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This thesis deals with algorithms which, for a
given square matrix A of order n, construct permutation
matrices P and Q (if they exist) such that PAQ is a can-
onical form of A. The pertinent theory of fully indecom-
posable matrices is discussed and detailed description is
given of the algorithm by Dulmage and Mendelsohn. The
connection between irreducible and fully indecomposable
matrices is also examined, and it is observed that Harary's
algorithm for bringing a matrix to a normal form is inter-
changeable with the second part of the Dulmage and Mendel-
sohn algorithm. Efficient computer programs for the Dulmage
and Mendelsohnvalgorithm are presented whichvare directly

applicable to various numerical problems.
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1. FULLY INDECOMPOSABLE MATRICES

1.1 INTRODUCTION

This thesis deals with algorithms which, for a
given square matrix A=(aij) of order n (henceforth denoted
simply A), construct permutation matrices P and Q (if they
exist) such that PAQ is a canonical form of A. The perti-
nent theory of fully indecomposable and irreducible matrices
is presented in section 1.3. Since we are primarily con-
cerned with the points of nonzero entries in A rather than
the entries, we work with the pattern of a matrix (see
section 1.2) and consider (0,1l)-matrices only.

In Chapter 2, we discuss the term rank and coverance
of a matrix. 1In this connection, the classical Koénig-Hall
Theorem plays an important role.

In section 3.3, we explain.EgervérYS algorithm which
in essence constitutes the first part of the Dulmage and
Mendelsohn algorithm. The second part 1s presented in
section 3.1. 1In section 3.2, Harary's algorithm is dis-
cussed which performs the same task as the second part of
the Dulmage and Mendelsohn algorithm.

The remainder of the thesis is devoted to the pres-
entation of computer programs of the Dulmage and Mendelsohn
algorithm which should prove valuable in the realm of
numerical analysis (e.q. Forsythe and Moler (1), pp. 14-15:

A Research Problem).



1.2 PATTERN OF A MATRIX

We say that (i,j) is a nonzero EQiEE of A if
aij#o where ajj is the entry at point (i,j). The set of
nonzero points of A is called the pattern of A. Hence a
pattern is simply a subset of the set J={(i,j)|i=l,2,...,n;
j=1,2,...,n} for some natural number n.

In connection with matrices, it is customary to
use the word line to refer to either the word 'row' or the
word 'column'. For the purpose of our discussion, it is
convenient to define the i-th row as the set {(i,1),(i,2),
..o, (i,n)} and the j-th column as the set {(1,3),(2,3),...,
{(n,j)}. This way a line is simply a pattern of a special
kind.

Points (iyjl), (i2,32),-.-, (ik,jk) are independent

if no two points appear on the same line. A diagonal of

A consists of n independent points.

1.3 DEFINITIONS

A matrix whose entries consist solely of the integers

0 and 1 is called a (0,1l)-matrix. A permutation matrix is

a (0,1)-matrix which has exactly n 1l's at independent
points. Premultiplying A by a permutation matrix permutes
the rows of A while postmultiplying A by a permutation ma-

trix permutes the columns of A.
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Definition 1.3.1 If A is of order n>2, then A is fully in-

decomposable if no permutation matrices P and Q exist such

that
B O
PAQ = (1)
C D

where B and D are square submatrices and O is a zero sub-
matrix. If A is of order 1, then A is fully indecomposable
if its only entry is nonzero. If A is not fully indecompos-

able, then A is partly decomposable.

If A is partly decomposable and either of the dia-
gonal submatrices B and D in (1) is partly decomposable,

then there exist permutation matrices P, and Ql such that

1
Bll 0] 0]
P PAQO, = Bon Bay O
L Ba1 Bao Bz

Continuing this process, after a finite number of steps

we obtain a canonical form

where each of the diagonal submatrices A

either fully indecomposable or is a zero submatrix of order 1.

A
11 © ©
A21 A22
O
A A
ml mm

p' p=l,2,...,m is



Definition 1.3.2 A is reducible if there exists a permu-

tation matrix R such that
i B 0]
RAR = (2)
C D

where B and D are square submatrices and O is a zero sub-

matrix. If A is not reducible, then A is irreducible.

If A is reducible and either of the diagonal sub-
matrices B and D in (2) is reducible, then there exists a

permutation matrix R, such that

1
Bll 0 0
R RARTR T = B B e}
1 1 21 22
B B B
31 32 33

Continuing this process, after a finite number of steps we

obtain a normal form

A 0] . . @]
11
AZl A22 . . .
. . . . 0]
A . . .
ml Amm

where each of the diagonal submatrices A b’ p=1,2,...,m is
p

irreducible.

Remark 1.3.1 Every reducible matrix is partly decomposable

and every fully indecomposable matrix is irreducible. The matrix



is partly decomposable and irreducible.



2. THE TERM RANK AND COVERANCE OF A MATRIX

2.1 THE KONIG-HALL THEOREM

Let P be the pattern of A and let L ke a set of lines.
Then L is a k-cover of A if |L|=k and Pc U h. The coverance
of A is ¢ if ¢ is the minimum number of ?;ies required to
cover A. The term rank of A is r if r is the largest

number such that P has a subset of r independent points.

Remark 2.1.1 The term rank and coverance of a matrix are

invariant under permutation of rows and columns of a matrix.
From the definitions it follows immediately that the
coverance of A is at least equal to the term rank of A. The

following is a classical theorem of D. Konig (2).

Theorem 2.1.1 (D. Konig). The term rank of a matrix is

equal to its coverance.

A corollary of this theorem is the well known
theorem of P. Hall (3) on systems of distincthfepresentatives.
Let F=(S1,S5,...,5,) be an n-tuple of (not necessarily
distinct) subsets of an arbitrary finite set S, then the n-
tuple (al,az,...,an) formed from distinct elements of S 1is
called a system of distinct representatives (abbreviated

SDR) for F.

Theorem 2.1.2 (P. Hall). F has an SDR if and only if the

following condition holds: For each k=1,2,...,n, any k of



the sets 51+59,...,S contain between them at least k

n

distinct elements.

2.2 DULMAGE AND MENDELSOHN'S ALGORITHM

Since we are primarily concerned in this thesis with
determining whether or not a matrix is fully indecomposable,
the following theorem (4) reveals that we need only consider

matrices with term rank n.

Theorem 2.2.1 (Frobenius-Konig). Every diagonal of A con-

tains a zero entry if and only if A has an sxt zero submatrix
with s+t = n+l.

Proof Assume A is of the form

B 0
C D
where O 1is an gxt zero submatrix. Suppose that A has a

strictly positive diagonal. Then t points of the diagonal
must lie in submatrix D. Hence t = n-s. But then t<n-s+l,
a contradiction.

We prove the necessity by induction on n. If A is
a zero matrix, there is nothing to prove. Assume aij#o
for some point (i,j). Then each diagonal of A must contain
a zero entry; and, by the induction hypothesis, A has a
uxv zero submatrix with u+v = (n-1)+1l. Hence there exist

permutation matrices P and ( such that



B 0
PAQ =

C D
where O is a u x (n-u) zero submatrix. If all the entries
of any diagonal of submatrix B are nonzero, then all the
diagonals of submatrix D must contain a zero entry. It
follows that all the diagonals of B or D must contain a
zero entry. Without loss of generality, assume the former
is the case. Then, by the induction hypothesis, B must
contain a pxg zero submatrix with p+g = u+l. But then the

first u rows of PAQ contain ap X (gq+v) zero submatrix and

p + (g+v) = (p+q) + (n-u) = (u+l) + (n-u) = n+l.

Corollary 2.2.1 If A is fully indecomposable, the term

rank of A is n.

Remark 2.2.1 A square matrix has at least two n-covers:

a set of n horizontal lines and a set of n vertical lines.

Theorem 2.2.2 If the order of A is n22, then A is fully

indecomposable if and only if A has precisely two n-covers.

Proof Assume A is fully indecomposable and has an n-cover
consisting of r rows and n-r columns. Then there exist
permutation matrices P and Q such that

B 0

PAQ =
C D



where B 1s a sguare submatrix of order n-r, D is a square
submatrix of order r, and O is a zero submatrix. Hence A
is partly decompnosable, a contradiction.

Assume A pas preciscly two n-covers and is partly
decomposable. Then there exist permutation matrices P and
0 such that

3 o
PAQ =
C D
where B and D are square submatrices and O is a zero 3sub-
matrix. Suppose B is of order n-r and D is of order r.
Consequently the last r rows and first n-r columns of PAQ

constitute an n-cover of PAD other than a set of n horizon-

tal lines and a set of n vertical lines, a contradiction.

Remark 2.2.2 If the term rank of A is n and A is not
fully indecomposaihle, then there exist permutation matrices

P and O such that

A
[ A, © . . 0
‘7\2 1 1:\2 2 . . .
I)AO = - . - . . ’
. . . . 0
Am 1 . . . Amm

PA() has a strictly vositive main diagonal, and each of the
diagonal submatrices App’ p=1,2,...,m, is fully indecomyros-
able.

Theorem 2.2.3 (5) A is fully indecomposable if and only
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if there cxist rermutation matrices P and 9 such that PAQ

has a strictly nositive main diagonal and is irreducible.

Proof Let A be fully indecomposable. Then, by Theorem

2.2.1, there exist permutation matrices P and ¢ such that

PAO has a strictly positive main diagonal. Since PpAQ is

fully indecomposable if and only if A is, PA)Q is irreducible.
Conversely, suppose PA) has a strictly positive main

diagonal and is irreducible. Without loss of generality,

we may assume PAQ = A, Suppose A is not fully indecompos-

ahle and let Pl and Q1 be permutation matrices such that

B 0O
P.AQ. =
11
C D
where B and D are sauare submatrices and O is . zero sub-

matrix. Suppose B is of order r and D is of order n-r.
Then we may write PjAQ; = AlQl where Al = PlAPlT is again
a matrix with a strictly positive main diagonal and ol =
P10y is a permutation matrix. But then it follows that 03
permutes the first r columns of al among themselves and the
last n-r columns of Al among themselves. Hence A is reducihle,
a contradiction.

lerein is the Dulmage and Mendelsohn algorithm (6).
Part one determines whether or not permutation matrices P
and ) exist such that PAND has a strictly positive main
diagonal. If this is indeced the casc, part two either con-
cludes that A is fullv indecomposable or deccomposes PAQ to

a normal form as given in Remark 2.2.2.



