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Abstract

The Poisson-Dirichlet distribution is a probability distribution on the infinite-dimensional

simplex, which has applications in population genetics, Bayesian statistics and finance

& economics partition theories. Recently the Poisson-Dirichlet distribution has been

used in modeling market structure and portfolio behaviours. The financial market

model applying the GEM distribution, which is named after Griffiths, Engen and

McCloskey, has just been introduced and some improvements can be discussed.

This thesis focuses on the introduction and development of a two-parameter Poisson-

Dirichlet distribution and GEM distribution, modification of the financial market

model by the truncated ordered stick breaking process and Bayesian estimation of

the new models.

To summarize, the two new truncated ordered stick breaking model introduced give

restrictions on the ranks of the markets weights and show better fitting results for

real data sets.
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Notation and abbreviations

CRP ... Chinese Restaurant Process

GEM Distribution ... Griffiths, Engen and McCloskey Distribution

INID ... Independent but not Identically Distributed

ISBP ... Invariant under Size Biased Permutation

MCMC ... Markov Chain Monte Carlo

PD Distribution... Poisson-Dirichlet Distribution

SDE ... Stochastic Differential Equation

vi



Contents

Abstract iv

Acknowledgements v

Notation and abbreviations vi

1 Introduction 1

2 Literature Review 4

2.1 Stochastic Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Rank Based Model and Capital Distribution Curve . . . . . . 7

2.2 Dirichlet Distribution Family . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Two-Parameter Poisson-Dirichlet Distribution . . . . . . . . . 13

2.2.3 Inference of Poisson-Dirichlet Distribution . . . . . . . . . . . 15

2.2.4 Poisson-Dirichlet Market Model . . . . . . . . . . . . . . . . . 18

2.3 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Permanent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.3.2 Joint Distribution of INID Order Statistics . . . . . . . . . . . 22

2.3.3 Ryser’s Exact Algorithm . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 HL-algorithm for Permanent Approximation . . . . . . . . . . 25

3 Methodologies 31

3.1 Truncated Ordered Stick Breaking Models . . . . . . . . . . . . . . . 31

3.1.1 Direct Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Decreasing Model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Increasing Model . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Estimation Results and Simulation Work 44

4.1 Direct Truncated Stick Breaking Model . . . . . . . . . . . . . . . . . 45

4.2 Decreasing Ordered Truncated Stick Breaking Model . . . . . . . . . 46

4.3 Increasing Ordered Truncated Stick Breaking Model . . . . . . . . . . 47

5 Discussion 50

5.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Appendix 52

A.1 Selected MCMC Results Plot . . . . . . . . . . . . . . . . . . . . . . 52

viii



List of Figures

1.1 Log-log plot: The world stock market weights versus ranks . . . . . . 2

2.1 Examples of Dirichlet distribution with various parameters . . . . . . 10

3.1 Simulation of stock weights for Direct Model . . . . . . . . . . . . . . 34

3.2 Simulation of stock weights for Decreasing Model . . . . . . . . . . . 38

3.3 Simulation of stock weights for Increasing Model . . . . . . . . . . . . 40

4.1 Nov. 2014 Lowess line comparision (Direct Model) . . . . . . . . . . . 45

4.2 Nov. 2014 Lowess line comparision (Decreasing Model) . . . . . . . . 46

4.3 Nov. 2014 Lowess line comparision (Increasing Model) . . . . . . . . 48

4.4 Simulated lowess line comparision . . . . . . . . . . . . . . . . . . . . 49

A.1 Trace plot of parameters (Direct Model) . . . . . . . . . . . . . . . . 52

A.2 Density plot of parameters (Direct Model) . . . . . . . . . . . . . . . 53

A.3 Trace plot of mean for parameters (Direct Model) . . . . . . . . . . . 53

A.4 Most frequent points (Direct Model) . . . . . . . . . . . . . . . . . . 54

A.5 Trace plot of parameters (Decreasing Model) . . . . . . . . . . . . . . 54

A.6 Density plot of parameters (Decreasing Model) . . . . . . . . . . . . . 55

A.7 Trace plot of mean for parameters (Decreasing Model) . . . . . . . . 55

A.8 Most frequent points (Decreasing Model) . . . . . . . . . . . . . . . . 56

A.9 Trace plot of parameters (Increasing Model) . . . . . . . . . . . . . . 56

ix



A.10 Density plot of parameters (Increasing Model) . . . . . . . . . . . . . 57

A.11 Trace plot of mean for parameters (Increasing Model) . . . . . . . . . 57

A.12 Most frequent points (Increasing Model) . . . . . . . . . . . . . . . . 58

x



Chapter 1

Introduction

Poisson-Dirichlet Distribution and Financial Market Model. The Dirichlet

process was introduced by Ferguson (1973), whose aim was to find a prior of distribu-

tions in the infinite dimensional case. Hence, it could be applied as a prior for Bayesian

non-parametrics statistics. Kingman (1975) introduced the Poisson-Dirichlet distri-

bution, which is a probability measure on the infinite-dimensional simplex of ranked

weights. The two-parameter Poisson-Dirichlet process was introduced by Perman

et al. (1992) in the context of studying ranked jumps of subordinators. Related sam-

pling formulas were developed by Ewens (1972) and Pitman and Yor (1997). The

two-parameter Ewens’ sampling formula of Poisson-Dirichlet distribution has been

widely applied towards the species diversity in the field of biology study. Definitions

and properties of the family are demonstrated in Chapter 2. The review is mainly

based on Johnson et al. (1997), Feng (2010), Sibuya (2014) and Carlton (1999).
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The Capital Distribution Curve. Stochastic Portfolio Theory is a financial

framework modeling the behavior of portfolios and the capitalization market struc-

ture. The Rank-based model is one of the results derived from Stochastic Portfolio

Theory, which was introduced by Fernholz (2002). The distribution curve, defined as

the log-log plots of capital weights and ranks, gives a stable pattern for modeling the

stock markets.

Figure 1.1: Log-log plot: The world stock market weights versus ranks

Chatterjee and Pal (2010) proved that the point process generated by the market

weights converges weakly to a Poisson-Dirichlet Process under certain circumstances.

This theorem supported the idea of applying the Poisson-Dirichlet distribution in fi-

nancal applications. This makes sense in reality if we imagine that the capitalizations
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are the set to be randomly partitioned into different stocks in different countries.

Figure 1.1 gives an intuitive view, in which data is from the World Federation of

Exchanges monthly report in 2014.

Sosnovskiy (2015) gave a model using the two-parameter GEM distribution for mod-

eling the market weights based on the results of Feng and Wang (2007) and in this

paper we modify the model for a better fitting. The details are reviewed in Section

2.2, mainly based on Fernholz (2002). New models are presented in Chapter 3.

Permanent Approximation. Some important results in order statsitics for inde-

pendent but not identical (INID) variables are used in our work. Permanent and INID

order statistics are reviewed in Section 2.3, mainly based on Balakrishnan (2007). To

conclude, computing the permanent is a research bottleneck without effective solu-

tions. The method for computing the exact value of the permanent most efficiently

is Ryser’s algorithm by Ryser (1963). Valiant (1979) gave an explanation that the

exact computation can not finish in polynomial time. Jerrum et al. (2004) gave

a polynomial-time approximation algorithm using Markov Chains to sample from

weighted permutations. Huber and Law’s alogrithm by Huber and Law (2008) is

applied in our inference, which gives a faster computational time. In Section 2.4, we

briefly go over the algorithms above.

