e sur le recher de concepter par parte de la 1883, 1983, 1

REVIEW OF THE THEORY OF BOUND THREE-NUCLEON SYSTEMS:" EXPERIMENTAL AND THEORETICAL ANALYSIS OF THE CHARGE FORM FACTORS OF <sup>3</sup>H AND <sup>3</sup>He

8556

#### By

#### GOPAL KRISHNA VENKATARAMANIA, DIPLOM.

#### A Thesis

Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements

### for the Degree

Master of Science

# McMaster University

February 1973

MASTER OF SCIENCE (1973) (Physics)

#### McMASTER UNIVERSITY Hamilton, Ontario.

TITLE: Review of the Theory of Bound Three-Nucleon Systems: Experimental and Theoretical Analysis of the Charge Form Factors of <sup>3</sup>H and <sup>3</sup>He

AUTHOR: Gopal Krishna Venkataramania, Diplom. (Moscow State University, U.S.S.R.)

SUPERVISOR: Professor M. A. Preston

NUMBER OF PAGES: (viii), 73

SCOPE AND CONTENTS:

A review of theoretical analyses and predictions of the <sup>3</sup>He and <sup>3</sup>H bound-state properties is presented. The predictions of various theoretical models, with the choice of different nucleon-nucleon potentials and methods for solving the Schroedinger equation for the chosen potentials, are compared with one another. For given nucleon-nucleon forces (provided the potential has a soft-core), the diagonalisation method seems to be preferable to other methods. Among the nucleon-nucleon potentials, the Riihimaki potential is favourable compared to other realistic N-N forces.

The experimental data on  ${}^{3}$ H and  ${}^{3}$ He form factors together with Schiff's theoretical analysis of the  ${}^{3}$ H and

(ii)

<sup>3</sup>He charge form factors is brought so that to study phenomenologically the wave function of a bound threenucleon (T = 1/2, J = 1/2) system.

-se

#### ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor M. A. Preston for his patient guidance and valuable suggestions in the course of this project. I would also like to express my sincere thanks to Dr. C. K. Scott for numerous discussions on the subject. I take this opportunity to thank Professor R. K. Bhaduri for his assistance in preparing the manuscript. Thanks are also due to Miss Erie Long for her efficient, superb typing.

The financial support from the Physics Department, McMaster University is gratefully acknowledged.

# TABLE OF CONTENTS

.

· ·

r

۰.

| CHAPTER |                                        | PAGE |  |  |  |  |  |
|---------|----------------------------------------|------|--|--|--|--|--|
|         | INTRODUCTION                           | l    |  |  |  |  |  |
| I       | EXPERIMENTAL DATA ON FORM FACTORS OF   |      |  |  |  |  |  |
|         | 3 <sub>H AND</sub> 3 <sub>He</sub>     | 9    |  |  |  |  |  |
| II      | II DETERMINATION OF THREE-NUCLEON WAVE |      |  |  |  |  |  |
|         | FUNCTION AND CALCULATIONS WITH IT      |      |  |  |  |  |  |
|         | A. Variational Calculations            | 22   |  |  |  |  |  |
|         | B. Diagonalisation of the Hamiltonian  |      |  |  |  |  |  |
|         | Matrix in the Basis of Harmonic        |      |  |  |  |  |  |
|         | Oscillator Eigenfunctions              | 28   |  |  |  |  |  |
|         | C. Solution of the Faddeev Equations   | 35   |  |  |  |  |  |
| III     | THREE-NUCLEON CHARGE FORM FACTORS WITH |      |  |  |  |  |  |
|         | PHENOMENOLOGICAL WAVE FUNCTIONS        |      |  |  |  |  |  |
|         | 67                                     |      |  |  |  |  |  |
|         | REFERENCES                             | 71   |  |  |  |  |  |

CONTRACTOR CONTRACTORS CONTRACTORS

.

# LIST OF FIGURES

•

## FIGURE

.

.

.

