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PJf.;FACE 

There are sever a l not ions o[ ~)osi tivc de finiteness f or 

f unctions on toyolo~ical e roups e . g . Ute notion of Bochn er 

positive de finite func t ions and jnt egrally pos itive definite 

functions . It is of s om! interes t to ob.se rve tln t a c ho.nt;c in 

the clo.ss of functi ons in the defin ition of integrally positive 

defin ite fun c tion proc uc ec a dii'feren t class of positive defjn i te 

f unctions . 

The pur :)ose of t h i s thes i s i s to study the functions 11hich 

are ;1oGi ti vc de finite fo :.· t he c l n.s .ses L (l_::; p<ro) 
p 

over con :y:: ct 

and locally c ompact ~rott~)s . It is ':forth W"ntionint; here that t he 

o()ser.rat ions in t~ 1 i s direction . 

Ch.''tnter l c ont-:;.ins :,8.s ic dei'ini ti onG and f ac t s fror·1 Ea!'r'lonic 

1\nr... lysis Hh ich 1·1e shall n ,~ e d in t he! :eveloprwnt of sor.1e i .leas in the 

subsequent c hap t e rs . 

Chapt .r 2 and Ch:::tpter 3 p!'es en t some n e•:J r.nt::rial re ;::;:-:;-cEn[=; 

positive rle finite func tions for the class L (G), 1 < n <ro , 
p - - over 

comp"tct a nd loco.lly c ompact grou r s . 
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CHAPTER 1 

Preliminaries 

The preliminary material is presented here in a condensed 

form for future reference. Hany of the ideas developed in the 

ensuing chapters will depend upon these facts. See [1], [2], [3], 

[5]. 

1. Heasure and Integration 

Definition 1.1: If X is a topological space ru1d ~ is 

the family of all open subsets of X, then the family of Borel sets 

in X is defined as the smallest a-algebra of sets containing Q. 

If OTt. is a ()-algebra of subsets of X and lJ. is a countably 

additive measure on'~ Cor simply a measure), then the triple 

(X,1irt, lJ.) is called a measure s~qce. If lJ.(X) <m, then (X,ryt, lJ.) 

is called a finite measure space and ll. a finite measure. If X 

is the union of a countable family of sets in 4lrt each having finite 

measure, then (X,)1tL, lJ.) and ll. are called Oi--finite. An 

extended real valued function f on X is QlrL-measurAble if the 

set { x c X: f(x) > a.} belongs to O'(L for every real a.. A 

. complex valued function f on X is ffi -measurable if its real 

and imaginary parts are OTt -measurable. If X is a topological 

space and )71. is the (J -alt;ebra of Borel sets of X 
' 

an YYl-
-measurable f1mc tion is called Borel measurable. 

1 
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Definition 1.2: Let 1J. be a measure on TI~. Let f be 

any function on 

f f(x) d).l.(x) 
X 

X with values in [0, oo]. Then the .'Lebesgue integral 

[or simply J f d).l.] is defined as 
X 

sup { ~: [inf (r(x): x c y Jl(\;): { A1 , A2 , ••• An} 

is a partition of X with each \; c ffi.} 
Definition 1.3: Let X be any topological space, and 

C(X) denote the set of all bounded complex valued continuous functions 

on X. For f c C(X) let 

X c X } , 

Let C (X) denote the set of all complex valued continuous 
0 

functions f on X such that for every c > 0, there exists a 

compa.ct su1~set F of X [dependin?; upon f and c] such that 

Jf(x)J < c for all x c F'. 

Let C (X) denote the set of all complex valued continuous 
00 

functions f on X such that there exists a compact subset F of 

X [depending upon f] such that f(x) = 0 for all x c F'. 

C (X) 
00 

Remark 1.4: C (X) is a linear subspace of C(X) and 
0 

is a linear subsp:=cce of C (X). 
0 

C(X) and C (X) 
0 

are complete 

in the metric induced by the norm 1\ · llu • C (X) is a dense 
00 

linear su'",space of C
0

(X) [see Theorem 1.5]. 

If X is a com~act topolosical ~p2ce, then C (X), C (X) 
00 0 

and C(X) coincide. If X is locally compact, non compact, 
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Hausdorff space , t hen C (X) C C (X) C C(X): the equalitv 
00 0 :f= • " 

C (X) = C (X), may obtain even for locally compac t n or mal spaces. 
00 0 

Hm·Tever , i f G is l ocal l y c ompact , non-comp<J.ct [Sroup , then He have 

C . (G) c:; C (G). 
00 1 0 

Theorem 1._2: Let X be a loca lly c ompact Ha usdorff space. 

Every function in C (X) 
0 

can be arbitra rily uniformly a pproximated 

by f unctions in C ( X). 
00 

Definition 1.6 : I f A C X and }l(f, ) = 0, '.ve call A a 

null set . If A () F i s ~-null for every coupact subse t F of X, 

t hen A is s a i d t o be a locally }I.-null set . A property that hol ds 

on X exce p t f or a l oca lly }l-null set i s s aid to hold loca lly . 

}I.-a l most every1/nere . A c or~plex vo.lued function f on X that 

v::tnishcs }L- P.l mos t everyvJhere is c a lled a }I.-null f unct ion . 

Defi nition 1 .7: Let ffi be a () - a t.ge bra of s t;bs ets of 

X conta ininG all open s e ts . A non- -negative measure }l on "'(Yl 

is call ed reg ...t l a r if and only if for every (\pen set V, He ha ve 

}l(V) 
( 

F C v} = sup L l-J.(F): F i s compz,ct Rnd 

and f or a ll A cffi, \ve ha ve 

{ 1-L(V): ' }l( A) = i nf v is open and V :J A)· 

Let X be a loceJ.ly co:npe.ct Hc:msdorff spnce , I; a non-

negative lin~ar funct i ona l on C ( X). 
00 

Then there is a unique 

non-neGa tiv-e r ee:;ul a r Bor el moasu .::·e }l define d on the 'Borel sub-

sets of X such tha t }l ( F) <cr.> for each c ompact subset F and 
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I ( f ) = f f d1J. 

X 

for all f c C ( X). 
00 

Definition 1. 9 : (Integration on Product spaces) 

4 

Let X and Y be loca lly compact Hausdorff spa ce s. Then 

X X Y with the produc t t opology i s also locally co~p~ct Hausdorff . 

