)/aug-cc-pVDZ(-PP) levels. Atoms in molecules (AIM) and electron localization function (ELF) analyses were performed as implemented in the Multiwfn package ${ }^{201}$ using formatted Gaussian 09 wave function files as input. The G09 wave function files were created by performing single-point calculations at the B3LYP (PBE1PBE)/aug-cc-pVDZ(-PP) levels of theory on optimized geometries. The GaussView ${ }^{202}$ program was used to visualize the vibrational displacements that form the basis for the vibrational mode descriptions. The MEPS and NBO diagrams were drawn with Jmol ${ }^{203}$ and Chimera, ${ }^{204}$ respectively.

Calculations of NMR chemical shifts were carried out using the Amsterdam Density Functional (ADF) 2010.2 program package ${ }^{205-208}$ and the implemented NMR module. ${ }^{208-212}$ Single point energies were obtained for the B3LYP/aug-cc-pVTZ geometries at the PBE0 level of theory utilizing Slater type all electron TZ2P basis sets.

Relativistic effects were included with the spin-orbit coupled zeroth-order regular approximation (ZORA) methodology.

The calculated chemical shifts $\left(\delta_{\text {calcd }}\right)$ reported in this work (see NMR Spectroscopy) were obtained according to eq 2.1 where $\delta_{\text {ref }}$ is the experimental chemical

$$
\begin{equation*}
\delta_{\text {calcd }}=\delta_{\text {ref }}+\sigma_{\text {ref }}-\sigma_{\text {rcalcd }} \tag{2.1}
\end{equation*}
$$

shift $(-141.2 \mathrm{ppm})$ of the reference, ${ }^{19} \mu-\mathrm{F}$ in $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}(\mu-\mathrm{F})\right]^{-} ; \sigma_{\text {ref }}$ is the calculated NMR shielding of the reference nucleus (296.71 ppm); $\sigma_{\text {calcd }}$ is the calculated NMR shielding of the nucleus under study, i.e., $\sigma_{\mu-\mathrm{F}}=334.76 \mathrm{ppm}$ in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\sigma_{\mu-\mathrm{F}}=$ 351.40 ppm and $\sigma_{\mu_{3}-\mathrm{F}}=359.35 \mathrm{ppm}$ in $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$; giving calculated chemical shifts of $\delta_{\mu-\mathrm{F}}=-179.3 \mathrm{ppm}$ for $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\delta_{\mu-\mathrm{F}}=-179.3 \mathrm{ppm}$ and $\sigma_{\mu_{3}-\mathrm{F}}=$ -203.9 ppm for $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$.

CHAPTER 3

THE SYNTHESIS AND LEWIS ACID PROPERTIES OF ReO3F AND THE X-RAY CRYSTAL STRUCTURES OF (HF) $)_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ AND $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$

3.1. Introduction

Rhenium trioxide fluoride has been known for more than 60 years, ${ }^{31}$ but its chemistry has been little studied. The fluoride-ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ have been investigated for several alkali metal fluorides $\left(\mathrm{K},{ }^{27,36} \mathrm{Rb},{ }^{27} \mathrm{Cs}^{27}\right)$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F} .{ }^{37}$ The resulting complexes were characterized by infrared ${ }^{27,36,37}$ and Raman ${ }^{36}$ spectroscopy and formulated as salts of the $\left[\mathrm{mer}-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion, ${ }^{27,36,37}$ although the isoelectronic $\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-}$anion has since been shown to exclusively exist as the fac-isomer. ${ }^{39}$ No further structural characterization of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ has been reported. More recently, the donoracceptor complexes, $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}_{7}$ and $\mathrm{L}_{2} \mathrm{ReO}_{3} \mathrm{~F}\left(\mathrm{~L}=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\right.$, THF), ${ }^{21}$ were characterized by single-crystal X-ray diffraction, establishing the Lewis acid character of $\mathrm{ReO}_{3} \mathrm{~F}$. Unlike the previously reported meridional geometries proposed for the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion, $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{L}_{2} \mathrm{ReO}_{3} \mathrm{~F}$ have cis-trioxo arrangements. No studies of the fluoride-ion donor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ have been forthcoming.

Several low-yield syntheses of $\mathrm{ReO}_{3} \mathrm{~F}$ have been reported in the literature, ${ }^{4,31-33}$ but none provide a reliable high-yield, high-purity synthesis of this compound, which has likely contributed to the slow development of its chemistry. For a summary of prior $\mathrm{ReO}_{3} \mathrm{~F}$ syntheses, see ref 21. Among the synthetic routes available for $\mathrm{ReO}_{3} \mathrm{~F}$, two are

Ph.D. Thesis - Maria V. Ivanova

particularly relevant to the present study. The solvolyses of $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in aHF (eqs 3.1 and 3.2) have been documented by means of Raman and ${ }^{19}$ F NMR spectroscopy;

$$
\begin{align*}
& \mathrm{K}\left[\mathrm{ReO}_{4}\right]+(2+x) \mathrm{HF} \xrightarrow{\mathrm{aHF}} \mathrm{~K}[\mathrm{~F}(\mathrm{HF}) x]+\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \tag{3.1}\\
& \mathrm{Re}_{2} \mathrm{O}_{7}+2 \mathrm{HF} \xrightarrow{\mathrm{aHF}} 2 \mathrm{ReO}_{3} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \tag{3.2}
\end{align*}
$$

however, $\mathrm{ReO}_{3} \mathrm{~F}$ was not isolated from these solutions. ${ }^{34}$ The Raman assignments reported in the latter study were based on an assumed $C_{3 \mathrm{v}}$ point symmetry for $\mathrm{ReO}_{3} \mathrm{~F}$ in aHF solution.

More recently, another synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ was reported which entailed the reaction of ReO_{3} with F_{2} at temperatures between 90 and $150{ }^{\circ} \mathrm{C} .{ }^{21}$ The oxidative fluorination of ReO_{3} resulted in the formation of $\mathrm{ReO}_{3} \mathrm{~F}$, which was isolated from the reaction byproducts, ReOF_{5} and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$, upon condensation of $\mathrm{ReO}_{3} \mathrm{~F}$ as a glassy sublimate in the cooler regions of the quartz reactor. The X-ray crystal structure, Raman spectrum, and mass spectrum of $\mathrm{ReO}_{3} \mathrm{~F}$ were reported. The crystal structure was determined on a 3-fold twinned crystal and is reported to consist of a fluorine- and oxygen-bridged chain polymer having hexacoordinated rhenium atoms.

The present chapter describes a simplified and reliable synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ and extends the Lewis acid and fluoride-ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ by the structural characterization of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and the cage anion, $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, which represent the only example of rhenium coordinated to HF and the only example of rhenium oxide fluoride species containing a tricoordinated oxygen atom.

Ph.D. Thesis - Maria V. Ivanova

3.2. Results and Discussion

3.2.1. Syntheses of $\mathrm{ReO}_{3} \mathrm{~F},(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$

Reaction progress and product purities were routinely monitored by recording the Raman spectra of the solids at $-150^{\circ} \mathrm{C}$.
$\mathrm{ReO}_{3} \mathbf{F}$. The synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ was achieved by solvolysis of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in aHF followed by room-temperature fluorination of this solution with F_{2} gas to oxidatively fluorinate $\mathrm{H}_{2} \mathrm{O}$ to O_{2} and HF (eqs 3.2 and 3.3). Hydrogen fluoride solvent and associated

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}+\mathrm{F}_{2} \xrightarrow{\mathrm{aHF}} 2 \mathrm{HF}+1 / 2 \mathrm{O}_{2} \tag{3.3}
\end{equation*}
$$

HF in the complex, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ (vide infra), were removed under dynamic vacuum in stages at temperatures ranging from $-78{ }^{\circ} \mathrm{C}$ to room temperature. The product was further pumped on at $50{ }^{\circ} \mathrm{C}$ to ensure complete removal of coordinated HF. Rhenium trioxide fluoride was obtained as a pale yellow, friable powder that gave a broad Raman spectrum (Figure A1, Appendix A) identical to the previously reported spectrum. ${ }^{21}$
$(\mathbf{H F})_{2} \mathbf{R e O}_{3} \mathbf{F} \cdot \mathbf{H F}$. The complex, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, was synthesized by dissolution of $\mathrm{ReO}_{3} \mathrm{~F}$ in aHF (eq 3.4) and was isolated as pale yellow to colorless plates upon

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+3 \mathrm{HF} \longrightarrow(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF} \tag{3.4}
\end{equation*}
$$

removal of aHF under vacuum at $-78^{\circ} \mathrm{C}$. The product was characterized by single-crystal X-ray diffraction and Raman spectroscopy. The Raman spectrum of the crystalline material (Table 3.1) was in good agreement with the reported solution spectra resulting from the solvolyses of $\mathrm{Re}_{2} \mathrm{O}_{7}$ or $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ in aHF solvent, which had previously been assigned to monomeric $\mathrm{ReO}_{3} \mathrm{~F} .{ }^{34}$ The $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ complex was also synthesized by the solvolyses of $\mathrm{M}\left[\mathrm{ReO}_{4}\right]\left(\mathrm{M}=\left[\mathrm{NH}_{4}\right]^{+}, \mathrm{K}^{+}\right)$and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in aHF (eqs 3.1 and 3.2) and was

Ph.D. Thesis - Maria V. Ivanova

confirmed from the Raman spectra of the products, which crystallized from aHF at -78 ${ }^{\circ} \mathrm{C}$, and by unit cell determinations of the single crystals.
$\left[\mathbf{N}\left(\mathbf{C H}_{\mathbf{3}}\right)_{4}\right]_{2}\left[\left\{\mathbf{R e O}_{\mathbf{3}}(\boldsymbol{\mu}-\mathbf{F})\right\}_{\mathbf{3}}\left(\boldsymbol{\mu}_{\mathbf{3}} \mathbf{- O}\right)\right]$. The salt, $\left[\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$, was obtained, along with minor amounts of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, by the reaction of stoichiometric quantities of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$. The product mixture was partially soluble in $\mathrm{CH}_{3} \mathrm{CN}$ at $-10^{\circ} \mathrm{C}$. Upon slow warming of the mixture to room temperature, all products dissolved forming a bright yellow solution. The salt, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$, was obtained in admixture with $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ upon removal of $\mathrm{CH}_{3} \mathrm{CN}$ at -40 to $-35{ }^{\circ} \mathrm{C}$. Subsequent drying of the mixture at room temperature yielded a friable light beige powder. The reaction of ca. 50 mg of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $0.2-0.3 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ led to the formation of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$ as the major product, whereas larger amounts (80-100 mg) of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $0.3-0.4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ favored the formation of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$. All products were characterized by singlecrystal X-ray diffraction and Raman spectroscopy. Fluorine-19 NMR spectroscopy was
 $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ (see NMR Spectroscopy).

A plausible reaction pathway leading to $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ is given in Scheme 3.1. The proposed reaction sequence is initiated by dissolution of $\mathrm{ReO}_{3} \mathrm{~F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $-40^{\circ} \mathrm{C}$ to give $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$. The latter coordination complex was previously formed

Ph.D. Thesis - Maria V. Ivanova
Table 3.1. Experimental Raman Frequencies and Intensities for $\mathrm{ReO}_{3} \mathrm{~F}$ and $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and Calculated Vibrational

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. ${ }^{c}$ The abbreviations denote shoulder (sh), broad (br), stretch (v), bend (δ), symmetric (s), asymmetric (as), wag (ρ_{w}), and umbrella (umb). ${ }^{d}$ Raman spectra were recorded in FEP sample tubes at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. ${ }^{e}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-$\mathrm{pVTZ}(-\mathrm{PP})$ level was used. ${ }^{f}$ The atom numbering corresponds to that used in Figure A1 where O1, O2, and O3 correspond to the three equivalent oxygen atoms of the $\mathrm{O}_{3} \mathrm{Re}$-group. ${ }^{g}$ From $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ dissolved in HF. ${ }^{h}$ From $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ dissolved in HF. ${ }^{i}$ From $\mathrm{Re}_{2} \mathrm{O}_{7}$ dissolved in HF. ${ }^{j}$ From $\mathrm{ReO}_{3} \mathrm{~F}$ dissolved in HF. ${ }^{k}$ From an HF solution of $\mathrm{Re}_{2} \mathrm{O}_{7}$; ref 34.

Ph.D. Thesis - Maria V. Ivanova

by the hydrolysis of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ solution and characterized by single-crystal X-ray diffraction. ${ }^{19}$ In the present work, it was shown by Raman spectroscopy and single-crystal X-ray diffraction that $\mathrm{ReO}_{3} \mathrm{~F}$ dissolves in $\mathrm{CH}_{3} \mathrm{CN}$ to give $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$ (eq 3.5).

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{CH}_{3} \mathrm{CN}} \quad\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F} \tag{3.5}
\end{equation*}
$$

A second reaction, also initiated at $-40^{\circ} \mathrm{C}$, leads to disproportionation of $\mathrm{ReO}_{3} \mathrm{~F}$ in the presence of F^{-}ion and the formation of equimolar amounts of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ (eq 3.6) as confirmed by the Raman spectrum of the product

$$
\begin{equation*}
2 \mathrm{ReO}_{3} \mathrm{~F}+2\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F} \xrightarrow[-40^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{CN}}\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]+\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \tag{3.6}
\end{equation*}
$$

mixture under $\mathrm{CH}_{3} \mathrm{CN}$ at $-150{ }^{\circ} \mathrm{C}$. A third reaction (Scheme 3.1), presumably involves F^{-} ion attack at rhenium in $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$, resulting in the formation of $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$as an intermediate. The $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion subsequently reacts with a second equivalent of $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$ to form the anionic intermediate, $\left[\left\{\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}\right\}_{2}(\mu-\mathrm{F})\right]^{-}$. The $\left[\mathrm{ReO}_{4}\right]^{-}$anion functions as a nucleophile, attacking $\left[\left\{\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}\right\}_{2}(\mu-\mathrm{F})\right]^{-}$at rhenium to form the open chain trirhenium intermediate, $\left[\left(\mathrm{ReO}_{3}\right)(\mu-\mathrm{O})\left(\mathrm{ReO}_{3} \mathrm{~F}\right)(\mu-\mathrm{F})\left\{\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}\right\}\right]^{2-}$, which undergoes cyclolization to $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$. A likely alternative reaction pathway that initially involves nucleophilic attack by F^{-}and $\left[\mathrm{ReO}_{4}\right]^{-}$ion on two independent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}$ molecules and pursuant condensation and cyclolization reactions that lead to the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion is outlined in Scheme A1 (see Appendix A).

In view of the existence of the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion, ${ }^{23}$ attempts were made to synthesize the rhenium analogue, $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$. Initially, $\mathrm{ReO}_{3} \mathrm{~F}$ was allowed to react with $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in a 3:1 molar ratio between -40 and $-35^{\circ} \mathrm{C}$. The

Ph.D. Thesis - Maria V. Ivanova

Scheme 3.1. Proposed reaction pathway leading to the formation of the $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion. The $\left[\mathrm{ReO}_{4}\right]^{-}$is formed in eq (3.6).

Ph.D. Thesis - Maria V. Ivanova

only products observed by Raman spectroscopy and single-crystal X-ray diffraction were the known $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ salt ${ }^{213}$ and $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F} .{ }^{19} \mathrm{~A}$ second attempt involved a reaction analogous to that used to synthesize the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion in aHF^{23} (see Scheme A2, for a plausible reaction pathway). Thus, $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ or $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ were allowed to react with aHF at room temperature. Upon removal of aHF under dynamic vacuum, mixtures of $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right], \quad \mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \quad \mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were recovered as the only reaction products. The product identities were confirmed by the Raman spectra of the mixtures and by the single-crystal X-ray structures of these salts. The structures of the $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salts are discussed in Chapter 4.

A major difference between the two reaction pathways (Schemes 3.1 and A2) lies in the nature of the reaction media. In the basic solvent, $\mathrm{CH}_{3} \mathrm{CN}$, the $\left[\mathrm{ReO}_{4}\right]^{-}$anion serves as a source of the tricoordinate oxygen bridge in its reaction with the intermediate anion, $\left[\left\{\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ReO}_{3} \mathrm{~F}\right\}_{2}(\mu-\mathrm{F})\right]^{-}$, whereas in acidic (aHF) solution, the $\left[\mathrm{MO}_{4}\right]^{-}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$ anion immediately undergoes HF solvolysis to form $\mathrm{MO}_{3} \mathrm{~F}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]^{+30,34}$

3.2.2. NMR Spectroscopy

The ${ }^{19} \mathrm{~F}$ NMR spectrum (Figure 3.1) of a solution resulting from the reaction of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ and $\mathrm{ReO}_{3} \mathrm{~F}$ (1:1 stoichiometry) was recorded in $\mathrm{CH}_{3} \mathrm{CN}$ at $27{ }^{\circ} \mathrm{C}$ and consisted of a broad signal $\left(\delta\left({ }^{19} \mathrm{~F}\right)=-182.8 \mathrm{ppm}, v_{1 / 2}=213 \mathrm{~Hz}\right)$ and two sharp $\left(v_{1 / 2}=5.0\right.$ $\mathrm{Hz})$, equal-intensity triplets $\left(\delta\left({ }^{19} \mathrm{~F}\right)=-53.0 \mathrm{ppm}\left(\mathrm{F}_{\mathrm{c}, \mathrm{t}}\right) ; \delta\left({ }^{19} \mathrm{~F}\right)=-66.1 \mathrm{ppm}\left(\mathrm{F}_{\mathrm{c}, \mathrm{c}}\right)\right.$ and

Ph.D. Thesis - Maria V. Ivanova

${ }^{2} J\left({ }^{19} \mathrm{~F}_{\mathrm{c}, \mathrm{t}}-19 \mathrm{~F}_{\mathrm{c}, \mathrm{c}}\right)=87 \mathrm{~Hz}$, where the c and t subscripts denote cis and trans to oxygen, respectively) that are unambiguously assigned to $\left[\text { cis- } \mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$, in agreement with the published ${ }^{19}$ F NMR spectrum. ${ }^{19}$ The broad singlet at -182.8 ppm is tentatively assigned to a fluorine bridge environment by comparison with the bridging fluorine resonance of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(-141.2 \mathrm{ppm}) .{ }^{19}$ The ${ }^{19} \mathrm{~F}$ NOE and ${ }^{19} \mathrm{~F}-{ }^{19} \mathrm{~F}$ COSY spectra did not show any NOE or correlation between the two triplets of $\left[\text { cis- } \mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$and the broad singlet, thus confirming their independence and the presence of a single fluorine environment in the unknown species. The NMR findings are in accordance with the X-ray crystal structure of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ (Structure I), which contains three equivalent bridging fluorine atoms (see X-ray Crystallography) and which was also observed, along with $\left[\mathrm{ReO}_{4}\right]^{-}$, in the room temperature Raman spectrum of the reaction mixture dissolved in $\mathrm{CH}_{3} \mathrm{CN}$.

I

II

To further investigate the nature of the species associated with the ${ }^{19} \mathrm{~F}$ resonance at -182.8 ppm , the ${ }^{19} \mathrm{~F}$ NMR chemical shift of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ was calculated at the PBE0/SO/ZORA/TZ2P level. The chemical shift obtained was referenced to the chemical shift of the bridging fluorine of the structurally related $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anion of its $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$salt in $\mathrm{CH}_{3} \mathrm{CN}$ solvent at $-40^{\circ} \mathrm{C}\left(-141.2 \mathrm{ppm}\right.$ with respect to CFCl_{3}; also see Experimental and Computational Results). ${ }^{19}$ The calculated ${ }^{19} \mathrm{~F}$ chemical shift of the

Ph.D. Thesis - Maria V. Ivanova

Figure 3.1. The ${ }^{19} \mathrm{~F}$ NMR spectra (470.599 MHz) of the (a) $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$and (b) $\left[\left\{\mathrm{ReO}_{3}(\mu\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ O)], respectively, recorded at $27^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Ph.D. Thesis - Maria V. Ivanova

three equivalent bridging F_{μ} atoms of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ is -179.3 ppm , in very good agreement with the experimental value, -182.8 ppm .

For comparison, the isotropic ${ }^{19} \mathrm{~F}$ chemical shifts of the three bridging F_{μ} atoms (-203.9 ppm) and the central three coordinate bridging $\mathrm{F}_{\mu_{3}}$ atom $(-195.9 \mathrm{ppm})$ in the related $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion (Structure II) were also calculated. Taking into account the estimated error in the calculated chemical shift ($\pm 20 \mathrm{ppm}$), ${ }^{214,215}$ the observed broad resonance at -182.8 ppm , in principle, could also be assigned to the $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion, with the broadening of the resonance arising from intramolecular fluorine chemical exchange between the F_{μ} and $\mathrm{F}_{\mu_{3}}$ environments of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3^{-}}\right.\right.$ F)]. Unfortunately, variable temperature experiments, which may have led to splitting or further coalescence of the resonance, could not be performed because crystalline material deposited at $0^{\circ} \mathrm{C}$ and slow decomposition took place above ca. $40^{\circ} \mathrm{C}$.

On the basis of ${ }^{19} \mathrm{~F}$ NMR chemical shifts alone, it is not possible to unambiguously determine the solution structure of the anion, nor is it possible to differentiate between $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$; however, from Raman spectroscopic findings, the X-ray crystal structure, and synthetic considerations (see 2.3.3. Synthesis of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]$), it is reasonable to conclude that the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion retains its solid state structure in solution.

3.2.3. X-ray Crystallography

Details of the data collection and other crystallographic information for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}, \quad\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}, \quad\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right], \quad$ and

Ph.D. Thesis - Maria V. Ivanova

KF-4HF are given in Table 3.2, and important bond lengths and bond angles for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ are provided in Tables 3.3 and 3.4. The crystal structure of KF-4HF is given in Figure A2.

The crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ consists of wellseparated $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations, $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions, and $\mathrm{CH}_{3} \mathrm{CN}$ molecules (Figure A3), and the crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ consists of well-separated $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations and $\left[\mathrm{ReO}_{4}\right]^{-}$anions (Figure A4). In both structures, the tetrahedral $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations lie on C_{3}-axes. The $\mathrm{N}-\mathrm{C}$ bond lengths are equal within experimental error and are comparable to those given in the literature. ${ }^{39,47,216}$ The geometrical parameters of the $\mathrm{CH}_{3} \mathrm{CN}$ molecule are also in good agreement with the literature values. ${ }^{19,217}$

3.2.3.1. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$

The $\left[\mathrm{ReO}_{4}\right]^{-}$anion has T_{d} symmetry with a $\mathrm{Re}-\mathrm{O}$ bond length (1.726(3) \AA) that is in good agreement with the $\mathrm{Re}-\mathrm{O}$ bond lengths of other $\left[\mathrm{ReO}_{4}\right]^{-}$salts $\left(\mathrm{K}^{+}, 1.719(5) \AA\right.$, at $20^{\circ} \mathrm{C} ;{ }^{218}\left[\mathrm{NH}_{4}\right]^{+}, 1.737(5) \AA$, at $-138{ }^{\circ} \mathrm{C}$ and $1.720(5) \AA$, at $\left.22{ }^{\circ} \mathrm{C}^{219}\right)$.

3.2.3.2. $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$

The crystal structure of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ reveals that the coordination sphere of rhenium is a distorted octahedron consisting of three oxygen atoms that are cis to one another, a fluorine atom, and two HF molecules that are cis to one another and trans to oxygen ligands (Figure 3.2). The HF molecules are coordinated to the rhenium atom

Ph.D. Thesis - Maria V. Ivanova
Table 3.2. Summary of Crystal Data and Refinement Results for $\left[\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ (1),

${ }^{a} R_{1}$ is defined as $\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| \Sigma\right| F_{\mathrm{o}}\right|\right.$ for $I>2 \sigma(I) .{ }^{b} w R_{2}$ is defined as $\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ for $I>2 \sigma(I)$.

Ph.D. Thesis - Maria V. Ivanova

Table 3.3. Experimental Bond Lengths (\AA) and Bond Angles (deg) for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$.HF and Calculated Bond Lengths (\AA) and Bond Angles (deg) for Monomeric $\mathrm{ReO}_{3} \mathrm{~F}$

expt1 ${ }^{\text {a }}$		calcd ${ }^{\text {b }}$	
$(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$		$\mathrm{ReO}_{3} \mathrm{~F}\left(C_{3 v}\right)$	
Bond Lengths (A)			
$\mathrm{Re}(1)-\mathrm{O}(1)$	1.669(5)	$\mathrm{Re}-\mathrm{O} 1$	1.693
$\mathrm{Re}(1)-\mathrm{O}(2)$	1.662(5)	$\mathrm{Re}-\mathrm{O} 2$	1.693
$\mathrm{Re}(1)-\mathrm{O} / \mathrm{F}(3)$	1.838(5)	$\mathrm{Re}-\mathrm{O} 3$	1.693
$\mathrm{Re}(1)-\mathrm{O} / \mathrm{F}(4)$	1.837(4)	$\mathrm{Re}-\mathrm{F}$	1.844
$\operatorname{Re}(1)--\mathrm{F}(1)$	2.045(4)		
Re(1)---F(2)	2.014(4)		
Bond Angles (deg)			
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{O}(2)$	102.9(3)	$\mathrm{O} 1-\mathrm{Re}-\mathrm{O} 2$	109.0
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{O}(3)$	95.9(3)	$\mathrm{O} 1-\mathrm{Re}-\mathrm{O} 3$	109.0
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(3)$	96.7(3)	$\mathrm{O} 2-\mathrm{Re}-\mathrm{O} 3$	109.0
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{F}(4)$	159.1(3)	$\mathrm{O} 3-\mathrm{Re}-\mathrm{F}$	109.9
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{F}(4)$	97.1(3)	$\mathrm{O} 1-\mathrm{Re}-\mathrm{F}$	109.9
$\mathrm{O}(2)-\operatorname{Re}(1)-\mathrm{F}(4)$	96.5(3)	$\mathrm{O} 2-\mathrm{Re}-\mathrm{F}$	109.9
$F(1)--\operatorname{Re}(1)---\mathrm{F}(2)$	75.2(2)		
$\mathrm{F}(4)-\mathrm{Re}(1)--\mathrm{F}(2)$	81.7(2)		
$\mathrm{O}(3)-\operatorname{Re}(1)--\mathrm{F}(2)$	81.8(2)		
$\mathrm{O}(2)-\mathrm{Re}(1)--\mathrm{F}(1)$	166.9(2)		
$\mathrm{O}(2)-\mathrm{Re}(1)--\mathrm{F}(2)$	91.7(2)		
$\mathrm{O}(1)-\mathrm{Re}(1)--\mathrm{F}(1)$	90.0(2)		
$\mathrm{O}(1)-\operatorname{Re}(1)--\mathrm{F}(2)$	165.3(2)		
$\mathrm{O}(3)-\operatorname{Re}(1)--\mathrm{F}(1)$	82.1(2)		
$F(1)--\operatorname{Re}(1)-\mathrm{F}(4)$	81.3(2)		

${ }^{a}$ The labeling scheme corresponds to that used in Figure 3.2. ${ }^{b}$ B3LYP/aug-cc-pVTZ(-PP). The labeling scheme corresponds to that used in Figure A1.

Figure 3.2. Structural unit in the X-ray crystal structure of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ with thermal ellipsoids drawn at the 30% probability level. The $\mathrm{F} / \mathrm{O}(4)$ and $\mathrm{O} / \mathrm{F}(3)$ positions are twofold disordered.

Ph.D. Thesis - Maria V. Ivanova

Table 3.4. Experimental Structural Parameters for the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ Anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ and Calculated Structural Parameters for the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$Anions

exptl ${ }^{\text {a }}$		calcd ${ }^{\text {b }}$			
$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$		$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$		$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$	
Bond Lengths (A)					
$\mathrm{Re}(1)-\mathrm{O}(1)$	1.711(4)	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{A}}$	1.707	$\mathrm{Re}_{1}-\mathrm{O}_{\text {A }}$	1.701
$\mathrm{Re}(1)-\mathrm{O}(2)$	1.706(4)	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{B}}$	1.715	$\mathrm{Re}_{1}-\mathrm{O}_{\text {B }}$	1.702
$\mathrm{Re}(1)-\mathrm{O}(3)$	1.713(4)	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{C}}$	1.707	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{C}}$	1.701
$\mathrm{Re}(2)-\mathrm{O}(4)$	1.705(4)	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{A}}$	1.707	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{A}}$	1.701
$\mathrm{Re}(2)-\mathrm{O}(5)$	1.716(4)	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{B}}$	1.715	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{B}}$	1.702
$\mathrm{Re}(2)-\mathrm{O}(6)$	1.705(4)	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{C}}$	1.707	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{C}}$	1.701
$\mathrm{Re}(3)-\mathrm{O}(7)$	1.703(4)	$\mathrm{Re}_{3}-\mathrm{O}_{\text {A }}$	1.707	$\mathrm{Re}_{3}-\mathrm{O}_{\text {A }}$	1.701
$\mathrm{Re}(3)-\mathrm{O}(8)$	$1.666(5)$	$\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{B}}$	1.715	$\mathrm{Re}_{3}-\mathrm{O}_{\text {B }}$	1.702
$\mathrm{Re}(3)-\mathrm{O}(9)$	1.700(4)	$\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{C}}$	1.707	$\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{C}}$	1.701
$\mathrm{Re}(1)-\mathrm{O}(10)$	2.079(4)	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{D}}$	2.106	$\mathrm{Re}_{1}-\mathrm{F}_{4}$	2.322
$\mathrm{Re}(2)-\mathrm{O}(10)$	2.072(4)	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{D}}$	2.106	$\mathrm{Re}_{2}-\mathrm{F}_{4}$	2.322
$\operatorname{Re}(3)-\mathrm{O}(10)$	2.078(4)	$\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{D}}$	2.106	$\mathrm{Re}_{3}-\mathrm{F}_{4}$	2.322
$\mathrm{Re}(1)-\mathrm{F}(1)$	$2.139(3)$	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	2.165	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	2.127
$\mathrm{Re}(1)-\mathrm{F}(2)$	2.166 (3)	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	2.165	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	2.127
$\mathrm{Re}(2)-\mathrm{F}(2)$	2.163(3)	$\mathrm{Re}_{2}-\mathrm{F}_{2}$	2.165	$\mathrm{Re}_{2}-\mathrm{F}_{2}$	2.127
$\mathrm{Re}(2)-\mathrm{F}(3)$	2.148(3)	$\mathrm{Re}_{2}-\mathrm{F}_{3}$	2.165	$\mathrm{Re}_{2}-\mathrm{F}_{3}$	2.127
$\mathrm{Re}(3)-\mathrm{F}(3)$	2.144(3)	$\mathrm{Re}_{3}-\mathrm{F}_{3}$	2.165	$\mathrm{Re}_{3}-\mathrm{F}_{3}$	2.127
$\mathrm{Re}(3)-\mathrm{F}(1)$	2.140(3)	$\mathrm{Re}_{3}-\mathrm{F}_{1}$	2.165	$\mathrm{Re}_{3}-\mathrm{F}_{1}$	2.127
Bond Angles (deg)					
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{O} 2$	102.6(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{B}}$	104.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{B}}$	105.1
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(3)$	105.4(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{C}}$	104.3	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{C}}$	105.1
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{O}(1)$	104.0(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{A}}$	102.2	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{A}}$	103.1
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{O}(10)$	95.4(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{F}_{4}$	89.9
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(10)$	148.2(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{F}_{4}$	155.1
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{O}(10)$	94.4(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{F}_{4}$	89.9
$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{O}(5)$	104.2(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{B}}$	104.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{B}}$	105.1
$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(6)$	105.1(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{C}}$	104.3	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{C}}$	105.1
$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{O}(4)$	102.7(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{A}}$	102.2	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{A}}$	103.1
$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{O}(10)$	94.4(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{F}_{4}$	89.9
$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(10)$	148.4(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{F}_{4}$	155.4
$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{O}(10)$	95.2(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{F}_{4}$	90.0
$\mathrm{O}(7)-\mathrm{Re}(3)-\mathrm{O}(8)$	104.6(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{B}}$	104.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{B}}$	105.1
$\mathrm{O}(8)-\mathrm{Re}(3)-\mathrm{O}(9)$	105.2(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{C}}$	104.3	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{C}}$	105.1
$\mathrm{O}(9)-\mathrm{Re}(3)-\mathrm{O}(7)$	103.2(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{A}}$	102.2	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{A}}$	103.1
$\mathrm{O}(7)-\mathrm{Re}(3)-\mathrm{O}(10)$	94.9(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{F}_{4}$	89.9
$\mathrm{O}(8)-\mathrm{Re}(3)-\mathrm{O}(10)$	147.5(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{F}_{4}$	155.4
$\mathrm{O}(9)-\mathrm{Re}(3)-\mathrm{O}(10)$	95.1(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{D}}$	95.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{F}_{4}$	89.9
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{F}(2)$	87.3(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	88.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	88.0

Ph.D. Thesis - Maria V. Ivanova

Table 3.4. (continued...)

$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{F}(2)$	86.0(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	93.7
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{F}(2)$	162.3(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	162.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	154.6
$\mathrm{O}(10)-\operatorname{Re}(1)-\mathrm{F}(2)$	69.9(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	69.3	$\mathrm{F}_{4}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	67.0
$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{F}(1)$	162.2(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	162.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	154.6
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{F}(1)$	84.6(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	93.7
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{F}(1)$	89.7(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	88.3	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	88.0
$\mathrm{O}(10)-\mathrm{Re}(1)-\mathrm{F}(1)$	69.9(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	69.3	$\mathrm{F}_{4}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	67.0
$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{F}(2)$	88.9(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	88.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	88.0
$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{F}(2)$	84.8(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	93.7
$\mathrm{O}(6)-\operatorname{Re}(2)-\mathrm{F}(2)$	162.1(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	162.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	154.6
$\mathrm{O}(10)-\mathrm{Re}(2)-\mathrm{F}(2)$	70.0(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	69.3	$\mathrm{F}_{4}-\mathrm{Re}_{2}-\mathrm{F}_{2}$	67.0
$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{F}(3)$	161.9(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	162.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	154.6
$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{F}(3)$	86.2(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	93.7
$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{F}(3)$	88.6(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	88.3	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	88.0
$\mathrm{O}(10)-\mathrm{Re}(2)-\mathrm{F}(3)$	70.2(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	69.8	$\mathrm{O}_{4}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	67.0
$\mathrm{O}(7)-\mathrm{Re}(3)-\mathrm{F}(3)$	162.3(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	162.8	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	154.6
$\mathrm{O}(8)-\mathrm{Re}(3)-\mathrm{F}(3)$	85.2(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	93.7
$\mathrm{O}(9)-\mathrm{Re}(3)-\mathrm{F}(3)$	87.9(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	88.3	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	88.0
$\mathrm{O}(10)-\mathrm{Re}(3)-\mathrm{F}(3)$	70.2(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	69.3	$\mathrm{F}_{4}-\mathrm{Re}_{3}-\mathrm{F}_{3}$	67.0
$\mathrm{O}(7)-\mathrm{Re}(3)-\mathrm{F}(1)$	88.2(2)	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	88.3	$\mathrm{O}_{\mathrm{A}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	88.0
$\mathrm{O}(8)-\mathrm{Re}(3)-\mathrm{F}(1)$	84.3(2)	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	85.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	93.7
$\mathrm{O}(9)-\mathrm{Re}(3)-\mathrm{F}(1)$	162.5(2)	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	162.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	154.6
$\mathrm{O}(10)-\operatorname{Re}(3)-\mathrm{F}(1)$	70.4(1)	$\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	69.3	$\mathrm{F}_{4}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	67.0
$\mathrm{F}(1)-\operatorname{Re}(1)-\mathrm{F}(2)$	77.7(1)	$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	78.5	$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	73.6
$\mathrm{F}(2)-\mathrm{Re}(2)-\mathrm{F}(3)$	77.1(1)	$\mathrm{F}_{2}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	78.5	$\mathrm{F}_{2}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	73.6
$\mathrm{F}(3)-\operatorname{Re}(3)-\mathrm{F}(1)$	78.1(1)	$\mathrm{F}_{3}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	78.5	$\mathrm{F}_{3}-\mathrm{Re}_{3}-\mathrm{F}_{1}$	73.6
$\mathrm{Re}(1)-\mathrm{O}(10)-\mathrm{Re}(2)$	110.6(2)	$\mathrm{Re}_{1}-\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{2}$	110.2	$\mathrm{Re}_{1}-\mathrm{F}_{4}-\mathrm{Re}_{2}$	103.9
$\mathrm{Re}(2)-\mathrm{O}(10)-\operatorname{Re}(3)$	109.6(2)	$\mathrm{Re}_{2}-\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{3}$	110.2	$\mathrm{Re}_{2}-\mathrm{F}_{4}-\mathrm{Re}_{3}$	103.8
$\mathrm{Re}(3)-\mathrm{O}(10)-\operatorname{Re}(1)$	109.1(2)	$\mathrm{Re}_{3}-\mathrm{O}_{\mathrm{D}}-\mathrm{Re}_{1}$	110.2	$\mathrm{Re}_{3}-\mathrm{F}_{4}-\mathrm{Re}_{1}$	103.8
$\operatorname{Re}(1)-\mathrm{F}(2)-\operatorname{Re}(2)$	104.1(1)	$\mathrm{Re}_{1}-\mathrm{F}_{2}-\mathrm{Re}_{2}$	105.9	$\mathrm{Re}_{1}-\mathrm{F}_{2}-\mathrm{Re}_{2}$	118.5
$\operatorname{Re}(2)-\mathrm{F}(3)-\operatorname{Re}(3)$	104.4(1)	$\mathrm{Re}_{2}-\mathrm{F}_{3}-\mathrm{Re}_{3}$	105.9	$\mathrm{Re}_{2}-\mathrm{F}_{3}-\mathrm{Re}_{3}$	118.4
$\operatorname{Re}(3)-\mathrm{F}(1)-\operatorname{Re}(1)$	104.4(1)	$\mathrm{Re}_{3}-\mathrm{F}_{1}-\mathrm{Re}_{1}$	105.9	$\mathrm{Re}_{3}-\mathrm{F}_{1}-\mathrm{Re}_{1}$	118.5

${ }^{a}$ For the atom labeling scheme, see Figure 3.3. ${ }^{b}$ For the atom labeling scheme, see Figure 3.4. B3LYP/aug-cc-pVTZ(-PP) basis sets.

Figure 3.3. The $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion in the crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$; thermal ellipsoids are shown at the 50% probability level.
a

b

Figure 3.4. Calculated structures of the (a) $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and (b) $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ $\left.\mathrm{F})\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions (B3LYP/aug-cc-pVTZ(-PP)).

Ph.D. Thesis - Maria V. Ivanova

through their F atoms, representing the only known example of HF coordinated to rhenium. Several examples in which HF is coordinated to alkaline earth and lanthanide metal cations ${ }^{220}$ and to $\mathrm{Os}(\mathrm{VIII})^{221}$ are also known. The facial arrangement of oxygen atoms is the result of equal competition of the filled p orbitals of the oxygen atoms for the three empty approximately $\mathrm{d}_{\mathrm{t}_{\mathrm{g}}}$ orbitals of rhenium. ${ }^{17}$ The rhenium atom is found to lie in the $[\mathrm{F}(1), \mathrm{F}(2), \mathrm{O}(1), \mathrm{O}(2)]$ plane and is equidistant from the disordered $\mathrm{F} / \mathrm{O}(3,4)$ atoms. The $\operatorname{Re}-\mathrm{O}(1,2)$ bond lengths trans to the two HF molecules (1.669(5) and 1.662(5) Å) are very similar to the $\mathrm{Re}-\mathrm{O}$ bond lengths in polymeric $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ (1.667(8) and 1.675(8) $\AA)^{19}$ and $(1.669(9)-1.676(9) \quad \AA),{ }^{21}$ but are somewhat shorter than those of $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}(1.705(4) \text { and } 1.788(5) \AA)^{19}$ and $\left(\mathrm{OEt}_{2}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F}(1.703(3), 1.708(3)$, and $1.778(2) \AA \AA^{21}$. ${ }^{21}$ The third $\mathrm{Re}-\mathrm{O}$ bond length could not be accurately determined due to a 2 fold positional disorder between $\mathrm{O} / \mathrm{F}(3)$ and $\mathrm{F} / \mathrm{O}(4)$. These bond lengths (1.838(5) and $1.837(4) \AA$) are the average of the $\operatorname{Re}-\mathrm{O}(1.788(5) \AA)$ and $\operatorname{Re}-\mathrm{F}(1.880(5) \AA)^{19}$ bond lengths of $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{ReO}_{3} \mathrm{~F} .{ }^{19}$ The Re--- $\mathrm{F}(1,2)$ distances (2.045(4) and 2.014(4) $\left.\AA\right)$ are comparable to the $\mathrm{Re}---\mathrm{F}$ bridging distances in oligomeric $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ (2.085(6)-2.118(7) $\AA)^{19} \quad(2.075(7)-2.109(6) \quad \AA)^{21} \quad$ and $\quad \mathrm{ReO}_{3} \mathrm{~F} \quad(2.141(7)-2.142(7) \quad \AA){ }^{21} \quad$ The $\mathrm{O} / \mathrm{F}(3)-\mathrm{Re}-\mathrm{F} / \mathrm{O}(4)$ bond angle $\left(159.1(3)^{\circ}\right)$ is bent away from the $\operatorname{Re}-\mathrm{O}(1,2)$ double bond domain toward the less repulsive $\mathrm{Re}--\mathrm{F}(1,2)$ bonds. The $\mathrm{O}(1)-\operatorname{Re}-\mathrm{O}(2)$ angle $\left(102.9(3)^{\circ}\right)$ is considerably more open than the $\mathrm{F}(1)--\mathrm{Re}--\mathrm{F}(2)$ angle $\left(75.2(2)^{\circ}\right)$ as a result of greater repulsions between the $\mathrm{Re}-\mathrm{O}(1)$ and $\mathrm{Re}-\mathrm{O}(2)$ double bond domains, with weaker repulsions occurring between the longer and more polar Re---F(1, 2) bond domains. In turn, the small $\mathrm{F}(1)--\mathrm{Re}--\mathrm{F}(2)$ angle is a consequence of repulsive

Ph.D. Thesis - Maria V. Ivanova

interactions between the $\operatorname{Re}--\mathrm{F}(1,2)$ bond domains and the $\operatorname{Re}^{-}-\mathrm{O}(1,2)$ double bond domains.

3.2.3.3. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$

The $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion is positioned on a C_{3}-axis and consists of three $\mathrm{ReO}_{3} \mathrm{~F}$ units linked to each other through dicoordinate bridging fluorine atoms $\left(\mathrm{F}_{\mu}\right)$ and a central tricoordinate bridging oxygen atom $\left(\mathrm{O}_{\mu_{3}}\right)$. The bridge-head $\mathrm{O}_{\mu_{3}}$ atom is located on the C_{3}-axis, and the coordination environments of the rhenium atoms are pseudooctahedral (Figure 3.3).

A closely related structure with a triply coordinated oxygen bridge atom has been reported for the $\left[\left\{\mathrm{WF}_{3}(\mu-\mathrm{O})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{5-}$ anion in $\left[\mathrm{NH}_{4}\right]_{5}\left[\left\{\mathrm{WF}_{3}(\mu-\mathrm{O})\right\}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})] \cdot\left[\mathrm{NH}_{4}\right] \mathrm{F} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{222}$ The Re atoms of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ form a triangle with $\operatorname{Re} \cdots \operatorname{Re}$ distances of $3.4128(3) \AA(\operatorname{Re}(1) \cdots \operatorname{Re}(2))$, $3.3910(4) \AA(\operatorname{Re}(2) \cdots \operatorname{Re}(3))$, and 3.3870(3) $\AA(\operatorname{Re}(3) \cdots \operatorname{Re}(1))$. The $\operatorname{Re} \cdots \operatorname{Re}$ distances are significantly longer than the $\mathrm{W} \cdots \mathrm{W}$ distances $\left(2.514(2) \AA\right.$) of the W_{3}-triangle in $\left[\left\{\mathrm{WF}_{3}(\mu-\mathrm{O})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{5-}{ }^{222}$ which is indicative of significant $\mathrm{W}-\mathrm{W}$ bonding. Rhenium in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ is in the +7 oxidation state $\left(\operatorname{Re}, 5 \mathrm{~d}^{0}\right)$, where the terminal coordination sites are occupied by doubly bonded oxygen ligands and the μ-bridge positions are occupied by bridging fluorine ligands. In contrast, tungsten in $\left[\left\{\mathrm{WF}_{3}(\mu-\mathrm{O})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{5-}$ is in the +4 oxidation state $(\mathrm{W}$, $5 \mathrm{~d}^{2}$) where the terminal coordination sites are occupied by fluorine ligands and the μ bridge positions are occupied by oxygen ligands. The influence of $\mathrm{O}_{\mu_{3}}$ on both structures is minor. The structural parameters are dominated by the metal oxidation state. Thus, the

Ph.D. Thesis - Maria V. Ivanova

availability of the d^{2} valence electrons of $\left[\left\{\mathrm{WF}_{3}(\mu-\mathrm{O})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{5-}$ allows metal-metal bond formation among the tungsten metal centers, resulting in $\mathrm{W} \cdots \mathrm{W}$ distances that are substantially shorter than the $\operatorname{Re} \cdots \operatorname{Re}$ distances in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$. Presently, neither tungsten oxide fluorides in higher oxidation states nor rhenium oxide fluorides in lower oxidation states having similar structural motifs, which could substantiate the observed trend, are known. However, several examples of similar trends occur among rhenium and tungsten chlorides and chloroanions. Rhenium(III) trichloride exists as a $\mathrm{Re}_{3} \mathrm{Cl}_{9}$ cluster with $\mathrm{Re} \cdots \operatorname{Re}$ distances of $2.489(6) \AA \AA^{223}$ whereas $\operatorname{Re}(\mathrm{V}) \mathrm{Cl}_{5}$ contains $\mathrm{Re}_{2} \mathrm{Cl}_{10}$ units with a substantially longer $\mathrm{Re} \cdots \mathrm{Re}$ distance of $3.739(2) \AA .{ }^{224}$ In comparison, the $\mathrm{W} \cdots \mathrm{W}$ distances are $2.409(5) \AA$ in $\mathrm{K}_{3}\left[\mathrm{~W}_{2}(\mathrm{III}) \mathrm{Cl}_{9}\right]$, ${ }^{225}$ and $2.8703(6)-2.9054(6) \AA$ in the octahedral W_{6}-cluster of $\mathrm{K}_{2}\left[\mathrm{~W}_{6}(\mathrm{III}) \mathrm{Cl}_{18}\right] .{ }^{226}$ The central bridging $\mathrm{O}_{\mu_{3}}$ and bridging F_{μ} atoms of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ coordinate trans to the terminal oxygen atoms $\left(\mathrm{O}_{\mathrm{t}}\right)$ of the facial ReO_{3} group so that the filled oxygen p orbitals of the O_{t} atoms compete equally for the three empty $\mathrm{d}_{2_{\mathrm{tg}}}$ orbitals of rhenium. ${ }^{17}$ The $\operatorname{Re}(1)$, $\operatorname{Re}(2)$, and $\operatorname{Re}(3)$ atoms lie in the $[\mathrm{F}(1), \mathrm{F}(2), \mathrm{O}(1), \mathrm{O}(3)],[\mathrm{F}(2), \mathrm{F}(3), \mathrm{O}(4), \mathrm{O}(6)]$, and $[\mathrm{F}(3), \mathrm{F}(1), \mathrm{O}(7), \mathrm{O}(9)]$ planes, respectively. The $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bonds are comparable in length to those in oligomeric $\mathrm{ReO}_{3} \mathrm{~F}(1.667(7)-1.715(8) \AA),{ }^{21} \mathrm{ReO}_{2} \mathrm{~F}_{3}(1.667(8)-1.675(8) \AA)^{19}$ and $(1.669(9)-1.676(9) \AA),{ }^{21}\left[\mathrm{ReO}_{4}\right]^{-}\left(1.726(3) \AA\right.$, this work), $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}(1.678(9) \AA),{ }^{19}$ and $\left[\left(\operatorname{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(1.669(8)-1.715(8) \AA)^{19}{ }^{19}$ The bridging $\mathrm{Re}-\mathrm{F}_{\mu}$ bond lengths are comparable to the $\mathrm{Re}-\mathrm{F}_{\mu}$ bond lengths in $\mathrm{ReO}_{3} \mathrm{~F}\left(2.141(7)\right.$ and 2.142(7) \AA), ${ }^{21}$ $\mathrm{ReO}_{2} \mathrm{~F}_{3} \quad\left(2.085(6)-2.118(7) \quad \AA,{ }^{19} \quad 2.075(7)-2.109(6) \quad \AA^{21}\right), \quad\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$ $(2.155(4)-2.150(4) \AA),{ }^{19}$ and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(2.039(6)-2.151(6) \AA) .{ }^{19}$

Ph.D. Thesis - Maria V. Ivanova

A tricoordinate bridge-head oxygen atom, $\mathrm{O}_{\mu_{3}}$, has not been previously observed in a rhenium oxide fluoride structure. The rhenium atoms of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ are equidistant (within $\pm 3 \sigma$) from $\mathrm{O}_{\mu_{3}}$ (2.072(4)-2.079(4) \AA). These $\mathrm{Re}-\mathrm{O}_{\mu_{3}}$ bonds are comparable in length to the $\mathrm{Re}-\mathrm{O}_{\mu}$ bonds of $\mathrm{Re}_{2} \mathrm{O}_{7}(2.05(2)-2.16(3) \AA),{ }^{227}$ and to the $\operatorname{Re}-\mathrm{O}_{\mu_{3}}$ bonds of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\left\{\operatorname{Re}(\mathrm{CO})_{3}(\mu-\mathrm{H})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right](2.12 \AA),{ }^{228}$ and $\left\{(\mathrm{t}-\mathrm{Bu})_{2} \mathrm{SiO}_{2}\right\}_{2}(\mu-$ $\mathrm{O})_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\{\operatorname{ReO}(\mathrm{NAr})\}_{2}\{\operatorname{Re}(\mathrm{NAr})\}_{2}\left(\mathrm{Ar}=2,6-\mathrm{iPr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3} ; 2.170(5) \AA \AA^{229}{ }^{29} \mathrm{The}^{\operatorname{Re}-\mathrm{O}_{\mu_{3}}}\right.$ bridge bonds of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ are longer than the terminal $\operatorname{Re}-\mathrm{O}_{\mathrm{t}}$ bonds and slightly shorter than the $\mathrm{Re}-\mathrm{F}_{\mu}$ bonds of this anion. These bond length trends differ from those of the related $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion where the $\mathrm{Tc}-\mathrm{F}_{\mu_{3}}$ bonds $\left(2.223(3)-2.266(3) \AA\right.$) are longer than the $\mathrm{Tc}-\mathrm{F}_{\mu}$ bonds $(2.098(3)-2.132(3) \AA) .{ }^{23}$ The experimental bond length trends for $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]_{2}{ }^{-}$and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ are reproduced by quantum-chemical calculations (see Computational Results).

The $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ angles of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ are greater than the $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{F}_{\mu}$ and $\mathrm{F}_{\mu}-\mathrm{Re}-\mathrm{F}_{\mu}$ angles due to the greater spatial requirements of the terminal oxygen double bond domains which result in greater repulsive interactions with other bond pair domains as observed in $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-},{ }^{19} \quad\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-19}{ }^{19} \quad\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-},{ }^{19}$ $\operatorname{ReO}_{2} \mathrm{~F}_{3},{ }^{19,21}$ and $\mathrm{ReO}_{3} \mathrm{~F} .{ }^{21}$ Compression of the $\mathrm{F}_{\mu}-\operatorname{Re}-\mathrm{F}_{\mu}$ angles of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})]^{2-}$ relative to the $\mathrm{F}_{\mu}-\mathrm{Re}-\mathrm{F}_{\mu}\left(70.4(1)-77.7(1)^{\circ}\right)$ angles of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$, $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$, and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ is also attributable to the greater spatial requirements of the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ double bond domains and to constraints imposed by the anion cage. The latter factor also influences the $\mathrm{O}_{\mu_{3}}-\mathrm{Re}-\mathrm{F}_{\mu}$ angles, which are the smallest of the anion cage angles $\left(69.3^{\circ}\right)$. The largest cage angles occur for the $\operatorname{Re}-\mathrm{O}_{\mu_{3}}-\mathrm{Re}$ angles

Ph.D. Thesis - Maria V. Ivanova

$\left(109.1(2)-110.6(2)^{\circ}\right)$, which are more open than the angles subtended at $\mathrm{O}_{\mu_{3}}$ in $\{(\mathrm{t}-$ $\left.\mathrm{Bu})_{2} \mathrm{SiO}_{2}\right\}_{2}(\mu-\mathrm{O})_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\{\operatorname{ReO}(\mathrm{NAr})\}_{2}\{\operatorname{Re}(\mathrm{NAr})\}_{2}\left(104.8(2)^{\circ}\right) .{ }^{229}$

3.2.4. Raman Spectroscopy

The low-temperature Raman spectra of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ are shown in Figures 3.5 and 3.6. The observed and calculated frequencies and mode descriptions for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF},\left[\mathrm{ReO}_{4}\right]^{-}$, and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3^{-}}\right.\right.$ $\mathrm{O})]^{2-}$ are provided in Tables 3.1, A1, and 3.5, respectively. Spectral assignments for the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cation ${ }^{230-232}$ and $\mathrm{CH}_{3} \mathrm{CN}^{217}$ were made by comparison with previously published assignments. Spectral assignments for $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ were made by comparison with the calculated frequencies and Raman intensities of the energyminimized gas-phase geometries of $\left[\operatorname{ReO}_{4}\right]^{-}\left(T_{\mathrm{d}}\right)$ and $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}\left(C_{3 \mathrm{v}}\right)$, where gas-phase $\left[\mathrm{ReO}_{4}\right]^{-}$was used as a benchmark. The vibrational assignments for $\left[\mathrm{ReO}_{4}\right]^{-}$are provided in Table A1 and in the ensuing discussion provided in the Appendix A, and agree with the previously published assignments. ${ }^{233,234}$

3.2.4.1. $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$

The Raman spectrum of solid $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ is similar to those reported for solutions of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ in aHF. ${ }^{34}$ The present study, however, establishes that the previously reported solution spectra correspond to a $\mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{aHF}$ complex and not to $\mathrm{ReO}_{3} \mathrm{~F}\left(C_{3 v}\right)$, as proposed by the authors. ${ }^{34}$ In the present study, the spectrum is simpler

Ph.D. Thesis - Maria V. Ivanova

Ph.D. Thesis - Maria V. Ivanova

Ph.D. Thesis - Maria V. Ivanova

Ph.D. Thesis - Maria V. Ivanova
Table 3.5. (continued ...) 387(4) ${ }^{\text {g }}$ ($\begin{array}{ll}387(4)^{g} \\ 374(17) & 388(1)[50] \\ & 384(5)[1] \\ 368 \text { sh } & \left\{\begin{array}{l}380(1)[1] \\ 379(3)[82]\end{array}\right. \\ & 367(4)[33]\end{array}$

$\begin{aligned} & 387(4)^{g} \\ & 374(17) \end{aligned}$	388(1)[50]	$v_{15}(\mathrm{E})$	$\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{C}}\right)$	ν_{15} (E)	391(<0.1)[14]
368 sh	384(5)[1]	$v_{5}\left(\mathrm{~A}_{1}\right)$	$\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{C}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{C}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{C}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)$	$v_{5}\left(\mathrm{~A}_{1}\right)$	380(2)[1]
	$\left\{\begin{array}{l}380(1)[1]\end{array}\right.$	$v_{16}(\mathrm{E})$	$\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{C}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)$	$v_{16}(\mathrm{E})$	375(<0.01)[11]
	$\{379(3)[82]$	$v_{17}(\mathrm{E})$	$\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{C}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{B}}\right)$	$v_{17}(\mathrm{E})$	365(2)[8]
	367(<1)[33]	$v_{6}\left(\mathrm{~A}_{1}\right)$	$\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{C}}\right)$	$v_{6}\left(\mathrm{~A}_{1}\right)$	351(<1)[25]
345(7)	332(3)[11]	$v_{18}(\mathrm{E})$	$\left\{\begin{array}{l} {\left[\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{C}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \operatorname{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)-\right.} \\ \left.\delta\left(\mathrm{O}_{\mathrm{B}} \operatorname{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)\right]+\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\mathrm{Re}_{3} \mathrm{~F}_{3}\right)-v\left(\mathrm{Re}_{2} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{2}\right)\right] \end{array}\right\}$	$v_{18}(\mathrm{E})$	275(2)[67]
262 sh	251(1)[12]	v_{19} (E)	$\left\{\begin{array}{l} \rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \operatorname{Re}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{A} \operatorname{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\operatorname{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)+\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+\right. \\ \left.v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{3}\right)\right] \end{array}\right.$		
257(3)	248(2)[<1]	$v_{7}\left(\mathrm{~A}_{1}\right)$	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{1}\right)+\right.} \\ & \left.v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right] \\ & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{1}\right)+\right\}} \\ & \left.v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{4}\right)\right] \end{aligned}$	$v_{19}(\mathrm{E})$ $v_{7}\left(\mathrm{~A}_{1}\right)$	$252(<1)[3]$ $286(<1)[12]$
$\begin{aligned} & \text { 197(4) } \\ & 191(9) \end{aligned}$	$\} 190(2)[<1]$	$v_{8}\left(\mathrm{~A}_{1}\right)$	$\rho_{w}\left(\mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)+\rho_{\mathrm{w}}\left(\mathrm{Re}_{2} \mathrm{O}_{\mathrm{B}}\right)+\rho_{\mathrm{r}}\left(\mathrm{Re}_{3} \mathrm{O}_{\mathrm{B}}\right)$	$\mathrm{v}_{8}\left(\mathrm{~A}_{1}\right)$	175(2)[1]
188(8)	182(2)[<0.1]	$v_{20}(\mathrm{E})$	$\rho_{r}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{B}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{C}}\right)$	$v_{20}(\mathrm{E})$	173(1)[<1]
	153(2)[<0.1]	$v_{9}\left(\mathrm{~A}_{1}\right)$	$\rho_{r}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{C}}\right)$	$v_{9}\left(\mathrm{~A}_{1}\right)$	$119(1)$ [<0.001]
	$118(<1)$ [<0.1]	$v_{21}(\mathrm{E})$	$\rho_{r}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{1} \mathrm{O}_{\mathrm{C}}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Re}_{3} \mathrm{O}_{\mathrm{C}}\right)$	$v_{21}(\mathrm{E})$	97(1)[<0.1]
	$95(<1)[<1]$	$v_{22}(\mathrm{E})$	$\{$	$v_{22}(\mathrm{E})$	$96(<1)[<1]$
	$80(<1)[<0.1]$	$v_{23}(\mathrm{E})$		v_{23} (E)	$44(<1)[<1]$

${ }^{a}$ Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+}\right.$cation modes were observed at $v_{8}(\mathrm{E}), 377(1) ; v_{19}\left(\mathrm{~T}_{2}\right), 463(5), 460(5)$,
$455(5) ; v_{3}\left(\mathrm{~A}_{1}\right), 750(3), 757(12) ; v_{18}\left(\mathrm{~T}_{2}\right), 949(8), 943(1) ; v_{7}(\mathrm{E}), 1174(1), 1182(2) ; v_{17}\left(\mathrm{~T}_{2}\right), 1285(1), 1288(2) ; v_{16}\left(\mathrm{~T}_{2}\right), 1407(5), 1401(3) ;$ $v_{2}\left(\mathrm{~A}_{1}\right), v_{6}(\mathrm{E}), 1461(9), 1467(8), 2830(2), 2979(9), 2983(9), 2993(8), 3010(7), 3014(7), 3039(17), 3047(10)$; many combination bands were also observed. The $\mathrm{CH}_{3} \mathrm{CN}$ modes were observed at 2938(33), 2737(2), 2294(24), 1457(6), 1454(4), 921(12), 394(5), 392(7). ${ }^{b}$ The abbreviations denote a shoulder (sh), broad (br), stretch (v), bend (δ), rocking (ρ_{r}), and wag (ρ_{w}). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-pVTZ (-PP) level was used. ${ }^{d}$ For the atom labeling scheme, see Figure 3.4. ${ }^{e}$ Band overlapping with the $\left[\mathrm{ReO}_{4}\right]^{-}$anion mode. ${ }^{f}$ Band overlapping with the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cation mode. ${ }^{g}$ Band overlapping with $\mathrm{CH}_{3} \mathrm{CN}$.

Ph.D. Thesis - Maria V. Ivanova

than that of $\mathrm{ReO}_{3} \mathrm{~F},{ }^{21}$ lacking modes in the $\mathrm{Re}-\mathrm{O}-\mathrm{Re}$ and $\mathrm{Re}-\mathrm{F}-\mathrm{Re}$ bridging stretching regions.

The $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$ complex has 21 fundamental vibrational modes under $C_{2 \mathrm{v}}$ symmetry belonging to the irreducible representations $8 A_{1}+4 B_{1}+3 A_{2}+6 B_{2}$, where all modes are Raman active and the $\mathrm{A}_{1}, \mathrm{~B}_{1}$, and B_{2} modes are infrared active. The four anions occupy C_{1} sites in the crystallographic unit cell of (HF) $)_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$. A factor-group analysis was carried out (Table A2) based on the crystal structure (see X-ray crystal structure of $\left.(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}\right)$. Correlation of the gas-phase symmetry of the complex $\left(C_{2 \mathrm{v}}\right)$ to the crystal site symmetry $\left(C_{1}\right)$ results in no additional splittings for the $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~A}_{2}$, and B_{2} modes. Correlation of the site symmetry to the crystal (unit cell) symmetry ($C_{2 \mathrm{~h}}$) shows that the A_{1}, B_{1}, A_{2}, and B_{2} modes are split into Raman-active A_{g} and B_{g} components and into infrared-active A_{u} and B_{u} components. Only 10 of the 21 Ramanactive vibrational modes predicted for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$ in the gas phase were observed. Modes associated with the coordinated HF molecules are expected to be weak and were not observed in the Raman spectrum. Vibrational coupling within the unit cell of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ is apparently weak, and, consequently, the splittings are too small to be resolved on many of the bands. The bands at 981 and $1017 \mathrm{~cm}^{-1}$ are assigned to the asymmetric and symmetric $\mathrm{Re}-\mathrm{O}$ stretching modes, respectively, and appear at higher frequencies than in $\mathrm{ReO}_{3} \mathrm{~F}\left(969-996 \mathrm{~cm}^{-1}\right)$. The intense band at $669 \mathrm{~cm}^{-1}$ is in good agreement with the $664 \mathrm{~cm}^{-1}$ band observed in $\mathrm{ReO}_{3} \mathrm{~F}$ and is assigned to an $\mathrm{Re}-\mathrm{F}$ stretching mode. The bands between 215 and $399 \mathrm{~cm}^{-1}$ are assigned to $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ and
$\mathrm{F}-\mathrm{Re}-\mathrm{O}$ deformation modes which are similar to those observed in $\mathrm{ReO}_{3} \mathrm{~F}$ (234-386 cm^{-1}).

3.2.4.2. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$

The anion, $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, possesses 42 fundamental vibrational modes belonging to the irreducible representations $9 \mathrm{~A}_{1}+5 \mathrm{~A}_{2}+14 \mathrm{E}$ under $C_{3 \mathrm{v}}$ symmetry, where the A_{1} and E modes are Raman and infrared active and the A_{2} modes are inactive. The four anions occupy C_{1} sites in the crystallographic unit cell of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$. As a result of site symmetry lowering, all E modes are expected to be split into two A components. In order to assign the additional bands that could not be accounted for by symmetry lowering alone, the possibility of vibrational coupling within the unit cell was investigated by undertaking a factor-group analysis (Table A3) based on the crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$. Although correlation of the gas-phase anion symmetry $\left(C_{3 \mathrm{v}}\right)$ to its crystal site symmetry $\left(C_{1}\right)$ cannot result in splittings for the A_{1} and A_{2} modes, correlation of the site symmetry to the unit cell symmetry $\left(C_{2 \mathrm{~h}}\right)$ showed that the A_{1} and A_{2} modes are each split into Raman-active A_{g} and B_{g} components and into infrared-active A_{u} and B_{u} components under $C_{2 \mathrm{~h}}$ crystal symmetry. Each E mode is split into two A_{g} and two B_{g} components that are Ramanactive and two A_{u} and two B_{u} components that are infrared-active. The factor-group splittings predicted for the Raman spectrum were observed on the highest intensity bands, namely, $v_{1}\left(A_{1}\right)(971 / 978), v_{10}(E)(946 / 951 / 959 / 966), v_{11}(E)(931 / 937 / 941 / 944), v_{2}\left(\mathrm{~A}_{1}\right)$

Ph.D. Thesis - Maria V. Ivanova

(924/926), $v_{4}(\mathrm{~A} 1)(392 / 395), v_{8}(\mathrm{~A} 1)(191 / 197), \quad v_{12}(\mathrm{E})(911 / 918 / 921)$, and $v_{13}(\mathrm{E})$ (575/580/586).

The bands between 911 and $978 \mathrm{~cm}^{-1}$ are assigned to the out-of-phase and in-phase terminal $\mathrm{Re}-\mathrm{O}$ stretching modes. The two factor-group split bands at highest frequency ($971,978 \mathrm{~cm}^{-1}$) correspond to the totally symmetric $v_{\text {in-phase }}(\operatorname{Re}-\mathrm{O})$ stretching mode. The calculated frequencies reproduce the trend $v_{\text {in-phase }}(\operatorname{Re}-\mathrm{O})>v_{\text {out-of-phase }}(\operatorname{Re}-\mathrm{O})$, although, as observed for $\left[\mathrm{ReO}_{4}\right]^{-}$(Table A1), the calculated frequencies appear $30-40 \mathrm{~cm}^{-1}$ higher than the experimental values (exptl, $911-978 \mathrm{~cm}^{-1}$; calcd, $942-1018 \mathrm{~cm}^{-1}$). The $v_{\text {in }}$ phase $(\operatorname{Re}-\mathrm{O})$ and $v_{\text {out-of-phase }}(\operatorname{Re}-\mathrm{O})$ frequencies are comparable to those observed for $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ (972 and $939 \mathrm{~cm}^{-1}$, respectively). ${ }^{7}$ The terminal $v_{\text {in-phase }}(\operatorname{Re}-\mathrm{O})$ stretching mode ($971 / 978 \mathrm{~cm}^{-1}$) is shifted to lower frequency when compared with the corresponding modes in $\mathrm{ReO}_{3} \mathrm{~F}\left(996 \mathrm{~cm}^{-1}\right)$, and $\mathrm{ReO}_{2} \mathrm{~F}_{3}\left(1025 \mathrm{~cm}^{-1}\right)$, in accordance with the enhanced negative charge on oxygen that arises from the net -2 charge of the anion, resulting in somewhat weaker $\mathrm{Re}-\mathrm{O}$ double bonds.

The factor-group split bands at $575 / 580 / 586 \mathrm{~cm}^{-1}$ correspond to a mode resulting from asymmetric coupling of $v\left(\operatorname{Re}-\mathrm{O}_{\mu_{3}}\right)$ and $v\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$, in agreement with the calculated frequency $\left(558 \mathrm{~cm}^{-1}\right)$. The symmetrically coupled $v\left(\operatorname{Re}-\mathrm{O}_{\mu_{3}}\right)$ and $v\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$ mode is assigned to a weak band at $510 \mathrm{~cm}^{-1}$ which quantum-chemical calculations predict to occur as a weak band at $516 \mathrm{~cm}^{-1}$ (see Computational Results). The coupled $v\left(\operatorname{Re}-\mathrm{O}_{\mu_{3}}\right)$ and $v\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$ stretching modes are comparable to the coupled $v\left(\operatorname{Re}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$ stretching modes in $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}\left(554 \mathrm{~cm}^{-1}\right)^{19}$ and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(568$
cm^{-1}). ${ }^{19}$ Raman bands occurring between 188 and $395 \mathrm{~cm}^{-1}$ are assigned to deformation modes, in accordance with the calculated frequencies $\left(182-401 \mathrm{~cm}^{-1}\right)$.

3.2.5. Computational Results

3.2.5.1. Calculated Structures of $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ $(\mathrm{M}=\mathrm{Re}, \mathrm{Tc})$

The geometries of the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions (M $=\mathrm{Re}, \mathrm{Tc}$) (Figures 3.4 and A5) were optimized under $C_{3 \mathrm{v}}$ symmetry at the B3LYP/aug-cc-pVTZ(-PP) level of theory and resulted in stationary points with all frequencies real (Tables 3.5 and A5). The starting geometries for $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\right.\right.$ $\left.\mathrm{F})\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$were the crystallographic geometries of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions in their respective $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]^{+} \text {(see X-ray Crystallography) }}\right.$ and K^{+23} salts.
$\left[\left\{\operatorname{ReO}_{3}(\mu-\mathbf{F})\right\}_{3}\left(\mu_{3}-\mathbf{O}\right)\right]^{2-}$. Overall, there is very good agreement between the calculated and experimental $\mathrm{Re}-\mathrm{O}$ bond lengths and angles (Table 3.4). Among the experimental trends in geometrical parameters that are reproduced by the calculations are the following: (a) bond lengths; $\mathrm{Re}-\mathrm{F}_{\mu}>\mathrm{Re}-\mathrm{O}_{\mu}>\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ and (b) bond angles; $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ $>\mathrm{O}_{\mathrm{t}}-\mathrm{Re}^{-}-\mathrm{F}_{\mu}>\mathrm{F}_{\mu}-\operatorname{Re}-\mathrm{F}_{\mu}>\mathrm{F}_{\mu}-\operatorname{Re}-\mathrm{O}_{\mu_{3}}$.
$\left[\left\{\operatorname{ReO}_{3}(\mu-F)\right\}_{3}\left(\mu_{3}-F\right)\right]^{-}:$Calculated Geometry of $\left[\left\{\operatorname{ReO}_{3}(\mu-F)\right\}_{3}\left(\mu_{3}-F\right)\right]^{-}$and Comparison with that of $\left[\left\{\operatorname{ReO}_{\mathbf{3}}(\mu-\mathrm{F})\right\}_{\mathbf{3}}\left(\mu_{3}-\mathbf{O}\right)\right]^{\mathbf{2 -}}$. The calculated $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths in the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion are equal to or slightly shorter than those calculated for the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion (Table 3.4). The $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bonds are equal, whether or

Ph.D. Thesis - Maria V. Ivanova

not they are trans to $\operatorname{Re}-\mathrm{F}_{\mu_{3}}$ or $\operatorname{Re}-\mathrm{F}_{\mu}$ bonds, whereas the $\operatorname{Re}-\mathrm{F}_{\mu}$ bond lengths in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are significantly shorter than in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ due to the lower negative charge of the $[\{\mathrm{ReO} 3(\mu-\mathrm{F})\} 3(\mu 3-\mathrm{F})]-$ anion relative to that of $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ $\left.\mathrm{F})\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$. The $\operatorname{Re}-\mathrm{F}_{\mu_{3}}$ bond lengths of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are significantly longer than the $\mathrm{Re}-\mathrm{O}_{\mu_{3}}$ bond lengths of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ because of the greater polarity of the $\operatorname{Re}-\mathrm{F}_{\mu_{3}}$ bond relative to that of $\operatorname{Re}-\mathrm{O}_{\mu_{3}}$. The calculated bond length trend for $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$, i.e., $\mathrm{Re}-\mathrm{F}_{\mu_{3}}>\operatorname{Re}-\mathrm{F}_{\mu}>\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$, where all $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bonds are equal, is the same as that observed in the X-ray crystal structure of $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-} \cdot{ }^{23}$

All $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ angles are essentially equal for both rhenium anions. The $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{F}_{\mu}$ angles (where each O_{t} is trans to F_{μ}) in $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are smaller than the corresponding $\mathrm{O}_{\mathrm{t}}-\operatorname{Re}-\mathrm{O}_{\mu}$ angles in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$. The $\mathrm{O}_{\mathrm{t}}-\operatorname{Re}-\mathrm{F}_{\mu_{3}}$ angles $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are larger than the related $\mathrm{O}_{\mathrm{t}}-\mathrm{Re}-\mathrm{O}_{\mu 3}$ angle (where O_{t} is trans to $\mathrm{O}_{\mu 3}$) in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$. The $\operatorname{Re}-\mathrm{F}_{\mu}-\operatorname{Re}$ bond angles in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are significantly larger than the $\operatorname{Re}-\mathrm{F}_{\mu}-\operatorname{Re}$ bond angles in $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, whereas the $\mathrm{Re}-\mathrm{F}_{\mu_{3}}-\operatorname{Re}$ angles are smaller than the $\mathrm{Re}-\mathrm{O}_{\mu_{3}}-\mathrm{Re}$ angle.
$\left[\left\{\operatorname{ReO}_{3}(\mu-F)\right\}_{3}\left(\mu_{3}-F\right)\right]^{-}:$Calculated Vibrational Spectrum of $\left[\left\{\operatorname{ReO}_{3}(\mu-F)\right\}_{3}\left(\mu_{3^{-}}\right.\right.$ F) $]^{-}$and Comparison with That of $\left[\left\{\operatorname{ReO}_{\mathbf{3}}(\mu-\mathbf{F})\right\}_{\mathbf{3}}\left(\mu_{\mathbf{3}}-\mathbf{O}\right)\right]^{\mathbf{2 -}}$. The $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$ anion possesses 42 fundamental vibrational modes belonging to the irreducible representations $9 \mathrm{~A}_{1}+5 \mathrm{~A}_{2}+14 \mathrm{E}$ under $C_{3 \mathrm{v}}$ symmetry, where the A_{1} and E modes are Raman and infrared active and the A_{2} modes are inactive. The calculated $v\left(\operatorname{Re}-\mathrm{O}_{\mathrm{t}}\right)$ stretches of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}\left(985-1048 \mathrm{~cm}^{-1}\right)$ are expected to appear at higher frequencies $\left(30-43 \mathrm{~cm}^{-1}\right)$ than the calculated $v\left(\operatorname{Re}-\mathrm{O}_{\mathrm{t}}\right)$ stretches of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3^{-}}\right.\right.$

Ph.D. Thesis - Maria V. Ivanova

$\mathrm{O})]^{2-}$ anion (Table 3.5). This is attributed to less electron density donation into the rhenium $\mathrm{d}_{\mathrm{t}_{\mathrm{g}}}$ orbitals by $\mathrm{F}_{\mu_{3}}$ than by $\mathrm{O}_{\mu_{3}}$. In addition, the higher negative charge of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ also contributes to enhancement of the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond polarities in $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and lowering of the $\mathrm{O}_{3} \mathrm{Re}$-group stretching frequencies. Although it is possible to distinguish the two anions based on their $v\left(\mathrm{Re}-\mathrm{O}_{\mathrm{t}}\right)$ stretching frequencies, the major spectral differences arise from stretching modes involving the triply bridged central atom. In both cases, the $\nu\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$ stretches are predicted to be in-phase and out-of-phase coupled to $v\left(\operatorname{Re}^{-}-\mathrm{X}_{\mu_{3}}\right)\left(\mathrm{X}=\mathrm{O} ; 516\right.$ and $558 \mathrm{~cm}^{-1}$, respectively and $\mathrm{X}=\mathrm{F} ; 438$ and $464 \mathrm{~cm}^{-1}$, respectively). The modes in $\left[\left\{\operatorname{ReO}_{3}(\mu \mathrm{~F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$are not only predicted to occur ca. $100 \mathrm{~cm}^{-1}$ lower than in $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, their band intensities are also predicted to be extremely weak. In the experimental spectrum, four bands are observed at $510,575,580$, and $586 \mathrm{~cm}^{-1}$, and no bands are observed between 400 and $500 \mathrm{~cm}^{-1}$, confirming that the experimental spectrum is that of $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, in accord with the X-ray crystal structure. The deformation mode frequencies are similar in both anions.
$\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$. There is overall good agreement between the calculated and the experimental ${ }^{23} \mathrm{Tc}-\mathrm{O}$ and $\mathrm{Tc}-\mathrm{F}$ bond lengths of the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion (Table A4). All bond length and bond angle trends of $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$follow those calculated for their rhenium analogues. The bond angles of both isomers are essentially identical.