••

| l(a) | Coupling of external photon with charged                      |    |
|------|---------------------------------------------------------------|----|
|      | pion exchanged by two nucleons                                | 6  |
| l(b) | Coupling of external photon with short                        | `  |
|      | range pions and $\rho, \omega, \phi$ mesons                   | 7  |
| 2    | Coupling of external photon with the                          |    |
|      | (Nπ) resonance                                                | 8  |
| 3    | Experimental data on $ F_{ch}^{3H}(q^2) $ and                 |    |
|      | $ F_{ch}^{^{3}He}(q^{2}) $ are fitted by the curves I         |    |
| ×    | and II respectively (Ref. 3)                                  | 12 |
| 4    | The <sup>3</sup> He charge form factor squared is             |    |
|      | fitted by parametric functions                                |    |
|      | [Eqs. (1.2) and (1.4)] with parameters                        |    |
|      | as shown on pg. 15. The charge root                           |    |
|      | mean square radius for the charge                             |    |
|      | distribution [Eqs. (1) and (3)] is equal                      |    |
|      | to the experimentally found number                            | 15 |
| 5    | Curves I and II, corresponding to                             |    |
|      | $F_{ch}^{p}(q^{2})$ and $F_{ch}^{n}(q^{2})$ respectively, are |    |
|      | obtained from the Eqs. (1.5) and (1.7)                        | 18 |
| •    |                                                               |    |

HINE OF A REAL PARAMETER AND A REAL PROPERTY AND A

· · · · · · ·

FIGURE

- 6(a) The solid curve is obtained with the fitting parameter p equal to 19.7, by using the McGee deuteron wave function 20
- 6(b) The solid curve is obtained with the fitting parameter p equal to 10.7, by using the Hamada-Johnston wave function 20
- 6(c) The solid curve is obtained by using the Lomon-Feshbach wave function with p = 5.6 20
- 7 The absolute charge form factors of <sup>3</sup>H and <sup>3</sup>He for Hamada-Johnston potential (adding the Coulomb repulsion between point protons in <sup>3</sup>He) are compared to the experimental curve of  $|F_{ch}^{3He}(q^2)|$  (taken from Ref. 9) 27 The absolute charge form factor of 8 <sup>3</sup>He for Reid soft-core potential compared to the experimental curve.  $|F_{ch}^{^{3}He}(q^{2})|$  and the curve obtained by Delves and Hennell (Ref. 9) (taken from Ref. 12) 33 The solid curve of  $|F_{ch}^{3}He(Q^2)|$  for Reid soft-core potential (with even partial
  - waves) was obtained by using all components of the total wave function, dashed
    - (vii)

PAGE

FIGURE

curve - by using S and S' states in the 9 cont'd. total wave function only, and dot-dashed curve was obtained by using (L = 0, $\ell = 0$ ,  $\ell = 0$  in the S state and S' state in the total wave function (taken from Ref. 21) 42 10 The curve (a) is obtained for Reid soft-core potential (taken from Ref. 27) 44 Absolute charge form factor of  ${}^{3}$ He. 11 The long-dashed curve is obtained by using unitary-pole approximation method. The short-dashed curve is from the work of Tjon, Gibson and O'Connell (Ref. 27) 48

PAGE

#### TABLE OF TABLE CAPTIONS

TABLE

PAGE

16

69

STATES AND LODGE THE SECOND STATES AND AND

- I Experimental Data on <sup>3</sup>H and <sup>3</sup>He Form Factors (Ref. 3) 11
- II Experimental and Theoretical Values of the Proton Form Factors
- III Properties of <sup>3</sup>H and <sup>3</sup>He for H-J
  Potential; in case of <sup>3</sup>He Coulomb
  Forces are included as well 26
  - IV Summary of the Calculations, presented
    in the Review

(ix)

#### INTRODUCTION

Study of three-nucleon form factors is beneficial from the point of understanding nuclear forces. Just like binding energies, the form factors are quantities, that can be measured to a sufficient degree of accuracy. Experiments on electron elastic scattering, done at the Stanford Linear Accelerator with 4-momentum transfer squared as high as  $20 \text{ fm}^{-2}$ , can tell about inner structure of the scattering nucleus. [It specifically applies to <sup>3</sup>He nucleus.]

The el.m. form factors of  ${}^{3}$ H and  ${}^{3}$ He can provide information about the ground state wave function of a threenucleon bound system. L. I. Schiff gave an extensive theoretical analysis of  ${}^{3}$ H and  ${}^{3}$ He form factors  ${}^{1}$ ). It is known that in the ground state both  ${}^{3}$ H and  ${}^{3}$ He have J = 1/2. If nuclear forces are charge independent,  ${}^{3}$ H and  ${}^{3}$ He can be treated as belonging to an isospin doublet (T = 1/2) threenucleon system. [In a model calculation of three scalar nucleons (i.e., three spin zero nucleons), admixture of T = 3/2 component in  ${}^{3}$ He wave function was found to be of the order 0.01 - 0.001%.]<sup>2)</sup>There can be three possible  ${}^{2}S_{1/2}$ states of three-nucleon system: 1) fully symmetric in space coordinates of all three nucleons (S state), 2) antisymmetric in interchanging spatial coordinates  $(S_{a})$ , 3), mixed