Let I, J be non-zero non-n~gat ive l inear functional s on C (X) 
00 

and C (Y) respectively . Let f be a compl ex va lued funct i on on 
00 

such t ha t for some x c X, 
0 

the function ¢ : y --7 f(x , y ) 
0 

is in C (Y) . We shall write J ( f (x , y)) for J( ¢ ). We can 
0 0 y 0 

define si~ilarly I (f(x , y )). 
X 0 

T'neorem 1.10: For every fcC ( X X Y), 
00 

He lwve 

J ( f(x, 
y 

y)) c C (X) and I (f( x , y)) c C (Y). Al so (i) 
00 X 00 

I [J (f(x, 
X y 

y))] = J [I ( f(x , y ) )J = I~(f). The fu.nctional 
y X 

K defin ed 

by ( i ) i s a non-nega tive , non-zero , linear functional on C (X X Y) . 
00 

K i s ca lled the nroduct of t he functiona l.s I and J and i s \-Jri tten 

K=IXJ. 

By Ri esz re pr es pnta tion theoren , there exists a measure 

such tha t 

K(f ) = f f d (i '!-. yt_). 

i X Yt_ i s Cctlled the product of the measures i and it 

induced respec tivel y by i and ~ 

Theorem l._ll: [}:ubini ' s theore rn] Let f be in 

L
1

(X')( Y, i')(."Y\.. ). Then f(x , y) as a f unction of x i s in 
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L
1 

(X, i) for l't -almost all y c Y, and f(x, y) as function of 

y is in L
1 

(Y, 1't ) for i-almost all x c x. Furtherr:1ore the 

function of x defined by x ---7J f(x, y) dlt(y) vthere the integral 

exists and 0 elseHhere is in ~(X, i); similarly for 

Finally we have 

f f(x,y) di(x). 
X 

(i) f r(x, y) di X l'L (x, y) = I f f(x, y) d ~(y) di(x) 

X~Y X Y 

= S f f(x, y) di(x) d'J'L(y) 

y X 

2. The spaces L (1 ~ p < oo 
p 

Definition 1.12: Let p be a positive real nnmber and 

let (X, m, 11) be a measure S:r>ace. Let f be a complex valued 

m-measurable function defined tJ.-a.e. on X such that 

f I f I p dtJ. < oo. 
X 

Then 111e say that 

the symbol Jl flip by 

J) fliP = 

For 1 ~ p < CD, the function 

f c L (X,)Jl, 11). 
p 

~le define 

on L 
p 

satisfies 

the axioms of a norm except the positivity requirements: It f IJ > 0 
p 

if f ~ 0. If we agree that f = g means f(x) = g(x) for 11-alrnost 

all x c X, i.e. L actually consists of equivalence classes of 
p 

functions (Two functions such that llr - g lip = 0 are taken to be 

identical in L ) , L (1 < p < oo) is a normed linear .space. 
p p -



. Theorem 1.13: (Holder's ~nequality). Let 

6 

f c L and 
p 

g c L where p > 1 
q 

and ! + ! = 1. Then f L p q g c 1 and we have 

(i) ) Jfg d11J.:s Jlfg\ dfl. 

(ii) flrg{ dfl. .:S )Jr JlP II gflq • 

Theorem 1.14: (llinkowski's inequality) 

For 1 ,:5 p < ro and f, g c L , 
p 

Theorem 1.1...2: For 1 .:S p < oo, 

we have 

L is a complex Banach 
p 

space i.e. in metric ~<r, g) = l)f- gil p' L is a complete 
p 

metric sp<J.ce. 

Theorem 1...!16: For 1 .:S p < oo, the conjusate space of L 
p 

is L , 
q 

in the sense that for every bounded linear functional T 

on L there is a function g c L such that 
p q 

(i) T(f) = f f g dfl. for all f c Lp and HTII = llgllq 
X 

Theorem 1.17: If fJ.(X) <oo and 0 < p < q, 

and the inequality 
1 1 ---

llfllp S llrllq (fJ.(X))P q 

holds for all f c L • 
q 

then L C. L q p 

Theorem 1.18: If f c L n L where 0 < p < q < oo p q 

and if p < r < q, then f c L • 
r 



Theorem l.l<t_: 

space. Then C (X) 
00 

Let X be a locally compact Hausdorff 

is a dense subsp?..ce of L (X, )IL, }1). 
p 

7 

Theorem 1.20: Let (X, ffi, }1) be a measure spacP:, let 

p be a real number such that p > 1 and let f be a m-measurable 

function on X such tln.t (i) {xc "• f(x) ..,1 o} is the union J\.. r 

of a countable number of sets in m havinr; finite measure and (ii) 

\oJhere 

for all g c L (X, YYt, }1). 
p 

3. Haar measure and convolution 

Then f c I. (X, m, }1) 
q 

Definition 1. 21: Let G be a set that is a group and 

also a to~ological space. G is called a topolosica1 croup if 

(i) the ma~ping Cx, y) ~ xy of G )( G onto G is a continuous 

mapping of the Cartesian product G X G onto G. 

(ii) the m!'1.p-oing of G onto G is continuous • 

In terms of open sets, c:ndition (i) asserts that for every 

neighbourhood U of xy, there are neighbourhoods V and \1 

of x and y re::;:cx:ctively such th:=tt V\1 C U • Condition (ii) 

asserts th,J.t for every neighbourhood U of 
-1 

X there is a 

neighbourhood v of x such th<tt • 

On a locally comp·1ct Hausdorff topological group, Haar 

measure is the analor:ue of Lebes,::~ue measu.re on the real line. On 

the real line, as additive group,Fbar measure coincides vlith Lebesguf~ 

mea.sure. '.!e shall ~~efine first \·:hat Haar integrnl is .• 

De fi nit ion 1. 22: 

valued function f on T' 

""' 

(a) Let E be a line<il" sr1ace. J\ real 

is said to be a functional. 
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(b) A functional is ~aid to be ad~itive (or suhadditive) 

if for each pair x, y c E, f(x + y) = f(x) + f(y) Cor f(x + y) ~ 

f(x) + f(y)). 