Ph.D. Thesis - Maria V. Ivanova

3.2.5.2. Natural Bond Orbital (NBO) Analyses

The bonding in the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions $(\mathrm{M}=$ Re, Tc) was examined by NBO analyses using the B3LYP/aug-cc-pVTZ(-PP) substitute. The respective NPA charges, valencies, and bond orders (Table 3.6) are in accordance with anticipated trends: (a) the positive charges are located on the metal atoms (Re, $2.13 / 2.16$; $\mathrm{Tc}, 1.82 / 1.82$), (b) the three terminal oxygen atoms are doubly bonded $\left(\mathrm{O}_{\mathrm{t}}\right.$ valence, ca. 1.0) to the metal atom (valencies: Re, 3.93/3.78; Tc, 3.73/3.63), (c) the dicoordinate bridging fluorine atoms (F_{μ} valence: $\mathrm{Re}, 0.55 / 0.61$; $\mathrm{Tc}, 0.58 / 0.61$) are equivalently bonded to two metal centers ($\mathrm{M}-\mathrm{F}_{\mu}$ bond order, ca. 0.3).

Significant differences are found for $\mathrm{O}_{\mu_{3}}$ and $\mathrm{F}_{\mu_{3}}$ bridge-head atoms. For the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions, the highest negative charge occurs on $\mathrm{O}_{\mu_{3}}(\mathrm{Re},-0.99 ; \mathrm{Tc}$, $-0.95)$. The $\mathrm{O}_{\mu_{3}}$ valencies ($\mathrm{Re}, 1.34 ; \mathrm{Tc}, 0.99$) and the $\mathrm{M}-\mathrm{O}_{\mu_{3}}$ bond orders (Re, $0.42 ; \mathrm{Tc}$, $0.31)$ of $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ show that $\mathrm{O}_{\mu_{3}}$ is equivalently bonded to the three M atoms. The highest negative charges in the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions are also located on the bridge-head atom, here $\mathrm{F}_{\mu_{3}}(\mathrm{Re},-0.65 ; \mathrm{Tc},-0.64)$, and are significantly lower than the $\mathrm{O}_{\mu_{3}}$ charges in the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions. The $\mathrm{F}_{\mu_{3}}$ valencies are only slightly higher (Re and $\mathrm{Tc}, 0.62$) than those of the F_{μ} atoms (valencies: Re and $\mathrm{Tc}, 0.61$; $\mathrm{M}-\mathrm{F}_{\mu}$ bond orders: $\mathrm{Re}, 0.30 ; \mathrm{Tc}, 0.28$) and are equally shared among the three metal centers $\left(\mathrm{M}-\mathrm{F}_{\mu_{3}}\right.$ bond orders: $\left.\mathrm{Re}, 0.20 ; \mathrm{Tc}, 0.19\right)$.

Ph.D. Thesis - Maria V. Ivanova
Table 3.6. NBO Natural Charges, Natural Bond Orders, and Valencies for the $\left[\left\{\mathrm{MO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{MO}_{3}\right.\right.$

$\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-b}$		$\underline{\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-b}}$		$\underline{\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-c}}$		$\underline{\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-c}}$	
Charges	Valencies	Charges	Valencies	Charges	Valencies	Charges	Valencies
2.13	3.93	2.16	3.78	1.82	3.73	1.82	3.63
-0.62	0.55	-0.60	0.61	-0.61	0.58	-0.59	0.61
-0.60	1.02	-0.57	1.02	-0.49	1.03	-0.44	1.02
-0.64	1.00	-0.54	1.04	-0.57	1.00	-0.46	1.02
-0.60	1.02	-0.57	1.02	-0.49	1.03	-0.44	1.02
-0.99	1.34	-0.65	0.62	-0.95	0.99	-0.64	0.62

Bond order
0.96
0.95
0.96
0.95
0.96
0.95
0.19
0.19
0.19
0.28
0.28
0.28
${ }^{a}$ B3LYP/aug-cc-pVTZ(-PP), $\left(C_{3 v}\right) .{ }^{b}$ For the atom labeling scheme, see Figure $3.4 .{ }^{c}$ For the atom labeling scheme, see Figure A5.

Ph.D. Thesis - Maria V. Ivanova

3.3. Conclusion

The solvolysis of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in aHF in the presence of F_{2} gas has provided a facile, high-yield, and high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ which has enabled further investigation of its Lewis acid and fluoride ion acceptor properties. The complex resulting from coordination of HF to the metal center, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, was characterized by Raman spectroscopy and single-crystal X-ray diffraction. The study of the fluoride ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ in $\mathrm{CH}_{3} \mathrm{CN}$ has led to the isolation of the novel $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3^{-}}\right.\right.$ $\mathrm{O})]^{2-}$ anion as its $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$salt, and its characterization in the solid state by Raman spectroscopy and single-crystal X-ray diffraction. The $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion was also observed in $\mathrm{CH}_{3} \mathrm{CN}$ solvent by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion provides the only example of a rhenium oxide fluoride species containing a triply coordinated oxygen atom. Quantum-chemical calculations have been used to model the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion and have provided an energy minimized geometry that is in very good agreement with the experimental structure. The Raman spectrum of the salt has been fully assigned based on the calculated vibrational modes. The proposed reaction pathways are consistent with the formation of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion in the basic solvent medium, $\mathrm{CH}_{3} \mathrm{CN}$. Attempts to synthesize the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$salt of $\left[\left\{\mathrm{ReO}_{3}(\mu-\right.\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$by analogy with the known technetium analogue failed in $\mathrm{CH}_{3} \mathrm{CN}$ and aHF solvents. Quantum-chemical calculations for the known $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions are in very good agreement with their experimental geometries. Quantum-chemical calculations also show that the related, but unknown,

Ph.D. Thesis - Maria V. Ivanova
$\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anions are expected to be stable in the gas phase.

CHAPTER 4

SYNTHESES AND STRUCTURAL CHARACTERIZATION OF THE $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$ AND fac- $\left[\operatorname{ReO}_{3} \mathbf{F}_{3}\right]^{\mathbf{2 -}}$ ANIONS AND $(\mu-\mathrm{F})_{4}\left\{\left[\boldsymbol{\mu}-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$

4.1. Introduction

The recent synthesis of high-yield, high-purity $\mathrm{ReO}_{3} \mathrm{~F}^{235}$ opened an avenue to examine its fluoride-ion acceptor properties in detail. In a prior study, the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ was shown to form the trirhenium dianion, $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ O)] ${ }^{2-235}$ which was characterized by Raman and ${ }^{19} \mathrm{~F}$ NMR spectroscopy. A single-crystal X-ray diffraction study confirmed the facial arrangement of the oxygen ligand atoms on rhenium.

There have also been several prior studies of the fluoride-ion acceptor behavior of $\mathrm{ReO}_{3} \mathrm{~F}$. Salts of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion were claimed to be synthesized by fusion of alkali metal fluorides with $\mathrm{ReO}_{3} \mathrm{~F}$ at $150-160{ }^{\circ} \mathrm{C}$ (eq 4.1). ${ }^{27}$ The starting material, which was

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{MF} \xrightarrow{150-160^{\circ} \mathrm{C}} \mathrm{M}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right] \quad(\mathrm{M}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}) \tag{4.1}
\end{equation*}
$$

identified as $\mathrm{ReO}_{3} \mathrm{~F}$ by chemical analysis, infrared spectroscopy, and a melting point determination, was synthesized by reaction of ReOF_{5} with $\mathrm{Re}_{2} \mathrm{O}_{7}$ at $150-200{ }^{\circ} \mathrm{C}$ for 2-3 h (eq 4.2). The experimental data supporting the above finding was not provided by the

$$
\begin{equation*}
\mathrm{ReOF}_{5}+2 \mathrm{Re}_{2} \mathrm{O}_{7} \xrightarrow{150-200{ }^{\circ} \mathrm{C}} 5 \mathrm{ReO}_{3} \mathrm{~F} \tag{4.2}
\end{equation*}
$$

authors, moreover, in the present work it has been shown by Raman spectroscopy that $\mathrm{ReO}_{3} \mathrm{~F}$ decomposes to $\mathrm{Re}_{2} \mathrm{O}_{7}$ at temperatures $>112{ }^{\circ} \mathrm{C}$. In a recent overview of the known syntheses of $\mathrm{ReO}_{3} \mathrm{~F}$, Seppelt ${ }^{21}$ has commented on the melting and boiling points of $\mathrm{ReO}_{3} \mathrm{~F}$
he had obtained by differential scanning calorimetry and concluded that the previously determined melting ($147{ }^{\circ} \mathrm{C}$) and boiling ($164{ }^{\circ} \mathrm{C}$) points of $\mathrm{ReO}_{3} \mathrm{~F}$ must be revised; therefore, the assignment of the product resulting from eq 2 , based on melting point alone, is suspect. The products resulting from the reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ with alkali metal fluorides $\mathrm{KF}, \mathrm{RbF}$, and $\mathrm{CsF},{ }^{27}$ were pale yellow in color and were characterized by chemical analyses ($\mathrm{Re}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$, and F) and infrared spectra of the products which were only generally assigned and which showed two absorption band regions consisting of three peaks, at $425-550$ ($\mathrm{Re}-\mathrm{F}$ stretching region) and $880-1000 \mathrm{~cm}^{-1}$ ($\mathrm{Re}-\mathrm{O}$ stretching region).

In another study, the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion has also been claimed to form by reaction of KF with $\mathrm{ReO}_{3} \mathrm{~F}$. The latter was formed in situ by reaction of $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ with IF_{5} at room temperature (eq 4.3). ${ }^{36}$ The resulting $\mathrm{K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salt was isolated from KIO_{3} and $\mathrm{IO}_{2} \mathrm{~F}$,

$$
\begin{equation*}
5 \mathrm{~K}\left[\mathrm{ReO}_{4}\right]+6 \mathrm{KF}+2 \mathrm{IF}_{5} \xrightarrow{\mathrm{IF}_{5}} 5 \mathrm{~K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]+\mathrm{KIO}_{3}+\mathrm{IO}_{2} \mathrm{~F} \tag{4.3}
\end{equation*}
$$

which were identified by infrared spectroscopy, by reduction and dissolution of KIO_{3} and $\mathrm{IO}_{2} \mathrm{~F}$ with KF in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$, in which $\mathrm{K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ proved to be insoluble. It is noteworthy that there was no definitive characterization of $\mathrm{ReO}_{3} \mathrm{~F}$ provided in the latter work. The product, $\mathrm{K}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, was reported to decompose at $220-230{ }^{\circ} \mathrm{C}$. The salt was characterized by gravimetric analyses (Re, K, and F) and by Raman and infrared spectroscopies.

The reaction of $\mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{DMF}$ with $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F}$ in ethanol was also reported to result in the formation of the yellow-grey $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$ salt (eq 4.4), which was

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{DMF}+2\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F} \longrightarrow\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]+2 \mathrm{DMF}\right. \tag{4.4}
\end{equation*}
$$

isolated by washing the solid in ethanol and drying the product at $150{ }^{\circ} \mathrm{C}$ under vacuum. ${ }^{37}$ The DMF adduct was synthesized by reaction of DMF with $\mathrm{ReO}_{3} \mathrm{~F}$. The latter was formed by reaction of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with HF (eq 4.5). The adduct was isolated by removal of $\mathrm{H}_{2} \mathrm{O}$ under

$$
\begin{equation*}
\mathrm{Re}_{2} \mathrm{O}_{7}+2 \mathrm{HF}+4 \mathrm{DMF} \longrightarrow 2 \mathrm{ReO}_{3} \mathrm{~F} \cdot 2 \mathrm{DMF}+\mathrm{H}_{2} \mathrm{O} \tag{4.5}
\end{equation*}
$$

vacuum and characterized by infrared spectroscopy and elemental analyses ($\mathrm{Re}, \mathrm{C}, \mathrm{H}$, and N). Although it was claimed that the synthesis of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$ was carried out under anhydrous conditions; however, the first synthesis of truly anhydrous $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right] \mathrm{F}$ was only accomplished 13 years later; ${ }^{179}$ therefore, the reaction described in eq 4 could have instead resulted in the formation of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{4}\right]$ by hydrolysis of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$ (eq 4.6). ${ }^{36}$

$$
\begin{equation*}
\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{4}\right]+\mathrm{HF}+\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{HF}_{2}\right] \tag{4.6}
\end{equation*}
$$

Failed attempts to synthesize the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion by reactions of $\mathrm{Na}\left[\mathrm{ReO}_{4}\right]$ with $\mathrm{CsF}, \mathrm{RbF},\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right] \mathrm{F}$, and $\left[\mathrm{R}_{4} \mathrm{~N}\right] \mathrm{F}$ have also been reported. ${ }^{236}$

All of the aforementioned studies proposed that ligand arrangement was meridional for the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion based on the number of $\mathrm{Re}-\mathrm{O}$ stretching bands observed in the corresponding infrared and Raman spectra. However, these early findings contrast with the facial geometry subsequently reported for isoelectronic $\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-},{ }^{39}$ $\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right]^{2-237-239}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}{ }^{235}$

Attempts to synthesize the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with alkali metal fluorides in 1:1 molar ratios and heating the mixtures to $150-160{ }^{\circ} \mathrm{C}$ were unsuccessful due to the thermal instability of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion at the synthetic temperature. ${ }^{27}$

Although several unconfirmed syntheses of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ salts have been reported, salts containing an isolated $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion are unknown.

In the present study, access to high-purity $\mathrm{ReO}_{3} \mathrm{~F}^{235}$ has enabled the reinvestigation of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion and the unlikely possibility that its geometry is meridional. For this reason, the $\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}, \mathrm{Cs}^{+}$, and $[\mathrm{NO}]^{+}$salts of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion were synthesized. The study also provides the first synthesis of the presently unknown $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion as its $\mathrm{Cs}^{+}, \mathrm{K}^{+},\left[\mathrm{NH}_{4}\right]^{+}$, and $[\mathrm{NO}]^{+}$salts.

Until now, it was thought that the list of structurally characterized neutral rhenium(VII) oxide fluorides, $\mathrm{ReO}_{3} \mathrm{~F}, \mathrm{ReO}_{2} \mathrm{~F}_{3}$, and ReOF_{5}, was complete. ${ }^{19}$ The present study; however, reports the synthesis of a new neutral rhenium(VII) oxide fluoride, (μ -$\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, a rare example of an O -bridged rhenium oxide fluoride.

In no case has $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ been definitely characterized. In the present work, both the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anions and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ were unambiguously characterized for the first time by single-crystal X-ray diffraction and Raman spectroscopy.

4.2. Results and Discussion

4.2.1. Syntheses of $M\left[\operatorname{ReO}_{3} F_{2}\right]\left(M=C s,[N O], K\right.$, and $\left.\left[\mathrm{NH}_{4}\right]\right), \mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, $\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

The reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ with CsF and NOF and $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ with aHF always resulted in the formation of mixtures of several salts. The individual components of each reaction mixture have been identified by Raman spectroscopy and single-crystal X-ray
diffraction and are discussed in their respective sections. The Raman spectra indicated that the sample compositions were not homogeneous. Spectra were recorded in sample regions in which the concentration of the species of interest was optimal.

4.2.1.1 $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

The $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salts were formed in admixture with $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$, and $\mathrm{Cs}\left[\mathrm{ReO}_{4}\right]^{187}$ (eq 4.7), and resulted from the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with

$$
\begin{align*}
\mathrm{ReO}_{3} \mathrm{~F}+1(2) \mathrm{CsF} \xrightarrow{\mathrm{HF}} & \mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right], \mathrm{Cs}\left[\mathrm{ReO}_{4}\right], \\
& \mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right] \tag{4.7}
\end{align*}
$$

CsF at room temperature. Both $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ were isolated as the major products when $\mathrm{ReO}_{3} \mathrm{~F}$ and CsF were reacted in $1: 1$ and 1:2 molar ratios, respectively. Other salts, $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right], \mathrm{Cs}\left[\mathrm{ReO}_{4}\right]$, and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$, also formed in eq 4.7, are apparently the products of competing HF solvolysis reactions of $\mathrm{ReO}_{3} \mathrm{~F}$ in the presence of $\mathrm{F} .{ }^{235}$ The product mixtures were soluble in aHF at room temperature forming yellow to pale yellow solutions. All attempts to crystallize $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ by cooling the solutions at temperatures ranging from $-10{ }^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$ only resulted in the crystallization of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ (see Appendix B), whose anion structures were already known. ${ }^{19}$ The $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ salt was, however, isolated in crystalline form at room temperature in admixture with $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and other reaction products, which deposited as white solids, upon removal of aHF by static distillation into the side arm of the reaction vessel which had been pre-cooled to $-78{ }^{\circ} \mathrm{C}$.

Ph.D. Thesis - Maria V. Ivanova

4.2.1.2. $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$

$[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathbf{F}_{3}\right]$. The salt, $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, was synthesized along with $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ by the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with excess NOF at $-20{ }^{\circ} \mathrm{C}$ over a period of four days. It was isolated as a white solid upon removal of unreacted NOF under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ (eq 4.8) and was characterized by Raman

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{xs} \mathrm{NOF} \xrightarrow{-20^{\circ} \mathrm{C}}\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right],[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right],[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]\right. \tag{4.8}
\end{equation*}
$$

spectroscopy. Additional Raman bands that could not be assigned to $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, were assigned to $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ by analogy with the known Raman spectra of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-19}$ and $\left[\mathrm{ReO}_{4}\right]^{-187}$ Attempts to dissolve $\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\right.$ in aHF at $-78{ }^{\circ} \mathrm{C}$ resulted in the formation of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, which was insoluble at that temperature, and the soluble salt, $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, as the only reaction products.
$[\mathbf{N O}]\left[\operatorname{ReO}_{3} \mathbf{F}_{2}\right]$. The salt, $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, formed in admixture with $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ (eq 4.8) upon removal of one equivalent of NOF under dynamic vacuum at room temperature (eq 4.9) from $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ which was formed in eq 4.8. The solid

$$
\begin{equation*}
\left[\mathrm{NO}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right] \longrightarrow[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]+\mathrm{NOF}\right. \tag{4.9}
\end{equation*}
$$

mixture containing $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$, $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, and $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ readily dissolved in aHF at room temperature forming a pale yellow solution. Crystals of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ were grown by static distillation of aHF into the pre-cooled side arm of the FEP reaction vessel, whereas $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ precipitated as a white solid. The resulting product mixture was characterized by Raman spectroscopy and suitable crystals of $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ were obtained for a single-crystal X-ray structure determination and a unit-cell determination, respectively.

4.2.1.3. $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

The $\mathrm{M}\left[\mathrm{ReO}_{4}\right]\left(\mathrm{M}=\mathrm{K}\right.$ and $\left.\left[\mathrm{NH}_{4}\right]\right)$ salts were solvolyzed in aHF in an attempt to synthesize the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion. The solvolyses of $\mathrm{M}\left[\mathrm{TcO}_{4}\right](\mathrm{M}=\mathrm{K}$ and [$\left.\mathrm{NH}_{4}\right]$) in aHF have been previously shown to yield the analogous technetium anion, $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$, which has been characterized by single-crystal X-ray diffraction. ${ }^{23}$ The reactions of $\mathrm{M}\left[\mathrm{ReO}_{4}\right]$ with aHF (eq 4.10 and 4.11), however, resulted in the

$$
\begin{align*}
{\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]+\text { xsHF } \longrightarrow } & {\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right],\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \text { and } / \text { or } } \\
& {\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right],\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right] } \tag{4.10}\\
\mathrm{K}\left[\mathrm{ReO}_{4}\right]+\text { xsHF } \longrightarrow & \mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \mathrm{K}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \text { and } / \text { or } \\
& \mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right], \mathrm{K}\left[\mathrm{ReO}_{4}\right], \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right] \tag{4.11}
\end{align*}
$$

formation of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{K},\left[\mathrm{NH}_{4}\right]\right)$, and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ in admixture with $[\mathrm{M}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and/or $[\mathrm{M}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$, and $\mathrm{M}\left[\mathrm{ReO}_{4}\right]$, which were isolated by removal of aHF under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ followed by drying the solid mixtures at room temperature. The individual components of the solid mixtures were identified by Raman spectroscopy. Although it seemed plausible, the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion was not identified as a product of the HF solvolysis of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ (eq 4.10) by either Raman spectroscopy or X-ray diffraction.

The salt mixtures readily dissolve in aHF at room temperature forming yellow solutions. Crystals of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ along with the crystals of a byproduct, $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$, whose anion structure is known, were grown by static distillation of aHF into the pre-cooled side arms of their corresponding reactors, whereas $\mathrm{M}\left[\mathrm{ReO}_{4}\right]$ and $\mathrm{M}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ precipitated as white solids. The isolated product mixtures were
characterized by Raman spectroscopy and suitable crystals of $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{NH}_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ were obtained for single-crystal X-ray structure determinations.

4.2.1.4. Synthesis of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}$

The new neutral rhenium oxide fluoride, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$, was synthesized by reaction of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ with $\mathrm{ReO}_{3} \mathrm{~F}$ in a $3: 1$ stoichiometric ratio in $\mathrm{SO}_{2} \mathrm{ClF}$ at room temperature (eq 4.12). The colorless $\mathrm{SO}_{2} \mathrm{ClF}$ solvate crystallized at room

$$
\begin{equation*}
3 \mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{ReO}_{3} \mathrm{~F} \longrightarrow(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF} \tag{4.12}
\end{equation*}
$$

temperature upon slow static distillation of $\mathrm{SO}_{2} \mathrm{ClF}$ (under 1.1 atm of N_{2} gas) into the cooled $\left(-78^{\circ} \mathrm{C}\right)$ side arm of the FEP reaction vessel. The isolated crystalline material, ($\mu-$ $\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$, was characterized by Raman spectroscopy and was used to obtain its single-crystal X-ray structure (see Experimental Section).

4.2.2. X-ray Crystallography

Details of the data collection and other crystallographic information for $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right], \quad \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \quad(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$, $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$, and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ are provided in Table 4.1. Important bond lengths and bond angles are provided in Tables $4.2-4.4$, B1, and B2. The crystal structures of the
Table 4.1. Summary of Crystal Data and Refinement Results for $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ (1), $\mathrm{Cs}\left[\operatorname{ReO} \mathrm{F}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$ (2), $\mathrm{Cs}[\mu-\mathrm{F}$

${ }^{a} R_{1}$ is defined as $\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| \Sigma\right| F_{\mathrm{o}}\right|\right.$ for $I>2 \sigma(I) .{ }^{b} w R_{2}$ is defined as $\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ for $I>2 \sigma(I)$.

Table 4.2 Experimental Geometrical Parameters for the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Anion in $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ and Calculated Bond Lengths and Bond Angles for $[(\mu-$ $\left.\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$

${ }^{a}$ For the atom labeling scheme see Figure 4.1a. ${ }^{b}$ The aug-cc-pVTZ(-PP) basis set was used. For the atom labeling scheme see Figure 4.1b.
a

b

Figure 4.1. (a) A part of the oligomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion in the crystal structure of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$. Thermal ellipsoids are shown at the 50% probability level.
(b) Calculated structure of the hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ anion (B3LYP/aug-cc-pVTZ(-PP)).

Table 4.3. Experimental and Calculated $\left(C_{3 \mathrm{v}}\right)$ Bond Lengths (\AA) and Bond Angles (deg) for the $\mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion

exptl ${ }^{a}$		calcd ${ }^{\text {b }}$	
		B3LYP	PBE1PBE
Bond lengths (A)			
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.743(4)	1.735	1.722
$\mathrm{Re}_{1}-\mathrm{F}_{1}$	1.964(4)	2.035	2.017
$\mathrm{K}---\mathrm{O}_{1}$	2.840(4)		
K--- F_{2}	2.893(4)		
Bond Angles (${ }^{\circ}$)			
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{1 \mathrm{~A}}$	98.9(2)	100.9	101.0
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	166.6(2)	89.0	89.0
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	88.3(2)	164.2	164.0
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~B}}$	91.0(2)	89.0	89.0
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	80.3(2)	78.8	78.6

${ }^{a}$ For the atom labeling scheme see Figure $4.2 \mathrm{a} .{ }^{b}$ For the atom labeling scheme see Figure 4.2b. The aug-cc-pVTZ(-PP) basis set was used.

Figure 4.2. (a) The $\mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion in the crystal structure of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated structure of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion (B3LYP/aug-cc-pVTZ(-PP)).

Table 4.4. Experimental Geometrical Parameters for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Geometrical Parameters for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)$

exptl ${ }^{\text {a }}$				calcd ${ }^{\text {b }}$	
				B3LYP	PBE1PBE
Bond Lengths (A)					
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.667(11)	$\mathrm{Re}_{3}-\mathrm{O}_{5}$	1.648(13)	1.671	1.659
$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.640(13)	$\mathrm{Re}_{3}-\mathrm{O}_{6}$	1.676(13)	1.671	1.659
$\mathrm{Re}_{2}-\mathrm{O}_{3}$	1.654(12)	$\mathrm{Re}_{4}-\mathrm{O}_{7}$	1.671(12)	1.674	1.662
$\mathrm{Re}_{2}-\mathrm{O}_{4}$	1.653(12)	$\mathrm{Re}_{4}-\mathrm{O}_{8}$	1.642(12)	1.674	1.662
$\mathrm{Re}_{2}-\mathrm{O}_{9}$	1.868(10)	$\mathrm{Re}_{4}-\mathrm{O}_{9}$	1.871(11)	1.876	1.862
$\mathrm{Re}_{1}-\mathrm{F}_{1}$	1.832(10)	$\mathrm{Re}_{3}-\mathrm{F}_{4}$	1.819(9)	1.840	1.826
$\mathrm{Re}_{1}-\mathrm{F}_{2}$	1.870(11)	$\mathrm{Re}_{3}-\mathrm{F}_{5}$	1.849(11)	1.850	1.836
$\mathrm{Re}_{2}-\mathrm{F}_{3}$	1.856(8)	$\mathrm{Re}_{4}-\mathrm{F}_{6}$	1.863(9)	1.844	1.831
$\mathrm{Re}_{1}-\mathrm{F}_{7}$	2.080(9)	$\mathrm{Re}_{3}-\mathrm{F}_{8}$	2.095(8)	2.115	2.097
$\mathrm{Re}_{1}-\mathrm{F}_{10}$	2.062(9)	$\mathrm{Re}_{3}-\mathrm{F}_{9}$	2.079(9)	2.115	2.097
$\mathrm{Re}_{2}-\mathrm{F}_{7}$	2.099(9)	$\mathrm{Re}_{4}-\mathrm{F}_{9}$	2.087(9)	2.131	2.112
$\mathrm{Re}_{2}-\mathrm{F}_{8}$	2.107(8)	$\mathrm{Re}_{4}-\mathrm{F}_{10}$	2.071(10)	2.131	2.112

${ }^{a}$ For the atom labeling scheme, see Figure $4.3 \mathrm{a} .{ }^{b}$ For the atom labeling scheme, see Figure 4.3b. The aug-cc-pVTZ(-PP) basis set was used.

Figure 4.3. (a) The $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ molecule in the crystal structure of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated structure of $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (B3LYP/aug-cc-pVTZ(-PP)).
$\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]$ salts (Figure B2) are discussed in the Appendix B.

4.2.2.1. $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$

Crystal Packing and Secondary Contacts. The crystal structure of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ consists of infinite chains of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anions running along the b axis with the $\left[\mathrm{NH}_{4}\right]^{+}$cations stacked between the chains along the same axis (Figures B3). The chains interact with the cations through weak contacts $\left(\left(\mathrm{H}_{4}\right) \mathrm{N} \cdots \mathrm{F}, 2.882(3) \AA\right.$; $\left(\mathrm{H}_{4}\right) \mathrm{N} \cdots \mathrm{O}, 2.813(3) \AA$, where the contacts are comparable to the sums of the Waddington $\left(\left[\mathrm{NH}_{4}\right]^{+}, 1.43 \AA^{240}\right)$ and van der Waals radii $(\mathrm{O}, 1.52 \AA \text {) ; } \mathrm{F}, 1.47 \AA)^{241}$ $\left(\left(\mathrm{H}_{4}\right) \mathrm{N} \cdots \mathrm{F}, 2.90 \AA ;\left(\mathrm{H}_{4}\right) \mathrm{N} \cdots \mathrm{O}, 2.95 \AA\right)$. There are also other weak contacts between the $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-units within the same chain, the shortest being $\mathrm{O} \cdots \mathrm{O}(2.844(3) \AA$) $\mathrm{O} \cdots \mathrm{F}$ $(2.627(3) \AA)$, and $\mathrm{F} \cdots \mathrm{F}(2.478(2) \AA)$. The $\mathrm{O} \cdots \mathrm{O}$ contacts are close to the sum of the van der Waals radii $(3.04 \AA),{ }^{241}$ whereas the $\mathrm{F} \cdots \mathrm{O}$ and $\mathrm{F} \cdots \mathrm{F}$ contacts are significantly shorter than the sums of their van der Waals radii (2.99 and $2.94 \AA$, respectively). ${ }^{241}$
$\left[\mathbf{R e O}_{3} \mathbf{F}_{\mathbf{2}}\right]^{-}$. The $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion has an open chain structure, where the $\mathrm{ReO}_{3} \mathrm{~F}_{2}{ }^{-}$ units are bridged through fluorine atoms (Figure 4.1). Each $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-unit consists of a rhenium atom bonded to three oxygen atoms that are cis to one another and trans to terminal (1 x) or bridging fluorine (2 x) atoms, providing a pseudo-octahedral environment around the Re atom. The facial arrangement of the oxygen atoms in the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion provides a greater degree of π-bonding with the empty set of $d_{t_{2 g}}$ orbitals on rhenium than a meridional arrangement would provide. ${ }^{17}$

The $\mathrm{Re}-\mathrm{O}$ bond length trans to the terminal fluorine atom $\left(\mathrm{Re}-\mathrm{O}_{\mathrm{t}}, 1.726(2) \AA\right.$) is comparable to those of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(1.753(9) \AA)^{19}$ and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$ (1.715(8) and $1.695(9) \AA$), ${ }^{19}$ but longer than the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$ $(1.678(9) \AA)^{19}$ and $\left[\mathrm{ReOF}_{6}\right]^{-}\left(\mathrm{Cs}^{+}, 1.671(7) \AA\right) .{ }^{16}$ The Re-O bond lengths trans to the bridging fluorine atoms $\left(\operatorname{Re}-\mathrm{O}_{\mathrm{tb}}, 1.703(2)\right.$ and $\left.1.705(2) \AA\right)$ are shorter than the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond length and comparable to those of $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(1.678(7), 1.694(8)$, $1.669(8)$, and $1.683(7) \AA),{ }^{19}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}(1.700(4)-1.713(4) \AA),{ }^{235} \mathrm{ReO}_{2} \mathrm{~F}_{3}$ $\left(1.675(8),{ }^{19} 1.675(8)-1.682(6) \AA^{21}\right)$, and $\mathrm{ReO}_{3} \mathrm{~F}(1.715(8), 1.685(9) \AA) .{ }^{21}$

The terminal $\operatorname{Re}-\mathrm{F}$ bond length $\left(1.939(2) \AA\right.$) is comparable to the terminal $\operatorname{Re}-\mathrm{F}_{\mathrm{ax}}$ bond length of $\left[\mathrm{ReOF}_{6}\right]^{-}\left(\mathrm{Cs}^{+}, 1.923(6) \AA\right)^{16}$ and intermediate with respect to those of $[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(1.893(8) \AA)^{19}$ and $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}(2.002(7) \AA){ }^{19}$ The bridging $\mathrm{Re}-\mathrm{F}_{\mu}$ bond lengths are comparable to those of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (2.062(9)-2.139(8) \AA), $\operatorname{ReO}_{3} \mathrm{~F}(2.141(7), 2.142(7) \AA)^{21}$ and $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}(2.139(3)-2.166(3)$ A). ${ }^{235}$

As predicted by the VSEPR model, the $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ angles are greater than 90° due to the greater steric requirements of oxygen double bond domains and their associated double bond-double bond repulsion.

4.2.2.2. $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

The potassium cation in the crystal structure of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ forms twelve contacts with four anions: six contacts with oxygen atoms ($6 \mathrm{x} 2.840(5) \AA$) and six contacts with fluorine atoms ($6 \mathrm{x} 2.893(4) \AA$) (Figure B4). There are also several weak
$\mathrm{F} \cdots \mathrm{O}\left(\mathrm{H}_{3}\right)$ contacts between the anions and the $\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$cations. The shortest $\mathrm{F} \cdots \mathrm{O}\left(\mathrm{H}_{3}\right)$ (2.682(4) \AA) contacts is near the sum of the van der Waals radii $(2.99 \AA) .{ }^{241}$

The crystal structure of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion consists of a rhenium atom bonded to three oxygen atoms that are cis to one another and trans to three fluorine atoms, providing a pseudo-octahedral environment around the Re atom (Figure 4.2a). The facial arrangement of the oxygen atoms allows a greater degree of π-bonding with the empty set of $d_{t_{2 g}}$ orbitals on rhenium and is in agreement with the facial geometries observed in fac$\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right]^{2-},{ }^{237-239}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-},{ }^{235} \quad\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}, \quad$ and isoelectronic fac$\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-39}$. The observed fac-coordination contradicts the previous spectroscopic interpretations which reported a meridional arrangement of oxygen atoms for mer$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ (see above). ${ }^{27,36,37}$

The $\mathrm{Re}-\mathrm{O}$ bonds ($3 \mathrm{x} 1.743(4) \AA$) are comparable, within $\pm 3 \sigma$, to the $\mathrm{Re}-\mathrm{O}$ bonds of $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right](1.698(21) \text { and } 1.704(17) \AA)^{238}$ and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$. The $\mathrm{Re}-\mathrm{O}$ bonds are, however, longer than those of $\left[\mathrm{NH}_{4}\right]_{3}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl}(1.720(2) \AA),{ }^{239}$ which may be explained by the stronger cation-anion interactions that occur in $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right](\mathrm{O} \cdots \mathrm{K}$, $2.840(4) \AA$) when compared to the cation-anion interactions in $\left[\mathrm{NH}_{4}\right]_{3}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl}$ $\left(\mathrm{O} \cdots \mathrm{N}\left(\mathrm{H}_{4}\right),(3.065(2) \AA)\right)$.

The $\mathrm{Re}-\mathrm{F}$ bonds ($3 \mathrm{x} 1.964(4) \AA$) in $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ are significantly longer than the terminal $\mathrm{Re}^{-\mathrm{F}}$ bonds in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}(1.816(9)-1.870(11) \AA)$, $[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}(1.893(8) \AA),{ }^{19}$ and are comparable, within $\pm 3 \sigma$, to those of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$ (1.943(2) Å).

The $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ angles $\left(3 \times 98.9(2)^{\circ}\right)$ are greater than 90° and are bent away from the oxygen double bond moiety toward the terminal fluorine atoms, as observed in other rhenium oxide fluoride anions (see above). The angles are comparable, within $\pm 3 \sigma$, to the $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles of $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right] \quad\left(103.7(9)^{\circ}\right)^{238}$ and $\left[\mathrm{NH}_{4}\right]_{3}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl}$ $\left(103.5(1)^{0}\right) .{ }^{239}$ The $\mathrm{F}_{\mathrm{t}}-\mathrm{Re}-\mathrm{F}_{\mathrm{t}}\left(3 \times 80.3(2)^{\mathrm{o}}\right)$ angles are comparable to the $\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}$ angles in $\left[\mathrm{NH}_{4}\right]_{3}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl}\left(79.8(1)^{\mathrm{o}}\right)^{239}$ and the $\mathrm{F}_{\mathrm{t}}-\mathrm{Re}-\mathrm{F}_{\mathrm{t}}$ angles in $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}\left(82.8(3)^{\mathrm{o}}\right),{ }^{19}[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}\left(82.3(4)^{\mathrm{o}}\right),{ }^{19}$ and $\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}\left(82.0(4)^{\mathrm{o}}, 82.4(3)^{\mathrm{o}}, 82.7(3)^{\mathrm{o}}\right.$, and $\left.83.0(4)^{\mathrm{o}}\right) .{ }^{19}$

4.2.2.3. $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}$

The crystal structure of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}$ consists of wellseparated $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ cages and $\mathrm{SO}_{2} \mathrm{ClF}$ molecules whose shortest intermolecular contact distances (Table B1) are near the sums of the O, F, and Cl van der Waals radii ($\mathrm{O} \cdots \mathrm{O}, 3.04 ; \mathrm{O} \cdots \mathrm{Cl}, 3.27 ; \mathrm{F} \cdots \mathrm{Cl}, 3.22 ; \mathrm{F} \cdots \mathrm{F}, 2.94$, and $\mathrm{F} \cdots \mathrm{O}, 2.99 \AA$). ${ }^{241}$ The $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ and $\mathrm{SO}_{2} \mathrm{ClF}$ molecules are packed along the b-axis, where the $\mathrm{SO}_{2} \mathrm{ClF}$ molecules occupy voids between the cages. The $\mathrm{SO}_{2} \mathrm{CIF}$ molecules are positionally disordered (50/50; Figure B1) and their bond lengths and bond angles are in good agreement with previously published values, ${ }^{242}$ requiring no further discussion.

Each $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ cage consists of two oxygen-bridged $\mathrm{ReO}_{2} \mathrm{~F}$-units that are also fluorine bridged to two $\mathrm{ReO}_{2} \mathrm{~F}_{2}$-units to give a distorted tetrahedron whose vertices are occupied by four six-coordinate rhenium atoms (Figure 4.3a). The terminal $\operatorname{Re}-\mathrm{O}$ bonds $(1.640(13)-1.700(11) \AA$) are cis to one another and trans
to bridging $\operatorname{Re}-\mathrm{F}_{\mu}$ bonds (2.062(9)-2.139(8) \AA) (Tables 4.4 and B1). The terminal $\mathrm{Re}-\mathrm{O}$, $\operatorname{Re}-\mathrm{F}\left(1.816(9)-1.870(11) \AA\right.$), and bridging $\mathrm{Re}-\mathrm{F}_{\mu}$ bond lengths are similar to those previously reported for $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ (phases I-IV) ${ }^{21}$ and $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}{ }^{19}$ The trend observed among the $\mathrm{O}-\mathrm{Re}-\mathrm{O}>\mathrm{O}-\mathrm{Re}-\mathrm{F}>\mathrm{F}-\mathrm{Re}-\mathrm{F}_{\mu}$ bond angles (Tables 4.4 and B1) is in accordance with the trend observed in the structurally related tetramer, $\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{4}$ (phase IV). ${ }^{21}$

The $\mathrm{Re}-\mathrm{O}_{\mu}$ bond lengths (1.853(10)-1.883(10) \AA) are intermediate with respect to the terminal $\mathrm{Re}-\mathrm{O}$ and $\mathrm{Re}-\mathrm{F}_{\mu}$ bond lengths (see above), and are comparable to the $\mathrm{Re}-\mathrm{O}_{\mu}$ bond lengths of $\mathrm{ReO}_{3} \mathrm{~F}(1.865(7)-1.907(7) \AA),{ }^{21}$ the only other neutral rhenium oxide fluoride that contains an oxygen bridge. As expected, the $\operatorname{Re}-\mathrm{O}_{\mu}$ bonds of $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ are shorter than the $\mathrm{Re}-\mathrm{O}_{\mu_{3}}$ bonds of $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})]^{2-} \quad(2.072(4)-2.079(4) \quad \AA) .{ }^{235} \quad$ The $\quad \mathrm{Re}-\mathrm{O}_{\mu}-\mathrm{Re}$ angles of $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(162.7(6)\right.$ and $\left.160.6(6)^{\circ}\right)$ are more open than those of $\mathrm{ReO}_{3} \mathrm{~F}$ (117.7(3) and $\left.115.9(6)^{\circ}\right)^{21}$ and $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}\left(109.1(2)-110.6(2)^{\circ}\right)^{235}$ due to less constraint than in the latter species.

4.2.3. Raman Spectroscopy

The low-temperature Raman spectra shown in Figures 4.4, B5, B6, B7, 4.5, and B8 were recorded on product mixtures (see Experimental Section), where the compounds of interest, $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=[\mathrm{NO}],\left[\mathrm{NH}_{4}\right]\right.$, and Cs$), \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right], \mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, are the major species in their respective spectra. The lowtemperature Raman spectra of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ are

Ph.D. Thesis - Maria V. Ivanova

Figure 4.4 Raman spectrum of crystalline [NO$]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote an FEP sample tube line $\left(^{*}\right)$, instrumental artifact (\dagger), overlap of a $[\mathrm{NO}]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with an FEP sample tube line (\ddagger). The $[\mathrm{NO}]^{+}$ bands appear at $2251(11), 2268(95)$, and $2285(5) \mathrm{cm}^{-1}$.

Figure 4.5. Raman spectrum of a solid mixture of crystalline $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line $(*)$, instrumental artifact (\dagger), overlap of a $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ line with an FEP sample tube line (\ddagger), a $[\mathrm{NO}]\left[\mathrm{ReO}_{4}\right]$ line (\#), a $[\mathrm{NO}]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ line (§), and a $\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{\infty}$ line (\&). The $[\mathrm{NO}]^{+}$bands appear at 2282(35) and 2304(75) cm^{-1}.
shown in Figure 4.6. The observed and calculated frequencies and mode descriptions for $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\mathrm{Cs},[\mathrm{NO}], \mathrm{K},\left[\mathrm{NH}_{4}\right]\right), \mathrm{M}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]\left(\mathrm{M}=\mathrm{Cs},[\mathrm{NO}], \mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\right)$, and $(\mu-$ F) $)_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ are provided in Tables 4.5-4.7 and B3. Spectral assignments were made by comparison with the calculated frequencies and Raman intensities for $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{~h}}\right)\left(\right.$ Table 4.5), fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ (Table 4.6), mer $-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$ (Table B3), $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)$ (Table B4), and $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)$ (Table 4.7 and B 2), which were optimized at the B3LYP/aug-cc-pVTZ(-PP) and PBE1PBE/aug-cc-pVTZ(-PP) levels of theory. Spectral assignments for $\mathrm{SO}_{2} \mathrm{ClF},{ }^{243}\left[\mathrm{NH}_{4}\right]^{+234}$ and $[\mathrm{NO}]^{+100,244,245}$ were made by comparison with previously published assignments and require no further discussion. The vibrational assignments for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ were also confirmed by an ${ }^{18}$ O-enrichment study.

4.2.3.1. $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$

The monomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion $\left(C_{\mathrm{s}}\right)$ possesses 12 fundamental vibrational modes that span the irreducible representations $8 \mathrm{~A}^{\prime}+4 \mathrm{~A}^{\prime \prime}$, where all vibrations are Raman and infrared active (Table B4, Appendix B). In view of the chain-like structure, and although the Raman spectrum of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$could be assigned based on the calculated frequencies and intensities of monomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)$, another model, the cyclic $[(\mu-$ $\left.\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{v}}\right)$ anion, was also considered to account for possible coupling between bridging $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-units of the open-chain structure (Figure 4.1).

Ph.D. Thesis - Maria V. Ivanova

Figure 4.6. Raman spectra of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ recorded at -140 ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation for natural abundance (lower trace) and $\sim 97 \%$ ${ }^{18} \mathrm{O}$-enriched (upper trace). Symbols denote an FEP sample tube line $\left(^{*}\right)$, instrumental artifact (\dagger), overlap of a $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ line with an FEP sample tube line (\ddagger), and small quantities of ${ }^{16} \mathrm{O}$ and ${ }^{16 / 18} \mathrm{O}$ isotopomers (§).
Table 4.5. Experimental Raman Frequencies and Intensities for $\mathrm{M}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(\mathrm{M}=\left[\mathrm{NH}_{4}\right], \mathrm{K}, \mathrm{Cs},[\mathrm{NO}]\right)$ and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for the Hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ Anion

$\operatorname{exptl}^{\text {a,b }}$			
Cs^{+}	$[\mathrm{NO}]^{+e}$	$\left[\mathrm{NH}_{4}\right]^{+f}$	K^{+}
980(100)	981(88)	986(100)	980(100)
933(12)	933(13)	948(4)	936(24)
922(55)	927(21)	938(14)	931(22) sh
914(4)	904(42)	925(39)	$\left\{\begin{array}{l}925(14)^{g} \\ 897(12)\end{array}\right.$
910 sh	896(27)	925(39)	897(12) ${ }^{\text {g }}$

$531(1) \quad 535(1) \quad 525(<1)$
 389(4)[32] $379(20)[0]$
$382(0)[0]$
377(3)[235] $346(0)[0]$
$322(1)[10]$
$300(2)[0]$

PBE1PBE
1027(238)[197]
$1020(<1)[60]$
$1015(1)[0]$

954(<1)[503]
$945(130)[0]$
$944(<1)[0]$ 937(1)[533] 568(6)[395] $557(<1)[80]$ $555(<1)[0]$
$431(<1)[0]$ $416(<1)$ [192]
[6Z] (I) LOt 403(2)[21] [0](I) $10 t$
401(<1)[7] 39(1)[0] 396(4)[32] [0](6I)88\& 387(4)[170] $358(0)[0]$
$332(<1)[10]$

$306(1)[0]$ | B3LYP |
| :--- |
| $996(249)[202]$ |
| $988(<1)[54]$ |
| $984(1)[0]$ |
| $945(117)[382]$ |
| $928(<1)[478]$ |
| $918(145)[0]$ |
| $918(<1)[0]$ |
| $911(1)[513]$ |
| $896(0)[0]$ |
| $552(7)[382]$ |
| $542(<1)[75]$ |
| $539(<1)[0]$ |
| $416(<1)[0]$ | 403(<1)[92] 400(1)[31] $396(2)[27]$

$394(1)[0]$
 389(4)[32] $\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]_{\text {o.o.p. }}$
$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{3}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]_{\text {i.p. }}$ $\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{3}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]+\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right.$

$\left.\delta\left(\mathrm{O}_{2 \mathrm{~A}} \operatorname{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]$
$\left[\delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-\right.$
$\quad \delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)$
$\left.v\left(\mathrm{Re}_{1} \mathrm{~F}_{5}\right)\right]_{\text {i.p. }}$
$\left[\delta\left(\mathrm{O}_{3} \operatorname{Re}_{1} \mathrm{~F}_{2} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{1} \operatorname{Re}_{1} \mathrm{~F}_{2} \mathrm{~F}_{2 \mathrm{~A}}\right)\right]_{\text {i.p. }}$
$\left[\delta\left(\mathrm{F}_{1} \operatorname{Re}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{1} \operatorname{Re}_{1} \mathrm{~F}_{2 \mathrm{~A}}\right)\right]_{\text {o.o.p. }}$
calcd $^{a, c}$

قٌ		قا
©	\bigcirc	(1)
-	$\stackrel{\circ}{\text { cis}}$	N

$\underset{\underset{\sim}{\text { ¢ }}}{\text { た }}$
Table 4.5. (continued...)
${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectra were recorded in the FEP sample tubes at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The abbreviations denote shoulder (sh) and broad (br). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\mathrm{A}^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The aug-cc-pVTZ(PP) basis set was used. ${ }^{d}$ The atom numbering corresponds to that used in Figure 4.1b. The abbreviations denote stretch (v), bend (δ), [ON] әчL っ'sи! cation modes were observed at $2251(11), 2268(95), 2285(5) \mathrm{cm}^{-1}$. Peaks observed at $327(<1), 426(<1), 866(<1), 2210(<1), 2229(<1)$, and $2293(<1) \mathrm{cm}^{-1}$ were unassigned. ${ }^{f}$ The $\left[\mathrm{NH}_{4}\right]^{+}$cation modes were observed at $214 \mathrm{sh}, 265(1), 1439(<1), 3137(1), 3191(1) \mathrm{cm}^{-1}$. Overlap with an $\left[\mathrm{ReO}_{4}\right]^{-}$mode.
Table 4.6. Experimental Raman Frequencies and Intensities for $\mathrm{M}_{2}\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ ($\mathrm{M}=\mathrm{Cs}$, $[\mathrm{NO}]$) and $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right][f a c-$ $\mathrm{ReO}_{3} \mathrm{~F}_{3}$] and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for $\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2}$

495(<1)[252]
417(1)[63]
394(2)[13] 387(5)[20]
295(1)[50]
$295(1)[7]$

$\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Re}_{1} \mathrm{~F}_{1 \mathrm{~B}}\right)-\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{O}_{1 \mathrm{~B}}\right)$
$\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Re}_{1} \mathrm{O}_{1 \mathrm{~B}}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{l}} \mathrm{F}_{1 \mathrm{~A}} \mathrm{Re}_{1} \mathrm{~F}_{1 \mathrm{~B}}\right)$
lattice modes
${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectra were recorded in the FEP sample tubes at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The abbreviations denote shoulder (sh) and broad (br). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mu^{-1}$). Values in square brackets denote calculated infrared intensities (km mol^{-1}). The aug-cc-pVTZ(-PP) basis set was used. The atom numbering scheme corresponds to that used in Figure 4.2b. The abbreviations denote stretch (v), bend (δ), and rock (ρ_{r}. ${ }^{e}$ The $[\mathrm{NO}]^{+}$cation modes were observed at $2283(34)$ and $2304(74) \mathrm{cm}^{-1} .{ }^{f}$ Band overlapping with the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ anion mode. ${ }^{8}$ Band overlapping with the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ anion mode and an FEP mode.
Table 4.7. Selected Experimental Raman Frequencies and Intensities for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu$ -$\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Raman and Infrared Frequencies, Intensities, and Assignments for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$

Table 4.7. (continued...)

			(415.3(1)[0]	412.9(1)[0]	-2.4	$\left\{\begin{array}{l} {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)-\right.} \\ \left.v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[v\left(\operatorname{Re}_{4} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right] \end{array}\right.$
405.4(9)	385.2(9)	-20.2	$413.6(2)[<1]$	393.4(2)[1]	-20.2	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$
400.2(10)	380.1(10)	-20.1	411.0(1)[17]	391.5(1)[14]	-19.5	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)$
395.7(6)	376.6(7)	-19.1	$\left\{\begin{array}{l} 407.6(1)[2] \\ 407.1(6)[2] \\ 402.3(<1)[7] \end{array}\right.$	$\begin{aligned} & 386.7(1)[2] \\ & 386.4(5)[3] \\ & 384.2(<1)[<1] \end{aligned}$	$\begin{aligned} & -20.9 \\ & -20.7 \\ & -18.1 \end{aligned}$	$\left\{\begin{array}{l} \delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right) \\ {\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]-\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]+} \\ {\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]} \\ {\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{8} \mathrm{Re}_{4} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]} \end{array}\right.$
${ }^{a}$ Freque were rec modes w calculate pVTZ(-P (v) and b	are given in the F observed man inten ethod wa). ${ }^{e}$ Over	with	$v^{16 / 18}=v\left(^{18} C\right.$ tubes at -14 431(4), 474 ${ }^{-1}$). Values i atom num ClF.	$-v\left({ }^{16} \mathrm{O}\right) .{ }^{b}$ ${ }^{\circ} \mathrm{C}$ using 10), 502(1), quare bracke ng scheme	ues -nm (1), deno respo	rentheses denote relative Raman intensities. Raman spectra ation. The abbreviation denotes shoulder (sh). The $\mathrm{SO}_{2} \mathrm{ClF}$ 1), 1218(4), 1444(1) $\mathrm{cm}^{-1} .{ }^{c}$ Values in parentheses denote culated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The B3LYP/aug-ccto that used in Figure 4.3b. The abbreviations denote stretch

In contrast with the Raman spectra of $\mathrm{A}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right](\mathrm{A}=\mathrm{Li}, \mathrm{K}, \mathrm{Cs})$ and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right],{ }^{19}$ where the $\mathrm{Re}-\mathrm{O}$ stretching frequencies correlate with the polarizing strength of the cation, no such correlation was observed for the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$salts. The most intense Raman bands at 980, 980 and $981 \mathrm{~cm}^{-1}$ for the $\mathrm{K}^{+}, \mathrm{Cs}^{+}$, and $[\mathrm{NO}]^{+}$salts, respectively, and at $986 \mathrm{~cm}^{-1}$ for the $\left[\mathrm{NH}_{4}\right]^{+}$salt are assigned to the symmetric, in-phase, $v\left(\mathrm{ReO}_{3}\right)$ stretching mode, which is predicted to appear at $996 \mathrm{~cm}^{-1}$ as the most intense band. The experimental frequency is comparable to that observed for $\mathrm{K}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ (987 $\left.\mathrm{cm}^{-1}\right) .{ }^{19}$ The corresponding in-phase and out-of-phase asymmetric $v\left(\mathrm{ReO}_{3}\right)$ stretching modes are predicted at 945 and $918 \mathrm{~cm}^{-1}$ which are in good agreement with the experiment $\left(\mathrm{Cs}^{+}, 922 / 933\right.$ and $910 / 914 \mathrm{~cm}^{-1} ;[\mathrm{NO}]^{+}, 927 / 933$ and $896 / 904 \mathrm{~cm}^{-1} ;\left[\mathrm{NH}_{4}\right]^{+}$, $925 \mathrm{~cm}^{-1} ; \mathrm{K}^{+}, 931 / 936$ and $\left.897 / 925 \mathrm{~cm}^{-1}\right)$. The terminal $v\left(\mathrm{ReF}_{\mathrm{t}}\right)$ stretches are predicted to be significantly weaker than the $v\left(\mathrm{ReO}_{3}\right)$ stretches and appear at $525\left(\left[\mathrm{NH}_{4}\right]^{+}\right), 531\left(\mathrm{Cs}^{+}\right)$, and $535\left([\mathrm{NO}]^{+}\right) \mathrm{cm}^{-1}$ as very weak bands (calcd, $552 \mathrm{~cm}^{-1}$). Overall, the terminal $v(\mathrm{ReF})$ stretches are expected to occur at lower frequencies than the $v\left(\mathrm{ReF}_{\mathrm{t}}\right)$ stretches in $\mathrm{A}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \quad(\mathrm{A}=\mathrm{Li}, \quad \mathrm{K}, \mathrm{Cs}),{ }^{19} \quad\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right],{ }^{19} \quad \mathrm{~K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right],{ }^{19} \quad \mathrm{~K}[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3},{ }^{19}$ and $\mathrm{Cs}\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] .{ }^{19}$ Both the $v\left(\mathrm{ReO}_{3}\right)$ and the $v\left(\mathrm{ReF}_{\mathrm{t}}\right)$ stretches are predicted to couple with the respective $v\left(\mathrm{ReO}_{3}\right)$ and the $v\left(\mathrm{ReF}_{\mathrm{t}}\right)$ stretching modes of their adjacent $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-moieties and are well reproduced by their calculated values. The bridging $v\left(\operatorname{ReF}_{\mu}\right)$ stretches (calcd, 403 and $416 \mathrm{~cm}^{-1}$), which are predicted to be very weak, were not observed. As predicted, all deformation modes appear below $400 \mathrm{~cm}^{-1}$.

Ph.D. Thesis - Maria V. Ivanova

4.2.3.2. $\mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$

The fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion $\left(C_{3 \mathrm{v}}\right)$ possesses 15 fundamental vibrational modes that span the irreducible representations $4 \mathrm{~A}_{1}+\mathrm{A}_{2}+5 \mathrm{E}$, where the A_{1} and E vibrations are Raman and infrared active and the A_{2} vibration is inactive.

The large number of bands observed in the Raman spectra of the $\mathrm{Cs}^{+}, \mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$, and $[\mathrm{NO}]^{+}$salts suggests site symmetry lowering or factor-group splitting. In the absence of crystal structures for $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $[\mathrm{NO}]_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ salts, a factor-group analysis could only be carried out for $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ (Table B5, Appendix B). Correlation of the gas-phase anion symmetry $\left(C_{3 \mathrm{v}}\right)$ to its crystal site symmetry $\left(C_{3}\right)$ revealed that the observed band splittings do not result from site symmetry lowering alone but are attributable to vibrational coupling within the unit cell (factor-group splitting). Correlation of the site symmetry to the unit cell symmetry $\left(T_{\mathrm{h}}\right)$ of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ revealed that the fundamental modes, $v_{1}-v_{5}$, are each split into two A_{g}, A_{u}, T_{g}, and T_{u} components. The $v_{6}-v_{10}$ fundamentals are each split into two E_{g}, E_{u}, T_{g}, and T_{u} components. The $\mathrm{A}_{\mathrm{g}}, \mathrm{E}_{\mathrm{g}}$, and T_{g} components are Raman active, the A_{u} and E_{u} components are inactive, and only the T_{u} components are infrared active. Thus, 40 Raman-active and 20 infrared-active bands are predicted. The splittings of the $v_{1}\left(\mathrm{~A}_{1}\right)(945 / 951)$ and $v_{6}(\mathrm{E})$ (855/869/887/921) modes in the Raman spectrum of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ are attributed to coupling within the unit cell (factor-group splitting).

The corresponding $\mathrm{Re}-\mathrm{O}$ stretches are comparable among the $\mathrm{Cs}^{+},[\mathrm{NO}]^{+}$, and $\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$salts and the corresponding $\mathrm{Re}-\mathrm{F}$ stretches are comparable in the Cs^{+}and $[\mathrm{NO}]^{+}$salts. The highest frequency and most intense bands at 949/957 $\left(\mathrm{Cs}^{+}\right)$and 955

Ph.D. Thesis - Maria V. Ivanova

$\left([\mathrm{NO}]^{+}\right) \mathrm{cm}^{-1}$ are assigned to the symmetric $v_{s}\left(\mathrm{ReO}_{3}\right)$ mode, in agreement with the calculated value at 949 [980] cm^{-1}. By comparison, the shoulders at $945 / 951 \mathrm{~cm}^{-1}$ in the $\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$salt are also assigned to the symmetric $v_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right)$ mode. The $v_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right)$ stretches of the $\mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion are shifted to much lower frequencies than in neutral $\mathrm{ReO}_{3} \mathrm{~F}$ $\left(996 \mathrm{~cm}^{-1}\right),{ }^{21,235}$ consistent with increased $\mathrm{Re}-\mathrm{O}$ bond polarities resulting from the charge of the anion. The corresponding asymmetric mode, $v_{\mathrm{as}}\left(\mathrm{ReO}_{3}\right)$, is observed as a split band in all salts $\left(886 / 905\left(\mathrm{Cs}^{+}\right), 898 / 905 / 914 / 921\left([\mathrm{NO}]^{+}\right)\right.$, and 855/869/887/921 $\left(\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$ cm^{-1}). The average value agrees well with the calculated frequency (882 [907] cm^{-1}). Both symmetric and asymmetric $\mathrm{Re}-\mathrm{O}$ stretches appear at higher frequency than those in $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right]$ (925(vs) and $\left.895(\mathrm{~s}) \mathrm{cm}^{-1}\right){ }^{236}$ consistent with a decrease in the polarity of the $\mathrm{Re}-\mathrm{O}$ bonds resulting from the higher electronegativity and lower basicities of the fluoride ligands when compared with those of the chloride ligands.

Both the symmetric, $v_{s}\left(\mathrm{ReF}_{3}\right)$, and asymmetric, $v_{\mathrm{as}}\left(\mathrm{ReF}_{3}\right)$, stretching modes are expected to be very weak with the symmetric mode occurring at higher frequency (calcd, $\left.479[495] \mathrm{cm}^{-1}\right)$ than the asymmetric mode (calcd, $\left.404[417] \mathrm{cm}^{-1}\right)$. Only the $v_{\mathrm{as}}\left(\mathrm{ReF}_{3}\right)$ mode was observed at $391 \mathrm{~cm}^{-1}$ in the Cs^{+}salt and at $398 \mathrm{~cm}^{-1}$ in the $[\mathrm{NO}]^{+}$salt. As expected, the $\mathrm{Re}-\mathrm{F}$ stretching modes appear at significantly lower frequencies than those of the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anion (500-600 cm^{-1} region). ${ }^{19}$

The symmetric bend, $\delta_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right)$, is predicted to occur at higher frequency (calcd, 388 [394] cm^{-1}) than the asymmetric bend, $\delta_{\mathrm{as}}\left(\mathrm{ReO}_{3}\right)$, (calcd, $379[386] \mathrm{cm}^{-1}$), in good agreement with the frequencies observed for the $\mathrm{Cs}^{+}\left(\delta_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right), 384 \mathrm{~cm}^{-1} ; \delta_{\mathrm{as}}\left(\mathrm{ReO}_{3}\right), 381\right.$ $\left.\mathrm{cm}^{-1}\right)$ and $[\mathrm{NO}]^{+}\left(\delta_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right), 382 \mathrm{~cm}^{-1} ; \delta_{\mathrm{as}}\left(\mathrm{ReO}_{3}\right), 379 \mathrm{~cm}^{-1}\right)$ salts. The asymmetric
$\delta_{\mathrm{as}}\left(\mathrm{ReF}_{3}\right)$ bend is coupled to the asymmetric $\delta_{\mathrm{as}}(\mathrm{F}-\mathrm{Re}-\mathrm{O})$ bend (calcd, $290[295] \mathrm{cm}^{-1}$) and is expected to occur at a frequency similar to that of the symmetric $\delta_{\mathrm{s}}\left(\mathrm{ReF}_{3}\right)$ bend (288 [295] cm^{-1}). Both modes are assigned to factor-group split at $212 / 214 / 224 / 233 \mathrm{~cm}^{-1}$ in the Cs^{+}salt and at $204 / 217 / 232 / 240 \mathrm{~cm}^{-1}$ in the $\left[\mathrm{NO}^{+}\right.$salt.

4.2.3.3 $(\mu-\mathrm{F})_{4}\left\{\left[\mu^{-6 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$

The $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ molecule possesses $C_{2 \mathrm{v}}$ symmetry which results in 63 fundamental vibrational modes belonging to the $19 A_{1}+13 A_{2}+15 B_{1}+16 B_{2}$ irreducible representations, where all modes are infrared and Raman active, except for the A_{2} modes which are only Raman active.

The calculated frequencies associated with the terminal and bridging $\operatorname{Re}-\mathrm{O}$ stretching modes are overestimated (Table 4.7); however, the observed frequency trends and isotopic shifts are well reproduced by quantum-chemical calculations. These are the highest frequency and most intense bands in the Raman spectrum exhibiting the largest isotopic shifts (Tables 4.7 and B3). Their frequencies are comparable to their $\mathrm{ReO}_{3} \mathrm{~F}\left(\mathrm{FH}_{2}\right)^{235}$ and $\mathrm{ReO}_{2} \mathrm{~F}_{3}{ }^{19,21}$ counterparts. The broad band at $864 \mathrm{~cm}^{-1}$ (calcd, 887 [911] cm^{-1}) is particularly noteworthy because no bands are observed in this region for rhenium oxide fluorides other than $\mathrm{ReO}_{3} \mathrm{~F}\left(813 \mathrm{~cm}^{-1}\right)$ which exhibits $\mathrm{Re}-\mathrm{O}_{\mu}$ bridge bonding. ${ }^{21}$ This band shows a large $\Delta v^{16 / 18}$ isotopic shift (exptl, $-44.7 \mathrm{~cm}^{-1}$; calcd -46.1 $\left.[-47.2] \mathrm{cm}^{-1}\right)$, and is assigned to the asymmetric $\left[v\left(\operatorname{Re}_{2} \mathrm{O}_{\mu}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{\mu}\right)\right]$ stretching mode of the $\mathrm{Re}-\mathrm{O}_{\mu}-\mathrm{Re}$ bridge. This frequency is also consistent with the asymmetric $\operatorname{Re}-\mathrm{O}_{\mu}-\operatorname{Re}$ stretching frequencies of $\mathrm{Re}_{2} \mathrm{O}_{7}$ (782 to $895 \mathrm{~cm}^{-1}$, this work; 798 to $880 \mathrm{~cm}^{-1} 246$) and
$\mathrm{ReO}_{3} \mathrm{~F}\left(813 \mathrm{~cm}^{-1}\right) .^{21,235}$ As expected, the asymmetric $\mathrm{Re}-\mathrm{O}_{\mu}-\mathrm{Re}$ stretching mode of $(\mu-$ $\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ appears at higher frequency than the asymmetric doubly degenerate $\operatorname{Re}-\mathrm{O}_{\mu_{3}}-\operatorname{Re}$ stretching mode of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion $\left(575 / 580 / 586 \mathrm{~cm}^{-1}\right),{ }^{235}$ which is substantially lower due to the formal negative charge of the anion and the corresponding lower bond valencies of the $\mathrm{Re}-\mathrm{O}_{\mu_{3}}$ bonds and coupling with the asymmetric $v\left(\operatorname{Re}-\mathrm{F}_{\mu}-\mathrm{Re}\right)$ stretching modes of this anion. The symmetric $\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{\mu}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{\mu}\right)\right]$ stretch of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (exptl, 414, -16.7 cm^{-1}; calcd, 421 [429], $\left.-18.9[-18.9] \mathrm{cm}^{-1}\right)$ is weakly coupled to the $\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\right.$ $\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$] deformation mode and is comparable to the symmetric $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ stretching frequency of $\mathrm{Re}_{2} \mathrm{O}_{7}$ (solid, $401 / 412 / 421 \mathrm{~cm}^{-1}$ (Table B10); gas phase, $456 \mathrm{~cm}^{-1} 246$). As expected, the terminal $v(\operatorname{Re}-\mathrm{F})$ stretches are more intense and appear at higher frequency than the bridging $v\left(\operatorname{Re}-\mathrm{F}_{\mu}\right)$ stretches (Table 4.7, B3), which were not observed.

4.2.4. Computational Results

Quantum-chemical calculations for $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{~h}}\right)$ (Table 4.5), fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ (Table 4.6), $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \quad\left(C_{2 \mathrm{v}}\right)$ (Table 4.7, B3), mer- $\left[\operatorname{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$ (Table B3), and $\left[\operatorname{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)$ (Table B4) were carried out using the B3LYP and PBE1PBE (values are given in brackets) methods and the aug-cc-pVTZ(PP) basis sets and resulted in the corresponding stationary points with all frequencies real.

4.2.4.1. Geometry Optimizations for $\left[\operatorname{ReO}_{3} F_{2}\right]^{-},\left[(\mu-F)_{4}\left(\operatorname{ReO}_{3} F\right)_{4}\right]^{4-}$, fac- $\left[\operatorname{ReO}_{3} F_{3}\right]^{2-}$ $\left(C_{3 v}\right)$, mer $-\left[\operatorname{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$, and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$

$\left[\operatorname{ReO}_{3} \mathbf{F}_{2}\right]^{-}$and $\left[(\mu-F)_{4}\left(\operatorname{ReO}_{3} \mathbf{F}\right)_{4}\right]^{4-}$. Initially, the optimization of the unknown $[(\mu-$ $\left.\mathrm{F})_{2}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)\left(\mathrm{ReO}_{3} \mathrm{~F}_{2}\right)_{2}\right]^{4-}\left(C_{1}\right)$ anion was attempted in order to reproduce and assign the experimental vibrational spectra of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$, also taking into account possible coupling between bridging $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-units of the open-chain structure. This approach has been previously used to assign the Raman spectra of $\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{\infty}{ }^{247}$ and $\left(\mathrm{MoSF}_{4}\right)_{\infty} .{ }^{248}$ The starting geometry used for $\left[(\mu-\mathrm{F})_{2}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)\left(\mathrm{ReO}_{3} \mathrm{~F}_{2}\right)_{2}\right]^{4-}$ was part of the crystallographic geometry of the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion in the $\left[\mathrm{NH}_{4}\right]^{+}$salt (see X-ray Crystallography) which reproduced the geometry of the central $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-moiety. However, all attempts resulted in dissociation of the hypothetical trimeric-chain anion into one central $\mathrm{ReO}_{3} \mathrm{~F}_{3}$ - and two terminal $\mathrm{ReO}_{3} \mathrm{~F}_{2}$-groups. Therefore, the hypothetical tetrameric anion, $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ $\left(C_{4 \mathrm{~h}}\right)$, was calculated instead. The monomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)$ anion was also calculated in order to assess the effect of oligomerization (Table B6).

The calculated $\operatorname{Re}-\mathrm{O}$ bond lengths, which are trans to the terminal fluorine atom (1.712 [1.700] A) are slightly shorter than those trans to the bridging fluorine atoms (1.722 [1.709] \AA). The opposite trend was observed among the experimental $\operatorname{Re}-\mathrm{O}$ bond lengths (1.726(2) vs. $1.704(2)$ and $1.705(2) \AA$), which is most likely due to interionic contacts in the crystal structures. The calculated terminal and bridging $\operatorname{Re}-\mathrm{F}$ bond lengths (1.949 [1.933] \AA and 2.177 [2.156] \AA, respectively), however, well reproduce the experimental values. Trends among all bond angles are also reproduced by the calculations, except the $\operatorname{Re}-\mathrm{F}-\operatorname{Re}$ angles $\left(165.3^{\circ}\left[164.8^{\circ}\right]\right)$, which are more open in the calculated $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{~h}}\right)$ anion model than in the crystal structure of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]\left(137.2(1)^{\circ}\right)$.

Ph.D. Thesis - Maria V. Ivanova

$\boldsymbol{f a c}-\left[\operatorname{ReO}_{3} \mathbf{F}_{3}\right]^{2-}\left(\boldsymbol{C}_{\mathbf{3 v}}\right)$ and $\boldsymbol{m e r}-\left[\operatorname{ReO}_{3} \mathbf{F}_{3}\right]^{\mathbf{2 -}}\left(\boldsymbol{C}_{\mathrm{s}}\right)$. The Re-O bond lengths of the fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion (1.735 [1.722] \AA) are in excellent agreement with the experimental values, whereas the calculated $\operatorname{Re}-\mathrm{F}$ bond lengths (2.035 [2.017] \AA) are longer than the experimental $\mathrm{Re}-\mathrm{F}$ bond lengths (1.964(4) \AA). The $\mathrm{O}-\mathrm{Re}-\mathrm{O}, \mathrm{F}-\mathrm{Re}-\mathrm{O}$, and $\mathrm{F}-\mathrm{Re}-\mathrm{F}$ bond angles are in very good agreement with experiment (Table 4.3).

The optimization of mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ to $C_{2 v}$ geometry gave one imaginary frequency. Attempts to follow this imaginary frequency resulted in lowering of the anion symmetry from $C_{2 \mathrm{v}}$ to C_{s}, to give a local minimum for the mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion, which is more stable by $5.7[6.1] \mathrm{kJ} \mathrm{mol}^{-1}$ than the $\operatorname{mer}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{2 \mathrm{v}}\right)$ anion. The mer$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)$ anion is, however, predicted to be less stable by $85.6[88.4] \mathrm{kJ} \mathrm{mol}^{-1}$ than the $f a c-\left[\operatorname{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ anion. Overall the $\mathrm{Re}-\mathrm{O}$ and the $\mathrm{Re}-\mathrm{F}$ bond lengths of the mer$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion (Table B7) are longer than those of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion. The $\mathrm{Re}-\mathrm{O}$ bonds, which are trans to each other, are longer than the $\mathrm{Re}-\mathrm{O}$ bond that is trans to a fluorine atom, whereas the opposite trend is observed for the $\mathrm{Re}-\mathrm{F}$ bond lengths. This behavior is consistent with the trans influence of the oxygen atoms, ${ }^{17}$ which are much stronger $\mathrm{p} \pi \rightarrow \mathrm{d} \pi$ donors than the fluorine atoms.
$(\mu-\mathbf{F})_{4}\left\{\left[\boldsymbol{\mu}-\mathbf{O}\left(\operatorname{ReO}_{2} \mathbf{F}\right)_{2}\right]\left(\operatorname{ReO}_{2} \mathbf{F}_{2}\right)_{2}\right\}$. The optimized geometry of $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ agrees very well with the experimental geometry and is consistent with the cage being well isolated in the crystal structure (see X-ray Crystallography). The calculated terminal $\mathrm{Re}-\mathrm{O}$ bonds have similar lengths (1.671 [1.659] and 1.674 [1.662] \AA) and are longer than the bridging $\operatorname{Re}-\mathrm{O}_{\mu}$ bond (1.876 [1.862] \AA), agreeing well with the experimental trend. The terminal $\operatorname{Re}-\mathrm{F}$ bonds that are trans to
one another are slightly different (1.840 and $1.850 \AA$) which also reproduces the experimental trend. The calculated bridging $\mathrm{Re}-\mathrm{F}$ bonds are significantly longer than the calculated bridging $\operatorname{Re}-\mathrm{O}_{\mu}$ bond, supporting the experimental findings.

All calculated trends among bond angles well reproduce the experimental trends, i.e., $\mathrm{O}-\mathrm{Re}-\mathrm{O}>\mathrm{O}_{\mu}-\mathrm{Re}-\mathrm{O}>\mathrm{O}-\mathrm{Re}-\mathrm{F}>\mathrm{O}-\mathrm{Re}^{-}-\mathrm{F}_{\mu}>\mathrm{F}-\mathrm{Re}-\mathrm{F}_{\mu}>\mathrm{F}_{\mu}-\mathrm{Re}-\mathrm{F}_{\mu}$.

4.2.4.2. Calculated Vibrational Spectrum of mer - $\left[\operatorname{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and Comparison with That of $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$

The mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion possesses 15 fundamental vibrational modes belonging to the irreducible representations $10 \mathrm{~A}^{\prime}+5 \mathrm{~A}^{\prime \prime}$ under C_{s} symmetry where the A^{\prime} and $\mathrm{A}^{\prime \prime}$ modes are Raman and infrared active.