symmetry (S') state (which means that the state is either symmetric or antisymmetric under permutation of two nucleons out of three). Also, there can be three  ${}^{2}P_{1/2}$  states (L = 1, S = 1/2),  ${}^{4}P_{1/2}$  (L = 1, S = 3/2) state, and three  ${}^{4}D_{1/2}$ (L = 2, S = 3/2) states, present in the wave function. Spin part consists of three types of functions. Let S<sub>z</sub> be +1/2.

$$\begin{array}{c} x_{1} = 6^{-1/2} [(++-) + (+-+) - 2(-++)] \\ \bullet \\ x_{2} = 2^{-1/2} [(++-) - (+-+)] \end{array} \right\} \quad S = 1/2$$

$$X_3 = 3^{-1/2}[(++-) + (+-+) + (-++)]$$
 S = 3/2.

A + (or -) in, say, the second position of a paranthesis means that nucleon 2 has spin up (down). Isospin part of three-nucleon wave function consists of

$$n_1 = 6^{-1/2} [(++-) + (+-+) - 2(-++)]$$

$$\eta_2 = 2^{-1/2} [(++-) - (+-+)]$$
, for <sup>3</sup>He (T<sub>z</sub> = 1/2)

$$n_{1} = 6^{-1/2} [(--+) + (-+-) - 2(+--)]$$

$$n_2 = 2^{-1/2} [(--+) - (-+-)]$$
, for <sup>3</sup>H (T<sub>z</sub> = -1/2)

The wave function, consisting of all possible products of spatial, spin and isospin components, has to be totally antisymmetrised, since the system consists of fermions. (Given explicitly in Chapters II and III).

The charge and magnetic moment density operators, if no distortion or mutual interference of nucleons is considered, are

$$\rho_{C}(\overline{r};\overline{r}_{1},\overline{r}_{2},\overline{r}_{3}) = \sum_{i=1}^{3} \left[\frac{1}{2}(1+\tau_{iz})f_{ch}^{p}(\overline{r}-\overline{r}_{i}) + \frac{1}{2}(1-\tau_{iz})f_{ch}^{n}(\overline{r}-\overline{r}_{i})\right]$$
(1)

$$\rho_{M}(\overline{r};\overline{r}_{1},\overline{r}_{2},\overline{r}_{3}) = \sum_{i} \left[\frac{1}{2} \sigma_{iz}(1+\tau_{iz}) \mu_{p} f_{mag}^{p}(\overline{r}-\overline{r}_{i}) + \frac{1}{2} \sigma_{iz}(1-\tau_{iz}) \mu_{n} f_{mag}^{n}(\overline{r}-\overline{r}_{i})\right] .$$
(2)

σ's and τ's are unit amplitude Pauli matrices; μ's are nucleon magnetic moments. f's can be regarded as spatial distribution functions of charge and magnetic moments, i.e., inverse Fourier transforms of  $F_{ch}^{p}(\vec{q})$ ,  $F_{ch}^{n}(\vec{q})$ ,  $F_{mag}^{p}(\vec{q})$ ,  $F_{mag}^{n}(\vec{q})$ .

The form factors of  ${}^{3}$ H and  ${}^{3}$ He are calculated (under the stated assumptions) as

$$ZF_{ch}(\overline{q}) = \frac{1}{\int d\overline{r}_{1}d\overline{r}_{2}d\overline{r}_{3}\psi^{*}\psi} \int d\overline{r}_{1}d\overline{r}_{2}d\overline{r}_{3}\psi^{*}\psi \times \psi^{*}\rho_{C}(\overline{r};\overline{r}_{1},\overline{r}_{2},\overline{r}_{3})\psi , \qquad (3)$$

$$\mu F_{mag}(\overline{q}) = \frac{1}{\int d\overline{r}_{1} d\overline{r}_{2} d\overline{r}_{3} \psi^{*} \psi} \int d\overline{r}_{1} d\overline{r}_{2} d\overline{r}_{3} \psi^{*} \psi \times \psi^{*} \rho_{M}(\overline{r}; \overline{r}_{1}, \overline{r}_{2}, \overline{r}_{3}) \psi \quad (4)$$