3. THE DECOMPOSITION OF MATRICES

3.1 THE DECOMPOSITION ALGORITHM

A partition of a set S is a family of nomwaid subsets
(51'52""'sm) such that the union of all the subsets in
the family is S and the intersection of any two distinct
subsets in the family is empty.

Let M = (Mj,My,...,M ) and N = (Nj,Np,...,N_) be two
partitions of the set of first n natural numbers. Then to
(M,N) there corresponds a function Py Which maps the
(0,1)-matrices of order n onto the (0,l)-matrices of order
r according to the following rule: the (i*,j*)-entry of

A*=pyy(A) is 1 if and only if Y ) ajj#0. A* is
iEMi* jENj*

called the induced matrix.

A set of k independent nonzero points is called a

k-transversal. We will refer to an n-transversal simply

as a transversal.

A sequence of nonzero points (il,jl),(iz,jz),...,
(i) ,Jx) is a chain (of length k) if no two adjacent points
are identical, every two consecutive points are on a line,
but no three consecutive points are on a line. A chain is

simple if no point appears twice. Let T denote a transversal.

Then an alternating chain (with respect to T) is a chain

with every other point in T. The chain (il'jl)'(iz'jz)""'

11
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(lkljk) is a cycle if (lk_ll]k_l)r (lkrjk)r (11131)1

(12,32) is a chain.

Remark 3.1.1 The length of every cycle is even.

A nonzero point is admissible if it is a point of

a transversal. Otherwise a nonzero point is inadmissible.

Remark 3.1.2 Let C be an alternating cycle with respect

to a transversal T. Let Cl (C2) denote the set of points

of C which belong (do not belong) to T. Then the points

of Cl are admissible by definition. (T—Cl)UC2 is also a

transversal and hence the points in C2 are admissible.

Consequently every point in an alternating cycle is admissible.

Remark 3.1.3 It follows from Konig's Theorem that a point

(i,j) in A is inadmissible if and only if there is an n-
cover of A such that (i,j) belongs to two lines of the n-
cover.

Remark 3.1.4 If the order of A is n>2, a necessary condition

for A to be fully indecomposable is that every line of A
contains at least two nonzero points.

Repeating Remark 2.2.2, if the term rank of A is n
and A is not fully indecomposable, then there exist permu-

tation matrices P and Q such that
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( All 0 . 0
A21 A22 -
PAQ = ) i ) ) . - (3)
o)
A ) . ) A
ml mm

PAQ has a strictly positive main diagonal, and each of the
diagonal submatrices Apn' p=1,2,...,m, is fully indecompos-

able. 1In addition, we have the following:

Remark 3.1.5 By Remark 3.1.3, every nonzero point in the

diagonal submatrices in (3) is admissible while the remain-
ing nonzero points are inadmissible.

Remark 3.1.5 If C is an alternating cycle in PAQ, then

every point in C is in one of the diagonal submatrices.

Remark 3.1.7 All the nonzero points in one of the diagonal

submatrices of order at least 2 form an alternating cycle.
The preceding remarks yield immediately the follow-

ing theorem:

Theorem 3.1.1 If C is an alternating cycle (il'il)'(il'iZ)'

(i ,i.),{i ,i ),...,(i, ,i ), (1

yri, ol w1y k,il) in A and D = {i_,i_.,...,1

1'h2 K
then the restriction of A to DxD is fully indecomposable.

Let S = {1,2,...,n} and assume A has a strictly

positive main diagonal. The decomposition algorithm begins
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by constructing a finite alternating chain (il'il)’(il’iz)’

(i, ,1.),(i.,i),e.., in A. If i = ir for some r<k, then

2772 23 k+1

) peee (i ,i ), (i ) is a simple alter-

(lr'lr)'(lr’l k' "k k' Tk+l

r+l1

nating cycle Cl of length 2r (rl=k—r+l).

1

Let Bl = {l,2,...,n—rl+l} and let el be the surjection

B_: S—>Bl such that el(i) =1 if (i,i) is a point in Cl and o

1 1

preserves the order of magnitude of the integers in S—el l(l).

-1 -1
Then D. = (9 (1),0 (2),...,9

-1 , Cy
1 1 1 1 (n—rl+l)) is a partition

of S and (Dl,Dl) induces a matrix Al from A. It is apparent
that (el(il),el(il)), (el(il),el(iz)),...,(el(ir),el(ir))

is a simple alternating chain in Al (of course the last
point of this chain is (1,1) since el(ir)=l).

Continue the chain from point (1,1) in Al forming an
induced matrix as above whenever a simple alternating cycle
is found.

Eventually the alternating chain will terminate at

some point (t,t) of A the only nonzero point in row t of

kl

A . Let ¢ =

K .e.6_.. Then the restriction of A to

ekek—l 1 _

-1 -1 . . . .

¢ (t)x¢o " (t) is carried into point (t,t). By Theorem 3.1.1,
. . -1 -1 . .

the restriction of A to ¢ (t)x¢® (t) is fully indecomposable.

-1 -1 .
In addition, the restriction of A to ¢  (t)x(S-¢ (t)) is a

zero submatrix. Hence we may construct a permutation matrix
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Rl such that T A1 0
R, AR =
1771
Cc D
vhere All is fully indecomposable.
Pepeating the above procedure, a new chain is con-
structed in the restriction of Ap to (3Bx-t)x(B,-t).

Lltimately m chains will be reaguired to exhaust A.

tience, we may construct a permutation matrix R = RpRp-1...Rj

such that N
All 0 . . 0
Azl ]\22 . » -
varT = . . . . ) ,
. . . . )]
Aml : : : “‘min
IIV

RAR" has a strictly positive main diagonal, each of the
diagonal submatrices A, , p=1,2,...,m, is fully indecompos-
able, and A is in a normal form.

3.2 HARARY'S ALGORITHi (7)

A nonzero point (i2,j2) in A 1is reachable from a non-
zero proint (11,31) in A if cither (11,31) = (12,32) or there
exists a chain in A starting with (iyjl) andendinqxﬂﬁjn(izjz).

Let § = {1,2,...,n} and assume B = (bij(l)) is a

(0,1) matrix of order n with a strictly positive main diagonal.

Let v = {(1,1), (2,2),...,(n,n)}.

Mirst compute matrix pn~l = (bij(n"l)) using boolean
multiplication and addition. TFor 2<ksgn-1, biﬁ(k) = 3 biﬁkﬁl%r;l)
- r=1

is 1 if and only if either bij(k—l) = 1 or there is a simple

alternating chain in B (with respect to T) of length 2k-1
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such that a nonzero point (i*,j), i*#3, in column j of B is
reachable from a nonzero point (i,3%*),3*#i, in row i of B,

Remark 3.2.1 If the (i,)j)-entry of any nower of B is 1,

then the (i,j)-entry of anv higher power of I is 1.

Remark 3.2.2 8771 = 8P whenever p2n-1 since the longest

simple alternating chain in B (with respect to T) as defined

above consists of 2n-3 points. Bl is called the reachabil-

ity matrix.

We observe that only the secuence of matrices 52,34,38,

... need be computed in order to find pn-l

Mext each row of Bl ig searched in turn until a row,
say i, is found such that, for each nonzero point (i,j;).

(2,32) rever (4,3y) in row i, bijp(n“l) = bjmi(n—l) = 1 for

p=1,2,...,k. Let S; = {j;,35,...,3x}. Consequently each
nonzero point in the restriction of B to S1xS; is a point of

an alternating cycle: and, by Theorem 3.1.1, the restriction

of B to S1xS5; is fully indecomposable. 1In addition, the re-
striction of B to Slx(S—Sl) is a zero submatrix. IHence we

may construct a permutation matrix Ry such that

rypRy T = Moo ©
C D
where Ay 1s fully indecomposable.

3™l 5311 the rows and columns whose

Delete from
indices are in the set §; but preserve the original row

and column indices of 2071 in the resulting submatrix.
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Repeat the above procedure on this submatrix.
Ultimately the partition (51,82/++...,5,) of S will

be formed. Hence we may construct a permutation matrix

R = RmRm—l"'Rl such that
[ A, o . . 0
A21 A22 . . .
RBRT = . . . . . ,
. . . . 0
.

RBRT has a strictly positive main diagonal, each of the

diagonal submatrices A__, p=1,2,...,m, is fully indecompos-

pp
able, and B is in a normal form.

3.3 THE TRANSVERSAL ALGORITHM

If the term rank of A (denotedp(A)) is p, then A
has a p-transversal. When A is large, the selection of ,
such nonzero points is not a trivial task. 2An efficient
algorithm to do this has been provided by E. Egervéry (8).
This algorithm is also known as the 'Hungarian Method'
(see Kuhn (9)) and lends itself in a natural way to
computer programming (10). If A has a transversal, then
the algorithm constructs one. If A has no transversal,
the algorithm can be used to detect this fact.

A k-transversal is a maximal transversal if it can

not be extended to a (k+l)-~transversal by the addition of
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a point.
Let T be a maximal transversal. A simple chain

(1,3, 035000, (4 ) is an augmenting chain

2q+1’32g+1
(with respect to T) if (izr,jzr)sT for r=1,2,...,q

but no points from row i; or column Jy,,; belong to T.

Theorem 3.3.1 (Egervéry) If T is a maximal transversal

in A, then p(A) = |T|if and only if there is no augmenting

chain in A (with respect to T).

Proof Suppose p(A) = |T| =k and there is an augmenting

chain (11,31),(12,32),...,(1 ) in A (with respect

2q+l'32q+l
to T). Then we can construct a (k+l)-transversal from T

by deleting the points (12,]2),(14,34),...,(12q,j q) and

2

adding the points (i;,j;) (i3, 33) ..., (1 ).