The most intense $\mathrm{Re}-\mathrm{O}$ stretching band, $v_{\mathrm{s}}\left(\mathrm{ReO}_{3}\right)$, (928 [958] $\left.\mathrm{cm}^{-1}\right)$ and both $v_{\mathrm{as}}\left(\mathrm{ReO}_{3}\right)$ stretches (872[900] and $835[860] \mathrm{cm}^{-1}$) of $m e r-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ (Table B3) are predicted to occur at lower frequencies than those of fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ (Table 4.6). The $v\left(\mathrm{ReF}_{3}\right)$ stretches of the mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion are more intense and appear at higher frequency (462 [475] and $\left.506[522] \mathrm{cm}^{-1}\right)$ than the symmetric $v_{\mathrm{s}}(\operatorname{ReF})\left(404[417] \mathrm{cm}^{-1}\right)$ and asymmetric $v_{\mathrm{as}}(\mathrm{ReF})\left(479[595] \mathrm{cm}^{-1}\right)$ stretches of the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion. Contrary to the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion, the $\delta(\mathrm{OReO})$ and $\delta(\mathrm{FReF})$ bends couple in the mer$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion. It is also noteworthy that contrary to what is observed experimentally, bands of reasonable intensity should also be observed around 462,506 , and $835 \mathrm{~cm}^{-1}$ in the case of the $m e r$-isomer (Table B3). All of the above points relating to the vibrational analysis concur with the conclusion that only the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion is stable.
4.2.4.3. NBO Charges, Wiberg Valencies, and Bond Indices. The NBO charges and Wiberg valencies and bond indices for $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}\left(C_{4 \mathrm{~h}}\right)$ (Table B8), [fac$\left.\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ (Table B9), and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)$ (Table B10) were determined for the B3LYP/aug-cc-pVTZ(-PP) and PBE1PBE/aug-cc-pVTZ(-PP) optimized gas-phase geometries. The trends in calculated charges, valencies, and bond orders for the above species are consistent at both levels of theory.

As expected, the positive charge is located on rhenium and the negative charges are located on the electronegative ligands (Tables B8-B10). The negative charges are evenly shared among all oxygen and fluorine atoms in $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ and fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$, whereas the highest negative charge (-0.78) in $(\mu \text {-F })_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, is located on the doubly bridging oxygen atom $\left(\mathrm{O}_{\mu}\right)$.

Although the Wiberg valencies (v.) and the bond indices (b.i.) of the terminal oxygen atoms decrease from the neutral $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ molecule (v., 2.36 and 2.37 ; b.i., ca. 1.80) to the $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ (v., 2.08 and 2.15; b.i., 1.52 and 1.56) and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ (v., 2.04; b.i., 1.47) anions, overall the calculations are consistent with the double-bond characters of the terminal $\mathrm{Re}^{-} \mathrm{O}$ bonds. A similar trend is observed for the terminally bonded fluorine atoms, where the valencies and the bond indices of the neutral $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ molecule (v., 1.02, 1.01 and 0.98 ; b.i., 0.71 , $0.70,0.69)$ are higher than in the $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}(\mathrm{v} ., 0.75$; b.i., 0.50$)$ and fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}(\mathrm{v} ., 0.60 ;$ b.i., 0.40$)$ anions.

The Wiberg valence of the bridging $\mathrm{O}_{\mu}(2.11)$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ is similar, whereas the $\operatorname{Re}-\mathrm{O}_{\mu}$ bond index (0.74) is significantly smaller than those of the
terminal oxygen atoms, in accordance with the $\mathrm{Re}-\mathrm{O}_{\mu}$ bonds being longer and weaker than the terminal $\mathrm{Re}^{-} \mathrm{O}$ bonds.

The bridging fluorine atoms of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (v., 0.76 ; b.i., 0.25 and 0.24) and of $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ (v., 0.72 ; b.i., 0.24$)$ are equivalently bonded to the rhenium atoms.

4.3. Conclusion

The development of a high-yield, high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ has significantly extended the number of structurally documented $\operatorname{Re}(V I I)$ oxide fluorides. The study of the fluoride-ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ has led to the isolation of several salts of the fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(\mathrm{Cs}^{+},\left[\mathrm{NO}^{+}\right.\right.$, and $\left.\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(\mathrm{Cs}^{+},[\mathrm{NO}]^{+}, \mathrm{K}^{+},\left[\mathrm{NH}_{4}\right]^{+}\right)$ anions and their characterization in the solid state by Raman spectroscopy, where the vibrational assignments were aided by quantum-chemical calculations. The salts, $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, were structurally characterized by single-crystal Xray diffraction. The arrangement of oxygen ligand atoms was shown to be facial in the $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion. This contrasts with the meridional geometry previously reported for its $\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+},{ }^{27,36}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+37}$ salts, which was erroneously arrived at based on the assignments of their infrared and Raman spectra. The $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion represents an example of an open-chain structure, in which the $\mathrm{ReO}_{3} \mathrm{~F}$-units are fluorine bridged to each other.

The reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ in $\mathrm{SO}_{2} \mathrm{ClF}$ yielded a new neutral rhenium(VII) oxide fluoride, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, which also provides a rare example of
an O-bridged rhenium oxide fluoride. This oxide fluoride was characterized by singlecrystal X-ray diffraction and solid-state Raman spectroscopy. The vibrational assignments of the Raman spectrum of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ were supported by ${ }^{18} \mathrm{O}$ enrichment studies.

CHAPTER 5

FLUORIDE ION-DONOR PROPERTIES OF ReO3F

5.1. Introduction

The discovery of a high-yield, high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}^{235}$ (Chapter 3) has facilitated the investigation of its Lewis acid and fluoride ion-acceptor properties. In the process, the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-},{ }^{235}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$(Chapter 4), and fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ (Chapter 4) anions and the $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$ adduct ${ }^{235}$ (Chapter 4) were synthesized and structurally characterized by single-crystal X-ray diffraction.

Although no rhenium(VII) cations derived from $\mathrm{ReO}_{3} \mathrm{~F}$ were known, cations of other high-valent rhenium(VII) oxide fluorides, ReOF_{5} and $\mathrm{ReO}_{2} \mathrm{~F}_{3}$, had been previously synthesized and characterized, namely, $\left[\mathrm{ReOF}_{4}\right]^{+,},{ }^{13}\left[\mu-\mathrm{F}\left(\mathrm{ReOF}_{4}\right)_{2}\right]^{+},{ }^{13}\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]^{+22}$, and $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right]^{+} .{ }^{22}$ The coordination spheres of the rhenium atoms in these cations are distorted octahedra. The oxygen ligands in the $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]^{+22}$ and $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right]^{+22}$ cations are located cis to one another allowing a greater degree of π-bonding with the empty set of $d_{t_{2 g}}$ orbitals on rhenium. The bridging fluorine atoms in the dinuclear cations, $\left[\mu-\mathrm{F}\left(\mathrm{ReOF}_{4}\right)_{2}\right]^{+13}$ and $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right]^{+22}$ are always located trans to the oxygen ligands.

The strongly bonded $\left[\mathrm{MO}_{3}\right]^{+}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$ moieties are known and have been intensively studied in several rhenium(VII) complexes, e.g., $\mathrm{CH}_{3} \mathrm{ReO}_{3},{ }^{249}\left(\eta_{5}{ }^{-}\right.$ $\left.\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right) \mathrm{ReO}_{3},{ }^{40,249 \mathrm{~b}} \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right] \mathrm{X} \quad\left(\mathrm{X}=\mathrm{Cl}, \quad\left[\mathrm{ReO}_{4}\right],{ }^{41} \quad\left[\mathrm{ReO}_{3}\right]\left[\mathrm{ClO}_{4}\right],{ }^{250}\right.$
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right],{ }^{42}$ and in the only known technetium(VII) salt, $\left[\mathrm{TcO}_{3}\right]\left[\mathrm{SO}_{3} \mathrm{~F}\right] .{ }^{43}$ In all of the aforementioned salts, the $\mathrm{ReO}_{3}-$ and TcO_{3}-moieties adopt pyramidal geometries.

The technetium analog of $\mathrm{ReO}_{3} \mathrm{~F}, \mathrm{TcO}_{3} \mathrm{~F}$, has been shown to react with AsF_{5} in aHF forming the $\left[\mathrm{TcO}_{3}\right]^{+}$cation, which was characterized in solution by ${ }^{99} \mathrm{Tc}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy. ${ }^{26}$ In a subsequent study, it was shown that $\mathrm{TcO}_{3} \mathrm{~F}$ solvolyses in $\mathrm{PnF}_{5} /$ aHF $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ media formed the $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ salts. ${ }^{23}$

This Chapter investigates the fluoride ion-donor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ in its reactions with the Lewis acids, SbF_{5} and AsF_{5}. The study resulted in the synthesis, isolation, and characterization of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and the salts, $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$. The products were characterized by Raman spectroscopy, where vibrational assignments were made with the aid of quantumchemical calculations.

5.2. Results and Discussion

Reaction progress was routinely monitored by low-temperature Raman spectroscopy.

5.2.1. Attempted Syntheses of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb}),\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)_{2}\right]\left[\mathrm{SbF}_{6}\right]$, $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$ in aHF

All attempts to synthesize either the $\left[\mathrm{ReO}_{3}\right]^{+}$or $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)_{2}\right]^{+}$cations by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with BF_{3}, excess AsF_{5}, or $\mathrm{SbF}_{5}\left(\mathrm{ReO}_{3} \mathrm{~F}: \mathrm{SbF}_{5}, 1: 1,1: 2\right.$, and $2: 1$ molar ratios) in aHF at $-78{ }^{\circ} \mathrm{C}$ resulted in the solvolysis of $\mathrm{ReO}_{3} \mathrm{~F}$. Solvolysis reactions were also
previously reported for $\mathrm{TcO}_{3} \mathrm{~F}$, which was shown to undergo O / F metathesis in the superacidic media, $\mathrm{aHF} / \mathrm{PnF}_{5}(\mathrm{Pn}=\mathrm{As}$, Sb$)$, to give $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right] .{ }^{23}$

Anhydrous HF solutions of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{BF}_{3} / \mathrm{PnF}_{5}$ were allowed to react at $-78{ }^{\circ} \mathrm{C}$ which resulted in the formation of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right] /\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right]$ (eq 5.1). Upon

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{BF}_{3} / \mathrm{PnF}_{5} \xrightarrow[-78^{\circ} \mathrm{C}]{\mathrm{aHF}} \mathrm{ReO}_{2} \mathrm{~F}_{3}+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right] /\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right] \tag{5.1}
\end{equation*}
$$

warming HF solutions of the reaction mixtures to room temperature, $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ reacted with excess AsF_{5} and $\mathrm{SbF}_{5}\left(\mathrm{ReO}_{3} \mathrm{~F}: \mathrm{SbF}_{5}, 1: 2\right)$ (eq 5.2) forming the known $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$

$$
\begin{gather*}
\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{xs} \mathrm{AsF}_{5} / 2 \mathrm{SbF}_{5} \xrightarrow{\mathrm{aHF}}\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right] \\
(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb}) \tag{5.2}
\end{gather*}
$$

salts $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb}) .{ }^{22}$
The reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in a $2: 1$ molar ratio at $-40{ }^{\circ} \mathrm{C}$ yielded a white solid, which dissolved in aHF at room temperature forming a bright orange solution (eq 5.3). The solution was cooled to $-78^{\circ} \mathrm{C}$ whereupon several white products precipitated.

$$
2 \mathrm{ReO}_{3} \mathrm{~F}+\mathrm{SbF}_{5} \xrightarrow[-40^{\circ} \mathrm{C}]{\mathrm{aHF}}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]+\text { unidentified product(s) }(5.3)
$$ The precipitate was assigned to a mixture of rhenium oxide fluorides based on the Raman spectrum of the dry precipitate; however, not all of the products could be identified by Raman spectroscopy. Crystallization of the products was attempted at various temperatures which resulted in the crystallization of $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$ at $-78{ }^{\circ} \mathrm{C}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{SbF}_{6}\right]$ at $-50,-30$, and $-10{ }^{\circ} \mathrm{C}$. All attempts to crystallize the remaining unidentified product(s) from HF were unsuccessful.

Rhenium trioxide fluoride failed to react with BF_{3} gas at temperatures from -78 up to $80^{\circ} \mathrm{C}$.

5.2.2. Syntheses of $\mu-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$

In order to circumvent solvolysis of $\mathrm{ReO}_{3} \mathrm{~F}$ in aHF, $\mathrm{ReO}_{3} \mathrm{~F}$ was reacted with neat AsF_{5} at $-20{ }^{\circ} \mathrm{C}$ which resulted in the formation of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ over the course of several days (eq 5.4). The product was isolated by removing AsF_{5} under

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+3 \mathrm{AsF}_{5} \quad \xrightarrow[-20^{\circ} \mathrm{C}]{\mathrm{AsF}_{5}} \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5} \tag{5.4}
\end{equation*}
$$

dynamic vacuum at $-50{ }^{\circ} \mathrm{C}$. The salt, $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$, is unstable with respect to dissociation at $0{ }^{\circ} \mathrm{C}$, at which temperature different oligomeric $\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{x}$ units start to assemble. When the $\mathrm{ReO}_{3} \mathrm{~F}$ and AsF_{5} mixture was cooled from $0{ }^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$ and maintained at $-78{ }^{\circ} \mathrm{C}$ for several days, $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ reformed, as confirmed by Raman spectroscopy. Complete dissociation into the starting materials, $\mathrm{ReO}_{3} \mathrm{~F}$ and AsF_{5}, occurred when AsF_{5} was removed under dynamic vacuum at room temperature. The original product was insoluble up to $-25^{\circ} \mathrm{C}$ in aHF and up to $-20^{\circ} \mathrm{C}$ in $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. An attempt to dissolve $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ in aHF at temperatures higher than $-25^{\circ} \mathrm{C}$ resulted in the formation of $\mathrm{ReO}_{2} \mathrm{~F}_{3}{ }^{3,4,6,19}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{AsF}_{6}\right]$ (eq 5.5).

$$
\begin{equation*}
\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}+3 \mathrm{HF} \xrightarrow[>-25^{\circ} \mathrm{C}]{\mathrm{aHF}} \mathrm{ReO}_{2} \mathrm{~F}_{3}+\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{AsF}_{6}\right]+2 \mathrm{AsF}_{5} \tag{5.5}
\end{equation*}
$$

Rhenium trioxide fluoride very slowly reacted with SbF_{5} at ca. $40^{\circ} \mathrm{C}$ which resulted in a mixture of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{22}$ The salt, $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, was insoluble in SbF_{5}, whereas $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ dissolved in excess SbF_{5} as it formed. However, the pure product, $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, can be synthesized by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in $\mathrm{SO}_{2} \mathrm{ClF}$ at room temperature (eq 5.6) and was isolated by removal of the

$$
\begin{equation*}
\mathrm{ReO}_{3} \mathrm{~F}+\mathrm{SbF}_{5} \xrightarrow[\mathrm{RT}]{\mathrm{SO}_{2} \mathrm{ClF}}\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right] \tag{5.6}
\end{equation*}
$$

solvent under dynamic vacuum. The $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salt is insoluble in both $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which prevented its structural characterization by single-crystal X-ray diffraction. Attempts to crystallize $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ by sublimation $\left(45^{\circ} \mathrm{C}\right)$ resulted in the formation of colorless crystals of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{22}$

5.2.3. Syntheses of $\left[\mathrm{O}_{3} \operatorname{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$

The $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salts were shown to react with $\mathrm{CH}_{3} \mathrm{CN}$ forming pale yellow-brown and light brown colored viscous solutions, respectively. Removal of the solvent under dynamic vacuum at room temperature resulted in the isolation of the colorless $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF} \mathrm{F}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ salts along with $\mathrm{PnF}_{5} \cdot \mathrm{CH}_{3} \mathrm{CN}^{251-253}$ (eq 5.7 and 5.8). Although the compounds crystallize at $-15^{\circ} \mathrm{C}$,

$$
\begin{align*}
& {\left.\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right] \xrightarrow[\text { RT }]{\mathrm{CH}_{3} \mathrm{CN}}\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right] \mathrm{SbF}_{6}\right]+2 \mathrm{SbF}_{5} \cdot \mathrm{CH}_{3} \mathrm{CN} } \tag{5.7}\\
& \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5} \xrightarrow[\text { RT }]{\mathrm{CH}_{3} \mathrm{CN}} {\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{AsF}_{6}\right]+} \\
& 2 \mathrm{AsF}_{5} \cdot \mathrm{CH}_{3} \mathrm{CN} \tag{5.8}
\end{align*}
$$

all attempts to isolate crystals from their viscous solutions at temperatures $\geq-15^{\circ} \mathrm{C}$ were unsuccessful. Raman spectra were recorded on the crystalline products, $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right]$, under a small amount of frozen $\mathrm{CH}_{3} \mathrm{CN}$. The product could not be dried by pumping at $-15{ }^{\circ} \mathrm{C}$. An attempt to isolate crystals of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{AsF}_{6}\right]$ was made by slowly removing $\mathrm{CH}_{3} \mathrm{CN}$ at temperatures $>-15{ }^{\circ} \mathrm{C}$. This resulted in the formation of a white solid, $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{AsF}_{6}\right]$, which was further dried by pumping at room temperature.

The synthesis of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ was attempted by condensing a small amount of $\mathrm{CH}_{3} \mathrm{CN}$ into a reactor containing $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ under $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This resulted in the formation of a white suspension in a yellow solution. Attempts to grow crystals from the yellow solution at $-78{ }^{\circ} \mathrm{C}$ over a period of several weeks failed.

5.2.4. Computational Results

In view of the fact that $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right], \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$, and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ failed to crystallize, the structures of the aforementioned compounds were initially inferred by Raman spectroscopy and further supported by quantum-chemical calculations.

5.2.4.1. Calculated Structures of $\left[\operatorname{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right](1), \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ (2) and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}(3)$

The geometries of (1) $\left(C_{s}\right)$, (2) $\left(C_{s}\right)$, (3) $\left(C_{3 \mathrm{v}}\right)$ (Figures 5.1a, 5.1b and 5.1 c), $\left[\mathrm{ReO}_{3}\right]^{+}\left(C_{3 \mathrm{v}}\right)$ (Figure C1), $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{\mathrm{s}}\right)$ (Figure C2), hypothetical $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]_{3}\right\}^{2-}$ $\left(C_{3 \mathrm{v}}\right)$ (Figure C 3 a), and $\mathrm{CH}_{3} \mathrm{CN}\left(C_{3 \mathrm{v}}\right)$ (Figure C 4) were optimized at the B3LYP/aug-cc-$\mathrm{pVTZ}(-\mathrm{PP})$ and only these values are referred to in the discussion, and the PBE1PBE/aug-cc-PVTZ(-PP) levels of theory and resulted in stationary points with all frequencies real (Tables 5.1, 5.2, 5.3, C1, C2, C3, C4, C5 and C6, Appendix C). The optimization of $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}\left(C_{3 \mathrm{v}}\right)$ (Figure C3b) gave three imaginary frequencies at both levels of theory. The optimization of the " $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]$ " and $\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]^{-}$models at the B3LYP/aug

Figure 5.1. The energy-minimized structures of (a) $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, (b) the μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ adduct and (c) the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cation (B3LYP/aug-cc-pVTZ(-PP)).

Table 5.1. Selected Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{ReO}_{3}\right]^{+}$ Cation in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ Ion-Pair $\left(C_{\mathrm{s}}\right)$

exptl ${ }^{\text {a,b }}$	$\mathrm{calcd}^{\text {a,c }}$	A^{\prime}	assgnts ${ }^{\text {d }}$
1038(100)	1066(55)[19]		
1018(14)			$v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)+v\left(\operatorname{Re}_{1} \mathrm{O}_{3}\right)$
1010(40)			
972(11)	$\{1014(18)[156]$	A"	$v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)$
972(1)	1011(21)[139]	A^{\prime}	$v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{3}\right)$
	[388(3)[2]	A^{\prime}	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)$
406(8)	\{383(3)[5]	A"	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{3}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)$
	375(2)[18]	A^{\prime}	$\delta\left(\mathrm{Re}_{1} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)$

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded in an FEP sample tube at $-140^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. A full list of frequencies and assignments is provided in Table C4. ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-pVTZ(PP) method was used. ${ }^{d}$ The abbreviations denote stretch (v) and bend (δ). The atom numbering corresponds to that used in Figure 5.1a.

Table 5.2. Selected Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) 2 \mathrm{AsF}_{5}\left(C_{\mathrm{s}}\right)$

exptl ${ }^{\text {a,b }}$	calcd $^{\text {a,c }}$	A^{\prime}	assgnts ${ }^{\text {d }}$
1038(5)	1082(51)[37]		$v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)$
1030(100)			
1015(29)	1045(21)[140]	A"	$v\left(\operatorname{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)$
1006(15)			
1002(3)			
$\begin{aligned} & 886(2) \\ & 878(3) \end{aligned}$	938(4)[609]	A^{\prime}	$v\left[\left(\mathrm{Re}_{1} \mathrm{O}_{3}\right)-v\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)\right.$
	703(2)[141]	A^{\prime}	$v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)$
535(1)	549(1)[93]	A^{\prime}	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{As}_{3} \mathrm{~F}_{3}\right)\right]+} \\ & \left.v\left(\mathrm{As}_{2} \mathrm{~F}_{7}\right)+v\left(\mathrm{As}_{2} \mathrm{~F}_{10}\right)\right]-\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{7}\right)+v\left(\mathrm{As}_{3} \mathrm{~F}_{10}\right)\right] \end{aligned}$
523(1)	523(4)[155]	$\mathrm{A}^{\prime \prime}$	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{As}_{3} \mathrm{~F}_{3}\right)\right]-\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\mathrm{As}_{1} \mathrm{~F}_{1}\right)\right]$
510(3)	520(20)[36]	A^{\prime}	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{As}_{3} \mathrm{~F}_{3}\right)\right]} \\ & {\left[v\left(\mathrm{As}_{2} \mathrm{~F}_{7}\right)+v\left(\mathrm{As}_{2} \mathrm{~F}_{10}\right)\right]+\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{7}\right)+v\left(\mathrm{As}_{3} \mathrm{~F}_{10}\right)\right]} \end{aligned}$
	472(3)[9]	A"	$\left[v\left(\mathrm{As}_{2} \mathrm{~F}_{7}\right)-v\left(\mathrm{As}_{2} \mathrm{~F}_{10}\right)\right]-\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{7}\right)-v\left(\mathrm{As}_{3} \mathrm{~F}_{10}\right)\right]$
423(2)	420(1)[11]	A^{\prime}	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{3}\right)+v\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)\right]$
	417(<1)[6]	$\mathrm{A}^{\prime \prime}$	$\left.\frac{\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right.}{\left.\delta\left(\mathrm{F}_{10} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]}+\delta\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]-\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{O}_{3}\right)+\right.$
	407(2)[3]	A^{\prime}	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)$
407(13)	403(1)[111]	A^{\prime}	$\begin{aligned} & {\left[v\left(\mathrm{As}_{1} \mathrm{~F}_{7}\right)+v\left(\mathrm{As}_{2} \mathrm{~F}_{7}\right)\right]+\left[v\left(\mathrm{As}_{3} \mathrm{~F}_{10}\right)+v\left(\mathrm{As}_{2} \mathrm{~F}_{10}\right)\right]+} \\ & \delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)_{\text {small }} \end{aligned}$
333(2)	338(2)[46]	A^{\prime}	$\delta\left(\mathrm{Re}_{1} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{~F}_{3}\right)+\delta(\mathrm{FAsF})$
	322(1)[36]	A"	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{3}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)+\delta(\mathrm{FAsF})+\rho_{\mathrm{t}}\left(\mathrm{FAs}_{2} \mathrm{~F}\right)$
	307(1)[51]	A^{\prime}	$\delta\left(\mathrm{Re}_{1} \mathrm{O}_{2} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{As}_{2} \mathrm{~F}\right)$
290(18)	294(1)[120] 286(1)[31]	$\left.\begin{array}{l}A^{\prime \prime} \\ A^{\prime \prime}\end{array}\right\}$	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\delta(\mathrm{FAsF})$

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. A full list of frequencies and assignments is provided in Table C5. ${ }^{c}$ Values in parentheses denote calculated Raman intensities $\left(\AA^{4} \mathrm{u}^{-1}\right)$. Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The B3LYP/aug-cc-pVTZ(-PP) method was used. ${ }^{d}$ The abbreviations denote stretch (v), bend (δ), and twist $\left(\rho_{\mathrm{t}}\right)$. The atom numbering corresponds to that used in Figure 5.1b.

Table 5.3. Experimental Raman Frequencies and Intensities for the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$ Cation in $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ and Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$Cation

$\left[\mathrm{O}_{3} \mathrm{Re}(\mathrm{NC}\right.$	$\left.\left.\mathrm{CH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right]$	$\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}\left(\mathrm{C}_{3 \mathrm{v}}\right)$		
exptl ${ }^{\text {a,b }}$		calcd $^{\text {a,c }}$		assgnts ${ }^{\text {d }}$
$\left[\mathrm{SbF}_{6}\right]^{-e}$	$\left[\mathrm{AsF}_{6}\right]^{-f}$	B3LYP	PBE1PBE	$\begin{aligned} & v_{\mathrm{as}}\left(\mathrm{CH}_{3}\right) \\ & v_{\mathrm{as}}\left(\mathrm{CH}_{2}\right) \end{aligned}$
$\left.\begin{array}{l} 3007 \mathrm{sh} \\ 2997(20)^{g} \end{array}\right\}$	3011(17)	3125(164)[7]	3154(158)[12]	
		$\{3125(12)[2]$	3154(11)[2]	
		[3123(100)[7]	3151(97)[11]	
		3123(0)[0]	$3151(0)[0]$	
$\begin{aligned} & 2953 \mathrm{sh} \\ & 2939(78) \\ & 2934(100) \end{aligned}$	2954 sh$2941(100)$	3049(699)[3]	3066(695)[5]	$v_{s}\left(\mathrm{CH}_{3}\right)$
		3049(32)[14]	3066(33)[19]	
2330(38)	2329(76)	2405(394)[87]	2433(389)[94] $\}$	$v(\mathrm{CN})$
2303(16)	2300(36)	2400(171)[214]	2428(170)[230]	
	1413(5)	(1458(2)[35]	1447(2)[38]	$\delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$
1412(2)		\{1458(10)[2]	1447(9)[3]	
		1457(7)[23]	1446(7)[25]	
		1457(0)[0]	1446(0)[0]	
$\begin{aligned} & 1370(11) \\ & 1366(9) \\ & 1361(8) \end{aligned}$	1360(21)	[1408(22)[3]	1395(19)[4]	$\delta_{s}\left(\mathrm{CH}_{3}\right)$
		$\left\{\begin{array}{l}1407(14)[5]\end{array}\right.$	1394(13)[7]	
1037(1)	1035(2)	1059(1)[9]	1047(1)[10]	$\mathrm{\rho}_{\mathrm{r}}\left(\mathrm{CH}_{3}\right)$
		$\{$ 1058(1)[2]	1047(1)[3]	
		1055(1)[7]	1043(1)[8]	
		1054(0)[0]	1042(0)[0]	
975(27)	974(55)	1039(68)[26]	1069(66)[30]	$\begin{aligned} & v\left(\mathrm{ReO}_{1}\right)+v\left(\mathrm{ReO}_{1 \mathrm{~A}}\right)+v\left(\mathrm{ReO}_{1 \mathrm{~B}}\right) \\ & v\left(\mathrm{ReO}_{1}\right)-v\left(\mathrm{ReO}_{1 \mathrm{~A}}\right) \end{aligned}$
946(43)	946(71)	993(19)[202]	1019(18)[218]	
935(20)	$\left.\begin{array}{l}\text { 936(33) } \\ 931 \text { sh }\end{array}\right\}$	950(18)[12]	975(20)[12]	$v_{s}(\mathrm{CC})$
922 sh	922(4)	946(2)[11]	971(2)[11]	$\mathrm{vas}_{\text {a }}(\mathrm{CC})$
424(4)	424(8)	434(2)[6]	439(2)[6]	$\delta_{\text {s }}(\mathrm{NCC})_{\text {ip }}$
424(4)	424(8)	433(2)[1]	438(2)[1]	$\delta_{\mathrm{s}}(\mathrm{NCC})_{\text {oop }}$
399(2)	408(2) br	424(<1)[4]	429(<1)[3]	$\delta_{\text {as }}(\mathrm{NCC})_{\text {ip }}$
		421 (0) [0]	426(0)[0]	$\delta_{\text {as }}(\mathrm{NCC})_{\text {oop }}$
$\left.\begin{array}{l} 390(8) \\ 386(3)^{g, h} \\ 380 \mathrm{sh}^{h} \\ 371(14) \\ 365(14) \end{array}\right\}$				
	381(9)	386(2)[33]	393(2)[34]	$\delta_{\mathrm{s}}\left(\mathrm{ReO}_{1} \mathrm{O}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~B}}\right)$
	$367(44)^{i}$	377(5)[6]	383(5)[6]	$\delta_{\text {as }}\left(\mathrm{ReO}_{1} \mathrm{O}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~B}}\right)$
		251(<1)[8]		
	209(4)	$250(<1)[12]$	258(<1)[11]	$v_{\text {s }}($ Re---N)
213(2)		213(1)[9]	220(1)[11]	$v_{\text {as }}($ Re---N $)$
		199(<1)[1]	205(<1)[1]	$\delta_{s}(\mathrm{ReNC})_{\text {ip }}$
		178(0)[0]	181(0)[0]	$\rho_{\mathrm{r}}\left(\mathrm{ReO}_{1} \mathrm{O}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~B}}\right)-\rho_{\mathrm{r}}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$

Table 5.3. (continued ...)

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. The Raman spectra were recorded in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The aug-cc-pVTZ(-PP) basis set was used. ${ }^{d}$ The atom numbering corresponds to that used in Figure 5.1c. The abbreviations denote stretch (v), symmetric (s), asymmetric (as), bend (δ), rock (ρ_{r}), in-plane (ip), and out-of-plane (oop). ${ }^{e}$ The spectrum was recorded on a crystalline material under a small amount of frozen $\mathrm{CH}_{3} \mathrm{CN}$. Modes associated with frozen $\mathrm{CH}_{3} \mathrm{CN}$ are given in Table C6. A broad band at $668(1) \mathrm{cm}^{-1}$ was assigned to $\mathrm{SbF}_{5} \cdot \mathrm{NCCH}_{3}$. Modes associated to the $\left[\mathrm{SbF}_{6}\right]^{-}$anion were observed at $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), 645(23) ; v_{2}\left(\mathrm{E}_{\mathrm{g}}\right), 574(2) ; v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right), 278(4) \mathrm{cm}^{-1}$. A combination band was observed at $2732(2) \mathrm{cm}^{-1} .{ }^{f}$ The spectrum was recorded on a dry solid. Modes associated to the $\left[\mathrm{AsF}_{6}\right]^{-}$anion were observed at $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), 681(18) \mathrm{cm}^{-1}$ and $v_{2}\left(\mathrm{E}_{\mathrm{g}}\right), 577(3)$ cm^{-1}. The band at $628(1) \mathrm{cm}^{-1}$ was assigned to $\mathrm{AsF}_{5} \cdot \mathrm{NCCH}_{3}$. Combination bands were observed at 2711(1), $2274 \mathrm{sh}, 1753(4)$, and $1444(2) \mathrm{cm}^{-1}$. The bands at 544(1) and 534(1) cm^{-1} were not assigned. ${ }^{g}$ Band overlapping with free $\mathrm{CH}_{3} \mathrm{CN} .{ }^{h}$ Band overlaps with an FEP line. ${ }^{i}$ Band overlaps with the $v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)$ mode of $\left[\mathrm{AsF}_{6}\right]^{-}$.
-cc-pVTZ(-PP) level of theory failed because the gas-phase species dissociated.
$\left[\mathbf{R e O}_{3}\right]\left[\mathbf{S b}_{\mathbf{3}} \mathbf{F}_{\mathbf{1 6}}\right]$ (1). Initially, the hypothetical $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}$ ion-pair (Figure $\mathrm{C} 3 a)$ was calculated, as it is expected that the $\left[\mathrm{ReO}_{3}\right]^{+}$cation will interact with the fluorine atoms associated with more than one $\left[\mathrm{SbF}_{6}\right]^{-}$anion in order to attain a pseudooctahedral environment of the Re atom. Overall, the calculated frequencies and intensities of the $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}$ ion-pair are in reasonable accord with the experimental values. Because some experimental frequencies and intensities were comparable with those of $\mathrm{Cs}\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right],{ }^{254}$ the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair was also calculated (Tables 5.1 and C 4). The resulting frequencies and intensities are in very good agreement with experiment (see Raman Spectroscopy).

The calculated $\mathrm{Re}-\mathrm{O}$ bond lengths ($1.686 \AA$) are longer (Table $5.4, \mathrm{C} 7$) and therefore more polar than the calculated $\mathrm{Re}-\mathrm{O}$ bond lengths of the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation $(1.677 \AA$) (Figure C1), which is consistent with ion-pair formation. The calculated $\operatorname{Re}-\mathrm{O}$ bond lengths are comparable to the experimental ones $\left\{\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right\} \mathrm{ReO}_{3}(1.681(5)$ and $1.683(5) \AA)^{255}$ and $\left(\eta_{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{ReO}_{3}(1.693(4) \AA) .{ }^{249 \mathrm{c}}$ The calculated $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles (104.8 and 105.3°) are consistent with a trigonal pyramidal arrangement of oxygen atoms and are comparable to those of the calculated gas-phase $\left[\mathrm{ReO}_{3}\right]^{+}$cation $\left(106.1^{\circ}\right)$. The calculated $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles are also similar to the experimental $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles of $\left(\eta_{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{ReO}_{3}\left(103.5(3)\right.$ and $\left.104.6(2)^{\mathrm{o}}\right),{ }^{249 \mathrm{c}}\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right) \mathrm{ReO}_{3}\left(103.7(6)^{\mathrm{o}}\right),{ }^{256}$ and $\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right) \mathrm{H}_{4}\right) \mathrm{ReO}_{3}\left(105.7(1)\right.$ and $104.5(1)^{\mathrm{o}} .{ }^{257}$

Table 5.4. Selected Calculated ${ }^{a}$ Bond Lengths and Bond Angles of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (1), $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ (2), and $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(3)

Bond Length (\AA)	(1) $\left(C_{\text {s }}\right)^{b}$	(2) $\left(C_{\mathrm{s}}\right)^{\text {b }}$		(3) $\left(C_{3 v}\right)^{c}$	
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.686	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.670	$\mathrm{Re}-\mathrm{O}_{1}$	1.695
$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.686	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	1.835	$\mathrm{Re}---\mathrm{N}_{1}$	2.299
$\mathrm{Re}_{1}--\mathrm{F}_{1}$	2.197	$\mathrm{Re}_{1}--\mathrm{F}_{1}$	2.381	$\mathrm{N}_{1}-\mathrm{C}_{1}$	1.144
$\mathrm{Re}_{1}--\mathrm{F}_{2}$	2.401	$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.791	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.447
$\mathrm{Sb}_{1}-\mathrm{F}_{1}$	2.006	$\mathrm{As}_{1}-\mathrm{F}_{1}$	1.805	$\mathrm{C}_{2}-\mathrm{H}_{1}$	1.090
$\mathrm{Sb}_{1}-\mathrm{F}_{4}$	1.872	$\mathrm{As}_{1}-\mathrm{F}_{4}$	1.698		
$\mathrm{Sb}_{1}-\mathrm{F}_{5}$	1.873	$\mathrm{As}_{1}-\mathrm{F}_{5}$	1.704		
$\mathrm{Sb}_{1}-\mathrm{F}_{6}$	1.868	$\mathrm{As}_{1}-\mathrm{F}_{6}$	1.687		
$\mathrm{Sb}_{1}-\mathrm{F}_{8}$	1.870	$\mathrm{As}_{1}-\mathrm{F}_{8}$	1.698		
$\mathrm{Sb}_{1}-\mathrm{F}_{7}$	2.147	$\mathrm{As}_{1}--\mathrm{F}_{7}$	2.165		
$\mathrm{Sb}_{2}-\mathrm{F}_{2}$	1.939	$\mathrm{As}_{2}-\mathrm{O}_{3}$	1.848		
$\mathrm{Sb}_{2}-\mathrm{F}_{11}$	1.866	$\mathrm{As}_{2}-\mathrm{F}_{11}$	1.699		
$\mathrm{Sb}_{2}-\mathrm{F}_{9}$	1.865	$\mathrm{As}_{2}-\mathrm{F}_{9}$	1.702		
$\mathrm{Sb}_{2}-\mathrm{F}_{12}$	1.865	$\mathrm{As}_{2}-\mathrm{F}_{12}$	1.702		
$\mathrm{Sb}_{2}-\mathrm{F}_{7}$	2.017	$\mathrm{As}_{2}-\mathrm{F}_{7}$	1.830		
Bond Angles (deg)					
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	104.8	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	103.5	$\mathrm{O}_{1}-\mathrm{Re}-\mathrm{O}_{2}$	105.5
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	105.3	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	100.7	$\mathrm{O}_{1}-\mathrm{Re}---\mathrm{N}_{1}$	86.6
$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	88.8	$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	88.8	$\mathrm{O}_{1}-\mathrm{Re}--\mathrm{N}_{1 \mathrm{~A}}$	86.6
$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{2}$	85.8	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	103.1	$\mathrm{O}_{1}-\mathrm{Re}---\mathrm{N}_{1 \mathrm{~B}}$	159.4
$\mathrm{O}_{1}-\mathrm{Re}_{1}--\mathrm{F}_{3}$	153.1	$\mathrm{O}_{1}-\mathrm{Re}_{1}--\mathrm{F}_{3}$	166.7	$\mathrm{Re}--\mathrm{N}_{1}-\mathrm{C}_{1}$	164.4
$\mathrm{O}_{3}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	93.0	$\mathrm{F}_{2}-\mathrm{Re}_{1}--\mathrm{F}_{1}$	71.8	$\mathrm{C}_{1}-\mathrm{N}_{1}-\mathrm{C}_{2}$	179.3
$\mathrm{O}_{3}-\mathrm{Re}_{1}---\mathrm{F}_{2}$	161.2	$\mathrm{F}_{2}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	141.0	$\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{H}$	109.3
$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{2}$	71.9	$\mathrm{F}_{1}---\mathrm{Re}_{1}-\mathrm{O}_{3}$	78.3	$\mathrm{H}_{1}-\mathrm{C}_{2}-\mathrm{H}_{2}$	109.2
$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{3}$	70.4	$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{3}$	78.5		
$\mathrm{Re}_{1}--\mathrm{F}_{1}-\mathrm{Sb}_{1}$	152.5	$\mathrm{Re}_{1}--\mathrm{F}_{1}-\mathrm{As}_{1}$	142.1		
$\mathrm{Re}_{1}--\mathrm{F}_{2}-\mathrm{Sb}_{2}$	156.2	$\mathrm{Re}_{1}-\mathrm{O}_{3}-\mathrm{As}_{2}$	164.5		
$\mathrm{Sb}_{1}-\mathrm{F}_{7}-\mathrm{Sb}_{2}$	146.5	$\mathrm{As}_{1}-\mathrm{F}_{7}-\mathrm{As}_{2}$	144.6		

${ }^{a}$ B3LYP/aug-cc-aVTZ(-PP). For the atom labeling scheme, see Figures 5.1. The bond lengths and bond angles around $\mathrm{Pn}_{3}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ are equal to those around Pn_{1} by symmetry. ${ }^{b}$ See table C7 for the PBE1PBE/aug-cc-pVTZ(-PP) values. ${ }^{c}$ See table C9 for the PBE1PBE/aug-cc-pVTZ(-PP) values.

The calculated lengths of the $\operatorname{Re}-\mathrm{F}_{\mu \mathrm{t}}$ bridging bonds between the Re and the "terminal" $\mathrm{Sb}_{1,3}$ atoms $(2.197 \AA)$ are comparable to those of the experimental $\operatorname{Re}-\mathrm{F}_{\mu \mathrm{t}}$ bridging bonds in $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]\left(2.210(5)\right.$ and $2.200(5) \AA$) salt, ${ }^{22}$ and are shorter than the calculated $\mathrm{Re}-\mathrm{F}_{\mu \mathrm{c}}$ bridging bond between Re and the central Sb_{2} atom ($2.401 \AA$). The calculated $\mathrm{O}-\mathrm{Re}-\mathrm{F}_{\mu \mathrm{c}}\left(161.2^{\circ}\right.$ and $\left.85.8^{\circ}\right)$ and $\mathrm{O}-\operatorname{Re}-\mathrm{F}_{\mu \mathrm{t}}\left(153.1^{\circ}, 93.0^{\circ}\right.$, and $\left.88.8^{\circ}\right)$ bond angles are also comparable to those observed in the crystal structure of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (164.5(2), 168.2(2), 92.3(2), and 88.5(2) $\left.{ }^{\circ}\right)^{.22}$

Overall, the calculated terminal $\mathrm{Sb}-\mathrm{F}(1.868-1.873 \AA)$ bond lengths and bridging $\mathrm{Sb}-\mathrm{F}_{\mu}$ bond lengths between two Sb atoms (2.017 and $2.147 \AA$) and the $\mathrm{F}-\mathrm{Sb}-\mathrm{F}$, $\mathrm{F}-\mathrm{Sb}-\mathrm{F}_{\mu}, \mathrm{F}_{\mu}-\mathrm{Sb}-\mathrm{F}_{\mu}$, and $\mathrm{Sb}-\mathrm{F}_{\mu}-\mathrm{Sb}$ bond angles of the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair (Tables 5.4 and C7) are comparable to the corresponding bond lengths and bond angles calculated for the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion (Table C8). The only notable difference occurs for the $\mathrm{Sb}-\mathrm{F}_{\mu \mathrm{t}}$ and $\mathrm{Sb}-\mathrm{F}_{\mu \mathrm{c}}(2.006$ and $1.939 \AA$) bond lengths which elongate upon ion-pair formation (calcd $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}, 1.891$ and $1.879 \AA$). The calculated bond lengths and bond angles of the [$\left.\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion in $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ are comparable to the experimental bond lengths and bond angles of $\mathrm{Cs}\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$. ${ }^{254}$
$\boldsymbol{\mu} \mathbf{- O}\left(\operatorname{ReO}_{2} \mathbf{F}\right)\left(\mathrm{AsF}_{5}\right) \cdot \mathbf{2 A s F}_{5}$ (2). Initially, the hypothetical $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]_{3}\right\}^{2-}$ ionpair (Figure C4a) was calculated by analogy with $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}$. Although it was optimized with all frequencies real (Figure C4a), several experimental Raman bands could not be accounted for. Attempts to optimize the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]$ ion pair resulted in the dissociation of the $\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]^{-}$anion into a central AsF_{5} molecule $\left(C_{4 \mathrm{v}}\right)$ that interacts with an $\mathrm{ReO}_{3} \mathrm{~F}$ molecule through a long $\mathrm{Re}---\mathrm{F}_{2}(\mathrm{As})$ contact ($2.777 \AA$) and two terminal

AsF $_{5}$ molecules $\left(D_{3 \mathrm{~h}}\right)$ that interact through very long Re--- $\mathrm{F}_{1,3}$ (As) contacts ($3.290 \AA$) (Figure C5). Moreover, attempts to optimize (B3LYP/aug-cc-pVTZ(-PP)) the unknown $\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]^{-}$anion also resulted in a dissociated model (Figure C6) where a central $\left[\mathrm{AsF}_{6}\right]^{-}$ anion $\left(\mathrm{As}-\mathrm{F}_{\mathrm{t}}, 1.713\right.$ and $1.716 \AA ; \mathrm{As}-\mathrm{F}_{\mathrm{b}}, 1.854 \AA$) interacts through long As--- F_{b} contacts $\left(2.105 \AA\right.$) with two adjacent AsF_{5} molecules $\left(C_{4 \mathrm{v}}\right)$. The Raman spectrum of the product isolated from the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with AsF_{5} showed two bands at 886 and $878 \mathrm{~cm}^{-1}$ that do not correspond to terminal $\mathrm{Re}^{-} \mathrm{O}$ stretches. Instead, these bands are reminiscent of a band at $864 \mathrm{~cm}^{-1}$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (Chapter 4) which is associated with a $\operatorname{Re}-\mathrm{O}_{\mu}-\mathrm{Re}$ stretch. A model was therefore calculated in which one of the oxygen atoms of the $\mathrm{ReO}_{3} \mathrm{~F}$-moiety is oxygen-bridged to the central AsF_{5} molecule and the fluorine atom is terminal. The remaining two terminal AsF_{5} molecules interact with the $\mathrm{ReO}_{3} \mathrm{~F}$-moiety through two $\mathrm{F}_{\mu}---\mathrm{Re}$ contacts to complete the pseudo-octahedral environment around the Re atom. This model accounts for all of the observed frequencies (see Raman Spectroscopy).

The calculated $\mathrm{As}_{2}-\mathrm{O}_{\mu}$ bond length (1.848 \AA) is comparable to the $\mathrm{As}_{2}-\mathrm{F}_{\mu}$ bond lengths $(1.830 \AA)$, whereas the $\operatorname{Re}-\mathrm{O}_{\mu}$ bond $(1.791 \AA)$ is longer than the $\operatorname{Re}-\mathrm{O}_{\mathrm{t}}$ bond $(1.670 \AA)$. As expected, the $\mathrm{Re}---\mathrm{F}_{\mu}$ contacts $(2.381 \AA)$ are significantly longer than the terminal $\operatorname{Re}-\mathrm{F}_{\mathrm{t}}$ bond (1.835 \AA) (Tables 5.4 and C 7). The $\mathrm{As}_{1,3}-\mathrm{F}_{\mu}$ bonds of two terminal AsF_{5} molecules elongate upon coordination to the Re atom $\left(\mathrm{As}_{1,3}-\mathrm{F}_{\mu}, 1.805 \AA ; \mathrm{As}_{1,3}-\mathrm{F}_{\mathrm{t}}\right.$, 1.687, 1.698 , and $1.704 \AA$), however, they are significantly shorter than the $\mathrm{As}-\mathrm{F}_{\mu}$ bridging bonds between $\mathrm{As}_{1}---\mathrm{F}_{7}$ and $\mathrm{As}_{3}---\mathrm{F}_{10}(2.165 \AA)$.

The calculated terminal $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths ($1.670 \AA$) (Table 5.4) are comparable to the experimental $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths of $\mathrm{ReO}_{3} \mathrm{~F}\left(1.667(7)\right.$ and $\left.1.685(7) \AA{ }^{\circ}\right),{ }^{21}$ and $\operatorname{ReO}_{2} \mathrm{~F}_{3}\left(1.667(8), 1.675(8) \AA \AA^{19} 1.669(9)-1.676(9) \AA^{21}\right)$. They are slightly shorter than the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right](1.686 \AA$) (Table 5.4), which is consistent with reduction of the Re charge in $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (2.14, see Table C 9 , Appendix C) upon ionpair formation when compared to that of neutral $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}(2.27$, see Table C9, Appendix C). The calculated bridging $\operatorname{Re}-\mathrm{O}_{\mu}(1.791 \AA)$ bond length is significantly longer than the $\mathrm{Re}-\mathrm{O}_{\mathrm{t}}$ bond lengths, consistent with the loss of double-bond character, and is significantly shorter than the calculated bridging $\operatorname{Re}-\mathrm{O}_{\mu}$ bond lengths of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(1.876 \AA\right.$) (Chapter 4). The calculated terminal $\mathrm{Re}-\mathrm{F}_{\mathrm{t}}$ bond length $\left(1.835 \AA\right.$) is also comparable to the experimental $\operatorname{Re}-F_{t}$ bond length of (μ -$\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(1.816(9)-1.870(11) \AA\right.$) (Chapter 4) and $\mathrm{ReO}_{2} \mathrm{~F}_{3}(1.831(6)$, $1.854(6) \AA ;{ }^{19}\left(1.828(8)-1.867(8) \AA^{21}\right)$.

The calculated bridging $\mathrm{As}_{2}-\mathrm{O}_{\mu}(1.848 \AA)$ bond length is comparable to the experimental bridging $\mathrm{As}_{2}-\mathrm{O}_{\mu}$ bond lengths in $\left[\mathrm{AsCl}_{4}\right]\left[\mathrm{As}\left(\mathrm{OTeF}_{5}\right)_{6}\right]$ (av. 1.801(6) \AA) ${ }^{258}$ $\left[\mathrm{AsBr}_{4}\right]\left[\mathrm{As}\left(\mathrm{OTeF}_{5}\right)_{6}\right](\mathrm{av} .1.805(9) \AA),{ }^{258}\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{As}\left(\mathrm{OTeF}_{5}\right)_{6}\right](1.791(9) \AA),{ }^{259}$ and is considerably longer than the terminal As- O bond in $\mathrm{AsOCl}_{3}(1.633(3) \AA) .{ }^{260}$ The terminal AsF_{5} molecules interact with the central AsF_{5} molecule through long As $-\mathrm{F}_{\mu}$ bridges $(2.165 \AA)$. Overall, the terminal As-F bond lengths are comparable to those of $\mathrm{CF}_{3} \mathrm{SNSO} \cdot \mathrm{AsF}_{5}{ }^{261}$ and $\mathrm{CH}_{3} \mathrm{SCN} \cdot \mathrm{AsF}_{5}{ }^{262}$ Considering the above bond length and contact distance trends, the compound appears to be best formulated as μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$.
$\left[\mathrm{O}_{3} \operatorname{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(3). The energy-minimized gas-phase structure of the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cation has a facial arrangement of oxygen atoms, with the $\mathrm{CH}_{3} \mathrm{CN}$ molecules coordinated trans to the oxygen ligands, giving rise to a distorted octahedral environment around the rhenium atom (Figure 5.4c). The calculated $\mathrm{Re}-\mathrm{O}$ bond lengths ($1.695 \AA$) (Tables 5.4 and C9) are comparable to the calculated $\mathrm{Re}-\mathrm{O}$ bond lengths $(1.686 \AA)$ of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and are longer than those in the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation $(1.677 \AA$ A, Figure C 1$)$, consistent with the adduct-cation formation. The calculated $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles $\left(105.4^{\circ}\right)$ in $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$are comparable to those in $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]\left(104.8\right.$ and $\left.105.3^{\circ}\right)$ and $\left[\mathrm{ReO}_{3}\right]^{+}\left(106.1^{\circ}\right)$ and in agreement with the trigonal pyramidal arrangement of oxygen atoms. The calculated $\mathrm{Re}-\mathrm{O}$ bond lengths are shorter than those in $\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}(1.724(3), 1.730(3) \text {, and } 1.719(3) \AA)^{41 \mathrm{~b}}$ and $\left[\left\{\mathrm{C}_{6} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{5} \mathrm{~N}_{3}\right\} \mathrm{ReO}_{3}\right]^{+}(1.725(2), 1.721(2)$, and $1.703(2) \AA),{ }^{\circ}{ }^{41 \mathrm{c}}$ which is in agreement with the shift of the $v(\mathrm{ReO})$ stretches to higher frequency in the Raman spectrum of $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$when compared with the Raman spectra of other adduct-cations (see Section 5.2.5.3).

The calculated Re---N bond lengths ($2.299 \AA$) are comparable to those of the $\mathrm{ReO}_{3} \mathrm{~F}\left(\mathrm{NCCH}_{3}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}$ adduct (2.294(4) $\left.\AA\right),{ }^{19}$ and slightly longer than those of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}(2.241(3), 2.254(1) \text {, and } 2.231(3) \AA)^{41 \mathrm{~b}}$ and $\left[\left\{\mathrm{C}_{6} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{5} \mathrm{~N}_{3}\right\} \mathrm{ReO}_{3}\right]^{+}$ (2.273(2), 2.289(3), and 2.267(2) $\AA) .{ }^{41 \mathrm{c}}$ The $\mathrm{C}-\mathrm{N}$ bonds (1.144 \AA) in (3) are comparable, whereas the $\mathrm{C}-\mathrm{C}(1.447 \AA$) bonds are slightly shorter than those of the calculated free $\mathrm{CH}_{3} \mathrm{CN}$ molecule (C-N, $1.149 \AA$; C-C, $1.455 \AA$; Table C3), which is in agreement with $\mathrm{C}-\mathrm{C}$ bond strengthening upon coordination of $\mathrm{CH}_{3} \mathrm{CN}$. Although the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond
lengths of $\mathrm{CH}_{3} \mathrm{CN}$ do not change significantly upon the adduct-cation formation, significantly high-frequency shifts are observed for the $v(\mathrm{CN})$ and $v(\mathrm{CC})$ stretching modes in the Raman spectrum of (3) (see Raman Spectroscopy). Analogous behaviour has been observed for $\mathrm{OsO}_{3} \mathrm{~F}_{2} \cdot \mathrm{NCCH}_{3}{ }^{217}$ and $\mathrm{TcO}_{2} \mathrm{~F}_{3}\left(\mathrm{NCCH}_{3}\right) .{ }^{25}$

5.2.5. Raman Spectroscopy

The low-temperature Raman spectra of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (1), μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}(\mathbf{2}),\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As} . \mathrm{Sb})(3)$ are shown in Figures 5.2, 5.3, 5.4, and C7, respectively. The observed and calculated frequencies and mode descriptions are provided in Tables 5.1, 5.2, 5.3, C4, C5, and C6. Spectral assignments were made by comparison with the calculated frequencies and Raman intensities of (1) (C_{s}) (Tables 5.1 and C4), (2) (C_{s}) (Tables 5.2 and C5), (3) ($C_{3 \mathrm{v}}$) (Tables 5.3 and C6), $\left[\mathrm{ReO}_{3}\right]^{+}\left(C_{3 v}\right)$ (Table C 1), $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{\mathrm{s}}\right)$ (Table C 2), and $\mathrm{CH}_{3} \mathrm{CN}$ (Table C3), which were optimized at the B3LYP/aug-cc-pVTZ(-PP) and PBE1PBE/aug-cc-pVTZ(PP) levels of theory. Overall there is better agreement with the B3LYP/aug-cc-pVTZ(PP) values, therefore only the B3LYP/aug-cc-pVTZ(-PP) values were used in the following discussion. In the absence of crystal structures, it was not possible to carry out factor-group analyses which may account for a number of splittings observed in the Raman spectra of (1), (2), and (3).

Figure 5.2. Raman spectrum of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote an FEP sample tube line $(*)$, a $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ line overlaps with an FEP sample tube line (\ddagger), and an instrumental artifact (\dagger).

Figure 5.3. Raman spectrum of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line (*), a μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ line overlaps with an FEP sample tube line (\ddagger), and an instrumental artifact (\dagger).

5.2.5.1. $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (1)

The $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair (Figure 5.1a) possesses C_{s} symmetry which results in 63 fundamental vibrational modes belonging to the 34A' $+29 \mathrm{~A}^{\prime \prime}$ irreducible representation, where all modes are infrared and Raman active.

The experimental frequencies associated with the terminal $\mathrm{Re}-\mathrm{O}$ stretching modes are overestimated by the calculations; however, the observed frequency trends are well reproduced. The highest frequencies and most intense bands are assigned to the symmetric $v\left(\mathrm{ReO}_{3}\right)$ stretching mode (exptl, $1010 / 1018 / 1038 \mathrm{~cm}^{-1}$; calcd, $1066 \mathrm{~cm}^{-1}$). The band at $972 \mathrm{~cm}^{-1}$ is assigned to the corresponding asymmetric modes which could not be distinguished experimentally (calcd, 1011 and $1014 \mathrm{~cm}^{-1}$). The calculated $\operatorname{Re}-\mathrm{O}$ stretching frequencies are shifted to lower frequency than those of the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation (1084 and $1016 \mathrm{~cm}^{-1}$), consistent with ion-pair formation. Both stretching modes appear at higher frequencies than the corresponding modes in the Raman spectrum of $\mathrm{ReO}_{3} \mathrm{~F}$ (996 and $969 \mathrm{~cm}^{-1}$), ${ }^{21,235}$ reflecting the greater covalent character of the $\mathrm{Re}-\mathrm{O}$ bonds in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair than in $\mathrm{ReO}_{3} \mathrm{~F}$. The symmetric and asymmetric $\mathrm{Re}-\mathrm{O}$ stretching modes also appear at lower frequencies than those of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{ClO}_{4}\right]$ (1001 and $\left.982 \mathrm{~cm}^{-1}\right),{ }^{250} \mathrm{CH}_{3} \mathrm{ReO}_{3} \quad\left(995\right.$ and $\left.950 / 957 \mathrm{~cm}^{-1}\right),{ }^{249 \mathrm{~d}}\left(\eta_{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{ReO}_{3} \quad(914$ and $\left.875 / 885 \mathrm{~cm}^{-1}\right),{ }^{263}$ and $\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right) \mathrm{ReO}_{3}\left(905 \text { and } 873 / 887 \mathrm{~cm}^{-1}\right)^{263}$ which result from the weaker donor ability (lower basicity) of the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion relative to $\left[\mathrm{ClO}_{4}\right]^{-},\left[\mathrm{CH}_{3}\right]^{-}$, $\left[\left(\eta_{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{-}$, and $\left[\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)\right]^{-}$.

The band appearing at $406 \mathrm{~cm}^{-1}$ is associated with $\delta\left(\mathrm{ReO}_{2}\right)$ and $\delta\left(\mathrm{ReO}_{3}\right)$ deformation modes and is well reproduced by the calculations (375,383 , and $388 \mathrm{~cm}^{-1}$).

The bending mode frequencies are comparable to those observed in $\left(\eta_{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right) \mathrm{ReO}_{3}$ $\left(395 \mathrm{~cm}^{-1}\right)^{263}$ and $\left(\eta_{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{ReO}_{3}\left(386 \mathrm{~cm}^{-1}\right) .{ }^{263}$

Overall, the modes associated with the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion are comparable to those of the calculated free $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion and those observed for $\mathrm{Cs}\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$. ${ }^{254}$

5.2.5.2. $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}(2)$

The $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ molecule (Figure 5.1 b) possesses C_{s} symmetry which results in 63 fundamental vibrational modes which span the $34 \mathrm{~A}^{\prime}+29 \mathrm{~A}^{\prime \prime}$ irreducible representation with all modes being infrared and Raman active.

The experimental frequencies associated with the terminal symmetric (exptl, $1030 / 1038 \mathrm{~cm}^{-1}$) and asymmetric ($1002 / 1006 / 1015 \mathrm{~cm}^{-1}$) Re-O stretching modes are overestimated by the calculations $\left(v_{\mathrm{s}}(\operatorname{Re}-\mathrm{O}), 1082 \mathrm{~cm}^{-1} ; \mathrm{vas}_{\mathrm{as}}(\operatorname{Re}-\mathrm{O}), 1045 \mathrm{~cm}^{-1}\right)$ as was observed for the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair. Both modes are shifted to higher frequency when compared to those observed for $\mathrm{ReO}_{3} \mathrm{~F}\left(996\right.$ and $\left.969 \mathrm{~cm}^{-1}\right),{ }^{21,235} \mathrm{ReO}_{3} \mathrm{~F}\left(\mathrm{FH}_{2}\right)(1017$ and $\left.981 \mathrm{~cm}^{-1}\right),{ }^{235}$ and $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(1012 / 1024\right.$ and $\left.996 \mathrm{~cm}^{-1}\right)$ (Chapter 4), and are consistent with the lower polarity of the $\operatorname{Re}-\mathrm{O}$ bonds in μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$. The weak bands at 878 and $886 \mathrm{~cm}^{-1}$ (calcd, $938 \mathrm{~cm}^{-1}$) were assigned to the asymmetric bridging stretching mode, $v\left(\mathrm{ReO}_{\mu}\right)-v\left(\mathrm{AsO}_{\mu}\right)$, which appears at higher frequency than $v\left(\operatorname{ReO}_{\mu}\right)-v\left(\operatorname{Re}^{\prime} \mathrm{O}_{\mu}\right)$ in $\mathrm{ReO}_{3} \mathrm{~F}\left(813 \mathrm{~cm}^{-1}\right),{ }^{21,235}(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(864 \mathrm{~cm}^{-1}\right)$ (Chapter 4), and $\mathrm{Re}_{2} \mathrm{O}_{7}\left(783\right.$ to $895 \mathrm{~cm}^{-1}$ (see Figure C11, Appendix C); 798 to $\left.880 \mathrm{~cm}^{-1}{ }^{246}\right)$. The symmetric $v\left(\mathrm{AsO}_{\mu}\right)+v\left(\mathrm{ReO}_{\mu}\right)$ stretching band is expected to be very weak and was observed as a weak band at $423 \mathrm{~cm}^{-1}$ (calcd,
$420 \mathrm{~cm}^{-1}$). The $\delta(\mathrm{OReO})$ deformation mode involving the terminal oxygen atoms (calcd, $407 \mathrm{~cm}^{-1}$) appears at $407 \mathrm{~cm}^{-1}$, whereas the $\delta\left(\mathrm{OReO}_{\mu}\right)$ deformation mode is coupled to the $\delta(\mathrm{FAsF})$ and $\rho_{\mathrm{t}}(\mathrm{FAsF})$ deformation modes and appears at $312 \mathrm{~cm}^{-1}$ (calcd, $322 \mathrm{~cm}^{-1}$). The $\delta(\mathrm{OReO})$ deformation modes are comparable to those observed in $\mathrm{ReO}_{3} \mathrm{~F}(313,354,386$ $\left.\mathrm{cm}^{-1}\right),{ }^{21,235}(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(396,400\right.$, and $\left.405 \mathrm{~cm}^{-1}\right)$ (Chapter 4), and $\mathrm{ReO}_{3} \mathrm{~F}\left(\mathrm{FH}_{2}\right)\left(326,341\right.$, and $\left.400 \mathrm{~cm}^{-1}\right) .{ }^{235}$ The bridging $v\left(\operatorname{ReF}_{\mu}\right)-v\left(\mathrm{AsF}_{\mu}\right)$ stretching modes (510,523 , and $535 \mathrm{~cm}^{-1}$) are well reproduced by the calculations (520, 523, and $\left.549 \mathrm{~cm}^{-1}\right)$ and appear at slightly higher frequency than the bridging $v\left(\operatorname{ReF}_{\mu}\right)-v\left(\operatorname{Re}^{\prime} \mathrm{F}_{\mu}\right)$ stretching modes in $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{4}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}\left(554 \mathrm{~cm}^{-1}\right)^{19}$ and $\mathrm{Cs}\left[\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)(\mu-\right.$ $\left.\mathrm{F})_{2}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]\left(568 \mathrm{~cm}^{-1}\right) .{ }^{19}$ The terminal $v(\mathrm{ReF})$ stretching mode (calcd, $703 \mathrm{~cm}^{-1}$) is predicted to be weak and was not observed.

The terminal $v\left(\mathrm{AsF}_{\mathrm{eq}}\right)$ (exptl, $829 \mathrm{~cm}^{-1}$; calcd, 777 and $783 \mathrm{~cm}^{-1}$) and $v\left(\mathrm{AsF}_{\mathrm{ax}}\right)$ (exptl, 808; calcd, 761 and $762 \mathrm{~cm}^{-1}$) stretching modes of the "terminal" AsF ${ }_{5}$ groups are comparable to those of $v\left(\mathrm{AsF}_{\mathrm{eq}}\right)\left(\right.$ exptl, $812 \mathrm{~cm}^{-1}$; calcd, $\left.776 \mathrm{~cm}^{-1}\right)$ and $v\left(\mathrm{AsF}_{\mathrm{ax}}\right)$ (exptl, 739 cm^{-1}; calcd, $\left.754 \mathrm{~cm}^{-1}\right)$ in AsF_{5}. The $v\left(\mathrm{AsF}_{\text {eq }}\right)$ and $v\left(\mathrm{AsF}_{\mathrm{ax}}\right)$ stretching modes appear at higher frequencies than the $v(\mathrm{AsF})$ stretching modes of the $\left[\mathrm{AsF}_{6}\right]^{-}$(exptl, 679 and $565 \mathrm{~cm}^{-1}$; calcd, 640 and $546 \mathrm{~cm}^{-1}$) and $\left[\mathrm{As}_{2} \mathrm{~F}_{11}\right]^{-}$(exptl, 736 and $683 \mathrm{~cm}^{-1}$; calcd, 733, 721 and 696, 681 cm^{-1}) anions.

5.2.5.3. $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}(3)$

In the following discussion, values associated with the $\left[\mathrm{AsF}_{6}\right]^{-}$salt are given in parentheses. The frequencies of the $\left[\mathrm{PnF}_{6}\right]^{-}$anion are consistent with O_{h} symmetry (Table

C6), indicating that the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cations are well isolated from the $\left[\mathrm{PnF}_{6}\right]^{-}$anions (Figure 5.1c). The $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cation possesses 60 fundamental vibrational modes belonging to the irreducible representation $13 \mathrm{~A}_{1}+7 \mathrm{~A}_{2}+$ 20 E under $C_{3 \mathrm{v}}$ symmetry where the A_{1} and E modes are Raman and infrared active and the A_{2} modes are inactive.

The bands at 975 (974) and 946 (946) cm^{-1} (calcd, 1039 and $993 \mathrm{~cm}^{-1}$) are assigned to the symmetric and asymmetric terminal $\mathrm{Re}-\mathrm{O}$ stretching modes, respectively. Both $v\left(\mathrm{ReO}_{3}\right)$ stretching modes appear at higher frequencies than those observed in the Raman spectrum of the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{ReO}_{3}\right]^{+}$adduct-cation (920/934, and $\left.909 \mathrm{~cm}^{-1}\right)^{42}$ indicative of stronger covalent character of the $\mathrm{Re}-\mathrm{O}$ bond in (3) than in $\left[\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{ReO}_{3}\right]^{+}$. The $\mathrm{Re}-\mathrm{O}$ stretching modes also appear at higher frequencies than the corresponding stretches observed in the infrared spectra of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{ReO}_{3}\right]^{+}\left(933,902 \mathrm{~cm}^{-1}\right),{ }^{42}$ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right) \mathrm{ReO}_{3}\right]^{+}\left(945,920 \mathrm{~cm}^{-1}\right),{ }^{41 \mathrm{a}}$ and $\left[\left\{\mathrm{HC}\left(3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}\right)_{3}\right\} \mathrm{ReO}_{3}\right]^{+}(929,920$ $\left.\mathrm{cm}^{-1}\right) .{ }^{41 \mathrm{c}}$

The symmetric and asymmetric $\delta(\mathrm{OReO})$ deformation modes (exptl, 380/386/390 ($381 / 385$), $365 / 371(367) \mathrm{cm}^{-1}$; calcd, 386 and $377 \mathrm{~cm}^{-1}$) appear at lower frequency than the $\delta\left(\mathrm{ReO}_{2}\right)$ and $\delta\left(\mathrm{ReO}_{3}\right)$ deformation modes in $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (exptl, $406 \mathrm{~cm}^{-1}$; calcd, $\left.375,383,388 \mathrm{~cm}^{-1}\right)$.

The $v(\mathrm{CN})$ stretching mode of the coordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules (exptl, $2303 / 2330(2300 / 2329) \mathrm{cm}^{-1}$; calcd, $2400 / 2405 \mathrm{~cm}^{-1}$) is shifted by $69(66) \mathrm{cm}^{-1}$ (calcd, $40 \mathrm{~cm}^{-1}$) to higher frequency relative to that observed in free $\mathrm{CH}_{3} \mathrm{CN}$ (exptl, $2248 \mathrm{~cm}^{-1}$; calcd, $2363 \mathrm{~cm}^{-1}$). The shift to higher frequency results from the donation of electron
density by the nitrogen atoms to the rhenium atom, resulting in increased σ-bond character and strengthening of the $\mathrm{C}-\mathrm{N}$ bonds rather than to π back donation from rhenium into the nitrogen π^{\star} orbitals, which would cause a low-frequency shift for the $v(\mathrm{CN})$ stretch. The symmetric $v(\mathrm{CC})$ stretching mode (exptl, $935(931 / 936) \mathrm{cm}^{-1}$; calcd, $\left.950 \mathrm{~cm}^{-1}\right)$ is also slightly shifted to higher frequency $\left(\Delta v(\mathrm{CC})=15(14) \mathrm{cm}^{-1}\right.$; calcd, 22 cm^{-1}) upon coordination of $\mathrm{CH}_{3} \mathrm{CN}$ which results from $\mathrm{C}-\mathrm{C}$ bond strengthening. Comparable high-frequency shifts of the $v(\mathrm{CN})$ and $v(\mathrm{CC})$ stretching modes have previously been observed in $\mathrm{MO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}\left[\mathrm{M}=\mathrm{Tc}\left(\Delta v(\mathrm{CN})=13 \mathrm{~cm}^{-1}, \Delta v(\mathrm{CC})=20\right.\right.$ $\left.\mathrm{cm}^{-1} ;{ }^{25} \mathrm{M}=\operatorname{Re}\left(\Delta v(\mathrm{CN})=75 \mathrm{~cm}^{-1}, \Delta v(\mathrm{CC})=23 \mathrm{~cm}^{-1}\right)\right]^{19}$ and $\mathrm{OsO}_{3} \mathrm{~F}_{2} \cdot \mathrm{NCCH}_{3}(\Delta v(\mathrm{CN})$ $\left.=84 \mathrm{~cm}^{-1}, \Delta v(\mathrm{CC})=34 \mathrm{~cm}^{-1}\right) .{ }^{217}$ The $\delta(\mathrm{NCC})$ deformation modes occur at $424 \mathrm{~cm}^{-1}$ $(408,423) \mathrm{cm}^{-1}$ and are well reproduced by the calculations $\left(421 / 424 / 433 / 434 \mathrm{~cm}^{-1}\right)$. The Re---N stretching modes are predicted to occur as weak bands (calcd, 213 and $250 \mathrm{~cm}^{-1}$) and were observed as weak bands $213 \mathrm{~cm}^{-1}$ (209) cm^{-1} and are comparable to those observed in $\mathrm{ReO}_{2} \mathrm{~F}_{3} \cdot \mathrm{NCCH}_{3}\left(212\right.$ and $\left.221 \mathrm{~cm}^{-1}\right)$. ${ }^{19}$

5.2.6. NBO Charges, Wiberg Valencies, and Bond Indices

The NBO analyses for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]\left(C_{s}\right), \mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}\left(C_{s}\right)$, $\left[\mathrm{O}_{3} \operatorname{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}\left(C_{3 \mathrm{v}}\right),\left[\operatorname{ReO}_{3}\right]^{+}\left(C_{3 \mathrm{v}}\right),\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{3 \mathrm{v}}\right)$, and $\mathrm{CH}_{3} \mathrm{CN}\left(C_{3 \mathrm{v}}\right)$ were carried out for the B3LYP/aug-cc-pVTZ(-PP) and PBE1PBE/aug-cc-pVTZ(-PP) optimized gasphase geometries. The trends in calculated charges, valencies, and bond indices for the above molecules are consistent at both levels of theory (Tables C10-C15, Appendix C); therefore, only the B3LYP results are referred to in the ensuing discussion.

5.2.6.1. $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ (Figure 5.1a)

Positive charges are located on the rhenium (2.14) and antimony (3.07 and 3.09) atoms, whereas negative charges are located on the electronegative atoms ($\mathrm{O},-0.49$ and $-0.50 ; \mathrm{F},-0.60,-0.61$, and -0.65) with the highest negative charge residing on the bridging fluorine atoms. The Re, Sb and F atom charges are comparable to those of the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation ($\mathrm{Re}, 2.12$) and free $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion ($\mathrm{Sb}, 3.06$ and 3.08; $\mathrm{F},-0.62$, and $-0.66)$, respectively. The charges on the O atoms of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ are, however, more negative than those of free $\left[\mathrm{ReO}_{3}\right]^{+}(-0.37)$, consistent with donation of electron density from the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion to the $\left[\mathrm{ReO}_{3}\right]^{+}$cation. The Re and O valencies of the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion pair ($\mathrm{Re}, 5.51 ; \mathrm{O}, 2.27$) are slightly greater than that of the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation (Re, 5.47; O, 2.34). The Sb valencies of the ion pair (2.80) are smaller whereas the F valencies are similar to those of the free $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion $(\mathrm{Sb}, 3.06$ and 3.08).

The Wiberg bond indices of the $\mathrm{Re}-\mathrm{O}$ (1.68 and 1.69) and $\mathrm{Sb}-\mathrm{F}_{\mu}$ (0.32 and 0.41) bonds decrease upon ion-pair formation $\left(\left[\mathrm{ReO}_{3}\right]^{+}, 1.82 ;\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}, 0.52\right.$ and 0.55$)$, in agreement with increases in the corresponding calculated $\mathrm{Re}-\mathrm{O}$ and $\mathrm{Sb}-\mathrm{F}_{\mu}$ bond lengths of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]\left(\mathrm{Re}-\mathrm{O}, 1.686 \AA \AA^{\mathrm{A}} \mathrm{Sb}-\mathrm{F}_{\mu}, 2.017\right.$ and $2.147 \AA$), when compared with those of $\left[\mathrm{ReO}_{3}\right]^{+}(1.677 \AA)$ and $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}(1.891$ and $1.879 \AA)$.

5.2.6.2. $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}\left(\mathrm{Figure}^{5.1 b}\right)$

The positive charges reside on rhenium (2.27) and arsenic (2.70 and 2.68). As in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair, the negative charges are dispersed over both terminal oxygen
atoms (-0.41) and terminal fluorine atoms bonded to As $(-0.52,-0.53$, and -0.54$)$. The charges on the bridging fluorine atoms are slightly more negative (-0.59 and -0.60) than those on the terminal fluorine atoms, whereas the highest negative charge is on the bridging oxygen atom (-0.86). The overall negative charge distributions are comparable to those of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (Chapter 4). The charge on the terminal fluorine atom (-0.43) is also comparable to those observed in $(\mu-\mathrm{F})_{4}\{[\mu-$ $\left.\left.\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (Chapter 4). The Re valence (5.50) is comparable to that observed in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ (5.54). The valencies of the As atoms of the terminal AsF_{5} are slightly smaller than that of the central AsF_{5} molecule. The terminal F valencies $(0.78,079$, and 0.80$)$ are only slightly greater than those of the fluorine atoms bridging Re and terminal AsF_{5} molecules (0.73) and those bridging the terminal AsF_{5} and the central AsF_{5} (0.74) molecules. The terminal O valencies are significantly greater than that of the bridging O_{μ} atom (1.96). The higher valence of the bridging O_{μ} atoms is in accordance with its higher coordination number.

The Wiberg bond indices of the terminal $\operatorname{Re}-\mathrm{O}$ and $\mathrm{As}-\mathrm{F}$ bonds ($\mathrm{O}, 1.79$; F , ca. $0.64)$ are in agreement with their double- and single-bond character, respectively. The $\mathrm{As}_{2}-\mathrm{F}_{\mu}(\mathrm{As})$ Wiberg bond indices (0.42) are higher than the $\mathrm{As}_{1,3}-\mathrm{F}_{\mu}(\mathrm{As})$ Wiberg bond indices (0.16), which is in accordance with the calculated $\mathrm{As}_{2}-\mathrm{F}_{\mu}(\mathrm{As})(1.830 \AA)$ and $\mathrm{As}_{1,3}-\mathrm{F}_{\mu}(\mathrm{As})\left(\mathrm{As}_{1,3}-\mathrm{F}_{\mu}, 2.165 \AA\right.$) bond lengths. Noticeable difference is observed between the $\mathrm{Re}---\mathrm{F}_{\mu}(0.11)$ and $\mathrm{Re}-\mathrm{O}_{3}(0.97)$ bridge bond indices, in agreement with the proposed structure description of $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$.