The results and simulations are shown in Chapter 4, and Chapter 5 presents the

benefits, limitations and future work.

3



Chapter 2

Literature Review

2.1 Stochastic Portfolio Theory

The main objective of this section is to review the work of Stochastic Portfolio Theory.

For more details refer to the book of Fernholz (2002).

2.1.1 Basic Model

To begin with, we introduce a few assumptions for the theory:

1. In the market, the number of companies is a bounded constant, which means

no new shares are issued and no companies collapse or merge.

2. There are no transaction costs or taxes and the value of shares is infinitely

divisible.

3. Assume that there are no dividends.

4
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Under the above assumptions, we suppose that there are n stocks considered. The

stock price {Si(t), i = 1, ..., n} follows random process, which is defined on a probabil-

ity space {Ω,F , P}. The randomness of the model is from n-dimensional Brownian

motion:

W = {W (t) = (W1(t), ...,Wn(t),Ft, t ∈ [0,∞)} (2.1)

where the filtration Ft is the augmentation of the natural filtration {FWt = σ(W (s, 0 <

s < t))} under P .

The markets’ stocks are modeled by the logarithmic model for simplicity. We can

assume every company has only one share, therefore the price and capitalization pro-

cess are equal.

Stock Price Process is defined as Si(t), i = 1, ..., n that satisfies the stochastic system:

d(logSi(t)) = γi(t)dt+
n∑
υ=1

ξiυ(t)dWυ(t), t ∈ [0,∞) (2.2)

where the growth rate process γi satisfies:

∫ T

0

|γi(t)|dt <∞, for all t ∈ [0,∞) a.s. (2.3)

where the variance process ξiυ is measurable, adapted and satisfies:

∫ T

0

(ξ2
i1(t) + ...+ ξ2

in(t))dt <∞, t ∈ [0,∞) a.s.

lim
t→∞

t−1(ξ2
i1(t) + ...+ ξ2

in(t)) log log(t) = 0 a.s.

ξ2
i1(t) + ...+ ξ2

in(t) > 0 t ∈ [0,∞) a.s.

(2.4)

5
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where a process {S(t),Ft, t ∈ [0,∞)} is adapted means S(t) is Ft measurable for

t ∈ [0,∞).

(2.2) can be modified into a normal form:

dSi(t) = (γi(t) +
1

2

n∑
v=1

ξ2
v(t))Si(t)dt+ Si(t)

n∑
v=1

ξiv(t)dWv(t), t ∈ [0,∞) (2.5)

Accordingly, the variance and covariance process of the stock are defined as:

σii(t) = ξ2
i1(t) + ...+ ξ2

in(t), σij(t) =
n∑
v=1

ξiv(t)ξjv(t), t ∈ [0,∞) (2.6)

The return process αi is related to the growth rate process γi for the i-th stock:

αi(t) = γi(t) +
σii(t)

2
, t ∈ [0,∞) (2.7)

A market M is defined as a family of stocks {S1, ..., Sn} and a portfolio Π is defined

as the weights of each stock in the portfolio π1, ..., πn.

Naturally, the market portfolio is defined as X which contains X1, X2, ..., Xn:

Xi =
Si(t)

S1(t) + S2(t) + ...+ Sn(t)
, t ∈ [0,∞) (2.8)

where i = 1, ..., n. The sum of stock or capitalization is defined as:

TX(t) = S1(t) + S2(t) + ...+ Sn(t), t ∈ [0,∞) (2.9)

which represents the value of the total market at time t. Suppose then we have a

TΠ(t), which represents the value of investment in the portfolio Π at time t. Tπi(t)

6
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represents the value of investment for the i-th stock in the portfolio Π at time t.

TΠ(t) =
n∑
i=1

Tπi(t), Tπi(t) = πiTΠ(t),
n∑
i=1

πi = 1, t ∈ [0,∞) (2.10)

Our main concern is on the relative performance with the market:

d
(

log
(TΠ(t)

TX(t)

))
=

n∑
i=1

πi(t)d(log(Xi(t))) + γ∗π(t)dt, t ∈ [0,∞) (2.11)

where,

γ∗π(t) =
1

2
(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)), t ∈ [0,∞) (2.12)

Therefore, our portfolio’s perfomance depends on the changing of market weights Xi

and excess growth rate γ∗π, leading to the importance of understanding the market

weight performance.

2.1.2 Rank Based Model and Capital Distribution Curve

Further development of the theory gives extension over capital distribution and capital

distribution curve. The capital distribution of the market is defined to be the family

of ranked markets weights:

X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) (2.13)

Meanwhile, capital distribution curve is defined as the log-log plot of the market

weights ranked in descending order.

In research of the capital distribution curve, many assumptions and results come

7
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out. One of the theorems is proposed by Chatterjee and Pal (2010) that the limiting

point process representing the markets weights converges weakly to a one-parameter

Poisson-Dirichlet Process with parameter 2η if and only if η ∈ (0, 1/2), where η

satisfies:

lim
n→∞

(γ̄(n)− γi(n)) = η i ≥ 1

lim
n→∞

sup max(γ̄(n)− γi(n)) ≤ η i ≥ 1

(2.14)

where γ̄(n) means the average of the growth rate.

To understand the theorem in an intuitive way, we may consider that under the

assumptions, the market can be considered as a closed system. When investors in-

vest in the market, the flow of capitalizations is similar to assigning partitions into

different stocks. Hence, this theorem has a good explanation in reality. Later, the

two-paremeter Poisson-Dirichlet distribution financial market model is introduced,

which will be reviewed in the next section in detail.

8
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2.2 Dirichlet Distribution Family

2.2.1 Dirichlet Distribution

To define Dirichlet distribution, the term simplex is needed. Simplex is a surface in Rn

space, which is the generalization of a tetrahedral region space to n dimensions. A set

of n components vector y is defined as {y1, y2, ..., yn}, which usually denoted by ∆n,

satisfying ∆n = {y ∈ Rn|
∑n

j=1 yj = 1, yj ≥ 0, for j = 1, 2, 3, ...n}. Then a probability

mass function can be defined on a (n− 1) dimensional probability simplex. Dirichlet

distribution can be considered as a probability distribution over the (n−1) dimensinal

probability simplex ∆n. The distribution density function is given as:

PY1,...,Yn(y1, ..., yn) =
Γ(
∑n

j=1 θj)∏n
j=1 Γ(θj)

n∏
j=1

y
θj−1
j (2.15)

Usually, we denote θ0 =
∑n

j=1 θj.

If P ∼ D(θ1, θ2, ..., θn), then the marginal distribution Pi follows Beta(θi, θ0 − θi).

This indicates Dirichlet distribution is the general case of beta distribution in higher

dimensions.

9
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Figure 2.1: Examples of Dirichlet distribution with various parameters

Figure 2.1 shows a 1000 sample drawn from Dirichet(10,10,10), Dirichlet(1,15,100)

and Dirichlet(100,50,15).