(c) A functimnl is said to be positive homogeneous if for 

each x c E and real A~ 0, f(Ax) = A(f(x). If for e~ch real A 

and x c E, f(Ax) = Af(x), then f is said to be homogeneous. 

(d) A hoL:o;;eneous additive functional is said to be linear. 

A linear functional I on a linear space E is non-negative if 

I(f) ~ 0 for aJ.l f~ 0. 

Definition 1.23: Let G 'Je any group and let 'tJ be a 

set of functions on 

be the function on 

G. For a fixed element a c G, let af[fa] 

G such tho.t f(x) = f(ax) [f (x) = f(xa>J a a 

for all X c G. Then nf[fa] is called the left tronslate [right 

translate] of f by a. Suppose that f c j- and a c G imr1ly 

af c ~ [ f c 
a 1- J. Let I be any function on 1 such that 

!(f) = I(af) [I( f) = I(f )] for all f c ":t and a c G. Then I . a -.; 

is said to be left invariant or inv<tricmt under left tr<:mslations 

[right invariant or invariant under right translations]. 

Theorem 1.24: Let G be a locally comp~ct Hausdorff 

topological [",roup. Then ~hel~e exists a non-trivial (i.e. not 

identically zero), non-r.ct;ative, left invariant, positive hor;toceneous, 

addit:Lve, ftmctional I on C + (G) 
00 

and I is unique upto a 

~ultiplicative cons~ant. 

Definition 1. 2~: I can be extended uniquely to a linear 

functional on C (G) also denoted by I and the extension is 
00 
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necessarily left i nva riant , I is c a lled left Hac•.r integral on 

C (G). The measure A. i nduced by the left Haar integral I 
00 

( Ri esz Representati on The orem) is c a lled the Left Hn2.r measure , \•lhi ch 

i s uniqu e u p to a multiplicative constant· A. satisfi es the follov1int:; 

c onditions : 

(1) A. ( V) > 0 for all non -void open se t V C: G ( I\ I O) 

( 2) A. ( aB) = A. (B) for all Borel set B C G, a c G. 

Theorem 1.26: Let G be a loca lly cor.1pac t group >·lith a 

left Haar measure A. . Then A.(G) is finite if and only if G is 

compact . [If G i s c oDpact , we will a l ways normalize l e ft Haar 

measure by the requirement that A.( G) = 1] . 

Theorem 1. 27 : Le t G be a locally c ompact grou p and l et 

I Hae1.r c For c + I o be a left i nt egral en f c ~ a nd for . , l 
00 0 0 

I(f - l) 
G, let .6. (x) X Then ~ depends only and X c = I(f) 

. upon X . 
not upon I or f . The func tion 6 is c ont inuous , positive throuc;h 

out G, and s a tisfies the f unctional equat i on 

b,.( xy) = .6 (x) ,b. (y) fo r all x , y c G 

Definition 1. 28 : The function D. is c a lled the modul ar 

function of the locall y com;;act gr oup G. G i s c a lle d uninodul a r 

if and only if ~ = 1 on G. 

Theorem 1. 29 : Every coupact Hausdorff t opologica l t:;roup 

is unimodul ar , and a loca lly cor.rpc:-..ct Hausdorff topologica l abe1ic:tn 

group i s unimodul ar . 
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Theorem 1.30: Let f be a non-negative A.-measurable function 

on G. Then f"' is also A.-measurable (f*(x) == f(x-1)) and 

and 

(i) J f*dA. = 
G 

(ii) J f dA. = 
G 

f f* l dt.. A • 
G 

If f c L1(G), then f"' 
1 A c L

1 
(G), ( ii) holds and 

II f ll1 = II r~ ~.l t 1 • 

Then 

Theorem 1.31: 

(i) f*g(x) = 

For f, g c L1(G), we 

S f(y) g(y-1x) dy 

G 

have 

(ii) f•g(x) = J f(xy) g(y-l) dy 

G 

(iii) f*g(x) = J ~ (y-l) f(xy -l) g(y) dy 

G 

(iv) f•g(x) = ~ ~(y-l) f(y-1 ) g{yx) dy. 

G 

Equality holcts for A-almost all X C G. 

Theorem 1. "32: 

(i) 

Let f c L1(G) 

n 
u 

and g c L (G)( 1 < u < <D) • p -.-

f f(y) g(y-
1
x) dy 

G 

exists and is finite for all x c G () N' , \vhere N is A.-null 

if p < m and is locally A.-null if p = <D. The function f•g 

is in L (G) and 
p 



(ii) Jlf•gll p < jjflll 1Jg1Jp 

If f c L (G) and 
p 

-l}q ( ) ~ g c L1 G , the integral 

(iii) f•g(x) = fA (y -l) f(xy-1 ) g(y) dy = 
G 

= S f(y) g(y-1x) dy. 

G 

S f(xy) g(y-l) dy 

G 

exists and is finite for all x c G ()n'. The function f.g is in 

L (G) and 
p 

(iv) 1\ \1 11 II ll ~l/qor:t'l.\1 f•g p .s f p ~ where l + 1 = 1 . 
p q 

Theorem 1.33: Let p and p 1 be real mmbers such that 

1 1 
1 SP <oo, 1 <p' <m, p+p' >1; and let 

1 -- = 1. r 

pn' 
r = -~=--....,.. 

p+p'-pp' 
so that 

Let f and g be Borel meCJ.surable functions on G such 

that f c L (G), g c Lu,(G), g* c L ,(G), 
p L p 

and 

Then for A-almost all x c G, the integral 

( ) ( ) S ( ) , _,) 
i f•g x = f xy g\y - dy 

G 

exists and is finite. The function 

inequality 

obtains. 

is in L (G) 
r 

and the 

Definition ~--· ,24: An al~ebra A over a ·field F is a 

·vector sp!'lce over F which is also ::t ring anri · in which the mixed 



associative Law relates scalar multiplic<1tion to ring multiplication: 

(Ax)y = x(Ay) = A(xy). 

If the multi~lication is commutative, then A is called a commutative 

algebra. 