5.2.6.3. $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$(Figure 5.1c)

Upon adduct formation, the charges on the Re atom (1.93) decrease and the charges on the O atoms (-0.50) become more negative, when compared to those of the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation ($\left.\mathrm{Re}, 2.12 ; \mathrm{O},-0.37\right)$ and are consistent with the electron density donation by the $\mathrm{CH}_{3} \mathrm{CN}$ ligands. The Re valencies (5.64) in $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$slightly increase, whereas the O valencies (2.28) slightly decrease upon the adduct-cation formation ($\left[\mathrm{ReO}_{3}\right]^{+}: \mathrm{Re}, 5.47 ; \mathrm{O}, 2.34$). The $\mathrm{Re}-\mathrm{O}$ Wiberg bond index (1.62) is comparable to that in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair (1.68 and 1.69) and smaller than in the free $\left[\mathrm{ReO}_{3}\right]^{+}$cation (1.82). The Re---N Wiberg bond index (0.25) indicates that the Re---N bond has some covalent character.

The charges on the N atoms in $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}(-0.44)$ are more negative, whereas the charge on the C directly bonded to N becomes more positive (0.51) than those in free $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{N},-0.33 ; \mathrm{C}_{1}, 0.28\right)$, consistent with the overall electron density flow from the $\mathrm{C}-\mathrm{N}$ triple bond to the N atom. The polarization of $\mathrm{CH}_{3} \mathrm{CN}$ is also indicated by the decreased Wiberg bond index of the $\mathrm{C}-\mathrm{N}$ bond (2.74), increase of N valencies (3.26), and decrease of C_{1} valence (3.91), when compared to that of free $\mathrm{CH}_{3} \mathrm{CN}$ (bond index, 2.90; valence: $\mathrm{N}, 3.02 ; \mathrm{C}_{1}, 4.00$). The charge, valencies, and bond indices of the CH_{3}-group do not change upon adduct formation.

5.3. Conclusion

The study of the fluoride ion-donor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ has led to the isolation of the first rhenium trioxide cation, $\left[\mathrm{ReO}_{3}\right]^{+}$, as its $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$salt, and a novel μ -
$\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ molecule, which provides the first example of AsF_{5} molecule coordinated to a transition metal through an O atom. The aforementioned compounds have been synthesized by the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with SbF_{5} in $\mathrm{SO}_{2} \mathrm{ClF}$ and AsF_{5}, respectively. Both solids were insoluble in $\mathrm{SO}_{2} \mathrm{ClF}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and solvolyzed in aHF to form $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb}){ }^{22}$ preventing crystal growth. The $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salt is stable at room temperature, whereas $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ slowly dissociates into $\mathrm{ReO}_{3} \mathrm{~F}$ and AsF_{5}, at temperatures above $0{ }^{\circ} \mathrm{C}$. An attempt to grow crystals of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ by sublimation at $45{ }^{\circ} \mathrm{C}$ resulted in the formation of $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{22}$ The dissolution of the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair and $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ in $\mathrm{CH}_{3} \mathrm{CN}$ yielded the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{PnF}_{6}\right]$ salts, which both contain the novel $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$ adduct-cation. All of the above compounds were unambiguously characterized by Raman spectroscopy with the aid of quantum-chemical calculations. The structural characterization of these compounds revealed that the ReO_{3}-moiety is retained in the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ ion-pair and in the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cation, whereas in μ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$, the $\mathrm{ReO}_{2} \mathrm{~F}$-moiety is bridged to AsF_{5} through an O atom. In the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$adduct-cation, the $\mathrm{CH}_{3} \mathrm{CN}$ ligands are bonded trans to the oxygen atoms.

CHAPTER 6

[XeOXeOXe] ${ }^{2+}$, THE MISSING OXIDE OF XENON(II); SYNTHESIS, RAMAN SPECTRUM, AND X-RAY CRYSTAL STRUCTURE OF [XeOXeOXe] $\left[\mu-\mathrm{F}_{\left.\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}}\right.$

6.1. Introduction

Noble-gas compounds have generated considerable interest since the discovery of noble-gas reactivity by Neil Bartlett in $1962 .{ }^{264}$ Over the ensuing decades, the syntheses of the binary xenon fluorides, KrF_{2}, and oxide fluorides of xenon have provided a diverse derivative chemistry. ${ }^{265}$ Although thermodynamically unstable with respect to their elements, xenon oxides have also been isolated and characterized in macroscopic quantities for every known oxidation state of xenon except the $+1 / 2$ and +2 oxidation states, i.e., $\mathrm{Xe}^{\mathrm{IV}} \mathrm{O}_{2},{ }^{266} \mathrm{Xe}^{\mathrm{VI}} \mathrm{O}_{3},{ }^{267-272} \mathrm{Xe}^{\mathrm{VIII}} \mathrm{O}_{4},{ }^{273-279}\left(\eta^{2}-\mathrm{O}_{2}\right) \mathrm{Xe}^{\mathrm{VIII}} \mathrm{O}_{3},{ }^{279}$ and $\left[\mathrm{Xe}^{\mathrm{VIII}} \mathrm{O}_{6}\right]^{4}$. ${ }^{270,280-297}$ No isolable oxides of krypton are known. ${ }^{298}$ Both XeO_{3} and XeO_{4} are shocksensitive, decomposing explosively with the release of 402^{269} and $642^{275} \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, whereas water-insoluble XeO_{2} quiescently decomposes under water at 0 ${ }^{\circ} \mathrm{C}^{265}$ over several minutes. In contrast, $\left[\mathrm{Xe}^{\mathrm{VIII}} \mathrm{O}_{6}\right]^{4-}$ salts are kinetically and thermodynamically stable at ambient temperatures and pressures, ${ }^{270}$ and have been characterized by X-ray crystallography, ${ }^{280-285,288}$ Raman, ${ }^{289,290,296}$ infrared, ${ }^{286,289,296}$ photoelectron, ${ }^{291,296}$ Auger, ${ }^{291}$ Mössbauer, ${ }^{30}{ }^{129}$ Xe NMR, ${ }^{292,297}$ and UV ${ }^{295}$ spectroscopy. Xenon tetroxide is generated by the reaction of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ with $\mathrm{Na}_{4}\left[\mathrm{XeO}_{6}\right]$ and has been isolated as a pale yellow, volatile solid and its molecular structure has been

Ph.D. Thesis - Maria V. Ivanova
obtained from an electron diffraction study of XeO_{4} in the gas phase. ${ }^{276}$ Xenon tetroxide has also been characterized by infrared, ${ }^{273,279}$ Raman, ${ }^{277,278}{ }^{129,131} \mathrm{Xe}$ NMR spectroscopy, ${ }^{278}$ and mass spectrometry. ${ }^{274}$ Photolysis of XeO_{4} in noble-gas matrices at 365 nm yielded the $\mathrm{Xe}(\mathrm{VIII})$ peroxo-compound, $\left(\eta^{2}-\mathrm{O}_{2}\right) \mathrm{XeO}_{3}$ and $\mathrm{XeO}_{3} .{ }^{279}$ The former was characterized by infrared spectroscopy. Xenon trioxide, XeO_{3}, has been synthesized as a colorless crystalline solid and characterized by single-crystal X-ray diffraction, ${ }^{268}$ Raman, ${ }^{271}$ and infrared ${ }^{272}$ spectroscopy. Recently, XeO_{2} has been synthesized as a bright yellow solid at $0{ }^{\circ} \mathrm{C} .{ }^{266}$ The characterization of XeO_{2} by Raman spectroscopy revealed that XeO_{2} is polymeric, possessing an extended structure in which Xe is bonded to four oxygen atoms having a local square-planar XeO_{4} geometry around the central Xe atom.

The xenon(II) oxide, XeO , has been postulated as an intermediate in some oxidation reactions of $\mathrm{XeO}_{3}{ }^{270}$ Its gas-phase UV and vacuum UV emission spectra have been attributed to emissions from $\mathrm{Xe}^{+} \mathrm{O}^{-}$ion pair states. ${ }^{299,300}$ Monomeric XeO has not been synthesized in macroscopic amounts, but has been obtained in an argon matrix ${ }^{301}$ where UV spectroscopic evidence suggested that the ground state of XeO is essentially a van der Waals molecule with a bond length considerably longer than the excited state value. Xenon monoxide was subsequently shown by gas-phase quantum-chemical calculations to have an unbound ${ }^{3} \Pi$ ground state. The only bound state is the excited $1^{1} \Sigma^{+}$state. ${ }^{299,300}$ In a prior study, the first xenon(II) oxide fluoride species, $[\mathrm{FXeOXeFXeF}]^{+}$, was synthesized as its $\left[\mathrm{PnF}_{6}\right]^{-}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ salts by reaction of XeF_{2} with $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{PnF}_{6}\right]$ in HF. ${ }^{302}$ The $[F \mathrm{FXeOXeFXeF}]\left[\mathrm{PnF}_{6}\right]$ salts were characterized by single-crystal X-ray diffraction, Raman spectroscopy, and quantum-chemical calculations. Although the

Ph.D. Thesis - Maria V. Ivanova

oxygen and fluorine atoms bonded to the central Xe atom of $[\mathrm{FXeOXeFXeF}]^{+}$are positionally disordered in both $\left[\mathrm{PnF}_{6}\right]^{-}$salts the presence of a bridging oxygen atom was corroborated by ${ }^{16 / 18} \mathrm{O}$ isotopic shifts obtained from the Raman spectrum and by isotopic shift values obtained from quantum-chemical calculations. It was proposed that XeF_{2} is hydrolyzed by $\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$to form FXeOH , an intermediate in the formation of the $[\mathrm{FXeOXeFXeF}]^{+}$cation.

In the quest for a xenon(II) oxide, the reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with XeF_{2} was investigated as a possible means to transfer oxygen to xenon(II). A reliable synthesis of high-purity $\mathrm{ReO}_{3} \mathrm{~F}$ in anhydrous HF (aHF) has been recently developed, ${ }^{235}$ which has allowed its chemistry to be more widely explored. The HF solvate, $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2}$, has also been isolated and characterized by single-crystal X-ray diffraction and Raman spectroscopy.

The present study reports the synthesis and characterization of the first xenon(II) oxide, $[\mathrm{XeOXeOXe}]^{2+}$ as its $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$salt. The salt has been structurally characterized by low-temperature single-crystal X-ray diffraction and Raman spectroscopy. Vibrational assignments have been made with the aid of quantum-chemical calculations, which were supported by ${ }^{18} \mathrm{O}$-enrichment studies. The nature of the bonding in $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ has been examined using Natural Bond Orbital (NBO), Quantum Theory of Atoms in Molecules (QTAIM), Electron Localization Function (ELF), and Molecular Electrostatic Potential Surface (MEPS) analyses.

6.2. Results and Discussion

6.2.1 Synthesis of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

Reaction progress and product purities were monitored by recording the Raman spectra of the solids under aHF in FEP reaction vessels at $-140^{\circ} \mathrm{C}$.

The salt, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, was obtained by the reaction of $\mathrm{ReO}_{3} \mathrm{~F}^{235}$ with XeF_{2} in aHF at $-30{ }^{\circ} \mathrm{C}$ according to a three-step reaction sequence (eqs $6.1-6.3$), with the overall synthesis summarized in eq 6.4. A range of $\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2}$ molar

$$
\begin{align*}
& \mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{HF} \longrightarrow \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2} \tag{6.1}\\
& 3 \mathrm{XeF}_{2}+4 \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2} \longrightarrow {[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}+2\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right] } \tag{6.2}\\
& 2 \mathrm{XeF}_{2}+2\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right] \longrightarrow 2 \mathrm{Xe}+\mathrm{O}_{2}+8 \mathrm{HF} \tag{6.3}\\
& 5 \mathrm{XeF}_{2}+4 \mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2} \longrightarrow {[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}+2 \mathrm{Xe}+} \\
& \mathrm{O}_{2}+8 \mathrm{HF} \tag{6.4}
\end{align*}
$$

ratios was surveyed to determine whether or not other xenon(II) oxide or oxide fluoride cations could be formed.

The molar ratios of the reactants, $\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}$, were 2.11:1.00, 1.19:1.00, 1.18:1.00, 1.14:1.00, 1.02:1.00, and 0.56:1.00. Upon warming the reaction mixtures to $-30{ }^{\circ} \mathrm{C}, \mathrm{ReO}_{3} \mathrm{~F}$ and XeF_{2} dissolved in aHF over a period of ca. $5-10 \mathrm{~min}$, forming pale yellow solutions. As the reactions progressed over a period of $2-4 \mathrm{~h}$ at $-30^{\circ} \mathrm{C}$, the solution colors changed from pale yellow to yellow-orange. Rapid cooling of the solutions $\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=2.11: 1.00,1.19: 1.00,1.18: 1.00,1.14: 1.00\right)$ to $-78{ }^{\circ} \mathrm{C}$ resulted in irreversible precipitation of red-orange colored microcrystalline powders that was accompanied by solution color changes from yellow-orange to colorless upon complete

Ph.D. Thesis - Maria V. Ivanova
precipitation. The low-temperature Raman spectra of the red-orange crystalline products under frozen aHF $\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=1.19: 1.00,1.14: 1.00\right)$ and products isolated under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=2.11: 1.00,1.18: 1.00\right)$ were identical and were assigned to $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Crystals of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ that were of a quality suitable for an X-ray structure determination were grown by slowly cooling the yellow-orange solutions $\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=0.56: 1.00\right.$ and 1.02:1.00) from -30 to $-35{ }^{\circ} \mathrm{C}$ over a 5 h period. The ${ }^{18} \mathrm{O}$-enriched salt, $\left[\mathrm{Xe}^{18} \mathrm{OXe}{ }^{18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, was also synthesized from enriched $\mathrm{Re}^{18} \mathrm{O}_{3} \mathrm{~F}$ using a modification of a published synthetic procedure ${ }^{235}$ (also see Experimental Section).

A plausible reaction pathway leading to $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ is provided in Scheme 6.1. The reaction sequence is presumably initiated by XeF_{2} coordination to $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2}$, followed by intramolecular rearrangements that lead to $\left[\mathrm{OXeFReO} 2 \mathrm{~F}_{2}(\mathrm{FH})\right]$. Subsequent HF solvolysis yields $\mathrm{ReO}_{2} \mathrm{~F}_{3}(\mathrm{FH})$ and HOXeF. The HOXeF molecule has also been invoked as a key reaction intermediate in the synthesis of the $[\mathrm{FXeOXeFXeF}]^{+}$ cation. ${ }^{302}$ The reaction of HOXeF with a second equivalent of $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2}$ provides [$\mathrm{HOXeFReO} 33 \mathrm{~F}(\mathrm{FH})$], which, in turn, undergoes condensation with HOXeF to yield $[\mathrm{FXeOXeFReO} 33 \mathrm{~F}(\mathrm{FH})]$. The latter product undergoes intramolecular rearrangement and subsequent HF solvolysis to form $\mathrm{ReO}_{2} \mathrm{~F}_{3}(\mathrm{FH})$ and FXeOXeOH . Fluorine coordination of FXeOXeOH to Lewis acidic $\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)$ results in a positive charge on the XeOXeOH unit of $\mu-\mathrm{F}(\mathrm{XeOXeOH})\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)\right]$ which promotes a further FXeOH condensation $/ \mathrm{H}_{2} \mathrm{O}$ elimination reaction to give $\mu-\mathrm{F}(\mathrm{FXeOXeOXe})[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)\right]$.
Scheme 6.1. Proposed Reaction Pathway Leading to the Formation of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$.

Ph.D. Thesis - Maria V. Ivanova

In view of the stabilities of the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$salts, ${ }^{19}$ the latter complex may be reformulated as $[\mathrm{FXeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$, where it is understood that there is a Xe---F-Re fluorine bridge interaction between the cation and the anion. In the final step, $[\mathrm{FXeOXeOXe}]^{+}$undergoes fluoride ion abstraction by two equivalents of $\mathrm{ReO}_{2} \mathrm{~F}_{3}(\mathrm{FH})$, which undergo HF elimination to give $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Water generated in Scheme 6.1 is protonated in $\mathrm{HF},{ }^{303,304}$ forming $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right]$ which reacts with XeF_{2} according to eq 6.3 to form $\mathrm{Xe}, \mathrm{O}_{2}$, and HF . Although the $[\mathrm{FXeOXeFXeF}]^{+}$cation may be formed as an intermediate, its $\left[\mathrm{AsF}_{6}\right]^{-}$and $\left[\mathrm{SbF}_{6}\right]^{-}$salts have been shown to rapidly decompose, with gas evolution, above $-30{ }^{\circ} \mathrm{C} .{ }^{302}$

The $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ salt decomposes as a solid or in HF solvent to $\mathrm{ReO}_{2} \mathrm{~F}_{3}, \mathrm{XeF}_{2}$ (both confirmed by Raman spectroscopy), O_{2}, and Xe at temperatures above $-20^{\circ} \mathrm{C}$ (eq 6.5). Xenon formation was confirmed by condensation from the

$$
\begin{equation*}
[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2} \longrightarrow 4 \mathrm{ReO}_{2} \mathrm{~F}_{3}+\mathrm{XeF}_{2}+\mathrm{O}_{2}+2 \mathrm{Xe} \tag{6.5}
\end{equation*}
$$

evolved gas mixture at $-196{ }^{\circ} \mathrm{C}$. In a separate study, $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and XeF_{2} were shown to be unreactive in aHF at room temperature and when equimolar amounts were fused at $80{ }^{\circ} \mathrm{C}$. In instances $\left(\mathrm{XeF}_{2}: \mathrm{ReO}_{3} \mathrm{~F}=1.19: 1.00,1.14: 1.00\right)$, where $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ had been isolated before the reaction sequence (eqs 6.2-6.4) had gone to completion (ca. 1 h at $-35{ }^{\circ} \mathrm{C}$), the solution samples were allowed to decompose $\left(-20{ }^{\circ} \mathrm{C}\right.$ to room temperature) and were pumped on at room temperature to remove $\mathrm{HF}, \mathrm{XeF}_{2}, \mathrm{Xe}$, and O_{2}. The Raman spectra of the resulting solids consisted of mixtures of $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and unreacted $\mathrm{ReO}_{3} \mathrm{~F}$.

Ph.D. Thesis - Maria V. Ivanova

6.2.2 X-ray Crystallography

Details of the data collection and other crystallographic information for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ are given in Table 6.1 and important bond lengths and bond angles are provided in Table 6.2. The salt, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, crystallizes in the triclinic space group $P \overline{1}(\mathrm{Z}=1)$ (Figure 6.1 a$)$. The unit cell consists of a well-isolated $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair, where the $[\mathrm{XeOXeOXe}]^{2+}$ cation interacts through fluorine bridges with two symmetry-equivalent $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions. The $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pairs occupy parallel b, c-planes and stack along the a-axis (Figure D1). The shortest intermolecular ligand atom distances occur for $\mathrm{O}_{(1)} \cdots \mathrm{O}_{(4 \mathrm{C})}(2.962(8) \AA)$ and $\mathrm{F}_{(7)} \cdots \mathrm{O}_{(2 \mathrm{~K})}(2.882(8) \AA)$, which are close to the corresponding sums of the van der Waals radii $(\mathrm{O} \cdots \mathrm{O}, 3.04$ and $\mathrm{O} \cdots \mathrm{F}, 2.99 \AA) .{ }^{241}$ The central $\mathrm{Xe}_{(1)}$ atom has six $\mathrm{Xe} \cdots \mathrm{O}(3.324(6)-3.663(6) \AA)$ and four $\mathrm{Xe} \cdots \mathrm{F}(3.119(5)-3.429(5) \AA)$ long contacts and the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ atoms have two $\mathrm{Xe} \cdots \mathrm{O}(3.311(6), 3.239(6) \AA$) and five $\mathrm{Xe} \cdots \mathrm{F}$ (3.114(5)-3.419(5) $\AA)$ long contacts so that the total coordination numbers of $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2)}$ are 12 and 9, respectively (Figure D2). These contacts are somewhat shorter than the sums of the $\mathrm{Xe} \cdots \mathrm{O}(3.68 \AA)$ and $\mathrm{Xe} \cdots \mathrm{F}(3.63 \AA)$ van der Waals radii. ${ }^{241}$ In the absence of these contacts, both xenon atoms are under bonded, having bond valences ${ }^{305}$ of 1.56 $\left(\mathrm{Xe}_{(1)}\right)$ and $1.57\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ (Table D1). The introduction of the aforementioned long contacts results in total bond valences of $1.84\left(\mathrm{Xe}_{(1)}\right)$ and $1.81\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$. The next closest Xe---O and Xe---F distances have bond valences less than 0.01 , and are too long to be considered as contacts.

Ph.D. Thesis - Maria V. Ivanova

Table 6.1. Summary of Crystal Data and Refinement Results for [XeOXeOXe] $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

Compound	$[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$
space group	$P \overline{1}$
$a(\AA)$	$7.7142(2)$
$b(\AA)$	$8.0991(2)$
$c(\AA)$	$10.0494(2)$
$\alpha(\mathrm{deg})$	$88.2797(13)$
$\beta(\mathrm{deg})$	$69.1278(12)$
$\gamma(\mathrm{deg})$	$62.0249(12)$
$V(\AA)^{3}$	$510.91(2)$
molecules/unit cell	1
mol wt $\left(\mathrm{g}\right.$ mol $\left.{ }^{-1}\right)$	1564.7
calcd density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	5.086
$T\left({ }^{\circ} \mathrm{C}\right)$	-173
$\mu\left(\mathrm{~mm}^{-1}\right)$	28.67
$R_{l}{ }^{a}$	0.0283
$w R_{2}{ }^{b}$	0.0597

${ }^{a} R_{1}$ is defined as $\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| \Sigma\right| F_{\mathrm{o}}\right|\right.$ for $I>2 \sigma(I) .{ }^{b}{ }_{w} R_{2}$ is defined as $\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right.\right.\right.$ $\left.\left.\left.F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$ for $I>2 \sigma(I)$.

Ph.D. Thesis - Maria V. Ivanova

Table 6.2. Experimental and Calculated Geometrical Parameters for [XeOXeOXe$]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right)$,

Bond Lengths (\AA)	$[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}{ }^{a}$			$[\mathrm{XeOXeOXe}]^{2+} b$		$\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-b}$		FXeOXeOXeF ${ }^{\text {b }}$	
	exptl	calcd							
		c	d	c	d	c	d	c	d
$\mathrm{Xe}_{(1)}-\mathrm{O}_{(1)}$	2.135(6)	2.174	2.139	2.207	2.169			2.155	2.119
$\mathrm{Xe}_{(2)}-\mathrm{O}_{(1)}$	1.987(6)	2.034	2.007	2.021	1.994			2.098	2.068
$\mathrm{Xe}_{(2)}--\mathrm{F}_{(1)}$	2.392(4)	2.310	2.279					2.086	2.057
$\mathrm{Re}_{(1)}-\mathrm{F}_{(1)}$	2.007(4)	2.112	2.097			1.920	1.908		
$\mathrm{Re}_{(1)}-\mathrm{O}_{(3)}$	1.676(6)	1.680	1.668			1.689	1.677		
$\mathrm{Re}_{(1)}-\mathrm{O}_{(2)}$	1.673(6)	1.678	1.666			1.696	1.683		
$\mathrm{Re}_{(1)}-\mathrm{F}_{(3)}$	1.859(4)	1.863	1.852			1.880	1.866		
$\mathrm{Re}_{(1)}-\mathrm{F}_{(4)}$	1.852(5)	1.860	1.844			1.880	1.865		
$\mathrm{Re}_{(1)}-\mathrm{F}_{(2)}$	2.048(4)	2.073	2.059			2.136	2.119		
$\mathrm{Re}_{(2)}-\mathrm{O}_{(4)}$	1.750 (6)	1.687	1.675			1.696	1.683		
$\mathrm{Re}_{(2)}-\mathrm{O}_{(5)}$	1.661(6)	1.678	1.666			1.689	1.677		
$\mathrm{Re}_{(2)}-\mathrm{F}_{(2)}$	2.174(5)	2.243	2.218			2.136	2.119		
$\mathrm{Re}_{(2)}-\mathrm{F}_{(7)}$	1.815(5)	1.888	1.877			1.880	1.865		
$\mathrm{Re}_{(2)}-\mathrm{F}_{(5)}$	1.863(5)	1.859	1.845			1.880	1.866		
$\mathrm{Re}_{(2)}-\mathrm{F}_{(6)}$	1.883(5)	1.941	1.926			1.920	1.908		
Bond Angles (deg)									
$\mathrm{O}_{(1)}-\mathrm{Xe}_{(1)}-\mathrm{O}_{(1 \mathrm{~A})}$	180.0	180.0	180.0	180.0	180.0			180.0	180.0
$\mathrm{Xe}_{(1)}-\mathrm{O}_{(1)}-\mathrm{Xe}_{(2)}$	115.6(3)	118.7	118.0	123.6	122.5			118.1	117.0
$\mathrm{O}_{(1)}-\mathrm{Xe}_{(2)}--\mathrm{F}_{(1)}$	176.7(2)	175.3	175.2					177.1	177.4
$\mathrm{Xe}_{(2)}--\mathrm{F}_{(1)}-\mathrm{Re}_{(1)}$	134.8(2)	130.7	129.1						
$\mathrm{O}_{(3)}-\mathrm{Re}_{(1)}-\mathrm{O}_{(2)}$	101.6(3)	102.8	102.9			101.9	102.0		
$\mathrm{O}_{(3)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(1)}$	90.7(3)	88.9	89.0			96.2	96.5		
$\mathrm{O}_{(3)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(2)}$	168.1(3)	165.5	165.3			173.5	173.5		
$\mathrm{O}_{(3)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(3)}$	96.3(3)	97.1	97.2			96.8	97.0		
$\mathrm{O}_{(3)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(4)}$	97.6(3)	97.4	97.6			96.5	96.6		
$\mathrm{O}_{(2)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(1)}$	167.7(2)	168.3	168.1			161.8	161.5		
$\mathrm{O}_{(2)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(2)}$	90.2(2)	91.6	91.8			84.5	84.5		
$\mathrm{O}_{(2)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(3)}$	96.4(2)	97.8	97.8			94.1	94.1		
$\mathrm{O}_{(2)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(4)}$	96.4(3)	97.8	98.1			94.4	94.6		
$\mathrm{F}_{(1)}-\mathrm{Re}_{(1)}-\mathrm{F}_{(2)}$	77.5(2)	76.7	76.3			77.3	77.0		

Ph.D. Thesis - Maria V. Ivanova
Table 6.2. (continued....)
${ }^{a}$ See Figure 6.1 for the atom labeling scheme. ${ }^{b}$ See Figure D3 for the atom labeling scheme. ${ }^{c}$ The B3LYP/aug-cc-pVDZ(-PP) level of theory was used. ${ }^{d}$ The PBE1PBE/aug-cc-pVDZ(-PP) level of theory was used.
a

b

Figure 6.1. (a) The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Thermal ellipsoids are shown at the 50% probability level. (b) Calculated gasphase structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ (B3LYP/aug-cc-$\mathrm{pVDZ}(-\mathrm{PP}))$. The experimental and calculated geometric parameters are provided in Table 6.2.

Ph.D. Thesis - Maria V. Ivanova

The central xenon atom of $[\mathrm{XeOXeOXe}]^{2+}$ is located on an inversion center, whereas all other atoms of the cation and anion are on general positions, giving C_{i} symmetry for the ion pair. The $[\mathrm{XeOXeOXe}]^{2+}$ cation is planar by symmetry and, when considered in isolation, has $C_{2 \mathrm{~h}}$ symmetry. The central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds (2.135(6) \AA) are significantly longer and more polar than the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds $(1.987(6) \AA$), in accordance with the dominant resonance contributions, (1) and (2).

The central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths are equal, within $\pm 3 \sigma$, to the $\mathrm{Xe}-\mathrm{O}$ bond lengths of $\mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2}(2.119(11) \AA),{ }^{306} \mathrm{FXeOSO}_{2} \mathrm{~F}\left(2.155(8) \AA{ }^{\circ}\right),{ }^{307} \mathrm{Xe}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)_{2}$ (2.1101(13), $2.1225(13) \AA),{ }^{308}$ and $\mathrm{FXeONO}_{2}(2.126(4) \AA) .{ }^{309}$ The terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths are equal, within $\pm 3 \sigma$, to the $\mathrm{Xe}-\mathrm{O}$ bond lengths of $\left[\mathrm{XeOTeF}_{5}\right]\left[\mathrm{Sb}\left(\mathrm{OTeF}_{5}\right)_{6}\right] \cdot \mathrm{SO}_{2} \mathrm{ClF}\left(1.969(4) \AA \AA^{242}\right.$. $^{24} \mathrm{The}_{\mathrm{Xe}}^{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds are slightly shorter than the $\mathrm{Xe}-\mathrm{O}$ bonds of $\mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2}{ }^{306} \mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{4}(2.039(5), 2.026(5) \AA),{ }^{310}$ and $\mathrm{O}_{2} \mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2}(2.024(5), 2.020(4) \AA),{ }^{310}$ but are significantly shorter than the $\mathrm{Xe}-\mathrm{O}$ bonds of $\mathrm{FXeOSO}_{2} \mathrm{~F}^{307}$ and $\mathrm{FXeONO}_{2} .{ }^{309}$

The $\mathrm{Xe}_{(2,2 \mathrm{~A})}---\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds between the $[\mathrm{XeOXeOXe}]^{2+}$ cation and the $[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions (2.392(4) \AA) are considerably longer and more polar than the terminal $\mathrm{Xe}-\mathrm{F}$ bonds of $\mathrm{XeF}_{2}(1.999(4) \AA) .{ }^{311}$ Overall, the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ cation-anion

Ph.D. Thesis - Maria V. Ivanova

bridge bonds are slightly longer than the Xe---F bridge bonds in a number of $[\mathrm{XeF}]^{+}$ salts, e.g., $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]\left(2.208(3),{ }^{311} 2.212(5) \AA^{312}\right),[\mathrm{XeF}]\left[\mathrm{SbF}_{6}\right](2.278(2) \AA),{ }^{311}$ $[\mathrm{XeF}]\left[\mathrm{BiF}_{6}\right](2.204(7) \AA),{ }^{311}[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]\left(2.343(4) \AA\right.$),${ }^{311}$ and $[\mathrm{XeF}]\left[\mathrm{Bi}_{2} \mathrm{~F}_{11}\right](2.253(5)$ \AA A), ${ }^{311}$ consistent with the dominant electrostatic nature of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ interaction in $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ (also see Computational Results).

The $\mathrm{O}_{(1)}-\mathrm{Xe}_{(1)}-\mathrm{O}_{(1 \mathrm{~A})}$ bond angle is linear by symmetry, whereas the $\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bond angles slightly deviate from linearity $\left(176.7(2)^{\mathrm{o}}\right)$. Both bond angles are consistent with linear $\mathrm{AX}_{2} \mathrm{E}_{3}$ VSEPR arrangements ${ }^{313}$ in which three valence electron lone pairs of xenon occupy equatorial positions and two bonding electron pairs occupy axial positions. Similar near-linear fluorine bridge angles occur for $\mathrm{F}-\mathrm{Xe}^{\mathrm{II}}---\mathrm{F}$ and $\mathrm{O}-\mathrm{Xe}^{\mathrm{II}}---\mathrm{F}$ in $[\mathrm{FXeOXeFXeF}]\left[\mathrm{PnF}_{6}\right]\left(\mathrm{As}, 177.4(5)^{\mathrm{o}}, 178.3(5)^{\mathrm{o}}, 178.2(5)^{\circ}\right.$; $\left.\mathrm{Sb}, \quad 178.6(3)^{\mathrm{o}}, \quad 177.9(1)^{\mathrm{o}}\right),{ }^{302}[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right] \quad\left(179.1(2)^{\mathrm{o}},{ }^{311} 178.9(7)^{0312}\right), \quad[\mathrm{XeF}]\left[\mathrm{SbF}_{6}\right]$ $\left(177.94(9)^{\mathrm{o}}\right),{ }^{311}[\mathrm{XeF}]\left[\mathrm{BiF}_{6}\right]\left(178.4(3)^{\mathrm{o}}\right),{ }^{311}[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]\left(179.3(2)^{\mathrm{o}}\right),{ }^{311}[\mathrm{XeF}]\left[\mathrm{Bi}_{2} \mathrm{~F}_{11}\right]$ $\left(178.9(3)^{\mathrm{o}}\right),{ }^{311}$ and $\mathrm{FXeOSO}_{2} \mathrm{~F}\left(177.4(3)^{\mathrm{o}}\right) .{ }^{307}$

The bent $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}\left(115.6(3)^{\circ}\right)$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}---\mathrm{F}_{(1,1 \mathrm{~A})}-\operatorname{Re}_{(1,1 \mathrm{~A})}\left(134.8(2)^{\mathrm{o}}\right)$ bond angles are in accordance with $\mathrm{AX}_{2} \mathrm{E}_{2}$ VSEPR arrangements at the oxygen and fluorine atoms. ${ }^{313} \mathrm{The}^{\mathrm{Xe}} \mathrm{e}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}$ bond angles are slightly smaller than the $\mathrm{Xe}-$ $\mathrm{O}-\mathrm{Ch}(\mathrm{Ch}=\mathrm{S}, \mathrm{Se}$, or Te$)$ angles in $\mathrm{Xe}\left(\mathrm{OTeF}_{5}\right)_{2}\left(121.2(6)^{\mathrm{o}}, 122.3(5)^{\mathrm{o}}\right),{ }^{306} \mathrm{Xe}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)_{2}$ (119.74(7), 119.18(7) $\left.{ }^{\mathrm{o}}\right),{ }^{308} \mathrm{FXeOSO}_{2} \mathrm{~F}\left(123.7(5)^{\mathrm{o}}\right),{ }^{307} \mathrm{Xe}\left(\mathrm{OSeF}_{5}\right)_{2}\left(123.9(13)^{\mathrm{o}}\right),{ }^{306}$ and are also less than the $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1)} / \mathrm{F}_{(1)}-\mathrm{Xe}_{(2)}$ bond angle in [FXeOXeFXeF][PnF $\left.\mathrm{F}_{6}\right]$ (As, $\left.123.5(6)^{\mathrm{o}}, 123.6(6)^{\mathrm{o}} ; \mathrm{Sb}, 2 \times 124.6(3)^{\mathrm{o}}\right) .{ }^{302} \mathrm{The}^{\mathrm{Xe}} \mathrm{e}_{(2,2 \mathrm{~A})}---\mathrm{F}_{(1,1 \mathrm{~A})}-\mathrm{Re}_{(1,1 \mathrm{~A})}$ angles and related fluorine bridge angles are expected to be more open than the $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}$ angle

Ph.D. Thesis - Maria V. Ivanova

owing to reduced lone-pair-bond-pair repulsions between the bridge bonds and the electron lone pairs of the bridging fluorine atoms. The fluorine-bridge angles that occur between the $[\mathrm{XeF}]^{+}$cation and its anion in $[\mathrm{XeF}]^{+}$salts are more open, e.g., $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ $\left(133.6(2)^{\mathrm{o}},{ }^{311} 134.8(2)^{\mathrm{o}}{ }^{312}\right),[\mathrm{XeF}]\left[\mathrm{SbF}_{6}\right]\left(136.9(1)^{\mathrm{o}}\right),{ }^{311}[\mathrm{XeF}]\left[\mathrm{BiF}_{6}\right]\left(156.1(4)^{\mathrm{o}}\right),{ }^{311}$ $[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]\left(148.1(2)^{\mathrm{o}}\right),{ }^{311}$ and $[\mathrm{XeF}]\left[\mathrm{Bi}_{2} \mathrm{~F}_{11}\right]\left(151.3(3)^{\mathrm{o}} .{ }^{311}\right.$

The $[\mathrm{XeOXeOXe}]^{2+}$ cation bridges to two $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions through fluorine atoms that are trans to oxygen atoms of the anions. The preference for trans- versus ciscoordination is attributed to the trans influence of the doubly bonded oxygen atoms. ${ }^{17}$ The bridging fluorine atom is a weaker $\mathrm{p}_{\pi} \rightarrow \mathrm{d}_{\pi}$ donor than the doubly bonded oxygen atom, therefore, more effective competition of the oxygen atom for the same two $\mathrm{d}_{\mathrm{t}_{2}}$ orbitals of rhenium enhances the negative charge and basicity of the fluorine atom trans to it. In contrast, the terminal fluorine atoms cis to the oxygen atom and trans to each other are less basic and, therefore, less favorable for fluorine-bridge formation. Such trans-oxo fluorine bridges are found in other transition metal oxide fluorides: $\mathrm{ReO}_{2} \mathrm{~F}_{3},{ }^{19,21} \mathrm{TcO}_{2} \mathrm{~F}_{3},{ }^{17}$ $\mathrm{OsO}_{3} \mathrm{~F}_{2},{ }^{314}\left[\mu-\mathrm{F}\left(\mathrm{TcOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],{ }^{2} \quad\left[\mu-\mathrm{F}\left(\mathrm{ReOF}_{4}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],{ }^{13} \quad\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{2} \mathrm{~F}_{3}\right)_{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],{ }^{177}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right] .{ }^{315}$

The $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions of $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{19}$ and $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}{ }^{19}$ have been structurally characterized by X-ray crystallography. Both salts display cationanion interactions that are essentially Coulombic in nature. In contrast, the $[\mu$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ interact with the $[\mathrm{XeOXeOXe}]^{2+}$ cation by means of fluorine bridges that lower the anion symmetries from $C_{2 v}$ to C_{1}. Despite a conformational change and symmetry lowering, the structural parameters and

Ph.D. Thesis - Maria V. Ivanova

trends among the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anion bond lengths and bond angles of the $[\mathrm{XeOXeOXe}]^{2+}$ salt are comparable to those reported for $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ and $\mathrm{K}[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}$, and are not further discussed.

In contrast with $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ and $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3}$, where the $\operatorname{Re}-\mathrm{F}-\mathrm{Re}$ bridge bonds are equal by symmetry, the $\operatorname{Re}_{(1,1 \mathrm{~A})}-\mathrm{F}_{(2,2 \mathrm{~A})}-\operatorname{Re}_{(2,2 \mathrm{~A})}$ bridge bonds of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ are asymmetric. The fluorine bridge asymmetry is, to a large extent, indicative of the strength of the Xe---F bridging interactions between $[\mathrm{XeOXeOXe}]^{2+}$ and $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$, showing shorter $\mathrm{Re}_{(1,1 \mathrm{~A})}-\mathrm{F}_{(2,2 \mathrm{~A})}$ bridge bonds that are proximate to the cation-anion bridges $\left(\operatorname{Re}_{(1,1 \mathrm{~A})}-\mathrm{F}_{(2,2 \mathrm{~A})}, 2.048(4) ; \operatorname{Re}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(2,2 \mathrm{~A})}, 2.174(5)\right.$ $\AA)$. Similar asymmetries are found for the anions of $[\mathrm{XeF}]\left[\mathrm{Pn}_{2} \mathrm{~F}_{11}\right](\mathrm{Pn}=\mathrm{Sb}, \mathrm{Bi}),{ }^{311}$ where the $\mathrm{Pn}-\mathrm{F}-\mathrm{Pn}$ bridge asymmetry is more pronounced in $[\mathrm{XeF}]\left[\mathrm{Bi}_{2} \mathrm{~F}_{11}\right]$ (2.092(6), 2.195(6) \AA) than in $[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right](2.010(3), 2.066(3) \AA$), and is attributed to the greater ionic character of $[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$ and its weaker $\mathrm{Xe}---\mathrm{F}$ bridge bond $\left(\mathrm{Xe}---\mathrm{F}_{\mathrm{Sb}}, 2.343(4) \AA\right.$; Xe --$\left.\mathrm{F}_{\mathrm{Bi}}, 2.253(5) \AA\right)^{311}$

6.2.3. Raman Spectroscopy

The low-temperature Raman spectra of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ are shown in Figure 6.2. The observed and calculated frequencies and mode descriptions are provided in Tables 6.3, D2, and D3. Spectral assignments were made by comparison with the calculated frequencies and Raman intensities of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right][\mu$ $\left.\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right)$ (Tables 6.3, D2, and D3), $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]^{2+}\left(C_{2 \mathrm{~h}}\right)(6.4, \mathrm{D} 4$, and D5), and $\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}\left(C_{1}\right)$ (Table D6), which were optimized at the

Ph.D. Thesis - Maria V. Ivanova

Ph.D. Thesis - Maria V. Ivanova

PBE1PBE/aug-cc-pVDZ (values given in square brackets) and B3LYP/aug-cc-pVDZ(PP) levels of theory. The vibrational modes of $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$, which had been previously assigned with the aid of LDFT and NLDFT calculations, ${ }^{19}$ have been improved in the present work and are provided in Table D6, but are not further discussed.

The centrosymmetric, zigzag-shaped $[\mathrm{XeOXeOXe}]^{2+}$ gas-phase cation possesses $C_{2 \mathrm{~h}}$ symmetry. Its nine fundamental vibrational modes span the irreducible representations $\Gamma=3 A_{g}+2 A_{u}+4 B_{u}$, where the A_{u} and B_{u} modes are infrared active and only the A_{g} modes are Raman active. The $\mathrm{v}_{1}\left(\mathrm{~A}_{\mathrm{g}}\right)$ band, corresponding to the symmetric out-of-phase $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$ stretching mode, occurs at $581.6 \mathrm{~cm}^{-1}$ and exhibits a ${ }^{18} \mathrm{O}$ isotope shift of $-32.3 \mathrm{~cm}^{-1}$. The most intense band in the Raman spectrum occurs at $358.7 \mathrm{~cm}^{-1}$ with a ${ }^{18} \mathrm{O}$ isotope shift of $-17.8 \mathrm{~cm}^{-1}$ and is assigned to $v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right)$. This band corresponds to $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\right.$ $\left.v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$, and is the in-phase counterpart of $v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right)$. The $v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right)$ band, corresponding to the symmetric in-phase $\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$. bending mode, occurs at 92.8 cm^{-1} with a ${ }^{18} \mathrm{O}$ isotope shift of $-2.5 \mathrm{~cm}^{-1}$.

The calculated gas-phase ${ }^{16 / 18} \mathrm{O}$ isotopic shifts of the free $[\mathrm{XeOXeOXe}]^{2+}$ cation are in good agreement with their experimental values $\left(v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right),-29.7[-32.2] \mathrm{cm}^{-1} ; \mathrm{v}_{2}\left(\mathrm{~A}_{\mathrm{g}}\right)\right.$, -$\left.18.1[-19.5] \mathrm{cm}^{-1} ; v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right),-0.4[-0.3] \mathrm{cm}^{-1}\right)$. There is also good agreement between the experimental and calculated frequencies of the free $[\mathrm{XeOXeOXe}]^{2+}$ cation for $v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right)$ (565.3 [611.3] cm ${ }^{-1}$) and $v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right)\left(326.1[353.6] \mathrm{cm}^{-1}\right)$; however, the calculated frequency of $v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right)$ is underestimated $\left(71.3[74.9] \mathrm{cm}^{-1}\right)$ by both methods. Optimization of the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair resulted in similar ${ }^{16 / 18} \mathrm{O}$ isotopic shifts $\left(v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right),-\right.$

Ph.D. Thesis - Maria V. Ivanova
${ }^{16 / 18} \mathrm{O}$ Isotopic Shifts ($\Delta \nu^{16 / 18}$), and Assignments ${ }^{a}$ for

$\operatorname{calcd}\left(C_{i}\right)^{c}$			
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv^{1618}	assgnts $^{\text {d }}$
580.1(110)[0]	550.3(94)[0]	-29.8	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\right.} \\ & \left.\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
565.0(0)[322]	535.6(0)[304]	-29.4	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\right.} \\ & \left.\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
$465.5(0)[201]^{e}$	$440.1(0)[165]^{e}$	-25.4	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\right.} \\ & \left.\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
376.2(139)[0]	357.3(125)[0]	-18.9	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\right.} \\ & \left.\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
$173.4(0)[8]^{f}$	172.7(0)[7] ${ }^{\text {f }}$	-0.7	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$.
169.7(0)[4]	162.4(0)[4]	-7.3	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {o.o. } \text {. }}$
89.9(24)[0]	89.6(24)[0]	-0.3	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$
87.0(0)[9] ${ }^{\text {g }}$	$86.6(0)[9]^{\text {g }}$	-0.4	$\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]$

A full list of frequencies and assignments is provided in Table D2. Vibrational frequencies and isotopic shifts are given in cm^{-1}; $\Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right) .{ }^{b}$ The Raman spectrum was recorded in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Values in parentheses denote relative experimental Raman intensities. ${ }^{c}$ B3LYP/aug-cc-pVDZ(-PP); the PBE1PBE values are given in Table D3. Values in parentheses denote calculated Raman intensities ($\AA \mathrm{amu}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). ${ }^{d}$ Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), in-plane (i.p.), and out-of-plane (o.o.p.). The atom labeling scheme is given in Figure 6.1. ${ }^{e}$ There is also a small contribution from $\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+$ $\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)\right]$ for this mode in the ion pair. ${ }^{f}$ There is also a contribution from $\left[\rho_{t}\left(\mathrm{~F}_{7} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$ for this mode in the ion pair. ${ }^{g}$ There is also a small contribution from $\left[\rho_{\mathrm{r}}\left(\mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)-\rho_{\mathrm{r}}\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{4 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$ for this mode in the ion pair (Table D2).

Ph.D. Thesis - Maria V. Ivanova
Table 6.4. Selected Experimental and Calculated Vibrational Frequencies, ${ }^{16 / 18}$ O Isotopic Shifts ($\Delta v^{16 / 18}$), and Assignments ${ }^{a}$ for Gas-Phase $[\mathrm{XeOXeOXe}]^{2+}$

exptt ${ }^{\text {b }}$			$\operatorname{calcd}\left(C_{2 \mathrm{~h}}\right)^{c}$			
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv^{1618}	${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv^{16118}	assgnts ${ }^{\text {d }}$
581.6(31)	549.3(30)	-32.3	565.3(20)[0]	535.6(17)[0]	-29.7	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)\right.} \\ & \left.+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
			548.0(0)[18]	519.5(0)[16]	-28.5	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)\right.} \\ & \left.-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
			407.1(0)[90]	387.4(0)[83]	-19.7	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)\right.} \\ & \left.-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
358.7(100)	340.9(100)	-17.8	326.1(30)[0]	308.0(27)[0]	-18.1	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)\right.} \\ & \left.+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] \end{aligned}$
			160.3(0)[4]	159.9(0)[4]	-0.4	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$
			115.0(0)[6]	110.4(0)[6]	-4.6	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {o.o.p }}$
92.8(25)	90.3(23)	-2.5	71.3(35)[0]	70.9(35)[0]	-0.4	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$.
			$34.5(0)[<1]$	$34.3(0)[<1]$	-0.2	$\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} \mathrm{l}_{1}\right)\right]$
			11.3(0)[3]	11.2(0)[3]	-0.1	$\left[\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]$

[^0]
Ph.D. Thesis - Maria V. Ivanova

$\left.29.8[-32.5] \mathrm{cm}^{-1} ; v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right),-18.9[-17.3] \mathrm{cm}^{-1} ; v_{3}\left(\mathrm{Ag}_{\mathrm{g}}\right),-0.3[-0.3] \mathrm{cm}^{-1}\right)$ and in slightly higher vibrational frequencies $\left(v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right), 580.1[621.8] \mathrm{cm}^{-1} ; v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right), 376.2[397.4] \mathrm{cm}^{-1}\right.$; $v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right), 89.9[94.4] \mathrm{cm}^{-1}$) that are in better agreement with the experimental values. Non of the symmetric modes of the cation are coupled to anion modes in the ion pair. The frequency and isotopic shift of $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+v\left(\mathrm{Xe}_{2} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$ are comparable to those of the antisymmetric $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)\right]$ stretching mode of $[\mathrm{FXeOXeFXeF}]^{+}\left(595.8 \mathrm{~cm}^{-1} ; \Delta \nu^{16 / 18},-27.0\right.$ and $\left.-31.4 \mathrm{~cm}^{-1}\right) .{ }^{302}$ The corresponding symmetric mode of $[\mathrm{FXeOXeFXeF}]^{+}$was coupled to $\mathrm{Xe}-\mathrm{F}$ stretches and consequently occurred at higher frequency than that of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}(418.7$ and 429.8 $\mathrm{cm}^{-1} ; \Delta \nu^{16 / 18},-24.8$ and $-27.8 \mathrm{~cm}^{-1}$, respectively). The anion bands have been fully assigned (Table D2 and D3) and are in good agreement with those of $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right],{ }^{19}$ $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{ReO}_{2} \mathrm{~F}_{3},{ }^{19}$ and $\mathrm{ReO}_{3} \mathrm{~F}(\mathrm{FH})_{2} .{ }^{235}$

6.2.4. Computational Results

Quantum-chemical calculations for $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right)$ and $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]^{2+}\left(C_{2 \mathrm{~h}}\right)$ were carried out using the PBE1PBE (values in square brackets) and B3LYP methods and the aug-cc-pVDZ(-PP) basis set. Although the optimizations of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]^{2+}\left(C_{2 \mathrm{~h}}\right)$ resulted in stationary points with all frequencies real (Tables 6.4, D4. and D5.; Figure D3a.), the optimizations of $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right)$ (Tables 6.3, D2, and D3; Figure 6.1) each gave one imaginary frequency. Attempts to follow the imaginary frequencies resulted in conformers that were severely twisted about their $\mathrm{Xe}_{(2,2 \mathrm{~A})}---\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds; thus, all

Ph.D. Thesis - Maria V. Ivanova

subsequent NBO, QTAIM, ELF, and MEPS calculations were carried out using the calculated C_{i} geometry. The hypothetical $\mathrm{FXe}^{16 / 18} \mathrm{OXe}^{16 / 18} \mathrm{OXeF}\left(C_{2 \mathrm{~h}}\right)$ molecule was also calculated in order to better assess the nature of the Xe---F bridge bonds in the ion pair (Tables D7 and D8.; Figure D3b.). The $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anion was also calculated to aid with the anion mode assignments of the ion pair (Table D6.; Figure D3c.).

6.2.4.1. Geometry Optimizations

The calculated symmetry of the ion pair is C_{i} and the local symmetry of the $[\mathrm{XeOXeOXe}]^{2+}$ cation is $C_{2 \mathrm{~h}}$. The local gas-phase symmetry of $[\mathrm{XeOXeOXe}]^{2+}$ is the same as in the crystal structure. Although the calculated gas-phase ion pair and the solidstate ion pair have the same point group symmetry, their conformations differ. In the calculated ion-pair, the Xe and Re atoms of both anions are coplanar, whereas the Re---F---Re axis in the solid-state structure is approximately perpendicular to the $\mathrm{Xe}_{(2)}--\mathrm{Xe}_{(1)}---$ $\mathrm{Xe}_{(2 \mathrm{~A})}$ axis (Figure 6.1). The calculated bond valences of $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ (Table D1.) suggest that the reorientation of the anions most likely stems from the need for each Xe atom to complete its valency requirement through additional long intramolecular Xe---F contacts. In the crystal structure, similar intermolecular Xe---F contacts occur between neighboring ion pairs (see X-ray Crystallography); however, in the calculated gas-phase ion pair, the xenon atoms can only achieve their valence complements through intramolecular contacts (Table D1.), resulting in a conformation that substantially differs with respect to the crystallographic conformation.

Ph.D. Thesis - Maria V. Ivanova

Despite the conformational difference between the calculated and experimental ion pairs, all experimental bond length and bond angle trends were well reproduced by the quantum-chemical calculations (Tables 6.2). The central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths (calcd, 2.174 [2.139] \AA; exptl, $2.135(6) \AA$) are longer than the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths (calcd, 2.034 [2.007] \AA; exptl, 1.987(6) $\AA)$. The $\mathrm{O}_{(1)}-\mathrm{Xe}_{(1)}-\mathrm{O}_{(1 \mathrm{~A})}$ angle is linear by symmetry, whereas the $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}$ bond angles (calcd, 118.7 [118.0] ${ }^{\circ}$; exptl, $\left.115.6(3)^{\circ}\right)$ are significantly bent. The calculated $\mathrm{Xe}_{(2)}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bond lengths (2.310 [2.279] \AA) are slightly overestimated compared to the experimental values (2.392(4) $\AA)$. The calculated $\mathrm{F}_{(1,1 \mathrm{~A})---\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})} \text { bond angles are also in very good }}$ agreement with experiment (calcd, $175.3[175.2]^{0}$; exptl, $\left.176.7(2)^{\circ}\right)$. A comparison of the geometrical trends of the calculated ion pair with those of the free $[\mathrm{XeOXeOXe}]^{2+}$ cation $\left(\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}, 2.207[2.169] \AA ; \mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}, 2.021[1.994] \AA ; \mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}\right.$, $\left.123.6[122.5]^{\circ}\right)$ shows that the central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths and $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}-\mathrm{Xe}_{(2,2 \mathrm{~A})}$ bond angles slightly decrease upon ion pair formation, but the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths remain essentially unchanged.

In order to assess the degree of ion pairing, the energy-minimized geometry of the hypothetical FXeOXeOXeF molecule was calculated. Although the $\mathrm{O}-\mathrm{Xe}-\mathrm{O}\left(180.0^{\circ}\right)$, $\mathrm{Xe}-\mathrm{O}-\mathrm{Xe}\left(118.1[117.0]^{\circ}\right)$, and $\mathrm{O}-\mathrm{Xe}-\mathrm{F}\left(177.1[177.4]^{\circ}\right)$ bond angles are comparable to those of the ion pair, fluoride ion coordination affects the $\mathrm{Xe}-\mathrm{O}$ bond lengths. The central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths are shorter (2.155 [2.119] \AA) whereas the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond lengths are longer (2.098[2.068] \AA) than those of $[\mathrm{XeOXeOXe}]^{2+}$; however, the relative bond length order, $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}>\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ remains
unchanged. The $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bond lengths (2.086 [2.057] \AA) of FXeOXeOXeF are considerably shorter and more covalent than the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds $(2.310$ $[2.279] \AA)$ of the gas-phase ion pair, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$.

The geometrical parameters and trends within the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions $(\mathrm{Re}-\mathrm{O}<$ $\left.\mathrm{Re}-\mathrm{F}<\mathrm{Re}-\mathrm{F}_{\mu} ; \mathrm{O}-\mathrm{Re}-\mathrm{O}>\mathrm{O}-\mathrm{Re}-\mathrm{F}>\mathrm{O}-\mathrm{Re}^{-}-\mathrm{F}_{\mu}>\mathrm{F}-\mathrm{Re}-\mathrm{F}_{\mu}\right)$ of the calculated ion pair are similar to those of the experimental structure (Tables 6.2).

6.2.4.2. Natural Bond Orbital (NBO) Analyses

The NBO analyses for the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair $\left(C_{\mathrm{i}}\right)$, $\left[\mathrm{XeOXeOXe}^{2+}\left(C_{2 \mathrm{~h}}\right)\right.$, and FXeOXeOXeF $\left(C_{\mathrm{i}}\right)$ were carried out for the B3LYP/aug-cc-pVDZ(-PP) and PBE1PBE/aug-cc-pVDZ(-PP) optimized gas-phase geometries and are compared with those of the $[\mathrm{FXeOXeFXeF}]^{+}$cation. ${ }^{302}$ The trends in calculated charges, valences, and bond orders for the above molecules are consistent at both levels of theory (Tables D9).

Overall, the $\mathrm{Xe}_{(1)}, \mathrm{Xe}_{(2,2 \mathrm{~A})}, \mathrm{O}_{(1,1 \mathrm{~A})}$, and $\mathrm{F}_{(1,1 \mathrm{~A})}$ charges of $\quad[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2},[\mathrm{XeOXeOXe}]^{2+}$, and FXeOXeOXeF are nearly half of the formal charges expected for purely ionic interactions $(\mathrm{Xe},+2 ; \mathrm{O},-2 ; \mathrm{F},-1)$ and are consistent with semiionic bonding. The $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ charges of the free cation (+1.085 and +1.095 , respectively) are in accordance with resonance structures (1) and (2) and do not change significantly when $[\mathrm{XeOXeOXe}]^{2+}$ forms fluorine bridges with the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$ anions of the ion pair (+1.061 and +1.095), but decrease significantly upon formation of the hypothetical FXeOXeOXeF molecule (+0.966 and +1.044). The O charges become

Ph.D. Thesis - Maria V. Ivanova

more negative upon ion-pair formation $\left([\mathrm{XeOXeOXe}]^{2+},-0.638\right.$; $[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2},-0.792$), and are most negative in the neutral FXeOXeOXeF molecule (-0.911). The $\mathrm{F}_{(1,1 \mathrm{~A})}$ charges of the ion pair (-0.621) are similar to those of FXeOXeOXeF (-0.616). The positive charge transferred from the XeOXeOXe-moiety of the ion pair (+0.333) to its anions is considerably less than that transferred from the XeOXeOXe-moiety of FXeOXeOXeF (+0.768) to its F-ligands.

The $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond orders are comparable among the three species, ranging from 0.321 to 0.342 . The $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond orders are similar for free $[\mathrm{XeOXeOXe}]^{2+}$ (0.486) and for the ion pair (0.461). In contrast, the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bond orders of FXeOXeOXeF (0.395) are smaller, indicating that the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds are less covalent than the $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds. The $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bond orders of the ion pair (0.141) are approximately half of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bond orders of FXeOXeOXeF (0.259), indicating significantly weaker covalent interactions for the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds of the ion pair than for the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds of FXeOXeOXeF . The $\mathrm{Xe}_{(1)}$ valences of the ion pair (0.656) and FXeOXeOXeF (0.692) are only slightly greater than that of the free cation (0.636), whereas the $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ valences increase significantly from $[\mathrm{XeOXeOXe}]^{2+}(0.484)$ to the ion-pair (0.600), and are highest in FXeOXeOXeF (0.660). The $\mathrm{O}_{(1,1 \mathrm{~A})}$ valences of the ion pair (0.786) are comparable to those of the free cation (0.808) and slightly greater than the $\mathrm{O}_{(1,1 \mathrm{~A})}$ valences of FXeOXeOXeF (0.741). The $\mathrm{F}_{(1,1 \mathrm{~A})}$ atom valences are in accordance with the semi-ionic characters of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds in the ion pair (0.443) and FXeOXeOXeF

Ph.D. Thesis - Maria V. Ivanova

(0.260). The higher valences of the bridging $\mathrm{F}_{(1,1 \mathrm{~A})}$ atoms of the ion pair are in accordance with their higher coordination numbers.

6.2.4.3. QTAIM Analyses

The natures of the $\mathrm{Xe}-\mathrm{O}$ and $\mathrm{Xe}-\mathrm{F}$ bonds in the free $[\mathrm{XeOXeOXe}]^{2+}$ cation, the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair, and the hypothetical FXeOXeOXeF molecule have been investigated by complimentary use of the quantum theory of atoms in molecules QTAIM ${ }^{316}$ and the topological ${ }^{317}$ analysis of the Becke and Edgecombe electron localization function (ELF). ${ }^{318}$

The contour maps of the charge densities showing the bond paths and intersections of atomic surfaces (Figure 6.3), charge density contour maps of the Laplacian distributions $\left(\nabla^{2} \rho\right)$ (Figure 6.3), and valence shells of charge concentration (VSCC) relief maps $\left(-\nabla^{2} \rho\right)$ (Figure D4) are provided for $[\mathrm{XeOXeOXe}]^{2+},[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, and FXeOXeOXeF .

For two atoms to be bonded to one another, they must be linked by a bond path, indicating that some electronic charge is accumulated between the two nuclei. The presence of a bond path implies the existence of a bond critical point along it, where the charge density, ρ, is at its minimum value, but is a maximum with respect to lines perpendicular to its bond path. ${ }^{316}$ The charge distributions (Figure 6.3) of the aforementioned species exhibit such bond paths between the Xe and O nuclei and between the Xe and F nuclei. Several AIM properties (Tables 6.5 and D10) evaluated at

Ph.D. Thesis - Maria V. Ivanova
Table 6.5. QTAIM Density of all Electrons $\left(\rho_{\mathrm{b}}\right)$, Laplacian of Electron Density ($\nabla^{2} \rho_{\mathrm{b}}$), Energy Density (H_{b}), QTAIM
 B3LYP/aug-cc-pVDZ (-PP). The au for ρ_{b} is $e / a_{0}{ }^{5}\left(1 \mathrm{au}=24.09\right.$ e $\left.\AA^{-}\right)$. The au for ρ_{b} is $e l a_{0}{ }^{3}\left(1 \mathrm{au}=6.748\right.$ e \AA). The au for H is $e / a_{0}(1 \mathrm{au}$ $\left.=E_{\mathrm{h}} / a_{0}=6.748 E_{\mathrm{h}} / \mathrm{A}^{3}\right) . a_{0}=$ Bohr radius $=0.52918 \mathrm{~A} . e=$ charge on an electron. $E_{\mathrm{h}}=$ hartree $=e^{2} / a_{0} .{ }^{c}$ For atom labeling, see Figures 6.1 and D3. $\bar{N}\left[\mathrm{C}\left(\mathrm{Xe}_{1}\right)\right]=1 / 3\left\{178-\left(2 \bar{N}\left[\mathrm{C}\left(\mathrm{O}_{1}\right)\right]+2 \bar{N}\left[\mathrm{~V}\left(\mathrm{O}_{1}\right)\right]\right)\right\}-\bar{N}\left[\mathrm{~V}\left(\mathrm{Xe}_{1}\right)\right] ; \bar{N}\left[\mathrm{C}\left(\mathrm{Xe}_{2}\right)\right]=1 / 3\left\{178-\left(2 \bar{N}\left[\mathrm{C}\left(\mathrm{O}_{1}\right)\right]+2 \bar{N}\left[\mathrm{~V}\left(\mathrm{O}_{1}\right)\right]\right)\right\}-\bar{N}\left[\mathrm{~V}\left(\mathrm{Xe}_{2}\right)\right]{ }^{e} \bar{N}\left[\mathrm{C}\left(\mathrm{Xe}_{1}\right)\right]=$ $1 / 3\{196-(2 \bar{N}[\mathrm{C}(\mathrm{O})]+2 \bar{N}[\mathrm{~V}(\mathrm{O})]+2 \bar{N}[\mathrm{C}(\mathrm{F})]+2 \bar{N}[\mathrm{~V}(\mathrm{~F})])\}-\bar{N}\left[\mathrm{~V}\left(\mathrm{Xe}_{1}\right)\right] ; \bar{N}\left[\mathrm{C}\left(\mathrm{Xe}_{2}\right)\right]=1 / 3\{196-(2 \bar{N}[\mathrm{C}(\mathrm{O})]+2 \bar{N}[\mathrm{~V}(\mathrm{O})]+2 \bar{N}[\mathrm{C}(\mathrm{F})]+2 \bar{N}[\mathrm{~V}(\mathrm{~F})])\}-$ $\bar{N}\left[\mathrm{~V}\left(\mathrm{Xe}_{2}\right)\right]$.

Ph.D. Thesis - Maria V. Ivanova

the bond critical points (denoted by subscripted b in the ensuing discussion and by blue dots in Figure 6.3) can be used to assess the nature of a bond. ${ }^{316}$ For example, all significantly negative values for the Laplacian of the electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$ and a density of electrons $\left(\rho_{\mathrm{b}}\right)$ greater than 0.2 au are associated with covalent bonding. Significantly negative values for the total energy density of Cremer and Kraka (H_{b}) are also consistent with strong covalent bonds. The energy, H_{b}, is defined as the sum of G_{b} and V_{b}, where G_{b} is the Lagrangian kinetic energy and V_{b} is the potential energy density. In covalent bonds, G_{b} is dominated by V_{b}, giving a negative value for H_{b}. When dealing with semi-ionic bonds such as encountered in the present study, the sign or the small absolute values of the above properties can be ambiguous, and it is necessary to look at the combined properties to characterize the nature of the bond. In the present case, the delocalization indices (δ) were also considered, where the delocalization index provides a quantitative measure of the number of electron pairs delocalized between two atomic spaces.

The $\mathrm{Xe}-\mathrm{O}$ bond properties of $[\mathrm{XeOXeOXe}]^{2+},[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, and FXeOXeOXeF are consistent with resonance structures (1) and (2) and with the NBO analyses (see above). The small ρ_{b} values $\left(\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}, 0.084-0.096 \mathrm{au} ; \mathrm{Xe}_{(2,2 \mathrm{~A})}\right) \mathrm{O}_{(1,1 \mathrm{~A})}$, $0.108-0.125 \mathrm{au})$ and positive $\nabla^{2} \rho_{\mathrm{b}}$ values $\left(\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}, 0.162-0.171 \mathrm{au} ; \mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}\right.$, $0.142-0.173 \mathrm{au})$ are consistent with semi-ionic Xe-O bonds. This description is supported by small delocalization indices, $\delta_{\mathrm{Xe}-\mathrm{O}}\left(\mathrm{Xe}_{(1)^{-}} \mathrm{O}_{(1,1 \mathrm{~A})}, 0.78-0.86 ; \mathrm{Xe}_{(2,2 \mathrm{~A})^{-}} \mathrm{O}_{(1,1 \mathrm{~A})}, 0.97-\right.$ 1.26). The delocalization indices of the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds are greater than those of the central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds and are consistent with the shorter, more covalent, $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds observed for $[\mathrm{XeOXeOXe}]^{2+}$ in the crystal structure of

Ph.D. Thesis - Maria V. Ivanova

$[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ and those calculated for $[\mathrm{XeOXeOXe}]^{2+}$, the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair, and FXeOXeOXeF . In the case of FXeOXeOXeF , the gap between $\delta_{\mathrm{Xe}(1)-\mathrm{O}(1,1 \mathrm{~A})}$ and $\delta_{\mathrm{Xe}(2,2 \mathrm{~A})-\mathrm{O}(1,1 \mathrm{~A})}$ is smaller, in accordance with terminal and central semi-ionic $\mathrm{Xe}-\mathrm{O}$ bonds that possess similar covalent characters. The very small negative values of the total energy densities, $H_{\mathrm{b}}\left(\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})},-0.018\right.$ to -0.027 au ; $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})},-0.036$ to $\left.-0.049 \mathrm{au}\right)$, are also in agreement with semi-ionic description for the $\mathrm{Xe}-\mathrm{O}$ bonds, where the more negative H_{b} values correspond to the shorter, more covalent terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds of all three species.

The $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bond properties of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ and FXeOXeOXeF $\left(\rho_{\mathrm{b}}, 0.058\right.$ and $0.098 \mathrm{au} ; \nabla^{2} r_{\mathrm{b}}, 0.168$ and $0.233 \mathrm{au} ; \delta_{\mathrm{Xe}(2,2 \mathrm{~A})--\mathrm{F}(1,1 \mathrm{~A})}, 0.43$ and $0.77 \mathrm{au} ; H_{\mathrm{b}},-0.008$ and -0.028 au , respectively) show that the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ are considerably more ionic than the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds of FXeOXeOXeF . This is consistent with the ionic formulations that have been adopted for the gas-phase and solid state ion pairs.

The Xe and O valence electron lone pair (VELP) charge densities are readily discernable on the contour maps of $\nabla^{2} \rho$ (Figure 6.3). The charge densities of the three Xe VELPS combine to form tori around each Xe atom (see ELF Analyses). The tori lie in planes that are perpendicular to the molecular planes of $[\mathrm{XeOXeOXe}]^{2+}, \mathrm{FXeOXeOXeF}$, and the XeOXeOXe -plane of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ so that the plane of the charge density contour map depicted in Figure 6.3 passes through each torus to give two VELP charge concentrations on either side of each Xe core.

Ph.D. Thesis - Maria V. Ivanova

Although the $F_{(1,1 \mathrm{~A})}$ VELP charge densities exhibit essentially spherical distributions in FXeOXeOXeF and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, the Laplacian contour plot of the electron density around $\mathrm{F}_{(1,1 \mathrm{~A})}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ in FXeOXeOXeF differs slightly from that of the ion pair. The Laplacian distribution of the charge density in FXeOXeOXeF (Figure 6.3b) exhibits a contour line enclosing $\mathrm{F}_{1,1 \mathrm{~A}}$ and $\mathrm{Xe}_{2,2 \mathrm{~A}}$, whereas the contours of $\mathrm{F}_{1,1 \mathrm{~A}}$ and $\mathrm{Xe}_{2,2 \mathrm{~A}}$ are not joined in the plot of the Laplacian distribution in the ion pair (Figure 6.3c). This is in agreement with the more ionic characters of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds relative to those of the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds in FXeOXeOXeF.

Maxima in the relief maps $\left(-\nabla^{2} \rho\right)$ of $[\mathrm{XeOXeOXe}]^{2+}$, FXeOXeOXeF, and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ (Figure D4) denote maxima in charge concentrations. When the inner spike at its nucleus is counted, the Xe atom exhibits five alternating regions of charge concentration and depletions corresponding to five quantum shells. The VSCCs are not strongly linked for the $\mathrm{Xe}-\mathrm{O}, \mathrm{Xe}-\mathrm{F}$, and $\mathrm{Xe}---\mathrm{F}$ bonds. Rather, their charges are predominantly concentrated in their atomic basins with small, shared charge concentrations. The Xe and O VELP densities are considerably more diffuse and less apparent in the VSCC relief maps (Figure D4) than in their $\nabla^{2} \rho$ contour maps. Nevertheless, cusps are discernable on the Xe atoms that correspond to the combined charge concentrations of the Xe VELPS, whereas the O VELPS are not discernable. Small charge concentration cusps are visible between the Xe and O atoms. In the case of FXeOXeOXeF and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, cusps between F and Xe are not clearly distinguishable.

Ph.D. Thesis - Maria V. Ivanova

6.2.4.4. Electron Localization Function (ELF) Analyses

ELF analyses were carried out for $[\mathrm{XeOXeOXe}]^{2+}\left(C_{2 \mathrm{~h}}\right), \operatorname{FXeOXeOXeF}\left(C_{\mathrm{i}}\right)$, and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right)$ primarily to visualize the behaviors of the Xe VELPs of these species. In the ensuing discussion, the following abbreviations denote an atomic basin population, $\bar{N}[\mathrm{~A}]$; the electron localization function, $\eta(\mathbf{r})$; a core basin, $\mathrm{C}(\mathrm{A})$; a monosynaptic valence basin, $\mathrm{V}(\mathrm{A})$; and a closed isosurface, $\eta(\mathbf{r})=f$ value, at which a specific isosurface can be visualized. ELF parameters are provided in Tables 6.5 and D10 and ELF isosurface plots at the isosurface contour value $\eta(\mathbf{r})=0.60$ are shown for the localization domains of $[\mathrm{XeOXeOXe}]^{2+}$, FXeOXeOXeF, and $[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ in Figures 6.4 and D 5 , respectively.

The ELF population analyses (Tables 6.5 and D10) are in agreement with the QTAIM results (see above). The ELF basin populations of the $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ cores are comparable for $[\mathrm{XeOXeOXe}]^{2+}$, FXeOXeOXeF , and the ion pair. In all cases, the $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ core populations are close to the ideal core population of the Xe atom, $[\mathrm{Kr}]$ $4 d^{10}=46 \mathrm{e}$. The ELF valence population analyses suggest an interpretation of the bonding in terms of a significant delocalization of electron density between the valence shells of Xe and those of its neighboring atoms. Overall, the electron density transfer from the xenon atoms to O in free $[\mathrm{XeOXeOXe}]^{2+}$ and to F and O in FXeOXeOXeF and the ion pair leads to O and F valence population increases of 0.5 to 0.9 e , consistent with semiionic bonding. A similar interpretation applies to the bonding in $\mathrm{XeF}_{2}{ }^{319}$ and $\mathrm{KrF}_{2} .{ }^{320}$

The localization domain reduction tree diagrams ${ }^{321}$ provide the hierarchies of the ELF basins and the corresponding basin separation values $\left(f_{\text {sep }}\right)$ for $[\mathrm{XeOXeOXe}]^{2+}$,

Ph.D. Thesis - Maria V. Ivanova

b

Figure 6.4. ELF isosurface plots at $\eta(\mathbf{r})=0.60$ (B3LYP/aug-cc-pVDZ(-PP)) for (a) $[\mathrm{XeOXeOXe}]^{+}$and (b) [FXeOXeOXeF]. Color code: red = core; blue = monosynaptic basin.

Ph.D. Thesis - Maria V. Ivanova
a

b

C

Figure 6.5. Reduction of the localization diagrams for (a) $\left[\mathrm{XeOXeOXe}{ }^{2+}\right.$, (b) $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, and (c) FXeOXeOXeF showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathbf{r})$ (also referred to as $f_{\text {sep }}$-values), at which the reducible domains split.

Ph.D. Thesis - Maria V. Ivanova

FXeOXeOXeF, and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ (Figure 6.5). The ELF reduction of localization diagram of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ shows that the ion pair initially separates $\left(f_{\text {sep }}=0.10\right)$ into $[\mathrm{XeOXeOXe}]\left[\left(\operatorname{Re}_{(1,1 \mathrm{~A})} \mathrm{O}_{2} \mathrm{~F}_{4}\right)\right]_{2}$ and two $\operatorname{Re}_{(2,2 \mathrm{~A})} \mathrm{O}_{2} \mathrm{~F}_{3} f$ localization domains. The former separates $\left(f_{\text {sep }}=0.15\right)$ into $\mathrm{V}\left(\mathrm{F}_{(2,2 \mathrm{~A})}\right)$ and the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}_{(1,1 \mathrm{~A})}\left(\operatorname{Re}_{(1,1 \mathrm{~A})} \mathrm{O}_{2} \mathrm{~F}_{2}\right)\right]_{2} f$-localization domain. The latter subsequently separates $\left(f_{\text {sep }}=0.20\right)$ into $\mathrm{V}\left(\mathrm{F}_{(1,1 \mathrm{~A})}\right)$, and the $\operatorname{Re}_{(1,1 \mathrm{~A})} \mathrm{O}_{2} \mathrm{~F}_{2}$ and XeOXeOXe f-localization domains. The XeOXeOXe domain separates $\left(f_{\text {sep }}=0.39\right)$ into $\mathrm{V}\left(\mathrm{Xe}_{(1)}\right)$ and the $\mathrm{Xe}_{(2,2 \mathrm{~A})} \mathrm{O}_{(1,1 \mathrm{~A})} f$-localization domains, which finally separate $\left(f_{\text {sep }}=0.46\right)$ into $\mathrm{V}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ and $\mathrm{V}\left(\mathrm{O}_{(1,1 \mathrm{~A})}\right)$. For comparison, the XeOXeOXe domain separates at similar values for $[\mathrm{XeOXeOXe}]^{2+}\left(f_{\text {sep }}=0.39\right)$ and FXeOXeOXeF $\left(f_{\text {sep }}=0.41\right)$, whereas $\mathrm{V}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ and $\mathrm{V}\left(\mathrm{O}_{(1,1 \mathrm{~A})}\right)$ separate at $f_{\text {sep }}=0.51$ for $[\mathrm{XeOXeOXe}]^{2+}$ and at $f_{\text {sep }}=0.42$ for FXeOXeOXeF. The earlier separations of the $\mathrm{V}\left(\mathrm{Xe}_{(1)}\right)$ basins from their XeOXeOXe domains relative to those of $\mathrm{V}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ is consistent with central $\mathrm{Xe}_{(1)}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds that are more ionic than the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}_{(1,1 \mathrm{~A})}$ bonds and with resonance structures (1) and (2), their NBO analyses (Tables D9), and the QTAIM findings (Table 6.5, D10). The ELF isosurface values at which the $\mathrm{V}\left(\mathrm{F}_{(1,1 \mathrm{~A})}\right)$ valence basins separate $\left([\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}, f_{\text {sep }}\right.$ $\left.=0.20 ; \mathrm{FXeOXeOXeF}, f_{\text {sep }}=0.31\right)$ are consistent with the lower covalent characters of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds in the ion pair relative to those of the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds in FXeOXeOXeF, and their respective bond orders obtained from the NBO analyses, i.e., $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}(0.141)$ and FXeOXeOXeF (0.259).