To generalize the Dirichlet distribution into an infinite case, Ferguson (1973) gave

the definition of Dirichlet process by defining a random probability measure DP ∼

DP (θ,B) on a measuable space (X ,B). The measure DP with a scale paramter θ

and a measure B is a Dirichlet process if for any finite measurable partitions of the

set X : (B1, B2..., Bn)

DP(B1),DP(B2), ...,DP(Bn) ∼ Dirichlet(θB(B1), θB(B2), ..., θB(Bn)) (2.16)

Usually, there are three ways to generate samples from Dirichlet distribution or Dirich-

let process.

10
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Generating dirichlet distribution from random gamma variables is the most com-

putationally efficient method. First, we generate n gamma random variables Gi,

i = 1, ..., n, from Gamma(θ, 1). Then, the normalized pmf qi = Gi∑n
j=1Gi

follows

Dirichlet(θi) distribution. This could be proved by finding the joint distribution by

the Jacobian directly.

Another possible method is known as Pólya urn model or Chinese Restaurant Pro-

cess(CRP). Suppose there are infinite tables in a Chinese restaurant with infinitely

many customers who can sit at one table, and each table initially offers one dish. The

first customer X1 always sits at 1st table. After the n-th customer comes in, we have

k tables U1, ..., Uk with each table having customers n1, ..., nk. While the n + 1-th

customer has two options: to get a new table or sit at the k-th table that already

having nk people. The probability is set as:


P (Xn+1 into a new table Un+1) = θ

θ+n

P (Xn+1 into an existing table Ui) = ni

θ+n

i = 1, ..., k (2.17)

where θ is the dispersion value of DP and n is the total number of customers in

the restaurant at a given time. Therefore, we could also generate Dirichlet samples

through CRP.

The last way to generate dirichlet distribution or dirichlet process raised from a stick

breaking process. Assuming that we have a stick with length 1, we break the stick by

a piece of propotion and keep breaking for infinite steps. More formally, a random

probability measure DP defined on (X ,B) by

DP =
∞∑
n=1

ΠnσYn (2.18)

11
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is a Dirichlet process DP(θ,B), where σYn is a delta function that takes one if Y = Yn.

Then we set

βk ∼ Beta(1, θ), Yn ∼ B

πk = βk

k−1∏
l=1

(1− βl), DP =
∞∑
n=1

ΠnσYn

(2.19)

Hence we get a stick breaking process for generating Dirichlet samples.

The stick breaking distribution over π is sometimes written as GEM(0, θ) distribution.

This leads to the importance of understanding GEM distribution, which is named af-

ter Griffiths, Engen and McCloskey who contributed the research of this distribution,

see Ewens (1990).

GEM distribution has a remarkable property. Given a probability sequence (Pn) rep-

resenting proportions for a population Z+ of infinite distinct types of objects, if we

take samples from the population, it is the same we make a permutation of (Pn)

respective to the order in which the different types are observed. This procedure is

equivalent to a reordering of (Pn), getting a (P̃n): P̃1 = Pn if the first component of

the sample is of type n, n ∈ Z+, and P̃2 = Pm if the following member of the sample

not from n is from type m, m ∈ Z+|n and so forth. Mathematical definition is given

as:

P (P̃1 = Pn|P1, P2, ...) = Pn

P ( ˜Pj+1 = Pn|P̃1, ..., P̃j, P1, P2, ...) =
Pn

1− P̃1 − ...− P̃j
I(Pn 6= P̃1, ..., P̃j)

(2.20)

Then, the new sequence (P̃n) is a size biased permutation of (Pn).

If (P̃n)
d−→ (Pn), then (Pn) is invariant under size-biased permutation(ISBP). In our

case, GEM distribution is ISBP.

12
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The ordered distribution of Dirichlet distribution or above GEM distribution is known

as Poisson-Dirichlet distribution(PD) ∼ PD(0, θ). Generally this is also called one-

parameter Poisson-Dirichlet distribution. As the one-parameter case is not the focus

of our work, we will skip it and talk about a more general two-parameter case in the

next section.

2.2.2 Two-Parameter Poisson-Dirichlet Distribution

Poisson-Dirichlet distribution is the infinite and ranked version of Dirichlet distribu-

tion. It is an infinitely dimensional simplex whose sides length are sorted. A formal

definition is given by stick breaking process, see Feng (2010): Suppose PD(α, θ) is

the two-parameter Poisson-Dirichlet distribution with α ∈ [0, 1) , θ ∈ (−α,∞). The

PD(α, θ) has the law of descending order (V α,θ
1 , V α,θ

2 , ...). The size-biased random

permutation (V1, V2, ...) of PD(α, θ) is a stick breaking process:

V1 = U1, V2 = (1− U1)U2, V3 = (1− U1)(1− U2)U3, ... (2.21)

where {Uk : k = 1, 2, ...} are independent Beta(1− α, θ + kα) random variables.

When Poisson-Dirichlet distribution is discussed, it is always worth mentioning GEM

distribution and the result can be easily deduced from above definition that the

two-paramter Poisson-Dirichlet distribution is the ranked distribution of GEM(α, θ)

distribution.

Similar to the Dirichlet distribution, we can also fomulate an urn model to describe the

two-parameter Poisson-Dirichlet distribution. The two-parameter Ewens’ sampling

formula is a typical formula for two parameter random partitions family. Suppose

there are balls B1, B2, ... randomly distributed into urns U1, U2, ....

13
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The rule of distribution is B1 goes to U1 with probability 1, while B2, B3..., Bn are

put into U1, ..., Uk with probability:


P (Bn+1 into a new Un+1) = θ+kα

θ+n

P (Bn+1 into an old Uj) =
cj−α
θ+n

(2.22)

where cj are the balls in the existing urns Uj, j = 1, ...k, also
∑k

j=1 cj = n.

Thus, we can model it with an ordered partition set a(1), .., a(k), satisfying:

P (a, θ, α) =
1

θ[n]

k∏
j=1

(θ + (j − 1)α)(1− α)cj−1 (2.23)

where 0 ≤ α ≤ 1 and θ ≥ −α or α < 0 and θ = −mα. In most circumstances, we

consider the first condition. cj = |a(j)|, which is the number of components in each

partition a(j) while x[n] is the upper factorial. Here, the probability has nothing with

the partition components.

Moreover, we can define a size index S satisfying:

sj = |i : ci = j, i = 1, ..., k|, j = 1, ..., n
n∑
j=1

sj = k
n∑
j=1

jsj = n (2.24)

Similarly, an unordered partition set a1, ..., ak satisfies the probability:

P (a, θ, α) =
1

θ[n]

k∏
i=1

(θ + (i− 1)α)
n∏
j=1

((1− α)[j−1])sj (2.25)

Considering another Urn model where both balls and urns are undistinguished, which

is similar to Ewens’ sampling formula, generally known as Pitman’s Sampling Formula

14
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or two-parameter Ewens’ sampling formula:

P (S, θ, α) =
n!

sj!θ[n]

k∏
i=1

(θ + (i− 1)α)
n∏
j=1

(
(1− α)[j−1]

j!
)sj (2.26)

2.2.3 Inference of Poisson-Dirichlet Distribution

As for Poisson-Dirichlet distribution, both one-parameter and two-parameter case re-

quire infinitely dimensional data. Even there exists finite version of probability den-

sity function for Poisson-Dirichlet distribution, it still contains infinite sum. Hence,

the inference of the parameters is conducted based on the sampling formulas. The

most common ways are least squares estimator and maximum likelihood estimator.