2q+l'32q+l
Thus p(A)>|T|, a contradiction,

Suppose there is no augmenting chain in A (with
respect to T). Clearly the coverance of A is at least

equal to |T|. We shall now construct a minimum cover of

A revealing the coverance of A is exactly equal to |T|.
Select a row r; of A with a nonzero point such that T has
no point in row r; and let T, denote the set of points in
T which are reachable from some nonzero point in row rj.
Next select a different row rp in A with a nonzero point

such that T has no point in row r, and let T, denote the
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set of points in T-T; which are reachable from some non-
zero point in row ro. Continuing in this manner, after a
finite number of steps we will reach a row r, of A with a
nonzero point such that T has no point in row r, but will
be unable to find a row r_ .,y with a nonzero point such

that T has no poiat in row r Let TW denote the set of

w+l-
w-1
points in T- U T, which are reachable from some nonzero
m=1
voint in row r,,. Without loss of generality, we may assume

w
T = {(il’jl)' (izrjz)r---r(ikljk)} and U Tm = {(11731)1
m=1

(i2,j2),...,(ip,jp)}. Then columns jp,Jp,e«., of A and

jp
rows ip+l'ip+2’°"'ik of A constitute a minimum cover of A.
For, since T is maximal, any nonzero point (i,j) in a row
r, of A, 1lgvgw, is covered by a vertical line. In addition,
a nonzero point (i,j) in A in the same row as a point in
T but not in the same column as a point in T is covered by
a horizontal line. Otherwise point (i,j) is reachable from
a nonzero point in some row r, of A, lgvgw, by an augmenting
chain in A (with respect to T), a contradiction. It is
evident from the construction that each nonzero point in
the same row and column as a point in T is covered by at
least one line. Thus the coverance of A is |T|; and, by
Konig's Theorem, p(A)=|T].

The algorithm begins by selecting nonzero iﬁdepen—
dent points (i;jl),(2,j2),... from rows 1,2,... of A

respectively until a maximal transversal T is found.
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If |T] = n, then there exists a permutation matrix P such
that PA has a strictly positive main diagonal. Otherwise,
assuming p(A) = n, we apply Egervary's Theorem and continue

as before.

3.4 Concluding Remarks

In the remainder of this thesis, computer programs
of the foregoing algorithms are presented. For large ma-
trices, a comparison of the tables in sections C and D of
the Appendix aprears to indicate that the second part of
the Dulmage and Mendelsohn algorithm is more efficient
than ilarary's algorithm for decomposing a matrix to a

normal form.



APPENDIX

A. PROGRAM DECOMP

Program DECOMP (written in FORTRAN) determines

whether or not a matrix is fully indecomposable.

II. ‘Yethod

The method has oreviously been presented in section
2.2 of the thesis. Program DECOMP reads and orints perti-
nent data pertaining to subroutine EGVARY and subroutine
DULMEN or HARARY. DECOMP begins by calling subroutine
EGVARY to determine whether or not A has a‘transversal.
If a transversal is not found, DECOMP prints the term
rank of A and a minimum cover of A, Otherwise A is re-
turned with a nonzero main diagonal and either subroutine

DULMEM or HARARY is called in order to deccompose A to a

necrmal form.

21



III.

Flowchart, Listing and Typical Printouts

A IS
FULLY
INDECOM-
POSABLE

Yas

‘ DECOMP ,

CALL
EGVARY

\ EXIT /

TRANS- Yes _f/” CALL
VERSAL®? EXIT
CALL
DULMEN
OR
HARARY
No A IS
PARTLY
DECOM-
POSABLE

e

22
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PROGRAM DECOMP (INPUT*CUTPUT TAPES=INPUTTAPE6=0UTPUT)

PURPOSE
TO DETERVMINE WHETHER OR NOT A MATRIX IS FULLY

INDECOMPCSABLE .

SUBRNUTINES CALLED

EGVARY AND DULMEN

INTEGER PERyHORyVERT

DIMENSICN A(10410)+5¢10411)+REPNG(10) +REPBY(10),
PER(10) 9SHORT(10) 9 TAIL(10) 9HOR(10) sVERT(10) s
IRR(10) ywORK(10) 9HLDCH(10)»2EROL1(11)

CHAIN(11) oHLDPER(11) 9START(11)sFINISH(11),
IND(10)

EQUIVALENCE (REPNGyIRR) 3 (REPBY sWORK) 9 (SHORT 4HLDCH) »

(TATL9ZERC1) 9 (HOR9CHATIN) o (VERT s HLDPER)
NN=10

NTIMES IS THE TOTAL NUMBER OF TIMES THE PROGRAM
IS TO 8E EXECUTED.

READ(5+1) NTIMES

DO 350 LLL=1sNTIMES



(¢}

O O
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READ AND PRINT MATRIX A,

READ(5+1) N

WRITE(642) N

NP1=N+1

DO 100 I=1lsN

READ(593) (A(IyJ)sd=lsN)

WRITE(6s8) (A(lsJ)sJ=19N)

CALL SUBROUTINE EGVARY,

CALL TOCKS

CALL EGVARY (NyNNsLL9A9SyREPNGyREPRYPERySHORT,
TAILsINDYHORIVERT)

CALL TOCkP

IF(LL.EQe0) GO TO 310

NO TRANSVERSAL HAS REEN FOUND. PRINT THE TERM RANK

OF A AND A MINIMUM cCOVER OF A,

NMLL=N=LL
WRITE(6,13) NMLL
WRITE(64+15)

K=0

DO 200 I=1sN

24
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205

210

310

320
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IF(VERT(I)+EQ,0) GO TC 200
K=K+

VERT(K) =T

CONTINUE

IF(K.EQ,0) GO TO 205
WRITE(6411) (VERT(I)9I=19K)
K=0

DO 210 I=lsN
IF(HOR(1)+EG.0) GO TO 210
K=Ke]

HOR (K) =T

CONTINUE

IF(K,EQ,0) GO TO 350
WRITE(hsl4) (HOR(I)yI=1,4K)

GO TO 350

A TRANSVERSAL HAS BEEN FOUND, PRINT A WITH A NONZERO

MAIN DIAGONAL AND PRINT ARRAY PER,

WRITE(644)

DO 320 I=lsN

WRITE(648) (A(IsJ)sJu=19N)
WRITE(649)

WRITE(6410) (PER(I)eloI=1yN)



O

o O

CALL SUBROUTINE DULMEN,

CALL TOCKS

CALL DULMEN(NyNNsKK oMY 3A0SyPER s TRR y WORK » HLDCH
- ZERO1 »CHAINyHLDPER » START o F INTSH)
CALL TOCKP

IF(MM,EQ.1) GO TO 330

A IS FULLY INDECOMPOSABLE,

WRITE (645)

GO TO 350

A IS PARTLY DECOMPOSABLE. PRINT A IN A NORMAL FORM

AND PRINT ARRAYS PER AND IRR,

330 WRITE(646)

DO 339 1=1yN
339 WRITE(648) (A(I,4J)9J=19N)

- WRITE(649)

WRITE(6410) (PER(I)yIvI=1yN)

WRITE(649)

WRITE(6912) (IRR(I)oIsl=1yKK)
350 CONTINUE

WRITE(6,7)

26
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CALL EXIT
1 FORMAT(15)
2 FORMAT(1419////+10Xs1BHINITIAL MATRIX A,
- 17THTHE ORDER OF A ISy13,/)
3 FORMAT(8F10.,1)
4 FORMAT(1HUs10Xs24HMATRIX A WITH A NONZERO
- 14HMAIN DIAGONAL 4 /)
5 FORMAT(1HUs10Xy33HMATRIX A IS FULLY INDECOMPOSABLE.y/)
6 FORMAT(1HU910Xy26HMATRIX A IN A NORMAL FORM,»/)
7 FORMAT(1HO»10Xs11HEND OF JOR,)
8 FORMAT(1H #10Xy15F7,1)
9 FORMAT(1H )
10 FORMAT(1H »10Xy4(I3y5h=PER(41391H)43X))
11 FORMAT (1HU 915X s 8HCOLUMNS 410(13y1Hy))
12 FORMAT(1H 910X9s4(I345r=IRR(¢I1391H)y3X))
13 FORMAT{1HO0s10Xy33HMATRIX A 1S PARTLY DECOMPOSABLE.
- 21HTHE TERM RANK OF A 1Se139/)
14 FORMAT(1HU15Xs8H ROWS 910(I351Hy))
15 FORMAT(1H #10X921HA MINIMUM CCVER OF As)

END
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PROGRAM NECCMP (INPUTCUTPUTyTAPES=INPUT, TAPF6=0UTPUT)

PURPOSE
TO DETERMINE WHETHER OR NOT A MATRIX IS FULLY

INDECOMPCSABLE,

SUBROUTINES CALLED

EGVARY AND HARARY

INTEGER PERHORsVERT
DIMENSION A(10410)9S(10911)9B(10910)sREPNG(10)
REPBY (10) »PER(10) ySHORT (10) s TATL(10)

HCR(10) o VERT(10)9IRR(10) ¢ JUHOLD(10) 9
IWORK(10)+IND(10)

EQUIVALENCE (REPNGyIRR) 4 (REPBYsJHOLD) » (SHORT s IWORK)

NN=10

NTIMES IS TRE TOTAL NUMBER OF TIMES THE PROGRAM
IS TO HE EXECUTED.

READ(591) NTIMES

DO 350 LLL=1sNTIMES

READ AND PRINT MATRIX A,



O

READ(591) N

WRITE(692) N

NP1=N+1

DO 100 I=1sN

READ(593) (A(I9y)sJd=1sN)
100 WRITE(598) (A(I4J)sJ=1sN)

CALL SUBROUTINE EGVARY,

CALL TOCKS
CALL EGVARY(NyNNyLL+vA9SyREPNGIREPRY +PERySHORT,s
- TAILyINDPHORIVERT)

CALL TOCkP

IF(LL+EQG.0) GO TO 310

NO TRANSVERSAL HAS BEEN FOUND. PRINT THE TERM RANK

OF A AND A MINIMUM COVER OF A,

NMLL=N=LL,

WRITE(6413) NMLL
WRITE(6915)

K=0

DO 200 I=1sN

IF (VERT(I)+EQ.0) GO TO 200

K=Ke1

29
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320
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VERT(K) =T
CONTINUE
IF(K,Eda0n) GO TO 205
WRITE(6911l) (VERT(I)?I=19K)
K=0
DO 210 I=1sN
IF(HOR(I) «EG+0) GO TO 210
K=Ke]
HOR (K) =1
CONTINUE
IF(KsEQ,0) GO TO 350
WRITE(6414) (HOR(I)sI=14K)

GO TO 350

A TRANSVERSAL HAS REEN FOUND., PRINT A WITH A NONZERO

MAIN DIAGONAL AND PRINT ARRAY PER,

WRITE (H94)

