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There are several notions of nositive definiteness for
functions on topolozical groups e,g, the notion of Bochner type
positive definite functions and integrally positive definite
functions, It is of some interest to observe that a change in
the class of functions in the definiticn of integrally positive
definite function produces a different class of positive definite
functions,

The purvose of this thesis is to study the functions which
are nositive definite for the classes Lp (1 < p <®) over compact
and lecally compact grouwns, It is worth mentioning here that the
paners of James Stevart {7] and dwin Hewitt [4] inspired new
observations in this direction,

Chanter 1 contains basic definitions and facts from i
An=lysis which we shall need in the Jevelopment of some ideas in the
subsequent chapters,

Chapter 2 and Chapter 3 present some new matarial regarding
vositive definite functions for the class Lp(G)’ 1 <{p<w, over

compact and locally compact grours,
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CHAPTER 1

Preliminaries

The preliminary material is presented here in a condensed
form for future reference, Many of the ideas developed in the
ensuing chapters will depend upon these facts, See [1], [21, (3],

€51,

1. Measure and Integration

Definition 1,1: If X is a topological space and € is

the family of all open subsets of X, then the family of Borel sets
in X is defined as the smallest § —algebra of sets containing & ,
If 77l is a & —algebra of subsets of X and u is a countably
additive measure on’fY | (or simply a measure), then the triple
(X,TTL, 1) is called a measure space, If u(X) <o, then (X,¥YL, u)
is called a finite measure space and u a finite measure, If X

is the union of a countable family of sets in ]ﬁfL each having finite
measure, then (X,YY1, ») and yu are called (§ —finite, An
extended real valued function f onl X is YL -measurable if the

set {x e X f(x) > cx} belongs to JY L for every real a, A |
_complex valued function f on X is Y ~-measurable if its real

and imaginary parts are WﬁpL-qneasurable. If X 1is a topological
space and Y ¥ | is the O —algebra of Borel sets of X, an YWPL-—

—measurable function is called Borel measurable,



Definition 1.2: Let p be a measure on JJ¥7,. Let f be

any function on X with values in [0, ®]. Then the.lebesgue integral

j'f(x) dp(x) [or simply f f dul] is defined as
X X

] _
sup{'%__‘_, finf (f(x): x ¢ RKJ p(Ak): {Al’ Ase ves An}

is a partition of X with each Ak € m.}

Definition 1.3: Let X Dbe any topological space, and

C(X) denote the set of all bounded complex valued continuous functions

on X, For f e C(X) 1let

) 2]l = su {,fw]' xe }

Let CO(X) denote the set of all complex valued continuous
functions f on X such that for every ¢ > 0, there exi;ts a
compact subset F of X [depending upon f and €] such that

,f(x)] < ¢ for all x¢ F',
Let Coo (X) denote the set of all complex valued continuous

functions f on X such that there exists a compact subset F of

- X [depending upon f] such that f(x) = 0 for all x ¢ F',

Remark 1,k: CO(X) is a linear subspace of C(X) and

COO(X) is a linear subspace of CO(X). C(X)  and CO(X) are complete .

in the metric induced by the norm H '”u . COO(X) is a dense

linear suhspace of CO(X) [(see Theorem 1,5].

If X is a compact topological space, then COG(X), CO(X)

/ . . o . -
and C{X) coincide, If X is locally compact, non compact,



Hausdorff space, then COO(X)C:.CO(K g; C(X); the equality
COO(X) = CO(X), may obtain even for locally compact normal spaces,

However, if G is locally compact, non-compact group, then we have

coo(c) % CO(G).

Theorem 1,5 Let X Dbe a locally ccmpact Hausdorff space,
Every function in CO(X) can be arbitrarily uniformly approxinated

by functions in C__ (X),
00

Definition 1,6: If AC X and u(i) =0, we call A a

null set, If AMNTF is p-null for every compact subset F of X,
then A is said to be a locally p-null set, A property that holds
on X except for a locally p-null set is said to hold locally
p-almost everywhere, A comuplex valued function f on X that

vanishes p-almost everywhere is called & p-null function,

Definition 1,7: Let Y1 be a g —2aigebra of subsets of
X containing all open sets, A non-negative measure 3 on || L

is called regular if and only if for every open set V, we have

w (V)

It

{ = .
sup i'p(f): F is compact and FCV
and for all A ¢¥¥L, we have

p(A)

]

N
inf {u(V): V is open and VDA},

Theoren 1.8: (Riesz Representation Theorem)

&

Let X be a locally compact Hausdorff space, ;)a non-
negative linear functional on COO(I). Then there is a unique

non-negative regular Borel measure ¢ defined on the Borel sub-

sets of X such that u(F) <o for each compact subset F and



I(f) = f fap forall fe coo(x).
X

Definition 1,9: (Integration on Product spaces)

Let X and Y be locally cormpact Hausdorff spaces. Then
XYY with the product topology is also locally comp=ct Hausdorff,
Let I, J be non-zero non-negative linear functionals on COO(X)
and COO(Y) respectively, ILet f be a complex valued function on
X XY such that for some x_ e X, the function g v -—ﬁ>f(x0, v)
is in COO(Y). Ve shall write Jy(f(xo’ y)) for J( @), Ue can

define similarly IX(f(x,yo)).