Besides, there are alternative methods and we will introduce some of them.

Least Squares Fit

Sosnovskiy (2015) used the least squares methods to estimate parameters for two-

parameter Poisson-Dirichlet Distribution, which is an empirical method averaging

the simulated samples to fit the least squares function. By finding the least sum of

squares, he gave an intuitive result that Poisson-Dirichlet distribution is a good model

in capitalization market and portfolio analysis.

More generally, Sibuya (2014) showed a least square estimator. In the urn model,

least sum of squares estimator is deduced as:

(θ̂, α̂) = arg min||jSj
n
− E

(jSj
n

)
|| (2.27)

15
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where

E
(jSj
n

)
=

 n− 1

j − 1

 (θ + α)[n−j](1− α)[j−1]

(θ + 1)[n−1]
(2.28)

Here, j is the group with exact j representives and sj indicates the size index of the

group with size j.

Maximum Likelihood Estimation

Carlton (1999) gave a detailed view of estimation using the maximum likelihood esti-

mator. When both estimators are unknown, the necessary but not sufficient condition

for MLEs(α̂n, θ̂n) to exist is that both first derivatives equal zero and the Hessian ma-

trix satisfies certain conditions. The log-likelihood function is calculated as:

l(α, θ) = log(Pn(S|α, θ))

= Constant−
n−1∑
l=1

log(θ + l) +
k−1∑
m=1

log(θ +mα) +
n∑
j=2

sj

j−1∑
i=2

log(i− α)
(2.29)

Then the corresponding first derivatives are:

lα(α, θ) =
k−1∑
m=1

m

θ +mα
−

n∑
j=2

sj

j−1∑
i=1

1

i− α (2.30)

lθ(α, θ) = −
n−1∑
l=1

1

θ + l
+

k−1∑
m=1

1

θ +mα
(2.31)

Meanwhile, to find the Hessian matrix, we need to find the second derivatives:

H(α, θ) =

 lαα lθα

lαθ lθθ

 (2.32)
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where,

lαα = −
k−1∑
m=1

m2

(θ +mα)2
−

n∑
j=2

sj

j−1∑
i

1

(i− α)2
(2.33)

lθθ =
n−1∑
i=1

1

(θ + l)2
−

k−1∑
m=1

1

(θ +mα)2
(2.34)

lαθ = −
k−1∑
m

m

(θ +mα)2
(2.35)

When α > 0, the analytic solution of MLE can not be found. In addition, θ̂ is always

not a consistent estimator of θ, even if we can get a numeric solution.

Other Possible Estimators

Another possible estimator is also given by Sibuya (2014). Denote Ri is a function of

S:

Ri =
n∑
j=1

j[i]sj
n[i]

, i = 0, 1, ... (R0 = k,R1 = n) (2.36)

Then, the simplest estimation is

α̂ =
s1

R0

, θ̂ =
(1− α̂)

R2 − 1
(2.37)

While some complicated estimators are represented by higher Rs, such as R2 and R3:

α̂ =
R3

R2
− 2R2 +R3

R3

R2
−R2

(2.38)

θ̂ =
1 +R2 − 2R3

R2

R3

R2
−R2

(2.39)
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These methods are similar to method of moment.

2.2.4 Poisson-Dirichlet Market Model

Prior to the introduction of the Market Model, a few definitions are to be reviewed

first.

A diffusion Z={Z(t): t > 0 } is a continuous-time Markov process with value in an

interval (l,r) if:

1. the sample paths of Z are almost surely continuous

2. for every Z in (l,r) and every ε > 0, the following limits exist:

b(z) = lim
j→0

1

h
E(Z(t+ h)− Z(t)|Z(t) = z)

a(z) = lim
h→0

1

h
E((Z(t+ h)− Z(t))2|Z(t) = z)

(2.40)

where the functions b and a on (l,r) → R are named infinitesimal drift and the

infinitesimal variance of Z.

The infinitesimal drift b(z) determines the expected change in a small increment of Z

starting at z:

E(Z(t)− Z(0)|Z(0) = z) = b(z)t+ o(t) (2.41)

Similarly, The infinitesimal variance a(z) determines the variance of a small increment

of Z starting at z:

E((Z(t)− Z(0))2|Z(0) = z) = a(z)t+ o(t) (2.42)

18



M.Sc. Thesis - Mu He McMaster - Mathematics & Statistics

A probability distribution π is called stationary for a continuous-time stochastic pro-

cess Z if at every time t ≥ 0, π is the distribution of the process at that time.

A Wright-Fisher diffusion process Z(t) driven by stochastic differential equation(SDE)

is defined as:

dZ(t) =
1

2
(α(1− Z(t))− θZ(t))dt+

√
Z(t)(1− Z(t))dW (t) (2.43)

where Z(t) has stationary beta(α, θ) distribution.

Hence, we can model diffusion process with stationary Poisson-Dirichlet distribution

by applying the stick breaking methods. The market model is based on the work of

Feng and Wang (2007), in which reversibility of corresponding infinite-dimensional

process was proved. The application was first introduced by Sosnovskiy (2015).

We consider a Wright-Fisher diffusion process Z(t). Accordingly, we can set Xn(t) as

the market weights of the n-th stock at time t, the stock weights are driven by stick

breaking process

X1(t) = Z1(t), ... Xn(t) = Zn(t)(1−
n−1∑
i=1

Xi(t)) (2.44)

where processes Zn(t) are determined by independent SDEs

dZn(t) =
1

2
((1− α)(1− Zn(t))− (θ + αn)Zn(t))dt+

√
Zn(t)(1− Zn(t))dWn(t)

(2.45)

with stationary beta distributions of size biased stick breaking:

Zn(t) ∼ Beta(1− α, θ + nα) (2.46)
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Initial values of processes Zn(0) are determined by

Z1(0) = X1(0), ... Zn(0) =
Xn(0)

1−
∑n−1

i=1 Xi(0)
(2.47)

The market capitalization M(t) can be written as:

dM(t) =
1

2
(θ − cM(t))d(t) +

√
M(t)dW (t) (2.48)

where M(t) has a stationary gamma distribution Gamma(θ,c). The c could be cal-

culated by M(0) = E(Gamma(θ,c)). Hence the local behaviour of the stock prices

should be represented as:

Pn(t) =
M(t)×Xn(t)

qn
, (2.49)

where qn is defined as the number of shares of n-th company.

Some simulation results could be found in Chapter 3, where we modify the model

and give some new pictures illustrating the stock weights and the market.
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2.3 Order Statistics

2.3.1 Permanent

Order statistics for independent and identically distributed (IID) random variables

have been studied intensively. While in most cases, the data or sample is not ideally

IID. In our work, we need the joint distribution of a group of variables X1, ..., Xk to be

independent Beta distributions with different parameters. Thus, the order statistics

for independent but not identically distributed (INID) variables are needed. To find

it, we need to define the permanent first.

The permanent of an n by n matrix A with components Ai,j, i, j = 1, ..., n is defined

as:

Per(A) =
∑
σ

n∏
i=1

Ai,σ(i) (2.50)

where
∑

σ is the sum over all permuations σ(1), ..., σ(n) of 1, ..., n.