DO 320 I=lsN

WRITE (648) (A(IsJ)sJ=1lsN)
WRITE(649)

WRITE(6910) (PER(I)sIlsl=1yN)

CALL SURROUTINE HARARY,



330

339

350

31

CALL TOCKS
CALL HARARY (NgNNsKKsMM9A9sSeyBIPERYyTRRy JHOLD ¢ IWORK)
CALL TOCKkP

IF (MM.EG.1) GO TO 330
A IS FULLY INDECOMPOSABLE,

WRITE(6+5)

GO TO 350

A IS PARTLY DECOMPOSABLE. PRINT A IN A NORMAL FORM

AND PRINT ARRAYS PER AND IRR,

WRITE (646)

D0 339 I=lsN

WRITE(698) (A(I4J)9sJ=19N)
WRITE(6,9)

WRITE(6910) (PER(I)sloI=lyN)
WRITE(6+9)

WRITE(6+12) (IRR(I)slol=1yKK)
CONTINUE

WRITE(6,7)

CALL EXIT

FORMAT(15)

FORMAT (1H19////7910X9 1BHINITIAL MATRIX A,
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- 17THTHE ORDER OF A ISy134/)
3 FORMAT(8F10.1)
4 FORMAT(1HO910Xy24HMATRIX A WITH A NONZERO
- 14HMAIN DIAGONAL <y /)
S FORMAT(1HU»10X¢33HMATRIX A IS FULLY INDECOMPOSABLE.s/)
6 FORMAT(1H0910Xy26HMATRIX A IN A NORMAL FORM,s/) |
7 FORMAT(1HU910Xs11HEND OF JOR,)
8 FORMAT(1H »10Xy15F7,1)
9 FORMAT(1H )
10 FORMAT(1H 910X94 (I39OH=PER(9I391H)3X))
11 FORMAT(1HO915XsBHCOLUMNS 410(I30s1Ky))
12 FORMAT(1IH 910X94(I399H=TIRR(9I311H)43X))
13 FORMAT(1HO910X933HMATRIX A IS PARTLY DECOMPOSABLE.
- 21HTHE TERM RANK OF A 1S+I33/)
16 FORMAT(1HO915X98H RCWS 410(I331He))
15 FORMAT(1H 910Xs21HA MINIMUM COVER OF As)

END



INITIAL MATRIX As THE ORDER CF A IS 7

1.0 0.0 2,0 0¢0 3,0 060 0.0
0,0 4.0 540 00 0,0 ) 0,0
0,0 0,0 ’Oo 0_'_0 8,0 0.0 0.0
900 0-0 0'0 1000 000 000 0.0
0.0 lloo 000 0_’_0 1200 0.0 000
0.0 0.0 13.0 00 0.0 1440 0e0
0.0 0.0 0.0 15:0 0.0 0.0 16.0
«006 SECONDS
MATRIX A WITH A NCNZERO MAIN DIAGONAL.,

1.0 0.0 2.0 0:0 300 0.0 N0
0.0 4.0 5.0 030 0.0 6.0 0.0
0.0 0.0 700 0_‘_0 800 0.0 D0
9.0 0.0 0.0 10!0 0,0 0.0 0.0
0,0 11.0 0e0 nDel 12.0 ) 00
0.0 0.0 13,0 0:0 0,0 l4,0 0.0
0,0 0.0 0,0 15:0 0.0 0«0 16,0

1=PER( 1) 2=PER( 2) 3=PER( 3) 4=PER( &)

S=PER({ &) 6=PER( 6) 7=PER( 7)

«042 SECONDS
MATRIX A IN A NORMAL FORM,

4,0 Se0 0e0 600 0,0 0.0 0.0
0.0 7.0 840 0ed 0.0 040 0.0
11.0 0.0 1200 0’_0 0.0 OQO 0.0
0.0 13.0 0,0 140 0.0 040 0.0
0.0 2.0 300 0'0 1.0 0.0 O-O
0.0 000 000 0'0 900 10.0 0.0
0,0 0.0 0.0 0'_0 0.0 15,0 16.0

2=PER({ 1) 3=PER( 2) 5=PER( 3) 6=PER( 4)

1=PER( 5) 4=PER( 6) 7=PER( 7)

4=IRR( 1) 1=IRR( 2) 1=IRR( 3) 1=IRR({ &)



INITIAL MATRIX Ae

240

0.0
7.0
6.0
0.0

THE ORDER CF A IS 5

le0

0e0
6.0
3.0
De0

«004 SECONDS

MATRIX A WITH A NCNZERO MAIN

2.0
8.0
1.0
2.0
1.0

S=PER(
2=PER(

0.0
2.0
7.0
6.0
0.0

1)
5)

0.0
le.0
640
3.0
0.0

1=PER(

«010 SECONDS

00
300
el
200
0sU

2)

MATRIX A IN A NORMAL FORM,

2.0

l.0
8.0
1.0
2.0

1=PER(
4=PER(

2=IRR(

- HrNW N
e o o o

OO0 O

1)
5)

1)

*r~NO ©

QO OO O

S=PER(

3=IRR(

N W N
o000 O

DIAGONAL,

=PER( 3) 4=PER( &)

=PER( 3) 3=PER( &)

34



INITIAL MATRIX A

- N N W
oMo NW -
OO OoOCOO D

2.0
4.0
33.0
25.0
21,0
1540
640
9.0

THE ORDER OF A IS 8

0.0
0«0
34,0
2640
20,0
16.0
7.0
10.0

«0N12 SECONDS

MATRIX A WITH A NCNZERO

1=PER(
S5=PER (

2540

1)
S)

0.0
040
7.0
100
2040
1640
34.0
26,40

2=PER{
6=PER(

«014 SECONDS

00
000
350
270
21.0
17V
000
11V

MATRIX A IN A NORNMAL FORM,

1.0
3,0
5.0
8.0
20.0
le,0
32.0
24,0

1=PER(
S=PER(

2=1RR(

0.0

0.0

7¢0
10.0
2040
16,0
34,0
26,0

2=PER(
6=PER(

1=IRR(

0e0
0e0
OsU
110
210
170
3500
270

2)
6)

2)

0.0
0.0
36,0
28,0
22,0
18,0
0.0
12,0

DIAGONAL,

T=PER(
3=PER(

0
0
0
0

NOoOOo O

le,
22.0
18,0
36.0
28.0

3=PER(
T7=PER(

3=1IRR(

NN W
WS O WO ~ND 2D
L
[~ = B I e B e

o)

3)
7)

040
0.0
040
13.0
2340
19.0
37.0
29.0

3)
7)

3)

OO0 @

3
3

w W
DD O0ODODDODXTO O

© 3
3

O XLODODODDIOO
e ©o o o o o o oo
QOO0 OO O

W W

A=PER(
4=PER(

0.0

0.0
0.0
0.0
0.0
0.0

35

0.0
0.0
9.0
140
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
9.0
1.0

4)
8)

0.0

0.0
0.0
0.0
0.0
0.0

38.0 39,0
3060 31.0

4=PER(
8=pPER(

2=1RR(

4)
8)

4)



INITIAL MATRIX As

—
COOQOOHFOOO =
COCO0OOCTCOOOQ

2.0
5.0
8.0
36.0
0.0
17.0
22.0
27.0
31.0

THE ORDER CF A IS 9

0e0
600
9,0
0.0
0.0
1840
0e0
060
0e0

«010 SECONDS

00
0e0
0V
150
Qe
0V
0ol
320

MATRIX A WITH A NCNZERO MAIN

0.0
36.0
5.0
31.0
8.0
27.0
17.0
2240
2,0

1)

5)
9)

00
0e0
640
0.0
940
0.0
1840
0e¢0
0e0

4=PER (
8=PER (

«027 SECONDS

1520
00
0¢0

32V
0V
090

ol

[

00

OO

2)
6)

MATRIX A IN A NORMAL FORM,

36.0
8,0
2740
17.0
22.0
5.0
31.0
0.0
2,0

2=PER(
8=PER({
Y=PER(

1=IRR(
1=IRR(

040
10.0
28.0
19.0
23,0

0.0
33.0

0.0

0.0

1)
5)
9)
1)
5)

0«0
11.0
2940

000
2440

060
34.0

0.0

0.0

S=PER(
3=PER(

S=IRR(

020
12.0
3040
200
250

T7+0

00

(ERY

0sV

2)
6)

2)

23,0

2=PER(
6=PER(

—

- W nn
S VNIoO—OW O

ER(
ER(

VU COO0OO0OOOO0O ©

& o
wn

1=IRR(

—

S OVHEO0ODOOmO QO
D DODOODDDO

WwiNnN

060
00
Ne0
34,0
11.0
29.0
0.0
24,0
0.0

3)
7)

D
L J
o

0
o ®
DD

0.0
18,0
040
640
040
040
040

3)
7

3)

—

DDNOOTSNND

36

0.0
0.0
13.0
0.0
1640
21.0
2640
0.0
35,0

QOO0 OCOOOO0 O

wiv N

© 1660
0.0
0.0
35.0
13.0
. 00
21.0
26.0

0.0

NN L
OSPNOoODVNOND O

QOO0 O0O0O0DOO O

9=PER( 4)
7=PER( 8)

0.0
0.0
00
0.0
060
00
0.0
14,0
1.0

L")
OO DOO0O D

COO0OO0OQ0COoOQCO ©

7=PER( 4)
1=PER( 8)

1=IRR( 4)

OO0 O0 W

Woooooooo ©

® ¢ & & o @ ° o

® ¢ & @ o & o o o
OO0 OCOCLOO O

WOOOCOOOO O

OCOO0OO0OOoOOO O©

COO0CO0OQCOO0CO ©



INTTIAL MATRIX A. THE ORDER CF A IS 5

l.0 0.0
3.0 0.0
Se0 0.0
7.0 0.0
0.0 9.0

0.0

00
0e0
000
10.0

+002 SECONDS

MATRIX A IS PARTLY DECOMPOSABLE,

A MINIMUM COVER OF A,

COLUMNS

ROWS

ly

LX)

4y
Sy

20
440
620
0«0
0V

OO0 O

.
DO O00 O

THE TERM

RANK OF A IS

4



INITIAL MATRIX A

1.0 0.0
0.0 4,0
7.0 0.0
8.0 0.0
0,0 00

THE ORDER QF A IS S5

2.0
540
0e¢0
0.0
0«0

+003 SECONDS

3¢90
600
00
00
0s0

oo O
e
OO0 O

38

MATRIX A IS PARTLY DECOMPOSABLE, THE TERM RANK OF A IS &

A MINIMUM COVER OF A,

COLUMNS

ROWS

1l
ly

2

Sy
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INITIAL MATRIX Ae THE ORDER CF A IS B8