Theorem 1,10: For every f ¢ COO(X X ¥), we have
J (f(x, y)) e C_ (X)) and I (f(x, y)) e C_ (Y). Also (i)
y 00 X 00
Ix[Jy(f(x, ¥y))] = Jy[IX(f(x, y))] = K(f), The functional X defined
by (i) is a non-negative, non-zero, linear functional on COO(X X ¥),
K is called the product of the functionals I and J and is written
K=1IXJ,

By Riesz representation theorem, there exists a measure

i X TL such that

K(f) = jf a (i xM).
i ¥xY_is called the product of the measures i and M

induced respectively by i and nNn

Theoren 1,11: [Fubini's theorem] Let f be in

Ll(XX Y, ixm_ ). Then f(x, y) as a function of x is in



Ll(X, i) for Y -almost all y e Y, and f(x, y) as function of

y is in Ll(Y, 71. ) for i-almost all x ¢ X, Furthermore the

function of x defined by x -——)J £(x, y) an(y) where the integral

exists and O elsevhere is in Ll(X, i)y similarly for _rf(x,y) di(x).
X

Finally we have

u

(i) J f(x, y) di x n (x, y)
CXXY

f jf(x, y) anly) ailx)
X Y

U

j f f(x, y) di(x) dn(y)
Y X

2. The spaces Lp 1<p<w

Definition 1,12: Let p Dbe a positive real number and

let (X, YTL, 1) be a measure space, Let f be a complex valued
YY1 -measurable function defined p~a,e, on X such that

f ,f] P 40 <®. Then we say that f ¢ LP(X,m, p). We define
X

the symbol " f ”p by

_ 1
el = ¢ j ) £)F ap] &
X

For 1 < p <w, the function f —-—9Hf”p on Lp satisfies
the axioms of a norm except the positivity requirements: ” f “p >0
if £ # 0. If we agree that f = g means f(x) = g(x) for p-almost
all x ¢ X, i.e, Lp actually consists of equivalence classes of
functions (Two functions such that “f - g”p = 0 are taken to be

identical in Lp)’ Lp(l <p <®) is a normed linearAs'pace.



. Theorem 1,13:  (Holder's inequality)., 1Let f e Lp and

gel where p>1 and l+l=1. Then fg ¢ L., and we have

; P q 1
(1) ]J}g | < J]fgl d
(i1) ﬁfgl a s e, el -

Theorem 1,14:  (Minkowski's inequality)

For 1 {p <o and f,chp, we have

e+ sll, < N2l + sl

Theorem 1,15: For 1 <{p <w, LD is a complex Banach
space i.e, in metric §(f, g) = ||f - g| o’ Lp is a complete

metric space,

Theorem 1,16: For 1 < p <®, the conjugate space of Lp

is Lq’ in the sense that for every bounded linear functional T

on Lp there is a function g ¢ Lq such that

(1) T(f) = ffgdu for all fe:Lp and J[T] = ”g“q
X

Theorem 1,17: If u(X) <® and 0 <p <gq, then ch_ Lp

and the inequality
i_1
‘ P q
Nell, < nf”q (1(x))

holds for all f ¢ Lq'

Theorem 1.18: If f ¢ Lpn Lq where 0 <p <q <o

and if p < r <gq, then fz:Lr.



Theorem 1,19: Let X be a locally compact Hausdorff

space, Then COO(X) is a dense subspace of Lp(X, YL, v).

Theorem 1,20: Let (X, YY1, p) be a measure space, let

P be a real nimber such that p > 1 and let f be a {{l-measurable
function on X such that (i) xe X flx)#0 is the union

of a countable number of sets in YY{ having finite measure and (ii)

fg ¢ Ll(x,)*fL, p) for all g ¢ Lp(X,)’YL, #)., Then f ¢ Ih(X,YWTq ®)

1

where i + = =1,
P Q

3. Haar measure and convelution

Definition 1,21: Let G be a set that is a group and

also a torological space, G 1is called a topological group if
(i) the manving (x, y) —>xy of G X G onto G is a continuous
mapving of the Cartesian product G X G onto G,
‘s . -1 . .

(ii) the mapning x —> x of G onto G is continuous ,

In terms of oven sets, c-nditicn (i) asserts that for every
neighbourhood U of xy, there are neighbourhoods V and V¥
of x and y resvectively such that VW ¢ U, Condition (ii)

. , -1 .
asserts that for every neighbourhood U of x =, there is a
. ~1

neighbourhood V of x such that V- U ,

On a locally compict Hausdorff topological group, Haar
measure is the analogue of Lebesgue measure on the real line. On
the real line, as additive group)Haar measure coincides with Lebesgue

measure, ‘e shall define first what Haar integral is.

Definition 1,22: (a) Let E Dbe a linear space. A real

valued function f on I is said to be a functional.

¥
r



(b) A functional is said to be additive (or subadditive)
if for each vair x, y € B, flx + y) = £(x) + £(y) (or f(x + y) <
£(x) + £(y)).