Definition 1.,.2,~: A Banach algebra is an algebra over the 

complex numbers, together vri th a norm under \vhich it is a Bannch 

space and which is related to multiplication by the inequality: 

Theorem~: Let G be a compact group. For 1 ~ p ~oo, 

the function space L (G) 
p 

[ vri th normalized Haar mec.sureJ is a 

Banach algebra under convolution. 

is in L (G) 
p 

and 

That is, if f, g c L (G), then 
p 

The following results due to J. Stm-:art [5] are recorded for use 

in the next chapter. 

Theorem 1.3?: P(C ) = P(LP) for every p > 2 where 
00 c 

Lp is the set of functions in Lp "''ith cor;1pact sup;:ort. [See Def. 2.1] c p 

Theorem 1.38: Let 1 ~ p ~ 2 and q = p/2(p-l). 

If and f is locally in then 

Definition 1.39: Let E be a real normed space and let 

K b.e a cone which is a subset of E Hi th the follow inc properties: 

(1) K + KC K 

(2) a.K C K for all a. > 0 and 

(3) K fl (-K) ::: {,o} . 
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The natural partial orderinz; > is associated >-ti th the cone 

K i.e. a > b in cEJ..se a - b c K. The dual E* of E is also 

partially ordered by the dua1 cone 

all x c K} 
K* = {r c E*: f(x) .2: 0 for 

The cone K is said to cenerat~ E or to be a generating 

cone in ca13e ever~' element in E can be \·Jri tten as the difference 

of two elements in K i.e. E = K - K. 

E is said to be (O) - complete Corder conplete) in case any 

upHarJ. directed subset 1:1i th an u;rperbound (c·Tith respect to ,2:) has 

the supremum. 

E is said to be gu2si - Co) - comnlete in case any sequence 

such tl-:0. t 0 " a "'"' a < a ..,n ' ~ "' < '"" a .:::: 1...;; 2 ° 0 0 , n Ct C'.i+j - ""'·i """i-

h2.S the suprernl"!. 

A real l~nsar space E is said to be a vector lattice if 

E is a 1nttice by a partial order re~ation x...;; y satisfying the 

conditions: 

x ~ y implies x + z ~ y ~ z 

x ~ y implies ~ x ~ ~ y Cor ~XL a y) for 

every ~ > 0 Cor a~ 0). 

A complete norrr:ed vector lattice is called a Banc>ch L_::'1ttice 

in case its norm ::>a tisfics the follo1:lin0 concli tion: 

jal < j b\ implies !Ia II~ 1\bll '.-'here Jal =a V(-a). 

~c quote here the following ti10orem of T. Ando [8] for 

future reference: 



Theorem 1,40: (a) K generates 

is quasi-order complete, 

E if and only if 

14 

,.,. 
.u 

(b) K* (dual cone) generates E* if and only if E is 

quasi - (O) complete, 

Theorem J.,ln.: (AL~OGLU) Let E be a real or complex normed 

linear space. Then the unit ball S* = { L c E*: II L II ~ 1} in 

E* is compqct in the Heak*-topology of E*, 



CHAP'l,~R 2 

Positive definite functions for the class L 

Definition 2.1: Let F be a set of complex valued 

measurable functions on a Hausdorff locally coElJ1'-l.Ct 8roup G. Let 

A. be the left Haar mearmre on G(normalizecl by A.(G) = 1 if G is 

compact). l"or brevity 'rJe shall 1.vrite dx in place of dA.(x) and 

d(x,y) in place of d(A.xA.)(x,y). 

A com-9lex valued function (Borel mc~surable) ¢ on G is 

called positive definite for F if 

and 

J l¢(y-1
x) f(y) f(x) J d(x,y) <ro, 

GxG 

J ¢(y-1x) f(y) f(x) d(x,y) > 0 for all f c F. 

GxG 

The class of functions \·Ihich are positive definite for F 

He l.vish to sho'·! that any L (1 < p < oo) 
p - -

function 

which is positive ~efinite for the cla~s Coo, is also positive 

definite for ti1e cJn .. ss IJ for sone q. A precise sto.tement of our 
q 

resuJ '\.; follov;s; 

'I"neorem 2.2: If G is a comnact Hausdorff to~ological 

group, thfm for l<:p< m and 
-1 -1 

p +c, =1 

J5 
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P(Coo) () L = P(L ) n L • 
. p q p 

The proof of this result is based on the following two 

Lemmas. 

Lemma 1: 

in L and 
p 

Let G be compact and 1 ~ p <a:>. 

in L , 
p 

then 

If f ---?> f 
n 

f *g ~ f*g in L , t-lhere * denotes the convolution. 
n n p 

Proof: Under the conditions in the Lemma, 

is a Banach algebra •li th respect to the convolution * 

f *g and 
n n 

~ (i). 

f*g are in L (G). 
p 

It follows therefore 

L (G) by 1.36 
p 

Consequently 

The sequence {llrniJ P} is bounded so that as n ~ m, we obtain 

f *g ~ f*g in L (G). 
n n p 

Lemma 2: If the function (x,y) ---7- ¢(y-1x) f(y) f(x) 

is in L1 (GxG, AxA), then 

where 

f 
'GxG 

¢(y-1x) f(y) f(x) d(x,y) = ~ 
G 

( -1 f* (x) - f x ) , and 

• 
f*f(x) ¢(x) dx 

Proof: By Fubini's theo-"em (1.11) the-above-integral on 

the left in the Lemma, can be re-\vritten as 
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ff ¢(y-
1
x) f(x) dx f(y) dy = ff ¢(x) f(yx) dx r(y) C..y 

GG 

J[ f(yx) f(y) 0y ¢(x) dx 

GG 

GG 

Since by Theorem 1.29 every compact Hausdorff tor)o1ot:ica1 

group is 'mirnodular, 1.-1e hRve by The::orem 1.31 (iv) . ' ) f* f\x = f f(y) f(yx) dy, 

G 

by Theorem 1.30). 

* Hence by another citation of (1.11), (f*f) ¢ is in L
1

(c) and 

I ¢(y-
1
x) f(y) f(x) d(x,y) = 5 * f* f (X) _¢ (X) dX 

GxG G 

Proof of the theoram: 
-~--

Since by Theorem 1.19 Coo C L (G), 
q 

1 <q <co, we get P(Coo) ::> ~(L ) 
q 

and then 

P(Coo) n 1, ::::> P(L ) rl I" • 
p q p 

(It may be remarke~ here thnt classes P(F) n IJ , F = Coo 
p 

or L are non-null because they contain at least t>1e non-ne;::;a.tive 
q 

constants.) 