0.0 0.0 0.0 030 0.0 0.0 0.0 0.0
0.0 1.0 Ue0 l_’_o 0.0 0.0 0.0 0.0
000 100 000 O'O 000 0.0 000 0.0
100 0.0 100 0'_0 0.0 ND.0 0.0 0.0
0.0 0.0 000 0.0 0.0 1.0 0.0 000
0.0 0.0 0e0 0}_0 1,0 0.0 0.0 0.0
0,0 0.0 1.0 0oV 0,0 0e0 0.0 040
0,0 0.0 le0 - 0:0 0,0 0.0 0.0 0.0

+004 SECONDS

MATRIX A 1S PARTLY DECOMPNSABLE, THE TERM RANK OF A IS 6
A MINIMUM COVER OF A,

COLUMNS 3

ROWS €y 3 4y Sy 6y



INITIAL MATRIX A+ THE ORDER CF A IS 8

1.0 1.0 060 0:0 0.0 00 0.0
0.0 1.0 le0 00 0.0 060 1.0
0.0 0.0 l¢0 1:0 0.0 0eN 0.0 Q
0.0 000 000 1._0 100 0‘0 0.0
1.0 0.0 00 0:0 1.0 Ne0 0.0
0.0 0.0 040 0e0 0.0 1e0 1.0
000 100 0«0 0!0 0-0 Q.O l.O
0.0 0.0 0¢0 0eV 0,0 1.0 060
+006 SECONDS
MATRIX A WITH A NCNZERO MAIN DIAGONAL,.
1.0 1.0 000 0:0 0.0 0.0 0.0
0.0 100 100 0'0 000 000 1.0
0.0 0.0 le0 100 0,0 0e0 0e0
0,0 0460 0e0 1¢0 1.0 0e0 0.0
1.0 060 0.0 0:0 1.0 000 0.0
0.0 0.0 Oe¢0 0:0 0.0 le0 1.0
0.0 1.0 0.0 0_‘_0 0.0 NDeD 1.0
0.0 0.0 060 0:0 0,0 1¢0 0.0 i
1=PER( 1) 2=PER( 2) 3=PER( 3) 4=PER (
5=PER( &) 6=PER( &) 7=PER( 7) 8=PER (

«047 SECONDS

MATRIX A IS FULLY INDECOMPOSABLE.

—_—0D 0000 O
o
COoOCoOoOOCcCOo0O O

—_—_O OO0 O
® @ o © @ o o ©

OO OOCQ O

o &
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INITIAL MATRIX Ae THE OQRDFR CF A IS 9

1.0 2.0 060 00 0,0 0.0 0.0 0.0 3.0
0,0 5.0 60 00 0,0 ND.0 7.0 0.0 0,0
0.0 8.0 9.0 O:U - 1040 11,0 12.0 13.0 0.0
1400 0.0 0.0 1520 0.0 0.0 0.0 ﬂlboo 000
0.0 17,0 180 Qe 19,0 Ne0 2040 21.0 0.0
0.0 22.0 Qe0 0el 23,0 24,0 25,0 2640 0,0
0.0 27,0 0e0 O:Q 28,0 29.0 30.0 0.0 0.0
0,0 3.0 0.0 320 33,0 34,0 0.0 35,0 0.0
0.0 3640 00 3760 0,0 0.0 0.0 0.0 38,0
«008 SECONDS
MATRIX A WITH A NCNZERO MAIN DIAGONAL.,
1.0 2.0 0¢0 00 0,0 040 0.0 0.0 3.0
0.0 5.0 6e0 0:0 0.0 0.0 70 0.0 0.0
000 800 900 0_'_0 1000 11.0 1200 13.0 0.0
14,0 0.0 Ue0 15'0 0.0 0.0 0.0 16,0 0.0
0.0 170 1840 O:U 19,0 N0 2040 21,0 0.0
0.0 22,0 0e0 nel 23.0 24,0 2540 2640 0.0
0.0 27-0 000 0'0 2800 29.0 3000 0.0 0.0
0.0 31.0 0e0 32_'_0 33,0 34.9 0.0 3500 0,0
0,0 36,0 0.0 370 0.0 D0 0.0 00 38,0
1=PER( 1) 2=PER( 2) ' 3=PER( 3) 4=pER( 4)
5=PER( S) €=PER( 6) T=PER( 7) B=PER( 8)
9=PER( 9)

+017 SECONDS

MATRIX A IS FULLY INDECOMPOSABLE,



INITIAL MATRIX Ae THE ORDER CF A IS 4

1.0 0.0 2.0 0:0
000 300 000 A

0.0 5.0 6e0 740
B,0 9.0 10,0 1190

+003 SFCONDS

MATRIX A WITH A NCNZERQO MAIN DIAGONAL,

1,0 060 2.0 040
0.0 3,0 0e0 400
0.0 5,0 640 Te0
8.0 9,0 10,0 1120
1=PER(t 1) 2=PER( 2) 3=PER(

«005 SECONDS

MATRIX A IS FULLY INDECOMPOSABLE.

3)

4=PER{(

42

4)
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B. Subroutine EGVARY
L Purpose
Subroutine EGVARY (written in FORTRAN ) determines

whether or not a matrix has a transversal.

II. Method

The method has previously been presented in section.

3.3 of the thesis.

ITI. Operation

(i) Description of variables

A- A is a matrix for which we wish a
transversal. If a transversal 1is
found, A is returned with a nonzero
main diagonal.

HOR~ HOR is an integer array. If a trans-
versal is not found, then, if HOR(I)=1,
I=1,2,...,N, row I of A is a horizontal
line in a minimum cover of A.

= I is a DO loop indexing variable or
a variable subscript.

IHOLD- IHOLD is a temporary storage variable.

1L- IL is a temporary storage variable.

IND- In the search for an augmenting chain,
point (I,S(I,IND(I)+1)) in A, 1<I<N, is

the point under consideration.
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4

J=- J is a DO loop indexing variable:gr a
variable subscript.

K- K is a variable subscript.

RE- KK is a temporary storage variable.

L- L is a DO loop indexing variable or a
wriable subscript.

Ll- L1 is a variable subscript.

LL- At the end of the subroutine, if LL = 0,
A has a transversal. -LL is the term
rank of A.

M= 4 is a variable subscript.

- N is the order of matrix A.

NN- NN is the first dimension of doubly

subscripted arrays A and S in the calling

program.,
AP1- NP1l = N+1
PER- PER is an integer array. If a transversal

is found, row PER(I) of A, I=1,2,...,.,
i3 permuted into row I.

nEPBy- If REPBY(I) is not zero, I=1,2,...,i,
then point (REPBY(I),I) in A is a point
in the maximal transversal being con-
structed.

REPNG~ If REPNG(I) is not zero, I=1,2,...,N¥, then
point (I,REPNG(I)) in A is a point in the

maximal transversal being constructed.



RMOLD~ RHOLD is a tempoorary storage variable.

- S is a representative matrix of A

o
defined as follows: For I=1,2,...,Hd,

45

if the nonzero points in row I of A are

(IIJl)I(IrJ2)r'-oy(I'JI<)’ then

S(I,l) = Jl,S(I,?_) = J2,...,S(I,K)

= Jl’\’

5(I,K+1) = 0 where the remainder of the

points in row I of S are ignored.

SHORT- SHORT is an integer array.

No roint in

the maximal transversal being constructed

is in row SHORT(I), I=1,2,...,Ll1.

TAIL- TAIL is an integer arrav.

for an augmenting chain, TAIL(I),

was the vrevious row searched.

VERT- VERT is an inteqger array.

versal is not found, then,

In the; search

If a trans-

if VERT(I)

1<1g,

=1,

I=1,2,...,8, column I of A is a vertical

line in a minimum cover of
(i1) Lntry points
FGVARY
(iii) Uxit points
Normal return
(1v)  subprograms called
None

(v) Restrictions and limitatioqg

None

A.



IV. Storage Recuirements

Subroutine LGVARY
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reguires 236 words of

computer memory on a CDC 6400. The following table shows

additional storage reqguired in the calling program for

variable arrays.

[ ORDER OF
MATRIX

CORE STORAGE
(in decimal)

10

20

30

40

50

V. Timing

290

980

2070

3560

Table 1

The identity matrix I vields the fastest computer

time while matrix A = PL

where L 1s a strictly positive

lower triangular matrix and P = (pij) is a permutation

matrix, Pn—i+l,i=

1, i=1,2,...,n, takes the lonaest

computer time. Typical timinas for thoese two tyvpes of

matricoes are shown in the following table.



TIME IN SECONDS

ORDER OF

MATRIX I A
1¢ .005 .022
20 .021 112
30 .027 .309
40 .044 .654
50 121 1.187
60 272 1.946

Table 2
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VI. Flowchart and Listing

< EGVARY )

N ot gt

INITIALIZE

|

]

SEARCH
FOR A
TRANSVERSAL

1

e N

RANS N2 ves [ GO_TO
NSVERS AL 120

e

No

Vs CONSIDER
. 40 ; ROW IL,
N IL=9IORT(Ll)

'
P |

SEARCH
FOR AN
AUGMENTING
CHAIN

Y
1

L

AN
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UPDATE

IAINZ REPNG
AND
REPBY
No
UPDATE
VERT
S
/’\\ ) No
(120 UBROUTINE Ll=L1-1
RN ~.ENDS?2
PERMUTE Yes
ROWS OF T RANSVERSAL? GO TO
A - 40
~
| P — . s trrietmre .4 '\
l No
FORM ; FORM
ARRAY i ARRAY
PER | HOR
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SUBROUTINE EGVARY (NyNNyLLyAySsREPNG«REPRY s PERySHORT

PURPQSE

TO DETERMINE WHETHER OR NOT A MATRIX HAS A

TAILyIND9IHORSVERT)

TRANSVERSAL, IF SOy THE MATRIX 1S RETURNED WITH A

NONZERQ MAIN DIAGONAL.