From the definition, we have a direct comparision between determinant and perma-

nent. The difference is that the permanent’s operations do not have alternating signs,

postive ones only.

Two important properties of the permanent are useful.

Property 1 Permanent of A does not change with the permutations of rows or

columns.
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Property 2 Suppose A−i,−j denotes the n − 1 dimensional sub-matrix of A by

deleting the i-th row and j-th column, then

Per(A) =
n∑
i=1

ai,jPer(A−i,−j)

=
n∑
j=1

ai,jPer(A−i,−j), j = 1, 2, ..., n

(2.51)

This property shows that the permanents can be expanded in a similar way to that

of determinants.

2.3.2 Joint Distribution of INID Order Statistics

Let X1, X2, ..., Xn be independent but not identically distributed random variables

with cumulative distribution functions Fr1(x), Fr2(x), ...Frn(X). Then, the joint CDF

for the order statistics X(r1), X(r2), ..., X(rn):

FX(r1)
,...,X(rn)

=
n∑

in=n

· · ·
i3∑
i2=2

i2∑
i1=1

Pi1,...,in(x1, ..., xn)

i1!(i2 − i1)! . . . (n− in)!
(2.52)
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where

Pi1,...,in(x1, .., xn)

= Per



F1(x1) F2(x1) . . . Fn(x1)

...
...

...

F1(x1) F2(x1) . . . Fn(x1)

F1(x2)− F1(x1) F2(x2)− F2(x1) . . . Fn(x2)− Fn(x1)

...
...

...

F1(x2)− F1(x1) F2(x2)− F2(x1) . . . Fn(x2)− Fn(x1)

...
...

...

1− F1(xn) 1− F2(xn) . . . 1− Fn(xn)

...
...

...

1− F1(xn) 1− F2(xn) . . . 1− Fn(xn)



(2.53)

where the j-th group, j = 1, ..., k + 1, contains ij − ij−1 repetitions of the same row.

Similarly, the joint density function of k variables X(1), X(2), ..., X(k) chosen from the

sample X1, X2, ..., Xn is

fr1,r2,...,rk(x1, x2, ..., xk)

=
1

(r1 − 1)!(r2 − r1 − 1)! . . . (rk − rk−1 − 1)!(n− rk)!
Per(Ak)

(2.54)
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where −∞ < x1 < x2 < ... < xk <∞ and

Ak =



F1(x1) F2(x1) . . . Fn(x1)

...
...

...

F1(x1) F2(x1) . . . Fn(x1)

f1(x1) f2(x1) . . . fn(x1)

F1(x2)− F1(x1) F2(x2)− F2(x1) . . . Fn(x2)− Fn(x1)

...
...

...

F1(x2)− F1(x1) F2(x2)− F2(x1) . . . Fn(x2)− Fn(x1)

f1(x2) f2(x2) . . . fn(x2)

...
...

...

F1(xn)− F1(xk−1) F2(xk)− F2(xk−1) . . . Fn(xk)− Fn(xk−1)

...
...

...

F1(xk)− F1(xk−1) F2(xk)− F2(xk−1) . . . Fn(xk)− Fn(xk−1)

f1(xk) f2(xk) . . . fn(xk)

1− F1(xk) 1− F2(xk) . . . 1− Fn(xk)

...
...

...

1− F1(xk) 1− F2(xk) . . . 1− Fn(xk)



(2.55)

where the row with entries Fi(xk), ..., where i = 1, ..., n and k = 1, ..., n contains

rk − rk−1 − 1 rows. Similarly, fi(xk), where i = 1, ..., n and k = 1, ..., n contains 1

row. Lastly, the last group 1− Fi(xk) contains n− rk rows.
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2.3.3 Ryser’s Exact Algorithm

Ryser (1963) gave an algorithm to calculate the permanent value:

Per(A) =
n−1∑
t=0

(−1)t
∑

X∈Γn−t

r1(X)r2(X)...rn(X) (2.56)

where Γk = {X ∈ Rn×k|X consists of columns of A} is the set of all n×k submatrices

of A and ri(X) = sum of row i-th of matrix X is the i-th row sum of X.

It could be finished in O((n2)(2n)) time. Later, Valiant (1979) showed the complexity

of computing exact value of the permanent in a polynomial time, so researchers started

working on approximation methods.

2.3.4 HL-algorithm for Permanent Approximation

Various methods in approximation of the permanent of a matrix has been developed,

due to the complexity of calculating the exact value of the permanent. In the work

of Huber and Law (2008), an efficient approximate algorithm solving the permanent

for a non-negative matrix with expected running time O(n4log(n)) is given.

They scale the matrix first and then find a counting method for approximation.

Scaling of Matrix

An n × n matrix is called a doubly stochastic matrix if its components ai,j satisfy:

n∑
i=1

ai,j =
m∑
j=1

ai,j = 1 (2.57)
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For a matrix with entries of random non-negative values, we first scale it into a doubly

stochastic matrix for calculation simpilicity. The algorithm is as follows:

1 Set n is the length of a n × n matrix, and a constraint parameter ε for error, and

each row sums (rowsum(i)), i = 1, ..., n. Initialize the row scaling and column

scaling parameters x and y as unit vectors.

2 While max(|rowsums− 1|) > ε, keep the iteration:

Set Dr as a diagonal matrix with entries of reciprocal of each row sums.

Update A = DrA to scale rows.

Update row scaling paramter x = x × reciprocal of each row sums.

Set Dc as a diagonal matrix with entries of reciprocal of each columns.

Update A = DcA to scale columns.

Update the column scaling parameter y = y × reciprocal of each row columns.

3 End, output the updated matrix B, x and y with error ε.

Hence, we get an updated matrix A with columns sums equal to 1 while row sums is

near 1 within an error restriction ε.

After the first scaling, we get a nearly doubly stochastic matrix A. Then, we need to

do another scaling work by dividing the largest entry of each row max(i). Thus, we

get a new updated matrix and save updated A as Asave for later calculation. Thus,

the range of the row sums r(i) are in the interval: ( 1−ε
max(i)

, 1+ε
max(i)

) .
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HL-Factor

After we get the manipulated matrix A, we now can get the row sums r(i). A HL-

factor is defined to find an upper bound of the matrix.

h(r) =

 r + 1
2
log(r) + e− 1, r ≥ 1

1 + (e− 1)r, r ∈ [0, 1]
(2.58)

For any n × n matrix A with entries between 0 and 1, the row sums of the i-th row

r(i), i = 1, ..., n.

Per(A) ≤
n∏
i=1

h(r(i))

e
(2.59)

Usually an accept/reject algorithm for a function is:

1 Find a g(α) ≥ f(α|X, θ) for all α. Calculating

∞ > c =

∫ ∞
−∞

g(α)dα ≥ 1 h(α) =
g(α)

c
(2.60)

2 Generate a proposal from h(α) and a u = Uniform(0,1) random variable

3 Accept y as a simulation result if u ≤ f(α|X,θ)
g(α)

, else repeat the enumerate.

Here, we have the similar pattern to the idea of the above method. First, we find

an upper bound of the value of the permanent as in (2.59). Then we find a typical

‘characteristic’ function for the permanent based on random self-reducibility property

of permanents, i.e. a typical feature that can represent the permanent. Last, we

repeat the iterations and count the number of success, just like dropping needles and

seeing how many are in the area (satisfying the features) of the target permanent.