where  $\mathbb{Z} = 1$ ,  $\mu = 2.975$  for <sup>3</sup>H and  $\mathbb{Z} = 2$ ,  $\mu = -2.125$  for <sup>3</sup>He. The magnetic moments  $\mu$ ,  $\mu_p$ ,  $\mu_n$  are in magnetons. From the equalities  $\mathbf{F}_{ch}^{p}(0) = 1$ ,  $\mathbf{F}_{ch}^{n}(0) = 0$ ,  $\mathbf{F}_{mag}^{p}(0) = \mathbf{F}_{mag}^{n}(0) = 1$ , it can be deduced that

$$F_{ch}^{3H}(0) = F_{ch}^{3He}(0) = 1$$

Also,

$$F_{mag}^{3}(0) = F_{mag}^{3}(0) = 1$$

The spatial components in  $\psi$  are the same for <sup>3</sup>H and <sup>3</sup>He. Mutual interference of nucleons is found to make negligible contribution to the charge density operator, whereas contribution to magnetic moments and magnetic form factors is significant. Among various mechanisms of interference effects, the interaction of external el.m. field with a charged pion exchanged by two bound nucleons is dominant. Coupling of the photon with two exchanged pions and coupling with  $\rho$ ,  $\omega$ ,  $\phi$  mesons is an effect, smaller by an order of magnitude <sup>2)</sup>. There are few qualitative calculations done on the distortion of nucleons in bound systems. It is believed that contribution from them is less than that from interference effects. Essentially, distortion of a nucleon is  $(N\pi)$  resonance. Diagrams of interference effects and distortion are given in Figs. 1(a,b) and 2 respectively. A. M. Green and T. H. Schucan <sup>36)</sup> did calculation of magnetic moments of <sup>3</sup>H and <sup>3</sup>He considering the contribution from  $\Delta(1236)$  resonance, and found that at most a 1/4% correction to the isoscalar moment and about 2% correction to the isovector moment will result, whereas one pion exchange contribution to the magnetic moments is of the order of 5%. Hence, to a reasonably good approximation, the nucleon form factors in Eq. (3) are taken to be those of free nucleons in order to calculate the  ${}^{3}$ H and  ${}^{3}$ He charge form factors, and the information about the  ${}^{3}$ H and  ${}^{3}$ He charge form factors can be regarded as a first step in studying the wave function of a three-nucleon bound system.





Coupling of external photon with charged pion exchanged by two nucleons.

Fig. l(a)

by a needed of the



Coupling of external photon with short range pions and  $p,\omega,\phi$  mesons.

7

Fig. 1(b)



Fig. 2

တ

#### CHAPTER I

# EXPERIMENTAL DATA ON FORM FACTORS OF <sup>3</sup>H AND <sup>3</sup>He

The elastic scattering cross section of an electron by a spin 1/2 particle with the assumption of one photon exchange, is described according to the Rosenbluth equation (h = c = 1). See, e.g., Ref. 3.

$$\frac{d\sigma}{d\Omega} = \sigma_{\rm NS} \left\{ \frac{F_{\rm ch}^2(q^2) + \frac{q^2}{4M^2}(1+\kappa)^2 F_{\rm mag}^2(q^2)}{1 + \frac{q^2}{4M^2}} \right\}$$

+ 2 
$$\frac{q^2}{4M^2}(1+\kappa)^2 F_{mag}^2(q^2) \tan^2 \frac{\theta}{2}$$

where

$$\sigma_{\rm NS} = \frac{e^4}{4E_0^2} \frac{\cos^2 \frac{\theta}{2}}{\sin^2 \frac{\theta}{2}} \cdot \frac{1}{1 + \frac{2E_0}{M} \sin^2 \frac{\theta}{2}}$$

is the cross section for a point-particle scatterer. The expression in curly brackets depends on the electromagnetic structure of the scatterer.

 $E_0$  is the incident energy of electron in lab system,

q is the 4-momentum transfer,

M is the mass of the scattering nucleus,

 $F_{ch}(q^2)$  is the charge form factor with unit normalisation for a charged particle:  $F_{ch}(0) = 1$ ,  $F_{mag}(q^2)$  is the magnetic form factor with unit

normalisation:  $F_{mag}(0) = 1$ ,

κ is the anomalous magnetic moment expressed in magnetons.