DESCRIPTION OF PARAMETERS

INPUT=  N=

NN=

S-

REPNG=

REPBY=

SHORT=

TAIL=-

THE ORDER COF MATRIX A,

THE FIRST DIMENSION OF DOURLY

SUBSCRIPTED ARRAYS A AND S IN THE

CALLING PROGRAM, THE SECOND

DIVENSION OF ARRAY A IS AT LEAST

N WHILE THE SEconn DIMENSION OF

ARRAY S IS AT LEAST N+l,
A COUBLY SUBSCRIPTED WORK
A SINGLY SUBSCRIPTED WORK
OF DIMENSION AT LEAST N,
A SINGLY SUBSCRIPTED WORK
OF DIMENSION AT LEAST N,
A SINGLY SUBSCRIPTED WORK
OoF DIMENSION AT LEAST N,
A SINGLY SUBSCRIPTED WORK

oF DIMENSION AT LEAST N,

A R A ALY s L Lo isr s

ARRAY ,

ARRAY

ARRAY

ARRAY

ARRAY

N s - s a4 e
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IND=

IN/OUT~ A=

OUTPUT=~ PER=

VERT=

HOR=

LL-
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A SINGLY SUBSCRIPTED WORK ARRAY

OF DIMENSICN AT {EAST No

A IS A MATRIX FOR WHICH WE WISH A
TRANSVERSAL. IF A TRANSVERSAL IS
FOUNDs A IS RETURNED WITH A NONZEROQ
MAIN DIAGONAL,

PER IS AN INTEGER ARRAY. IF A
TRANSVERSAL IS FOUND, ROW PER(I)
OF Ay I=1929,4,9Ns IS PERMUTED
INTO ROW I.

VERT IS AN INTEGER ARRAY, IF A
TRANSVERSAL IS NOT FOUND, THENs IF
VERT(I)=1y I=14294e09Ns COLUMN I
of A IS A VERTICAL LINE IN A
MINIMUM COVER OF A,

HOR IS AN INTEGER ARRAY, IF A
TRANSVERSAL IS NOT FOUND, THENs IF
HOR(I)=1y I=1s2s,e49Ns ROW I OF A
IS A HORIZONTAL LINE IN A MINIMUM
COVER OF a,

IF LL=0s THEN A HAS A TRANSVERSAL,

N~LL IS THE TErRM RANK OF A,

INTEGER REPNGYREPBYSHORT+TAILIPERyVERTHOR

DIMENSION A(NN91)9S(NNel) yREPNG(1)9yREPBY (1) 4SHORT(1)



19

20

2l

TAIL(1)9PER(1)9IND(1)9HOR(1)9sVERT(1)

FORM REPRESENTATIVE MATRIX S,

DO 20 I=1eN

L=1

DO 19 J=1sN
IF(A(T9J)+EQe0,0) GO TO 19
S(IyL)=y

L=L+1

CONTINUE

S(I.L)=0

INITIALIZE,

DO 21 I=1sN
VERT(I)=0
REPBY(1)=0

REPNG(I)=0

K IS THE NEXT ENTRY IN ROW l. IF k=0+ EITHER THERE
IS NO NCNZERO POINT IN ROW I OR ELSFE EACH NONZERO
POINT IN ROW I IS IN THE SAME COLUMN AS A POINT IN

THE MAXIMAL TRANSVERSAL BEING CONSTRUCTED.

52
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Ll=0
NP1=N+1
D0 30 I=1sN
DO 25 J=1sNP1
K=S(TsJ)
IF(K,FQ,0) GO TO 24
IF (REPBY (K) (NE,0) GO TO 25
REPRY (K) =1
REPMG(I) =K
GO To 30

Ll1=L1+]

NO POINT IN THE MAXIMAL TRANSVERSAL REING CONSTRUCTED

IS IN ROW SHORT(I)y I=142yee09ll,

SHORT(L1) =1
GO TO 30
CONTINUE

CONTINUE

IF L1=0y A TRANSVERSAL HAS BEEN FOUND. GO TO PERMUTE
THE ROwWS OF A,

LL=0

IF(L1.EQ.,0) GO TO 120



O O O O

40

50

60

70

SEARCH FNR AUGMENTING CHAINS,

DO 50 I=19N
IND(I)=0

TAIL(D)=0

SEARCH FOR AN AUGMENTING CHAIN BEGINNING WITH A
NCNZFRO POINT IN ROW ILe POINT (I4S{IsIND(I)+1) IS THE
POINT UNDER CONSIDERATION, ROW TAIL(I) WAS THE

PREVIOUS ROW,

IL=SHORT(L1)
I=IL
J=IND(I)
J=J+1

K=S(I9sJ)

IF K=0y EITHER EACH ENTRY IN ROW I IS ZERO OR

ELSE THERE IS NO AUGMENTING CHAIN THROUGH ROW I,

IF(K,EG,0) GO TO 80

IF VERT(K)=1» THEN POINT (I+K) CANNOT BE A POINT IN

THE AUGMENTING CHAIN BEING CONSTRUCTED,



Ll
(92}

IF(VFRT(K)+EQ,1) GO TO 70

IF M=Iy THEN POINT (IsK) IS A POINT IN THE MAXIMAL

TRANSVERSAL,

M=REPBY (K)

IF(M,EQ,I) GO T0O 70

IF M=0y» WE HAVE AN AUGMENTING CHAIN,

IF(M,EQ,0) GO TO 100

IF TAIL(M) IS NOT ZERCy WE HAVE ALREADY TRAVELLED

THROUGH ROW M,

IF(TAIL (M) 4NEWs0) GO TC 70

IND AND TAIL ARE UPDATED.

IND(I)=Y

TAIL(M)=1

WE HAVE ARRIVED FROM ROWw I TO RQW M,



80

90

95
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I=M

GO To A0

IF I=IL, THERE IS NO AUGMENTING CHAIN FROM A NONZERQ

POINT IN ROW I,

IF(I.EQ,IL) GO TO 90

BACK UP FROM ROW I TO ROW TAIL(I),

I=TAIL(I)

GO YO 60

AT THE END OF THE SUBKOUTINEs IF VERT(I)=1y
I=1929e0,9Ny THEN COLUMN I IS A VFRTICAL LINE IN A

MINIMUM COVER OF A,

LL=LL+1

DO 95 I=1¢N
K=TAIL(I)
IF(K,Ed,0) GO TO 95
L=REPNG (1)

VERT (L) =1

CONTINUE

GO 10 llo0
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O O O

THE MAXIMAL TRANSVERSAL IS AUGMENTED, REPNG AND REPBY

ARE AUGMENTED,

100 KK=REPNG (I}
REPNG (1) =K
REPRY (K) =1
IF(1.EQ,IL) GO 7O 110
IsTAIL(I)
K=KK

Go TO 100

L1 IS DECREMENTED. IF L1=0ys SHORT IS EXHAUSTEDe

110 L1=L1~1

IF(L1.NEL.O) GO TO 40

IF LL=0, A TRANSVERSAL HAS HEEN FouUND,

IF(LL.EQ,0) GO TO 120

IF HOR(IVN=1y I=192vevesNsy ROW I IS5 A HORIZONTAL LINE

IN A MINIMUM COVER OF A, NO TRANSVERSAL HAS BEEN

FOUND o
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DO 114 I=1yN
114 HOR(I)=0
DO 115 T=1N
K=REPBY (1)
IF(K.EQ,0) GO TO 115
IF(VERT(1)+EQel) GO TO 115
HOR (K) =1
115 CONTINUE

RETURN

INITIALIZE,

120 DO 121 I=1sN

121 PER(I)=1

PERMUTE THE ROWS OF A SUCH THAT A HAS A NONZERO MAIN

DIAGONAL »

DO 190 L=1sN
K=REPBY (L)

IHOLN=PER(L)
PER(L)=PER(K)
PER(K)=THOLD
DO 168 J=1lsN

RHOLN=A(KsJ)



A(KyJ)=A(LyJ)

168 A(LyJ)=RHOLD

170 REPNG(K)=REPNG (L)
K=REPNG (L)

190 REPBY (K)=REPBY (L)
RETURN

END

59
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C. Subroutine DULMEN

I. Purpose
Subroutine DULMEN (written in FORTRAN) decomposes

a matrix to a normal form.

IT. Methgg

The method has previously been presented in section

3.1 of the thesis.

III. QEEEEFion

(1) Description of variables

A- Initially A is a square matrix having
a nonzero main diagonal. At the end
of the subroutine, A is in a normal
form.

Gl Cl, 1<ClgNP1l, is augmented by 1 each
time the alternating chain being con-
structed changes direction. Cl is an
integer variable.

CEND- CEND = Cl-1. CEND is an integer
variable.

CHAIN- CHAIN(I), 1<I<Cl, denotes a row of S
in the construction of an alternating
chain. When CHAIN(I) = CHAIN(C1),
I<Cl, a simple alternating cycle is

found. CHAIN is an integer array.



FINISIH-

Hl~

HH1-

HLDCH-

HLDPER-

IRR-

Ll-

L=

IJLl"'
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FINISH is an integer variable array
used for subscripting array HLDPER.
Hl is a variable integer subscript.
HHHl is a variable integer subscript.
HLDCH 1is an integer storage array.
HLDPER is an integer array. At any
stage of the subroutine, row I of S,
I=NI,...,NL, represents rows
IILDPER(START(I)) to ILDPER(FINISH(I))
inclusive of A.

I is a DO loop indexing variable or
a varieble subscript.

If A is not fully indecompsable,
IRR(I), I=1,2,...,KK, is the coverance
of the I-th fully indecomposable
diagonal submatrix of A in a normal
form.

J is a DO loop indexing variable or a
variable subscript.

K is a variable subscript.

See the description of IRR.

L is a variable subscrint.

L1 is a DO loop indexing parameter.
L2 is a DO loop indexing parameter.

LL1 is a DO loop indexing parameter.



LL2- LL2 is a DO loop indexing parameter.
M- M is a DO loop indexing variable.

M1~ M1l is a DO loop indexing variable.

M2- M2 is a DO loop indexing variable.

M3- M3 is a DO loop indexing variable.

MM- At the end of the subroutine, if MM=0,

A is fully indecomposable. If MM=1,

A is partly decomposable.

MP1- MP1l is a variable subscript.
N- N is the order of matrix A.
NI- Initially NI=1l. When a new alternating

chain is started, NI is augmented by 1.