To prove the opposite inclusion, suppo:-je ¢ c P(Coo) n L 
p 

ani let f L L ( ' G · t d ' (ro' <' ' c C 
1

, .)ecause l.S cor~pac D.n, A 0) m, /1. 
q 

the Haar measure, by 'Theorem l. 2G). 

The de;lr:'~"'~·:;:;: of Coo in L ensures the exi.stence of a 
q 

sequence { fn} in Coo such that 

being 
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(*) 11 fn - f 11 q ~ 0 and hence llf* - f*/1 ~ o. . n . q 

and 

Since ¢ c P(Coo), we have 

f \ ¢(y-1x) fn(y) fn(x) f d(x,y) <m 
GxG 

Ji ¢(y-1x) rn(yY fn(x) d(x,y) 2 0 

GxG 

for each f c Coo • 
n 

By Lemma 2 

Jf ¢(y-1x) fn (y)" fn (x) dx dy = J 
G 

f*•f (x) ¢(x) dx > 0 
n n 

GG 

for each n. 

integral 

Next we claim that if f c Lq C L1 and ¢ c Lp' 

S I ¢Cy-1x) f(y) f(x)J d(x,y) <m. 
GxG 

By Theorem 1.32 

r~¢(x) = s f(y) ¢(y-1x)dy 

G 

then the 

exists and is finite for A.-almost all x c G and is a function in 

L (G). Since f c L , it follows by H~lder's inequality (l.l3l 
p q 

that the integral 

ff I f(y) I l ¢<y-l:dJ dy I f(x) I dx < m. 
(';(} 
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Fubini's theorem implies thRt the integral 

S j ¢(y-1x) 'f(y) f(x)J d(x,y) 

GxG 

exists and is finite for ¢ c L and f c L • 
p q 

Hence by Lemna 2, 

S J ¢(y -lx) f(y) f(x) dx dy = f f*•f(x) ¢(x) dx. 

GG G 

To complete the proof of the theorer;1, we must sho>v that the 

above integral is non-negativ~. 

for by 

< 

< 

Hence 

To see this \·Je appeal to Lemma 1 and the Holder 1s inequality, 

(*) 

J cr• • rl ¢ dA / 

J ) ( f~ • f n - f* • f) ¢ J d;\ 

G 

- f* • r}J II ¢11 ---7 0 as q . p n -7 oo. 

S f*• f(x) ¢(x) dx, being the limit of a non-ne~~tive 
G 

sequence _f f~ * fn(x) ¢ (x) dx is non-negative. 

G 

Consequently ¢ c P(L ) n L , 
q p 

so that we ~qve established 

P(Coo) n L = ;)(L ) n L • 
p q p 
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Remark 2.3: I t may be noted tha t the a bove 1'heorem r emains 

valid i f Coo, the s pn.c e of continuous functions \vith c ompact 

support, is re~Jlo.c e d by any dens e subsrJa.ce of L • q 
l'loreover by 

1 .4 , s ince G i G c ompac t, 

P (Coo) = P (Co) = P (C) and he nce P( C) n L = P(L ) n L • 
p q p 

Corolla r;y: 2. Lf : If 1 ,:S p .S 2, a nd q = p./p-1, then 

P ( Coo) n L = P(L
2

) n L = P(L ) 1\ L • 
q q p q 

Proof: G he i n p; c ompa.ct ... lith Ha a r mr)aSu r e /~. , \'/ 8 hRve 

b y Theo reM 1.17 

\vhich i mplies 

P(Coo) n L '::) P (L
2

) n L '"..) P (IJ ) () L • 
q q p q 

Fo1lo''' ins t h e rr:e t ho1 of proof i n Theorer:1 2. 2 i t c e.n be shmm tha t 

P (Coo) (l L C P ( L ) n L 
q p q 

a nd h enc e t he equal i ty follows. 

Remark 2 ._2 : Fer 1 .S p <co , and coupac t G 1 Theorem 2. 2 

g i ves anoth er \i?..y cf looki ng a t the t he orem of \!eil 

P (Coo) n L 
p 

by t he class P (L ) fl L , 
q p 

[ P . l j ll, 7] , 

,, ,~ ere -1 -1 
p + q = 1 

'Yne folloHinr, theorem i s prov ed in cRse p and q are no t 

n ec essari l y c on juGat e r~al numbers . 

Le t G be c ompa c t wi t h liaa r measur e ~ . 
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Let 1 ~ p ~ 2 and q = p/2(p-l). Then 

P(Coo) n L = P(L
2

) n L = P(L ) f) L • 
q q p q 

Proof: Consider the case 1 < p < 2. By n1eorem ~ 

and .;L12, since 2 > p, .,,e have Coo C L2 C Lp. 

Hence 

P(Coo) n L :::> P(L
2

) I) L :::> P(L ) () L 
q q p q 

Let ¢ c P(Coo) n L and let f c L • If He let p' = p in q p 

Theorem ~' then 

1 = £ - 1 = 1 - (2 
r P 

2 ) = 1 _ 2(n-1) • 
p p 

The hypothesis yields 

1 1 -=1--
r q 

i.e. r and q are conjugate real numbers greater than 1. 1Ae may 

also note 1 + 1 > 1 by hypothesis. 
p p 

then 

function 

Theorem .;L2Q im:)lies thRt if G is compact and g c L (G), 
p 

also belon;:s to L (G), because A = 1 
p 

by Theorems 1.29, 1.30 

Letting g = f"', we conc1ude by Theorem 1.33, that the 

exists and is finite and belonss to L (G). 
r 

Since ¢ c L (G), it follolt~S by Eolrler's inequality Q!..l3_l, 
q 

that the in te.~~ral 

J f•f"'(x) ¢(x) dx 

G 

exists and is finite for A.-'3l.1most aJ.l x c G and fc·r all f c L (G). 
p 
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As in Theorem 2.2 

S S ¢ (y-
1
x) f(y) f(x) dx dy == J f•f*(x) ¢(x) dx 

GG 

for all f c L (G). 
p 

G 

It remains to shoH that the above integral is non-negative. 