The Xe valence basins consist of the toroidal-shaped valence electron densities resulting from the combination of the three non-bonding VELP domains of Xe with

Ph.D. Thesis - Maria V. Ivanova

exposed atomic core densities at their centers. Such torus-shaped basins have been calculated for $\mathrm{XeF}_{2},{ }^{319,322}\left[\mathrm{XeF}_{3}\right]^{-},{ }^{322}\left[\mathrm{XeOTeF}_{5}\right]^{+},{ }^{242}$ and for the $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}$ or Xe) ligands in $\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right] \cdot 2 \mathrm{NgF}_{2} .{ }^{319,320}$ Variations in VELP behavior have been noted for the NgF_{2} adducts of the $\left[\mathrm{BrOF}_{2}\right]^{+}$cation in $\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right] \cdot 2 \mathrm{NgF}_{2}$ where NgF_{2} and [$\left.\mathrm{AsF}_{6}\right]^{-}$are fluorine bridged to $\operatorname{Br}(\mathrm{V})$. In this case, the $\operatorname{Br}(\mathrm{V})$ valence basin is an electron lone pair that accommodates its shape and volume to the environment available to it in its complex. This contrasts with the $\operatorname{Br}(\mathrm{V})$ VELP of the free cation, $\left[\mathrm{BrOF}_{2}\right]^{+}$, which is dramatically expanded in its less constrained environment.

In the present series, the volumes of the toroidal $\mathrm{V}\left(\mathrm{Xe}_{(1)}\right)$ and $\mathrm{V}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ valence basins $(\eta(\mathbf{r})=0.60)$ increase with decreasing NBO charge of the XeOXeOXe moiety, i.e., $\left[\mathrm{XeOXeOXe}^{2+}\left(1.88 \AA^{3}\left(\mathrm{Xe}_{(1)}\right), 1.93 \AA^{3}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right) ;+2.00\right),[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\right.$ $\left(2.41 \AA^{3}\left(\mathrm{Xe}_{(1)}\right), 2.86 \AA^{3}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right) ;+1.67\right)$, FXeOXeOXeF $\left(3.01 \AA^{3}\left(\mathrm{Xe}_{(1)}\right), 3.37 \AA^{3}\right.$ $\left.\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right) ;+1.23\right)$. Plots of the xenon valence basin volumes versus charge are near-linear for both the terminal and central xenon valence basin volumes. In all three cases, the volume of $\mathrm{V}\left(\mathrm{Xe}_{(2,2 \mathrm{~A})}\right)$ is larger than that of $\mathrm{V}\left(\mathrm{Xe}_{(1)}\right)$. In general, the valence basin of the central $\mathrm{Xe}_{(1)}$ atom is symmetrically bonded to oxygen and is more confined than the corresponding $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ valence basins. In FXeOXeOXeF , where the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{F}_{(1,1 \mathrm{~A})}$ bonds are stronger and more confining than the $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ bridge bonds of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, the terminal and central Xe valence basins are the most symmetric and their toroidal holes most open, exposing the $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ core charges for interaction with the $\mathrm{F}_{(1,1 \mathrm{~A})}$ ligands of the anions. The similar shapes of the $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ tori of FXeOXeOXeF are consistent with their similar bonding environments and

Ph.D. Thesis - Maria V. Ivanova

abilities to confine their Xe VELP volumes and shapes. The $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ tori of the ion pair are considerably more expanded and their valence holes more contracted, in accordance with the asymmetries that result from their weaker $\mathrm{Xe}_{(2,2 \mathrm{~A})}--\mathrm{F}_{(1,1 \mathrm{~A})}$ interactions. The $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ tori of the free $[\mathrm{XeOXeOXe}]^{2+}$ cation, where the isosurface is the least confined, are the most asymmetric among the series, standing in marked contrast to those of FXeOXeOXeF and the ion pair. The $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ tori of $[\mathrm{XeOXeOXe}]^{2+}$ are significantly contracted at the extremities of the cation, giving somewhat conical-shaped tori and significantly narrowed toroidal holes that correspond to σ-holes (see MEPS discussion).

Similar bonding modalities arise for the $[\mathrm{FNgNCH}]^{+}$cations $(\mathrm{Ng}=\mathrm{Kr}$ or Xe$)$, as described in 1989 by MacDougall, Bader, and Schrobilgen, ${ }^{323}$ where the Lewis acid behaviors of the $[\mathrm{NgF}]^{+}$cations towards HCN were also shown to be due to the presence of holes in the valence shells of charge concentrations for $\mathrm{Kr}(\mathrm{II})$ and Xe (II) which expose their Ng cores to the nitrogen VELP of HCN.

6.2.4.5. Molecular Electrostatic Potential Surface (MEPS Analyses)

The MEPSs of the $[\mathrm{XeOXeOXe}]^{2+}$ cation, FXeOXeOXeF, and the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair have been calculated at the 0.001 electron bohr $^{-3}$ contour level. The color scale used in Figure 6.6a differs from that used in Figures 6.6b and 6.6 c , whereas the energy scales are directly comparable. The $[\mathrm{XeOXeOXe}]^{2+}$ cation displays high positive electrostatic potentials on the terminal $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ atoms $\left(895 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and between the $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ atoms ($901 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (Figure 6.6a). The most positive

Figure 6.6. Calculated molecular electrostatic potentials at the 0.001 electron bohr ${ }^{-3}$ surfaces of (a) the $[\mathrm{XeOXeOXe}]^{2+}$ cation, (b) FXeOXeOXeF, and (c) the $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ ion pair. The color scales range from red ($-905 \mathrm{~kJ} \mathrm{~mol}^{-1}$) to blue ($635 \mathrm{~kJ} \mathrm{~mol}^{-1}$) for $[\mathrm{XeOXeOXe}]^{2+}$ and from red $\left(-135 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ to blue ($190 \mathrm{~kJ} \mathrm{~mol}^{-1}$) for FXeOXeOXeF and $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Maximum and minimum electrostatic potentials are indicated by arrows. The optimized geometries and molecular surface electrostatic potentials were calculated at the B3LYP/aug-cc-pVDZ(-PP) level of theory.

Ph.D. Thesis - Maria V. Ivanova

electrostatic potentials occur between $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}$, and are opposed to the lowest electrostatic potential values which are located on the O atoms $\left(635 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. The highest electrostatic potentials on the $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ atoms are opposite to the $\mathrm{Xe}_{(2,2 \mathrm{~A})}-\mathrm{O}$ bonds and correspond to highly directional σ-holes. ${ }^{324-328}$ In the ELF analysis described above, the σ-holes correspond to the exposed $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ cores situated at the centers of the toroidal $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ valence basins.

The formation of the hypothetical FXeOXeOXeF molecule by donation of a F^{-} VELP into the σ-hole of each $\mathrm{Xe}_{(2,2 \mathrm{~A})}$ atom results in electrostatic potentials that are lower than those of $[\mathrm{XeOXeOXe}]^{2+}$. The highest electrostatic surface potential still occurs between $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2,2 \mathrm{~A})}\left(151 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, whereas the lowest electrostatic surface potentials now occurs on the terminal fluorine atoms ($-129 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The electrostatic surface potentials of the fluorine-bridged $[\mathrm{XeOXeOXe}]^{2+}$ cation of $[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ are somewhat higher than those of FXeOXeOXeF , but are significantly lower than those of the naked $[\mathrm{XeOXeOXe}]^{2+}$ cation. This is corroborated by the NBO analyses (see NBO Analyses), which show that the total charge of the XeOXeOXemoiety in the ion pair is significantly greater than that of the FXeOXeOXeF molecule. The most negative electrostatic potential values on the isosurfaces of the bridging fluorines of the ion pair $\left(-20 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ are significantly more positive than those of the terminal F atoms of $\mathrm{FXeOXeOXeF}\left(-129 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anions $(-61$ to $-32 \mathrm{~kJ} \mathrm{~mol}^{-1}$). This observation is consistent with the ionic formulation of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ in its crystal structure.

Ph.D. Thesis - Maria V. Ivanova

6.3. Conclusion

The low-temperature synthesis of a kinetically stable salt of the novel $[\mathrm{XeOXeOXe}]^{2+}$ cation has been accomplished by reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with XeF_{2} in aHF. The synthetic approach is reliant upon $\mathrm{ReO}_{3} \mathrm{~F}$ as the oxygen source and as the progenitor of the counter ion, $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$. The reaction pathway likely involves HOXeF as an intermediate in a series of oxygen/fluorine metathesis steps that lead to $[\mathrm{XeOXeOXe}]^{2+}$ and the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anion. The $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ salt is the first instance where the $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$anion has been used to stabilize a strong oxidant cation. The $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations are the only other noble-gas cations to have been stabilized by metal oxide fluoride anions, namely, $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right]$ and $[\mathrm{M}]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$ $\left([\mathrm{M}]^{+}=\left[\mathrm{XeF}_{5}\right]^{+},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}\right) .{ }^{315}$

The $[\mathrm{XeOXeOXe}]^{2+}$ cation is unique in several respects. Its discovery provides the first examples of a xenon(II) oxide, a noble-gas oxide cation, and a rare example of a noble-gas dication. ${ }^{329}$ It is also the first noble-gas dication for which a crystal structure is available. Not only has $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ been unambiguously characterized by low-temperature single-crystal X-ray diffraction, its Raman spectrum and vibrational assignments have been confirmed by quantum-chemical calculations and ${ }^{18} \mathrm{O}$-enrichment studies.

The $\mathrm{Xe}-\mathrm{O}$ and $\mathrm{Xe}-\mathrm{F}$ bonding in free $[\mathrm{XeOXeOXe}]^{2+}$, the hypothetical neutral oxide fluoride, FXeOXeOXeF , and the ion pair, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, were studied with the aid of NBO, QTAIM, ELF, and MEPS analyses. The Xe-O bonds of $[\mathrm{XeOXeOXe}]^{2+}$ are semi-ionic, with the terminal $\mathrm{Xe}-\mathrm{O}$ bonds exhibiting more covalent

Ph.D. Thesis - Maria V. Ivanova

character. The terminal Xe atoms of $[\mathrm{XeOXeOXe}]^{2+}$ show regions of high positive electrostatic potential, opposite to their $\mathrm{Xe}-\mathrm{O}$ bonds, which correspond to σ-holes. The cation-anion F-bridge interaction can be accounted for in terms of a σ-hole bond, where F atoms of the anions donate electron density to the electrophilic regions (σ-holes) of the terminal Xe atoms. As shown by the NBO, QTAIM, and ELF analyses, the Xe---F bridge bonds are weakly covalent and consistent with a true ion-pair and σ-hole bonds.

CHAPTER 7

REACTION OF MnO_{3} F WITH NOBLE-GAS FLUORIDES, KrF_{2} AND XeF ${ }_{6}$

7.1. Introduction

In contrast to $\mathrm{Tc}(\mathrm{VII})$ and $\operatorname{Re}(\mathrm{VII})$, for which several oxide fluorides are known, ${ }^{1-37}$ only one $\mathrm{Mn}(\mathrm{VII})$ oxide fluoride, $\mathrm{MnO}_{3} \mathrm{~F}$, has been synthesized and structurally characterized. ${ }^{6,31,32,35,51-62}$ Manganese trioxide fluoride is an unstable compound at temperatures above $0{ }^{\circ} \mathrm{C}$ that decomposes in the pure state to $\mathrm{MnF}_{2}, \mathrm{MnO}_{2}$, and O_{2} and under aHF to MnF_{2} and O_{2}. Challenges associated with handling $\mathrm{MnO}_{3} \mathrm{~F}$ have previously prevented detailed studies of its reactivity. Moreover, the syntheses of $\mathrm{MnO}_{2} \mathrm{~F}_{3}$ and MnOF_{5} have not yet been reported.

Attempts to synthesize MnOF_{5} and $\mathrm{MnO}_{2} \mathrm{~F}_{3}$ by the reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and XeF_{6} are described in this Chapter. The synthetic procedures are analogous to those used to synthesize $\mathrm{MO}_{2} \mathrm{~F}_{3}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})^{17,19}$ and $\mathrm{TcOF}_{5}{ }^{1,2}$ and have led to the isolation and preliminary characterization of what is assumed to be MnF_{5} and to the isolation of the previously known $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]^{169,170}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]^{169,171}$ salts of $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{F}_{6}\right]^{2-}$. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in the presence of $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF also resulted in the isolation of the first example of a $\left[\mathrm{Mn}^{\mathrm{v}} \mathrm{F}_{6}\right]^{-}$salt, $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$.

The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]^{169,170}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]^{169,171}$ salts have been previously synthesized by reaction of MnF_{2} with XeF_{6} at $60{ }^{\circ} \mathrm{C}$ and by subsequent removal of XeF_{6} under dynamic vacuum at room temperature and $60^{\circ} \mathrm{C}$, respectively, (eqs 7.1-7.3). Both

$$
\begin{equation*}
\mathrm{MnF}_{2}+5 \mathrm{XeF}_{6} \xrightarrow{60^{\circ} \mathrm{C}} 4 \mathrm{XeF}_{6} \cdot \mathrm{MnF}_{4}+\mathrm{XeF}_{4} \tag{7.1}
\end{equation*}
$$

$$
\begin{align*}
& 4 \mathrm{XeF}_{6} \mathrm{MnF}_{4} \xrightarrow[\text { vac. }]{24 \mathrm{o}}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]+2 \mathrm{XeF}_{6} \tag{7.2}\\
& {\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right] \xrightarrow[\text { vac. }]{60 \mathrm{C}}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]+\mathrm{XeF}_{6}} \tag{7.3}
\end{align*}
$$

products were characterized by chemical analyses, magnetic measurements and infrared spectroscopy, and by their X-ray powder diffraction patterns which only provided incomplete structural characterizations of these compounds. Žemva and Slivnik ${ }^{171}$ have also synthesized $\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right]$ by reaction of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{MnF}_{3}\right]$ with neat $n \mathrm{XeF}_{6}(\mathrm{n} \geq$ 15) (eq 7.1) and isolated the yellow salt, $\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right]$, at room temperature. The

$$
\begin{gather*}
{\left[\mathrm{NH}_{4}\right]\left[\mathrm{MnF}_{3}\right]+n \mathrm{XeF}_{6} \xrightarrow{0 \text { to } 60^{\circ} \mathrm{C}}\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right]+\mathrm{XeF}_{x}+\mathrm{Xe}+\mathrm{XeF}_{6}} \\
n \geq 15, x=2,4 \tag{7.1}
\end{gather*}
$$

product was characterized by chemical analysis, magnetic susceptibility measurements, thermogravimetric studies, and infrared and Raman spectroscopies. The vibrational assignments of the Raman spectrum were made by comparison with the experimental Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$.

The only evidence for the existence of a $\mathrm{Mn}(\mathrm{V})$ fluoride is the observation of $\left[\mathrm{MnF}_{4}\right]^{+}$in the mass spectrum of the $\mathrm{MnF}_{3}-\mathrm{F}_{2}$ system, however, the origin of this cation is presently unclear. ${ }^{172,173}$

This Chapter describes the syntheses and preliminary characterizations of two new manganese(V) fluorides, which are tentatively identified as $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ and MnF_{5}. Additionally, the syntheses of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} are also described. The $\mathrm{K}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salts were structurally characterized for the first time by single-crystal X-ray diffraction. The latter two salts were also characterized by Raman spectroscopy and quantum-
chemical calculations were used to aid in vibrational assignments of their Raman spectra. A preliminary solution of the single-crystal X-ray structure of MnF_{5} is also provided.

7.2. Results and Discussion

7.2.1. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF

Manganese trioxide fluoride has been synthesized in admixture with $\mathrm{Mn}_{2} \mathrm{O}_{7}$ by solvolysis of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ in aHF (eq 7.1) (Figure E1). The resulting reaction mixture was subsequently fluorinated with F_{2} gas at $-15^{\circ} \mathrm{C}$ in order to oxidatively fluorinate $\mathrm{H}_{2} \mathrm{O}$ to O_{2} and HF (eq 7.2). The $\mathrm{MnO}_{3} \mathrm{~F} / \mathrm{Mn}_{2} \mathrm{O}_{7} / \mathrm{HF}$ mixture was isolated from $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ by static

$$
\begin{align*}
& \mathrm{K}\left[\mathrm{MnO}_{4}\right]+\mathrm{HF} \longrightarrow \mathrm{MnO}_{3} \mathrm{~F}, \mathrm{Mn}_{2} \mathrm{O}_{7},\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right], \mathrm{K}\left[\mathrm{HF}_{2}\right] \tag{7.1}\\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{HF}+1 / 2 \mathrm{O}_{2} \tag{7.2}
\end{align*}
$$

distillation at $-20^{\circ} \mathrm{C}$ into a pre-cooled $\left(-196{ }^{\circ} \mathrm{C}\right)$ reactor. Subsequent addition of KrF_{2} to the $\mathrm{MnO}_{3} \mathrm{~F} / \mathrm{Mn}_{2} \mathrm{O}_{7} / \mathrm{HF}$ mixture and warming of the mixture to room temperature resulted in O_{2} and Kr evolution. The reaction was quenched by cooling the reactor to $-196{ }^{\circ} \mathrm{C}$ after the deep green solution became pale pink and a red oil had also formed at the bottom of the reaction vessel. The Raman spectrum recorded on the red oil under the frozen solution corresponded to a mixture of KrF_{2} and unidentified manganese fluoride(s) (Figure E2, Appendix E). The reaction was subsequently allowed to proceed at room temperature until gas evolution ceased and the color of the oil and solution became redviolet. The Raman spectrum was recorded on the solid material that had been isolated by removal of aHF at room temperature (Figure E3, Appendix E). The latter differed from the Raman spectrum recorded on the red oil under the pale pink frozen solution (Figure

E2). Other than a band at $1840 \mathrm{~cm}^{-1}$, the highest frequency bands occurred in the $600-700 \mathrm{~cm}^{-1}$ range and correspond to $\mathrm{Mn}-\mathrm{F}$ stretching modes, confirming the formation of manganese fluoride(s). An important feature of the spectrum was a band at $1840 \mathrm{~cm}^{-1}$, which corresponded to the $\left[\mathrm{O}_{2}\right]^{+}$stretch. Previous studies of the $\left[\mathrm{O}_{2}\right]^{+}$salts of manganese(IV) fluoro-anions revealed that a possible product of this reaction could be $\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right],{ }^{165}$ for which the $v(\mathrm{O}-\mathrm{O})$ stretch was reported at $1838 \mathrm{~cm}^{-1}$, whereas the $v(\mathrm{O}-\mathrm{O})$ stretch occurs at $1805 \mathrm{~cm}^{-1}$ for $\left[\mathrm{O}_{2}\right]_{2}\left[\mathrm{MnF}_{6}\right] .{ }^{151}$

Crystallization of the resulting product was attempted by dissolving the solid in aHF which resulted in the precipitation of a grey solid under a red-purple solution. The grey solid was separated by decanting the supernatant and the solid into the side arm of the reaction vessel and then decanting only the supernatant back into the main tube of the reactor. The supernatant was maintained at $-78{ }^{\circ} \mathrm{C}$ for three weeks. The solution was subsequently combined with the grey solid, which resulted in the dissolution and a solution color change from red-purple to very pale green. Crystallization of the product by static distillation of aHF into the pre-cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ side arm was attempted which resulted in the formation of ruby-red, needle-shaped crystals and a small amount of a pale pink/grey solid. Low-temperature single-crystal X-ray diffraction data was collected and solved as MnF_{5}, however, due to twinning issues, the structure solution requires further refinement. All subsequent reactions reproduced a solid which showed an $\left[\mathrm{O}_{2}\right]^{+}$band in the Raman spectrum (Figure E3). In all subsequent cases, attempts to regrow crystals of MnF_{5} failed.

A possible reaction sequence leading to the formation of MnF_{5} that would account for $\left[\mathrm{O}_{2}\right]^{+}$observed at $1840 \mathrm{~cm}^{-1}$ (Figure E3, Appendix E) is given in eqs 7.3-7.5. The

$$
\begin{align*}
& 2 \mathrm{MnO}_{3} \mathrm{~F}+3 \mathrm{KrF}_{2} \xrightarrow{20^{\circ} \mathrm{C}}\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]+\mathrm{MnF}_{2}+2 \mathrm{O}_{2}+3 \mathrm{Kr} \tag{7.3}\\
& {\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right] \xrightarrow{20^{\circ} \mathrm{C}} \mathrm{MnF}_{5}+\mathrm{O}_{2} \mathrm{~F}} \tag{7.4}\\
& \mathrm{MnF}_{2}+\mathrm{O}_{2} \mathrm{~F} \xrightarrow{20^{\circ} \mathrm{C}} \mathrm{MnF}_{3} \text { (grey solid) }+\mathrm{O}_{2} \tag{7.5}
\end{align*}
$$

reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} could have resulted in the formation of MnF_{2} and $\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]$, which decomposed to MnF_{5} and $\mathrm{O}_{2} \mathrm{~F}$ (eqs 7.3 and 7.4). Dioxygen fluoride subsequently oxidized MnF_{2} to MnF_{3}, which precipitated as a grey solid (eq 7.5).

Alternatively, the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} could have resulted in the formation of $\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]^{165}$ (eq 7.6) which could also account for the peak at $1840 \mathrm{~cm}^{-1}$. The

$$
\begin{equation*}
2 \mathrm{MnO}_{3} \mathrm{~F}+3.5 \mathrm{KrF}_{2} \longrightarrow\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]+2 \mathrm{O}_{2}+3.5 \mathrm{Kr} \tag{7.6}
\end{equation*}
$$

$\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]$ salt subsequently disproportionated to manganese $(\mathrm{V}),\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]$, and manganese (III), MnF_{3} (eq 7.7). The dioxygen cation $\left[\mathrm{O}_{2}\right]^{+}$, is a powerful one-electron

$$
\begin{equation*}
\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right] \xrightarrow{20^{\circ} \mathrm{C}}\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]+\mathrm{MnF}_{3} \text { (grey solid) } \tag{7.7}
\end{equation*}
$$

oxidant, which has been previously shown to act as an oxidizing agent converting $\operatorname{Pt}(\mathrm{IV})$ to $\operatorname{Pt}(\mathrm{V}),{ }^{330} \mathrm{Au}(\mathrm{III})$ to $\mathrm{Au}(\mathrm{V}),{ }^{330} \mathrm{Ni}(\mathrm{II})$ to $\mathrm{Ni}(\mathrm{IV}),{ }^{330}$ and Xe to $\mathrm{Xe}(\mathrm{II}) .{ }^{264}$ The decomposition of the $\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]$ salt at room temperature resulted in the formation of MnF_{5}, which crystallized as ruby-red crystals (eq 7.8).

$$
\begin{equation*}
\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right] \xrightarrow{20^{\circ} \mathrm{C}} \mathrm{MnF}_{5}+\mathrm{O}_{2} \mathrm{~F} \tag{7.8}
\end{equation*}
$$

When $\mathrm{MnO}_{3} \mathrm{~F}$ reacted with KrF_{2} in the presence of $\mathrm{K}\left[\mathrm{HF}_{2}\right]$, a dark red oil formed at the bottom of a red-orange solution. An attempt to record the Raman spectrum of the oil failed. Upon removal of aHF at $-78{ }^{\circ} \mathrm{C}$ and room temperature, the red oil transformed
into an orange solid. The Raman spectrum was recorded on the isolated product (Figure E4), which was shown to contain $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ by single-crystal X-ray diffraction (see below). Moreover, the most intense $v(\mathrm{MnF})$ stretching band ($693 \mathrm{~cm}^{-1}$) appears at lower frequency than the most intense and characteristic bands of $\mathrm{MnF}_{4}\left(744 \mathrm{~cm}^{-1}\right)^{124}$ and to higher frequency of $\mathrm{MnF}_{3}\left(651 \mathrm{~cm}^{-1}\right) .{ }^{124}$ The most intense band of the MnF_{3} Raman spectrum, however, coincides with one of the bands of the broad Raman spectrum shown in Figure E4 and appears as a shoulder. Therefore, the broad Raman spectrum was assigned to a solid mixture that contained at least two species, $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ and MnF_{3} (Figure E4, Appendix E).

The solid was divided into two portions which were dissolved in aHF to form redorange solutions. One solution was used for ${ }^{19} \mathrm{~F}$ NMR characterization (see NMR Section), and the other was used for crystal growth (see X-ray Crystallography Section).

Colorless or pale pink cubic crystals of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ that were of a quality suitable for an X-ray structure determination were grown from HF by slow cooling of the red-orange solution from -25 to $-30{ }^{\circ} \mathrm{C}$ over a period of 3 h . An insoluble grey solid, presumably MnF_{3}, also precipitated from the solution; however, it was not structurally identified.

The formation of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ may result from the displacement of the $\left[\mathrm{O}_{2}\right]^{+}$cation by the K^{+}cation (7.9). All subsequent attempts to synthesize $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ resulted in the

$$
\begin{equation*}
\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]+\mathrm{K}^{+}+\mathrm{F}^{-} \longrightarrow \mathrm{K}\left[\mathrm{MnF}_{6}\right]+\mathrm{O}_{2} \mathrm{~F} \tag{7.9}
\end{equation*}
$$

formation of a solid mixture which Raman spectrum (Figure E5) was similar to that shown in (Figure E4), additionally bands of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]\left(601,516,309 \mathrm{~cm}^{-1}\right)$ were also observed. Dissolution of this solid mixture in aHF always resulted in the reappearance of
the red oil. Attempts to crystallize the product by maintaining the solution at $-78^{\circ} \mathrm{C}$ or by slow removal of aHF under dynamic vacuum at $-78^{\circ} \mathrm{C}$ failed.

7.2.2. Reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} in aHF

Manganese trioxide fluoride did not react with XeF_{6} in aHF up to room temperature as was confirmed by Raman spectroscopy. The reaction proceeded very slowly at room temperature and was accompanied by slow gas evolution. The Raman spectrum of the solid mixture indicated that only partial reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} had occurred at room temperature and was assigned to $\mathrm{MnO}_{3} \mathrm{~F}, \mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right], \mathrm{XeOF}_{4}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}$, which was identified by comparison with the $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2}$ adduct ${ }^{189}$ (Figure E6, Appendix E). The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} differs significantly from the analogous reactions of its heavy transition metal analogues, $\mathrm{MO}_{3} \mathrm{~F}(\mathrm{M}=\mathrm{Tc}, \mathrm{Re})$, which react with XeF_{6} in a series of oxygen/fluorine metathesis reactions that result in the formation of $\mathrm{MO}_{2} \mathrm{~F}_{3}$ and $\mathrm{XeOF}_{4} .{ }^{17,19}$ The complete reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} was indicated by a change of the solution color from deep green to dark orange. The resulting product mixture, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right], \mathrm{XeOF}_{4}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}$, and $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$ (eq 7.2)

$$
\begin{align*}
\mathrm{MnO}_{3} \mathrm{~F}+7 \mathrm{XeF}_{6} \xrightarrow{\mathrm{HF}} & {\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right], \mathrm{XeOF}_{4} \text { and } / \text { or } \mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}, } \\
& \mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF} \tag{7.2}
\end{align*}
$$

was isolated upon removal of HF under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$. The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salt exhibits thermochromic behaviour, changing color from orange to yellow when the compound is cooled below $-50{ }^{\circ} \mathrm{C}$, in agreement with previous observations. ${ }^{169}$ Needleshaped crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ that were of a quality suitable for an X-ray crystal
structure determination were grown by cooling the HF solution of the salt from -10 to $-15{ }^{\circ} \mathrm{C}$ over a 4 h period. The Raman spectrum was recorded on the resulting isolated crystalline compound.

Orange $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ was synthesized from $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ by removal of XeF_{6} under dynamic vacuum at room temperature (eq 7.3). The solid readily dissolved in aHF

$$
\begin{equation*}
\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right] \xrightarrow{\text { vac. }}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]+2 \mathrm{XeF}_{6} \tag{7.3}
\end{equation*}
$$

forming an orange solution. The $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salt also exhibited thermochromic behaviour in the solid state and in solution, as observed for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$. Orange needle-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ were grown at room temperature (3 days) by slow static distillation of HF , under 1.1 atm of N_{2} gas, into the pre-cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ side arm of the FEP reaction vessel. The crystalline sample was characterized by Raman spectroscopy and single-crystal X-ray diffraction.

7.2.3. ${ }^{19} \mathrm{~F}$ and ${ }^{55} \mathrm{Mn}$ NMR Spectroscopy

Manganese trioxide fluoride was characterized by room temperature ${ }^{19} \mathrm{~F},{ }^{55} \mathrm{Mn}$, and ${ }^{55} \mathrm{Mn}-{ }^{19} \mathrm{~F}$ COSY NMR spectroscopies. The broad $\left(\Delta v_{1 / 2}=1553 \mathrm{~Hz}\right)$ saddle-shaped resonance observed in the ${ }^{19} \mathrm{~F}$ spectrum of $\mathrm{MnO}_{3} \mathrm{~F}\left(\delta\left({ }^{19} \mathrm{~F}\right)=-169.4 \mathrm{ppm}\right)$ (Figure 7.1a) results from partial quadrupole collapse of the equal-intensity six-line multiplet $(2 I+1$, where $I=5 / 2$) that arises from ${ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}\right)$ spin-spin coupling. The ${ }^{55} \mathrm{Mn}$ NMR spectrum of $\mathrm{MnO}_{3} \mathrm{~F}$ (Figure 7.1b) shows a doublet at 6.1 ppm referenced to aqueous $\mathrm{K}\left[\mathrm{MnO}_{4}\right]\left(\Delta \mathrm{v}_{1 / 2}\right.$ $=120 \mathrm{~Hz}$) and provides the first example of a ${ }^{1} J\left({ }^{19} \mathrm{~F}^{-}{ }^{55} \mathrm{Mn}\right)$ coupling constant (285.56
a

b

Figure 7.1. (a) The ${ }^{19} \mathrm{~F}$ NMR spectrum (470.51 MHz) of $\mathrm{MnO}_{3} \mathrm{~F}$; (b) The ${ }^{55} \mathrm{Mn}$ NMR spectrum (123.98 MHz). All spectra were recorded in HF solvent at $25^{\circ} \mathrm{C}$.

Hz). The ${ }^{55} \mathrm{Mn}-{ }^{19} \mathrm{~F}$ COSY spectrum (Figure 7.2) shows a strong correlation between the doublet and the partially quadrupole-collapsed sextet. The ${ }^{55} \mathrm{Mn}$ chemical shift occurs at significantly lower frequency than those of $\left[(\mathrm{CO})_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right) \mathrm{Mn}\right] \mathrm{Cl}\left(\delta{ }^{55} \mathrm{Mn}\right)=150$ $\mathrm{ppm})^{331}$ and $\left[(\mathrm{CO})_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right) \mathrm{Mn}\right] \operatorname{Br}\left(\delta\left({ }^{55} \mathrm{Mn}\right)=149 \mathrm{ppm}\right) .{ }^{331}$

When $\mathrm{MnO}_{3} \mathrm{~F}$ and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ were allowed to react with KrF_{2} in HF at room temperature, a red-orange solid resulted that was isolated by removal of HF under dynamic vacuum at room temperature (see Section 2.7.2). The solid was divided into two portions, one portion was used for crystal growth from HF solution and the other was used for a ${ }^{19} \mathrm{~F}$ NMR study in HF. The room-temperature ${ }^{19} \mathrm{~F}$ NMR spectrum of the redorange HF solution showed a broad resonance centered at $-65.4 \mathrm{ppm}\left(\Delta v_{1 / 2}=3004 \mathrm{~Hz}\right)$ (Figure 7.3), which corresponds to a partially quadrupole-collapsed quartet having equally intense integrated multiplet lines. The outer lines are moved inwards and the broader inner lines are moved outwards with respect to the center of the multiplet. A similar resonance shape has been previously observed for the ${ }^{19} \mathrm{~F}$ NMR spectra of BF_{3} $\left({ }^{11} \mathrm{~B}, I=3 / 2\right){ }^{332}$ and $\mathrm{ClO}_{3} \mathrm{~F}\left({ }^{35 / 37} \mathrm{Cl}, I=3 / 2\right) \cdot{ }^{332}$ The intensities of the lines were determined based on the empirical calculations of the individual line shapes of the corresponding partially quadrupole-collapsed resonances for $0.1 \leq \eta^{2} \geq 100$, where $\eta=2 \pi J \tau$ and τ is the correlation time for molecular reorientation. The ${ }^{19} \mathrm{~F}$ resonance is significantly shifted to higher frequency than that of $\mathrm{MnO}_{3} \mathrm{~F}$, consistent with the lower polarities of the $\mathrm{Mn}-\mathrm{F}$ bonds in the new manganese fluoride when compared with the $\mathrm{Mn}-\mathrm{F}$ bond of $\mathrm{Mn}^{\mathrm{VII}} \mathrm{O}_{3} \mathrm{~F}$. It is therefore reasonable to assign the ${ }^{19} \mathrm{~F}$ NMR spectrum to $\left[\mathrm{Mn}^{\mathrm{V}} \mathrm{F}_{6}\right]^{-}$. In view of the fact that coupling between ${ }^{55} \mathrm{Mn}$ and ${ }^{19} \mathrm{~F}$ nuclei was observed in the ${ }^{19} \mathrm{~F}$ spectrum, it should be

Figure 7.2. The ${ }^{9} \mathrm{~F}-{ }^{55} \mathrm{Mn}$ COSY NMR spectrum $\left({ }^{19} \mathrm{~F}, 470.51 \mathrm{MHz} ;{ }^{55} \mathrm{Mn}, 123.98\right.$ MHz) of $\mathrm{MnO}_{3} \mathrm{~F}$ recorded in HF solvent at $25^{\circ} \mathrm{C}$.

Figure 7.3. (a) The ${ }^{19} \mathrm{~F}$ NMR spectrum (470.56 MHz) of the product formed in the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in HF . The spectrum was recorded in HF at $25^{\circ} \mathrm{C}$ and is tentatively assigned to $\left[\mathrm{MnF}_{6}\right]^{-}$.
possible to obtain the ${ }^{55} \mathrm{Mn}$ NMR spectrum of $\left[\mathrm{Mn}^{\mathrm{V}} \mathrm{F}_{6}\right]^{-}$, ideally a 1:6:15:20:15:6:1 septet, which would confirm the above assignment.

7.2.4. X-ray Crystallography

A summary of refinement results and other crystallographic information for MnF_{5}, $\mathrm{K}\left[\mathrm{MnF}_{6}\right], \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ (see Experimental Section 2.7.4) is provided in Table 7.1. Important bond lengths and angles along with calculated values are listed in Tables 7.2, 7.3, 7.4, E1, and E2. The structural parameters of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and $\left[\mathrm{XeF}_{5}\right]^{+}$cations are comparable to those of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{315}$ $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{315}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{315}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{333}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{PdF}_{6}\right],{ }^{334}$ and, therefore, require no further discussion. Although the experimental geometrical parameters of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]$ have been improved for the crystal structure of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$, they are not further discussed (Figure E7 and Table E2).

7.2.4.1. MnF_{5}

Preliminary findings suggest that MnF_{5} has been synthesized and isolated for the first time and structurally characterized by single-crystal X-ray diffraction. A preliminary solution in $C 2 / \mathrm{c}$ reveals that the crystal structure of MnF_{5} consists of linear infinite chains formed by MnF_{6} pseudo-octahedra that are trans-linked to each other through fluorine bridges. The chains run parallel to the a-axis and are packed along the c-axis (Figure E8). The crystal structure of MnF_{5} is analogous to those of $\alpha-\mathrm{UF}_{5}{ }^{335}$ and $\mathrm{BiF}_{5}{ }^{336}$ as they also
Table 7.1. Summary of Crystal Data and Refinement Results for MnF_{5} (1), $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ (2), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (3),

${ }^{a} R_{1}$ is defined as $\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| \Sigma\right| F_{\mathrm{o}}\right|\right.$ for $I>2 \sigma(I) .{ }^{b} w R_{2}$ is defined as $\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ for $I>2 \sigma(I)$.

Ph.D. Thesis - Maria V. Ivanova

Table 7.2. Experimental Bond Lengths and Bond Angles for Polymeric MnF_{5} and Calculated Bond Lengths and Bond Angles for the Hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$ ($C_{2 \mathrm{~h}}$) Anion

MnF_{5}		$\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$		
			B3LYP	PBE1PBE
Bond lengths (A)				
$\mathrm{Mn}-\mathrm{F}_{1}$	1.9646(5)	$\mathrm{Mn}-\mathrm{F}_{1}$	1.853	1.838
$\mathrm{Mn}-\mathrm{F}_{2}$	1.950(2)	$\mathrm{Mn}-\mathrm{F}_{2}$	1.730	1.715
$\mathrm{Mn}-\mathrm{F}_{3}$	1.912(2)			
Bond Angles (${ }^{\circ}$)				
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	180.00	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	180.0	180.0
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	90.14(7)	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	90.8	90.8
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	89.85(7)	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	89.2	89.2
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	91.19(6)	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~B}}$	90.8	90.8
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	88.81(6)	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{C}}$	89.2	89.2
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	92.5(3)	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	89.2	89.2
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	180.00	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	180.0	180.0
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	91.43(7)	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~B}}$	90.1	90.1
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	88.57(7)	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{C}}$	89.9	89.9
$\mathrm{Mn}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}-\mathrm{Mn}_{1}$	155.09(13)	$\mathrm{Mn}_{1}-\mathrm{F}_{1}-\mathrm{Mn}_{2}$	144.7	143.1

${ }^{a}$ For the atom labeling scheme, see Figure 7.4a. ${ }^{b}$ The aug-cc-pVTZ basis set was used. For the atom labeling scheme, see Figure 7.4b.

Figure 7.4. (a) The repeat unit in the crystal structure of MnF_{5}; thermal ellipsoids are shown at the 50% probability level. (b) The calculated structure of the hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$anion (B3LYP/aug-cc-pVTZ).

Ph.D. Thesis - Maria V. Ivanova

have trans-bridge structures and differs from the cis-bridge structures of CrF_{5}^{337} and $\mathrm{VF}_{5} .{ }^{338}$ The elongated thermal ellipsoids suggest the possibility of a unsolved disorder or twinning. Furthermore, the $\mathrm{Mn}(\mathrm{V})-\mathrm{F}$ bonds are significantly longer than the $\mathrm{Mn}(\mathrm{IV})-\mathrm{F}$ bonds in $\mathrm{K}\left[\mathrm{MnF}_{6}\right], \mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (see below) and the calculated $\mathrm{Mn}(\mathrm{V})-\mathrm{F}$ bonds in the hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$anion (Table 7.4). This appears to result from twinning issues associated with the crystal structure of MnF_{5}. The bond elongation due to twinning is reminiscent of what was observed in the crystal structures $\mathrm{Cs}\left[\mathrm{MnF}_{4}\right] .{ }^{339,340}$ Moreover, the absence of $v(\mathrm{Mn}-\mathrm{O})$ stretches in the Raman spectrum (Figure E3) is consistent with the crystal structure being that of a manganese fluoride.

7.2.4.2. $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$

The $\left[\mathrm{MnF}_{6}\right]^{-}$anion would correspond to only the second example of a manganese(V) fluoride which has been isolated and structurally characterized by singlecrystal X-ray diffraction. Although the crystal structure of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ could be solved using both the $R 3$ and $R \overline{3}$ space groups (Figure E9), the latter provided a better overall solution. In this space group, the $\left[\mathrm{MnF}_{6}\right]^{-}$anion has essentially an octahedral geometry which is imposed by symmetry. This contrasts with the fact that the d^{2} electron configuration of manganese in $\left[\mathrm{MnF}_{6}\right]^{-}$is expected to result in a Jahn-Teller distortion from O_{h} to $D_{4 \mathrm{~h}}$ symmetry.

Each F atom in $\left[\mathrm{MnF}_{6}\right]^{-}$interacts with two K^{+}cations $(\mathrm{K} \cdots \mathrm{F}, 2.847(2)$ and

Table 7.3. Experimental Bond Lengths, Contacts, and Bond Angles for $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ and Calculated Bond Lengths and Bond Angles for $\left[\mathrm{MnF}_{6}\right]^{-}$

${ }^{a}$ For the atom labeling scheme see Figure $7.5 .{ }^{b}$ The aug-cc-pVTZ basis set was used.

Figure 7.5. (a) $\left.\mathrm{The}^{[} \mathrm{MnF}_{6}\right]^{-}$anion in the crystal structure of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ showing the K^{+} contacts around the MnF_{6}-octahedron. Thermal ellipsoids are shown at the 50% probability levels for both compounds. (b) The calculated structure of the $\left[\mathrm{MnF}_{6}\right]^{-}$anion (B3LYP/aug-cc-pVTZ).
$2.940(3) \AA$) and, in turn, each cation interacts with twelve fluorine atoms (Figure E10). The $\mathrm{Mn}-\mathrm{F}$ bond lengths $\left(1.729(3) \AA\right.$) of $\left[\mathrm{MnF}_{6}\right]^{-}$(Table 7.2) are shorter than those of $\left[\mathrm{MnF}_{6}\right]^{2-}\left(\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right], 1.806(2)-1.807(2) \AA \AA^{\prime}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right], 1.798(2)-1.817(2) \AA ;\right.$ $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}, 1.7895(5)-1.8064(5) \AA$), consistent with the higher oxidation state of the Mn atoms in $\left[\mathrm{Mn}^{\mathrm{V}} \mathrm{F}_{6}\right]^{-}$when compared to $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{F}_{6}\right]^{2-}$. The $\mathrm{F}-\mathrm{Mn}-\mathrm{F}$ bond angles (89.3 and 90.7°) are close to 90°.

7.2.4.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$

The crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ represents a rare example in which two $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations bridge to a common anion. The $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations stack along the b-axis (Figure E11, Appendix E). Each $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation interacts with two $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions through four short Xe---F bridge bonds $\left(\mathrm{Xe}_{1}---\mathrm{F}_{1}, 2.554(2) \AA ; \mathrm{Xe}_{1}--\mathrm{F}_{3}\right.$, $2.778(2) \AA ; \mathrm{Xe}_{2}---\mathrm{F}_{2 \mathrm{~B}}, 2.776(2) \AA ; \mathrm{Xe}_{2}---\mathrm{F}_{3 \mathrm{~B}}(2.559(2) \AA)$ (Figures 7.6 and E12, Appendix E). This type of interaction contrasts with the one observed in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{333}$ where one XeF_{5}-group of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation interacts with the same anion and a second XeF_{5}-group interacts with two anions. The Xe ---F contacts are significantly shorter than the sum of the Xe $\cdots \mathrm{F}$ van der Waals radii $(3.63 \AA) .{ }^{241}$ Each XeF_{5}-group of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation also interacts with two $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions through long $\mathrm{Xe}_{2}---\mathrm{F}_{1 \mathrm{~A}}(3.623(2) \AA)$ and $\mathrm{Xe}_{1}---\mathrm{F}_{2 \mathrm{C}}(3.623(2) \AA)$ bridging bonds, which are equal to the sum of the $\mathrm{Xe} \cdots \mathrm{F}$ van der Waals radii. In addition, there are several interionic $\mathrm{F} \cdots \mathrm{F}$ contacts, where the shortest cation/anion interaction is $2.677(2) \AA$ and anion/anion interaction is 2.806(2) \AA.

Ph.D. Thesis - Maria V. Ivanova

Table 7.4. Selected Experimental Bond Lengths, Contacts, and Bond Angles for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (2) and Selected Calculated Bond Lengths and Bond Angles for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+} \quad$ (3) and $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ (4)

exptl ${ }^{a}$		$\mathrm{calcd}^{\text {b }}$		$\operatorname{exptl}^{\text {c }}$		calcd^{d}	
		(3)		(2)		(4)	
Bond Lengths (A)							
$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.807(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.828	$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.817(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.804
$\mathrm{Mn}_{1}-\mathrm{F}_{2}$	1.806(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{2}$	1.825	$\mathrm{Mn}_{1}-\mathrm{F}_{2}$	1.800(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{2}$	1.844
$\mathrm{Mn}_{1}-\mathrm{F}_{3}$	1.806(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{3}$	1.819	$\mathrm{Mn}_{1}-\mathrm{F}_{3}$	1.802(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{3}$	1.811
		$\mathrm{Mn}_{1}-\mathrm{F}_{4}$	1.824	$\mathrm{Mn}_{1}-\mathrm{F}_{4}$	1.798(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{4}$	1.846
		$\mathrm{Mn}_{1}-\mathrm{F}_{5}$	1.829	$\mathrm{Mn}_{1}-\mathrm{F}_{5}$	1.807(2)	$\mathrm{Mn}_{1}-\mathrm{F}_{5}$	1.810
		$\mathrm{Mn}_{1}-\mathrm{F}_{6}$	1.819	$\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$1.804(2)$	$\mathrm{Mn}_{1}-\mathrm{F}_{6}$	1.802
$\mathrm{Xe}_{1---\mathrm{F}_{1}}$	2.554(2)	$\mathrm{Xe}--\mathrm{F}_{1}$	2.768	$\mathrm{Xe}_{1}--\mathrm{F}_{1}$	2.521(2)	$\mathrm{Xe}_{1}--\mathrm{F}_{1}$	2.637
$\mathrm{Xe}_{2}--\mathrm{F}_{2}$	2.559(2)	Xe--- F_{2}	2.711	$\mathrm{Xe}_{2}--\mathrm{F}_{2 \mathrm{~A}}$	2.579(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{2}$	2.457
$\mathrm{Xe}_{1}--\mathrm{F}_{3}$	2.778(2)	$\mathrm{Xe}--\mathrm{F}_{3}$	2.790	$\mathrm{Xe}_{1}--\mathrm{F}_{3}$	2.558(2)	$\mathrm{Xe}_{1}--\mathrm{F}_{3}$	2.572
$\mathrm{Xe}_{2}--\mathrm{F}_{3}$	2.777(2)	$\mathrm{Xe}--\mathrm{F}_{3}$	2.846	$\mathrm{Xe}_{2}--\mathrm{F}_{4 \mathrm{~A}}$	2.572(2)	Xe--- F_{4}	2.450
		$\mathrm{Xe}--\mathrm{F}_{4}$	2.725	$\mathrm{Xe}_{1}--\mathrm{F}_{5 \mathrm{~A}}$	2.483(2)	Xe--- F_{5}	2.573
		Xe--- F_{5}	2.755	$\mathrm{Xe}_{2}--\mathrm{F}_{6}$	2.470(2)	Xe--- F_{6}	2.640
		Xe---- ${ }_{6}$	2.801				
		Xe--- F_{6}	2.832				

Bond Angles (deg)

$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	$90.0(1)$	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	89.7	$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	$175.7(1)$	176.1
$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	$175.3(1)$	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	173.4	$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	$85.4(1)$	86.3
$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	$90.1(1)$	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	90.7	$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	$90.7(1)$	90.3
$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	$87.5(1)$	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	93.3	$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	$91.7(1)$	91.2
$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	$92.3(1)$	$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	86.6	$\mathrm{~F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$91.4(1)$	88.8
$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	$90.1(1)$	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	90.6	$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	$91.5(1)$	89.9
$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	$90.2(1)$	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	89.8	$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	$86.4(1)$	90.6
$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	$87.8(1)$	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	86.7	$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	$91.4(1)$	92.6
$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	$92.4(1)$	$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	93.2	$\mathrm{~F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$91.6(1)$	90.6
$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	$92.3(1)$	$\mathrm{F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	93.3	$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{4}$	$90.7(1)$	92.4
$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	$92.4(1)$	$\mathrm{F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	93.3	$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	$177.1(1)$	176.6
$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$		$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	179.9	$\mathrm{~F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$89.8(1)$	91.2
		$\mathrm{~F}_{4}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	173.4	$\mathrm{~F}_{4}-\mathrm{Mn}_{1}-\mathrm{F}_{5}$	$90.1(1)$	89.9
		$\mathrm{~F}_{4}-\mathrm{Mn}_{1}-\mathrm{F}_{6} 86.8$	$\mathrm{~F}_{4}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$178.0(1)$	176.1	
		$\mathrm{~F}_{5}-\mathrm{Mn}_{1}-\mathrm{F}_{6} 86.8$	$\mathrm{~F}_{5}-\mathrm{Mn}_{1}-\mathrm{F}_{6}$	$89.5(1)$	86.4	

${ }^{a}$ For the atom labeling scheme, see Figure 7.6a. ${ }^{b}$ B3LYP/def2-SVP (Mn, F)/aug-cc-$\mathrm{pVTZ}(-\mathrm{PP})(\mathrm{Xe})$. For the atom labeling scheme, see Figure 7.6b. ${ }^{c}$ For the atom labeling scheme, see Figure 7.7a. ${ }^{d}$ B3LYP/def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe). For the atom labeling scheme, see Figure 7.7b.
ธ

Figure 7.6. (a) A portion of the crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ showing the contacts around the $\left[\mathrm{MnF}_{6}\right]^{-}$anion. Thermal ellipsoids are shown at the 50% probability level. The symmetry-related $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation is omitted
for clarity. (b) A portion of the calculated structure of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ showing the contacts around the MnF_{6} octahedron. The remaining $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations are omitted for clarity (B3LYP/def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe)).
ㅇ

a

b

Figure 7.7. (a) View of a dimeric ring in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$; thermal ellipsoids are drawn at the 50% probability level. (b) A portion of the calculated structure of $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ showing the contacts around the $\left[\mathrm{MnF}_{6}\right]^{-}$anion. The remaining $\left[\mathrm{XeF}_{5}\right]^{+}$cations are omitted for clarity (B3LYP/def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe)).

Ph.D. Thesis - Maria V. Ivanova

The crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ consists of rings composed of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions and the $\left[\mathrm{XeF}_{5}\right]^{+}$cations, which run along the b-axis (E13, Appendix E). Each $\left[\mathrm{XeF}_{5}\right]^{+}$ cation interacts with two $\left[\mathrm{MnF}_{6}\right]^{-}$anions, with one $\left[\mathrm{MnF}_{6}\right]^{-}$anion interacting by means of two fluorine bridge-bonds ($\mathrm{Xe}_{1}--\mathrm{F}, 2.521$ (2) and 2.558(2) $\AA ; \mathrm{Xe}_{2}--\mathrm{F}, 2.579$ (2) and 2.572(2) \AA) and the other interacting with another anion by means of one fluorine bridge-bond ($\mathrm{Xe}_{1}---$ F, 2.483(2) $\AA ; \mathrm{Xe}_{2}--\mathrm{F}, 2.470(2) \AA$). This results in rings (Figures 7.7 and E13) which are linked to each other in the $\mathrm{Mn}_{1}, \mathrm{Xe}_{1}, \mathrm{Mn}_{1 \mathrm{~A}}, \mathrm{Xe}_{2 \mathrm{~A}}$-plane. All the contacts are significantly shorter than the sum of the $\mathrm{Xe} \cdots \mathrm{F}$ van der Waals radii $(3.63 \AA),{ }^{241}$ implying that the $\left[\mathrm{XeF}_{5}\right]^{+}$ cations are extensively associated with the $\left[\mathrm{MnF}_{6}\right]^{-}$anions. This type of coordination is analogous to that observed in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{PbF}_{6}\right] .{ }^{334}$ There are also several interionic $\mathrm{F} \cdots \mathrm{F}$ contacts ($\mathrm{F}_{\mathrm{Mn}} \cdots \mathrm{F}_{\mathrm{Mn}}, 2.752(3) \AA ; \mathrm{F}_{\mathrm{Xe}} \cdots \mathrm{F}_{\mathrm{Mn}}, 2.486(3) \AA$), which are shorter than the sum of the van der Waals radii $(2.94 \AA) .{ }^{241}$

The $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ is essentially octahedral (Mn-F, 1.806(2) and $1.807(2) \AA$ A ; $\angle(\mathrm{F}-\mathrm{Mn}-\mathrm{F}), 87.5(1)^{\left.-92.4(1)^{\circ}\right)}$ (Figure 7.6a); whereas in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion is a distorted octahedron (Figure 7.7a) with the $\mathrm{Mn}-\mathrm{F}$ bond lengths varying from $1.798(2)$ to $1.817(2) \AA$, and the $\mathrm{F}-\mathrm{Mn}-\mathrm{F}$ bond angles from $85.4(1)^{\circ}$ to 91.7(1) ${ }^{\mathrm{o}}$. These $\mathrm{Mn}-\mathrm{F}$ bond lengths are comparable to those of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ (Table E2, Appendix E), $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]\left(1.792\right.$ and $1.785 \AA$), ${ }^{160}$ and $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{MnF}_{6}\right](1.801(1) \AA)^{149} .{ }^{149}$

7.2.5. Raman Spectroscopy

The low-temperature Raman spectra were recorded on $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (Figure 7.8), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (Figure 7.9), and $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ (Figure E14). The observed and

Figure 7.8. Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP line $\left({ }^{*}\right)$, instrumental artifact (\dagger), and overlap of a $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ line with an FEP line (\ddagger).

Ph.D. Thesis - Maria V. Ivanova

Figure 7.9. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP line $\left(^{*}\right)$, a $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}$ line (\ddagger), and an instrumental artifact (\dagger).
calculated frequencies and mode descriptions for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ are provided in Tables 7.5, E3, and E4 (Appendix E). Spectral assignments for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ were made by comparison with the calculated frequencies and Raman intensities for the hypothetical gas-phase cations, $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)\left(\right.$ Table 7.5 and E3) and $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ $\left(C_{1}\right)$ (Table 7.5 and E4), and for $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$ (Table E5), which were optimized at the B3LYP/def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe) levels of theory. The frequencies observed for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ agree with the previously published infrared frequencies. ${ }^{169}$ The trace of a room-temperature Raman spectrum was reported for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right] .{ }^{171}$ Although the frequencies were not listed, bands associated with the $\left[\mathrm{XeF}_{5}\right]^{+}$cation and $\left[\mathrm{MnF}_{6}\right]^{-}$anion were assigned by comparison with those observed in the Raman spectrum of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right] .{ }^{171}$ The frequencies associated with $\left[\mathrm{XeF}_{5}\right]^{+}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$agree with those in $\left[\mathrm{NH}_{4}\right]\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MnF}_{6}\right],{ }^{171}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{PbF}_{6}\right],{ }^{341}$ $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{SnF}_{6}\right],{ }^{341} \quad\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{315} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{315}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right] .{ }^{315}$ The Raman frequencies of the latter ion pairs were fully assigned with the aid of quantum-chemical calculations in $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{315}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{315}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right] .{ }^{315}$

7.2.5.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (4) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (3)

Although the present assignments well agree with those reported earlier, they provide a more detailed description of the vibrational modes of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, which

Table 7.5. Experimental Raman Frequencies and Intensities for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (4) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (3) and Calculated Vibrational Frequencies, Intensities and Assignments for $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)(7)$ and $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ (6)

(4)	(7)	(3)	(6)	
exptl ${ }^{\text {a,b }}$	$\mathrm{calcd}^{\text {a,c }}$	exptl ${ }^{\text {a,b }}$	calcd $^{\text {a,c }}$	assgnts ${ }^{\text {d }}$
640(12)	621(19)[124]	619(5)		$\left[v\left(\mathrm{MnF}_{\mathrm{b}}\right)-v\left(\mathrm{XeF}_{\mathrm{b}}\right)\right]$
623(7)	617(35)[49] $595(31)[74]$	611(9)	$598(<1)[84]$ $594(4)[106]$	
602(78)	591(25)[54]	597(13)	586(1)[57]	
597(64)	589(1)[46]	589(40)	$586(1)[57]$	
583(9)	573(8)[228]	$\begin{aligned} & 582(25) \\ & 581 \mathrm{sh} \end{aligned}$	$\begin{aligned} & 579(12)[4] \\ & 575(1)[171] \end{aligned}$	
			572(16)[23]	
563(33)	544(47)[153]	560(2)	566(23)[55]	
			563(22)[56]	
			561(4)[57]	
497 sh	470(20)[99]	433(2)	$471(2)[<1]$$462(3)[1]$	
493(16)				
430(3)	447(27)[297]			
402(2)				
394(2)				
358 sh		373(3)		$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
352(5)	352(5)[80]		$360(6)[80]$ $356(20)[15]$	
346 sh				
320(5)	315(1)[7]	341(1)	337(4)[60]	
			335(1)[28]	
			332(4)[110]	
			$331(<1)[126$	
			329(3)[36]	
			319(1)[131]	
			318(3)[153]	
312(6)	306(2)[96]	295(1)	302(2)[62] ${ }^{3}$	
	300(12)[1]			
	298(<1)[118]			
298 sh$279(<1)$	295(3)[63]			
	286(6)[9]			
	281(20)[38]			
	278(2)[7]			

Table 7.5. (continued...)

236 sh	239(1)[2]	238(<1)	$244(3)[<1]$ $240(1)[4]$	
226(1)	215(<1)[5]		234(1)[<1]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
	213(<1)[2]			
	200(<1)[2]	214(1)	$224(<1)[22]$ $222(<1)[1]$	
200(1)	197(<1)[4]			$\rho_{\text {t }}\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
137(1)	135(2)[42]	143(1)	138(<1)[17]	$\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\left(\AA^{4} \mathrm{u}^{-1}\right.$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/def2-SVP(Mn, F)/aug-cc-pVTZ(-PP) (Xe) method was used. ${ }^{d}$ The abbreviations denote stretch (v), bend (δ), twist $\left(\rho_{t}\right)$, rock (ρ_{r}), and bridging (b). Complete assignment of the vibrational modes is provided in Tables E5 for (3) and E6 for (4).

Ph.D. Thesis - Maria V. Ivanova

takes into account vibrational coupling between the $v(\mathrm{MnF})$ and $v(\mathrm{XeF})$ stretching modes and $\delta(\mathrm{FMnF})$ and $\delta(\mathrm{FXeF})$ deformational modes (Tables 7.5 and E 3$)$.

The highest frequency bands in both $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ are assigned to the $v(\mathrm{XeF})$ stretching modes ((4), 597, $602,640-681 \mathrm{~cm}^{-1} ;(3), 560-666$ cm^{-1}), which are predicted to appear at $587-612,659-678 \mathrm{~cm}^{-1}$ and $545,546,570,571$, $581,582,589,590,629-668 \mathrm{~cm}^{-1}$, respectively. The band at 597 (4) and $581-619 \mathrm{~cm}^{-1}$ (3) overlap with $v(\mathrm{MnF})$. The $v(\mathrm{XeF})$ stretching modes in (4) and (3) are comparable to those of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{NiF}_{6}\right]\left(582-657 \mathrm{~cm}^{-1}\right),{ }^{342}\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right](596,612,656-680$ $\left.\mathrm{cm}^{-1}\right),{ }^{315}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right] \quad\left(599-654 \mathrm{~cm}^{-1}\right),{ }^{315}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{PbF}_{6}\right]\left(571-664 \mathrm{~cm}^{-1}\right),{ }^{341}$ $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{PdF}_{6}\right] \quad\left(583-668 \mathrm{~cm}^{-1}\right),{ }^{341} \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{SnF}_{6}\right] \quad\left(599-674 \mathrm{~cm}^{-1}\right),{ }^{341}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]\left(580,591,613-656 \mathrm{~cm}^{-1}\right),{ }^{315}$ with the most intense band occurring at $656 \mathrm{~cm}^{-1}$ (4) and $646 \mathrm{~cm}^{-1}$ (3). The highest intensity bands are comparable to those of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{NiF}_{6}\right]\left(650 \mathrm{~cm}^{-1}\right),{ }^{342}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{PbF}_{6}\right]\left(650 \mathrm{~cm}^{-1}\right)^{341} \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{PdF}_{6}\right] \quad(651$ $\left.\mathrm{cm}^{-1}\right)$, ${ }^{341}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{SnF}_{6}\right]\left(657 \mathrm{~cm}^{-1}\right) .{ }^{341}$ The $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ deformation modes appear below $346 \mathrm{~cm}^{-1}$ (4) and $378 \mathrm{~cm}^{-1}$ (3).

The $v\left(\mathrm{MnF}_{\mathrm{b}}\right)$ stretching modes in (3) (exptl, 433-619 cm^{-1}; calcd, $462-598 \mathrm{~cm}^{-1}$) and (4) (exptl, 394-640 cm^{-1}; calcd, $447-621 \mathrm{~cm}^{-1}$) are strongly coupled with the $v\left(\mathrm{XeF}_{\mathrm{b}}\right)$ stretching modes and are comparable in both salts. The $\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$ deformation modes are also strongly coupled with the $\delta(\mathrm{FXeF})$ deformational modes and appear below $373 \mathrm{~cm}^{-1}$ (calcd, $360 \mathrm{~cm}^{-1}$) in (4) and $358 \mathrm{~cm}^{-1}$ (calcd, $356 \mathrm{~cm}^{-1}$) in (3).

Ph.D. Thesis - Maria V. Ivanova

7.2.6. Computational Results

Quantum-chemical calculations for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right),\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ $\left(C_{1}\right)$, and $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$, were carried out using the B3LYP/def2-SVP $(\mathrm{Mn}, \mathrm{F}) /$ aug-cc-$\mathrm{pVTZ}(-\mathrm{PP})$ (Xe) level of theory. The optimization of $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$ resulted in a stationary point with all frequencies real (Table E5), whereas the optimizations of both $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ and $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ (Tables E3 and E4) each gave one negative frequency. Attempts to follow the negative frequencies resulted in convergence failures. Quantum-chemical calculations were also carried out for the $\left[\mathrm{MnF}_{6}\right]^{-}\left(D_{4 \mathrm{~h}}\right)$, hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{2 \mathrm{~h}}\right)$, and $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$ anions using the B3LYP/aug-cc-pVTZ and PBE1PBE/aug-cc-pVTZ levels of theory. The optimizations of $\left[\mathrm{MnF}_{6}\right]^{-}\left(D_{4 \mathrm{~h}}\right)$ (Table 7.3) and $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$ (Table 7.3) resulted in stationary points with all frequencies real, whereas the optimization of $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{2 \mathrm{~h}}\right)$ resulted in one (B3LYP) and two (PBE1PBE) negative frequencies, respectively.
$\left[\mathrm{Mn}_{3} \mathbf{F}_{\mathbf{1 6}}\right]^{-}\left(\boldsymbol{C}_{\mathbf{2 h}}\right)$ and $\left[\mathrm{MnF}_{6}\right]^{-}\left(\boldsymbol{D}_{\mathbf{4 h}}\right)$. The starting geometry used for the hypothetical $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}\left(C_{2 \mathrm{~h}}\right)$ anion was part of the MnF_{5} chain (see X-ray Crystallography), which reproduced the geometry of the central MnF_{6}-moiety.

The calculated terminal $\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}$ and bridging $\mathrm{Mn}-\mathrm{F}_{\mu}$ bond lengths in $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$ $\left(\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}, 1.730\right.$ [1.715] $\AA ; \mathrm{Mn}-\mathrm{F}_{\mu}, 1.853$ [1.838] \AA) are significantly shorter than the corresponding experimental $\mathrm{Mn}-\mathrm{F}$ bonds $\left(\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}, 1.950(2)\right.$ and $1.912(2) \AA$ ($\mathrm{Mn}-\mathrm{F}_{\mu}$, 1.9646 (5) \AA), whereas the calculated $\mathrm{F}_{\mathrm{t}}-\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}, \mathrm{F}_{\mathrm{t}}-\mathrm{Mn}-\mathrm{F}_{\mu}$, and $\mathrm{F}_{\mu}-\mathrm{Mn}-\mathrm{F}_{\mu}$ bond angles well reproduce the corresponding experimental bond angles (Table 7.2). The $\mathrm{Mn}-\mathrm{F}_{\mu}-\mathrm{Mn}$ bond angle is bent $\left(144.7^{\circ}[143.1]^{\circ}\right]$ as observed experimentally $\left(155.09(13)^{\circ}\right)$. The

Ph.D. Thesis - Maria V. Ivanova

calculated $\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}$ bond lengths in the $\left[\mathrm{Mn}_{3} \mathrm{~F}_{16}\right]^{-}$anion are shorter than those calculated for the $\left[\mathrm{MnF}_{6}\right]^{-}$anion (1.789 [1.774] and $1.759[1.744] \AA$), consistent with the increased polarity of the $\mathrm{Mn}-\mathrm{F}_{\mathrm{t}}$ bonds in the $\left[\mathrm{MnF}_{6}\right]^{-}$anion.

Although the $\left[\mathrm{MnF}_{6}\right]^{-}$anion is predicted to have two long ($2 \mathrm{x} 1.789 \AA$) and four short $\left(4 \times 1.759 \AA\right.$) bonds in its $D_{4 \mathrm{~h}}$ ground state due to Jahn-Teller distortion of the d^{2} sixcoordinate manganese fluoride, the effect is not very pronounced because the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals are not pointing directly at the ligands. The calculated $\mathrm{Mn}-\mathrm{F}$ bond lengths are slightly longer than the experimental Mn-F bond lengths ($6 \mathrm{x} 1.729(3) \AA$), whereas the $\mathrm{F}-\mathrm{Mn}-\mathrm{F}$ bond angles well reproduce the experimental values (Table 7.3).

Abstract

$\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(\boldsymbol{C}_{1}\right),\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(\boldsymbol{C}_{1}\right)$, and $\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$. The starting geometries used for the hypothetical $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ and

 $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ cations were the crystallographic geometries of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (see X-ray Crystallography) which reproduced the coordination environments of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions in both salts. The starting geometry of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ $\left(O_{\mathrm{h}}\right)$ anion, which was calculated in order to assess the effect of ion-pairing (Table E2), was the crystallographic geometry of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion in $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$.The geometry of the isolated $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion is a regular octahedron (Mn-F, 6x $1.8266 \AA$); $\angle(\mathrm{F}-\mathrm{Mn}-\mathrm{F}), 90^{\circ}$), where the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals of Mn are equally occupied (Table E2). The geometry of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}\left(C_{1}\right)$ and $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$ (Table 7.4) are slightly distorted from the ideal octahedral geometry of the isolated $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion (Table E2) which is caused by ion-pairing. The calculated average $\mathrm{Mn}-\mathrm{F}$ bond lengths in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}(1.824 \AA)$ and $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}(1.820 \AA)$ are

Ph.D. Thesis - Maria V. Ivanova

longer than the corresponding average experimental $\mathrm{Mn}-\mathrm{F}$ bond lengths (1.806(2) and $1.805(2) \AA$, respectively). The analogous trend was observed for the calculated Xe---Mn contact distances $\left(\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}, 2.779 \AA ;\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}, 2.555 \AA\right.$), which are slightly longer than the corresponding experimental contact distances (2.667(2) and 2.534(2) \AA, respectively). The calculated $\mathrm{F}-\mathrm{Mn}-\mathrm{F}$ bond angles are in a very good agreement with the experimental bond angles (Table 7.4).

7.3 Conclusion

The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} resulted in the syntheses and isolation in the solid state of the first manganese(V) fluorides, MnF_{5} and $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$. Although the refinement of the crystal structure of MnF_{5} is not yet finalized due to unresolved twinning issues, it is clear that MnF_{5} is polymeric and that the crystal structure of MnF_{5} consists of MnF_{6} octahedra, which are linked to each other through trans-bridging fluorine atoms. The crystal structure of $\left[\mathrm{MnF}_{6}\right]^{-}$is imposed by the symmetry of the crystallographic space group. This results in an octahedral geometry and does not reflect the expected JahnTeller distortion which would result in $D_{4 \mathrm{~h}}$ symmetry for the anion.

The ${ }^{19} \mathrm{~F}$ NMR spectrum was acquired for the solution that was used for crystal growth of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$. The ${ }^{19} \mathrm{~F}$ resonance signal was significantly shifted to higher frequency when compared to that of $\mathrm{MnO}_{3} \mathrm{~F}$ which was studied by ${ }^{19} \mathrm{~F}$ and ${ }^{55} \mathrm{Mn}$ NMR spectroscopy. The ${ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}\right)$ coupling was also determined for the first time.

The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with XeF_{6} resulted in the isolation of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salts and their characterization by low-temperature single-crystal X -
ray diffraction. In both structures, the pseudo-octahedral $\left[\mathrm{MnF}_{6}\right]^{2-}$ anions strongly interact with their respective cations, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and $\left[\mathrm{XeF}_{5}\right]^{+}$. The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ salt was also characterized by low-temperature Raman spectroscopy, whereas the assignment of the known Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ has been improved in the present work. The vibrational assignments of both Raman spectra were aided by quantum-chemical calculations.

CHAPTER 8

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

8.1. Conclusions

The fundamental chemistry of $\mathrm{ReO}_{3} \mathrm{~F}$ has been significantly extended with the development of its high-yield high-purity synthesis. The availability of $\mathrm{ReO}_{3} \mathrm{~F}$ in bulk amounts has enabled further investigation of its Lewis acid and fluoride ion donoracceptor properties. The Lewis acid-base complex, $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$, the only known example of an HF complex with rhenium, was characterized by Raman spectroscopy and single-crystal X-ray diffraction. The study of the fluoride-ion acceptor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ has led to the isolation of the novel anions, $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$, fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$, and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$and their characterization in the solid state by Raman spectroscopy and single-crystal X-ray diffraction. The $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion was also studied in $\mathrm{CH}_{3} \mathrm{CN}$ solvent by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ cage anion provides the only example of a rhenium oxide fluoride species containing a triply coordinated oxygen atom. The facial arrangement of oxygen ligand atoms in fac$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion in the $\mathrm{K}^{+}\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$salt contrasts with the meridional geometry reported for the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion based on the infrared and Raman spectroscopic findings. The $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anion represents an example of an open-chain structure, where the $\mathrm{ReO}_{3} \mathrm{~F}$ units are fluorine bridged to each other.

The study of the fluoride ion-donor properties of $\mathrm{ReO}_{3} \mathrm{~F}$ has led to the isolation of the new compounds, $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, and their
characterization in the solid state by Raman spectroscopy. The $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ molecule provides the first example of AsF_{5} molecule coordinated to a transition metal through an oxygen atom. Attempts to synthesize the $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$, $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right],\left[\mathrm{ReO}_{3}\right]\left[\mathrm{BF}_{4}\right]$, and $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ in aHF solvent failed due to HF solvolysis of $\mathrm{ReO}_{3} \mathrm{~F}$ and formation of known $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ and $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{HF}_{2}\right]$. Both, $\mu-$ $\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$ and $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$, reacted with $\mathrm{CH}_{3} \mathrm{CN}$ forming $\left[\mathrm{ReO}_{3} \cdot 3 \mathrm{CH}_{3} \mathrm{CN}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$, which were characterized by solid-state Raman spectroscopy. The compounds are not soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{ClF}$, which prevented their structural characterization by single-crystal X-ray diffraction. An attempt to grow crystals of $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ by sublimation resulted in the formation of the known $\left[\mathrm{ReO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{SbF}_{6}\right]$.

The development of a high-yield, high-purity synthesis of $\mathrm{ReO}_{3} \mathrm{~F}$ has extended the number of known $\mathrm{Re}(\mathrm{VII})$ oxide fluorides. Reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with $\mathrm{ReO}_{2} \mathrm{~F}_{3}$ in $\mathrm{SO}_{2} \mathrm{ClF}$ yielded the new neutral rhenium(VII) oxide fluoride, $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$, which is also a rare example of an O-bridged rhenium oxide fluoride. It was characterized by single-crystal X-ray diffraction and solid-state Raman spectroscopy. The vibrational assignments of the $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ Raman spectrum were confirmed by ${ }^{18} \mathrm{O}$-enrichment studies.

Rhenium trioxide fluoride has been shown to act as the oxygen source and as the progenitor of the counter ion, $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$, in the synthesis of [XeOXeOXe] $[\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, where the $[\mathrm{XeOXeOXe}]^{2+}$ cation provides the first example of an isolated xenon(II) oxide and a noble-gas oxide cation. The synthesis of $[\mathrm{XeOXeOXe}][\mu-$
$\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ was accomplished by the low-temperature reaction of $\mathrm{ReO}_{3} \mathrm{~F}$ with XeF_{2} in aHF. The reaction pathway involving HOXeF as an intermediate in the oxygen/fluorine metathesis steps was proposed. The $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ salt was unambiguously characterized by low-temperature single-crystal X-ray diffraction and solid-state Raman spectroscopy with aid of quantum-chemical calculations and ${ }^{18} \mathrm{O}$ enrichment studies. The nature of the $\mathrm{Xe}-\mathrm{O}$ and $\mathrm{Xe}-\mathrm{F}$ bonds in free $[\mathrm{XeOXeOXe}]^{2+}$, the hypothetical neutral oxide fluoride, FXeOXeOXeF , and the ion pair, $[\mathrm{XeOXeOXe}][\mu-$ $\left.\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$, were studied with the aid of NBO, QTAIM, ELF, and MEPS analyses.

The reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with noble-gas fluorides, KrF_{2} and XeF_{6}, have been studied with the aim to synthesize the missing $\mathrm{Mn}(\mathrm{VII})$ oxide fluorides, MnOF_{5} and $\mathrm{MnO}_{2} \mathrm{~F}_{3}$. Both reactions, however, resulted in the oxidative elimination of O ligands and the formation of manganese(V), $\quad \mathrm{MnF}_{5}$ and $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$, and manganese(IV), [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, fluorides, respectively. An HF solution of $\mathrm{MnO}_{3} \mathrm{~F}$ was characterized by ${ }^{19} \mathrm{~F},{ }^{55} \mathrm{Mn}$, and ${ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}$ COSY NMR spectroscopies and the first ${ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{55} \mathrm{Mn}\right)$ coupling constant was determined. A preliminary characterization of $\left[\mathrm{MnF}_{6}\right]^{-}$by ${ }^{19} \mathrm{~F}$ NMR spectroscopy is also provided. The $\mathrm{K}\left[\mathrm{MnF}_{6}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ were structurally characterized for the first time by single-crystal X-ray diffraction. The crystal structure of MnF_{5} is polymeric, however, the geometrical parameters could not be finalized due to unresolved twinning issues. Additionally, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ has been characterized by Raman spectroscopy and the vibrational assignment of the Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ was improved in the present work.