(¢c) A functional is said to he positive homogeneous if for
each x ¢ E and real A >0, £(Ax) = A(f(x), If for each real A
and x ¢ B, f(Ax) = AMf(x), then f is said to be homogeneous,

(d) A horogeneous additive functional is said to be linear,

w

A Jinear functional I on a linear space ® is non-negative if

I(f) >0 for all £> 0,

Definition 1,23: Let G e any group and let g: be a

set of functions on G, For a fixed element a ¢ G, let a.f[fa]
be the function on G such that af(x) = f(ax) [fa(x) = f{xa)]
for all x € G, Then a.f[fa] is called the left translate [right
translatel of f by a, Suppose that f ¢ EF and a ¢ G imnly
o€ ?: [fa e ¥ 1. Let I be any function on EF such that

I(e) = @A I(f) = I(£ )] forall fef and acG Then I
is said to be left invariant or invariant under left translations

[right invariant or invariant under right translations],

Theorem 1,2U: Let G be a locally compict Hausdorff

topological group, Then there exists a non-trivial (i,e, not

identically zero), non-negative, left invariant, positive honogeneous,

. + . .
additive, functional I on COO (G) and I is unique upto a

multiplicative constant,

Definition 1,25: I can be extended uniquely te a linear

functional on COO(G) also denoted by I and the extension is



necessarily left invariant I is called left Hasr integral on

COO(G), The measure A induced by the left Haar integral I

(Riesz Representation Theorem) is called the Left Haar measure, which

is unique upto a multiplicative constant . A satisfies the following
conditions:
(1) A(V) >0 for all non-void open set VG (A £ 0)

(2) A(aB) = A(B) for all Borel set BCG, a ¢ G,

Theorem 1,26: Let G Dbe a locally compact group with a

left Haar measure A, Then A(G) is finite if and only if G is
compact, [If G is compact, we will always normalize left Haar

measure by the requirement that A(G) = 1],

Theorem 1,27: Let G be a locally compact group and let
+
I be a left Haar integral on Coo’ For £ ¢ Coo , T #0 and for
(£ -1)
xe G let Ax) = GO RE Then A depends only upon x and

not upon I or f, The function A is continuous, positive through

out G, and satisfies the functional equation
Z&(xy) SEVAN CIRVAN (y) for all x, ye G

Definition 1,28: The function A is called the modular

function of the locally compact group G, G is called unimodular

if and only if &N =1 on G,
Theorem 1,29: Every compact Hausdorff topological 'group

is unimodular, and a locally compact Hausdorff topoclogical abelian

group is uninodular,
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Theorem 1,30: Let f be a non-negative A-measurable function

on G, Then f* is also A-measurable (£*(x) = f(x-l)) and

) e 1
(1) jfdA- ffAcv\
G G
and (ii) jf A = f Lo
A *
G G

If fe L (G), then f* 2-13 e 1,(®), (i1) holds and

Hely = e Uy -

Theorem 1,31t For f, g¢ Ll(G), we have

If(y) g(y-lx) dy
G

If(xy) g(y-l) dy
G

(i) fag(x)

(ii) f*glx)

i1

1]

(1i1) feg(x) j'my'% flxy D) gly) ay
G

(iv)  frglx)

H

fA(y_l) f(y—l) glyx) dy.
G

Equality holds for A-almost all x € G,

Theorem 1,32: Let f ¢ Ll(G) and g ¢ Lp(G)(l <p <o)

Then
(3 - -1 _ =1
i) frg(x) = | fixylgly 7)) dy = f(y) gly ~x) dy
G G '
exists and is finite for all x e GAN', wvhere NV is ?\.—nuil'

if p <@ and is locally A-null if p =wo. The function fxg

is in LD(G) and



GO eel , S Izlly sl
If fe Lp(G) and ‘&I/Qg £ Ll(G), the integral

C(iii)  fre(x)

jfll(y-l) f(xy~1) g(y) dy = j-f(xy) g(y—l) dy
G G

j' £(y) g(y_lx) dy.
G

exists and is finite for all x e G /MNN', The function fxg is in

L (G) and
Y

(iv) nf*glip < ]lf]‘p “Aal/qg” 1 where

iR

+-]-' =] .
q

Thecren 1,33: Let p and p' be real numbers such that

pp'
p+p'-pp’

l1<p<w, 1 <p' <@, =+ so that

31

y > 1§ and let r =

3 -

l+;. _l‘.-_-l‘
p p»' r
Iet £ and g be Borel measurable functions on G such
fed T * — o*
that f ¢ Lp<u), g e 1s,(@), g% ¢ Lp,(G), and ||g ”p, = ||e llp, .
Then for A-almost all x € G, the integral '

(1) fxg(x) = j'f(xy) g(y-l) dy
G

exists and is finite., The function fxg is in Lr(G) and the

inequality

(ii) uf*;!lrsllflip Il 51l
obtains,

Definition 1,34: in algebra A over a field F is a

vector space over F which is also a ring and in which the mixed
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associative Law " relates scalar multiplicotion to ring multiplication:
(Ax)y = x(Ay) = Axy).