Details and a rigorous proof can be found in Huber and Law (2008).
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Here, we present a brief idea. The idea of sampling is to generate variates W over Ω

satisfying:

P (W = x) =
w(x)

Z
(2.61)

where w(x) is a nonnegative weight for all x, and Z =
∑

x∈Ωw(x). Then, we assume Ω

can be partitioned into Ω1, ...Ωn. For every Zi, Zi =
∑

x∈Ωi
w(x), and there is an upper

bound: Zi ≤ U(Ωi) and the upper bounds for partitions satisfying
∑n

i=1 U(Ωi) ≤

U(Ω).

After the above settings, we can begin the algorithm. We first consider a random

variable I generated with probability:

P (I = i) =
U(Ωi)

U(Ω)
i = 1, ..., n

P (I = 0) = 1−
n∑
i=1

U(Ωi)

U(Ω)

(2.62)

Then, if we get any non-zero I, we remove ΩI=i from Ω and set the reduced set Ω−I

as the new Ω.

If at some step, we generated an I = 0, which means this iteration fails, then we

stop and start again. Else if there is no I = 0 and we finish the reducing process, we

success in getting a random variable W, which equals the last single element.

In the permanent approximation, the set of permutations can be partitioned into

n pieces by the choice of which row is assigned to the first colomn. Accordingly,

we set the weight of a permuatation for A to be w(σ) =
∏n

σ−1(j)=1 Aσ−1(j),j and

Ω = {σ : w(σ) > 0}. Then the steps follow as:

1 Set the iterations: k, input matrix A equals Asave.
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2 For iterations from 1 to k,

Let A = Asave for every new iteration:

For column j from 1 to n, we choose a row and reduce the matrix to A−i,−j.

When the first j − 1 columns have been reduced to Aj−1, we choose a row at

column j: σ−1
(j) = i with probability for any row i:

P (choose row i at column j) =


Ai,jM(f(Aj−1,i,j))

M(Aj−1)
i = 1, ..., n

1−
∑n

1
Ai,jM(f(Ai,j ,i,j))

M(Aj−1)
i = 0

(2.63)

where

M(A) =
n∏
i=1

h(r(i))

e
(2.64)

f(A, i, j) = A−i,−j (2.65)

where A−i,−j is a matrix A with entry i, j = 1 and all other entries in row i,

column j equal 0.

Then, if i > 0, comparing the cumulative distribution of choosing row i at

column j with a uniform(0,1) random number. Assigning σ−1
(j) = i, i.e. choosing

a row i and A reduce to f(A, i, j). If we can get a complete permutation from

above algorithm, we say it is a success and add one to count of success.

3 Now get the approximate permanent value for scaled matrix, we can do the

transformation:

s =
∏

((diag(Dr)× diag(Dc)))×
n∏
i=1

(max(i))−1 (2.66)

29



M.Sc. Thesis - Mu He McMaster - Mathematics & Statistics

Per(A∗) =
M(A)× count of success

iterations× s
(2.67)

Last, we can get an approximate value for permanent of a matrix A.
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Chapter 3

Methodologies

In this chapter, we will introduce three truncated models applying the stick breaking

process. The discussion is based on the assumptions that the process has converged

at a time t = N and N → ∞. The samples of the ordered weights are chosen from

the stationary distribution after that time point. We make such assumptions as our

data sets are rather stable from time to time and we are interested in the value of

parameters for the process.

3.1 Truncated Ordered Stick Breaking Models

3.1.1 Direct Model

To avoid the infinite dimension for the Market Model in Section 2.2.4, we can construct

truncated models for real data set. One possible method is to define X1, X2, ...Xn to
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be the n-th largest weights directly and conduct the truncation:

X1 = Z1 X2 = Z2(1− Z1) . . . Xn = Zn(1− Z1)...(1− Zn−1)

X0 = 1−
n∑
i=1

Xi

(3.1)

where X0 can be considered as a small amount left after finite steps lim
n→∞

X0 → 0.

Also

Zi ∼ Beta(1− α, θ + iα) i = 1, 2, ..., n (3.2)

Hence, the joint distribution of X1, X2, ...Xn can be calculated as

f(X1, X2, ..., Xn) = f(Z1, Z2, ..., Zn)|J |

= f(Z1)f(Z2)...f(Zn)|J |

=
n∏
i=1

( 1

B(1− α, θ + iα)

)
×X1

−α(1−X1)θ+α−1

×
n∏
j=2

(
Xi

1−
∑j−1

k=1 Xk

)−α(
1−

∑j
k=1Xk

1−
∑j−1

k=1Xk

)θ+jα−1 × |J |

=
n∏
i=1

(
1

B(1− α, θ + iα)
)×

n∏
j=1

X−αj

× (1−X1 −X2 − · · · −Xn)θ+nα−1 × |J |

(3.3)
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where

J =



∂Z1

∂X1

∂Z1

∂X2
. . . ∂Z1

∂Xn

∂Z2

∂X1

∂Z2

∂X2
. . . ∂Z2

∂Xn

. . . . . . . . . . . .

∂Zn

∂X1

∂Zn

∂X2
. . . ∂Zn

∂Xn



=



1 0 . . . 0 0 0

X2

(1−X1)2
1

1−X1
0 0 . . . 0

X3

(1−X1−X2)2
X3

(1−X1−X2)2
1

1−X1−X2
. . . 0 0

. . . . . . . . . . . . . . . . . .

Xi

(1−X1−X2−Xi−1)2
. . . Xi

(1−X1−X2−Xi−1)2
1

1−X1−X2−Xi−1
. . . 0

. . . . . . . . . . . . . . . . . .

Xn

(1−X1−X2−Xn−1)2
. . . . . . . . . . . . 1

1−X1−X2−Xn−1


=

1

(1−X1)(1−X1 −X2) . . . (1−X1 −X2 − ...−Xn−1)
(3.4)

and

B(1− α, θ + iα) =
Γ(1− α)Γ(θ + iα)

Γ(1− α + θ + iα)
(3.5)

This model is the most direct way to find the truncated approximation. And we call

it Direct Truncated Stick Breaking Model.
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Figure 3.1: Simulation of stock weights for Direct Model

Figure 3.1 illustrates our simulation work of the model. There are 10 stocks and we

can see the ranks of the stocks change a lot when time passes, i.e. the largest stock

at time 0 becomes the 4-th largest in the end. This is irregular in the real market, as

a dominating company’s market capitalizations will not vary a lot in a short period.

Hence, it is natural that we seek some better models.
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3.1.2 Decreasing Model

Since we have various choices to formulate the model, a truncated ordered stick

breaking process Z(1) ≥ Z(2) ≥ Z(3) ≥ ... ≥ Z(n) can be considered to model the

market weights, it can be:

X1 = Z(1) X2 = Z(2)(1− Z(1)) . . . Xn = Z(n)(1− Z(1))...(1− Z(n−1))

X0 = 1−
n∑
i=1

Xi

(3.6)

Accordingly, we have the joint distribution:

f(X1, X2...Xn) = f(Z(1), Z(2), ..., Z(n))× |J |

= Per(An)× |J |
(3.7)

35



M.Sc. Thesis - Mu He McMaster - Mathematics & Statistics

where

An =



f1(Z(1)) f2(Z(1)) . . . fn(Z(1))

f1(Z(2)) f2(Z(2)) . . . fn(Z(2))

...
...