To see this let { fn} be a sequence in Coo such thr1t 

lim llf - fll == O, Also lim lJ fn*- f*ll p = O. n--;..cn n p n~cn 

¢ c ?(Coo) n L implies as before 
q 

5S ¢(y-1x) f (y) f (x) dx dy 
n n 

(a) 

GG 

= 5 f •f* (x) ¢(x) rlx > 0 for each f c Coo 
. n n n 
G 

Theorem ·h.2.2. says f .f* is in L (G) and by Hinkm·JSki inequality n n r 

(1.14) 

= 

< 

< 

(L (G) is a Br.mach algebra) 
r 

Appealinr, once more to Theorem (1.33) 

n fn·f~ - f•f* ll r 

llfn- fl\p llf;np + tlfl[p llf~- f*\l p (b) 
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Since the sequence { ll f~ I( p} is bounded)the limit of 

the last line in (b) is zero. By Holder's inequality therefore 

< 

< 

1 s (f * f*) ¢ dA -n n 5 ( f * f* ) ¢ dA.J 

G G 

fl < fn • r~ - f • f*) I I ¢ I dA 
G 

1\ fn * f~ - f * f* 11 r II ¢ ll q 

By (a) and (h) it follm·Js 

S f * f*(x) ¢ (x) dx 
G 

is non-negative for all f c L (G) 
p 

which im~lies that 

¢ c P(L ) n L • 
!' q 

ive have therefore shot-.rn 

= P(L ) f'l L • 
p q 

Remark: For p = 1, q = co and p = 2, q = 1 the result 

follows by Theorem 2.2 and Theorem 1.32 (iii) res9ectively. 

For any locally compact group Ed\vin Hewitt ~3] has proved that 

if any Borel measurable function f on G is positive definite for 

the cJ.ass 1
1 

(G), then it is an L function. 
(]) 

implies f c L • 
(]) 

'TI1at is 

His proof is based on the fact that the algebra L
1

(G) 

is factorable: every elenent in L
1

(G) is the convolution product 

of hw elements in L
1

(G). The gene:calization of this result, i.e. 



every function wl:ich i s positive definite for the class L (G) 
p 
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is L -function uhere 1 1 1, an - + = seems to he difficult because 
q p q 

t he function space L (G), 1 < p~oo , 
p 

for c onp~c t infinite group , 

i s a convolution al~ebra tha t i s not factorable . 

Nevertheless under s pecial circums tanc es we h~ve the 

foll m·!inz an:.1 lor;ous r esult. 

_T'neoreD 2. 7: If G is a compac t dis crete gr oup , thon for 

1 < < 1 1 1 1 p _ co , anc . - + - = , 
p q 

¢ c P(L ( G)) 
p 

i rilplies y5 c L (G). 
q 

The proof i ::> bas ed on the followinc ohsef'va tions. 

Definition : I f the Haar measure of G i s normal ized by 

r, iving ench po int t~e m0. ."\SUl' e 1 and f · and 

va.J..<ted functions on G, t l:en t he convolution of f Hith g , is 

eiven by 

f * e(x) = 

= 

( ( -1 J f(xy) g y ) dy = 
G 

s f ( y) g ( y -1 X) t;".y -

G 

y~:G 

z: 
y~:G 

It is \•/ell-knom>~ tha t 1
1 

(G) has an i dentity if and only 

if G is dis crete . ',Je have the follm!i ng Lem1.1a : 

Le mor.t 2 . 8 : I f G is a coD:p:?..ct di s cre te (i . e . fi nite ) 

group , then L ( G) 
p 

has a unit , the unit of L1(G). 

Proof : He knov/ tho. t t he convol ut ion al:::;ebra L (G) 
p 

is 

a suba l gebra of L1 (G ) tha t is a Banach a l ce bra with r espect to a 

norm of i ts oHn . The function e( x ) w.:1ich i G 1 .:tt x = e , t he 
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identity of G and zero el sewhere , is an i dentity of L1 (G) 

because 

r .ecx) = J r(y) e cy- 1x) dy = L r(y) e cy- 1x) 

G ycG 

= f (x ). 

Thus the fu!lction e(x) serves as an i dentity of L ( G) . 
p 

Cnnsequen tly we observe tha t every f c L ( G) 
p 

i s the convolution 

of c.:..-.y h 10 elee1ents i n L ( G) . 
p 

Si nce , in gene~al 

IJ ( G) * L (G) C .L (G) , 
p p p 

v.re have proved t he folloTi.ng : 

If G i s a compac t di 5c r ete group , then 

L ( G) (1 < D <co) i s f actore:1.ble i.e . p .c -

and 

L (G) * L (G ) = L (G) . 
p p p 

Pr oof of Theoren 2 ,7 : L et ¢ c ? (L ) . 
p 

Then 

J 1 
-1 - 1 ¢( y x) f( y) f( x ) d(x , y) <ro 

GxG 

f ¢( y- 1x) f(y) f(x) d(x , y) > 0 for all 

GxG 

fcL( G). 
p 

As in t he pr oof of Ler:1r.1a 2 ( Theorem 2 . 2 ) ; * f(x) = f f(y) f(yx) dy 

G 
fo r a ll f c L (G) . 

p 
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* (i) (f*• f)¢ c L
1

(G) and (ii) J f * f (x) ¢ (x) dx .2: 0 

for all f c L (G). 
p 

Since f • g 

we see by (i) that 

By Lemma 2.9 every 

G 

3 
1 :L 

Tr ( -K )* ( -K ) ,h 

=4 ~ f* + i g * f* + i g ' 

K=O 

( f * g) ¢ c L
1 

(G) for all f, gc L (G). p 

h c L (G) is equal to 
p 

f • g, for some 

f, g c L (G). 
p 

Hence h ¢ c L1(G) for all h c L (G). VIe may assume 
p 

h f. 0 "r;J X c G. 