If the multiplication is commutative, then A 1is called a commutative

algedbra,

Definition 1,35: A Banach algebra is an algebra over the

complex numbers, together with a norm under which it is a Banach

space and which is related to multiplication by the inequality:
IESA IR ERNIPA(E

Theorem 1,36: Let G be a compact group., For 1 < p <,

the function space Lp(G) (with normalized Haar measure] is a
Banach algebra under convolution, That is, if f, g ¢ Lp(G), then

f*g is in Lp(G) and

X £ < .
@ el <l Nl

The following results due to J, Stewart [5] are recorded for use

in the next chapter,

Theorenm 1,37: P(Coo) = P(Lg) for every p > 2 where
p
.

Lg is the set of functions in “p" with compact suprort. [See Def, 2,1]

Theorem 1,38: Let 1 Ip {2 and g = p/2(p-1).

If fe P(Li) and f is locally in 1L}, then f ¢ P(LE).

Definition 1,39: Let E be a real normed space and let

K be a cone which is a subset of E with the Tollowing properties:

(1) X+ KCK
(2) ronKC K for all « >0 and

@ rNEn= {0},
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The natural partial ordering 2> 1is associated with the cone
K i,e. a>b dincase a - b e K, The dual L* of E 1is also
partially ordered by the dual cone K* = {f e B*:  f(x) 20 for
all xe¢ K }- .

The cone K 1is said to generate E or to be a generating

cone in case every element in E can be written as the differemnce

t

of two elements in K 1i,e, K - K,

E is said to be (0)

complete (order commlete) in case any

upward directed subset with an upperbound (with respect to >) has
the supremum,

E is said to be quasi -~ (0) - comvlete in case any sequence

a, %, such that 0<a, “a, ,,, <a and a, , - a, <eg.a with
i - 1-"2 - i+j i—- 1
e, | + hes the supremun,
0

A real linear space I 1is said to be a vector lattice 1if

B is a 1attice by a partial order relation x Iy satisfying the
conditions:

x {y implies x+ z Sy + 2

x <y dimplies a x<ay f(or o x) «y) for

In

every a > 0 (or « <0).

A conmplete normed vector lattice is called a Banach Lattice

in case its norm satisfies the following condition:
lal £ ]bi implies |Ja || < lIb|] vhere Ja} = a V(-a).
e quote here the following theorem of T, Ando [8] for

future reference:
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Theorem 1,40: (a) K generates E if and only if E*

is quasi-order complete.

(b) K* (dual cone) generates E* if and only if E is

quasi - (0) - complete,

Theoren 1.M).: (ALAOGLU) Let E be a real or complex normed

linear space, Then the unit ball S* = {L e B*: J|L]] < 1} in

E* is compact in the weak*-tonology of E*,



CHAPTER 2

Positive definite functions for the class L

b

over ccmpact srouns

Definition 2,1: Let F be a set of complex valued

measurable functions on a Hausdorff locally compact group G, Let
A be the left Haar measure on G(normalized by A(G) = 1 if G is
compact), TFor brevity we shall write dx in place of di(x) and
d(x,y) in place of d(AxA)(x,y).

A commlex valued function (Borel mecasurable) @ on G is
called positive definite for F if

f |90 T 160 | aley) <o,

GxG
and -1
j. F(y "x) £fly) £{x) dlx,y) 20 for all f e F.

GxG

The class of functions which are positive definite for F

will be denoted by P(F), Clearly F, CF, implies that P(Fl) ;)P(FZ).
We wish to show that any Lp(l <p < @) function

which is rositive definite for the class Coo, is also vositive

definite for the class Ih for sore q. A precise statement of our

result follows;

Theorem 2,2: If G is a comnact Hausdorff topological
- - —1 —l
group, then for 1 {p< ® and p~ +¢ =1

15
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P(Coo) N Lp = P(Ih) N Lp‘

The proof of this result is based on the following two

Lenmas,

Lemma 1: Let G be compact and 1 < p <w, If fn'—~9 f

in Lp and g,—>» & 1in LD, then

&

fn*gn —> f*g in Lp, where * denotes the convolution,

Proof: Under the conditions in the Lemma, Lp(G) by 1.36
is a Banach algebra with respect to the convolution *., Consequently

f *g, and f*g are in Lp(G). It follows therefore

],fn*gn - f*g,lp ='lfn*(gn-g) + (fn - f)*g]’p

s ‘]fn‘lp Ilgn = gl'p * l,fn - f,lp Ilgllp by 2,14 and
1.36 (i),
The sequence {”fn ” p_} 1s bounded so that as n — ®, we obtain

* * 3
f *g, —> f*s in LP(G).

————

Lemma 2: If the function (x,y)—> ﬁ(y_lx) f(y) £(x)

is in Ll(GxG, AxA), then

#5750 TG 260 atey) = | o) #x) ax
GxG G

where £*(x) = £(x %)

y and f ¢ Ll(G) .