...

f1(Z(k)) f2(Z(k)) . . . fn(Z(k))

...
...

...

f1(Z(n)) f2(Z(n)) . . . fn(Z(n))



=



f1(X1) f2(X1) . . . fn(X1)

f1( X2

1−X1
) f2( X2

1−X1
) . . . fn( X2

1−X1
)

...
...

...

f1( Xk

1−
∑k−1

j=1 Xj
) f2( Xk

1−
∑k−1

j=1 Xj
) . . . fn( Xk

1−
∑k−1

j=1 Xj
)

...
...

...

f1( Xn

1−
∑n−1

j=1 Xj
) f2( Xn

1−
∑n−1

j=1 Xj
) . . . fn( Xn

1−
∑n−1

j=1 Xj
)



(3.8)
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J =



∂Z(1)

∂X1

∂Z(1)

∂X2
. . .

∂Z(1)

∂Xn

∂Z(2)

∂X1

∂Z(2)

∂X2
. . .

∂Z(2)

∂Xn

. . . . . . . . . . . .

∂Z(n)

∂X1

∂Z(n)

∂X2
. . .

∂Z(n)

∂Xn



=



1 0 0 0 0 0

X2

(1−X1)2
1

1−X1
0 0 . . . 0

X3

(1−X1−X2)2
X3

(1−X1−X2)2
1

1−X1−X2
. . . 0 0

. . . . . . . . . . . . . . . . . .

Xi

(1−X1−X2−Xi−1)2
. . . Xi

(1−X1−X2−Xi−1)2
1

1−X1−X2−Xi−1
. . . 0

. . . . . . . . . . . . . . . . . .

Xn

(1−X1−X2−Xn−1)2
. . . . . . . . . . . . 1

1−X1−X2−Xn−1


=

1

(1−X1)(1−X1 −X2) . . . (1−X1 −X2 − ...−Xn−1)
(3.9)

This model is built on the decreasing ordered stick breaking of INID Beta distribu-

tions, named Decreasing Ordered Truncated Stick Breaking Model.
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Figure 3.2: Simulation of stock weights for Decreasing Model

The dynamic motivation is that the ranks of weights under this model won’t change

with time. This means that the market weights will remain in the same order through-

out.

Figure 3.2 gives an illustration of the Decreasing Model. This model is not very

satisfying again as it is unlike the real world, where the ranks remain straight.
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3.1.3 Increasing Model

There is another possible model we can use, which focuses more on ranks. Define

the weights accordingly, named Increasing Ordered Truncated Stick Breaking

Model:

Xn = Z(n) Xn−1 = Z(n−1)(1− Z(n)) . . . X1 = Z(1)(1− Z(n))...(1− Z(2))

X0 = 1−
n∑
i=1

Xi

(3.10)

f(X1, X2...Xn) = f(Z(1), Z(2), ..., Z(n))× |J |

= Per(An)× |J |
(3.11)

where

An =



f1(Z(1)) f2(Z(1)) . . . fn(Z(1))

f1(Z(2)) f2(Z(2)) . . . fn(Z(2))

...
...

...

f1(Z(k)) f2(Z(k)) . . . fn(Z(k))

...
...

...

f1(Z(n)) f2(Z(n)) . . . fn(Z(n))



=



f1( X1

1−
∑n

j=2Xj
) f2( X1

1−
∑n

j=2Xj
) . . . fn( X1

1−
∑n

j=2Xj
)

f1( X2

1−
∑n

j=3Xj
) f2( X2

1−
∑n

j=3Xj
) . . . fn( X2

1−
∑n

j=3Xj
)

...
...

...

f1( Xk

1−
∑n

j=k+1Xj
) f2( Xk

1−
∑n

j=k+1Xj
) . . . fn( Xk

1−
∑n

j=k+1Xj
)

...
...

...

f1(Xn) f2(Xn) . . . fn(Xn)



(3.12)
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J =



∂Z(1)

∂X1

∂Z(1)

∂X2
. . .

∂Z(1)

∂Xn

∂Z(2)

∂X1

∂Z(2)

∂X2
. . .

∂Z(2)

∂Xn

. . . . . . . . . . . .

∂Z(n)

∂X1

∂Z(n)

∂X2
. . .

∂Z(n)

∂Xn



=



1
1−X1−X2−...−Xn−1

. . . X1

(1−X1−X2−...−Xn−1)2

. . . . . . . . .

0 . . . 1
1−X1−X2−...−Xi−1

. . . Xi

(1−X1−X2−...−Xi−1)2

. . . . . . . . .

0 . . . 1


=

1

(1−Xn)(1−Xn −Xn−1) . . . (1−X2 −X3 − ...−Xn)

(3.13)

Figure 3.3: Simulation of stock weights for Increasing Model
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To simulate the dynamic changes, Figure 3.3 gives a satisfying pattern. As time

passes, there are a few interactions among the weights. However, the general ranks

stay stable.

This can be explained that we introduce an adjustment value in our model. For

exmaple, at time t= t1: Xn−1 −Xn = Z(n−1) − Z(n) − Z(n−1)Z(n), where Z(n−1)Z(n) is

considered as an adjustment term for the ranks.
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3.2 Bayesian Estimation

As the complexity of the joint distribution increases, traditional inference methods

like the MLE are not applicable. As a consequence, the Markov Chain Monte Carlo

estimation is used. Markov Chain Monte Carlo (MCMC) estimation is a Bayesian

method for inference. To set up an inference method using it, first we need to get a

likelihood of variables and assume appropriate priors for the target parameters. De-

tails of the method and the settings in our case are introduced in the latter paragraphs.

Metropolis Hasting is one of the most commonly used MCMC methods and it is appli-

cable for our estimations. Suppose we have a likelihood f(X|α, θ), then the posterior

is proportional to the likelihood times the prior: f(α, θ|X) ∝ f(X|α, θ)f(α, θ).

Independent Metropolis Hasting

1 Initialize α(0), given θ(0)

2 for iteration i = 1, 2, ...

Generate a random proposal α∗, θ∗ near α(i−1), θ(i−1) by a jumping distribution

Gt(α
∗, θ∗).

3 Calculate the ratio:

r =
f(α∗, θ∗|X)/Gt(α

∗, θ∗)

f(α(t−1), θ(t−1)|X)/Gt(α(t−1), θ(t−1))
(3.14)

4 Accept the proposal if the ratio is larger than 1 or a uniform(0,1) random

variable.
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In our estimation, details will be discussed in the next Chapter. Briefly, Metropolis

Hasting alogrithm applies, assuming α and θ are independent:

f(α, θ|X, θ) ∝ f(X|α, θ)f(α, θ) = f(X|α, θ)f(α)f(θ) (3.15)

f(X|α, θ) ∼ f(1),(2),...,(n)(x1, x2, ..., xn|α, θ) (3.16)

f(α) ∼ Beta(a, b) (3.17)

f(θ) ∼ Gamma(m,n) (3.18)

The jump function for α is

Gα(t) ∼ Uniform(−wα, wα) (3.19)

The jump function for θ is

Gθ(t) ∼ Uniform(−wθ, wθ) (3.20)
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Chapter 4

Estimation Results and Simulation

Work

This chapter mainly presents the results of Metropolis Hasting MCMC inference. The

data is the world stocks market capitalizations in 2014, i.e. Nasdaq, London Securities

Exchanges and Canadian Securities Exchange, etc. There are totally 79 stock markets

included, which could be considered as the 78 steps in breaking a ‘money’ stick. The

pieces broke are the money invested in the different stock markets.