Collard et al. <sup>3)</sup> analysed the cross section data for <sup>3</sup>H and <sup>3</sup>He for q<sup>2</sup> up to 8 fm<sup>-2</sup>. Validity of the onephoton-exchange assumption was checked by plotting  $d\sigma/d\Omega$ : $\sigma_{NS}$  versus  $\tan^2 \theta/2$  for a given q<sup>2</sup>, and seeing whether it is a straight line as the Rosenbluth equation indicates. From the Rosenbluth plots for every q<sup>2</sup>, the absolute values of charge and magnetic form factors of <sup>3</sup>H and <sup>3</sup>He were extracted. Data on the <sup>3</sup>H and <sup>3</sup>He form factors are given in Table I. The charge form factors of <sup>3</sup>H and <sup>3</sup>He (absolute) are drawn in Fig. 3.

McCarthy et al. <sup>4)</sup> have analysed data for  $q^2$  up to 20 fm<sup>-2</sup> in order to find the <sup>3</sup>He charge form factor. First order correction in the Born approximation due to Coulomb distortion is taken into account by using, instead of q, a corrected 4-momentum transfer. Absolute value of the Fourier transform of a preliminary charge distribution, compatible with the phase shift results of a relativistic electron, scattered by the charge distribution, was compared to the experimental (absolute) charge form factor. Thus, an expression for the charge distribution with appropriately fitted parameters was adopted. Table I

Experimental Data on <sup>3</sup>H and <sup>3</sup>He Form Factors

(Ref. 3)

| TABLE | I | 1 |
|-------|---|---|
|-------|---|---|

|                |                     |        |                                |        | TABLE I              |        |                    |        |                       |
|----------------|---------------------|--------|--------------------------------|--------|----------------------|--------|--------------------|--------|-----------------------|
| q <sup>2</sup> | (fm <sup>-2</sup> ) | Fcł    | <sup>1</sup> ( <sup>3</sup> н) | Fma    | ag ( <sup>3</sup> H) | Fcł    | ( <sup>3</sup> He) | F      | ag ( <sup>3</sup> He) |
|                | 1.0                 | 0.622  | ± 0.007                        | 0.653  | ± 0.022              | 0.567  | ± 0.004            | 0.676  | ± 0.075               |
|                | 1.5                 | 0.503  | ± 0.007                        | 0.475  | ± 0.015              | 0.431  | ± 0.004            | 0.479  | ± 0.046               |
|                | 2.0                 | 0.387  | ± 0.007                        | 0.379  | ± 0.012              | 0.329  | ± 0.004            | 0.385  | ± 0.031               |
|                | 2.5                 | 0.312  | ± 0.006                        | 0.312  | ± 0.008              | 0.258  | ± 0.003            | 0.291  | ± 0.020               |
|                | 3.0                 | 0.267  | ± 0.005                        | 0.242  | ± 0.006              | 0.209  | ± 0.002            | 0.203  | ± 0.014               |
| ·              | 3.5                 | 0.215  | ± 0.004                        | 0.199  | ± 0.005              | 0.1614 | ± 0.0017           | 0.167  | ± 0.010               |
|                | 4.0                 | 0.175  | ± 0.004                        | 0.167  | ± 0.004              | 0.1326 | ± 0.0015           | 0.128  | ± 0.009               |
|                | 4.5                 | 0.187  | ± 0.003                        | 0.139  | ± 0.003              | 0.1013 | ± 0.0010           | 0.118  | ± 0.005               |
|                | 5.0                 | 0.118  | ± 0.004                        | 0.109  | ± 0.005              | 0.0813 | ± 0.0012           | 0.093  | ± 0.008               |
|                | 6.0                 | 0.0758 | ± 0.0041                       | 0.0792 | ±.0.0032             | 0.0548 | ± 0.0015           | 0.0566 | ± 0.0056              |
|                | 8.0                 | 0.0295 | ± 0.0039                       | 0.0416 | ± 0.0018             | 0.0173 | ± 0.0010           | 0.0318 | ± 0.0026              |



$$\rho(\mathbf{r}) = \mathbf{Z} \left[ \frac{\exp\left(-\frac{\mathbf{r}^2}{4a^2}\right)}{8\pi^{3/2}a^3} - \frac{\mathbf{b}^2}{2\pi^{3/2}} \cdot \frac{16c^2 - \mathbf{r}^2}{16c^7} \exp\left(-\frac{\mathbf{r}^2}{4c^2}\right) \right] ,$$
(1.1)