Proof: By Fubini's theorem (1,11) the above.integral on

the left in the Lemma, can be re-written as
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fj gy 1) £(x) ax (7Y dy = ff F(x) £lyx) ax F(y) &y |
GG aa

= ff s(yxy £(y) ay #(x) ax
GG

Since by Theorem 1,29 every compact Hausdorff tonclogical

group is 'mimodular, we have by Theorem 1,31 (iv)

£ . — -
prr(x) = f £(y) £(yx) day, (£* ¢ Ll(G) by Theorem 1,30),
G

Hence by another citation of (1,11), (f*£) ¢ is in Ll(G) and

*

f 55(57_1:{) fly) f(x) alx,y) = J (%) #lx)dx
GxG : G

Proof of tnhe theorem: Since by Theorem 1.15 Coo CLq(G),

1<q<w, we get P(Coo)D ?(Lq) and then

P(C LSPOLINL .
(Coo) N p> (q,/') 5

(It may be remarked here that classes P(F) /) Lp’ F = Coo
or Lq are non-null because they contain at least the non-negative
constants, )

To prove the opposite inclusion, suppose @ e P(Coo) N -Lp
anl let f ¢ LOC Ll, (because G is compact and A(C) < @, A being

the Haar measure, by Theorem 1,26).

The dennennss of Coo in Lq ensures the existence of a

Sequence {fn} in Coo such that
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(*) e, - £)]q—> © and hence e - £l g — ©-

Since @ e P(Coo), we have

f l ¢<.‘/—1X) fn(y) fn(}:)] d(x,y) <@
GxG

and

f PG TG £ () alx,y) >0
GxG

for each fn ¢ Coo ,

By Lemma 2
H Py T Y £ (o) ax gy = f £2af (x) f(x) @x > 0
G
GG

for each n,

Next we claim that if f ¢ ch: Ll and g ¢ Lp’ then the
integral

f | 2G50 T 20} atx,y) <o,
GxG '

By Theorem 1,32

Feg(x) = [ T 4 T0ay
G

exists and is finite for A-almost all x ¢ G and is a Tunction in

.13)

i-J

LD(G), Since f ¢ Lh, it follows by Holder's inequality (
that the integral

jf,m! },@(y-lx)] dy !f(x)] dx <.
el L
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Fubini's theorem implies that the integral

f | 8710 T £ alx,y)
GxG

exists and is finite for & ¢ Lp and f ¢ Lq'

Hence by Lemma 2,

jf ﬁ(y-lx) f(y) f(x) ax dy = f f*f(x) g(x) dx.
GG G

To complete the proof of the theorem, we must show that the

above integral is non-negative,

To see this we appeal to Lemma 1 and the Holder's inequality,

*
for by (*)
* - * * 2
j(fn*fn)ﬁd}\ i(f £) @ ax
G
%* *
< j)(fn*fn-f.f);z!}cb\
G
< ez «e -0 f”q l7ll ,— 0 as n— .
Hence j . f£(x) g(x) dx, being the limit of a non-nesative
) .
sequence f £* fn(x) g (x) dx is non-negative,
2 .

Consequently @ ¢ P(Lq)[) Lp, so that we have established

P(Coo) N Lp = z>(Lq) N Lp.
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Remark 2,3: It may be noted that the above Theorem remains
valid if Coo, the space of continuous functions with compact
support, is revlaced by any dense subspace of Lq' lorecver by

1,4, since G is compact,

P(Coo) = P(Co) = P(C) and hence P(C)N) T = P(Ih)/”)Lp.

Corollary 2, k: If 1 <p<2, and q = p/p-1, then

p(cOo)nLq = P(L)N L, = P(Lp)/\Lq.

Proof: G  being compvact with Haar measure h, e have

by Theorem 1,17
Coo C:}tEC:I}) which implies

( )( 4 & 3 Kl
P(Coo) N Lq:)l L) N Iq-; T’(pr) N Iq.

Following the method of proof in Theorem 2,2 it can be shown that
P(Coo)N L P(L)INL
NI, CPa)NL

and hence the equality follows,

Remark 2,5: For 1 £ p <w, and compact G, Theorem 2,2

s e et e <

gives another way cf looking at the theorem of Veil e 1501, i,

. 578 . -1 -1
renlzcins P(Coo) N Lp by the class P(L )NL, were p +q =1
q P

The following theorem is proved in case p and g are not

1§
L

necessarily conjugate real numbers,

Theorem 2,6: Let G be compact with Haar measure A,
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Ilet 1 {pg<2 and q = p/2(p-l). Then
P(Coo) L =PL)INL =PLINL.
A 2 NI p’ M Y

Proof: Consider the case 1 < p < 2. By Theorem 1.17
and 1,19, since 2 > p, w2 have COOC.LZC_ Lp.

‘Hence

P(Coo) f‘)LqD P(La) N LqD P(Lp)n Lq .

Let @ ¢ P(Coo) N Lq and let f ¢ Lp’ If we let p' =p in

Theorem 1,53, then

I_2_ 1=1-« (2 - 2 ) =1 - 2(p-1) .
r p b Y

The hypothesis yields

1_,_1
r a

i,e, r and q are conjugate real numhers greater than 1. Ye may
also note % + % > 1 by hypothesis,
Theorem 1,30 imvlies that if G is compact and g ¢ LP(G),
then g* also belongs to LD(G), because & =1 by Theorems 1,29, 1,30

Letting g = f*, we conclude by Theorem 1,3%3, that the

function f£=f* exists and is finite and belonss to Lr(G)'
Since @ ¢ Lq(G), it follows by Holder's inequality (1,13),
that the integral

J- fxf*(x) @(x) dx
G

exists and is finite for A-almost all x e G and fcor all £ ¢ Lp(G).
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As in Theorem 2,2

j:{ o] (y'lx) 5?53 f(x) dx dy = j’ fxf*(x) g(x) dx
GG G

for all f ¢ Lp(G).