NI1- NI1=NI+1

NEWNL- NEWNL=NL- (CEND-I+1l) where (CEND-I+1)
is the length of a simple alternating
cycle.

NL- Initially NL=N. After a simple alterna-
ting cycle has been found, NL is diminished
by the length of the cycle.

NN- NN is the first dimension of doubly sub-
scripted arrays A and S in the calling
program.

NP1- NP1=N+1

P1- Pl is a variable integer subscript.



(ii)

(1i1)

(1v)

PER~-

Rl~

START-

TEMP-

TEMP1-

TEMP2~-

TEMP3-

FIORK-

ZERO1-
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PER is an integer array. If A is not
fully indecomposable, row PER(I) of

A, I=1,2,...,N, is permuted into row

I while column PER(I) of A is permuted
into column I.

Rl is a variable integer subscript.
Initially S is a representative matrix
of A. During the subroutine, S is the
representative matrix of the induced
matrix in question.

START is a variable integer array used
for subscripting array HLDPER.

TEMP is an integer storage variable.
TEMPl is an integer storage variable.
TEMP2 is an integer storage variable.
TEMP3 is an integer storage variable.
WORK is an integer storage array.

ZERO1l is an integer work array.

Entry points

DULMEN

Exit points

Normal return

Subprograms called

None
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(v) Restrictions and limitations

The only restriction (required by the
algorithm) is that A must have a nonzero main

diagonal.

IV. Storage Requirements

Subroutine DULMEN reguires 534 words of
computer memory on a CDC 6400. The following tablce shows
additional storage reaquired in the calling program for

variablc arrays.

U ——

| ORDER OF | CORE STORAGE

MATRIX (in decimal)

10 305

20 1005

30 2105

40 3605
| 50 5505
i 60 7805 |
SR S ]

Table 3

V. g}minq

e define a steo matrix A of order N as follows:

A(N,1)#0, the main diagonal and superdiagonal of A are
strictly positive, the remaining entries of A are zero.
A step matrix B yields the fastest computer time while a

tridiagonal matrix D with a strictly positive band requires
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the longest computer time. Typical timinqs for these two

types of matrices are shown 1in the following table.

TIME IN SECONDS

ORDER OF | __

MATRIX B D
10 0.005 0.046
20 0.016 0.340
30 0.033 1.116
40 0.057 2.714
50 0.089 5.298
60 0.125 8.813

Table 4



VI. Flowchart and Listing

'““*\\
DULMEN )

-
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INITIALIZEJ
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|
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A CHAIN
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4

AUGMENT
CHAIN
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No POIQ?\\

S ROW? 7
\ROW? 7

ALONE IN >——

STORE
- »  CYCLE
INFORMATION
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v
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SUBROUTINE DULMEN(NQN[\!KKQMM'A!SQPEPQIRQQWORK'HLDCH'

PURPOSE

ZERC1yCHAINIHLDPER«STARTsF INISH)

TO DECUOMPOSE A MATRIX TO A NORMAL FORM,

DESCRIPTION OF PARAMETERS

INPUT=

Ne=

AN=

WORK=

ALOCH=

ZERO1~

CHAIN=

HLDPER=

THE ORDER OF MATRIX A,

THE FIRST DIMENSION OF DOUBLY
SUBSCRIPTED ARRAYS A AND S IN THE
CALLING PROGRAM, THE SECOND
DIMENSION OF ARRAY A [S AT LéAST
N WHILE THE SEcOmMD DIMENSION OF
ARRAY S IS AT |LEAST N+l,

A COuBLY SUBSCRIPTED WORK ARRAY,
A SINGLY SUBSCPIPTED-WORK ARRAY
OF DIMENSION AT LEAST N

A SINGLY SUBSCRIPTED wOpK ARRAY
OF DIMENSION AT LEAST N,

A SINGLY SUBSCRIPTED WORK ARRAY
OF DIMENSION AT LEAST N+le

A SINGLY SUBSCRIPTED WORK ARRAY
OF DIMENSION AT | EAST N+1,

A SINGLY SUBSCRIPTED WORK ARRAY

OF DIMENSION AT LEAST N+1,
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START=

FINISH=

IN/OUT= A=

OUTPUT= PER=

IRR=

KK=

MM=
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A SINGLY SUBSCRIPTED WORK ARRAY
OF DIMENSION AT | FAST N+l

A SINGLY SUBSCRIPTED wORK ARRAY
0OF DIMENSION AT LEAST N+1.
INITIALLY A IS THE MATRIX WITH A
NONZERO MAIN DIAGONAL TO BE
NDECOMPOSEDs ON RETURNy A IS IN A
NORMAL FORM,

PER IS AN INTEGER ARRAY,

IF A IS NOT FuLLY INDECOMPOSABLE,
ROW PER(I)y I=142saessNs OF A IS
PEKMUTED INTO ROW I AND COLUMN
PEK(I) OF A IS PFRMUTED INTO
cOLUMN 1,

IF A IS NOT FULLY INDECOMPOSABLE,
IRR(I)s I=1929,.eKKss IS THE
COVERANCE OF THE I=-TH FULLY
INCECOMPOSABLE DTAGONAL SURMATRIX
OF A IN A NORMAL FORM,

SEE THE DESCRIPTION OF IRR.

IF MM=0s A IS FULLY INDECOMPNSABLE,

IF MM=1y A IS PARTLY DECOMPOSABLE,

INTEGER ZERC19PERWHLDPERYCHAINYHLDCHsSTART,FINISHIWORK

PleHl1sHH19R19Cl1yCEND,TEMP,TEMP1 4 TEMP2,4TEMP3
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DIMENSION A(NN91) 9S(NNo1) yPER(L) yTRR (1) sWORK (1) »
HLOCH (1) 9ZEKO1 (1) yCHAIN (1) +HLDPER (1) »

START (1) 9FINISH(1)

INITIALTIZE.

NP1=N+1

DO 10 I=1sNPl
ZERO1 (1) =1
HLDPER(I) =1
START(I)=1I

FINISH(I)=I

FORM REPRESENTATIVE MATRIX S FOR A,

D0 18 I=1sN

L=1

D0 17 J=19N
IF(A(IsJ)+EGe0.,0) GO TO 17

S(IyL)=y

70



17

18

20

30

40
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L=L+]
CONTINUE

S(IsL)=0
I=1

START AT 20 TO BEGIN A CHAIN,

NIl=NI+1

START AT 30 TO CONTINUE A CHAIN,

Cl=1

CHAIN(I)=NI

L=NI

J=NI

IF S(LsJ+1)=0y THEN THERE ARE NQO ELEMENTS TO THE

RIGHT IN ROW Lo OTHERWISE,y S(LyJ+]1) RECOMES THE

NEXT ELEMENT IN THE CHAIN,

K=J+1

IF(S(L9K) «NE+0,0) GO TO 60

IF J=NIy S(LsNI) IS ALONE IN ROW [,
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60

70

IF(J.NE,NI) GO TO 59

IF L=NIy S(NI9NI) IS ALONE IN ROW NI,

IF(L.EQ,NI) GO TO 230

I=C1
CENND=C1
GO 10 90
K=NT

AN ELEMENT HAS BEEN FOUND FOR THE CHAIN,

CEND=C1
Cl:CENn§1
CHAIN(C1)=S (LK)

L=S (LK)

BRANCH IF A CYCLE 1s COMPLETEDs OTHFRWISE SFARCH
FOR A NEW MEMBER FOR THE CHAIN.

DO 70 I=19+CEND
IF(CHAIN(I) ZEQ.,CHAIN(C1)) GO TO 9y

CONTINUE

BRANCHING ALWAYS OCCURS BY THE FOLLOWING DO LOOP.

12
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DO 8n J=NIsNL
IF(S(Lad) «EGsFLOAT(L)) GO TO 40

CONTINUE

A CYCLE HAS BEEN FOUND FOR THE CHAIN,

NEWN|L=NIL= (CEND=T)

IF NEWNL=NIs GO TQO PERMUTE THE ROWS AND COLUMNS OF A,

IF (NEWNL NE,NI) GO 1O 100

IF MM=90, A IS FuLLY INDECOMPOSABLE,

IF (MM,EQ,0) RETURN

L1=START(NI)

L2=FINISH(NL)

GO TO 235

INFORMATION STORED IN HLDPER IS LATFR TRANSFERRED TO

PER WHICH CONTAINS ALL THE NECESSARY INFNRMATION TO

PERMUTE THE ROWS AND COLUMNS OF A AT THE END OF THE

SUBROUTINE,
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110

111

112

REINITIALIZE FOR NEw KEPRESENTATIVE MATRIX,

H1=0
DO 110 M=IyCEND
TEMP=CHAIN(M)
ZERO1 (TEMP) =0
L1=START(TEMP)
L2=FINISH(TEMP)

DO 110 M1=L1sL2
Hl=H1l+]l

HLDCH (H]1) =HLDOPER(M1)
L1=START(NI)
L2=FINISH(NL)

DO 111 m=L1,yL2
WORK (M) =HLDPER (M)
D0 112 M=1yKl
HLOPER (M) =HLDCH (M)
L1=1

L2=H1

R1=NI
TEMP1=ZERO1 (NI)
TEMP2=START (NI)
TEMP3=FINISH(NI)
DO 120 M=NIsNL

MPl=M+1]
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120

IF(TEMP],EQ,0) GO T0 115
R1=R1¢1
HLDCH (M) =R1
TEMP=TENP]
TEMP1=LEROL (MP1)
ZERO] (R1)=TEMP
TEMP=TEMP2
TEMP2=START (MP1)
START (R]1)=TEMP
TEMP=TEMP3
TEMP3=FINISK (MP])
FINISH(R1)=TEMP
GO To 120
TEMP1=ZEROL (MP1)
TEMP2=START (MP1)
TEMP3=FINISKH(MP1)
CONTINUE

ZERO1 (NI) =1
START(N]I) =1
FINISH(NI)=H1
NL=NEWNL

HH1=H1

DO 126 M=NI1sNL
L1=START (M)

L2=FINISH(M)

92]
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126

127

128

DO 125 M1=L1sL2

HH1=HH1+]
HLDOPFR(HH1) =WORK (M1)
START (M) =HH1=(L2~L1)

FINISH(M)=HH]

RETRIEVE THE FIRST PART OF THE CHAIMN,

IF(I.EW,1) GO TO 128
I1=1=1

DO 127 M=1lyIl
TEMP=CHAIN(M)

CHAIN (M) =HLDCH(TEMP)

FIRST ROW OF NEw REPRESENTATIVE MATRIX.