8.2. Future Work

8.2.1. Development of the Fluoride Ion Donor-Acceptor Properties of $\mathrm{TcO}_{3} \mathrm{~F}$

The neutral $\mathrm{TcO}_{3} \mathrm{~F}, \mathrm{TcO}_{2} \mathrm{~F}_{3}, \mathrm{TcOF}_{5}$ and technetium anions and cations derived from $\mathrm{TcO}_{2} \mathrm{~F}_{3}$ and TcOF_{5} are known and well characterized. The only isolated derivative of $\mathrm{TcO}_{3} \mathrm{~F}$ that has been well characterized by single-crystal X-ray diffraction is the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\right.\right.$ F) $]^{-}$anion. ${ }^{23}$ the latter has been synthesized by reaction of $\mathrm{K} /\left[\mathrm{NH}_{4}\right]\left[\mathrm{TcO}_{4}\right]$ with aHF. The $\left[\mathrm{TcO}_{3}\right]^{+}$cation was shown to exist by ${ }^{99} \mathrm{Tc}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy. However, a subsequent study of this reaction revealed that $\mathrm{TcO}_{3} \mathrm{~F}$ undergoes solvolysis in $\mathrm{PnF}_{5} /$ aHF $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ media to form $\left[\mathrm{TcO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ salts. ${ }^{23}$

The knowledge of the fundamental chemistry of $\mathrm{ReO}_{3} \mathrm{~F}$ can be applied to develop the chemistry of its radioactive analogue, $\mathrm{TcO}_{3} \mathrm{~F}$. A detailed knowledge of $\mathrm{TcO}_{3} \mathrm{~F}$ reactivity is vital to improve methods for the effective removal of ${ }^{99} \mathrm{TcO}_{3} \mathrm{~F}$ from reenriched UF_{6} prior to refabrication into nuclear fuel elements composed of UO_{2}.

The fluoride ion-acceptor properties of $\mathrm{TcO}_{3} \mathrm{~F}$ can be studied by its reactions with fluoride ion donors, CsF or [NO]F, (eq 8.1) which have been used to synthesize the fac-

$$
\begin{equation*}
n \mathrm{XF}+\mathrm{TcO}_{3} \mathrm{~F} \longrightarrow \mathrm{X}_{n}\left[\mathrm{TcO}_{3} \mathrm{~F}_{n+1}\right](\mathrm{X}=\mathrm{Cs},[\mathrm{NO}]) \quad(n=1,2) \tag{8.1}
\end{equation*}
$$

$\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ and $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$anions. Facial arrangements of oxygen ligands are expected for both anions, as observed for their rhenium analogues, because in the d^{0} trioxo transition metal complexes, a cis arrangement of oxygen atoms minimizes the competition of the oxo ligands for the empty $\mathrm{d}_{\mathrm{t}_{2 \mathrm{~g}}}$ orbitals of the metal. Structural characterization of the $\left[\mathrm{TcO}_{3} \mathrm{~F}_{2}\right]^{-}$anion is of particular interest because $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$(see Chapter 4) and $\mathrm{OsO}_{3} \mathrm{~F}_{2}{ }^{247}$
are polymeric, fluorine-bridged structures, whereas the polymeric $\left[\mathrm{MoO}_{3} \mathrm{~F}_{2}\right]^{2-}{ }^{343}$ and $\left[\mathrm{WO}_{3} \mathrm{~F}_{2}\right]^{2-344}$ anions exhibit asymmetric oxygen-bridges.

In view of the solvolysis of $\mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{TcO}_{3} \mathrm{~F}$ in aHF and in the presence of strong Lewis acids, AsF_{5} and SbF_{5}, the use of aHF as a reaction solvent should be avoided in the synthesis of the $\left[\mathrm{TcO}_{3}\right]^{+}$cation. Therefore, it should be possible to synthesize the $\left[\mathrm{TcO}_{3}\right]^{+}$ cation by analogy with the synthesis of the $\left[\mathrm{ReO}_{3}\right]^{+}$cation (eq. 8.2). If soluble in $\mathrm{SO}_{2} \mathrm{ClF}$

$$
\begin{equation*}
\mathrm{TcO}_{3} \mathrm{~F}+3 \mathrm{SbF}_{5} \xrightarrow{\mathrm{SO}_{2} \mathrm{ClF}} \quad\left[\mathrm{TcO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right] \tag{8.2}
\end{equation*}
$$

or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the single-crystal structure determination of the $\left[\mathrm{TcO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ salt should be possible. Dissolution of $\left[\mathrm{TcO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ in $\mathrm{CH}_{3} \mathrm{CN}$ is expected to yield the pseudo-octahedral compounds, $\left[\mathrm{O}_{3} \mathrm{Tc}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (eq 8.3). The complex $\left[\mathrm{O}_{3} \mathrm{Tc}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$cation can be

$$
\begin{equation*}
\left[\mathrm{TcO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]+3 \mathrm{CH}_{3} \mathrm{CN} \longrightarrow\left[\mathrm{O}_{3} \mathrm{Tc}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]+2 \mathrm{SbF}_{5} \cdot \mathrm{CH}_{3} \mathrm{CN} \tag{8.4}
\end{equation*}
$$

studied by ${ }^{99} \mathrm{Tc}$ NMR spectroscopy and ${ }^{1} J\left({ }^{99} \mathrm{Tc}-{ }^{17} \mathrm{O}\right)$ coupling should be observed.

8.2.2. Further Development of the $\mathrm{MnO}_{3} \mathrm{~F}$ Chemistry

The fundamental chemistry of $\mathrm{MnO}_{3} \mathrm{~F}$ is least studied among other group VII d^{0} transition metal oxide fluorides. In the present work, attempts to study its fluoride ion acceptor properties by reactions of $\mathrm{MnO}_{3} \mathrm{~F}$ with $\mathrm{AF}\left(\mathrm{K}, \mathrm{Cs}\right.$) in aHF failed because $\mathrm{MnO}_{3} \mathrm{~F}$ was shown to be a weaker fluoro-acid than HF and, as a result, only $\mathrm{A}\left[\mathrm{HF}_{2}\right]$ formed. Manganese trioxide fluoride was reported not to react with AsF_{5} and SbF_{5}; however, the reaction conditions were not described. ${ }^{43}$ In order to avoid competition of HF solvent in reactions with fluoride ion donors, it may be possible to synthesize $\mathrm{MnO}_{3} \mathrm{~F}$ by reaction of $\mathrm{K}\left[\mathrm{MnO}_{4}\right]$ with XeF_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (eq 8.6). Moreover, XeF_{2} has recently been shown by ${ }^{19} \mathrm{~F}$

$$
\begin{equation*}
\mathrm{K}\left[\mathrm{MnO}_{4}\right]+\mathrm{XeF}_{2} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{MnO}_{3} \mathrm{~F}+\mathrm{Xe}+\mathrm{KF}+1 / 2 \mathrm{O}_{2} \tag{8.6}
\end{equation*}
$$

NMR studies to be stable in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature in PTFE-FEP for $\geq 168 \mathrm{~h}^{345}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as a solvent in oxidation of organic compounds by $\mathrm{K}\left[\mathrm{MnO}_{4}\right] .{ }^{346}$ Manganese trioxide fluoride can subsequently react with CsF or $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ at temperatures below $0{ }^{\circ} \mathrm{C}$ (eq 8.7). The reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with Lewis acids in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ should be also attempted (8.8).

$$
\begin{align*}
& n \mathrm{XF}+\mathrm{MnO}_{3} \mathrm{~F} \longrightarrow \mathrm{X}_{n}\left[\mathrm{MnO}_{3} \mathrm{~F}_{n+1}\right]\left(\mathrm{X}=\mathrm{Cs},\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}\right]\right)(n=1,2) \tag{8.7}\\
& x \mathrm{PnF}_{5}+\mathrm{MnO}_{3} \mathrm{~F} \longrightarrow\left[\mathrm{MnO}_{3}\right]\left[\mathrm{Pn}_{x} \mathrm{~F}_{5 \mathrm{x}+1}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb} ; \mathrm{x}=1-3) \tag{8.8}
\end{align*}
$$

The $\left[\mathrm{MnO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion is expected to possess $C_{3 \mathrm{v}}$ symmetry in the solid state as observed for its third row transition metal analogue, $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$. If synthesized, $\left[\mathrm{MnO}_{3} \mathrm{~F}_{2}\right]^{-}$anion may differ structurally from oligomeric $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$. By analogy with the neutral compounds, where $\mathrm{ReO}_{3} \mathrm{~F}$ is a polymer, $\mathrm{TcO}_{3} \mathrm{~F}$ is a dimer, and $\mathrm{MnO}_{3} \mathrm{~F}$ is a monomer, the $\left[\mathrm{MnO}_{3} \mathrm{~F}_{2}\right]^{-}$anion may be a pentacoordinated monomer.

8.2.3. Improved Synthesis of MnF_{5} and the Development of Its Fundamental

Chemistry

Although the solid isolated from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} has been tentatively assigned to MnF_{5} based on its preliminary single-crystal X-ray structure, the solution of the latter structure suffers from unresolved twinning issues requiring further refinement. Moreover, attempts to regrow crystals of MnF_{5} from aHF failed. Therefore, a high-yield and high-purity synthesis of MnF_{5} will allow its unambiguous characterization by Raman and ${ }^{19}$ F NMR spectroscopies, and magnetic measurements. In the course of the
current research work, it has been shown that MnF_{5} reacts with $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in situ (Chapter 7). The resulting salt, $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$, has only been characterized by single-crystal X-ray diffraction. Therefore, the availability of MnF_{5} in larger amounts should allow full characterization of the $\left[\mathrm{MnF}_{6}\right]^{-}$anion by magnetic measurements and Raman spectroscopy. Although a resonance observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum recorded on an HF solution of the solid containing $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ was assigned to the $\left[\mathrm{MnF}_{6}\right]^{-}$anion, a more in-depth study is required to confirm the latter assignment. In particular, the acquisition of the ${ }^{55} \mathrm{Mn}$ spectrum would confirm the assignment from the septet that is expected to be observed in the ${ }^{55} \mathrm{Mn}$ NMR spectrum.

8.2.4. Synthesis of FXeOXeOXeF and the [FXeOXeOXe] ${ }^{+}$Cation

The synthesis of the neutral FXeOXeOXeF molecule may be achieved by the lowtemperature reaction of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ with a fluoride-ion source, CsF or $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$ (eq 8.9) in aHF. The compound, FXeOXeOXeF , will provide the first

$$
\begin{align*}
& {[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}+2 \mathrm{CsF} /\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F} } \longrightarrow \\
& \mathrm{FXeOXeOXeF}+2 \mathrm{Cs} /\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \tag{8.9}
\end{align*}
$$

example of a neutral Xe (II) oxide fluoride. The characterization of FXeOXeOXeF by single-crystal X-ray diffraction will provide the first determination of a $\mathrm{Xe}-\mathrm{O}$ bond length in a neutral $\mathrm{Xe}(\mathrm{II})$ oxide fluoride. The study of the $[\mathrm{XeOXeOXe}]^{2+}$ cation (Chapter 6) and FXeOXeOXeF compound by ${ }^{129} \mathrm{Xe},{ }^{19} \mathrm{~F}$, and ${ }^{17} \mathrm{O}$ NMR spectroscopy is of particular interest because it will allow the determination of a ${ }^{2} J\left({ }^{129} \mathrm{Xe}^{-129} \mathrm{Xe}\right)$ coupling.

Availability of high-purity FXeOXeOXeF in reasonable amounts may enable the synthesis of the $[\mathrm{FXeOXeOXe}]^{+}$cation by stoichiometric reaction of FXeOXeOXeF with $\mathrm{PnF}_{5}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$. The latter cation may be structurally characterized by single-crystal X-ray diffraction, ${ }^{129} \mathrm{Xe}$ and ${ }^{19} \mathrm{~F}$ NMR and Raman spectroscopies.

References

1. LeBlond, N.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1996, 2479-2480.
2. LeBlond, N.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4494-4509.
3. Aynlsey, E. E.; Peacock, R. D.; Robinson, P. L. J. Chem. Soc. 1950, 1622-1624.
4. Sunder, W. A.; Stevie F. A. J. Fluorine Chem., 1975, 6, 449-463.
5. Roesky, H. W. Efficient Preparations of Fluorine Compounds, Wiley: New York, 2013, pp 100-107.
6. Brisdon, A. K.; Holloway, J. H.; Hope, E. G.; Townson, P. J.; Levason, W.; Ogden, J. S. J. Chem. Soc. Dalton Trans. 1991, 3127-3132.
7. Holloway, J. H.; Selig, H.; Claasen, H. H. J. Chem. Phys. 1971, 54, 4305-4311.
8. Bartlett, N.; Jha, N. K. J. Chem. Soc. (A) 1968, 536-543.
9. Bartlett, N.; Beaton, S.; Reeves, L. W.; Wells, E. J. Can. J. Chem. 1964, 42, 253-2540.
10. Alekseichuk, I. S.; Ugarov, V. V.; Sokolov, V. B.; Rambidi, N. G. Zh. Strukt. Khim., 1981, 22, 795-796.
11. Shalabi, A. S.; Nour, E. M. E. Gazz. Chim. Ital. 1991, 121, 555-558.
12. Supel J. Ph.D. Dissertation, Free University of Berlin, Berlin, 2007.
13. Schrobilgen, G. J.; Holloway, J. H.; Russell, D. R. J. Chem. Soc. Dalton Trans. 1984, 1411-1415.
14. LeBlond, N. Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 1998.
15. Selig, H.; Karpas, Z. Izrael J. Chem. 1971, 9, 53-56.
16. Giese, S.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 461-463.
17. Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1993, 32, 145-151.
18. LeBlond, N.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 1245-1249.
19. Casteel, W. J., Jr.; Dixon, D. A.; LeBlond, N.; Lock, P. E.; Mercier, H. A. P.; Schrobilgen, G. J. Inorg. Chem. 1999, 38, 2340-2358.

Ph.D. Thesis - Maria V. Ivanova
20. Beattie, I. R.; Crocombe, R. A.; Ogden, S. J. Chem. Soc. Dalton. Trans. 1977, 1481-1489.
21. Supel, J.; Marx, R.; Seppelt, K. Z. Anorg. Allg. Chem. 2005, 631, 2979-2986.
22. LeBlond, N.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 2473-2487.
23. Supel, J.; Abram, U.; Hagenbach, A.; Seppelt, K. Inorg. Chem. 2007, 46, 5591-5595.
24. Peterson, S. W.; Willett, R. D.; Huston, J. L. J. Chem. Phys. 1973, 59, 453-459.
25. Casteel, W. J. Jr.; Dixon, D. A.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1998, 37, 340-353.
26. Franklin, K. J.; Lock, C. J. L.; Sayer, B. G.; Schrobilgen, G. J. J. Am. Chem. Soc. 1982, 104, 5303-5306.
27. Yagodin, G. A.; Oplavskii, E. G.; Rakov, E. G.; Dudin, A. S. Dokl. Akad. Nauk SSSR. 1980, 252(6), 1400-1402.
28. Peacock, R. D. J. Chem. Soc. 1955, 602-603.
29. Selig, H.; Malm, J. G. J. Inorg. Nucl. Chem. 1963, 25, 349-351.
30. Binenboym, J.; El-Gad, U.; Selig, H. Inorg. Chem. 1974, 13, 319-321.
31. Wiechert, K. Z. Anorg. Allg. Chem. 1950, 261, 310-323.
32. Engelbrecht, A.; Grosse, V. J. Am. Chem. Soc. 1954, 76, 2042-2045.
33. Ansley, E. E.; Hair, M. L. J. Chem. Soc. 1954, 76, 3747-3748.
34. Selig, H.; El-Gad, U. J. Inorg. Nucl. Chem. 1973, 35, 3517-3522.
35. Brisdon, A. K.; Holloway, J. H.; Hope, E. G. J. Fluorine Chem. 1998, 89, 35-37.
36. Kuhlmann, W.; Sawodny, W. J. Fluorine Chem. 1977, 9, 337-340.
37. Gerlach, U.; Ringel, C. Z. Chem. 1977, 17, 307-309.
38. Lis T. Acta Crystallograph. 1983, C39, 961-962.
39. Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4244-4255.
40. (a) Herrmann, W. A.; Voss, E.; Flöel, M. J. Organomet. Chem. 1985, 297, C5-C7;
(b) Herrmann, W. A.; Flöel, M.; Kulpe, J.; Felixberger, J. K.; Herdtweck, E. J. Organomet. Chem. 1988, 355, 297-313.
41. (a) Wieghardt, K.; Pomp, C.; Nuber, B.; Weiss, J. Inorg. Chem. 1986, 25, 1659-1661; (b) Herrmann, W. A.; Roesky, P. W.; Kühn, F. E.; Scherer, W.; Kleine, M. Angew. Chem. Int. Ed. Engl. 1993, 32, 1714-1716; (c) Herrmann, W. A.; Roesky, P. W.; Kühn, F. E.; Elison, M.; Artus, G.; Scherer, W.; Romão, C. C.; Lopes, A.; Basset, J.-M. Inorg. Chem. 1995, 34, 4701-4707.
42. Küppers, H.-J.; Nuber, B.; Weiss, J.; Cooper, S. R. J. Chem. Soc., Chem, Commun. 1990, 979-980.
43. Supel, J.; Hagenbach, A.; Abram, U.; Seppelt, K. Z. Anorg. Allg. Chem. 2008, 634, 646-648.
44. Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215-221.
45. Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068-1073.
46. Huppmann, P.; Labischinski, H.; Lentz, D.; Pritzkow, H.; Seppelt, K. Z. Anorg. Allg. Chem. 1982, 487, 7-25.
47. Casteel, W. J., Jr.; MacLeod, D. M.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 7279-7288.
48. Turowsky, L.; Seppelt, K. Z. Anorg. Allg. Chem. 1990, 590, 37-47.
49. Huppmann, P. Dissertation, Freie Univ. Berlin(W), 1983.
50. Ansley, E. E. J. Chem. Soc. 1958, 2425-2426.
51. Varetti, E. L.; Müller, A. Z. Anorg. Allg. Chem. 1978, 442, 230-234.
52. Jasinski, J. P.; Holt, S. L.; Wood, J. H.; Moskowitz, J. W. J. Chem. Phys. 1975, 63, 1429-1444.
53. Aymonino, P. J.; Schulze, H.; Müller, A. Z. Naturforsch. 1969, 24b, 1508-1510.
54. Javan, A.; Engelbrecht, A. Phys. Rev, 1954, 96, 649-658.
55. Hog, J.; Pederson, T. J. Mol. Spectrosc. 1976, 61, 243-248.
56. Bürger, H.; Weinrath, P.; Dressler, S.; Hansen, T.; Thiel. W. J. Mol. Spectrosc. 1997, 183, 139-150.
57. Reisfeld, M. J.; Asprey, L. B.; Matwiyoff, N. A.; Spectrochim. Acta (A). 1971, 27, 765
58. Varetti, E. L.; Filgueira, R. R; Müller, Spectrochim. Acta (A). 1981, 37, 369-373.
59. Diemann, E.; Varetti, E. L.; Müller, A. Chem. Phys. Let. 1977, 51, 460-463.
60. Varetti, E. L. J. Raman Spectrosc. 1991, 22, 307-309.
61. Levason, W.; Ogden, J. S.; Saad, A. K.; Young, N. A.; Brisdon, A. K.; Holliman, P. J.; Holloway, J. H.; Hope, E. G. J. Fluorine Chem. 1991, 53, 43-51.
62. Spandl, J.; Supel, J.; Drews, T.; Seppelt, K. Z. Anorg. Allg. Chem. 2006, 632, 22222225.
63. Malm, J. G.; Selig, H.; Fried, S. J. Am. Chem. Soc. 1960, 82, 1510.
64. Malm, J. G.; Selig, H. Inorg. Nucl. Chem. 1961, 20, 189-197.
65. Bartlett, N.; Beaton, S.; Reeves, L. W.; Wells, E. J. Can. J. Chem. 1964, 42, 25312540.
66. Mutterties, E. L.; Packer, K. J.; J. Am. Chem. Soc. 1964, 86, 293-294.
67. Claassen, H. H.; Selig, H. J. Chem. Phys. 1965, 43, 103-105
68. Claassen, H. H.; Gasner, E. L.; Selig, H. J. Chem. Phys. 1968, 49, 1803-1807.
69. Jacob, J.; Bartell, L. S. J. Chem. Phys. 1970, 53, 2235-2242.
70. Vogt, T.; Fitch, A. N.; Cockcroft, J. K. Science 1994, 263, 1265-1267.
71. Jacob, E.; Fähnle, M. Angew. Chem. Int. Ed. Engl. 1976, 15, 159-160.
72. Baran, E. J. Angew. Chem. 1976, 31A, 1733-1734.
73. Yeh, S. M. Ph.D. Thesis, Lawrence Berkeley National Laboratory, 1984.
74. Yeh, S. M.; Bartlett, N. Rev. Chim. Miner. 1986, 23, 676-689.
75. Hwang, I.-C.; Seppelt, K. J. Fluorine Chem. 2000, 102, 69-72.
76. Gaunt, J. Trans. Faraday Soc. 1954, 50, 209-212.
77. Moffit, W.; Goodman, G. L.; Fred, M.; Weinstock, B. Mol. Phys.1959, 2, 109-122.
78. Claassen, H. H.; Malm, J. G.; Selig, H. J. Chem. Phys. 1962, 36, 2890-2892.
79. Siegel, S.; Northrop, D. A. Inorg. Chem. 1966, 5, 2187-2188.
80. Claassen, H. H.; Goodman, G. L.; Holloway, J. H.; Selig, H. J. Chem. Phys. 1970, 53, 341-348.
81. Richardson, A. D.; Hedberg, K.; Lucier, G. M. Inorg. Chem. 2000, 39, 2787-2793.
82. Drews, T.; Supel, J.; Hagenbach, A.; Seppelt, K. Inorg. Chem. 2006, 45, 37823788.
83. Molski, M.; Seppelt, K. Dalton Trans. 2009, 3379-3383.
84. Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.; Peterson, K. A.; Christe, K. O. Inorg. Chem. 2010, 49, 1056-1070.
85. Nikolaev, N. S.; Ippolitov, E. G. Dokl. Akad. Nauk 1961, 140, 129-133.
86. Ippolitov, E. G.; Nikolaev, N. S. Izv. Akad. Nauk, Ser. Khim. 1962, 748-755.
87. Beuter, A.; Kuhlman, W.; Sawodny, W. J. Fluorine Chem. 1975, 6, 367-378.
88. Koz'min, P. A. Zh. Strukt. Khim. 1964, 1, 70-76.
89. Adam, S.; Ellern, A.; Seppelt, K. Chem.-Eur. J. 1996, 2, 398-402.
90. Selig, H.; Chernick, C. C.; Malm, J. G.; J. Inorg. Nucl. Chem. 1961, 19, 377-381.
91. Claassen, H. H.; Selig, H.; Malm, J. G. J. Chem. Phys. 1962, 36, 2888-2890.
92. Craciun, R.; Long, R. T.; Dixon, D. A.; Christe, K. O. J. Phys. Chem. A. 2010, 114, 7571-7582.
93. Holloway, J. H.; Selig, H.; J. Inorg. Nucl. Chem. 1968, 30, 473-478.
94. Hargreaves, G. B.; Peacock, R. D. J. Chem. Soc. 1960, 1099-1103.
95. Falconer, W. E.; Jones, G. R.; Sunder, W. A.; Haigh, I.; Peacock, R. D. J. Inorg. Nucl. Chem. 1973, 35, 751-753.
96. Paine, R. T.; Asprey, L. B. Inorg. Chem. 1975, 14, 1111-1113.
97. Hoskins, B. F.; Linden, A.; Mulvaney, P. C.; O’Donnell, T. A. Inorg. Chim. Acta 1984, 88, 217-222.
98. Peacock, R. D. J. Chem. Soc. 1957, 467-469.
99. Shamir, J.; Malm, J. J. Inorg. Nucl. Chem. Suppl. 1976, 107-111.
100. Sunder, W. A.; Wayda, A. L.; Distefano, D.; Falconer, W. E. J. Fluorine Chem. 1979, 14, 299-325.
101. Casteel, W. Jr.; Horwitz, T. Eur. J. Solid State Inorg. Chem. 1992, 29, 649-657.
102. Edwards, A. J.; Hugill, D.; Peacock, R. D. Nature 1963, 200, 672.
103. Binenboym, J.; Selig, H. Inorg. Nucl. Chem. Herbert H. Hyman Mem. Vol. 1976, 231-232.
104. Gibson, J. K. J. Fluorine Chem. 1991, 55, 299-311.
105. Hugill, D.; Peacock, R. D. J. Chem. Soc. A 1966, 1339-1341.
106. Peakock, R. D. J. Chem. Soc. 1956, 1291-1293.
107. Weise, L. C. Z. Anorg. Chem. 1956, 283, 377-389.
108. Schwochau, K. W. Z. Naturforsch. 1964, 19A, 1237-1238.
109. LaValle, D. E.; Steele, R. M.; Smith, W. T. Jr. J. Inorg. Nucl. Chem. 1966, 28, 260-263.
110. Schwochau, K.; Krasser, W. Z. Naturforsch. 1969, 24A, 403-407.
111. Krasser, W.; Schwochau, K. Z. Naturforsch. 1970, 25A, 206-210.
112. Black, A. M.; Flint, C. D. J. Mol. Spectrosc. 1978, 70, 481-483.
113. Clark, G. R.; Russell, D. R. Acta Crystallogr. 1978, B34, 894-895.
114. Lomenzo, J.; Patterson, H.; Strobridge, S.; Engstrom, H. Mol. Phys. 1980, 40, 1401-1420.
115. Bettinelli, M.; Di Sipio, L.; Pasquetto, A.; Ingletto, G.; Montenero, A. Inorg. Chim. Acta 1985, 99, 37-42.
116. Bettinelli, M.; Di Sipio, L.; Ingletto, G.; Razzetti, C. Inorg. Chim. Acta 1987, 133, 7-9.
117. Schwochau, K.; Herr, W. Angew. Chem. Int. Ed. Engl. 1963, 2, 97.
118. Schwochau, K. Z. Naturforsch. 1964, 19A, 1237-1238.
119. Alberto, R.; Anderegg, G. Polyhedron 1985, 4, 1067.
120. Balasekaran, S. M.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. Inorg. Chem. 2013, 52, 7094-7099.
121. Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry; Pearson Education Ltd: Essex, 2001; pp 507-508.
122. Baur, W. H.; Khan, A. A. Acta Crystallogr. 1971, B27, 2133-2139.
123. Hoppe, R.; Liebe, W.; Dähne, W. Z. Anorg. Allg. Chem. 1961, 307, 276-289.
124. Mazej, Z. J. Fluorine Chem. 2002, 114, 75-80.
125. Hepworth, M. A.; Jack, K. H.; Acta Crystallogr. 1957, 10, 345-351.
126. Schrötter, F.; Müller, B. G. Z. Anorg. Allg. Chem. 1993, 619, 1426-1430.
127. Hepworth, M. A.; Jack, K. H.; Nyholm, R. S. Nature, 1957, 179, 211-212.
128. Osin, S. B.; Davlyatshin, D. I.; Shevelkov, V. F.; Mit'kin, V. N. Russ. J. Phys. Chem. 1995, 69, 794
129. Bukhmarina, V. N.; Predtechenskii, Y. B. Opt. Spektrosk. 1996, 80, 762-765.
130. Girichev, G. V.; Giricheva, N. I.; Petrova, V. N.; Shlykov, S. A.; Rakov, E. G. Zh. Strukt. Khim. 1994, 35, 61-67.
131. Solomonik, V. G.; Sliznev, V. V.; Balabanov, N. B. Z. Phys. Chem. 1997, 200, 77-82.
132. Hargittai, M.; Réffy, B.; Kolonits, M.; Marsden, C. J.; Heully, J.-L. J. Am. Chem. Soc. 1997, 119, 9042-9048.
133. Lutar, K.; Jeshih, A.; Žemva, B. Polyhedron 1988, 7, 1217-1219.
134. Rakov, E. G.; Khaustov, S. V.; Ostropikov, V. V. Russ. J. Inorg. Chem. 1998, 43, 465-469.
135. (a) Hoppe, R.; Dähne, W.; Klemm, W. Naturwissenschaften 1961, 48, 429-5. (b) Hoppe, R.; Dähne, W.; Klemm, W. Liebigs. Ann. Chim. 1962, 658, 1-5.
136. Hoppe, R. Israel. J. Chem. 1978, 17, 48-2048.
137. Roesky, H. W.; Glemser, O.; Hellberg, K. H. Chem. Ber. 1965, 98, 2046-2048.
138. Cesaro, S. N.; Rau, J. V.; Chilingarov, N. S.; Balducci, G.; Sidorov, L. N. Inorg. Chem. 2001, 40, 179-181.
139. Müller, B. G.; Serafin, M. Z. Naturforsch. 1987, 42b, 1102-1106.
140. Ehlert, T. C.; Hsia, M. J. Fluorine Chem. 1972, 2, 33-51.
141. Rakov, E. G.; Khaustov, S. V.; Pomadchin, S. A. Z. Neorg. Khim. 1997, 42, 18001803.
142. Kadosov, D. B.; Bagaturjants, A. A.; Rakov, E. G.; Kazanskii, V. B. Dokl. Akad. Nauk 1986, 290, 387-389.
143. Adelhelm, A.; Jacob, E. J. Fluorine Chem. 1991, 54, 21.
144. Wilson, W. W.; Christe, K. O. Inorg. Synthesis 1986, 24, 48-50.
145. Hoppe; Blinne, K. Z. Anorg. Allg. Chem. 1957, 291, 269-275.
146. Hoppe; Siebert, G. Z. Anorg. Allg. Chem. 1970, 376, 261-267.
147. Artukhov, A. A; Klimov, V. D.; Krasulin, S. V.; Nabiev, SH. Sh.; Tolmachjova, N. S. Koord. Khim. 1990, 16, 1348-1349.
148. Cox, B.; Sharpe, A. G. J. Chem. Soc. 1954, 1798-1803.
149. Kaskel, S.; Strähle, J. Z. Anorg. Allg. Chem. 1997, 623, 1259-1263.
150. Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19, 3254-3256.
151. Bougon, R. A.; Christe, K. O.; Wilson, W. W. J. Fluorine Chem. 1985, 30, 237239.
152. Asprey, L. B.; Reisfeild, M. J.; Matwiyoff, N. A. J. Mol. Spectrosc. 1970, 34, 361369.
153. Pfeil, A. Theor. Chim. Acta 1971, 20, 159-369.
154. Flint, C. D. J. Mol. Spectrosc. 1971, 37, 414-422.
155. Flint, C. D. Chem. Comm. 1970, 8, 482-483.
156. Reisfeld, M. J.; Matwiyoff, N. A.; Asprey, L. B. J. Mol. Spectrosc. 1971, 39, 8-20.
157. Hoppe, R.; Hofman, B. Z. Anorg. Allg. Chem. 1977, 436, 65-74.
158. Hoppe, R.; Wander, K.-H. J. Fluorine Chem. 1983, 23, 589-592.
159. Bode, H.; Wendt, W. Z. Anorg. Allg. Chem. 1952, 269, 165-172.
160. Bukovec, P.; Hoppe, R. J. Fluorine Chem. 1983, 23, 579-587.
161. Bukovec, P.; Hoppe, R. J. Fluorine Chem. 1988, 38, 107-114.
162. Chaudhuri, M. K.; Das, J. C.; Dasgupta, H. S. J. Inorg. Nucl. Chem. 1981, 43, 8587.
163. Sharpe, A. G.; Woolf, A. A. J. Chem. Soc. 1951, 798-801.
164. Allen, G. C.; McMeeking, R. F.; Hoppe, R. J. Fluorine Chem. 1973, 2, 333-336.
165. Müller, B. G. J. Fluorine Chem. 1981, 17, 409-421.
166. Mazej, Z.; Lutar, P. B.; Žemva, B. Zbornik Referatov s Poscetovanja Slovenski Kemijski Dnevi. 2000, 187-190.
167. Žemva, B.; Zupan, J.; Slivnik, J. J. Inorg. Nucl. Chem. 1971, 33, 3955-3957.
168. Jeshih, A.; Žemva, B. Vestn. Slov. Kem. Drus. 1987, 34, 343-349.
169. Bohinc, M.; Grannec, J.; Slivnik, J.; Žemva, B. J. Inorg. Nucl. Chem. 1976, 38, 7576.
170. Aubert, J.; Cady, G. H. Inorg. Chem. 1970, 9, 2600-2602.
171. Žemva, B.; Slivnik, J. J. Fluorine Chem. 1981, 17, 375-379.
172. Nikitin, M. I.; Rakov, E. G.; Tsirel'nikov, V. I.; Khaustov, S. V. Zh. Neorg. Khim. 1997, 42, 1354.
173. Nikitin, M. I.; Rakov, E. G. Russ. J. Inorg. Chem. 1998, 43, 314-318.
174. Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. J. Am. Chem. Soc. 2009, 131, 13474-13489.
175. Oak Ridge Nat. Lab., [Rep] ORNL (US) 2009, ORNL/TM-2007/207.
176. Winfield, J, M. J. Fluorine Chem. 1984, 25, 91-98.
177. Casteel, W. J., Jr.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 4310-4322.
178. Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1455-1459.
179. Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619-7625.
180. Emara, A. A. A.; Lehmann, J. F.; Schrobilgen, G. J. J. Fluorine Chem. 2005, 126, 1373-1376.
181. Ruff, O.; Menzel, W.; Neumann, W. Z. Anorg. Allg. Chem. 1932, 208, 293-303.
182. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. Inorg. Chem. 1993, 32, 386-393.
183. Kinkead, S. A; FitzPatrick, J. R.; Foropoulos, J. J.; Kissane, R. J.; Purson, J. D. In Fluorine Chemistry Toward the 21st Century; Thrasher, J. S., Strauss, S. H., Eds.; ACS Symposium Series 555; American Chemical Society: Washington, DC, 1994; Chapter 3, pp 40-55.
184. Bezmel'nitsyn, V. N.; Legasov, V. A.; Chaivanov, B. B. Dokl. Akad. Nauk SSSR 1977, 235, 365-367.
185. Lehmann, J. F. Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 2000.
186. Chernick, C. L.; Malm, J. G. Inorg. Synth. 1966, 8, 259-260.
187. Ulbricht, K.; Kriegsmann, H. Z. Chem. 1966, 6, 232-233.
188. Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253.
189. Hughes, M. J.; Brock,, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Fluorine Chem. 2011, 132, 660-668
190. APEX2, release v2011.6-1; Bruker AXS Inc.: Madison, WI, 1995.
191. Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), version 2.03; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1999.
192. Sheldrick, G. M. SHELXTL-Plus, release 5.1; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1998.
193. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13.
194. Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007, 129, 3598-3611.
195. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;. Cheeseman, J. R;Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr., R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.;Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J. V.; Ortiz, A.; Baboul, G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P. K. I.; Gomperts, R.;Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2004 (g03_D.01).
196. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand,
J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010 (g09_C.01).
197. Basis sets and pseudopotentials were obtained from the Extensible Computational Chemistry Environment Basis set Database, version 2/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Science Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352.
198. Feller, D. J. Comput. Chem. 1996, 17, 1571-1586.
199. Schuchardt, K. L.; Didier, B. T. Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model 2007, 47, 1045-1052.
200. NBO 6.0. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
201. Multiwfn, version 3.3.8; Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.
202. GaussView, version 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
203. Jmol, an open-source Java viewer for chemical structures in 3D (http://www.jmol.org/).
204. Pettersen, E. F; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605-1612.
205. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931967.
206. Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391-403.
207. Baerends, E. J.; et al. ADF 2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
208. Krykunov, M.; Ziegler, T.; van Lenthe, E. Int. J. Quant. Chem. 2009, 109, 16761683.
209. Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1995, 99, 606-611.
210. Schreckenbach, G.; Ziegler, T. Int. J. Quant. Chem. 1997, 61, 899-918.
211. Wolff, S. K.; Ziegler, T. J. Chem. Phys. 1998, 109, 895-905.
212. Wolff, S. K.; Ziegler, T; van Lenthe, E; Baerends, E. J. J. Chem. Phys. 1999, 110, 7689-7698.
213. Okrasinski, S.; Mitra, G. J. Inorg. Nucl. Chem. 1974, 36, 1908-1909.
214. Saielli, G.; Bini, R.; Bagno, A. Theor. Chem. Acc. 2012, 131, 1140-1150 and references therein.
215. Saielli, G.; Bini, R.; Bagno, A. Theor. Chem. Acc. 2012, 131, 1283.
216. Christe, K. O.; Curtis, E. C.; Mercier, H. P.; Sanders, J. C. P.; Schrobilgen, G. J.; Dixon, D. A. J. Am. Chem. Soc. 1991, 113, 3351-3361.
217. Hughes, M. J.; Gerken, M.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 4768-4780.
218. Krebs, B.; Hasse, K.-D. Acta Crystallogr. 1976, B32, 1334-1337.
219. Kruger, G. J.; Reynhardt, E. C. Acta Crystallogr. 1978, B34, 259-261.
220. Tramšek, M.; Goreshnik, E.; Žemva, B. J. Fluorine Chem. 2009, 130, 1093-1098.
221. Gerken, M; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem., 2002, 41, 259-277.
222. Mattes, R.; Mennemann, K. Z. Anorg. Allg. Chem. 1977, 437, 175-182.
223. Cotton, F. A.; Mague, J. T. Inorg. Chem. 1964, 3, 1402-1407.
224. Mucker, K.; Smith, G. S.; Johnson, Q. Acta Crystallogr. 1968, B24, 874-879.
225. Watson, W. H., Jr.; Waser, J. Acta Crystallogr. 1958, 11, 689-692.
226. Tragl, S.; Ströbele, J.; Vicent, C.; Llusar, R.; Meyer, H.-J. Inorg. Chem. 2009, 48, 3825-3831.
227. Krebs, B.; Müller, A.; Beyer, H. H. Inorg. Chem. 1969, 8, 436-443.
228. Bertolucci, A.; Freni, M.; Romiti, P.; Ciani, G.; Sironi, A.; Albano, V. G. J. Organomet. Chem. 1976, 113, C61-C64.
229. Roesky, H. W.; Hesse, D.; Bohra, R.; Noltemeyer, M. Chem. Ber. 1991, 124, 1913-1915.
230. Kabisch, G.; Klose, M. J. Raman Spectrosc. 1978, 7, 311-315.
231. Kabisch, G. J. Raman Spectrosc. 1980, 9, 279-285.
232. Berg, R. W. Spectrochim. Acta. 1978, 34A, 655-659.
233. Korppi-Tommola, J.; Brown, R. J. C.; Shurvell, H. F. J. Raman Spectrosc. 1981, 11, 363-368.
234. Park, Y. S.; Shurvell, H. F.; Brown, R. J. C. J. Raman Spectrosc. 1986, 17, 351354.
235. Ivanova, M. V.; Köchner, T.; Mercier H. P. A.; Schrobilgen G. Inorg. Chem. 2013, 52, 6806-6819.
236. Grove, D. E.; Johnson, N. P.; Wilkinson, G. Inorg. Chem. 1969, 8, 1196.
237. Gerlach, U.; Ringel, C. Z. Anorg. Allg. Chem. 1974, 408, 180-186.
238. Lis, T. Acta Crystallogr. 1983, C39, 961-962.
239. Hołyńska, M.; Lis, T. J. Chem. Crystallogr, 2010, 707-711.
240. Masterton, W. L.; Bolocofsky, D.; Lee, P. T. J. Phys. Chem. 1971, 75, 2809-2815.
241. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
242. Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J. Inorg. Chem. 2005, 44, 49-60.
243. Craig, N. C.; Futamura, K. Spectrochim. Acta, 1989, 45, 507-509.
244. Qureshi, A. M.; Aubke, F. Can. J. Chem. 1970, 48, 3117-3123.
245. Mazej. Z.; Ponikar-Svet, M.; Liebman, J. F.; Passmore, J.; Jenkins, J. D. B. J. Fluorine Chem. 2009, 130, 788-791.
246. Beattie, I. R.; Ozin, G. A. J. Chem. Soc. A, 1969, 2615-2619.
247. Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2009, 48, 4478-4490.
248. Niboer, J.; Mack, J. P.; Mercier, H. P. A.; Gerken, M. Inorg. Chem. 2010, 49, 6153-6159.
249. (a) Herrmann, W. A.; Kuchler, J. G.; Wagner, W.; Felixberger, J. K.; Herdtweck, E. Angew. Chem. Int. Ed. Engl. 1988, 27, 394-396; (b) Herrmann, W. A; Kiprof, P.; Rypdal, K.; Tremmel, J.; Blom, R.; Alberto, R.; Behm, J.; Albach, R. W.; Bocj, H.; Soluki, B.; Mink, J.; Lichtenberger, D.; Gruhn, N. E. J. Am. Chem. Soc. 1991, 113, 6527-6537; (c) Kühn, F. E.; Herrmann, W. A.; Hahn, R.; Elison, M.; Blümel. J.; Herdtweck, E. Organomet. 1994, 13, 1601-1606; (d) Parker, S. F.; Herman, H. Spectrochim. Acta, Part A. 2006, 56, 1123-1129.
250. Cunin, F.; Favier, F.; Pascal, J. L. Spectrochim. Acta, Part A, 2002, 58, 2869-2875.
251. Byler, D. M.; Shriver, D. F. Inorg. Chem. 1973, 12, 1412-1416.
252. Byler, D. M.; Shriver, D. F. Inorg. Chem. 1974, 13, 2697-2705.
253. Ahsen, B.; Bley, B.; Proemmel, S.; Wartchow, R.; Willner, H.; Aubke, F. Z. Anorg. Allg. Chem. 1998, 624, 1225-1234.
254. Benkič, P.; Jenkins, H. D. B.; Ponikvar, M.; Mazej, Z. Eur. J. Inorg. Chem. 2006, 1084-1092.
255. de Méric de Bellefon, C.; Herrmann, W. A.; Kiprof, P.; Whitaker, C. R. Organomet. 1992, 11, 1072-1081.
256. Burrell, A. K.; Cotton, F. A.; Daniels, L. M.; Petricek, V. Inorg. Chem. 1995, 34, 4253-4255.
257. Herrmann, W. A.; Taillefer, M.; de Méric de Bellefon, C.; Behm, J. Inorg. Chem. 1991, 30, 3247-3248.
258. Gerken, M.; Kolb, P.; Wegner, A.; Mercier, H. P. A.; Borrmann, H.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 2813-2824.
259. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1994, 116, 2921-2937.
260. Haupt, S.; Seppelt, K. Z. Anorg. Allg. Chem. 2002, 628, 729-734.
261. Brosius, A.; Haas, A. Chem. Ber. 1995, 128, 651.
262. Minkwitz, R.; Koch, M.; Nowicki, J. Z. Anorg. Allg. Chem. 1990, 590, 93-102.
263. Bencze, É. Mink, J.; Németh, C.; Herrmann, W. A.; Lokshin, B. V.; Kühn, F. E. J. Organomet. Chem. 2002, 642, 246-258.
264. Bartlett, N. Proc. Chem. Soc. 1962, 218.
265. Brock, D. S.; Schrobilgen, G. J.; Žemva, B. In Comprehensive Inorganic Chemistry II; Reedijk J.; Poepplemeier, K., Eds.; Elsevier: Oxford, U.K.; 2013, Vol. 1, pp. 755-822.
266. Brock, D. S.; Schrobilgen, G. J. J. Am. Chem. Soc. 2011, 133, 6265-6269.
267. Smith, D. F. J. Am. Chem. Soc. 1963, 85, 816-817.
268. Templeton, D. H.; Zalkin, A.; Forrester, J. D.; Williamson, S. M. J. Am. Chem. Soc. 1963, 85, 817.
269. Gunn, S. R. In Noble Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, IL, 1963; pp 149-151.
270. Appelman, E. H.; Malm, J. G. J. Am. Chem. Soc. 1964, 86, 2141-2148.
271. Claassen, H. H.; Knapp, G. J. Am. Chem. Soc. 1964, 86, 2341-2342.
272. Spittler, T. M.; Jaselskis, D. J. Am. Chem. Soc. 1965, 87, 3357-3360.
273. Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; Huston, J. L. Science 1964, 143, 1322-1323.
274. Huston, J. L.; Studier, M. H.; Sloth, E. N. Science 1964, 143, 1161-1162.
275. Gunn, S. R. J. Am. Chem. Soc. 1965, 87, 2290-2291.
276. Gundersen, G.; Hedberg, K.; Huston, J. L. J. Chem. Phys. 1970, 52, 812-815.
277. Huston, J. L.; Claassen, H. H. J. Chem. Phys. 1970, 52, 5646-5648.
278. Gerken, M.; Schrobilgen, G. J. Inorg. Chem. 2002, 41, 198-204.
279. Vent-Schmidt, T.; Goettel, J. T.; Schrobilgen, G. J.; Riedel, S. Chem. Eur. J. 2015, 21, 11244-11252.
280. Siegel, S.; Gebert, E. In Noble-Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, IL, 1963; pp 193-194.
281. Hamilton, W. C.; Ibers, J. A.; Mackenzie, D. R. Science 1963, 141, 532-534.
282. Zalkin, A.; Forrester, J. D.; Templeton, D. H.; Williamson, S. M.; Koch, C. W. Science 1963, 142, 501-502.
283. Ibers, J. A.; Hamilton, W. C.; Mackenzie, D. R. Inorg. Chem. 1964, 3, 1412-1416.
284. Zalkin, A.; Forrester, J. D.; Templeton, D. H.; Williamson, S. M.; Koch, C. W. J. Am. Chem. Soc. 1964, 86, 3569-3571.
285. Zalkin, A.; Forrester, J. D.; Templeton, D. H. Inorg. Chem. 1964, 3, 1417-1421.
286. Marcus, Y.; Cohen, D. Inorg. Chem. 1966, 5, 1740-1743.
287. Appelman, E. H.; Williamson, S. M. Inorg. Synth. 1968, 11, 210-213.
288. Hauck, J. Z. Naturforsch. 1970, 25b, 226.
289. Peterson, J. L.; Claassen, H. H.; Appelman, E. H. Inorg. Chem. 1970, 9, 619-621.
290. Downey, G. D.; Claassen, H. H.; Appelman, E. H. Inorg. Chem. 1971, 10, 1817-1820.
291. Jørgensen, C. K.; Berthou, H. Chem. Phys. Lett. 1975, 36, 432-435.
292. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980-987.
293. de Waard, H.; Bukshpan, S.; Schrobilgen, G. J.; Holloway, J. H.; Martin, D. J. Chem. Phys. 1979, 70, 3247-3253.
294. Foropoulos, J. Jr.; DesMarteau, D. D. Inorg. Chem. 1982, 21, 2503-2504.
295. Kläning, U. K.; Appelman, E. H. Inorg. Chem. 1988, 27, 3760-3762.
296. Shustov, L. D.; Tolmacheva, N. S.; Nabiev, Sh. Sh.; Il'in. E. K.; Klimov, V. D.; Ushakov, V. P. Russ. J. Inorg. Chem. 1989, 34, 946-949.
297. Forgeron, M. A. M.; Wasylishen, R. E.; Gerken, M.; Schrobilgen, G. J. Inorg. Chem. 2007, 46, 3585-3592.
298. Lehmann J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233234, 1-39.
299. Dunning, T. H.; Hay, P. J. J. Chem. Phys. 1977, 66, 3767-3777.
300. Yamanishi, M.; Hirao, K.; Yamashita, K. J. Chem. Phys. 1998, 108, 1514-1521.
301. Ault, B. S.; Andrews, L. Chem. Phys. Lett. 1976, 43, 350-352.
302. Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. J. Am. Chem. Soc. 2009, 131, 13474-13489.
303. Mootz, D.; Ohms, U.; Poll, W. Z. Anorg. Allg. Chem. 1981, 479, 75-83.
304. Mootz, D.; Poll, W. Z. Anorg. Allg. Chem. 1982, 484, 158-164.
305. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model; Oxford University Press: Oxford, 2006.
306. Fir, B. A.; Mercier, H. P. A.; Sanders, C. P. Dixon, D. A. Schrobilgen, G. J. J. Fluorine Chem. 2001, 110, 89-107.
307. Bartlett, N.; Wechsberg, M.; Jones, G. R.; Burbank, R. D. Inorg. Chem. 1972, 11, 1124-1127.
308. Malischewski, M.; Seppelt, K. Acta Crystallogr. 2015, E71, 363-365.
309. Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 13823-13839.
310. Turowsky, L.; Seppelt. K. Z. Anorg. Allg. Chem. 1992, 609, 153-156.
311. Elliot, H. St. A.; Lehmann, J. F.; Mercier, H. P. A. Jenkins, B. H. D.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8504-8523.
312. Zalkin, A.; Ward, D. L.; Biagioni, R. N.; Templeton, D. H.; Bartlett, N. Inorg. Chem. 1978, 12, 1318-1322.
313. Gillespie, R. J.; Hargittai, I. In The VSEPR Model of Molecular Geometry; Allyn and Bacon: Boston, MA, 1991; pp 127-130.
314. Bougon, R.; Buu, B.; Seppelt, K. Chem. Ber. 1993, 126, 1331-1336.
315. Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 3501-3515.
316. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.
317. Silvi, B.; Savin, A. Nature 1994, 371, 683-686.
318. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
319. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J., Silvi, B. Inorg. Chem. 2010, 49, 6673-6689.
320. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J., Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533-3542.
321. Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem. 1996, 74, 1088-1096.

Ph.D. Thesis - Maria V. Ivanova
322. Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R.; Bain, A. D.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8997-9004.
323. MacDougall, P. J.; Schrobilgen, G. J.; Bader, R. F. W. Inorg. Chem. 1989, 28, 763769.
324. Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Chem. 2007, 13, 291-296.
325. Legon, A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736-7747.
326. Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748-7757.
327. Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2013, 15, 1117811189.
328. Kolář, M.H.; Deepa, P.; Ajani, H.; Pecina, A.; Hobza P. Top. Curr. Chem. 2015, 1-26.
329. Frohn. H.-J.; Bilir, V.; Westphal, U. Inorg. Chem. 2012, 51, 11251-11258.
330. Lucier, G. M.; Shen, C.; Elder, S. H.; Bartlett, N. Inorg. Chem. 1998, 37, 3829-3834.
331. Egorochkin, A. N.; Kuznetsova, O. V.; Khamaletdinova, N. M.; Kurskii, Y. A.; Domratcheva-Lvova, L. D.; Domrachev, G. A. Magn. Reson. Chem. 2009, 47, 782-790.
332. Bacon, J.; Gillespie, R. J.; Quail, J. W. Can. J. Chem. 1963, 41, 3063-3069.
333. Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Inorg. Chem. 1989, 28, 2911-2914.
334. Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1726-1730.
335. Eller, P. G.; Larson, A. C.; Peterson, J. R.; Ensor, D. D.; Young, J. P. Inorg. Chim. Acta 1979, 37, 129-133.
336. Hebecker, C. Z. Anorg. Allg. Chem. 1971, 384, 111-114.
337. Shorafa, H.; Seppelt, K. Z. Anorg. Allg. Chem. 2009, 635, 112-114.
338. Edwards, A. J. Jones, G. R. J. Chem. Soc. (A) 1969, 1651-1654.
339. Massa, W.; Steiner, M. J. Solid State Chem. 1980, 32, 137-143.
340. Molinier, M.; Massa, W. Z. Naturforsch. B 1992, 47, 783-788.
341. Žemva, B.; Jesih, A. J. Fluorine Chem. 1984, 24, 281-289.
342. Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Eur. J. Solid State Inorg. Chem. 1991, 28, 829-840.
343. Mattes, R.; Müller, G.; Becher, H. J.; Z. Anorg. Allg. Chem. 1975, 416, 256-262.
344. Torardi, C. C.; Brixner, L. H.; Mat. Res. Bull. 1985, 20, 137-145.
345. Shaw, M. M.; Smith, R. G.; Ramsden, C. A. Arch. Org. Chem. 2001, 221-228. DOI: http://dx.doi.org/10.3998/ark.5550190.0012.a18.
346. Markgraf, J. H.; Choi, B. Y. Synth. Commun. 1999, 29, 2405-2411.

APPENDIX A

THE SYNTHESIS AND LEWIS ACID PROPERTIES OF $\mathrm{ReO}_{3} \mathrm{~F}$ AND THE X-RAY CRYSTAL STRUCTURES OF $(\mathbf{H F})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}$ AND $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$

Figure A1. Raman spectrum of $\mathrm{ReO}_{3} \mathrm{~F}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line $\left(^{*}\right)$, instrumental artifact (\dagger), and overlap of a $\mathrm{ReO}_{3} \mathrm{~F}$ line with an FEP sample tube line (\ddagger). The geometry of monomeric $\mathrm{ReO}_{3} \mathrm{~F}\left(C_{3 \mathrm{v}}\right)$ was calculated at the B3LYP/aug-cc-pVTZ(-PP) level.

Scheme A1. An alternative proposed reaction pathway leading to the formation of the $\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion in $\mathrm{CH}_{3} \mathrm{CN}$ solvent. The $\left[\mathrm{ReO}_{4}\right]^{-}$anion is formed in eq 3.6.

Scheme A2. A plausible reaction pathway leading to the formation of the [$\left\{\mathrm{TcO}_{3}(\mu\right.$ F) $\left.\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anion in aHF solvent. The molecular structure of the [$\left.\mathrm{TcO}_{3} \mathrm{~F}_{2}\right]^{-}$anion is presently unknown. Two possible geometries are likely: (1) a trigonal bipyramidal $D_{3 \mathrm{~h}}$ geometry, where the three oxygen atoms lie in the equatorial plane and the fluorine atoms are trans to one another and occupy axial positions that are perpendicular to the $\mathrm{TcO}_{3}{ }^{-}$ plane, and (2) a distorted tetrahedral C_{s} geometry, where two fluorine atoms, one oxygen atom, and the technetium atom are coplanar and the remaining two oxygen atoms are equidistant from the TcOF_{2}-plane.

Figure A2. The X-ray crystal structure of KF-4HF. Thermal ellipsoids are shown at the 50% probability level. The "fluorine atoms" that are not coordinated, such as $F(2)$, are HF molecules within the crystal lattice and the "bridging fluorine atoms", such as $\mathrm{F}(1)$, are fluoride ions.

Figure A3. A view of the crystal packing in $\left[\mathrm{N}_{(}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ along the c-axis of the unit cell.

Figure A4. The structural unit in the crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$. Thermal ellipsoids are shown at the 50% probability level.

Raman Spectrum of $\left[\mathbf{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$

A low-quality infrared spectrum was previously reported for $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]^{213}$ that only revealed one intense broad band at ca. $900 \mathrm{~cm}^{-1}$ and at least four bands in the $250-350 \mathrm{~cm}^{-1}$ region for $\left[\mathrm{ReO}_{4}\right]^{-}$. Reliable Raman data are, however, available for the $\mathrm{Na}^{+},{ }^{233} \mathrm{~K}^{+},{ }^{233} \mathrm{Rb}^{+},{ }^{233}$ and $\left[\mathrm{NH}_{4}\right]^{+}{ }^{233,234}$ salts of $\left[\mathrm{ReO}_{4}\right]^{-}$. The $\left[\mathrm{ReO}_{4}\right]^{-}$anion $\left(T_{\mathrm{d}}\right)$ is expected to have four Raman-active $\left(\mathrm{A}_{1}, \mathrm{E}, 2 \mathrm{~T}_{2}\right)$, and two infrared-active $\left(2 \mathrm{~T}_{2}\right)$ bands. The most intense and highest frequency band of the $\left[\mathrm{ReO}_{4}\right]^{-}$anion in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right]$ occurs at $964 \mathrm{~cm}^{-1}$ and is assigned to $v_{\mathrm{s}}(\operatorname{Re}-\mathrm{O})$ whereas the bands at $899,909,928 \mathrm{~cm}^{-1}$ are assigned to $v_{\mathrm{as}}(\operatorname{Re}-\mathrm{O})$. The bands at $323,330,332$, and $334 \mathrm{~cm}^{-1}$ are assigned to $\delta(\mathrm{O}-\mathrm{Re}-\mathrm{O})$ bending modes. These frequencies are well reproduced by the calculations (Table A1) although the $v_{s}(\operatorname{Re}-\mathrm{O})$ and $v_{\text {as }}\left(\operatorname{Re}^{-}-\mathrm{O}\right)$ stretches are overestimated by about 25 and $15 \mathrm{~cm}^{-1}$, respectively.
Table A1. Experimental Raman Frequencies and Intensities for the $\left[\mathrm{ReO}_{4}\right]^{-}$Anion in $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ReO}_{4}\right], \mathrm{K}\left[\mathrm{ReO}_{4}\right] \text {, }}\right.$
$\left[\mathrm{ReO}_{4}\right]^{-}$Anion

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectra were recorded in FEP sample tubes at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. ${ }^{c}$ The abbreviations denote shoulder (sh), stretch (v), bend (δ), symmetric (s), and asymmetric (as). ${ }^{d}$ This work. ${ }^{e}$ Values in parentheses denote calculated Raman intensities $\left(\AA^{4} \mathrm{u}^{-1}\right)$. Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-$\mathrm{pVTZ}(-\mathrm{PP})$ level was used. ${ }^{f}$ The $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cation modes were observed at $v_{8}(\mathrm{E}), 377(1) ; v_{19}\left(\mathrm{~T}_{2}\right), 463(5), 460(5)$, $455(5) ; v_{3}\left(\mathrm{~A}_{1}\right), 750(3), 757(12) ; v_{18}\left(\mathrm{~T}_{2}\right), 952(18), 949(8), 943(1) ; v_{7}(\mathrm{E}), 1174(1), 1182(2) ; v_{17}\left(\mathrm{~T}_{2}\right), 1285(1), 1288(2) ;$ $v_{16}\left(\mathrm{~T}_{2}\right), 1407(5), 14013(3) ; v_{2}\left(\mathrm{~A}_{1}\right), v_{6}(\mathrm{E}), 1461(9), 1467(8) ; v\left(\mathrm{CH}_{3}\right)$ and combination bands, 2801(4), 2810(4), 2904(3), 2915(5), 2953(21), 2962(6), 2992sh, 3026(11), 3034(30) cm^{-1}.

Table A2. Correlation Diagram for the Vibrational Modes of $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F}$ in $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} \cdot \mathrm{HF}^{a}$
anion
symmetry b
$C_{2 \mathrm{v}}$
site
symmetry
C_{1}
crystal
symmetry ${ }^{c}$
$C_{2 \mathrm{~h}}$

${ }^{a}$ The irreducible representation is $\Gamma=8 \mathrm{~A}_{1}+4 \mathrm{~B}_{1}+3 \mathrm{~A}_{2}+6 \mathrm{~B}_{2}$ for $(\mathrm{HF})_{2} \mathrm{ReO}_{3} \mathrm{~F} .{ }^{b}$ The anion $\left(C_{2 v}\right)$ symmetry is the local symmetry observed in the crystallographic unit cell. ${ }^{c}$ The crystallographic space group is $P 2_{1} / c$ with $Z=4$.

Table A3. Correlation Diagram for the Vibrational Modes of the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ Anion ${ }^{a}$ in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\left\{\mathrm{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$

$$
\begin{gathered}
\text { anion } \\
\text { symmetry }^{b} \\
C_{3 \mathrm{v}}
\end{gathered}
$$

site
symmetry
C_{1}
crystal symmetry ${ }^{c}$ $C_{2 \mathrm{~h}}$
${ }^{a}$ The irreducible representation is $\Gamma=9 \mathrm{~A}_{1}+5 \mathrm{~A}_{2}+14 \mathrm{E}$ for the $\left[\left\{\operatorname{ReO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ anion. ${ }^{c}$ The anion symmetry $\left(C_{3 v}\right)$ is the symmetry observed in the crystallographic unit cell and for the optimized geometry in the gas phase. ${ }^{b}$ The crystallographic space group is $P 2_{1} / c$ with $Z=4$.

Figure A5. The calculated structures of the (a) $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and (b) $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$anions. The B3LYP/aug-cc-pVTZ(-PP) level was used.

Ph.D. Thesis - Maria V. Ivanova

Table A4. (continued ...)
$378(<0.1)[<0.1]$ $369(2)[12]$
$356(<1)[14]$
$278(1)[9]$ $275(2)[52]$
$257(<1)[1]$
$193(3)[<1]$
$188(2)[<0.1]$ $v_{16}(\mathrm{E})$

 $\left[\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{C}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)\right]$
$\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{A}}\right)-\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2}\right)$
$\left[\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{B}}\right)+\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{C}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{B}}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{4}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{4}\right)\right.$
$\left.-v\left(\mathrm{Tc}_{3} \mathrm{~F}_{4}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]-\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+\right.$
$\left.v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]$
$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+$
$\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]$
$\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+$
$\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{4}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{4}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{4}\right)\right]$
$\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{4}\right)\right.$ $\left.+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{4}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{4}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+$ $\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]$
$\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]$
$\left[\delta\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{B}}\right)-\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{C}}\right)+\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)-\delta\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)\right.$ $\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+$ $\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)\right]+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]-$ $\left.\left[\rho_{\mathrm{r}} \mathrm{O}_{\mathrm{A}} \mathrm{F}_{1} \mathrm{O}_{\mathrm{c}}\right)\left(\mathrm{Tc}_{\mathrm{r}} \mathrm{F}_{1}\right)\right]$

$\underset{\substack{\infty \\ \rightarrow}}{\underset{\sim}{\infty}}$

 $\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{4}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{4}\right)-v\left(\mathrm{Tc}_{1} \mathrm{~F}_{4}\right)\right]$ $\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]+\left[v\left(\mathrm{Tc}_{3} \mathrm{~F}_{1}\right)+v\left(\mathrm{Tc}_{1} \mathrm{~F}_{1}\right)\right]+$ $\left[v\left(\mathrm{Tc}_{1} \mathrm{O}_{\mathrm{D}}\right)+v\left(\mathrm{Tc}_{2} \mathrm{O}_{\mathrm{D}}\right)+v\left(\mathrm{Tc}_{3} \mathrm{O}_{\mathrm{D}}\right)\right]$
$\rho_{\mathrm{w}}\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{3} \mathrm{~F}_{4}\right)$ $\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{B}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)$ $\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{C}} \mathrm{Tc}_{1} \mathrm{O}_{\mathrm{B}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{Tc}_{2} \mathrm{O}_{\mathrm{C}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{Tc}_{3} \mathrm{O}_{\mathrm{C}}\right)\right]$
$+\left[v\left(\mathrm{Tc}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Tc}_{2} \mathrm{~F}_{2}\right)-\right.$

[^1] $v_{19}(\mathrm{E})$

$v_{17}(\mathrm{E})$
$\underset{\sim}{\text { © }}$
[$\cdot 0>1(z) 88 \mathrm{I}$

Ph.D. Thesis - Maria V. Ivanova

Table A5. Experimental Geometrical Parameters for the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$Anion in $\mathrm{K}\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right] \cdot 1.5 \mathrm{TcO}_{3} \mathrm{~F}$ and Calculated Geometrical Parameters for the $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2-}$ and $\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$Anions

calcd $^{\text {a,b }}$				exptt ${ }^{\text {c }}$	
$\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{2}$		$\left[\left\{\mathrm{TcO}_{3}(\mu-\mathrm{F})\right\}_{3}\left(\mu_{3}-\mathrm{F}\right)\right]^{-}$			
Bond Lengths (A)					
$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{A}}$	1.693	$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{A}}$	1.680	$\mathrm{Tc}_{1}-\mathrm{O}_{11}$	1.685(4)
$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{B}}$	1.700	$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{B}}$	1.681	$\mathrm{Tc}_{1}-\mathrm{O}_{12}$	1.677(4)
$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{C}}$	1.693	$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{C}}$	1.680	$\mathrm{Tc}_{1}-\mathrm{O}_{13}$	1.682(4)
$\mathrm{Tc}_{2}-\mathrm{O}_{\text {A }}$	1.693	$\mathrm{Tc}_{2}-\mathrm{O}_{\text {A }}$	1.680	$\mathrm{Tc}_{2}-\mathrm{O}_{21}$	1.680(4)
$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{B}}$	1.700	$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{B}}$	1.681	$\mathrm{Tc}_{2}-\mathrm{O}_{22}$	1.683(4)
$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{C}}$	1.693	$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{C}}$	1.680	$\mathrm{Tc}_{2}-\mathrm{O}_{23}$	1.687(4)
$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{A}}$	1.693	$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{A}}$	1.680	$\mathrm{Tc}_{3}-\mathrm{O}_{33}$	1.667(4)
$\mathrm{Tc}_{3}-\mathrm{O}_{\text {B }}$	1.700	$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{B}}$	1.681	$\mathrm{Tc}_{3}-\mathrm{O}_{32}$	1.685(4)
$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{C}}$	1.693	$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{C}}$	1.680	$\mathrm{Tc}_{3}-\mathrm{O}_{31}$	1.691(4)
$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{D}}$	2.096	$\mathrm{Tc}_{1}-\mathrm{F}_{4}$	2.302	$\mathrm{Tc}_{1}-\mathrm{F}_{10}$	2.266 (3)
$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{D}}$	2.096	$\mathrm{Tc}_{2}-\mathrm{F}_{4}$	2.302	$\mathrm{Tc}_{2}-\mathrm{F}_{10}$	2.246 (3)
$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{D}}$	2.096	$\mathrm{Tc}_{3}-\mathrm{F}_{4}$	2.302	$\mathrm{Tc}_{3}-\mathrm{F}_{10}$	2.223(3)
$\mathrm{Tc}_{1}-\mathrm{F}_{1}$	2.165	$\mathrm{Tc}_{1}-\mathrm{F}_{1}$	2.128	$\mathrm{Tc}_{1}-\mathrm{F}_{1}$	2.132(3)
$\mathrm{Tc}_{1}-\mathrm{F}_{2}$	2.165	$\mathrm{Tc}_{1}-\mathrm{F}_{2}$	2.128	$\mathrm{Tc}_{1}-\mathrm{F}_{2}$	2.102(3)
$\mathrm{Tc}_{2}-\mathrm{F}_{2}$	2.165	$\mathrm{Tc}_{2}-\mathrm{F}_{2}$	2.128	$\mathrm{Tc}_{2}-\mathrm{F}_{2}$	2.098(3)
$\mathrm{Tc}_{2}-\mathrm{F}_{3}$	2.165	$\mathrm{Tc}_{2}-\mathrm{F}_{3}$	2.128	$\mathrm{Tc}_{2}-\mathrm{F}_{3}$	2.113(3)
$\mathrm{Tc}_{3}-\mathrm{F}_{3}$	2.165	$\mathrm{Tc}_{3}-\mathrm{F}_{3}$	2.128	$\mathrm{Tc}_{3}-\mathrm{F}_{3}$	2.110 (3)
$\mathrm{Tc}_{3}-\mathrm{F}_{1}$	2.165	$\mathrm{Tc}_{3}-\mathrm{F}_{1}$	2.128	$\mathrm{Tc}_{3}-\mathrm{F}_{1}$	2.112(3)
Bond Angles (deg)					
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{B}}$	104.9	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{B}}$	105.8	$\mathrm{O}_{12}-\mathrm{Tc}_{1}-\mathrm{O}_{13}$	105.5(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{C}}$	104.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{C}}$	105.8	$\mathrm{O}_{12}-\mathrm{Tc}_{1}-\mathrm{O}_{11}$	105.4(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{A}}$	102.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{A}}$	103.6	$\mathrm{O}_{13}-\mathrm{Tc}_{1}-\mathrm{O}_{11}$	104.1(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{D}}$	95.1	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{11}-\mathrm{Tc}_{1}-\mathrm{F}_{10}$	88.1(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{F}_{4}$	155.3	$\mathrm{O}_{12}-\mathrm{Tc}_{1}-\mathrm{F}_{10}$	157.3(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{D}}$	95.1	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{13}-\mathrm{Tc}_{1}-\mathrm{F}_{10}$	88.2(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{B}}$	104.9	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{B}}$	105.8	$\mathrm{O}_{21}-\mathrm{Tc}_{2}-\mathrm{O}_{22}$	105.5(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{C}}$	104.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{C}}$	105.8	$\mathrm{O}_{22}-\mathrm{Tc}_{2}-\mathrm{O}_{23}$	105.9(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{A}}$	102.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{A}}$	103.6	$\mathrm{O}_{23}-\mathrm{Tc}_{2}-\mathrm{O}_{21}$	103.6(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{D}}$	95.1	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{23}-\mathrm{Tc}_{2}-\mathrm{F}_{10}$	86.9(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{F}_{4}$	155.3	$\mathrm{O}_{21}-\mathrm{Tc}_{2}-\mathrm{F}_{10}$	157.3(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{D}}$	95.1	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{22}-\mathrm{Tc}_{2}-\mathrm{F}_{10}$	89.0(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{B}}$	104.9	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{B}}$	105.8	$\mathrm{O}_{33}-\mathrm{Tc}_{3}-\mathrm{O}_{31}$	104.9(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{C}}$	104.9	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{C}}$	105.8	$\mathrm{O}_{32}-\mathrm{Tc}_{3}-\mathrm{O}_{33}$	105.3(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{A}}$	102.8	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{A}}$	103.6	$\mathrm{O}_{31}-\mathrm{Tc}_{3}-\mathrm{O}_{32}$	103.5(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{D}}$	89.1	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{31}-\mathrm{Tc}_{3}-\mathrm{F}_{10}$	88.0(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{D}}$	147.5	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{F}_{4}$	155.3	$\mathrm{O}_{33}-\mathrm{Tc}_{3}-\mathrm{F}_{10}$	157.3(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{D}}$	95.1	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{F}_{4}$	89.1	$\mathrm{O}_{32}-\mathrm{Tc}_{3}-\mathrm{F}_{10}$	89.2(2)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	87.7	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	87.3	$\mathrm{O}_{12}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	93.0(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	92.7	$\mathrm{O}_{11}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	87.9(2)

Ph.D. Thesis - Maria V. Ivanova

Table A5. (continued...)

$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	162.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	154.6	$\mathrm{O}_{13}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	154.0(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	70.0	$\mathrm{F}_{4}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	68.9(1)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	162.7	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	154.6	$\mathrm{O}_{11}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	154.6(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	92.7	$\mathrm{O}_{12}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	94.1(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	87.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	87.3	$\mathrm{O}_{13}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	85.8(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	70.0	$\mathrm{F}_{4}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{1}-\mathrm{F}_{1}$	68.5(1)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	87.5	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	87.3	$\mathrm{O}_{21}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	93.5(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	92.7	$\mathrm{O}_{22}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	87.6(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	162.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	154.6	$\mathrm{O}_{23}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	153.7(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	70.0	$\mathrm{F}_{4}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{2}-\mathrm{F}_{2}$	69.3(1)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	162.7	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	154.6	$\mathrm{O}_{22}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	155.1(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	92.7	$\mathrm{O}_{21}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	92.3(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	87.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	87.3	$\mathrm{O}_{23}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	87.6(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	70.0	$\mathrm{F}_{4}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	69.2(1)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	162.7	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	154.6	$\mathrm{O}_{32}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	156.5(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	92.7	$\mathrm{O}_{31}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	92.1(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	87.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	87.3	$\mathrm{O}_{33}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	86.7(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	70.0	$\mathrm{F}_{4}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{3}-\mathrm{F}_{3}$	69.7(1)
$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	87.7	$\mathrm{O}_{\mathrm{A}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	87.3	$\mathrm{O}_{32}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	87.5(2)
$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	85.2	$\mathrm{O}_{\mathrm{B}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	92.7	$\mathrm{O}_{33}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	93.2(2)
$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	162.7	$\mathrm{O}_{\mathrm{C}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	154.6	$\mathrm{O}_{31}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	155.2(2)
$\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	68.0	$\mathrm{F}_{4}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	67.9	$\mathrm{F}_{10}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	69.7(1)
$\mathrm{F}_{1}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	79.1	$\mathrm{F}_{1}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	74.5	$\mathrm{F}_{1}-\mathrm{Tc}_{1}-\mathrm{F}_{2}$	74.6(1)
$\mathrm{F}_{2}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	79.1	$\mathrm{F}_{2}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	74.5	$\mathrm{F}_{2}-\mathrm{Tc}_{2}-\mathrm{F}_{3}$	73.9(1)
$\mathrm{F}_{3}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	79.1	$\mathrm{F}_{3}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	74.5	$\mathrm{F}_{3}-\mathrm{Tc}_{3}-\mathrm{F}_{1}$	75.6(1)
$\mathrm{Tc}_{1}-\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{2}$	110.0	$\mathrm{Tc}_{1}-\mathrm{F}_{4}-\mathrm{Tc}_{2}$	103.5	$\mathrm{Tc}_{1}-\mathrm{F}_{10}-\mathrm{Tc}_{2}$	103.0(1)
$\mathrm{Tc}_{2}-\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{3}$	110.0	$\mathrm{Tc}_{2}-\mathrm{F}_{4}-\mathrm{Tc}_{3}$	103.5	$\mathrm{Tc}_{2}-\mathrm{F}_{10}-\mathrm{Tc}_{3}$	104.2(1)
$\mathrm{Tc}_{3}-\mathrm{O}_{\mathrm{D}}-\mathrm{Tc}_{1}$	110.0	$\mathrm{Tc}_{3}-\mathrm{F}_{4}-\mathrm{Tc}_{1}$	103.5	$\mathrm{Tc}_{3}-\mathrm{F}_{10}-\mathrm{Tc}_{1}$	105.0(1)
$\mathrm{Tc}_{1}-\mathrm{F}_{2}-\mathrm{Tc}_{2}$	104.9	$\mathrm{Tc}_{1}-\mathrm{F}_{2}-\mathrm{Tc}_{2}$	117.3	$\mathrm{Tc}_{1}-\mathrm{F}_{2}-\mathrm{Tc}_{2}$	114.4(1)
$\mathrm{Tc}_{2}-\mathrm{F}_{3}-\mathrm{Tc}_{3}$	104.9	$\mathrm{Tc}_{2}-\mathrm{F}_{3}-\mathrm{Tc}_{3}$	117.3	$\mathrm{Tc}_{2}-\mathrm{F}_{3}-\mathrm{Tc}_{3}$	113.2(1)
$\mathrm{Tc}_{3}-\mathrm{F}_{1}-\mathrm{Tc}_{1}$	104.9	$\mathrm{Tc}_{3}-\mathrm{F}_{1}-\mathrm{Tc}_{1}$	117.3	$\mathrm{Tc}_{3}-\mathrm{F}_{1}-\mathrm{Tc}_{1}$	114.1(1)

${ }^{a}$ For the atom labeling scheme, see Figure A5. ${ }^{b}$ The B3LYP/aug-cc-pVTZ (-PP) level was used. ${ }^{c}$ For the atom labeling scheme see Ref 23.