It remains to show that the above integral is ncn-negative,

To see this let {:ﬂl} be a sequence in Coo such that
lim || - £l =0, Also _lim ][ £* - £*]| =0,
nsm' n P n-y® n P
> P(Coo)f\lh implies as before

j j () T £ () ax ay (a)
GG

g f «f* (x) g(x) d&x > 0 for each f_ ¢ Coo
3 n n — n .
G

Theorem 1,33 says f «f> -is in Lr(G) and by Minkowski inequality

(1,14) (Lr(G) is a Banach algebra)

l\fn*f; - £etr])

| FEAEIE SRR RS €A 10! (I

< Nee, -0 e ezl o« Nes G- |
Appealing once more to Theorem (1,33)
e
< ey = £, el = e, Wen -2, @
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Since the sequence {"f}";“ p} is bounded ,the limit of

the last line in (b) is zero, By Hdlder's inequality therefore

I j’ (fn * f;) g an - j'(f x f*) ¢ dx’
G G

A

flog - -eo ol lol &
G

Ne, = e -cxe]l . 12l .

IN

By (a) and (») it follows

J. fx f*(x) g (x) dx
G

is non-negative for all f ¢ LP(G) which implies that

g e P(Lp)/\ Lq.
We have therefore shown
P(Coo)ﬂL =P(L);ﬁL =P(L)AL0
-q 2 q P q
Remark: For p=1, g = and p=2, =1 the result
follows by Theorem 2,2 and Theorem 1,32 (iii) resvectively,
For any locally compact group Edwin Hewitt (3] has proved that
if any Borel measurable function f on G 1is positive definite for

the class Ll(G), then it is an L function. That is
f e P(L,) implies f e L.
1 @
His proof is based on the fact that the algebra Ll(G)

is factorable: every element in Ll(G) is the convolution nroduct

of two elements in Lj(G). The generalization of this result, i.e.
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every function which is positive definite for the class LD(G)

s « 1,1 ‘o
is an Lq-functlon where = + a =1, seems to be difficult because
the function space LD(G), 1 <»<w, for conpact infinite group,

is a convolution algebra that is not factorable,
Newvertheless under special circumstances we have the
following anologous result,

Theoren 2,7: If G is a compact discrete group, then for

7
1l <p<Lmw, and ; § o= L

g e P(L (@) dmplies ¢ e I (G),
p q
The proof is based on the following observations,
Definition: If the Haar measure of G is normalized by
giving each point the measure 1 and f and g are any two cormnlex
valued functions on G, then the convolution of f with g, is

given by

-1
£ x glx) j’f(xy) g(y-l)dy . :2: f(xy) g(y™™)

G veG

I

J- £(y) g(y-lx)dy = :E: £(y) g(y-lX)‘
G yelG

It is well-knonw that Ll(G) has an identity if and only

if G is discrete, \le have the following Lerma:

Lemna 2,8: If G is a compact discrete (i,e, finite)

group, then Lp(G) has a unit, the unit of Ll(G),

Proof: We know that the convolution algebra L (G) is
a subalgebra of LW(G) that is a Banach algebra with respect to a

nornm of its own, The function e(x) which is 1 at x = e, the
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identity of G and =zero elsewhere, is an identity of Ll(G)

because

fre(x) = j 2(y) ey ™) ay = D £(y) ey i)
G yeG

g2 flx).

Thus the function e(x) serves as an identity of LD(G).

o

Consequently we observe that every f ¢ Lp(G) is the convolution

of aniy two elements in Lp(G), Since, in general
L (G) * I, (G‘) C,L (G),
P p p

we have proved the following:

Lerna 2,9: If G 1is a compact discrete group, then

Lp(G) (1 < p <®) is factorable i.e,

L(@G) «L(G)=1L().
j D P

Proof of Theorem 2,7: Let g ¢ P(LD), Then

f }Q‘(Y—:LX) £(y) f(X)I dlx,y) <

GxG

and

f F(y 1) TG £(x) d(x,y) >0 for all f ¢ L (a),
axG ‘

. 7 N \ \
As in the proof of Lemma 2 (Theorem 2,2) f x f(x) = | £(y) £(yx)dy

G
for all f e L (G),
b
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(D @O Fen@ aad G [ o6 axo
G
for all f ¢ L (G),
P 3
Since f #* g =%r- Z i* (ex 4 i"Kg)"= « (£* + i-Kg),’
¥=0

we see by (i) that (f * g) & s‘Ll(G) for all f, g ¢ Lp(G).