R1=NT
S(NTWNI)=NI

DO 160 M=NI1lsNL
L1=START (M)
L2=FINISH(M)

DO 131 M1=1,yH1
TEMP1=HLNPER(M])
DO 131 M2=L1lsL2

TEMPR2=HLLDPER (M2)
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160

170

150
200

IF(A(TENPLITEMP2) NE«0.0) GO TO 150
CONTINUE

GO TO 160
R1=R1+1
S(NIsR1)=M
CONTINUE

S(NTIsR1+1)=0

REMAINING RCWS OF NEW REPRESENTATIVE MATRIX.

DO 220 M=NI1sNL
R1=NT
L1=START (M)
L2=FINISH(M)

NO 170 M1=14H1
TEMP2=HLDPER (M1)
DO 170 M2=L1sL2
TEMP1=HLNPER (M2)
IF(A(TEMPLSTEMP2) sNE«0,0) GO TO 190
CONTINUE

Rl1=R1=1

GO TOo 200
S(MyNI)=NI

DO 215 M1=NI1lyNL

DO 205 M2=L1sL2
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TEMP]1=HLDPER (M2)
LL1=START (M]1)
LL2=FINISH(M])
DO 2n5 M3=LL1lyLL2
TEMP2=HLDPER (M3)
IF(A(TEMPLYTEMP2) JNFe040)
205 CONTINUE
GO Tn 215
210 Rl=R1+1
S(MyR1) =Ml
215 CONTINUE

220 S(MeR1+1)=0

CONTINUE THE CHAIN,

GO To 30

AUGMENT PER,

230 L1=START(NI)
L2=FINISH(NT)

235 DO 238 M=L1,yL2
P1=P1+1

238 PER(P1)=HLDPER (M)

GO TO 210
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260

AUGMENT IRR,

KK=KK+1

IRR(KK)=LL2=L1+1

IF P1=N, GO TO PERMUTE THE ROWS AND COLUMNS OF A

IF(P1.EQ.N) GO TO 270

FORM A NEW REPRESENTATIVE MATRIX,

DO 260 M=NI1sNL

IF(S(MINI) oEQeFLOAT(NI)) GO TO 260
TEMP1=S(MyNT)

D0 250 M1=NI1lyNL

TEMP2=S (MsM1)

S(MyM1)=TEMPI

TEMP1=TEMP2

S(MyNL+1)=0

CONTINUE

BEGIN A NEW CHAIN,

NI=NI+1

79
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280

290

PERMUTE THE ROWS ANND COLUMNS OF A,

DO 280 M=lyN
TEMP=PER (M)

DO 280 M1=1,yN
S(M1yM)=A(M1sTEMP)
DO 290 M=l,N
TEMP=PER (M)

DO 290 M1=1,sN
A(MyM1)=S(TEMPyM]1)
RETURN

END

0



81

D. Subroutine HARARY

I. Purpose

Subroutine HARARY (written in FORTRAN) decomposes

a matrix to a normal form.

IT. Method
The method has previously been presented in section

3.2 of the thesis.

ITI. Operation

(i) Description of variables

A- Initially A is a square matrix having a
nonzero main diagonal. At the end of the
subroutine, A is in a normal form.

B- At the end of phase one of the subroutine,
B is the reachability matrix of the
(0,1)-matrix formed from A by replacing
nonzero entries in A by 1.

I- I is a DO loop indexing variable.

INDEX- INDEX is the power of B at each
stage of phase one of the algorithm.

When INDEX is greater than or equal to
NM1l, phase one is complete and the

reachability matrix B is found.



-

IRR- If A is not fully indecomposable,
IRR(I), I=1,2,...,KK, is the coverance
of the I-th fully indecomposable diagonal
submatrix of A in a normal form.

IWORK- IWORK is a work array.

J- J is a DO loop indexing variable or a
variable subscript.

JHOLD- JHOLD is a work array.

K- K is a DO loop indexing variable.

KK- See description of IRR.

Ll1- L1 is a DO loop indexing parameter.
L2- L2 is a variable subscript.

M- M is a DO loop indexing variable.

M1l- M1l is a DO loop indexing variable.

MM- At the end of the subroutine, if MM=0,

A is fully indecomposable. If MM=1,

A is partly decomposable.

N- N is the order of A.

NM1- NM1l = N-1

NN- NN is the first dimension of doubly
subscripted arrays A, S and B in the

calling program,
ER- PER is an integer array. If A is not
fully indecomposable, w PER(I) of A,

I=1,2,...,N, is permuted into row I
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while column PER(I) of A is vermuted
into column I.

S- Initially S is the (0,1)-matrix formed
from A by rermlacing nonzero entries in A
v L,. 5 1is used to comnute the reachapil-

ity matrix BG.

TLhHMP-  TEMP is an integer storaage variable.
(ii) ©tntrv points
tiARARY

(iii) Exit points

Normal return.
(iv)  Subnrograms called

None

(v) Restrictions and limitations

The only restriction (recuired by the alaorithm)

is that A must have a nonzero main diaaonal.

1V: gStorage BeguiFements

Subroutine HARARY requires 218 words of
computer memory on a CDC 6400. The following table shows
additional storage required in the calling program for

variaple arrays.
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ORDER OF CORE STORAGE
MATRIX (in decimal)

10 340

20 1280

30 2820

40 4960

50 7700

60 11040

Table 5

V. Timing
Typrical timinas for the two types of matrices B and
D (defined in section V of Apnendix C) are shown in the

following table.

TIME IN SECONDS

ORDER OF p—— I

MATRIX B ] D
— X 4

T
10 .132 ! 117
20 1.408 1.244
30 5.458 4.876
40 14.426 12.970
50 30101 273281
60 55,128 50.676




VI. Flowchart and Listing

( narary )
|

;

COMPUTE

gN-1

FORM
PER

MM=1?

No Y
~————w{ RETURN |
74

Yes

DECOMPOSLE
A TO A
NORMAL FORM

|

N

RETURN |
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SUBROUTINE HARARY (N NNyKK e MMyAsSyRePERe TRRy JHOLD 9

PURPOSE

TO DECOMPOSFE A

IWORK)

MATRIX TO A NORMAL FORM,

DESCRIPTION OF PARAMETERS

INPUT= N=

NN=

ITWORK=

IN/OUT= A=

OUTPUT= PER=

THE ORDER OF MATRIX A,

THE FIRST DIMENSION OF DOUBLY
SUBSCRIPTED ARRAYS Ay S AND B IN
THE CALLING PROGRAM, THF SECOND
DIMENSION OF ARRAYS A, S AND B IS
AT LEAST N,

A DCUBLY SUBSCRIPTED WORK ARRAY.

A DCUBLY SUBSCRIPTED WORK ARRAY.

A SINGLY SUBSCRIPTED WORK ARRAY OF
NDIMENSION AT LEAST N

A SINGLY SUBSCRIPTED WORK ARRAY OF
DIMENSION AT LEAST N

INITIALLY A IS THF MATRIX WITH A
NONZERO MAIN DIAGOMAL TO BE
NECCMPOSED. ON RETURNy A IS IN A
NORNMAL FORM,

PER IS AN INTEGER ARRAY,

IF A IS NOT FULLY INDECOMPOSABLE,



O O O O O O OO0

O

IRR=

KK =

M M=

INTEGER TEMPSPER
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ROW PER(I)y I=14244a09Ny OF A IS
PERMUTED INTO Row I AND COLUMN
PER(IY OF A IS PERMUTED INTO
COLUMN I,

IF A IS NOT FULLY INDECCMPOSABLE,
IRR{I)s I=1lys29e,e9KKs IS THE
COVERANCE OF THE 1=TH FULLY
INVECOMPOSABLE NIAGONAL SUBMATRIX
OF A IN A NORMAL FORM,

SEE THE DESCRIPTIOM OF IRR,

IF MM=0, A IS FyLLY INNECOMPOSAHLE,

IF MM=1l,y A IS PARTLY DECOMPOSABLE,

DIMENSTION A(NNy1) oS(NNs 1) 9B(NNo1l) 4 PER(1)9TIRR(1),

JHOLD (1)

s IWCRK (1)

INITIALIZE,

IF(NJLE,2) STOP 44
NM1=N=1
INDEX=1

L2=0



10

12

15

30

40

DO 10 I=19N
DO 10 J=1sN

S(IyJ)=0

IF(A(I9J) eNEs0,0) S(Isd)=1
CONTINUE

DO 12 I=1sN

TWORK (1) =0

PHASFE 1, FORM MATRIX B##(N=1),

DO 30 I=19N

DO 30 J=19N

DO 20 K=19N
B(IsJ)=S(laK)#S(KsJ)
IF(B(IsJ)«EGel,a0) GO TO 30
CONTINUE

CONTINUE
INDEX=INDFE X+ INDEX
IF(INDEX,GE.NM1) GO TQ 50
DO 40 I=19N

NO 40 J=1sN

S(Is)=8(1sJ)

GO TO 15

PHASE 2, FORM PER AND IRR,

88



50

60

70

15

80

loo

DO 7n 1=1sN
IF(IwORK (1) cEQ.1) GO
L1=0

DO 60 J=19N
IF(B(IsJ)eEGe0.0) GO
IF(R(TIsy) eNEB(UNI))
Ll=L1+1

JHOLD (L 1Y =J

CONTINUE

GO TO 75’

CONT INUE

DO 80 K=1r9lL1

L2=1L2+1

PER(1.2) =JHOLD(K)
KK=KK+1

IRR (KK) =}
IF(L2.EQ.N) GO TO 110
DO 100 K=1lsLl
J:JHbLD(K)
IWORK (J) =1

DO 100 I=1sN
B(IlsJ)=0

MM=1

GO TO S0

To 70

T0 60

GO To 70

89



110

120

130

PHASE 3, DECOMPOSE A TO A NORMAL FORM,

IF(MM,EQ,0) RETURN
DO 120 M=losN
TEMP=PER (M)

DO 120 M1=1yN
S(M14M)=A (ML TEMP)
DO 130 M=1yN
TEMP=PER (M)

DO 130 M1=1,yN
A(MyM1)=S(TEMPyM])
RETURN

END
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