APPENDIX B

SYNTHESES AND STRUCTURAL CHARACTERIZATION OF THE

$$
\begin{gathered}
{\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-} \text {AND } \mathrm{fac}-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-} \text { ANIONS AND }} \\
(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\operatorname{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right.
\end{gathered}
$$

Table B1. Experimental Geometrical Parameters for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Geometrical Parameters for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$

exptl ${ }^{a}$				$\mathrm{calcd}^{\text {b }}$	
				B3LYP	PBE1PBE
Bond Lengths (\AA)					
$\mathrm{Re}_{5}-\mathrm{O}_{10}$	1.666(12)	$\mathrm{Re}_{7}-\mathrm{O}_{14}$	1.700(11)	1.671	1.659
$\mathrm{Re}_{5}-\mathrm{O}_{11}$	$1.690(11)$	$\mathrm{Re}_{7}-\mathrm{O}_{15}$	1.671(11)	1.671	1.659
$\mathrm{Re}_{6}-\mathrm{O}_{12}$	1.677(11)	$\mathrm{Re}_{8}-\mathrm{O}_{16}$	1.646(11)	1.674	1.662
$\mathrm{Re}_{6}-\mathrm{O}_{13}$	1.694(11)	$\mathrm{Re}_{8}-\mathrm{O}_{17}$	1.673(10)	1.674	1.662
$\mathrm{Re}_{6}-\mathrm{O}_{18}$	1.853(10)	$\mathrm{Re}_{8}-\mathrm{O}_{18}$	1.883(10)	1.876	1.862
$\mathrm{Re}_{5}-\mathrm{F}_{11}$	1.826(8)	$\mathrm{Re}_{7}-\mathrm{F}_{14}$	1.857(9)	1.840	1.826
$\mathrm{Re}_{5}-\mathrm{F}_{12}$	1.816(9)	$\mathrm{Re}_{7}-\mathrm{F}_{15}$	1.842(9)	1.850	1.836
$\mathrm{Re}_{6}-\mathrm{F}_{13}$	1.848(9)	$\mathrm{Re}_{8}-\mathrm{F}_{16}$	1.823(8)	1.844	1.831
$\mathrm{Re}_{5}-\mathrm{F}_{17}$	2.081(8)	$\mathrm{Re}_{7}-\mathrm{F}_{18}$	2.083(9)	2.115	2.097
$\mathrm{Re}_{5}-\mathrm{F}_{20}$	2.091(9)	$\mathrm{Re}_{7}-\mathrm{F}_{19}$	2.089(8)	2.115	2.097
$\mathrm{Re}_{6}-\mathrm{F}_{17}$	2.139(8)	$\mathrm{Re}_{8}-\mathrm{F}_{19}$	2.099(8)	2.131	2.112
$\mathrm{Re}_{6}-\mathrm{F}_{18}$	2.078(8)	$\mathrm{Re}_{8}-\mathrm{F}_{20}$	2.092(9)	2.131	2.112
$\mathrm{S}_{1}-\mathrm{O}_{20}$	1.40(2)				
$\mathrm{S}_{1}-\mathrm{O}_{19}$	1.47(3)				
$\mathrm{S}_{1}-\mathrm{F}_{21}$	1.53(3)				
$\mathrm{S}_{1}-\mathrm{Cl}_{1}$	1.94(3)				
$\mathrm{F}_{(11)}--\mathrm{O}_{(5)}$	2.683(13)				
$\mathrm{O}_{(13)}--\mathrm{O}_{(16 \mathrm{~A})}$	2.71(2)				
$\mathrm{O}_{(20)}---\mathrm{O}_{(6)}$	2.80(3)				
$\mathrm{F}_{(21)---\mathrm{O}_{(7 \mathrm{~B})}}$	2.96(3)				
$\mathrm{F}_{(21)}--\mathrm{F}_{(6 \mathrm{~B})}$	2.98 (3)				
$\mathrm{Cl}_{(1)---\mathrm{O}_{(6 \mathrm{C})}}$	2.80(1)				
$\mathrm{Cl}_{(1)---\mathrm{F}_{(16 \mathrm{C})}}$	3.05(2)				

Bond Angles (deg)

$\mathrm{O}_{10}-\mathrm{Re}_{5}-\mathrm{O}_{11}$	$102.6(6)$	$\mathrm{O}_{14}-\mathrm{Re}_{7}-\mathrm{O}_{15}$	$103.2(5)$	103.1	103.0
$\mathrm{O}_{12}-\mathrm{Re}_{6}-\mathrm{O}_{13}$	$102.4(6)$	$\mathrm{O}_{16}-\mathrm{Re}_{8}-\mathrm{O}_{17}$	$103.5(5)$	102.7	102.8
$\mathrm{O}_{12}-\mathrm{Re}_{6}-\mathrm{O}_{18}$	$97.9(5)$	$\mathrm{O}_{16}-\mathrm{Re}_{8}-\mathrm{O}_{18}$	$97.8(5)$	98.2	98.2
$\mathrm{O}_{13}-\mathrm{Re}_{6}-\mathrm{O}_{18}$	$98.0(5)$	$\mathrm{O}_{17}-\mathrm{Re}_{8}-\mathrm{O}_{18}$	$97.5(5)$	98.2	98.2
$\mathrm{O}_{10}-\mathrm{Re}_{5}-\mathrm{F}_{11}$	$98.5(5)$	$\mathrm{O}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{14}$	$96.8(5)$	98.4	98.6
$\mathrm{O}_{10}-\mathrm{Re}_{5}-\mathrm{F}_{12}$	$97.7(5)$	$\mathrm{O}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{15}$	$98.4(5)$	97.9	98.0
$\mathrm{O}_{10}-\mathrm{Re}_{5}-\mathrm{F}_{17}$	$165.7(5)$	$\mathrm{O}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{19}$	$168.0(4)$	166.5	166.5
$\mathrm{O}_{10}-\mathrm{Re}_{5}-\mathrm{F}_{20}$	$89.6(5)$	$\mathrm{O}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{18}$	$91.1(4)$	90.4	90.4
$\mathrm{O}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{11}$	$96.0(5)$	$\mathrm{O}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{14}$	$97.5(5)$	98.4	98.6
$\mathrm{O}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{12}$	$99.7(5)$	$\mathrm{O}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{15}$	$97.7(6)$	97.9	98.0
$\mathrm{O}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{17}$	$91.7(4)$	$\mathrm{O}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{19}$	$88.7(5)$	90.4	90.4
$\mathrm{O}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{20}$	$167.6(4)$	$\mathrm{O}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{18}$	$165.7(5)$	166.5	166.5
$\mathrm{O}_{12}-\mathrm{Re}_{6}-\mathrm{F}_{13}$	$96.9(5)$	$\mathrm{O}_{16}-\mathrm{Re}_{8}-\mathrm{F}_{16}$	$98.0(5)$	98.0	98.0
$\mathrm{O}_{12}-\mathrm{Re}_{6}-\mathrm{F}_{17}$	$89.3(5)$	$\mathrm{O}_{16}-\mathrm{Re}_{8}-\mathrm{F}_{19}$	$89.7(4)$	90.1	90.2
$\mathrm{O}_{12}-\mathrm{Re}_{6}-\mathrm{F}_{18}$	$166.3(5)$	$\mathrm{O}_{16}-\mathrm{Re}_{8}-\mathrm{F}_{20}$	$167.7(4)$	167.1	166.9
$\mathrm{O}_{13}-\mathrm{Re}_{6}-\mathrm{F}_{13}$	$97.1(5)$	$\mathrm{O}_{17}-\mathrm{Re}_{8}-\mathrm{F}_{16}$	$97.3(5)$	98.0	98.0
$\mathrm{O}_{13}-\mathrm{Re}_{6}-\mathrm{F}_{17}$	$168.0(5)$	$\mathrm{O}_{17}-\mathrm{Re}_{8}-\mathrm{F}_{19}$	$166.7(4)$	167.1	166.9

Table B1. (continued...)

$\mathrm{O}_{13}-\mathrm{Re}_{6}-\mathrm{F}_{18}$	90.9(5)	$\mathrm{O}_{17}-\mathrm{Re}_{8}-\mathrm{F}_{20}$	88.7(4)	90.1	90.2
$\mathrm{O}_{18}-\mathrm{Re}_{6}-\mathrm{F}_{13}$	156.0(4)	$\mathrm{O}_{18}-\mathrm{Re}_{8}-\mathrm{F}_{16}$	155.1(4)	154.0	153.9
$\mathrm{O}_{18}-\mathrm{Re}_{6}-\mathrm{F}_{17}$	82.7(4)	$\mathrm{O}_{18}-\mathrm{Re}_{8}-\mathrm{F}_{19}$	81.0(4)	81.3	81.2
$\mathrm{O}_{18}-\mathrm{Re}_{6}-\mathrm{F}_{18}$	77.2(3)	$\mathrm{O}_{18}-\mathrm{Re}_{8}-\mathrm{F}_{20}$	81.9(4)	81.3	81.2
$\mathrm{F}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{12}$	154.3(4)	$\mathrm{F}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{15}$	155.4(4)	153.6	153.2
$\mathrm{F}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{17}$	80.7(4)	$\mathrm{F}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{18}$	79.9(4)	79.9	79.7
$\mathrm{F}_{11}-\mathrm{Re}_{5}-\mathrm{F}_{20}$	79.5(4)	$\mathrm{F}_{14}-\mathrm{Re}_{7}-\mathrm{F}_{19}$	79.5(4)	79.9	79.7
$\mathrm{F}_{12}-\mathrm{Re}_{5}-\mathrm{F}_{17}$	78.7(4)	$\mathrm{F}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{18}$	80.6(4)	79.4	79.2
$\mathrm{F}_{12}-\mathrm{Re}_{5}-\mathrm{F}_{20}$	80.9(5)	$\mathrm{F}_{15}-\mathrm{Re}_{7}-\mathrm{F}_{19}$	81.6(5)	79.4	79.2
$\mathrm{F}_{17}-\mathrm{Re}_{5}-\mathrm{F}_{20}$	76.3(3)	$\mathrm{F}_{18}-\mathrm{Re}_{7}-\mathrm{F}_{19}$	77.0(3)	76.1	76.1
$\mathrm{F}_{13}-\mathrm{Re}_{6}-\mathrm{F}_{17}$	78.6(4)	$\mathrm{F}_{16}-\mathrm{Re}_{8}-\mathrm{F}_{19}$	80.0(4)	78.5	78.4
$\mathrm{F}_{13}-\mathrm{Re}_{6}-\mathrm{F}_{18}$	78.1(4)	$\mathrm{F}_{16}-\mathrm{Re}_{8}-\mathrm{F}_{20}$	78.6(4)	78.5	78.4
$\mathrm{F}_{17}-\mathrm{Re}_{6}-\mathrm{F}_{18}$	77.2(3)	$\mathrm{F}_{19}-\mathrm{Re}_{8}-\mathrm{F}_{20}$	78.1(4)	77.1	76.7
$\mathrm{Re}_{5}-\mathrm{F}_{17}-\mathrm{Re}_{6}$	145.2(5)	$\mathrm{Re}_{6}-\mathrm{F}_{18}-\mathrm{Re}_{7}$	153.9(5)	150.9	149.8
$\mathrm{Re}_{8}-\mathrm{F}_{20}-\mathrm{Re}_{5}$	142.6(4)	$\mathrm{Re}_{7}-\mathrm{F}_{19}-\mathrm{Re}_{8}$	156.6(4)	150.9	149.8
$\mathrm{Re}_{6}-\mathrm{O}_{18}-\mathrm{Re}_{8}$	160.6(6)			163.6	163.7
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	103.1(6)	$\mathrm{O}_{5}-\mathrm{Re}_{3}-\mathrm{O}_{6}$	102.4(6)	103.1	103.0
$\mathrm{O}_{3}-\mathrm{Re}_{2}-\mathrm{O}_{4}$	103.5(6)	$\mathrm{O}_{7}-\mathrm{Re}_{4}-\mathrm{O}_{8}$	102.4(8)	102.7	102.8
$\mathrm{O}_{3}-\mathrm{Re}_{2}-\mathrm{O}_{9}$	98.4(5)	$\mathrm{O}_{7}-\mathrm{Re}_{4}-\mathrm{O}_{9}$	98.5(5)	98.2	98.2
$\mathrm{O}_{4}-\mathrm{Re}_{2}-\mathrm{O}_{9}$	98.3(5)	$\mathrm{O}_{8}-\mathrm{Re}_{4}-\mathrm{O}_{9}$	98.3(5)	98.2	98.2
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	97.8(5)	$\mathrm{O}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{4}$	96.9(5)	98.4	98.6
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	97.1(5)	$\mathrm{O}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{5}$	98.3(5)	97.9	98.0
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{7}$	166.2(5)	$\mathrm{O}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{9}$	168.0(5)	166.5	166.5
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{10}$	88.4(5)	$\mathrm{O}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{8}$	91.2(5)	90.4	90.4
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	98.2(6)	$\mathrm{O}_{6}-\mathrm{Re}_{3}-\mathrm{F}_{4}$	98.8(5)	98.4	98.6
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	97.8(6)	$\mathrm{O}_{6}-\mathrm{Re}_{3}-\mathrm{F}_{5}$	98.1(6)	97.9	98.0
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{7}$	90.7(5)	$\mathrm{O}_{6}-\mathrm{Re}_{3}-\mathrm{F}_{9}$	89.6(5)	90.4	90.4
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{10}$	168.5(5)	$\mathrm{O}_{6}-\mathrm{Re}_{3}-\mathrm{F}_{8}$	166.4(5)	166.5	166.5
$\mathrm{O}_{3}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	97.3(6)	$\mathrm{O}_{7}-\mathrm{Re}_{4}-\mathrm{F}_{6}$	97.7(6)	98.0	98.0
$\mathrm{O}_{3}-\mathrm{Re}_{2}-\mathrm{F}_{7}$	90.3(6)	$\mathrm{O}_{7}-\mathrm{Re}_{4}-\mathrm{F}_{9}$	89.9(7)	90.1	90.2
$\mathrm{O}_{3}-\mathrm{Re}_{2}-\mathrm{F}_{8}$	166.4(6)	$\mathrm{O}_{7}-\mathrm{Re}_{4}-\mathrm{F}_{10}$	167.0(7)	167.1	166.9
$\mathrm{O}_{4}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	96.7(5)	$\mathrm{O}_{8}-\mathrm{Re}_{4}-\mathrm{F}_{6}$	98.1(5)	98.0	98.0
$\mathrm{O}_{4}-\mathrm{Re}_{2}-\mathrm{F}_{7}$	166.0(5)	$\mathrm{O}_{8}-\mathrm{Re}_{4}-\mathrm{F}_{9}$	167.6(6)	167.1	166.9
$\mathrm{O}_{4}-\mathrm{Re}_{2}-\mathrm{F}_{8}$	89.8(5)	$\mathrm{O}_{8}-\mathrm{Re}_{4}-\mathrm{F}_{10}$	90.6(6)	90.1	90.2
$\mathrm{O}_{9}-\mathrm{Re}_{2}-\mathrm{F}_{3}$	155.1(4)	$\mathrm{O}_{9}-\mathrm{Re}_{4}-\mathrm{F}_{6}$	153.9(4)	154.0	153.9
$\mathrm{O}_{9}-\mathrm{Re}_{2}-\mathrm{F}_{7}$	81.8(4)	$\mathrm{O}_{9}-\mathrm{Re}_{4}-\mathrm{F}_{9}$	81.6(4)	81.3	81.2
$\mathrm{O}_{9}-\mathrm{Re}_{2}-\mathrm{F}_{8}$	82.2(4)	$\mathrm{O}_{9}-\mathrm{Re}_{4}-\mathrm{F}_{10}$	80.3(4)	81.3	81.2
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	155.0(5)	$\mathrm{F}_{4}-\mathrm{Re}_{3}-\mathrm{F}_{5}$	154.2(4)	153.6	153.2
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{7}$	81.9(4)	$\mathrm{F}_{4}-\mathrm{Re}_{3}-\mathrm{F}_{8}$	80.2(4)	79.9	79.7
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{10}$	79.2(5)	$\mathrm{F}_{4}-\mathrm{Re}_{3}-\mathrm{F}_{9}$	80.0(5)	79.9	79.7
$\mathrm{F}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{7}$	78.9(4)	$\mathrm{F}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{8}$	78.8(4)	79.4	79.2
$\mathrm{F}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{10}$	81.3(5)	$\mathrm{F}_{5}-\mathrm{Re}_{3}-\mathrm{F}_{9}$	80.8(5)	79.4	79.2
$\mathrm{F}_{7}-\mathrm{Re}_{1}-\mathrm{F}_{10}$	77.9(3)	$\mathrm{F}_{8}-\mathrm{Re}_{3}-\mathrm{F}_{9}$	76.8(4)	76.1	76.1
$\mathrm{F}_{3}-\mathrm{Re}_{2}-\mathrm{F}_{7}$	78.9(4)	$\mathrm{F}_{6}-\mathrm{Re}_{4}-\mathrm{F}_{9}$	78.2(4)	78.5	78.4
$\mathrm{F}_{3}-\mathrm{Re}_{2}-\mathrm{F}_{8}$	78.1(4)	$\mathrm{F}_{6}-\mathrm{Re}_{4}-\mathrm{F}_{10}$	79.4(4)	78.5	78.4
$\mathrm{F}_{7}-\mathrm{Re}_{2}-\mathrm{F}_{8}$	76.3(4)	$\mathrm{F}_{9}-\mathrm{Re}_{4}-\mathrm{F}_{10}$	77.1(4)	77.1	76.7
$\mathrm{Re}_{1}-\mathrm{F}_{7}-\mathrm{Re}_{2}$	150.8(5)	$\mathrm{Re}_{2}-\mathrm{F}_{8}-\mathrm{Re}_{3}$	147.4(5)	150.9	149.8
$\mathrm{Re}_{4}-\mathrm{F}_{10}-\mathrm{Re}_{1}$	154.2(5)	$\mathrm{Re}_{3}-\mathrm{F}_{9}-\mathrm{Re}_{4}$	150.3(5)	150.9	149.8
$\mathrm{Re}_{2}-\mathrm{O}_{9}-\mathrm{Re}_{4}$	162.7(6)			163.6	163.7
$\mathrm{O}_{20}-\mathrm{S}-\mathrm{O}_{19}$	116(2)				

Table B1. (continued...)

$\mathrm{O}_{20}-\mathrm{S}_{1}-\mathrm{F}_{21}$	$117(2)$
$\mathrm{O}_{20}-\mathrm{S}_{1}-\mathrm{Cl}_{1}$	$108(1)$
$\mathrm{O}_{19}-\mathrm{S}_{1}-\mathrm{F}_{21}$	$109(2)$
$\mathrm{O}_{19}-\mathrm{S}_{1}-\mathrm{Cl}_{1}$	$96(1)$
$\mathrm{F}_{21}-\mathrm{S}_{1}-\mathrm{Cl}_{1}$	$108(1)$

${ }^{a}$ For the atom labeling scheme, see Figure B1. ${ }^{b}$ For the atom labeling scheme, see Figure 4.3b. The aug-cc-pVTZ(-PP) basis set was used.

Figure B1. Crystal structure of $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{CIF}$; thermal ellipsoids are shown at the 50% probability level. The two orientations of the positionally disordered (50/50) $\mathrm{SO}_{2} \mathrm{ClF}$ molecule are shown.

The $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\operatorname{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ Salts

The $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$and $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anions have been previously synthesized as their $\mathrm{Li}^{+} / \mathrm{Na}^{+} / \mathrm{Cs}^{+} /\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+} / \mathrm{K}^{+}$salts, respectively, ${ }^{19}$ and characterized by Raman and ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The salts of $\mathrm{Li}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{K}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ were additionally characterized by single-crystal X-ray diffraction, however, no crystal structures were obtained for the Cs^{+}salts. Overall all bond lengths and angles are comparable among the corresponding cations in the K^{+}and Cs^{+}salts, except the $\operatorname{Re}-\mathrm{F}_{\mu}-\operatorname{Re}$ bond angle ($\left.\mathrm{Cs}^{+}, 180.0^{\circ} ; \mathrm{K}^{+}, 139.5(6)^{\mathrm{o}}{ }^{19}\right)$.

Crystals of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ and $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ were grown from a pale yellow solution prepared by reacting $\mathrm{ReO}_{3} \mathrm{~F}(0.0602 \mathrm{~g}, 0.2376 \mathrm{mmol})$ with $\mathrm{CsF}(0.0698 \mathrm{~g}$, 0.4597 mmol) in aHF in a $1 / 4$-in. o.d. FEP reaction vessel equipped with a side arm (Tshaped reactor) and fitted with a Kel-F valve. The main arm of the reaction vessel containing the solution was placed inside the glass dewar of the crystal growing apparatus precooled to $-33^{\circ} \mathrm{C}$ and the temperature of the dewar and contents was slowly lowered to $-40^{\circ} \mathrm{C}$ to induce slow crystal growth. Colorless plates formed over a period of $5-6 \mathrm{~h}$. Upon completion of crystal growth, the supernatant was decanted into the side arm, which had been precooled to $-196^{\circ} \mathrm{C}$. The crystalline products were dried under dynamic vacuum at $-45^{\circ} \mathrm{C}$ before the side arm containing the frozen supernatant was heat-sealed off under dynamic vacuum. The portion of the reactor containing the dry crystalline products were backfilled with dry N_{2} and stored at $-78{ }^{\circ} \mathrm{C}$ until the crystals could be mounted. A crystal of $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]$ having the dimensions $0.11 \times 0.27 \times 0.33 \mathrm{~mm}^{3}$ and a crystal of $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]$ having the dimensions $0.12 \times 0.31 \times 0.31 \mathrm{~mm}^{3}$ were selected for a low-temperature X-ray structure determination.

Figure B2. The (a) $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$and (b) $\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right]^{-}$anions in the crystal structures of $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{HF}$ and $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$, respectively. Packing diagrams for (c) $\mathrm{Cs}\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right] \cdot 2 \mathrm{HF}$ and (d) $\mathrm{Cs}\left[\mathrm{ReO}_{2} \mathrm{~F}_{4}\right] \cdot 3 \mathrm{HF}$ are shown along the c - and a-axes, respectively. Thermal ellipsoids are shown at the 50 \% probability level.

Figure B3. The packing diagram for $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ is shown along the b-axis. Thermal ellipsoids are shown at the 50% probability level.

Figure B4. The coordination environment around the K^{+}cation in the crystal structure of $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$. Thermal ellipsoids are shown at the 50% probability level.

Figure B5. Raman spectrum of crystalline $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line (*), instrumental artifact (\dagger), overlap of a $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with an FEP sample tube line (\ddagger), and a $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ line (§). The $\left[\mathrm{NH}_{4}\right]^{+}$cation modes were observed at $214 \mathrm{sh}, 265(1), 1439(<1), 3137(1)$, and $3191(1) \mathrm{cm}^{-1}$.

Figure B6. Raman spectrum of crystalline $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064nm excitation. Symbols denote an FEP sample tube line (${ }^{*}$), instrumental artifact (\dagger), overlap of a $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with an FEP sample tube line (\ddagger), and a $\mathrm{Cs}\left[\mathrm{ReO}_{4}\right]$ line (§).

Figure B7. Raman spectrum of a solid mixture of crystalline $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$, crystalline $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$, and $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line (*), instrumental artifact (\dagger), overlap of a $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with a $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ line (\#), overlap of a $\mathrm{K}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with an FEP sample tube line (\ddagger), and a $\mathrm{K}\left[\mathrm{ReO}_{4}\right]$ line (§).

Figure B8. Raman spectrum of a solid mixture of crystalline $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ recorded at $150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote an FEP sample tube line $\left(^{*}\right)$, instrumental artifact (\dagger), overlap of a $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ line with an FEP sample tube line (\ddagger), a $\mathrm{Cs}\left[\mathrm{ReO}_{4}\right]$ line (§), a $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line (\#), and overlap of a $\mathrm{Cs}\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]$ line with a $\mathrm{Cs}_{2}\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$ line (\&).
Table B2. Experimental Raman Frequencies and Intensities for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-{ }^{18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$ in $(\mu \text {-F) })_{4}\{[\mu$ $\left.\left.{ }^{16 / 18} \mathrm{O}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\} \cdot \mathrm{SO}_{2} \mathrm{ClF}$ and Calculated Raman and Infrared Frequencies, Intensities, and Assignments
for $(\mu-\mathrm{F})_{4}\left\{\left[\mu-\mu^{16 / 18} \mathrm{O}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}\right)_{2}\right]\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{2}\right)_{2}\right\}$

exptl ${ }^{\text {a,b }}$			$\mathrm{calcd}^{\text {a,c }}$			assgnts ($C_{\text {s }}{ }^{\text {d }}$
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv	${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{O}_{5}\right)+v\left(\mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]$
1024.0(100)	969.1(100)	-54.9	1077.9(159)[9]	1020.2(143)[8]	-57.7	
			$\{$ 1075.1(14)[115]	1017.4(13)[101]	-57.7	$\left[v\left(\operatorname{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Re}_{3} \mathrm{O}_{5}\right)+v\left(\mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]$
			1072.1(1) [[1]	1014.1(10)[<1]	-58.0	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)+v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]-\left[v\left(\mathrm{Re}_{4} \mathrm{O}_{7}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]_{\text {small }}$
1012.6(97)	958.8(94)	-53.8	1066.0(58)[145]	1008.7(50)[132]	-57.3	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)+v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[v\left(\mathrm{Re}_{4} \mathrm{O}_{7}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]$
996.3(24)	945.8(30)	-50.5	$\left\{\begin{array}{l}1042.2(7)[328] \\ 1041544 \text { [0] }\end{array}\right.$	988.6(6)[301]	-53.6	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{O}_{6}\right)-v\left(\mathrm{Re}_{3} \mathrm{O}_{5}\right)\right]$
				988.1(39)[0]	-53.4	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{O}_{5}\right)-v\left(\mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]$
991.3(46)	940.5(44)	-50.8	1032.0(23)[330]	978.9(20)[307]	-53.1	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[v\left(\mathrm{Re}_{4} \mathrm{O}_{8}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{7}\right)\right]$
988.7 sh	937.0 sh	-51.7	1028.5(4)[0]	975.3(3)[0]	-53.2	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[v\left(\mathrm{Re}_{4} \mathrm{O}_{7}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]$
863.7(4)	819(4) ${ }^{\text {e }}$	-44.7	887.2(5)[813]	841.1(4)[709]	-46.1	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]$
700.8(2)	700.8(2)	0.0	704.0(7)[198]	704.0(7)[198]	-0.0	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]$
691.3(2)	691.7(3)	0.0	$\{695.3(8)[133]$	695.2(8)[134]	-0.1	$\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{4} \mathrm{~F}_{6}\right)\right]-\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]$
			690.0(1)[166]	690.0(1)[165]	0.0	
$\begin{aligned} & 675.9 \text { sh } \\ & 668.5(9) \end{aligned}$	$\begin{aligned} & 675.9 \mathrm{sh} \\ & 668.4(13) \end{aligned}$	$\begin{array}{r} 0.0 \\ -0.1 \end{array}$	676.1(<1)[4]	676.0(<1)[4]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]$
			675.3(13)[54]	675.2(13)[54]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{4} \mathrm{~F}_{6}\right)\right]$
			672.7(1)[303]	671.9(1)[327]	-0.8	$\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{6}\right)\right]$
			505.1(1)[191]	504.2(1)[197]	-0.9	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]-\left[v\left(\operatorname{Re}_{4} \mathrm{~F}_{9}\right)+v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right]$
			467.2(<1)[341]	$466.2(<1)[355]$	-1.0	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)\right]-\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[v\left(\operatorname{Re}_{4} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right]$
			439.3(<1)[28]	$437.2(<1)[25]$	-2.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\mathrm{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)\right]-\left[v\left(\mathrm{Re}_{4} \mathrm{~F}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{~F}_{10}\right)\right]$
414.2(5)	397.5(5)	-16.7	421.1(2)[22]	402.2(2)[12]	-18.9	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]$
			-415.3(1)[0]	412.9(1)[0]	-2.4	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[v\left(\operatorname{Re}_{4} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right]$
405.4(9)	385.2(9)	-20.2	413.6(2)[<1]	393.4(2)[1]	-20.2	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$
400.2(10)	380.1(10)	-20.1	$\{411.0(1)[17]$	391.5(1)[14]	-19.5	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)$
395.7(6)	376.6(7)	-19.1	407.6(1)[2]	386.7(1)[2]	-20.9	$\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$
			407.1(6)[2]	$386.4(5)[3]$	-20.7	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]-\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]$
			402.3(<1)[7]	$384.2(<1)[<1]$	-18.1	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{8} \mathrm{Re}_{4} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]$
347.9(4)	345.1(3)		$\left\{\begin{array}{l}348.2(2)[7] \\ 340.3(3)[1]\end{array}\right.$	$344.3(2)[16]$	-3.9	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Re}_{1} \mathrm{~F}_{7} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]-\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{O}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Re}_{3} \mathrm{O}_{5} \mathrm{O}_{6}\right)\right]_{\text {small }}$
			$340.0(3)[1]$	$335.5(2)[<1]$	-4.5	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)-\rho_{l}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[\rho_{\mathrm{l}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)-\rho_{l}\left(\mathrm{~F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{1}\left(\mathrm{~F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)-\rho_{\mathrm{l}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]$
329.1(2)	327.4 sh	-1.7	337.9(1)[8]	331.1(1)[4]	-6.8	$\left.\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8} \mathrm{~F}_{6}\right)\right]$
			336.8(2)[5]	326.4(1)[4]	-10.4	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{O}_{6} \mathrm{Re}_{3} \mathrm{~F}_{4}\right)\right]$
			$329.4(<1)[0]$	$323.5(<1)[0]$	-5.9	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)\right]$
325.9 sh			$\left\{\begin{array}{l}321.4(3)[57] \\ 320.3(1)[90]\end{array}\right.$	$312.7(3)[52]$		$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)+\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)+\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]_{\text {small }}\right.$
$312.6(11)^{\text {e }}$	$307.5(11)$	-5.1	$320.3(<1)[90]$ $312.4(2)[0]$	308.7 (<1)[76] $306.6(2)[0]$	-11.6 -5.8	$\dot{\delta}\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{O}_{4}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{7} \mathrm{O}_{8}\right)$

Ph.D. Thesis-Maria V. Ivanova
Table B2. (continued...)

1003.2(3)[0]	-54.6	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[v\left(\mathrm{Re}_{4} \mathrm{O}_{7}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]$
863.8(4)[728]	-47.2	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)-v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]$
720.9(7)[227]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]$
714.0(7)[123]	-0.1	$\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{4} \mathrm{~F}_{6}\right)\right]-\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]$
708.2(1)[166]	-0.1	[$v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)-v\left(\mathrm{Re}_{3} \mathrm{~F}_{4}\right)$]
$693.9(<1)[3]$	-0.1	[$v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\mathrm{Re}_{3} \mathrm{~F}_{5}\right)$]
693.2(11)[57]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{3} \mathrm{~F}_{5}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Re}_{4} \mathrm{~F}_{6}\right)\right]$
689.4(1)[341]	-0.9	[$v\left(\operatorname{Re}_{2} \mathrm{~F}_{3}\right)-v\left(\mathrm{Re}_{4} \mathrm{~F}_{6}\right)$]
518.7(1)[195]	-0.8	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\mathrm{Re}_{3} \mathrm{~F}_{8}\right)+v\left(\mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]-\left[v\left(\mathrm{Re}_{4} \mathrm{~F}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{~F}_{10}\right)\right]$
480.0(<1)[377]	-0.9	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)\right]-\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)+v\left(\mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[v\left(\mathrm{Re}_{4} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right]$
452.6(<1)[29]	-1.9	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)-v\left(\mathrm{Re}_{3} \mathrm{~F}_{8}\right)\right]-\left[v\left(\mathrm{Re}_{4} \mathrm{~F}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{~F}_{10}\right)\right]$
409.6(1)[8]	-18.9	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]$
425.4(1)[0]	-2.4	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{10}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{7}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{8}\right)\right]+\left[v\left(\operatorname{Re}_{3} \mathrm{~F}_{8}\right)-v\left(\operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[v\left(\operatorname{Re}_{4} \mathrm{~F}_{9}\right)-v\left(\operatorname{Re}_{4} \mathrm{~F}_{10}\right)\right]$
401.0(2)[2]	-20.7	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$
399.3(1)[11]	-19.8	$\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)$
394.0(1)[1]	-21.4	$\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)$
393.6(5)[2]	-21.0	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)\right]-\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{9}\right)+v\left(\mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]$
$390.7(<1)[<1]$	-18.1	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{8} \mathrm{Re}_{4} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]$
353.5(1)[19]	-3.5	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Re}_{1} \mathrm{~F}_{7} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]-\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{O}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Re}_{3} \mathrm{O}_{5} \mathrm{O}_{6}\right)\right]_{\text {small }}$
$344.7(2)[<1]$	-4.1	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]$
336.3(1)[3]	-6.3	$\left.\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8} \mathrm{~F}_{6}\right)\right]$
331.7(2)[4]	-10.2	$\left[\delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{O}_{6} \mathrm{Re}_{3} \mathrm{~F}_{4}\right)\right]$
$331.6(<1)[0]$	-5.5	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \operatorname{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{l}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \operatorname{Re}_{1} \mathrm{~F}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{5}\right)\right]$
$316.9(3)[51]$	-9.6	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)+\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)+\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]_{\text {small }}\right.$
$312.7(<1)[68]$	-11.5	$\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{O}_{4}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{7} \mathrm{O}_{8}\right)$
311.3(1)[0]	-6.0	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{7}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Re}_{4} \mathrm{O}_{8}\right)\right]+\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]_{\text {small }}$
296.6(<1)[42]	-5.8	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Re}_{1} \mathrm{~F}_{7} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{O}_{8} \mathrm{Re}_{4} \mathrm{O}_{9}\right)-\delta\left(\mathrm{O}_{7} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]$
291.8(1)[72]	-5.1	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Re}_{1} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{2} \mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[\delta\left(\mathrm{F}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Re}_{3} \mathrm{O}_{5}\right)\right]-\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{~F}_{9} \mathrm{~F}_{10}\right)\right]$
296.4(2)[74]	-4.8	$\left[\rho_{(}\left(\mathrm{O}_{7} \mathrm{Re}_{4} \mathrm{O}_{8}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{9}\right)\right]+\left[\delta\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{9} \mathrm{Re}_{3} \mathrm{~F}_{8}\right)\right]$
268.9(2)[13]	-5.4	$\left[\delta\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)+\delta\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \mathrm{Re}_{4} \mathrm{O}_{9}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}\right)\right]$
261.2(2)[0]	-6.3	$\left\{\begin{array}{l} {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{O}_{1}\right)+\rho_{\mathrm{t}}\left(\mathrm{~F}_{7} \operatorname{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{4} \operatorname{Re}_{3} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{5} \operatorname{Re}_{3} \mathrm{O}_{6}\right)+\rho_{\mathrm{t}}\left(\mathrm{~F}_{8} \operatorname{Re}_{3} \mathrm{~F}_{9}\right)\right]+} \\ {\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{7} \operatorname{Re}_{4} \mathrm{O}_{8}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{3} \operatorname{Re}_{2} \mathrm{O}_{4}\right)\right]} \end{array}\right.$
264.8(1)[63]	-2.1	$\left.{ }_{[\delta(}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{7} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Re}_{3} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]$
250.5(1)[1]	-4.3	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{1}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \mathrm{Re}_{1} \mathrm{~F}_{10}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{5} \mathrm{Re}_{3} \mathrm{O}_{6}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{8} \mathrm{Re}_{3} \mathrm{~F}_{9}\right)\right]$

Table B2. (continued...)
 No
\circ

 988.7 sh
$863.7(4)$
$700.8(2)$
$691.3(2)$
675.9 sh
$668.5(9)$
$\stackrel{\ominus}{\mathrm{o}}$
त्रेत्रे

$\stackrel{\infty}{i} \underset{\uparrow}{\uparrow}$
$\stackrel{n}{\infty}$
ぶ \vec{i}

Table B2.	(continued...)	
$235.0(1)$	$232.4(2)$	-2.6
$202.8(15)$	$199.8(20)$	-3.0
$182.0(<1)$	$180.4(<1)$	-1.6
$160.0(1)$	$157.8(2)$	-2.2
$143.5(<1)$	$139.7(1)$	-3.8
$128.6(1)$	$127.6(2)$	-1.0
$119.2(1)$	119.1 sh	0.0

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} . \Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right) .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectra were recorded in FEP sample tubes at $-130^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The abbreviation denotes shoulder (sh). The $\mathrm{SO}_{2} \mathrm{CIF}$ modes were observed at $424(3), 431(4), 474(<1), 502(1), 626(1), 824(1), 1218(4)$, and $1444(1) \mathrm{cm}^{-1} .{ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). ${ }^{d}$ The atom numbering scheme corresponds to that used in Figure 4.3b. The abbreviations denote stretch (v), bend (δ), translation (trans), wag (ρ_{w}), twist $\left(\rho_{\mathrm{t}}\right)$, and rock $\left(\rho_{\mathrm{r}}\right) .{ }^{e}$ Overlap with $\mathrm{SO}_{2} \mathrm{ClF}$

Table B3. Calculated Vibrational Frequencies and Infrared and Raman Intensities for mer $-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$

${ }^{a}$ Values in parentheses denote calculated Raman intensities $\left(\AA^{4} \mu^{-1}\right)$. Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The aug-cc-pVTZ(-PP) basis set was used. ${ }^{b}$ The abbreviations denote stretch (v), bend (δ), wag (ρ_{w}), rock (ρ_{r}), twist $\left(\rho_{\mathrm{t}}\right)$, umbrella (umb). ${ }^{c}$ For the atom labeling scheme, see Figure B9b.

Figure B9. Calculated Structures of the (a) fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 \mathrm{v}}\right)$ and (b) mer- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ $\left(C_{\mathrm{s}}\right)$ anions (B3LYP/aug-cc-pVTZ(-PP)).

Table B4. Calculated Vibrational Frequencies and Infrared and Raman Intensities for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer (C_{s})

$\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)$		
calcd^{a}		assgnt ${ }^{\text {b }}$
B3LYP	PBE1PBE	
1004(54)[54]	1035(52)[56]	$v\left(\mathrm{ReO}_{2}\right)+v\left(\mathrm{ReO}_{3}\right)+v\left(\mathrm{ReO}_{1}\right)$
949(13)[262]	975(12)[277]	$v\left(\mathrm{ReO}_{2}\right)-v\left(\mathrm{ReO}_{3}\right)$
938(19)[274]	964(18)[289]	$v\left(\mathrm{ReO}_{2}\right)+v\left(\mathrm{ReO}_{3}\right)-v\left(\mathrm{ReO}_{1}\right)$
577(3)[159]	594(3)[164]	$v\left(\mathrm{ReF}_{1}\right)+v\left(\mathrm{ReF}_{2}\right)$
495(2)[70]	511(2)[73]	$v\left(\mathrm{ReF}_{1}\right)-v\left(\mathrm{ReF}_{2}\right)$
406(3)[4]	414(3)[3]	$\delta\left(\mathrm{F}_{2} \mathrm{ReF}_{1}\right)+\delta\left(\mathrm{O}_{3} \mathrm{O}_{2} \mathrm{ReO}_{1}\right)$
392(5)[3]	399(4)[3]	$\delta\left(\mathrm{O}_{2} \mathrm{ReO}_{1}\right)-\delta\left(\mathrm{O}_{3} \mathrm{ReO}_{1}\right)$
$350(<1)[22]$	358(<1)[22]	$\delta\left(\mathrm{F}_{1} \mathrm{ReF}_{1}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{ReO}_{3}\right)$
342(2)[14]	349(2)[12]	$\delta\left(\mathrm{O}_{3} \mathrm{ReO}_{2}\right)+\delta\left(\mathrm{O}_{1} \mathrm{ReF}_{1}\right)_{\text {small }}$
282(1)[14]	286(1)[14]	$\rho_{\mathrm{t}}\left(\mathrm{O}_{3} \mathrm{ReO}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{~F}_{2} \mathrm{ReO}_{1}\right)$
249(2)[26]	254(2)[27]	$\delta\left(\mathrm{O}_{1} \mathrm{ReF}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{ReO}_{3}\right)$
68(1) [<1]	69(1)[<1]	$\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{ReF}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{ReO}_{2} \mathrm{O}_{3}\right)$

${ }^{a}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mu^{-1}$). Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The aug-cc-pVTZ(-PP) basis set was used. ${ }^{b}$ The abbreviations denote stretch (v), bend (δ), wag $\left(\rho_{\mathrm{w}}\right)$, rock $\left(\rho_{\mathrm{r}}\right)$, twist (ρ_{t}). For the atom labeling scheme, see Figure B10.

Figure B10. Calculated Structure of $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer (C_{s}) (B3LYP/aug-cc-pVTZ(PP)).

Table B5. Correlation Diagram for the Vibrational Modes of the fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion ${ }^{a}$ in $\mathrm{K}\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]$

${ }^{a}$ The irreducible representations are $\Gamma=4 \mathrm{~A}_{1}+\mathrm{A}_{2}+5 \mathrm{E}$ for the $f a c-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ anion. ${ }^{b}$ The anion symmetry $\left(C_{3 \mathrm{v}}\right)$ is the symmetry observed in the crystallographic unit cell and for the optimized geometry in the gas phase. ${ }^{c}$ The crystallographic space group is $P \mathrm{a} \overline{3}$ with $Z=8$.

Figure B11. Raman spectrum of solid $\mathrm{Re}_{2} \mathrm{O}_{7}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line (${ }^{*}$) and instrumental artifact (\dagger). (1009(18), 1007 sh, 993(100), 976(35), 973(24), 965 sh, 961(23), 954(4), 930(27), 910(39), 895(1), 879(2), 855(41), 833(86), 798(67), 782 sh, 421(1), 412(1), 401(1), 386(5), 370(5), 351(8), 344(9), 336(21), 329(10), 300(6), 288(6), 266 sh, 258(4), 236(2), 217(2), 173 sh, $\left.168(5), 152(2) \mathrm{cm}^{-1}\right)$.

Table B6 Calculated ${ }^{a}$ Bond Lengths and Bond Angles for $\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}$Monomer

$\left[\mathrm{ReO}_{3} \mathrm{~F}_{2}\right]^{-}\left(C_{\mathrm{s}}\right)^{\text {b }}$		
	B3LYP	PBE1PBE
Bond Length (\AA)		
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.721	1.709
$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.712	1.699
$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.712	1.699
$\mathrm{Re}_{1}-\mathrm{F}_{1}$	1.938	1.922
$\mathrm{Re}_{1}-\mathrm{F}_{2}$	1.975	1.959
$\mathrm{Re}_{1}-\mathrm{F}_{3}$		
Bond Angle (deg)		
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	101.3	101.3
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	101.3	101.3
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	109.8	109.7
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	84.7	84.6
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	123.8	123.9
$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	123.8	123.9
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	159.3	159.2
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	90.5	90.5
$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	90.5	90.5
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{3}$		
$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{3}$		
$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{3}$		
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	74.6	74.5
$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{3}$		
$\mathrm{F}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{2}$		

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. ${ }^{b}$ For the atom labeling scheme, see Figure B10.

Table B7. Calculated ${ }^{a}$ Bond Lengths and Bond Angles for fac- and mer- $\left[\operatorname{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$

fac- $\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{3 v}\right)^{b}$			mer $-\left[\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}\left(C_{\mathrm{s}}\right)^{\text {c }}$		
	B3LYP	PBE1PBE		B3LYP	PBE1PBE
Bond Length (A)					
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.735	1.722	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.763	1.749
			$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.763	1.749
			$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.731	1.718
$\mathrm{Re}_{1}-\mathrm{F}_{1}$	2.035	2.017	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	1.962	1.946
			$\mathrm{Re}_{1}-\mathrm{F}_{2}$	2.002	1.987
			$\mathrm{Re}_{1}-\mathrm{F}_{3}$	2.089	2.068
Bond Angle (deg)					
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{1 \mathrm{~A}}$	100.9	101.0	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	152.6	151.4
			$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	102.0	102.4
			$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	102.0	102.4
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	89.0	89.0	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	97.2	97.8
			$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	97.2	97.8
			$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{1}$	87.0	86.4
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	164.2	164.0	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	82.7	82.2
			$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	82.7	82.2
			$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	93.1	93.3
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~B}}$	89.0	89.0	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{3}$	80.0	80.0
			$\mathrm{O}_{2}-\mathrm{Re}_{1}-\mathrm{F}_{3}$	80.0	80.0
			$\mathrm{O}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{3}$	165.6	164.3
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	78.8	78.8	$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	179.4	179.8
			$\mathrm{F}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{3}$	78.7	77.9
			$\mathrm{F}_{3}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	100.8	102.3

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. ${ }^{b}$ For the atom labeling scheme, see Figure B9a. ${ }^{c}$ For the atom labeling scheme, see Figure B9b.

Table B8. NBO Natural Charges and Wiberg Valencies and Bond Indices for the Hypothetical $\left[(\mu-\mathrm{F})_{4}\left(\mathrm{ReO}_{3} \mathrm{~F}\right)_{4}\right]^{4-}$ Anion $\left(C_{4 \mathrm{v}}\right)^{a}$

Atom	B3LYP		PBE1PBE		Bond	Bond Index	
	Charge	Valence	Charge	Valence		B3LYP	PBE1PBE
Re_{1}	2.20	5.58	2.20	5.59	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.52	1.52
O_{1}	-0.68	2.08	-0.68	2.08	$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.52	1.52
O_{2}	-0.68	2.08	-0.68	2.08	$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.56	1.56
O_{3}	-0.62	2.15	-0.63	2.15	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	0.50	0.50
F_{1}	-0.59	0.75	-0.59	0.75	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	0.24	0.24
F_{2}	-0.63	0.72	-0.63	0.71	$\mathrm{Re}-\mathrm{F}_{2 \mathrm{~A}}$	0.24	0.24
$\mathrm{F}_{2 \mathrm{~A}}$	-0.63	0.72	-0.63	0.71	${ }^{a}$ The au	-pVTZ() basis set

was used.

Table B9. NBO Natural Charges and Wiberg Valencies and Bond Indices for the $\left[f a c-\mathrm{ReO}_{3} \mathrm{~F}_{3}\right]^{2-}$ Anion $\left(C_{3 \mathrm{v}}\right)^{a}$

Atom	B3LYP		PBE1PBE		Bond	Bond Index	
	Charge	Valence	Charge	Valence		B3LYP	PBE1PBE
Re_{1}	2.18	5.61	2.18	5.63	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.47	1.48
O_{1}	-0.72	2.04	-0.72	2.04	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	0.40	0.40
F_{1}	-0.68	0.60	-0.68	0.60			

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used.

Table B10. NBO Natural Charges and Wiberg Valencies and Bond Indices for (μ -$\mathrm{F})_{4}\left\{\left[\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)_{2}\right]\left(\mathrm{ReO}_{2} \mathrm{~F}_{2}\right)_{2}\right\}\left(C_{2 \mathrm{v}}\right)^{a}$

Atom	B3LYP		PBE1PBE		Bond	B3LYP	PBE1PBE
	Charge	Valence	Charge	Valence		Bond Index	Bond Index
Re_{1}	2.23	5.54	2.34	5.56	$\mathrm{Re}_{1}-\mathrm{O}_{1,2}$	1.81	1.82
Re_{2}	2.30	5.56	2.30	5.57	$\mathrm{Re}_{2}-\mathrm{O}_{3,4}$	1.79	1.80
F_{1}	-0.43	1.02	-0.43	1.01	$\mathrm{Re}_{2}-\mathrm{O}_{9}$	0.74	0.74
F_{2}	-0.45	0.98	-0.45	0.98	$\mathrm{Re}_{1}-\mathrm{F}_{1}$	0.71	0.71
F_{3}	-0.43	1.01	-0.43	1.01	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	0.69	0.70
$\mathrm{F}_{7,8,10}$	-0.61	0.76	-0.61	0.75	$\mathrm{Re}_{2}-\mathrm{F}_{3}$	0.70	0.70
$\mathrm{O}_{1,2}$	-0.40	2.36	-0.40	2.36	$\mathrm{Re}_{1}-\mathrm{F}_{7,10}$	0.25	0.25
$\mathrm{O}_{3,4}$	-0.40	2.37	-0.40	2.37	$\mathrm{Re}_{2}-\mathrm{F}_{7,8}$	0.24	0.24
O_{9}	-0.78	2.11	-0.79	2.09			

${ }^{a}$ The aug-cc-pVTZ(-PP) basis sets were used.

APPENDIX C

FLUORIDE ION-DONOR PROPERTIES OF ReO ${ }_{3}$ F

Figure C1. Calculated structure $\left(C_{3 v}\right)$ of the $\left[\mathrm{ReO}_{3}\right]^{+}$cation (B3LYP [PBE1PBE]/aug-cc-pVTZ(-PP)).

Table C1. Calculated ${ }^{a}$ Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{ReO}_{3}\right]^{+}$cation $\left(C_{3 \mathrm{v}}\right)$

B3LYP	PBE1PBE		assgnts ${ }^{\text {b }}$
1084(39)[<1]	1120(39)[<1]	A_{1}	$v\left(\mathrm{ReO}_{1}\right)+v\left(\mathrm{ReO}_{2}\right)+v\left(\mathrm{ReO}_{3}\right)$
1016(16)[64]	1048(16)[76]	E	$v\left(\mathrm{ReO}_{2}\right)-v\left(\mathrm{ReO}_{3}\right)$
378(4)[<1]	387(4)[<1]	E	$\delta\left(\mathrm{ReO}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)_{\text {oop }}$
340(2)[8]	347(2)[9]	A_{1}	$\delta\left(\mathrm{O}_{1} \mathrm{ReO}_{2}\right)$

${ }^{a}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} u^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The aug-cc-pVTZ(-PP) basis set was used. ${ }^{b}$ For atom labeling see Figure C1. Abbreviations denote stretch (v), bend (δ), and out-of-plane (oop).

Figure C2. Calculated structure $\left(C_{\mathrm{s}}\right)$ of the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion (B3LYP/aug-cc-pVTZ(-PP)).

Table C2. Calculated ${ }^{a}$ Vibrational Frequencies, Intensities, and Assignments for the [$\left.\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion $\left(C_{\mathrm{s}}\right)$

B3LYP	PBE1PBE	B3LYP	PBE1PBE
701(0)[189]	725(<1)[193]	261(<1)[0]	266(<1)[0]
681(<1)[272]	$703(<1)[288]$	257(1)[10]	261(1)[9]
679(<1)[71]	701(<1)[67]	245(<1)[65]	256(<1)[46]
678(<1)[158]	$700(<1)[165]$	244(<1)[89]	248(<1)[86]
$677(<1)[<1]$	$700(<1)[0]$	$226(<1)[300]$	230(<1)[308]
664(1)[43]	687(1)[48]	218(2)[<1]	221(2)[0]
663(26)[10]	686(24)[8]	206(<1)[1]	$209(<1)[1]$
648(9)[48]	668(10)[39]	206(1)[<1]	209(1)[<1]
646(1)[220]	667(<1)[215]	196(1)[4]	202(1)[3]
630(2)[19]	653(3)[24]	180(<1)[0]	184(<1)[0]
626(<1)[30]	648(<1)[44]	172(<1)[2]	176(<1)[2]
623(56)[1]	644(44)[1]	$133(<1)[<1]$	$136(<1)[<1]$
585(5)[<1]	602(4)[<1]	133(<1)[0]	135(<1)[0]
585(1)[0]	601(<1)[0]	$126(<1)[<1]$	$129(<1)[<1]$
503(5)[93]	521(3)[86]	$119(<1)[<1]$	$122(<1)[<1]$
457(1)[194]	474(<1)[193]	113(1)[1]	$116(<1)[1]$
322(2)[31]	335(2)[33]	100(<1)[1]	103(<1)[6]
288(<1)[6]	295(<1)[8]	97(<1)[0]	$100(<1)[0]$
287(<1)[79]	294(<1)[77]	$63(<1)[<1]$	$64(<1)[<1]$
279(<1)[0]	$286(<1)[0]$	$43(<1)[<1]$	$46(<1)[<1]$
276(1)[29]	282(<1)[26]	$26(<1)[<1]$	$28(<1)[<1]$
275(2)[7]	281(2)[4]	$19(<1)[<1]$	$20(<1)[<1]$
275(<1)[<1]	$280(<1)[<1]$	19(<1)[0]	19(<1)[0]
266(<1)[41]	271(<1)[54]	17(0)[0]	17(<1)[0]
262(<1)[20]	268(<1)[29]	$13(<1)[<1]$	$12(<1)[<1]$
261(<1)[27]	266 (<1)[35]		

${ }^{a}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The aug-cc-pVTZ(-PP) basis set was used. For atom labeling see Figure C2.

Figure C3. Calculated structures $\left(C_{3 \mathrm{v}}\right)$ of the (a) $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{AsF}_{6}\right]_{3}\right\}^{2-}$ and (b) $\left\{\left[\mathrm{ReO}_{3}\right]\left[\mathrm{SbF}_{6}\right]_{3}\right\}^{2-}$ ion-pairs (B3LYP/aug-cc-pVTZ(-PP)).

Figure C4. Calculated structure $\left(C_{3 v}\right)$ of $\mathrm{CH}_{3} \mathrm{CN}$ (B3LYP/aug-cc-pVTZ(-PP)).

Table C3. Calculated ${ }^{a}$ Bond Lengths and Bond Angles for $\mathrm{CH}_{3} \mathrm{CN}\left(C_{3 \mathrm{v}}\right)$

	B3LYP	PBE1PBE
Bond Length (\AA)		
$\mathrm{N}_{1}-\mathrm{C}_{1}$	1.149	1.149
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.455	1.449
$\mathrm{C}_{2}-\mathrm{H}_{1}$	1.089	1.090
Bond Angles (deg)		
$\mathrm{N}_{1}-\mathrm{C}_{1}-\mathrm{C}_{2}$	180.0	180.0
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}_{1}$	110.2	110.1
$\mathrm{H}_{1}-\mathrm{C}_{2}-\mathrm{H}_{2}$	108.7	108.9

[^2]Table C4.
Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and

Table C4. (continued ...) ${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectrum was recorded
in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses
denote calculated Raman intensities $\left(\AA^{4} \mathrm{u}^{-1}\right)$. Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}{ }^{-1}\right)$.
The aug-cc-pVTZ(-PP) basis set was used. ${ }^{d}$ The atom numbering corresponds to that used in Figure 5.1a. The
abbreviations denote stretch (v), bend (δ), wag $\left(\rho_{\mathrm{w}}\right)$, rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, and umbrella (umb).
Table C5. Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$

Table C5. (continued ...)

Table C5. (continued ...)

\quad| $\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{4} \mathrm{As}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{14} \mathrm{As}_{3} \mathrm{~F}_{16}\right)\right]$ |
| :--- |
| $\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{~F}_{4} \mathrm{As}_{1} \mathrm{~F}_{6}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{~F}_{16} \mathrm{As}_{3} \mathrm{~F}_{15}\right)\right]$ |
| |
| |
| $\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{5} \mathrm{As}_{1} \mathrm{~F}_{6}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{14} \mathrm{As}_{3} \mathrm{~F}_{15}\right)\right]+$ |
| $\rho_{\mathrm{r}}\left(\mathrm{F}_{11} \mathrm{O}_{3} \mathrm{As}_{2} \mathrm{~F}_{7} \mathrm{~F}_{10} \mathrm{~F}_{9} \mathrm{~F}_{12}\right)$ |
| |
| deformational modes | ${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectrum was recorded in FEP sample tubes at $-140^{\circ} \mathrm{C}$ using 1064-nm excitation. Modes at $967(<1), 922(<1), 786(<1), 775(<1), 645(5)$ are unassigned. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses denote calculated Raman intensities $\left(\AA^{4} \mathrm{u}^{-1}\right)$. alues in square brackets denote calculated infred intensities (km mol . The aug-cc-pVIZ(-PP) basis set was used. The atom numbering corresponds to that used in Figure 5.1b. The abbreviations denote stretch (v), bend (δ), wag (ρ_{w}), $\operatorname{rock}\left(\rho_{\mathrm{r}}\right)$, and twist $\left(\rho_{\mathrm{t}}\right)$.

Table C6. Experimental Raman Frequencies and Intensities for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3) and $\mathrm{CH}_{3} \mathrm{CN}$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}$and $\mathrm{CH}_{3} \mathrm{CN}$

Table C6. (continued ...)

		$\begin{aligned} & 43(3)[15] \\ & 38(4)[4] \\ & 22(<1)[<1] \\ & 21(0)[0] \end{aligned}$	$\begin{aligned} & 43(3)[15] \\ & 38(4)[4] \\ & 16(<1)[<1] \\ & 14(0)[0] \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$ deformation modes
129 sh				
$115(5)^{\text {g }}$				lattice modes
106(9)				
99 sh				
(3)	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{C}_{3} \mathrm{v}\right.$)		
2997(39) ${ }^{i}$	2999(54)	3115(58)[1]	3148(56)[<1]	$\mathrm{vas}_{\text {as }}\left(\mathrm{CH}_{3}\right)$
2938(77) ${ }^{i}$	2938(97)	3048(195)[3]	3067(193)[2]	$v_{s}\left(\mathrm{CH}_{3}\right)$
2247(71)	2248(100)	2363(81)[11]	2389(80)[13]	$v(\mathrm{CN})$
1457(7)	1457(11), 1454(7)	1475(5)[10]	1464(5)[12]	$\delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$
1424(4)	1425(3), 1420(4)			
1377 sh	1376(15)		1399(6) \{3]	
1370(11)	1371(3)	1413(6)[2]		$\delta_{\text {s }}\left(\mathrm{CH}_{3}\right)$
1367(9)	1368(2)			
1037(1) br ${ }^{\text {i }}$	1042(1)	1063(<1)[2]	1053(<1)[2]	$\rho_{\mathrm{r}}\left(\mathrm{CH}_{3}\right)$
919(12)	920(20)	928(5)[1]	948(5)[1]	v (CC)
399(2)	400(3)			
394 sh	395(12)			
390(8)	392(9)	382(1)[1]	387(1)[1]	$\delta(\mathrm{NCC})$
386(9) ${ }^{i}$	386(5)			
	380 sh			
115(12) ${ }^{i}$	116(18)			deformational modes
107(8) ${ }^{\text {i }}$	108(13)			
	102(15)			
	96(32)			

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectrum was recorded on the products under small amount of frozen $\mathrm{CH}_{3} \mathrm{CN}$ in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses denote calculated Raman intensities (\AA^{4} u^{-1}). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The aug-cc-pVTZ(-PP) basis set was used. ${ }^{d}$ The atom numbering corresponds to that used in Figure 5.1c. The abbreviations denote stretch (v), symmetric (s), asymmetric (as), bend (δ), rock (ρ_{r}), in-plane (ip), out-of-plane (oop). ${ }^{e}$ The $\left[\mathrm{SbF}_{6}\right]^{-}$anion modes were observed at $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), 645(23), v_{2}\left(\mathrm{E}_{\mathrm{g}}\right), 574(2) ; v_{5}\left(\mathrm{~T}_{2 \mathrm{q}}\right), 278(4) \mathrm{cm}^{-1}$. Overtone and combination bands were observed at $1454 \mathrm{sh}, 1445(1) \mathrm{cm}^{-1}$. The broad peak at $668(1) \mathrm{cm}^{-1}$ was assigned to $\mathrm{SbF}_{5} \cdot \mathrm{NCCH}_{3} .{ }^{f}$ Combination band was observed at $2732(2) \mathrm{cm}^{-1} .{ }^{g}$ Band overlapping with $\mathrm{CH}_{3} \mathrm{CN} .{ }^{h}$ Band overlapping with the FEP lines. ${ }^{i}$ Band overlapping with the $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]\left[\mathrm{SbF}_{6}\right]$ line.

Table C7. Calculated ${ }^{a}$ Bond Lengths and Bond Angles for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$

Bond Length (A)	$\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]\left(C_{\mathrm{s}}\right)$		$\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}\left(C_{\mathrm{s}}\right)$		
	B3LYP	PBE1PBE		B3LYP	PBE1PBE
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.686	1.674	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.670	1.657
$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.686	1.674	$\mathrm{Re}_{1}-\mathrm{F}_{2}$	1.835	1.822
$\mathrm{Re}_{1}--\mathrm{F}_{1}$	2.197	2.178	$\mathrm{Re}_{1}--\mathrm{F}_{1}$	2.381	2.297
$\mathrm{Re}_{1}--\mathrm{F}_{2}$	2.401	2.368	$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.791	1.797
$\mathrm{Sb}_{1}-\mathrm{F}_{1}$	2.006	1.988	$\mathrm{As}_{1}-\mathrm{F}_{1}$	1.805	1.805
$\mathrm{Sb}_{1}-\mathrm{F}_{4}$	1.872	1.857	$\mathrm{As}_{1}-\mathrm{F}_{4}$	1.698	1.684
$\mathrm{Sb}_{1}-\mathrm{F}_{5}$	1.873	1.858	$\mathrm{As}_{1}-\mathrm{F}_{5}$	1.704	1.693
$\mathrm{Sb}_{1}-\mathrm{F}_{6}$	1.868	1.853	$\mathrm{As}_{1}-\mathrm{F}_{6}$	1.687	1.676
$\mathrm{Sb}_{1}-\mathrm{F}_{8}$	1.870	1.856	$\mathrm{As}_{1}-\mathrm{F}_{8}$	1.698	1.685
$\mathrm{Sb}_{1}-\mathrm{F}_{7}$	2.147	2.123	$\mathrm{As}_{1}--\mathrm{F}_{7}$	2.165	2.063
$\mathrm{Sb}_{2}-\mathrm{F}_{2}$	1.939	1.924	$\mathrm{As}_{2}-\mathrm{O}_{3}$	1.848	1.799
$\mathrm{Sb}_{2}-\mathrm{F}_{11}$	1.866	1.851	$\mathrm{As}_{2}-\mathrm{F}_{11}$	1.699	1.685
$\mathrm{Sb}_{2}-\mathrm{F}_{9}$	1.865	1.850	$\mathrm{As}_{2}-\mathrm{F}_{9}$	1.702	1.686
$\mathrm{Sb}_{2}-\mathrm{F}_{12}$	1.865	1.850	$\mathrm{As}_{2}-\mathrm{F}_{12}$	1.702	1.686
$\mathrm{Sb}_{2}-\mathrm{F}_{7}$	2.017	2.000	$\mathrm{As}_{2}-\mathrm{F}_{7}$	1.830	1.841
Bond Angles (deg)					
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	104.8	104.8	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{2}$	103.5	103.4
$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	105.3	105.3	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{F}_{2}$	100.7	99.8
$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	88.8	88.9	$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	88.8	90.0
$\mathrm{O}_{1}-\mathrm{Re}_{1}--\mathrm{F}_{2}$	88.8	88.9	$\mathrm{O}_{1}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	103.1	102.1
$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{3}$	153.1	153.2	$\mathrm{O}_{1}-\mathrm{Re}_{1}---\mathrm{F}_{3}$	166.7	165.9
$\mathrm{O}_{3}-\mathrm{Re}_{1}---\mathrm{F}_{1}$	93.0	92.8	$\mathrm{F}_{2}-\mathrm{Re}_{1}--\mathrm{F}_{1}$	71.8	73.1
$\mathrm{O}_{3}-\mathrm{Re}_{1}--\mathrm{F}_{2}$	161.2	161.0	$\mathrm{F}_{2}-\mathrm{Re}_{1}-\mathrm{O}_{3}$	141.0	144.3
$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{2}$	71.9	71.8	$\mathrm{F}_{1}---\mathrm{Re}_{1}-\mathrm{O}_{3}$	78.3	79.1
$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{3}$	70.4	70.3	$\mathrm{F}_{1}---\mathrm{Re}_{1}--\mathrm{F}_{3}$	78.5	76.3
$\mathrm{Re}_{1}---\mathrm{F}_{1}-\mathrm{Sb}_{1}$	152.5	150.8	$\mathrm{Re}_{1}--\mathrm{F}_{1}-\mathrm{As}_{1}$	142.1	140.1
$\mathrm{Re}_{1}--\mathrm{F}_{2}-\mathrm{Sb}_{2}$	156.2	156.6	$\mathrm{Re}_{1}-\mathrm{O}_{3}-\mathrm{As}_{2}$	164.5	162.1
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{4}$	168.3	168.3	$\mathrm{F}_{1}-\mathrm{As}_{1}-\mathrm{F}_{4}$	166.7	168.0
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{5}$	85.5	85.4	$\mathrm{F}_{1}-\mathrm{As}_{1}-\mathrm{F}_{5}$	86.3	86.2
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	91.7	91.7	$\mathrm{F}_{1}-\mathrm{As}_{1}-\mathrm{F}_{6}$	93.7	92.7
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	81.6	81.6	$\mathrm{F}_{1}-\mathrm{As}_{1}--\mathrm{F}_{7}$	82.6	82.8
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	84.7	84.6	$\mathrm{F}_{1}-\mathrm{As}_{1}-\mathrm{F}_{8}$	86.2	86.0
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{5}$	93.4	93.4	$\mathrm{F}_{4}-\mathrm{As}_{1}-\mathrm{F}_{5}$	91.7	92.2
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	100.0	100.1	$\mathrm{F}_{4}-\mathrm{As}_{1}-\mathrm{F}_{6}$	99.6	99.3
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	86.7	86.7	$\mathrm{F}_{4}-\mathrm{As}_{1}--\mathrm{F}_{7}$	84.2	85.2
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	94.5	93.6	$\mathrm{F}_{4}-\mathrm{As}_{1}-\mathrm{F}_{8}$	92.0	92.6
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	96.8	97.0	$\mathrm{F}_{5}-\mathrm{As}_{1}-\mathrm{F}_{6}$	98.0	96.9
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	82.7	82.6	$\mathrm{F}_{5}-\mathrm{As}_{1}--\mathrm{F}_{7}$	82.6	83.5
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	163.3	163.0	$\mathrm{F}_{5}-\mathrm{As}_{1}-\mathrm{F}_{8}$	162.4	163.9
$\mathrm{F}_{6}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	173.3	173.2	$\mathrm{F}_{6}-\mathrm{As}_{1}--\mathrm{F}_{7}$	176.1	175.4
$\mathrm{F}_{6}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	97.0	97.1	$\mathrm{F}_{6}-\mathrm{As}_{1}-\mathrm{F}_{8}$	98.4	97.4
$\mathrm{F}_{7}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	82.5	82.3	$\mathrm{F}_{7}---\mathrm{As}_{1}-\mathrm{F}_{8}$	80.6	81.6
$\mathrm{Sb}_{1}-\mathrm{F}_{7}-\mathrm{Sb}_{2}$	146.5	145.1	$\mathrm{As}_{1}---\mathrm{F}_{7}-\mathrm{As}_{2}$	144.6	143.3
$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{7}$	83.8	83.7	$\mathrm{O}_{3}-\mathrm{As}_{2}-\mathrm{F}_{7}$	86.5	86.9
$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{9}$	91.6	91.6	$\mathrm{O}_{3}-\mathrm{As}_{2}-\mathrm{F}_{9}$	89.8	91.0
$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	83.8	83.7	$\mathrm{O}_{3}-\mathrm{As}_{2}-\mathrm{F}_{10}$	86.5	86.9
$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	166.9	166.8	$\mathrm{O}_{3}-\mathrm{As}_{2}-\mathrm{F}_{11}$	172.6	170.9

Table C7. (continued ...)

$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	91.6	91.6	$\mathrm{O}_{3}-\mathrm{As}_{2}-\mathrm{F}_{12}$	89.8	91.0
$\mathrm{~F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{9}$	89.8	89.8	$\mathrm{~F}_{7}-\mathrm{As}_{2}-\mathrm{F}_{9}$	90.1	90.2
$\mathrm{~F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	82.2	81.8	$\mathrm{~F}_{7}-\mathrm{As}_{2}-\mathrm{F}_{10}$	84.1	83.2
$\mathrm{~F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	86.4	86.3	$\mathrm{~F}_{7}-\mathrm{As}_{2}-\mathrm{F}_{11}$	88.0	86.4
$\mathrm{~F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	171.1	170.8	$\mathrm{~F}_{7}-\mathrm{As}_{2}-\mathrm{F}_{12}$	173.4	173.1
$\mathrm{~F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	171.1	170.8	$\mathrm{~F}_{9}-\mathrm{As}_{2}-\mathrm{F}_{10}$	173.4	173.1
$\mathrm{~F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	96.9	97.1	$\mathrm{~F}_{9}-\mathrm{As}_{2}-\mathrm{F}_{11}$	95.2	95.0
$\mathrm{~F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	98.0	98.2	$\mathrm{~F}_{9}-\mathrm{As}_{2}-\mathrm{F}_{12}$	95.4	96.4
$\mathrm{~F}_{10}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	86.4	86.3	$\mathrm{~F}_{10}-\mathrm{As}_{2}-\mathrm{F}_{11}$	88.0	86.4
$\mathrm{~F}_{10}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	89.8	89.8	$\mathrm{~F}_{10}-\mathrm{As}_{2}-\mathrm{F}_{12}$	90.1	90.2
$\mathrm{~F}_{11}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	96.9	97.1	$\mathrm{~F}_{11}-\mathrm{As}_{2}-\mathrm{F}_{12}$	95.2	95.0

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. For the atom labeling scheme see Figure 5.4 a and 5.4b. The bond length and bond angles around $\mathrm{Pn}_{3}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ are equal to those around Pn_{1} by symmetry.

Table C8. Calculated ${ }^{a}$ Bond Lengths and Bond Angles for the $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-}$anion $\left(C_{\mathrm{s}}\right)$

	B3LYP	PBE1PBE		B3LYP	PBE1PBE
Bond Length (A) \quad - \quad B $\quad 1.8$					
$\mathrm{Sb}_{1}-\mathrm{F}_{1}$	1.891	1.876	$\mathrm{Sb}_{2}-\mathrm{F}_{2}$	1.879	1.864
$\mathrm{Sb}_{1}-\mathrm{F}_{4}$	1.891	1.877	$\mathrm{Sb}_{2}-\mathrm{F}_{11}$	1.879	1.864
$\mathrm{Sb}_{1}-\mathrm{F}_{5}$	1.891	1.877	$\mathrm{Sb}_{2}-\mathrm{F}_{9}$	1.881	1.866
$\mathrm{Sb}_{1}-\mathrm{F}_{6}$	1.891	1.876	$\mathrm{Sb}_{2}-\mathrm{F}_{12}$	1.881	1.866
$\mathrm{Sb}_{1}-\mathrm{F}_{8}$	1.891	1.876	$\mathrm{Sb}_{2}-\mathrm{F}_{7}$	2.019	2.004
$\mathrm{Sb}_{1}-\mathrm{F}_{7}$	2.146	2.120			
Bond Angles (deg)					
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{4}$	169.5	169.4	$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{7}$	85.9	85.7
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{5}$	89.5	89.5	$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{9}$	93.7	93.8
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	95.3	95.4	$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	85.9	85.7
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	84.4	84.3	$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	169.0	168.7
$\mathrm{F}_{1}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	89.5	89.5	$\mathrm{F}_{2}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	93.7	93.8
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{5}$	89.6	89.6	$\mathrm{F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{9}$	90.6	90.7
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	95.2	95.3	$\mathrm{F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	82.8	82.4
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	85.1	85.0	$\mathrm{F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	85.9	85.7
$\mathrm{F}_{4}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	89.5	89.5	$\mathrm{F}_{7}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	173.4	173.1
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{6}$	95.2	95.3	$\mathrm{F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{10}$	173.4	173.1
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	85.1	85.0	$\mathrm{F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	93.7	93.8
$\mathrm{F}_{5}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	169.5	169.4	$\mathrm{F}_{9}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	96.0	96.2
$\mathrm{F}_{6}-\mathrm{Sb}_{1}-\mathrm{F}_{7}$	179.6	179.6	$\mathrm{F}_{10}-\mathrm{Sb}_{2}-\mathrm{F}_{11}$	85.9	85.7
$\mathrm{F}_{6}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	95.3	95.4	$\mathrm{F}_{10}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	90.6	90.7
$\mathrm{F}_{7}-\mathrm{Sb}_{1}-\mathrm{F}_{8}$	84.4	84.3	$\mathrm{F}_{11}-\mathrm{Sb}_{2}-\mathrm{F}_{12}$	93.7	93.8
$\mathrm{Sb}_{1}-\mathrm{F}_{7}-\mathrm{Sb}_{2}$	150.5	148.5			

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. For the atom labeling scheme see Figure C2. The bond length and bond angles around Sb_{3} are equal to those around Pn_{1} by symmetry.

Table C9. Calculated ${ }^{a}$ Bond Lengths and Bond Angles for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+}\left(C_{3 \mathrm{v}}\right)$

Bond Length (\AA)	
$\mathrm{Re}-\mathrm{O}_{1}$	1.684
$\mathrm{Re}---\mathrm{N}_{1}$	2.271
$\mathrm{~N}_{1}-\mathrm{C}_{1}$	1.144
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.441
$\mathrm{C}_{2}-\mathrm{H}_{1}$	1.091
Bond Angles (deg)	
$\mathrm{O}_{1}-\operatorname{Re}-\mathrm{O}_{2}$	105.5
$\mathrm{O}_{1}-\operatorname{Re}---\mathrm{N}_{1}$	86.6
$\mathrm{O}_{1}-\mathrm{Re}---\mathrm{N}_{1 \mathrm{~A}}$	86.6
$\mathrm{O}_{1}-\mathrm{Re}---\mathrm{N}_{1 \mathrm{~B}}$	159.4
$\mathrm{Re}---\mathrm{N}_{1}-\mathrm{C}_{1}$	164.4
$\mathrm{C}_{1}-\mathrm{N}_{1}-\mathrm{C}_{2}$	179.3
$\mathrm{~N}_{1}-\mathrm{C}_{2}-\mathrm{H}$	109.3
$\mathrm{H}_{1}-\mathrm{C}_{2}-\mathrm{H}_{2}$	109.2

${ }^{a}$ PBE1PBE/aug-cc-aVTZ(-PP). For the atom labeling scheme, see Figure 5.1c.

Figure C5. Calculated transitional state of the " $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]$ " structure $\left(C_{\mathrm{s}}\right)$ (B3LYP/aug-cc-pVTZ(-PP)).

Figure C6. Calculated structure of the " $\left[\mathrm{As}_{3} \mathrm{~F}_{16}\right]^{-" ،}$ anion $\left(C_{2 \mathrm{v}}\right)$ (B3LYP/aug-cc-pVTZ(PP)).

Table C10. NBO Charges and Wiberg Valencies for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$
${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. For the atom labeling scheme see Figure 5.4a and 5.4b.