By Lemma 2,9 every h ¢ LP(G)' is equal %o f * g, for sonme
f, g ¢ LP(G). Hence h @ ¢ Ll(G) for all h ¢ Lp(G). Ve may assume

h#0 Vx¢ G,
By Theorem 1,20, it follows that
e L (G),
s q

It is well known that for 1 < p <®, the conjugate space

of LD is Lq (in the sense that for every bounded lincar functional

T on Lp’ there is a function g ¢ Lq such that T(f) = ‘I-f g dA

and || T] = ”g”q ). Ve have the following definition:
Definition: Let G be locally compact., For functions
f10 5y eon T € Lp(G) and go,s Lq(G), let
Uy, £y wee £5 3 2,)

¢qu(G): ‘é fjﬁdx- !fjﬁod}\,<c,j€{l, 2,...n}

Taking all sets (neighbourhoods) U (fl, foyees 5 €, ﬁo)

as a basls for open sets, we get weak*-tonclogy for Lq(G). (The

integrals in U exist by Holder's inequality.)

We prove the folleowing result:
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Theorem 2,10: For 1 <p<® and p‘l + q'l =1,

P(Lp)[leq is a weakly closed set in Lq(G), vhere G is a compact
group,
Proof: let & ¢ P(Lp)ﬂ Lq. Then Jfﬁ(y-lx) f(y) f(x)ax dy
GG
‘exists and is a non-negative for all f ¢ Lp(G). As in Theorem 2.2

we can write

(1) H 8y L) T3 £0x) dx dy = f £ 2(x) Blx) dx > O
GG ‘ G

Define
T: Lq(G) —> R as follows
(g) = j. * « £{x) #(x) dx, where f£* « f ¢ Lp(G).
G
Then obviously T 1is a linear functional on Lq(G). Yle shall show
T is continuous in the weak*-tovology as defianed above, ?or any

real number a, (a - ¢, a + €) 1is an open set in “z,and then

7 a - €, a + €)

)
{Q € Lq(G): ™M@ c (a~g, a+ c)f

'
[y]
A

-
Fy

#*
*

={¢ch(G): a f(x) $(x) ax <a + ¢ }
Taking £* x f{x) = fj(x) > LP(G) for some 3 and

7% o £(x) ﬂo(x) dx = a, wve see that 7 1(a - €, a+ €) is open
G

in Lq(G) in the weak*-topology of Lq(G) and this proves T is

continuous,
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Remark: Continuity of T can also be established in a

sinpler way as follovws:

|z | < e t)l, U#l, by Holder's inequality.
Hence T is hounded and therefore norm continucus and hence a forticri

weakly continuous,

Let A = P(Lp)n Lq =X @ ¢ |
GG

L
q
for 211 f e L,
p

We wish to show A 1is closed in the weak*-tonology.

Consider a net {'ﬁa} in A which converges in the weak*topology
of L(G) to geL (G), Ue shall prove @ ¢ A, The continuity
of T dimplies {é ¢a}- converges to T @ in the weak*-topology.
Consequently @ which belongs to Lq(G) satisfies

©

‘ j-f* « £(x) @ (x) dx > 0
G

since the last condition is valid for ﬁa for each « by (i),
Hence @ ¢ A,
Tt is not difficult to see that P(L )/ﬁ)lh is, in fact,

a convex weakly closed cone of Lq(G),

Remark: M, A, Faimark [6] has proved that for any locally
compact group P(L.)/M L is a weakly closed set in L . Our
1 @ @
result is a generalization but only for compact groups,
It is well-kncwn that a Banach lLattice is gquasi-order cuupiete,
Since the weak*tepology is weaker than the norm topology on Lq(G)
every weakly closed cone is a clbaed cone, Since L5~spaces (1 <p <o)

&

are reflexive and being Banach lattices, are quasi-order comnlete
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we have the following by Theorem 1,40 (T, Ando),

Corollary 2,11: P(Lp)/”)Lq generates Ih(G).

Corollary 2,.12: For p > 1,

(P(L )N L )* generates L (G),
o N . generate b

We recall from Theorem 2,10, that

f

f Py 1) T3 £(x) ax dy >0
GG

N

P(Lp)f\ Lq = {ﬁ € Lq .

YV f¢ Lp;} v

As observed before P(Lp)/] Lq is a cone in Lq(G) and by Theoren 2,10,

it is a weakly closed cone in the Banach suvace LQ<G)'

We use theorem 2,10 to prove the following result:

Corollarv 2,13%: The set of all normalized functions in

Lq(G) which are positive definite for the class Lp(G), is a

weakly compact subset of Lq(G).

Proof: By a normalized function @ & L (G) we mean one
such that || & “q = 1, It may be noted here thot such a function
exists in view of the theoren: '"There is a function 'ﬂ £ Lp (1 <p<m)
such that ]'ﬁllp =1, and L(P) = {|LY], where L is an arbitrary
bounded Linear functiongl on L different from O,

Let B={¢5 Lq: ]]ﬂ“q = l.} .