The algorithm we use is the Metropolis Hasting introduced in Chapter 3. There are

a few assumptions: firstly, we assume the parameters α and θ are independent, given

support 0 < α < 1 and θ > 0 . Secondly, we consider the proir for α is Beta(a,b)

distribution and for θ is a Gamma(m,n) distribution. Lastly, the jump functions we

choose for α and θ are uniform distributions with appropriate scales. We run 5000

iterations and take a burn-in for the first 200.

In section 4.1, we present the results of the direct truncated stick breaking model. In

section 4.2 and section 4.3, decreasing ordered truncated stick breaking model and

44



M.Sc. Thesis - Mu He McMaster - Mathematics & Statistics

increasing ordered truncated stick breaking model are shown accordingly.

4.1 Direct Truncated Stick Breaking Model

Figure 4.1 shows the log-log plot of market weights and their ranks. The blue line is

lowess line of the data set of Nov. 2014. The yellow line is the simulation result of

least squares estimator for two-parameter Poisson-Dirichlet market model. The red

line is the simulation result of MCMC estimator for direct truncated model. For the

simulation, we generate 100 samples and take the average of them.

Figure 4.1: Nov. 2014 Lowess line comparision (Direct Model)

It is shown that the fitting is not satisfying in the tail for both models.

Table 4.1 summarizes estimations and intervals of α and θ.
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Date mean of α 95% density interval of α mean of θ 95% density interval of θ

Jan. 2014 0.47 (0.38,0.56) 22.64 (15.44,30.39)

Jun. 2014 0.47 (0.37,0.55) 23.89 (16.30, 32.55)

Nov. 2014 0.47 (0.38,0.56) 22.96 (16.16, 30.32)

Table 4.1: Selected estimation of Direct Model

4.2 Decreasing Ordered Truncated Stick Breaking

Model

Figure 4.2 illustrates the simulation result of Decreasing Model over the data on Nov.

2014.

Figure 4.2: Nov. 2014 Lowess line comparision (Decreasing Model)
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Date mean of α 95% density interval of α mean of θ 95% density interval of θ

Jan. 2014 0.52 (0.42,0.62) 14.70 (9.07,23.79)

Jun. 2014 0.50 (0.41,0.59) 14.64 (9.07,20.85)

Nov. 2014 0.53 (0.42,0.66) 16.29 (8.95,24.13)

Table 4.2: Selected estimation of Decreasing Model

Table 4.2 summarizes the estimations and intervals of α and θ for different dates.

Similar to Direct Model, the graph shows that the fit has bias in the tail.

4.3 Increasing Ordered Truncated Stick Breaking

Model

The tail problem can be solved by the Increasing Model as presented in Figure 4.3.

This indicates if one concerns more on small individual companies, Increasing Model

is an appropriate choice.
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Figure 4.3: Nov. 2014 Lowess line comparision (Increasing Model)

Date mean of α 95% density interval of α mean of θ 95% density interval of θ

Jan. 2014 0.62 (0.54,0.69) 20.00 (13.87,28.25)

Jun. 2014 0.61 (0.54,0.69) 19.51 (13.21,25.70)

Nov. 2014 0.60 (0.51,0.68) 20.92 (12.94,27.82)

Table 4.3: Sample estimation of Increasing Model

In addition, we can draw the conlusion that the market capitalization curve is stable

from time to time as the estimations are almost the same for different time.

To prove our estimation is powerful, we simulate data by the stick breaking process

and use the MCMC to estimate known parameters. Here, we set α = 0.3 and θ =

30 for the generated samples, then we take 100 samples’ average and estimate the

parameters.
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Figure 4.4: Simulated lowess line comparision

n mean of α 95% density interval of α mean of θ 95% density interval of θ

50 0.33 ( 0.16,0.48) 29.25 (20.64,39.33)

80 0.30 (0.19,0.41) 30.65 (22.43,39.71)

Table 4.4: Simulated estimation of Increasing Model

Figure 4.4 gives the illustration of simulated data. Table 4.4 gives the numerical

results, showing that our method has a very good estimation outcome.
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Chapter 5

Discussion

To summarize, our work is motivated by using Poisson-Dirichlet distribution to model

market weights. Assuming the stock markets weights processes are driven by modified

versions of stick breaking process, we take samples after a certain time t = N , N →

∞, in which the process has been stable. Then, through MCMC we can get the

estimators of the parameters α and θ for the process. To interpret the parameters,

we conclude that the larger α and smaller θ we have, the greater gaps among the

weights. This is an empirical result. Similar to the Poisson-Dirichlet parameters, we

can consider they affect the diversity of the system in the same way.

In conclusion, this thesis comes up with a potential stochastic processes which can

be established to model the market portfolios.

5.1 Benefits

All three models present nice patterns in fitting real data sets. Especially, the De-

creasing Model and the Increasing Model give different restrictions on the ranks and
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this makes the models more applicable in reality.

Different models also provide various choices for head concerned and tail concentrated

users.

5.2 Limitations

The computational methods are restricted by the machine, as the largest number

R can represent is 1.797693e+308. Thus, when n goes larger than 100, the MCMC

alogrithm does not always work fine. We need to give some scaling adjustments in

the middle steps. However, the good news is that size 80 seems good enough for most

cases.

5.3 Future Work

Since the Poisson-Dirichlet model is widely used in biological and economic studies,

our truncated model could also be applied to those areas and interesting outcomes

may be found.

Furthermore, when we conduct the estimation, we assume that we sample from sta-

tionary distributions. However, it takes some time before the process converges. This

means we can calculate the general distribution of the stochastic process before con-

verging.
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Appendix A

Appendix

A.1 Selected MCMC Results Plot

As there are many MCMC results, we list some selected plots here as a representation.

The Figures A.1-A.4 give the Direct Model results and diagnostics for the MCMC

estimation.

Figure A.1: Trace plot of parameters (Direct Model)
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Figure A.2: Density plot of parameters (Direct Model)

Figure A.3: Trace plot of mean for parameters (Direct Model)
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Figure A.4: Most frequent points (Direct Model)

The Figures A.5-A.8 give the Decreasing Model results and diagnostics for the MCMC

estimation.

Figure A.5: Trace plot of parameters (Decreasing Model)
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Figure A.6: Density plot of parameters (Decreasing Model)

Figure A.7: Trace plot of mean for parameters (Decreasing Model)
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Figure A.8: Most frequent points (Decreasing Model)

The Figures A.9-A.12 give the Increasing Model results and diagnostics for the MCMC

estimation.

Figure A.9: Trace plot of parameters (Increasing Model)
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Figure A.10: Density plot of parameters (Increasing Model)

Figure A.11: Trace plot of mean for parameters (Increasing Model)
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Figure A.12: Most frequent points (Increasing Model)
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