Table C11. Wiberg Bond Indices for $\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]$ and $\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}$

	$\left[\mathrm{ReO}_{3}\right]\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]\left(C_{\mathrm{s}}\right)^{a}$		$\underline{\mu-\mathrm{O}\left(\mathrm{ReO}_{2} \mathrm{~F}\right)\left(\mathrm{AsF}_{5}\right) \cdot 2 \mathrm{AsF}_{5}\left(C_{\mathrm{s}}\right)^{a}}$	
	B3LYP	PBE1PBE	B3LYP	PBE1PBE
Bond				
$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.68	1.68	1.79	1.80
$\mathrm{Re}_{1}-\mathrm{O}_{2}$	1.68	1.68	1.79	1.80
$\mathrm{Re}_{1}-\mathrm{O}_{3}$	1.69	1.69	0.97	0.90
$\mathrm{Re}_{1}--\mathrm{F}_{1}$	0.18	0.18	0.11	0.13
$\mathrm{Re}_{1}--\mathrm{F}_{2} / \mathrm{Re}_{1}-\mathrm{F}_{2}$	0.09	0.10	0.70	0.71
$\mathrm{Re}_{1}--\mathrm{F}_{3}$	0.18	0.18	0.11	0.13
$\mathrm{Pn}_{1}-\mathrm{F}_{1}$	0.32	0.32	0.45	0.43
$\mathrm{Sb}_{2}-\mathrm{F}_{2} / \mathrm{As}_{2}-\mathrm{O}_{3}$	0.41	0.41	0.46	0.51
$\mathrm{Pn}_{3}-\mathrm{F}_{3}$	0.32	0.32	0.45	0.43
$\mathrm{Pn}_{1}-\mathrm{F}_{4}$	0.56	0.57	0.64	0.65
$\mathrm{Pn}_{1}-\mathrm{F}_{5}$	0.56	0.56	0.63	0.63
$\mathrm{Pn}_{1}-\mathrm{F}_{6}$	0.57	0.57	0.65	0.65
$\mathrm{Pn}_{1}-\mathrm{F}_{7}$	0.20	0.21	0.16	0.20
$\mathrm{Pn}_{1}-\mathrm{F}_{8}$	0.57	0.57	0.65	0.65
$\mathrm{Pn}_{2}-\mathrm{F}_{7}$	0.31	0.31	0.42	0.39
$\mathrm{Pn}_{2}-\mathrm{F}_{9}$	0.58	0.58	0.63	0.64
$\mathrm{Pn}_{2}-\mathrm{F}_{10}$	0.31	0.31	0.42	0.39
$\mathrm{Pn}_{2}-\mathrm{F}_{11}$	0.58	0.58	0.64	0.65
$\mathrm{Pn}_{2}-\mathrm{F}_{12}$	0.58	0.58	0.63	0.64
$\mathrm{Pn}_{3}-\mathrm{F}_{10}$	0.20	0.21	0.16	0.20
$\mathrm{Pn}_{3}-\mathrm{F}_{13}$	0.57	0.57	0.65	0.65
$\mathrm{Pn}_{3}-\mathrm{F}_{14}$	0.57	0.56	0.65	0.63
$\mathrm{Pn}_{3}-\mathrm{F}_{15}$	0.57	0.57	0.65	0.65
$\mathrm{Pn}_{3}-\mathrm{F}_{16}$	0.56	0.56	0.64	0.65

${ }^{a}$ The aug-cc-pVTZ(-PP) basis set was used. For the atom labeling scheme see Figure 5.4 a and 5.4b.

Table C12. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{O}_{3} \mathrm{Re}\left(\mathrm{NCCH}_{3}\right)_{3}\right]^{+a}$

Atom	B3LYP		PBE1PBE		Bond	B3LYP	PBE1PBE
	Charge	Valence	Charge	Valence		Bond Index	Bond Index
Re_{1}	1.93	5.64	1.92	5.66	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.62	1.62
O	-0.50	2.28	-0.50	2.28	$\mathrm{Re}_{1}--\mathrm{N}$	0.25	0.26
N	-0.44	3.26	-0.44	3.27	$\mathrm{N}-\mathrm{C}_{1}$	2.74	2.74
C_{1}	0.51	3.91	0.52	3.92	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.11	1.12
C_{2}	-0.71	3.82	-0.73	3.81	$\mathrm{C}_{2}-\mathrm{H}$	0.89	0.88
H	0.27	0.92	0.29	0.92			

${ }^{a}$ The aug-cc-pVTZ(-PP) $\left(C_{3 \mathrm{v}}\right)$ basis sets were used. For the atom labeling scheme see Figure 5.4c.

Table C13. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{ReO}_{3}\right]^{+a}$

Atom	B3LYP		PBE1PBE		Bond	B3LYP	PBE1PBE
	Charge	Valence	Charge	Valence		Bond Index	Bond Index
Re_{1}	2.12	5.47	2.13	5.47	$\mathrm{Re}_{1}-\mathrm{O}_{1}$	1.82	1.82
O	-0.37	2.34	-0.38	2.33			

${ }^{a}$ The aug-cc-pVTZ(-PP) $\left(C_{3 \mathrm{v}}\right)$ basis sets were used. For the atom labeling scheme see Figure C3.

Table C14. NBO Charges and Wiberg Valencies and Bond Indices for $\left[\mathrm{Sb}_{3} \mathrm{~F}_{16}\right]^{-a}$

Atom	B3LYP		PBE1PBE		Bond	B3LYP	PBE1PBE
	Charge	Valence	Charge	Valence		Bond Index	Bond Index
Sb_{1}	3.06	2.81	3.05	2.83	$\mathrm{Sb}_{1}-\mathrm{F}_{1}$	0.52	0.53
Sb_{2}	3.08	2.80	3.07	2.81	$\mathrm{Sb}_{1}-\mathrm{F}_{4}$	0.52	0.53
F_{1}	-0.63	0.64	-0.63	0.64	$\mathrm{Sb}_{1}-\mathrm{F}_{5}$	0.52	0.53
F_{2}	-0.62	0.67	-0.62	0.67	$\mathrm{Sb}_{1}-\mathrm{F}_{6}$	0.51	0.52
F_{4}	-0.64	0.64	-0.63	0.64	$\mathrm{Sb}_{1}-\mathrm{F}_{7}$	0.20	0.20
F_{5}	-0.64	0.64	-0.63	0.64	$\mathrm{Sb}_{1}-\mathrm{F}_{8}$	0.52	0.53
F_{6}	-0.65	0.62	-0.65	0.62	$\mathrm{Sb}_{2}-\mathrm{F}_{2}$	0.55	0.55
F_{7}	-0.66	0.63	-0.66	0.63	$\mathrm{Sb}_{2}-\mathrm{F}_{9}$	0.54	0.54
F_{8}	-0.63	0.64	-0.63	0.64	$\mathrm{Sb}_{2}-\mathrm{F}_{10}$	0.31	0.31
F_{9}	-0.63	0.65	-0.63	0.65	$\mathrm{Sb}_{2}-\mathrm{F}_{11}$	0.55	0.55
F_{10}	-0.66	0.63	-0.66	0.63	$\mathrm{Sb}_{2}-\mathrm{F}_{12}$	0.54	0.54
F_{11}	-0.62	0.67	-0.62	0.67	$\mathrm{Sb}_{2}-\mathrm{F}_{7}$	0.31	0.31
F_{12}	-0.63	0.65	-0.63	0.65			

${ }^{a}$ The aug-cc-pVTZ(-PP) $\left(C_{3 \mathrm{v}}\right)$ basis sets were used. For the atom labeling scheme see Figure C4.

Table C15. NBO Charges and Wiberg Valencies and Bond Indices for $\mathrm{CH}_{3} \mathrm{CN}^{a}$

Atom	B3LYP		PBE1PBE		Bond	B3LYP	PBE1PBE
	Charge	Valence	Charge	Valence		Bond Index	Bond Index
N	-0.33	3.02	-0.32	3.02	$\mathrm{N}-\mathrm{C}_{1}$	2.90	2.90
C_{1}	0.28	4.00	0.28	4.00	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.09	1.09
C_{2}	-0.69	3.85	-0.71	3.84	$\mathrm{C}_{2}-\mathrm{H}$	0.91	0.90
H	0.24	0.94	0.25	0.94			

${ }^{a}$ The aug-cc-pVTZ(-PP) $\left(C_{3 \mathrm{v}}\right)$ basis sets were used. For the atom labeling scheme see Figure C2.

APPENDIX D

[XeOXeOXe] ${ }^{2+}$, THE MISSING OXIDE OF XENON(II); SYNTHESIS, RAMAN SPECTRUM, AND X-RAY CRYSTAL STRUCTURE OF $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

Ph.D. Thesis-Maria V. Ivanova

Figure D2. The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ showing the immediate coordination
environments around $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2)}$ in the structural unit. Thermal ellipsoids are shown at the
50% probability level. Intermolecular distances are given in Table 6.2.
Figure D2. The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ showing the immediate coordination
environments around $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2)}$ in the structural unit. Thermal ellipsoids are shown at the
50% probability level. Intermolecular distances are given in Table 6.2.
Figure D2. The crystal structure of $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ showing the immediate coordination
environments around $\mathrm{Xe}_{(1)}$ and $\mathrm{Xe}_{(2)}$ in the structural unit. Thermal ellipsoids are shown at the
50% probability level. Intermolecular distances are given in Table 6.2.

Ph.D. Thesis-Maria V. Ivanova
Table D1. Selected Experimental and Calculated Bond Lengths and Contacts ${ }^{a}$ for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$ and Corresponding Bond Valences ${ }^{b}$
calcd c

exptl			calcd^{c}	
Bond Lengths (\AA)	Bond Valences (v.u.)	Bond Lengths (A$)$	Bond Valences (v.u.)	

Table D1. (continued....)

$\mathrm{Xe}_{(2)}--\mathrm{F}_{(5 \mathrm{C})}$	3.114(5)	0.05	$\mathrm{Xe}_{(1)---\mathrm{F}_{(5)}}$	3.586	0.01
$\mathrm{Xe}_{(2)}---\mathrm{F}_{(6 \mathrm{~B})}$	$3.168(5)$	0.04	$\mathrm{Xe}_{(1)---\mathrm{F}_{(6)}}$	3.302	0.03
$\mathrm{Xe}_{(2)-\mathrm{-}-\mathrm{F}_{(3 \mathrm{~B})} \mathrm{l}}$	$3.266(5)$	0.03			
		$1.81{ }^{\text {d }}$			$1.61{ }^{\text {d }}$
${ }^{a}$ See Figures D2 for the atom labeling scheme. ${ }^{b}$ Bond valence units (v.u.) are defined in ref 46. $R_{0}=2.05$ and $B_{0}=0.35\left(\mathrm{Xe}^{\mathrm{II}}-\mathrm{O}\right) . R_{0}=2.02$ and $B_{0}=0.37\left(\mathrm{Xe}^{\mathrm{II}}-\mathrm{F}\right)$ (from Accumulated Table of Bond Valence Parameters (http://www.iucr.org/__data/assets/file/0006/81087/bvparm2013.cif) by I. D. Brown). ${ }^{c}$ The B3LYP/aug-cc-$\mathrm{pVDZ}(-\mathrm{PP})$ method was used. ${ }^{d}$ Total bond valence values (v.u.) are given in bold.					

Ph.D. Thesis - Maria V. Ivanova

Figure D3. The calculated structures of (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) FXeOXeOXeF, and (c) $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]^{-}$. See Table 6.2 for the calculated geometric parameters. The B3LYP/aug-cc-pVDZ(-PP) level of theory was used.

Ph.D. Thesis - Maria V. Ivanova
Table D2. Experimental and Calculated (B3LYP, C_{i}) Vibrational Frequencies for $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe1}{ }^{6 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

calcd ${ }^{\text {b }}$		
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	Δv^{1618}
1061.7(256)[0]	1004.8(228)	-56
$1.1(0)[212]$	1004.2(0)[188]	-56.9
$55.0(0)[158]$	$998.5(0)[144$	-56.5
4.9(15)[0]	998.4(13)[0]	-56.5
30.3(74)[0]	977.3(66) [0]	-53.0
258]	$3(0)[241]$	-52.9
(0)[337]	964.6(0)[310]	-52.4
25)[0]	.5(23)[0]	-52.4
0)[540]	6(0) [541]	-0.1
(8)[0]	678.0(8)[0]	0.0
669.6(3)[0]	$69.5(3)[0]$	-0.1
[39]	$669.4(0)[39]$	0.0
18)[0]	661.3(18)[0]	-0.1
2(0)[82]	661.1(0)[83]	-0.1
.677)[0]	634.4(7) [0]	-0.2
32.7(0)[288]	$632.6(0)[290]$	-0.1
580.1(110)[0]	550.3(94)[0]	9.8
565.0(0)[322]	$535.6(0)[304]$	-29.4
2)[0]	$543.2(8)[0]$	-0.8
(0)[177	542.9()	

exptl^{a}		
$\frac{{ }^{16} \mathrm{O}}{1016.8(90)}$	$\frac{{ }^{18} \mathrm{O}}{962.4(7)}$	$\frac{\Delta v^{16 / 18}}{-54.4}$

964.7	$914.7(17)$	-50.0
960.2 sh	910.6 sh	-49.6

$665.7(12) \quad 666.0(14) \quad 0.3$
 $\begin{array}{lll}645.9(8) & 646.4(8) & 0.5 \\ 581.6(31) & 549.3(30) & -32.3\end{array}$
$569.8(5) \quad 573.0(4) \quad 3.2$

Ph.D. Thesis - Maria V. Ivanova
Table D2. (continued....)

$\left.\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{5}\right)+\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]+\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]_{\text {smal }}$ $\left.\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{O}_{5}\right)-\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]_{\text {smal }}$ $\left\{\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{\mathrm{IA}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]\right\}_{\text {small }}+\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-\right.$ $\left\{\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]\right\}_{\text {small }}+\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-\right.$
$\left.v\left(\mathrm{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]-$ $\left.v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]-\left[v\left(\mathrm{Xe}_{2 A} \mathrm{~F}_{1 A}\right)-v\left(\operatorname{Re}_{1 A} \mathrm{~F}_{1 A}\right)\right]$
$\left[v\left(\operatorname{Re}_{1 A} \mathrm{~F}_{2 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{2 A} \mathrm{~F}_{2 A}\right)\right]$

406.2(10)	$384.7(12)$	-21.5
394.9(12)	$376.1(13)$	-18.8
379.6, sh	$358.3, \mathrm{sh}$	-20.0
358.7(100)	$340.9(100)$	-17.8
348.5, sh	$331.2, \mathrm{sh}$	-17.3

$$
\hat{\varphi} \stackrel{n}{\hat{1}} \quad \stackrel{O}{+}
$$

440.8(7)
337.9(10)
329.6, sh
321.9 sh
$313.9(12)$

$288.2(7)$

Ph.D. Thesis - Maria V. Ivanova
Table D2. (continued....)
 $\left[\rho_{w}\left(\mathrm{~F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[\rho_{w}\left(\mathrm{~F}_{1 A} \mathrm{Re}_{1 A} \mathrm{~F}_{2 A}\right)+\delta\left(\mathrm{O}_{3 A} \mathrm{Re}_{1 A} \mathrm{~F}_{3 A}\right)\right]$
$\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{7} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)\right]-\left[\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 A}\right)+\right.$
 $\left.\rho_{\mathrm{w}}\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$ $\left.\left[p_{\mathrm{r}} \mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1 A} \mathrm{Re}_{14} \mathrm{~F}_{2 A}\right)-\delta\left(\mathrm{F}_{5 A} \mathrm{Re}_{2 A} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)+\right.$ $\left.\left.\left.\left(\mathrm{S}_{4 A} \mathrm{Oe}_{2 \mathrm{~A}} \mathrm{~F}_{6 A}\right) \mathrm{small}_{\text {smal }}+\rho_{\mathrm{w}} \mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{3 A} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 A}\right)\right]_{\text {small }}\right)-\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{64}\right)+$ $\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{\mathrm{i}} \mathrm{F}_{2}\right)\right]-\left[\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)+\right.$
 $\left[\rho_{t}\left(\mathrm{~F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Re}_{1 A} \mathrm{~F}_{3 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$ $\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3 A} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1 A} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{2 A}\right)\right]$
 $\left[\delta\left(\mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7}\right) \mathrm{umb}_{\mathrm{b}}\right]+\left[\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\right.$

$\left[_{\mathrm{w}}\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
$\left[\rho_{w}\left(\mathrm{~F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
 $\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 A} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{\mathrm{e}}\right)\right]_{0.0 .0}$
$\left.\left[\mathrm{p}_{\mathrm{r}}\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\mathrm{p}_{\mathrm{r}}\left(\mathrm{O}_{4} \mathrm{Re}_{1} \mathrm{Re}_{5}\right)\right]+\left[\mathrm{Re}_{\mathrm{r}} \mathrm{O}_{3 A} \mathrm{Re}_{1 A} \mathrm{O}_{2 A}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{4 A} \mathrm{Re}_{1 A} \mathrm{O}_{5 A}\right)\right]$ $\left.\left[\rho_{r}\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{4} \mathrm{Re}_{1} \mathrm{O}_{5}\right)\right]-\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)+\rho_{\mathrm{r}} \mathrm{p}_{\mathrm{r}} \mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]$ $\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left\{\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {o.o.p }}\right\}$ $\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{0.0 .0 .} .+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{4} \mathrm{Re}_{1} \mathrm{O}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{54}\right)\right]$
$\left.\left.\left.\left[\rho_{\mathrm{r}} \mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\rho_{w} \mathrm{~F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{\mathrm{r}} \mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
 $\begin{array}{ll}282.5(2)[0] & -4.2 \\ 281.9(0)[106] & -4.0 \\ 258.2(0)[48] & -1.9 \\ 258.3(1)[0] & -1.8 \\ 254.0(7)[0] & -1.9 \\ 253.7(0)[47] & -1.4 \\ 238.0(0)[21] & -3.2 \\ 237.8(4)[0] & -3.1 \\ 225.9(1)[0] & -1.1 \\ 224.7(0)[103] & -1.3 \\ 222.6(1)[0] & -1.6 \\ 222.4(0)[75] & -1.7 \\ 203.4(0)[12] & -5.0 \\ 201.0(1)[0] & -4.2 \\ 177.8(0)[1] & -0.6 \\ 178.0(1)[0] & -0.9 \\ 180.7(0)[8] & -1.3 \\ 172.9(0)[2] & -7.0 \\ 130.4(1)[0] & -3.9 \\ 124.9(0)[4] & -4.4 \\ 126.4(<1)[0] & -2.6 \\ 122.8(<1)[0] & -4.4 \\ 118.9(0)[51] & -2.1 \\ 112.6(0)[4] & -2.1 \\ 107.2(<1)[0] & -2.6 \\ 94.1(19)[0] & -0.3 \\ 91.2(0)[8] & -0.4\end{array}$ $286.7(2)[0]$
$286.0(0)[106]$
$260.1(0)[50]$ 260.1(1)[0]

[0](9)6:Scz

 $255.1(0)[50]$$241.2(0)[14]$ $241.2(0)[14]$
$240.9(4)[0]$ $\stackrel{\stackrel{\infty}{0}}{\stackrel{\infty}{C}}$ 224.2(1)[0] 224.1(0)[83] 208.4(0)[15] 205.2(1)[0] $178.4(0)[1]$
$178.9(1)[0]$
266.7(5) $\quad 264.9(5) \quad-1.8$

\bigcirc	$\stackrel{\sim}{i} \underset{i}{+}$
$\begin{gathered} \overparen{\mathrm{O}} \\ \stackrel{0}{\dot{0}} \\ \underset{\sim}{c} \end{gathered}$	

$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\underset{i}{7}$	$\stackrel{\rightharpoonup}{\oplus}$	$\stackrel{\rightharpoonup}{\mathrm{T}}$	$\stackrel{n}{i}$
$\begin{aligned} & \stackrel{\rightharpoonup}{v} \\ & \stackrel{n}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ©ㅇ } \\ & \infty \\ & \stackrel{1}{~} \end{aligned}$	$\begin{aligned} & \tilde{\omega} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \underset{\sim}{\beth} \\ & \underset{y}{\beth} \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{y}} \\ & \stackrel{1}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \widehat{\vdots} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \frac{5}{n} \\ & n \\ & \underset{\sim}{U} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\succsim} \\ & \underset{\sim}{\square} \end{aligned}$	

$179.9(0)[5]$
$134.3(1)[0]$
$129.3(0)[8]$
$129.0(1)[0]$
$127.2(<1)[0]$
$121.0(0)[53]$
$114.7(0)[2]$
$109.8(<1)[0]$
$94.4(19)[0]$
$91.6(0)[9]$ $\stackrel{\rightharpoonup}{e}$
$\stackrel{\rightharpoonup}{6}$
$\stackrel{a}{6}$

Ph.D. Thesis - Maria V. Ivanova
Table D2. (continued....)
${ }^{a}$ Frequencies are given in cm^{-1}. $\Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right)$. Band corresponding to $v_{1}\left(\Sigma_{\mathrm{g}}{ }^{+}\right) \mathrm{XeF}_{2}$ were observed at $496.5 \mathrm{~cm}^{-1}$ in both spectra. Two weak bands were observed in the ${ }^{16} \mathrm{O}\left(487.9 \mathrm{~cm}^{-1}\right)$ and ${ }^{18} \mathrm{O}\left(484.0 \mathrm{~cm}^{-1}\right)$ spectra but were not assigned. Values in parentheses denote relative Raman intensities. Raman spectra were recorded in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. ${ }^{b}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-pVDZ(-PP) method was used. ${ }^{c}$ Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle compressions are denoted by minus $(-)$ signs. The abbreviations denote shoulder (sh), stretch (v), bend (δ), twist $\left(\rho_{t}\right)$, wag $\left(\rho_{w}\right)$, rock $\left(\rho_{r}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). The atoms labeling scheme is given in Figure 6.1.

Ph.D. Thesis - Maria V. Ivanova
Table D3. Experimental and Calculated (PBE1PBE, C_{i}) Vibrational Frequencies for $\left[\mathrm{Xe}^{16 / 18} \mathrm{OXe} \mathrm{C}^{6 / 18} \mathrm{OXe}\right]\left[\mu-\mathrm{F}\left(\mathrm{Re}^{161 / 8} \mathrm{O}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$

expt1 ${ }^{\text {a }}$			calcd ${ }^{\text {b }}$			assgnts ${ }^{\text {c }}$
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta \nu^{16 / 18}$	${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta \nu^{16 / 18}$	
1016.8(90)	962.4(7)	-54.4	1094.9(217)[0]	1036.2(194)[0]	-58.7	
			1094.3(0)[226]	1035.7(0)[201]	-58.6	
			1086.8(0)[157]	1028.5(0)[143]	-58.3	
1002.7(47)	948.9(41)	-53.8	1086.6(19)[0]	1028.4(16)[0]	-58.2	
$\begin{aligned} & 979.6 \mathrm{sh} \\ & 975.2(27) \end{aligned}$	$\begin{aligned} & 929.8(22) \\ & 924.7(21) \end{aligned}$	$\begin{aligned} & -49.8 \\ & -50.5 \end{aligned}$	1060.6(66)[0]	1006.2(58)[0]	-54.4	$\left[v\left(\operatorname{Re}_{1} \mathrm{O}_{3}\right)-v\left(\operatorname{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\operatorname{Re}_{1} \mathrm{O}_{5}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{4}\right)\right]$
			1060.6(0)[265]	1006.2(0)[247]	-54.4	$\left[v\left(\operatorname{Re}_{1} \mathrm{O}_{3}\right)-v\left(\operatorname{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]$
			1045.3(0)[374]	991.5(0)[343]	-53.8	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{5}\right)\right]+\left[v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)-v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{4 \mathrm{~A}}\right)\right]$
964.7960.2 sh	$\begin{aligned} & 914.7(17) \\ & 910.6 \mathrm{sh} \end{aligned}$	$\begin{aligned} & -50.0 \\ & -49.6 \end{aligned}$	1045.2(21)[0]	991.4(19)[0]	-53.8	$\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{5}\right)\right]+\left[v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{4 \mathrm{~A}}\right)-v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]$
			695.9(0)[532]	695.9(0)[533]	0.0	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
665.7(12)	666.0(14)	0.3	695.3(12)[0]	695.3(12)[0]	0.0	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]+\left[v\left(\operatorname{Re}_{1 A} \mathrm{~F}_{4 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
			688.0(2)[0]	688.0(2)[0]	0.0	$\left.\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right]+\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
			687.9(0)[37]	687.8(0)[37]	-0.1	$\left.\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right]+\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]-v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
			676.9(14)[0]	676.8(14)[0]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]+\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
645.9(8)	646.4(8)	0.5	676.6(0)[118]	676.6(0)[120]	0.0	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
			647.6(8)[0]	647.3(6)[0]	-0.3	$\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
			645.2(0)[288]	645.0(0)[310]	-0.2	$\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]-\left[v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
581.6(31)	549.3(30)	-32.3	621.8(97)[0]	589.3(91)[0]	-32.5	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
			601.8(0)[400]	571.0(0)[322]	-30.8	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
569.8(5)	573.0(4)	3.2	560.0(2)[0]	559.6(2)[0]	-0.4	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\right.} \\ & \left.v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right] \end{aligned}$
			559.2(0)[160]	558.8(0)[174]	-0.4	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]-\left[v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+v\left(\operatorname{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\right.} \\ & \left.v\left(\mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right] \end{aligned}$

Ph.D. Thesis - Maria V. Ivanova

$476.0(0)[437]$
$476.3(8)[0]$
$461.6(0)[283]$
$411.7(4)[0]$
$393.0(0)[41]$
$384.9(8)[0]$
$385.0(0)[1]$
$391.1(8)[0]^{e}$
$380.2(113)[0]$
$373.5(0)[753]$
$347.0(6)[0]$
$346.3(0)[19]$
$337.3(2)[0]$
$337.4(0)[85]$
$331.4(0)[12]$
$330.9(2)[0]$
$316.3(0)[32]$
$316.6(4)[0]$
$307.3(6)[0]$
$307.0(0)[27]$
$305.3(4)[0]$
$305.1(0)[84]$

$\left.\left[\delta\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{O}_{5}\right)+\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]+\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$ $\left.\left[\delta\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{O}_{5}\right)-\delta\left(\mathrm{O}_{4 \mathrm{~A}} \operatorname{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)\right]-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$ $\left\{\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]\right\}+\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)+\right.$ $\left.\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]\left\{\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]-\right.$ $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$ $\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left\{\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\right.\right.$ $\left.\left.\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]\right\}_{\text {small }}$ $\left[\delta\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{7} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$ $\left[\delta\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{7} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]-\left[\delta\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
 $\left[\delta\left(\mathrm{O}_{3} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{2} \operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$ $\left[\delta\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[\delta\left(\mathrm{O}_{2 \mathrm{~A}} \operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$ $\left[\delta\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{F}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[\delta\left(\mathrm{O}_{2 \mathrm{~A}} \operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$ $\left[\delta\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)+\delta\left(\mathrm{O}_{5} \operatorname{Re}_{1} \mathrm{~F}_{5}\right)\right]-\left[\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\right.$

$\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{O}_{5} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{O}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$ $\left[\delta\left(\mathrm{O}_{5} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{O}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$ $\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{O}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)+\right.$ $\left.\rho_{\mathrm{r}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$$n$ $\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{O}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)\right]-\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)+\right.$ $\left.\rho_{\mathrm{r}}\left(\mathrm{O}_{4 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Re}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$

Ph.D. Thesis - Maria V. Ivanova
Table D3. (continued....)

 $285.5(2)[0]$
$284.6(0)[110]$
$264.5(0)[46]$
$263.8(2)[0]$
$261.5(3)[0]$
$260.3(0)[45]$
$240.7(0)[34]$
$240.5(3)[0]$
$229.4(1)[0]$
$224.7(0)[103]$
$222.6(1)[0]$
$222.4(0)[75]$
$203.4(0)[12]$
$201.0(1)[0]$
$177.8(0)[1]$
$178.0(1)[0]$
$180.7(0)[8]$
$172.9(0)[2]$
$130.4(1)[0]$
$124.9(0)[4]$
$126.4(<1)[0]$
$122.8(<1)[0]$
$118.9(0)[51]$
$112.6(0)[4]$
$107.2(<1)[0]$
$94.1(19)[0]$
$91.2(0)[8]$ $290.7(2)[0]$
$288.9(0)[112]$
$267.4(0)[48]$
$266.7(2)[0]$
$262.8(3)[0]$
$261.4(0)[47]$
$243.5(0)[25]$
$243.1(3)[0]$
$230.7(1)[0]$
$226.0(0)[108]$
$224.2(1)[0]$
$224.1(0)[83]$
$208.4(0)[15]$
$205.2(1)[0]$
$178.4(0)[1]$
$178.9(1)[0]$
$182.0(0)[5]$
$179.9(0)[5]$
$134.3(1)[0]$
$129.3(0)[8]$
$129.0(1)[0]$
$127.2(<1)[0]$
$121.0(0)[53]$
$114.7(0)[2]$
$109.8((1)[0]$
$94.4(19)[0]$
$91.6(0)[9]$

$\stackrel{n}{1}$
$216.9(2) \quad 213.3(2) \quad-3.6$

$\stackrel{\infty}{\text { i }}$	\bar{i}	$\stackrel{+}{i}$	$\stackrel{9}{1}$	$\stackrel{n}{i}$
$\begin{aligned} & \overparen{\Delta} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \infty \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \tilde{m} \\ & \infty \\ & \infty \\ & \infty \\ & \end{aligned}$	$\underset{\underset{\sim}{\mathrm{N}}}{\substack{\mathrm{a}}}$	
$\begin{aligned} & \underset{\sim}{\mathrm{y}} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \overparen{\sigma} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & n \\ & \underset{y}{U} \end{aligned}$		

${\underset{i}{i}}_{\substack{n \\ i}}$

266.7(5)
248.6(2)
238.2(2)
$230.4(3)$
$198.3(2)$
$179.9(1)$
on
on
on
0

Ph.D. Thesis - Maria V. Ivanova
Table D3. (continued....)
Frequencies are given in $\mathrm{cm}^{-1} . \Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right)$. Band corresponding to $v_{1}\left(\Sigma_{\mathrm{g}}^{+}\right) \mathrm{XeF}_{2}$ were observed at $496.5 \mathrm{~cm}^{-1}$ in both spectra. Two weak ban ere observed in the ${ }^{16} \mathrm{O}\left(487.9 \mathrm{~cm}^{-1}\right)$ and ${ }^{18} \mathrm{O}\left(484.0 \mathrm{~cm}^{-1}\right)$ spectra but were not assigned. Values in parentheses denote relative Raman intensities. Ram eectra were recorded in FEP sample tubes at $-130{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. ${ }^{b}$ Values in parentheses denote calculated Raman intensities $\left(\AA^{4} \mathrm{u}^{-}\right.$ alues in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/aug-cc-pVDZ(-PP) method was used. ${ }^{c}$ Bond elongations and ans jenings are denoted by plus (+) signs and bond contractions and angle compressions are denoted by minus (-) signs. The abbreviations denote shoulc h), stretch (v), bend (δ), twist $\left(\rho_{t}\right)$, wag $\left(\rho_{w}\right)$, rock $\left(\rho_{r}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). The atoms labeling scheme is given in Figure 6.1 dditional minor contribution: $\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$. ${ }^{e}$ Only contribution: $\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{3}\right)+\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{O}_{3 \mathrm{~A}}\right)\right]$. ${ }^{f}$ Additional mir ntribution: $\left[v\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)-v\left(\operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$. ${ }^{g}$ Additional minor contribution: $\delta\left(\mathrm{O}_{3} \operatorname{Re}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{3 \mathrm{~A}} \operatorname{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)$. ${ }^{h}$ Additional mir)ntribution: $\delta\left(\mathrm{O}_{3} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right) .{ }^{i}$ Additional minor contribution: $\delta\left(\mathrm{O}_{3} \operatorname{Re}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Re}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)$.

Ph.D. Thesis - Maria V. Ivanova

Table D4. Calculated (B3LYP, $C_{2 \mathrm{~h}}$) Raman and Infrared Frequencies, ${ }^{a}$ Intensities, and Assignments for $[\mathrm{XeOXeOXe}]^{2+} b$

Ph.D. Thesis - Maria V. Ivanova
Table D5. Calculated (PBE1PBE, $C_{2 h}$) Raman and Infrared Frequencies, ${ }^{a}$ Intensities, and Assignments for [XeOXeOXe] ${ }^{2+b}$

${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta \nu^{16 / 18}$		assgnt ${ }^{\text {c }}$
611.3(16)[0]	579.1(13)[0]	-32.2	$v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
591.3(0)[51]	560.5(0)[46]	-30.8	$v_{4}\left(B_{u}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
434.4(0)[115]	413.5(0)[106]	-20.9	$v_{5}\left(\mathrm{~B}_{\mathrm{u}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
353.6(36)[0]	334.1(33)[0]	-19.5	$v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
170.0(0)[5]	169.5(0)[5]	-0.5	$v_{6}\left(\mathrm{~B}_{\mathrm{u}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$
128.2(0)[6]	122.9(0)[6]	-5.3	$v_{8}\left(\mathrm{~A}_{u}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {o.o.p. }}$
74.9(29)[0]	74.6(29)[0]	-0.3	$v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}$
37.4(0)[<1]	$37.3(0)[<1]$	-0.1	$v_{7}\left(B_{u}\right)$	[$\left.\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} \mathrm{e}_{1}\right)\right]$
8.4(0)[3]	8.3(0)[3]	-0.1	$v_{9}\left(\mathrm{~A}_{u}\right)$	$\left[\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]$

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ The aug-cc-pVDZ(-PP) basis set was used. Values in parentheses denote Raman intensities $\left(\AA \mathrm{A} \mathrm{amu}^{-1}\right)$. Values in square brackets denote infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right) . \Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-$ $v\left({ }^{16} \mathrm{O}\right) .{ }^{c}$ Bond elongations and angle openings are denoted by plus $(+)$ signs and bond contractions and angle compressions are denoted by minus (-) signs. Abbreviations denote stretch (stretch (v), bend (δ), rock (ρ_{r}), wag $\left(\rho_{w}\right)$, twist $\left(\rho_{t}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). The atoms labeling scheme is given in Figure D. 3 a .

Ph.D. Thesis - Maria V. Ivanova
Table D6. Calculated ${ }^{a}$ Raman and Infrared Frequencies, Intensities, and Assignments for the $\left[\mu-\mathrm{F}\left(\operatorname{Re}^{16 / 18} \mathrm{O}_{2} \mathrm{~F}_{4}\right)\right]^{-}$Anion $\left(C_{1}\right)$

calcd $^{\text {a }}$						assgnt ${ }^{\text {b }}$
	B3LYP			PBE1PBE		
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta \nu^{16 / 8 c^{\prime}}$	${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta v^{16 / 18}$	
1034.2(114)[78]	978.9(103)[69]	-55.3	1066.2(108)[88[$\overline{\text { 1009.1(97)[78] }}$	-57.1	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)+v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
1027.7(1)[116]	972.5(1)[105]	-55.2	1059.3(1)[111]	1002.5(1)[100]	-56.8	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)+v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)+v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
998.5(24)[96]	947.4(21)[91]	-51.1	1028.1(21)[86]	975.4(18)[82]	-52.7	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
991.0(8)[337]	940.0(7)[309]	-51.0	1019.7(9)[378]	967.3(8)[347]	-52.4	$\left[v\left(\mathrm{Re}_{1} \mathrm{O}_{1}\right)-v\left(\mathrm{Re}_{1} \mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Re}_{2} \mathrm{O}_{4}\right)-v\left(\mathrm{Re}_{2} \mathrm{O}_{3}\right)\right]$
650.7(<1)[254]	650.6(<1)[255]	-0.1	668.1 (<1)[231]	668.0(<1)[232]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)\right]$
647.0(19)[153]	647.0(19)[153]	0.0	664.3(17)[152]	664.2(17)[152]	-0.1	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+\right.} \\ & \left.v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right] \end{aligned}$
644.2(1)[151]	644.1(1)[152]	-0.1	659.7(1)[180]	659.6(1)[180]	-0.1	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right]$
635.7(1)[20]	635.6(1)[21]	-0.1	651.3(1)[29]	651.1(1)[29]	-0.2	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right]$
572.0(3)[98]	571.9(3)[97]	-0.1	586.4(3)[102]	586.2(3)[101]	-0.2	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-\right.} \\ & \left.v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right] \end{aligned}$
569.0(3)[18]	568.9(3)[18]	-0.1	583.3(3)[21]	583.1(3)[21]	-0.2	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{3}\right)+v\left(\operatorname{Re}_{1} \mathrm{~F}_{4}\right)-v\left(\operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[v\left(\operatorname{Re}_{2} \mathrm{~F}_{5}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{7}\right)-\right.} \\ & \left.v\left(\operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right] \end{aligned}$
439.0(<1)[197]	437.6(<1)[208]	-1.4	452.4(<1)[207]	451.4(<1)[215]	-1.0	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\operatorname{Re}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)_{\mathrm{umb}}-\right.} \\ & \left.\delta\left(\operatorname{Re}_{1} \mathrm{O}_{4} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)_{\mathrm{umb}}\right]_{\text {smal }} \end{aligned}$
406.1(4)[3]	386.6(4)[2]	-19.5	413.6(5)[2]	394.1(4)[1]	-19.5	$\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
397.6(6)[16]	377.8(5)[9]	-19.8	404.4(5)[11]	384.0(4)[6]	-20.4	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
339.5(2)[8]	333.5(1)[11]	-6.0	348.1(1)[11]	344.8(1)[12]	-3.3	$\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{3} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[\delta\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{7} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]$
339.4(2)[3]	332.3(2)[3]	-7.1	344.0(2)[7]	$337.1(2)[<1]$	-6.9	$\left[\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{3} \operatorname{Re}_{2} \mathrm{~F}_{1}\right)\right]+\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{7} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]$
336.4(1)[8]	332.0(2)[1]	-4.4	$344.0(2)[<1]$	337.0(2)[2]	-7.0	$\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Re}_{2} \mathrm{~F}_{2}\right)\right]+\rho_{w}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)$
323.9(1)[14]	315.0(1)[9]	-8.9	327.6(1)[12]	318.9(1)[7]	-8.7	$\left[\delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)\right]$
317.2(5)[12]	306.7(5)[10]	-10.5	320.1(5)[11]	309.3(5)[9]	-10.8	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)\right]-\left[\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)\right]$
292.8(<1)[38]	289.1(<1)[43]	-3.7	296.1(<1)[40]	291.9(<1)[44]	-4.2	$\begin{aligned} & {\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)\right]+\left[\delta\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{O}_{4}\right)+\delta\left(\mathrm{F}_{7} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)\right]+} \\ & {\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Re}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{~F}_{2}\right)\right]} \end{aligned}$
292.0(1)[2]	288.4(1)[2]	-3.6	295.6(1)[2]	291.7(1)[2]	-3.9	$\left[\delta\left(\mathrm{Re}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)_{\mathrm{umb}}\right]+\left[\delta\left(\mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)_{\mathrm{umb}}\right]+\delta\left(\mathrm{Re}_{2} \mathrm{~F}_{2} \mathrm{Re}_{1}\right)$

Ph.D. Thesis - Maria V. Ivanova
Table D6. (continue...)

267.8(<1)[52]	265.0(<1)[47]	-2.8	271.4(<1)[54]	268.5(<1)[50]	-2.9	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)\right]+\delta\left(\operatorname{Re}_{2} \mathrm{~F}_{2} \mathrm{Re}_{1}\right)$
243.0(1)[1]	241.4(1)[1]	-1.6	246.8(1)[1]	245.5(<1)[1]	-1.3	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{~F}_{3}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{5}\right)\right]+\delta\left(\operatorname{Re}_{2} \mathrm{~F}_{2} \mathrm{Re}_{1}\right)$
227.6(1)[154]	226.3(1)[152]	-1.3	231.6(1)[137]	230.3(1)[136]	-1.3	$\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)-v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\operatorname{Re}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)_{\text {umb }}\right]-\left[\delta\left(\mathrm{Re}_{2} \mathrm{O}_{4} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)_{\text {umb }}\right]$
225.9(1)[5]	222.4(1)[5]	-3.5	229.3(1)[5]	225.4(1)[5]	-3.9	$\begin{aligned} & {\left[v\left(\mathrm{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\mathrm{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\mathrm{F}_{1} \operatorname{Re}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \operatorname{Re}_{2} \mathrm{~F}_{5}\right)-\right.} \\ & \left.\delta\left(\mathrm{O}_{4} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)\right] \end{aligned}$
187.5(<1)[5]	185.0(<1)[4]	-2.5	189.7(<1)[5]	187.3(<1)[4]	-2.4	$\begin{aligned} & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)-} \\ & \left.\delta\left(\mathrm{O}_{3} \operatorname{Re}_{2} \mathrm{~F}_{7}\right)\right] \end{aligned}$
179.6(<1)[1]	177.9(<1)[1]	-1.7	181.7(<1)[1]	180.1(<1)[1]	-1.6	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{5} \operatorname{Re}_{2} \mathrm{~F}_{7}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]$
175.7(<1)[8]	173.1(<1)[10]	-2.6	177.1(<1)[8]	174.3(<1)[10]	-2.8	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \operatorname{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{5} \operatorname{Re}_{2} \mathrm{~F}_{7}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)\right]$
128.5(<1)[1]	124.8(<1)[<1]	-3.7	129.7(<1)[1]	126.0(<1)[1]	-3.7	$\begin{aligned} & {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{3} \mathrm{Re}_{1} \mathrm{~F}_{1}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{1}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{6}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{3} \operatorname{Re}_{2} \mathrm{O}_{4}\right)\right]+} \\ & {\left[v\left(\operatorname{Re}_{1} \mathrm{~F}_{2}\right)+v\left(\operatorname{Re}_{2} \mathrm{~F}_{2}\right)\right]_{\text {small }}} \end{aligned}$
108.6(<1)[<1]	107.2(<1)[<1]	-1.4	$113.5(<1)[<1]$	$112.0(<1)[<1]$	-1.5	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Re}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{2} \mathrm{Re}_{1} \mathrm{O}_{1}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{5} \mathrm{Re}_{2} \mathrm{~F}_{7}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{3} \mathrm{Re}_{2} \mathrm{O}_{4}\right)\right]$
$99.6(<1)[<1]$	98.0(<1)[<1]	-1.6	101.2(<1)[<1]	$99.4(<1)[<1]$	-1.8	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \operatorname{Re}_{1} \mathrm{~F}_{1}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{Re}_{1} \mathrm{O}_{1}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{4} \operatorname{Re}_{2} \mathrm{~F}_{6}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{3} \operatorname{Re}_{2} \mathrm{~F}_{5}\right)\right]$
$33.4(<1)[<1]$	$32.4(<1)[<1]$	-1.0	$37.4(<1)[<1]$	$36.4(<1)[<1]$	-1.0	
$20.4(<1)[<1]$	$20.1(<1)[<1]$	-0.3	$23.1(<1)[<1]$	$22.8(<1)[<1]$	-0.3	deformation modes
19.1(<1)[<1]	18.9(<1)[<1]	-0.2	20.1(<1)[<1]	19.7(<1)[<1]	-0.4	

Ph.D. Thesis - Maria V. Ivanova
Table D7. Calculated (B3LYP, C_{i}) Raman and Infrared Frequencies, Intensities, and Assignments for FXeOXeOXeF

$\mathrm{calcd}^{\text {a }}$				assgnts ${ }^{\text {b }}$
${ }^{16} \mathrm{O}$	${ }^{18} \mathrm{O}$	$\Delta v^{16 / 18}$		
554.1(51)[0]	528.3(63)[0]	-25.8	$v_{1}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
534.7(0)[789]	506.9(0)[635]	-27.8	$v_{7}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
493.0(0)[288]	484.4(0)[493]	-8.6	$v_{8}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]-\left[\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
477.5(164)[0]	473.3(157)[0]	-4.2	$v_{2}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
436.3(0)[582]	422.3(0)[435]	-14.0	$v_{9}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[\left(\mathrm{Xe}_{2} \mathrm{~F}_{1}\right)-\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
383.0(193)[0]	362.9(169)[0]	-20.1	$v_{3}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[v\left(\mathrm{Xe}_{1} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{1} \mathrm{O}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
210.6(0)[34]	202.4(0)[33]	-8.2	$v_{10}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} e_{1}\right)\right]_{\text {o.o.p. }}+\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]_{\text {o.o.p. }}$
183.2(3)[0]	179.2(3)[0]	-4.0	$v_{4}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} e_{1}\right)\right]_{\text {o.o.p. }}+\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]_{\text {o.o.p. }}$
181.9(0)[7]	181.7(0)[7]	-0.2	$v_{11}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}+\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]_{\text {i.p. }}$
141.8(11)[0]	141.6(11)[0]	-0.2	$v_{5}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]_{\text {i.p. }}$.
121.1(0)[1]	120.1(0)[2]	-1.0	$v_{12}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe} \mathrm{e}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} \mathrm{e}_{1}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
120.4(0)[4]	120.3(0)[4]	-0.1	$v_{13}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p. }}-\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]_{\text {i.p. }}$
52.4(27)[0]	52.1(27)[0]	-0.3	$v_{6}\left(\mathrm{~A}_{\mathrm{g}}\right)$	$\left[\delta\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)+\delta\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)\right]_{\text {i.p }}$.
29.3(0)[2]	29.1(0)[2]	-0.2	$v_{14}\left(\mathrm{~A}_{\mathrm{u}}\right)$	[$\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe}_{1}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe}_{1}\right)$]
-5.6(0)[1]	-5.5(0)[1]	-0.1	$v_{15}\left(\mathrm{~A}_{\mathrm{u}}\right)$	$\left[\rho_{t}\left(\mathrm{Xe}_{2} \mathrm{O}_{1} \mathrm{Xe} e_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{Xe} \mathrm{e}_{1}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{O}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$

${ }^{a}$ Frequencies are given in cm^{-1}. Values in parentheses denote Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$. Values in square brackets denote infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right) . \Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right)$. The aug-cc-pVDZ (-PP) basis set was used. ${ }^{b}$ Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle compressions are denoted by minus (-) signs. Abbreviations denote stretch (stretch (v), bend (δ), rock $\left(\rho_{r}\right)$, wag $\left(\rho_{w}\right)$, twist $\left(\rho_{t}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). The atoms labeling scheme is given in Figure D3b.

Ph.D. Thesis - Maria V. Ivanova
Table D8. Calculated (PBE1PBE, C_{i}) Raman and Infrared Frequencies, Intensities, and Assignments for FXeOXeOXeF
calcd a
assgnts ${ }^{b}$

${ }^{a}$ Frequencies are given in cm^{-1}. Values in parentheses denote Raman intensities ($\AA \mathrm{amu}^{-1}$). Values in square brackets denote infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right) . \Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right)$. The aug-cc-pVDZ (-PP) basis set was used. ${ }^{b}$ Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle compressions are denoted by minus (-) signs. Abbreviations denote stretch (stretch (v), bend (δ), rock $\left(\rho_{r}\right)$, wag $\left(\rho_{w}\right)$, twist $\left(\rho_{t}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). The atoms labeling scheme is given in Figure D.3b.

Ph.D. Thesis - Maria V. Ivanova

Table D9. Natural Population Analysis Charges, Natural Atomic Orbital Bond Orders, and Valences for $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}\left(C_{\mathrm{i}}\right),[\mathrm{XeOXeOXe}]^{2+}\left(C_{2 \mathrm{~h}}\right)$, and FXeOXeOXeF $\left(C_{\mathrm{i}}\right)^{a}$

$[\mathrm{XeOXeOXe}]^{2+}$

$\mathrm{Xe}_{(1)}$	1.084	0.635	1.118	0.663	$\mathrm{Xe}_{(1)}-\mathrm{O}_{(1)}$	0.321	0.335
$\mathrm{Xe}_{(2)}$	1.095	0.484	1.115	0.500	$\mathrm{Xe}_{(2)}-\mathrm{O}_{(1)}$	0.486	0.502
$\mathrm{O}_{(1)}$	-0.637	0.808	-0.674	0.834			

FXeOXeOXeF

$\mathrm{Xe}_{(1)}$	0.966	0.692	1.002	0.700	$\mathrm{Xe}_{(1)}-\mathrm{O}_{(1)}$	0.342	0.345
$\mathrm{Xe}_{(2)}$	1.044	0.660	1.069	0.669	$\mathrm{Xe}_{(2)}-\mathrm{O}_{(1)}$	0.395	0.399
$\mathrm{O}_{(1)}$	-0.911	0.741	-0.947	0.747	$\mathrm{Xe}_{(2)}-\mathrm{F}_{(1)}$	0.259	0.263
$\mathrm{~F}_{(1)}$	-0.616	0.260	-0.623	0.263			

${ }^{a}$ The aug-cc-pVDZ (-PP) basis set was used.

Ph.D. Thesis - Maria V. Ivanova

Figure D4. Relief map representations of the electron densities in the plane of (a) $[\mathrm{XeOXeOXe}]^{2+}$, (b) FXeOXeOXeF, and (c) the F---XeOXeOXe---F moiety of the ion pair, $[\mathrm{XeOXeOXe}]\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)\right]_{2}$.
Table D10. QTAIM Density of all Electrons (ρ_{b}), Laplacian of Electron Density ($\nabla^{2} \rho_{\mathrm{b}}$), Energy Density (H_{b}), QTAIM

Figure D5. ELF isosurface plots (B3LYP/aug-cc-pVDZ(-PP), $\eta(\mathbf{r})=0.60$ for [XeOXeOXe] $\left[\mu-\mathrm{F}\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)_{2}\right]_{2}$. Color code: red $=$ core; blue $=$ monosynaptic basin.

APPENDIX E

REACTION OF MnO ${ }_{3}$ F WITH NOBLE-GAS FLUORIDES, KrF_{2} AND XeF_{6}

Figure E1. Raman spectrum of $\mathrm{MnO}_{3} \mathrm{~F}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line $(*)$, a $\mathrm{MnO}_{3} \mathrm{~F}$ line overlapping with an FEP line (\ddagger), and an instrumental artifact (\dagger). The bands at 881 (<1) and $931(<1) \mathrm{cm}^{-1}$ are unassigned.

Ph.D. Thesis - Maria V. Ivanova

Figure E2. Raman spectrum of a red oil under frozen solution that resulted from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF. The spectrum was recorded at -150 ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line $(*)$, $\mathrm{KrF}_{2}(\ddagger)$, and an instrumental artifact (\dagger).

Figure E3. Raman spectrum of the isolated product resulting from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} in aHF. The spectrum was recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote an FEP sample tube line $\left(^{*}\right)$, an instrumental artifact (\dagger), overlap of a product line with an FEP sample tube line (\ddagger). Broad bands observed at 119(7), 252(2), 401(12), 520(4), 614(5), $732(85), 747(100) \mathrm{cm}^{-1}$ were tentatively assigned to $\left[\mathrm{O}_{2}\right]\left[\mathrm{MnF}_{6}\right]$ or $\left[\mathrm{O}_{2}\right]\left[\mathrm{Mn}_{2} \mathrm{~F}_{9}\right]$.

Figure E4. Raman spectrum of the product resulting from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF. The spectrum was recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line (*) and an instrumental artifact (\dagger). Broad bands observed at 119(5), 186(2), 247 sh, $276(25), 311(22), 325 \mathrm{sh}, 398(17), 473(24), 525(14), 575(70), 595$ sh, $645 \mathrm{sh}, 693(100) \mathrm{cm}^{-1}$ were tentatively assigned to a solid mixture containing at least $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ and MnF_{3}.

Figure E5. Raman spectrum of the product resulting from the reaction of $\mathrm{MnO}_{3} \mathrm{~F}$ with KrF_{2} and $\mathrm{K}\left[\mathrm{HF}_{2}\right]$ in aHF. The spectrum was recorded in 4-mm i.d. glass at $140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote a $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]$ line (§) and an instrumental artifact (\dagger).

Figure E6. Raman spectrum of a solid mixture comprised of $\mathrm{MnO}_{3} \mathrm{~F}, \mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$, and XeOF_{4} and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}$ (see Section 7.2.2) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an FEP sample tube line $\left(^{*}\right)$, an instrumental artifact (\dagger), and the most intense lines for $\mathrm{MnO}_{3} \mathrm{~F}(\#), \mathrm{XeOF}_{4}$ and/or $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{6}(\ddagger),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ (§), and $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}(\Delta)$.

Table E1. Selected Experimental and Calculated Bond Lengths and Bond Angles for the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and $\left[\mathrm{XeF}_{5}\right]^{+}$cations in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$

$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$				$\left[\mathrm{XeF}_{5}\right]^{+}$		
exptl ${ }^{a}$		calcd			exptl ${ }^{\text {c }}$	$\mathrm{calcd}^{\text {d }}$
Bond Lengths (A)						
$\mathrm{Xe}_{1}-\mathrm{F}_{4}$	2.247(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{7}$	2.418	$\mathrm{Xe}_{1}-\mathrm{F}_{7}$	1.825(2)	1.851
$\mathrm{Xe}_{1}-\mathrm{F}_{5}$	1.834(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{8}$	1.864	$\mathrm{Xe}_{1}-\mathrm{F}_{8}$	1.851(2)	1.892
$\mathrm{Xe}_{1}-\mathrm{F}_{6}$	1.855(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{9}$	1.902	$\mathrm{Xe}_{1}-\mathrm{F}_{9}$	1.852(2)	1.894
$\mathrm{Xe}_{1}-\mathrm{F}_{7}$	1.848(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{10}$	1.890	$\mathrm{Xe}_{1}-\mathrm{F}_{10}$	1.853(2)	1.895
$\mathrm{Xe}_{1}-\mathrm{F}_{8}$	1.869(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{11}$	1.914	$\mathrm{Xe}_{1}-\mathrm{F}_{11}$	1.853(2)	1.890
$\mathrm{Xe}_{1}-\mathrm{F}_{9}$	1.861(2)	$\mathrm{Xe}_{1}-\mathrm{F}_{12}$	1.894	$\mathrm{Xe}_{2}-\mathrm{F}_{12}$	1.821(2)	1.848
$\mathrm{Xe}_{2}-\mathrm{F}_{10}$	1.830(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{13}$	1.866	$\mathrm{Xe}_{2}-\mathrm{F}_{13}$	1.851(2)	1.892
$\mathrm{Xe}_{2}-\mathrm{F}_{11}$	1.850(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{14}$	1.897	$\mathrm{Xe}_{2}-\mathrm{F}_{14}$	1.853(2)	1.892
$\mathrm{Xe}_{2}-\mathrm{F}_{12}$	1.864(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{15}$	1.930	$\mathrm{Xe}_{2}-\mathrm{F}_{15}$	1.846(2)	1.894
$\mathrm{Xe}_{2}-\mathrm{F}_{13}$	1.866(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{16}$	1.944	$\mathrm{Xe}_{2}-\mathrm{F}_{16}$	1.861(2)	1.890
$\mathrm{Xe}_{2}-\mathrm{F}_{14}$	1.864(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{17}$	1.895			
$\mathrm{Xe}_{2}-\mathrm{F}_{4}$	2.260(2)	$\mathrm{Xe}_{2}-\mathrm{F}_{7}$	2.197			
Bond Angles (${ }^{\circ}$)						
$\mathrm{F}_{4}-\mathrm{Xe}_{1}-\mathrm{F}_{5}$	145.4(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	146.0	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	78.0(1)	82.3
$\mathrm{F}_{4}-\mathrm{Xe}_{1}-\mathrm{F}_{6}$	111.1(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	113.9	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	77.9(1)	82.3
$\mathrm{F}_{4}-\mathrm{Xe}_{1}-\mathrm{F}_{7}$	72.0(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	71.8	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	79.8(1)	82.2
$\mathrm{F}_{4}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	133.5(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	128.9	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	79.1(1)	82.4
$\mathrm{F}_{4}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	83.7(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{12}$	80.4	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	155.5(1)	164.6
$\mathrm{F}_{4}-\mathrm{Xe}_{2}-\mathrm{F}_{10}$	144.8(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	161.2	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	84.6(1)	88.3
$\mathrm{F}_{4}-\mathrm{Xe}_{2}-\mathrm{F}_{11}$	71.7(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	87.5	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	88.6(1)	89.5
$\mathrm{F}_{4}-\mathrm{Xe}_{2}-\mathrm{F}_{12}$	111.3(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	115.1	$\mathrm{F}_{9}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	87.6(1)	89.9
$\mathrm{F}_{4}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	133.7(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	103.1	$\mathrm{F}_{9}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	90.4(1)	88.2
$\mathrm{F}_{4}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	83.2(1)	$\mathrm{F}_{7}-\mathrm{Xe}_{2}-\mathrm{F}_{17}$	81.0	$\mathrm{F}_{10}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	158.7(1)	164.6
$\mathrm{F}_{5}-\mathrm{Xe}_{1}-\mathrm{F}_{6}$	80.4(1)	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	81.6	$\mathrm{Xe}_{1}--\mathrm{F}_{1}-\mathrm{Mn}_{1}$	108.9(1)	105.8
$\mathrm{F}_{5}-\mathrm{Xe}_{1}-\mathrm{F}_{7}$	77.0(1)	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	79.7	$\mathrm{Xe}_{1}--\mathrm{F}_{3}-\mathrm{Mn}_{1}$	107.9(1)	108.2
$\mathrm{F}_{5}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	76.8(1)	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	79.1	$\mathrm{Xe}_{2}--\mathrm{F}_{2 \mathrm{~A}}-\mathrm{Mn}_{1 \mathrm{~A}}$	108.0(1)	89.9
$\mathrm{F}_{5}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	79.9(1)	$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{12}$	80.1	$\mathrm{Xe}_{2}--\mathrm{F}_{4 \mathrm{~A}}-\mathrm{Mn}_{1 \mathrm{~A}}$	108.3(1)	143.4
$\mathrm{F}_{6}-\mathrm{Xe}_{1}-\mathrm{F}_{7}$	84.8(1)	$\mathrm{F}_{9}-\mathrm{Xe}_{1}-\mathrm{F}_{10}$	86.2	$\mathrm{F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	78.0(1)	83.6
$\mathrm{F}_{6}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	89.3(1)	$\mathrm{F}_{9}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	88.3	$\mathrm{F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	77.6(1)	83.5
$\mathrm{F}_{6}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	160.0(1)	$\mathrm{F}_{9}-\mathrm{Xe}_{1}-\mathrm{F}_{12}$	162.6	$\mathrm{F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	80.6(1)	83.0
$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{8}$	153.7(1)	$\mathrm{F}_{10}-\mathrm{Xe}_{1}-\mathrm{F}_{11}$	158.6	$\mathrm{F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	79.8(1)	82.7
$\mathrm{F}_{7}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	87.3(1)	$\mathrm{F}_{10}-\mathrm{Xe}_{1}-\mathrm{F}_{12}$	89.4	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	155.6(1)	167.1
$\mathrm{F}_{8}-\mathrm{Xe}_{1}-\mathrm{F}_{9}$	89.6(1)	$\mathrm{F}_{11}-\mathrm{Xe}_{1}-\mathrm{F}_{12}$	89.7	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	85.7(1)	90.0
$\mathrm{Xe}_{1}--\mathrm{F}_{1}-\mathrm{Mn}_{1}$	112.8(1)	$\mathrm{Xe}_{1}--\mathrm{F}_{1}-\mathrm{Mn}_{1}$	110.0	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	86.3(1)	88.5
$\mathrm{Xe}_{1}--\mathrm{F}_{3}-\mathrm{Mn}_{1}$	103.8(1)	$\mathrm{Xe}_{1}--\mathrm{F}_{3}-\mathrm{Mn}_{1}$	109.4	$\mathrm{F}_{14}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	89.6(1)	89.7
$\mathrm{Xe}_{1}-\mathrm{F}_{4}-\mathrm{Xe}_{2}$	166.3(1)	$\mathrm{Xe}_{1}-\mathrm{F}_{7}-\mathrm{Xe}_{2}$	173.7	$\mathrm{F}_{14}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	90.9(1)	88.6
$\mathrm{F}_{10}-\mathrm{Xe}_{2}-\mathrm{F}_{11}$	77.0(1)	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	84.4	$\mathrm{F}_{15}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	159.9(1)	165.7
$\mathrm{F}_{10}-\mathrm{Xe}_{2}-\mathrm{F}_{12}$	80.6(1)	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	81.7			
$\mathrm{F}_{10}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	77.1(1)	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	83.3			
$\mathrm{F}_{10}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	78.0(1)	$\mathrm{F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{17}$	81.8			
$\mathrm{F}_{11}-\mathrm{Xe}_{2}-\mathrm{F}_{12}$	84.8(1)	$\mathrm{F}_{14}-\mathrm{Xe}_{2}-\mathrm{F}_{15}$	88.5			
$\mathrm{F}_{11}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	153.9(1)	$\mathrm{F}_{14}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	167.1			

Table E1. (continued...)

$\mathrm{F}_{11}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	$86.8(1)$	$\mathrm{F}_{14}-\mathrm{Xe}_{2}-\mathrm{F}_{17}$	87.5
$\mathrm{~F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{13}$	$89.3(1)$	$\mathrm{F}_{15}-\mathrm{Xe}_{2}-\mathrm{F}_{16}$	93.5
$\mathrm{~F}_{12}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	$159.8(1)$	$\mathrm{F}_{15}-\mathrm{Xe}_{2}-\mathrm{F}_{17}$	163.3
$\mathrm{~F}_{13}-\mathrm{Xe}_{2}-\mathrm{F}_{14}$	$90.3(1)$	$\mathrm{F}_{16}-\mathrm{Xe}_{2}-\mathrm{F}_{17}$	86.9

${ }^{a}$ For the atom labeling scheme see Figure 7.Xa. ${ }^{b}$ For the atom labeling scheme see Figure 7.Xa (B3LYP/def2-SVP(F, Mn)/aug-cc-pVTZ(-PP) (Xe)). ${ }^{c}$ For the atom labeling scheme see Figure 7.Xb. ${ }^{d}$ For the atom labeling scheme see Figure 7.Xb (B3LYP/def2-SVP(F, $\mathrm{Mn}) /$ aug-cc-pVTZ(-PP) (Xe)).

Table E2. Experimental Bond Lengths, Contacts, and Bond Angles for $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right]$ in the Crystal structure of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ and Calculated Bond Lengths and Bond Angles for $\left[\mathrm{MnF}_{6}\right]^{2-}$

$\begin{gathered} \mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \\ \operatorname{exptl}^{a} \\ \hline \end{gathered}$			$\left[\mathrm{MnF}_{6}\right]^{2-}\left(O_{\mathrm{h}}\right)$		
			B3LYP $^{\text {c }}$	B3LYP ${ }^{\text {d }}$	PBE1PBE ${ }^{c}$
Bond Lengths (A)					
$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.8064(5)				
$\mathrm{Mn}_{1}-\mathrm{F}_{2}$	1.7895(5)	$\mathrm{Mn}_{1}-\mathrm{F}_{1}$	1.8403	1.8266	1.8253
$\mathrm{Mn}_{1}-\mathrm{F}_{3}$	1.8060(5)				
$\mathrm{K}_{1 \mathrm{D}^{---}} \mathrm{F}_{1}$	2.6938(6)				
$\mathrm{K}_{1}---\mathrm{F}_{2}$	2.8173(6)				
$\mathrm{K}_{1 \mathrm{E}^{---} \mathrm{F}_{2}}$	2.7156(5)				
$\mathrm{K}_{1 \mathrm{~A}^{---} \mathrm{F}_{3}}$	2.7618(6)				
Bond Angles (${ }^{\circ}$)					
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{1 \mathrm{~A}}$	180.00(3)		90.0		
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2}$	90.47(3)		180.0		
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	89.53(3)		90.0		
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	89.94(3)		90.0		
$\mathrm{F}_{1}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	90.06(3)		90.0		
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{2 \mathrm{~A}}$	180.00(3)		180.0		
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3}$	90.22(2)		90.0		
$\mathrm{F}_{2}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	89.78(2)		90.0		
$\mathrm{F}_{3}-\mathrm{Mn}_{1}-\mathrm{F}_{3 \mathrm{~A}}$	180.00(3)		180.0		

${ }^{a}$ For the atom labeling scheme see Figures E6a and E6b. ${ }^{b}$ For the atom labeling scheme see Figure E6c. ${ }^{c}$ The aug-cc-pVTZ basis set was used. ${ }^{d}$ The def2-SVP basis set was used.
a

Figure E7. Crystal structure of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ showing the coordination environment around (a) the K^{+}cation and (b) the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion. Thermal ellipsoids are drawn at the 50% probability level. (c) The calculated structure of the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion (B3LYP/aug-cc-pVTZ).

Figure E8. Packing of MnF_{5} along the c-axis. Thermal ellipsoids are drawn at the 50% probability level.

Figure E9. Packing of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$ along the b-axis. Thermal ellipsoids are drawn at the 50\% probability level.

Figure E10. View showing contacts around the K^{+}cation in the crystal structure of $\mathrm{K}\left[\mathrm{MnF}_{6}\right]$. Thermal ellipsoids are drawn at the 50% probability level.

Figure E11. Packing of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ along the b-axis. Thermal ellipsoids are drawn at the 50% probability level.

Figure E12. The coordination around the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation in the crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$. Thermal ellipsoids are drawn at the 50% probability level.

Figure E13. Packing of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ along the b-axis. Thermal ellipsoids are drawn at the 50% probability level.

Figure E14. Raman spectrum of $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote FEP sample tube lines (*), an instrumental $\operatorname{artifact}(\dagger)$, and overlap of a $\mathrm{K}_{2}\left[\mathrm{MnF}_{6}\right] \cdot 4 \mathrm{HF}$ line with an FEP line (\ddagger).

Table E3. Experimental Raman Frequencies and Intensities for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left\{\left[\mathrm{XeF}_{5}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$

Table E3. (continued...)

$\begin{aligned} & 320(5) \\ & 312(6) \end{aligned}$	315(1)[7]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
306(8)	$\left\{\begin{array}{l} 306(2)[96] \\ 300(12)[1] \\ 298(<1)[118] \\ 295(3)[63] \end{array}\right.$	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)-\delta\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\text {eq }}\right)_{\mathrm{umb}}$
$\begin{aligned} & 298 \mathrm{sh} \\ & 279(<1) \end{aligned}$	$\left\{\begin{array}{l} 286(6)[9] \\ 281(20)[38] \\ 278(2)[7] \end{array}\right.$	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
265(2)	$\left\{\begin{array}{l} 260(2)[<1] \\ 259(2)[<1] \\ 259(2)[<1] \\ 258(2)[<1] \end{array}\right.$	$\delta\left(\mathrm{F}_{\text {eq }} \mathrm{XeF}_{\text {eq }}\right)$
236 sh	239(1)[2]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
226(1)	$\left\{\begin{array}{l}215(<1)[5] \\ 213(<1)[2]\end{array}\right.$	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\text {eq }}\right)$
200(1)	$\left\{\begin{array}{l}200(<1)[2] \\ 197(<1)[4]\end{array}\right.$	$\rho_{\mathrm{t}}\left(\mathrm{~F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)-\rho_{\mathrm{t}}\left(\mathrm{~F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{eq}}\right)$
	$\left\{\begin{array}{l} 191(<1)[1] \\ 189(<1)[1] \end{array}\right.$	$\rho_{\mathrm{t}}\left(\mathrm{~F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{eq}}\right)$
178(1)	$\begin{aligned} & 188(<1)[3] \\ & 188(<1)[1] \\ & 186(<1)[7] \\ & 185(<1)[<1] \end{aligned}$	$\delta\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{ax}}\right)$
164(2)	$\left\{\begin{array}{l} 180(<1)[1] \\ 180(<1)[2] \\ 179(<1)[2] \\ 177(<1)[2] \end{array}\right.$	$\delta\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\text {eq }}\right)+\delta\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{ax}}\right)$
137(1)	$\begin{aligned} & 135(2)[42] \\ & 114(1)[31] \\ & 108(1)[30) \\ & 104(1)[15] \\ & 98(1)[6] \\ & 76(<1)[<1] \\ & 70(1)[<1] \\ & 64(<1)[<1] \\ & 63(1)[1] \\ & 55(<1)[1] \end{aligned}$	$\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
126(1)	$44(<1)[<1]$	
111(3)	$35(<1)[<1]$	deformation modes
96(2)	$\begin{aligned} & 29(<1)[<1] \\ & 25(<1)[1] \\ & 18(<1)[<1] \\ & 17(<1)[<1] \\ & 16(<1)[<1] \\ & 13(<1)[<1] \\ & 13(<1)[<1] \\ & 12(<1)[<1] \\ & 10(<1)[<1] \\ & 9(<1)[<1] \end{aligned}$	

Table E3. (continued...)
${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectrum was recorded in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using $1064-$ nm excitation. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). The B3LYP/def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe) method was used. ${ }^{d}$ The abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, umbrella (umb), equatorial (eq), axial (ax), in-phase (ip), out-of-phase (oop), and bridging (b).

Table E4. Experimental Raman Frequencies and Intensities for [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{MnF}_{6}\right]$ and Calculated Vibrational Frequencies, Intensities, and Assignments for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{4}\left[\mathrm{MnF}_{6}\right]\right\}^{2+}$

Table E4. (continued...)

Table E4. (continued...)

	244(1)[1]	$\left[v\left(\mathrm{XeF}_{\mathrm{b}}\right)+v\left(\mathrm{XeF}_{\mathrm{b}}\right)\right]$
	244(3)[<1]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)+\delta(\mathrm{FXeF})$
$238(<1)$	241(1)[1]	$\delta(\mathrm{FXeF})$
	240(1)[4]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)+\delta(\mathrm{FXeF})_{\text {small }}$
	$239(<1)[16]$	$\delta(\mathrm{FXeF})$
	234(1)[<1]	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
214(1)	$\left\{\begin{array}{l}224(<1)[22] \\ 222(<1)[1]\end{array}\right.$	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)+\delta(\mathrm{FXeF})_{\text {small }}$
	$\left[\begin{array}{l}205(1)[5] \\ 204(<1)[13]\end{array}\right.$	
	203(<1)[30]	
	203(<1)[1]	
	202(<1)[4]	
	201(<1)[5]	
199(3)	195(<1)[<1]	
	193(2)[2]	
	191(<1)[10]	
	$190(<1)[<1]$	
	189(<1)[1]	
	187(<1)[1]	(FXeF) deformation modes
	186(<1)[4]	(FXer) deformation modes
	185(<1)[<1]	
	$\int 180(<1)[3]$	
	179(<1)[3]	
	176(1)[5]	
$176(<1)$	174(3)[<1]	
	173(1)[7]	
	170(1)[1]	
	$\int 154(<1)[<1]$	
	152(<1)[3]	
158(1)	149(<1)[5]	
	[147(<1)[1]	
143(1)	$\{140(2)[19]$	$\delta\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
	$\{138(<1)[17]$	$\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{b}} \mathrm{MnF}_{\mathrm{b}}\right)$
	120(<1)[3]	
	117(<1)[11]	
	113(3)[1]	
	113(<1)[25]	
	111(1)[9]	
109(1)	109(1)[9]	
	105(1)[<1]	
	101(<1)[2]	deformation modes
	$96(<1)[3]$	
	95(1)[1]	
	$92(<1)[3]$	
	$90(2)[<1]$	
	88(<1)[3]	
	82(1)[<1]	
	$80(<1)[<1]$	

Table E4. (continued...)

79(<1)[2]	
$78(<1)[<1]$	
74(<1)[4]	
$72(<1)[37]$	
$60(<1)[<1]$	
58(1)[<1]	
$57(<1)[1]$	
$53(<1)[<1]$	
$52(<1)[2]$	
$51(<1)[<1]$	
$50(<1)[<1]$	
$48(<1)[<1]$	
$47(<1)[<1]$	
$46(<1)[<1]$	
41(<1)[3]	
$41(<1)[<1]$	
$40(<1)[1]$	
$37(<1)[1]$	deformation modes
$36(<1)[1]$	
$35(<1)$ [1]	
$32(<1)$ [1]	
$32(<1)[1]$	
$27(<1)[1]$	
$26(<1)[<1]$	
$25(<1)[<1]$	
$23(<1)[<1]$	
$23(<1)[1]$	
$19(<1)[<1]$	
$18(<1)[<1]$	
17(<1)[2]	
$15(<1)[<1]$	
$13(<1)[1]$	
$8(<1)[3]$	
$7(<1)[<1]$	
$-3(<1)[<1]$	

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. Raman spectrum was recorded in FEP sample tubes at $-140{ }^{\circ} \mathrm{C}$ using 1064nm excitation. The abbreviation denotes shoulder (sh). ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$. The def2-SVP (Mn, F)/aug-cc-pVTZ(-PP) (Xe) basis sets were used. ${ }^{d}$ The abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, and bridging (b).

Table E5. Experimental Raman Frequencies and Intensities and Calculated Vibrational Frequencies, Intensities, and Assignments for the $\left[\mathrm{MnF}_{6}\right]^{2-}$ anion $\left(O_{\mathrm{h}}\right)$

$\operatorname{exptl}^{\text {a,b }}$		calcd $^{a, c}$			assgnts ${ }^{f}$
		B3LYP ${ }^{\text {d }}$	PBE1PBE ${ }^{d}$	B3LYP ${ }^{e}$	
	$\mathrm{T}_{1 \mathrm{u}}$	573(0)[360]	590(0)[367]	599(0)[280]	$v_{\text {as }}(\mathrm{MnF})$
608(100)	$\mathrm{A}_{1 \mathrm{~g}}$	546(34)[0]	561(34)[0]	548(26)[0]	$v_{s}(\mathrm{MnF})$
$\begin{aligned} & 520(30) \\ & 510(16) \end{aligned}$	E_{g}	442(11)[0]	458(10)[0]	454(7)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Mn}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{Mn}_{1} \mathrm{~F}_{2}\right)\right]-} \\ & {\left[v\left(\mathrm{Mn}_{1} \mathrm{~F}_{6}\right)+v\left(\mathrm{Mn}_{1} \mathrm{~F}_{5}\right)\right]} \end{aligned}$
494(2)					
	$\mathrm{T}_{1 \mathrm{u}}$	$305(0)[<1]$	$312(0)[<1]$	319(0)[1]	$\delta_{\text {umb }}\left(\mathrm{F}_{3} \mathrm{~F}_{4} \mathrm{Mn}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6}\right)$
$343(9)$	$\mathrm{T}_{2 \mathrm{~g}}$	270(3)[0]	276(3)[0]	286(3)[0]	$\delta\left(\mathrm{F}_{1} \mathrm{Mn}_{1} \mathrm{~F}_{6}\right)+\delta\left(\mathrm{F}_{2} \mathrm{Mn}_{1} \mathrm{~F}_{5}\right)$
328(9)	$\mathrm{T}_{2 \mathrm{u}}$	193(0)[0]	199(0)[0]	202(0)[0]	$\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Mn}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Mn}_{1} \mathrm{~F}_{6}\right)$
281(14)					
223(5)					
118(6)					lattice modes

${ }^{a}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{b}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. ${ }^{c}$ Values in parentheses denote calculated Raman intensities ($\AA^{4} \mathrm{u}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). ${ }^{d}$ The aug-ccpVTZ basis set was used. ${ }^{e}$ The def2-SVP basis set was used. ${ }^{f}$ The abbreviations denote stretch (v), bend (δ), twist $\left(\rho_{t}\right)$, symmetric (s), asymmetric (as), umbrella (umb). For atom labeling scheme see Figure E7.

[^0]: A full list of frequencies and assignments is provided in Table D4. Vibrational frequencies and isotopic shifts are given in cm^{-1}; $\Delta v^{16 / 18}=v\left({ }^{18} \mathrm{O}\right)-v\left({ }^{16} \mathrm{O}\right) .{ }^{b}$ The Raman spectrum was recorded in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Values in parentheses denote relative experimental Raman intensities. ${ }^{c}$ B3LYP/aug-cc-pVDZ(-PP); the PBE1PBE values are given in Table D5. Values in parentheses denote calculated Raman intensities ($\AA \mathrm{Amu}^{-1}$). Values in square brackets denote calculated infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$). ${ }^{d}$ Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist $\left(\rho_{\mathrm{t}}\right.$), in-plane (i.p.), and out-of-plane (o.o.p.). The atom labeling scheme is given in Figure 6.1.

[^1]: $\left.v\left(\mathrm{Tc}_{2} \mathrm{~F}_{3}\right)+v\left(\mathrm{Tc}_{3} \mathrm{~F}_{3}\right)\right]$

[^2]: ${ }^{a}$ The aug-cc-pVTZ basis set was used. For the atom labeling scheme see Figure C4.