By the theorem of Alaoglu, the unit ball B in Lﬁ is
compact in the weak*-topology of Lq. Being a compact subset of a

Hausdorff space, B is weakly closed.
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Denoting A = P(Lp)/j Lq’ we observe A /1B is a closed
subset of a compact set B and hence A B, the set of all
normalized functions in Lq which are positive definite for the

class Lp,'is compact in the weak”-topology of Lq'



CHAPTER 3

Positive definite functions for the class L (G)

&+

over locallv compact grouns

Yle shall reserve @ for the function positive definite
for F i.e. @ ¢ P(F),

Our aim is to prove the following:

Theorem 3,13 Let G be a locally compact group and let
Z§1/2 3 e (G where A is the modular function for G, Then

if @ is positive definite for the class L \G)/\ G) it is

positive definite for the class L2(G).

Proof: It is well known that for 1 < p <, Llfﬁlg) is

-

a dense subs=t of L. Hence Ll/\ L2(: L,, implies

LYD p@i
p(I.nln .LJ2/ 3 s (“,12)‘

Let ¢ ?(LI/\ LZ) and suppose f ¢ L

5 There exists a
®
sequence £ in L L such that
4 {n}l AR

lin “ fn - f,!z =0 (1)

Also, J. ) g () T Z £ ()] alx,y) <o

(@]
bt
W

-

and ¢ (70 T £ (0 alx,y) 20

b, —

[®]

31
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for each f ¢ Llﬂ L2. (ii)

We claim that the integral

[ 1960 T 2] atey) <@ ¥ oron
GxG

for, by Theorem 1,32 (iii) the function

Y

*ig(x) = f T(y) ﬁ(y—lx) dy
G

exists and is finite for A-almost all x ¢ G and is a function in -

LZ(G) for which

feeoll, < Nell, 51/225"1 (1ii)

By HOlder's inequality, the integral

[ (1] o] o 1wl o

is finite, By Fubini's theorem the integral -

j‘( ¢(y'lx) f(y) £f(x) dx dy
G G

exists and is finite for all f ¢ L2’ Hence we can write

j ¢(y-1x) f(y) flx) dlx,y) = f(? « @) £ ar
GxG G '

It remains to show that the above integral is non-negative., To see

this, we have by (iii) and Holder's inequality



lj(f « B £ A - f?

‘))

&

< J 'En,.;a”fn- an + jl?‘n*ﬁ-—f*ﬁ,,fldk
= ”-fn * g“p “fn - fn2 " “(?n——f) ) é”Z ”fH2
s Ny WEZ el N -ell, e Hig, -2l WA 2l (20,

i

ey, Beg -2l e -ell, lelt,) I 27290

By (i) and (ii) on taking limits as n_-> ® f (f « &) £ an
G

is the limit of the non-nezative sequence j (?n « 3) T a\ .,
G

Hence we have showvn

I (= @) £ ar >0 forall f¢ L2 and this implies
G

e P(Lz) which proves the theoren,

Corollary 3.2: Let G be a locally compact group and p

uniber is “uerate e 5
a real number > 1 and ¢ is conjugate to p., Let e P(Llf) Ianq)

be such that A-l/q

g e L (@), Then

g e p(Lpﬂ Lq)

Proof: Let fe¢L MNL. Itis always po.sible to ccnstruct
SRS p q

a sequence IL } o

=,

ctions in L NL ﬂ L such that
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llm ,,f - fl‘ & n%$QD l]fn - f!lq =

For example we may choose {:fn_} to be a sequence of simple
functions which are dense in Ib.
Now essentially the same vroof of Theorem 3.1 goes for this

Cornllary,

Corollary 3,3: If @ € P(Coo) satisfies the condition

ZSJh g e Ll(G), then

Proof: TLet felL N L, %“e can find a sequence {’f S
Bt pl'q .

in Coo C Lp i Lq such that

14 |lf - fl‘ = 114 'lf - f = 0 and so on so forth.
nsSo n n q

.

Corollary 3,4:  If the group G is compnct then

P(COO)n L]. :(ijn Lq) n Ll

1

In particular P(Coo)/“)Ll ?(LE)/\ £

Corollary 3.h: If p>2 and G is compact we obtain by

Corollary 3,4

= P(L i aus 3
P(Coo) N Ll J(Ip)f}Il because qu) T .

el

That is an Ll function which is positive definite for the class

Coo is in fact positive definite for the class LD,

o)

2 2, - which
may be compared with the Theorem 1,38 (James Stewart)i,e, the class

of functions which are ncsitive definite for the class LS dees not

change as p varies over (2, ),
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J. L, B, Cooper [9] has remarked in his paper: Positive
definite functions of a real variable (Proc, Lond, Math, Soc, (3)
10(1960)) that the class of functions positive definite for the class
Lg does vary as p ranges over (1, 2),

On the other hand Corollary 3,3 says the following:
In particular for such @ the class of functions positive

definite for the clans Lpf‘)Lq does not vary for any pair of

conjugate real numbers p and q greater than 1,

Corollarv 3,5:  Supnose Ail/z g e L](G> and G locally
compact, If 1 <p <{2<qg, where p and q are conjugate real

—

numbers, then,if & ¢ P(Coo)
g e P(L)

Proof: By the Theorem 1.18, we have

Coo L L CL
Cpnq 2

Hence P(Coo)D P(Lp/\ Lq):) P(Lz). As in Theorem 3,1, we can

prove the assertion.
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