By Theorem 1.20, it follo1·1s that 

¢ c L (G). 
q 

It is Hell knO\m that for 1 .::S p < oo, the conjugate space 

of L 
p 

is L (in the sense that for every bounded lin'ar functional 
q 

T on L • there is a function g c L such that T(f) p· q 

and ItT II = If g 11 q ) • \le have the follO\¥ing definition: 

Definition: Let G be locally comp9ct. For functions 

fl' f2' ... f c L (G) and ¢0 c \(G), let n p 

u -cf
1

, f2' • • • fn; c; ¢0) 

= { ¢ < L (G): IS 
.p ¢ dA. - f .p ¢0 dA I < c, j c{l, 2, ... n}} q -j -j 

G G 

Taking all sets (neighbourhoods) u (fl' f2, ••• fn; c, ¢0) 

as a basis for open sets, vJe get \•Teak*-t~lor:;,y for L (G). (The 
q 

integrals in U exist. by 1I~ld.er 1 s inequality.) 

\·le prove the follc·llins result: 
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Theorem 2.10: For 1 ,:S p < oo and 
-1 -1 

p + q = 1, 

is a weakly closed set in L (G), v1here 
q 

G is a compact 

group. 

Proof: Let ¢ c P(L )() L • Tnen 
p q 

J J ¢(y -lx) f(y) f(x)dx dy 

GG 

exists and is a non-nef,ative for all f c L (G). 
p 

As in Them~ em 2. 2 

we can v1ri te 

(i) Sf ¢(y-1x) f(y) f(x) dx dy = J f* * f(x) ¢(x) dx .2: 0 

Define 

GG 

T: L (G) --7 lR. as follm·JS 
q 

G 

T(¢) = S f* * f(x) ¢(x) dx, 

G 

v1here f* * f c L (G). 
p 

Then obviously T is a linear functional on L (G). 
q 

1;/e shall shO\v 

T is continuous in the \.,reak*-to9ology as defi:1.ed above.. For any 

real mtmber a, (a - c, a + c) is an O:!Jen s~t in lR and then 

Taking 

5 r • 
G 

-lc ) T a- c, a+ c = 

L (G): 
q 

a - c < 

~* 
* f(x) ·- f .(x) c L (G) ..L 

J p 

f(x) ¢o(x) dx = a, He see 

L (G): T(¢) ~ (a- c, a+ 
q 

S f* * f(x) ¢(x) dx < c-, + 

G 

for sor:'1e J and 

t}'m t -1( '· T .a - e:, a ,.. C) 

in L (G) 
q 

in the 1·Jeak*-~opology of L (G) 
q 

and this pro~res 

continuous. 

is open 

is 
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Remark: Continuity of T can also be established in a 

sir1pler •·Jay as fol1o· 1s : 

by Halder ' s inequa lity. 

Hence T is hound ed Rnd there fore norm continuous and hence a fortior i 

\·!eakly continuous. 

Lc t A = }J ( L ) n L 
p q 

for all f c L • 
p 

L : 
q 

'l'(¢ ) " Sf ¢(y-
1
xlt( y) f(x)dx dy 2: 0} 

GG 

\ve vJis h t o shNJ i\. i s closed in t he tiee.k*- topology . 

Consider a ne t { ¢ aJ in A •:Jhie;h converges in the v1eak* to:;ology 

~ of L ( G) t.o 
q 

of 'r i mplies 

Com> equently 

¢ c L (G). \/e shall prove 
q 

{ T ¢a } converceo to T ¢ 

¢ wh i ch belongs t o L (G) 
q 

S f * * f( x) ¢ (x ) dx > 0 

G 

¢ c A. The continuity 

in t he wenk* -topolo~y . 

satis fies 

since t he last condition i s va lid for ¢a for each u. by (i) . 

Hence ¢ c A. 

It i G not diffi cult to s ee that P(L ) n L i s I in f act , 
p q 

a convex weakl y clos ed c on~ of L (G). 
q 

Remark: --- · rl . A. l'Ja i mark [6] has proved t ha t for a ny loc ally 

i s a weakly closed se t in 1 • 
Q) 

r esult i s a cen e~alization but only for compact groups . 

Gur 

It is \·Jell-knc•,m t ha t o. 3ana ch 7. att ice i s QU.::tBi-orcler 

Since the weak*topolocy i s wea ker t han the norm topoloe y on L (G) 
q 

every ~eakly clos ed cone is a clo~~ d cone . J., -suaces (1 < u < m) p ~ ... 

are reflexive and be i nc Bana ch l a ttices , are quas i - order com~lete 



we have the follovring by Theorem 1.40 (T. Ando). 

Corollary 2.11: generates 

Cor<Jllary 2.12: For p > 1, 

(P(L )nL )* 
p q 

generates L (G). 
p 

He recall frau Theo~'em 2.10, that 

L (G). 
q 
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P(L ) n L = {¢ c L 
p q q 

J f ¢< y-
1

x) r(y) f(x) dx dy .2: 0 

GG 

V f c Lp} , 
As observed before P(L )() L is a cone in L (G) and by T.~eoren 2.10, 

p q q 

it is a \veRklv clo.sed cone in the Bqn-'l.cl: StY~ce L (G). 
q 

We use theorem 2.10 to prove the followi.ne; result: 

L (G) 
q 

Corolln.rv 2.13: The set of all norr1alizecl functions in 

vhich are po0itive definite for the cl?..ss L (G), 
p 

is a 

weakly compact subset of L (G). 
q 

Proof: By a normalized function ¢ c L (G) 
q 

\ve nean one 

such th3.t II¢ \lq = 1. It mety be noted here th,•.t such a function 

exists in vie\·J of th(? theoren: !!There is a function ¢ c L (l < p < ro) 
p 

such that - , - ~, and L(¢) = [1 L \1 , L is n.n arbitrary 

bounded LineBr functional on L different fron 0''. 

= {¢ c 

p 1}. Let B L . l1 ¢llq = . 
q 

By the theorem of AlaogJ.u, the unit ball B in L is q 

compact in the \renk*-topolocy of Lq. Being R comp0.ct sub.set of a 

Hausdorff space, B is \·Jea~ly closed. 
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De no tine A = P(L ) n L , p q we observe is a closed 

subset of a compact set B and hence An B, th0 set of all 

normalized functions in L which are positive definite for the 
q 

class L , is compact in the we~k*-topology of L • 
p q 
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Positive definite func tions for the cla ss 1 (G) 
p--

ove r loca ll v comp?,C t groups 

Ve sholl r es-=:rve ¢ :£"or the f unction positive de .~inite 

for F i . e . ¢ c P ( F). 

Our aim i s to prove the follo1Jing : 

Theorem 3. 1; Le t G be a loca lly c or,Jpa.ct group and l e t 

,£;.1/
2 ¢ c 1

1 
(G), 1·1here .b. i:~ t he modula 1· f l:.nc ti on for G. Then 

if ¢ is positive definite fo r t he cl<-J !3 S J~1 (G)n L
2

(G), 

positive definite for the class L
2

( G) . 

i t is 

Proof : It i s Vicll kno n thc;_t for 1 < p < ro 1 Ll n Lp 

a dense subs Pt of Ln. Hence Ll n IJ
2 

C L
2

, i mplies 

i s 

Let ¢ c P (L
1 
n I.

2
) and suppose f c L

2
• There exi-s t s & 

s eq uenc e {rn }~ in 11n L2 such tha t 

lim i I f - f ll 2 = 0 (i) 
n -) CD n 

Alc:o , J } 1 l f (y) f (x) ' ' ¢ (y- x) ci. \x , y J <ro n n 
GxG 

( 
(y-lx) J ~~ f (y) f ( x ) d(x , y) > 0 

n n 
and 

GxG 
31 



We claim that the integral 

f 1 ¢(y-
1

x) f(y) f(x) ,1 d(x,y) <oo V f c L
2 

GxG 

for, by Theorem 1.32 (iii) the function 

f * ¢(x) = f f(y) ¢(y-
1
x) dy 

G 

32 

(ii) 

exists and is fini -l:e for /~.-almost all x c G and is a function in 

L
2

(G) for which 

ll ;11/2 ¢II ~ 
.L 

By Holder's inequalit:r, the integral 

f f I f(y) I l ¢cy-
1

x)[ dy 1 f(x) I dx 

G G 

is finite. By Fubini 's theorem the integral· 

exists and is 

5 J ¢(y-1x) f(y) f(x) dx dy 

G G 

finite for all f c 12. Hence we 

J -1 -- d(x,y) ¢(y x) f(y) f(x) = 
GxG 

can \·!rite 

fer * ¢) 
G 

(iii) 

f d/.. 

It remains to shm1 that the above integ?"al is non-negative. To see 

this, v/e have by (iii) and H~lder's inequality 
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I S (in * ¢ ) f dA. - s (r * ¢ ) f dA I n 
G G 

< S I fn * ¢ 11 fn rl nA. + S J fn *.0-f * ¢ 11 f I dA 

G G 

< 

By (i) a n d (ii) on t a king limits as n -) a:> f (f "' ¢) f dA. 

G 

is the limit of the non- ne ; a tive s eqm.mc e s an * ¢) f d;\ • 

G 

Henc e we hRve sho\ ~ 

S Cf * ¢) f dA ~ 0 f or a ll f c L
2 

and t h i s i mplies 

G 

¢ c P (L
2

) v:h i ch proves t he t heorem . 

Coroll a ry 3. 2: Le t G be a loca lly comp<=1ct e;r oup and p 

a r ea l number > 1 and q i s c onjusa te to p . Le t ¢ c P(L
1 
n Lp n Lq) 

be s uc h t ha t ~l/q ¢ c 1
1 

(G). Tne n 

¢ c P ( L '' L ) YJ ' I q 

F~ -, ,Lf : IJe t f s l , n 1 • 
- ------ p q 

a sequenc e t fn } of f u.,l'lc tions in 

:L t i s a h :ay.=s po s i bl e t o c cnr>truct 

L1 n L I') L ' s uch that 
p q 



lim 
n~ro 

l im 
n -7 oo II fn - f lJ q = o 

For exaopl e \·Je may c hoose { f
11 

} 

func tions whic h a r e dense in L • 
p 

to be a sequence of simple 

Nov1 e ssentia lly t he same yroof of Theorem 3 .1 goes for this 

Corolla ry . 

Corol_lar.v )...e.l. : If ¢ c P (Coo) satis fie s t he condition 

-1/q ~ A 'P c L
1

(G), t hen 

¢ c P (L n L ) 
p q 

Proof : Let f c Lp n Lq. 'ole c an fi nd a sequence { fn ~ 

in Coo C JJ () L such th-'1. t 
p f ' q 

= lim II rl_,. - fll q = o and so on so forth . 
n-7 (!) 

~_or olb.r;i 3 . 4: If t;"l.e group G i s c or:rp.".ct the n 

P (Coo) (\ L
1 

= P(L n L ) n L
1 p q 

In par t icula r ?(Coo) n L
1 

= .? (L
2

) n L
1

• 

Corollar;r 3 . Lf : If D > 2 
~ - and G i s c ompact we ob t ain by 

Corollary 3. 4 

because L ~ L . 
q p 

That i s ail L
1 

function l:Jhich i s po s itive defini te for the clews 

Coo i s in f ac t pos i t i ve de f inite for the c l ass L , p 2: 2, 
p 

whi ch 

may be c o mpared v1 i th tpe Th~::o~em l. :?8 (James Ste '•!ar t )i.e. the class 

of func t ions which are pcs itive .defin i t e for the cla~s 

c hanp;e as p va ries oYe r ( 2 , oo). 

rl does not 
c 
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J. L. B. Coope r [9] has renarked in his paper : Pos itive 

defin ite f unctions of a r eal varia ble ( Proc . Loncl. Ha th • . Soc . (3 ) 

10(1960) ) thc~t the class of functions positive definite for the class 

Lp does var~r a.:> p ranges over ( 1, 2). 
c 

On t he other ha.nd CorollRr J 3.3 sa.ys the follov1ing: 

In pa rtic ul a r for s uc h ¢ the cla.cs of f unctions pos itive 

defin ite for t he cla ""J s L n L does not vary for any pair of 
p q 

conju~ate rea l number s p and q grea ter tha n 1. 

Corolla r ;v 3. 5: 6.1/ 2 ¢ c L (<1 ) and G loc a lly 1 

c ompact . I f 1 .S p < 2 < q , where p and q are c onj usa t e rea l 

numbers , then 7if ¢ c P (Coo ) 

Hence 

Proof : By the Theorem 1. 18, \v e ha ve 

Coo C L n L C L
2 p q 

P (Coo) :::::> P ( L n L ) :) P (I,
2

). As in Theorem 3 . 1, v:e can 
p q 

prove t he asser tion . 
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