in the Born approximation,

$$F_{B}(q^{2}) = e^{-a^{2}q^{2}} - b^{2}q^{2}e^{-c^{2}q^{2}} , \qquad (1.2)$$

which is the 3-d Fourier transform of 1/Z  $\rho(r)$ ;  $q^2 = \overline{q}^2$  for elastic scattering. The form factor  $F_B(q^2)$  can fit well the experimental data on

$$|\mathbf{F}_{ch}^{3_{He}}(q^2)|$$

up to 8 fm<sup>-2</sup>. So as to produce the diffraction minimum, appearing at  $q^2 = 11.6 \text{ fm}^{-2}$ , a correction  $\Delta \rho(r)$  is added to  $\rho(r)$ .

$$\Delta \rho(\mathbf{r}) = \frac{Z dpq_0^2}{2\pi^{3/2}} \left[ \frac{\sin q_0 \mathbf{r}}{q_0 \mathbf{r}} + \frac{p^2}{2q_0^2} \cos q_0 \mathbf{r} \right] \exp\left(-\frac{1}{4} p^2 \mathbf{r}^2\right) ,$$
(1.3)

three-dimensional Fourier transform of  $\Delta \rho(\mathbf{r})$  is

$$\Delta F_{B}(q^{2}) = d \exp[-(\frac{q-q_{0}}{p})^{2}] . \qquad (1.4)$$

Best fit was obtained for the values of parameters

$$a = 0.675 \pm 0.008 \text{ fm}$$
  
 $b = 0.366 \pm 0.025 \text{ fm}$ 

c = 0.836 ± 0.032 fm d = (-6.78 ± 0.83) ×  $10^{-3}$ q<sub>0</sub> = 3.98 ± 0.09 fm<sup>-1</sup> p = 0.90 ± 0.16 fm<sup>-1</sup>.

The root mean square charge radius is  $r_{rms} = 1.88$  fm. (See Fig. 4).

In Ref. 5 it is argued that near the minimum, two photon exchange correction in the elastic cross section is about 30 - 40%. Corrections from vector-meson dominance (i.e., the electron exchanges a photon by coupling through  $\rho$ -meson with the <sup>3</sup>He nucleus) were shown by E. Lehman <sup>37)</sup> to be unable to account simultaneously for the form factor dip at 11.6 fm<sup>-2</sup>, and the behaviour at high momentum transfer. But these corrections are quite small, by themselves.

According to the theory given by L. I. Schiff, charge form factors of  ${}^{3}\text{H}$  and  ${}^{3}\text{H}$  depend linearly on  $F^{p}_{ch}$  and  $F^{n}_{ch}$ . Experimental data on  $F^{p}_{ch}$  are obtained from elastic electron-proton scattering  ${}^{38)}$ . One photon exchange is a good approximation for  $q^{2}$  up to 22 fm<sup>-2</sup>. (See Table II). Neutron form factors are derived from elastic electrondeuteron scattering  ${}^{6)}$ . The nucleon form factors were earlier fitted by Kirson  ${}^{7)}$ , and de Vries  ${}^{8)}$  by so-called three-pole fit, which is a three-pole approximation to the dispersion theory of nucleon form factors.



Fig. 4 The <sup>3</sup>He charge form factor squared is fitted by parametric functions [Eqs. (1.2) and (1.4)] with parameters

a = 0.675  $\pm$  0.008 fm, b = 0.366  $\pm$  0.025 fm, c = 0.836  $\pm$  0.032 fm, d = (-6.78  $\pm$  0.83)  $\times$  10<sup>-3</sup>, q<sub>0</sub> = 3.98  $\pm$  0.09 fm<sup>-1</sup>, p = 0.90  $\pm$  0.16 fm<sup>-1</sup>. The charge root mean square radius for the charge distribution [Eqs. (1) and (3)] is equal to the

experimentally found number.

THE CONTRACTOR OF A CONTRACT OF A DATA OF

Table II Experimental and Theoretical Values of the Proton Form Factors

|                |               |                       | 1                 |                    |   |
|----------------|---------------|-----------------------|-------------------|--------------------|---|
|                | Experiment    | Three-p               | ole Fit           | 7,8                |   |
| $q^2(fm^{-2})$ | FP            | F <sup>P</sup><br>mag | F <sup>p</sup> ch | F <sup>P</sup> mag |   |
| 4.00           | 0.689 ± 0.019 | 0.623 ± 0.018         | 0.658             | 0.644              |   |
| 4.6            | 0.615 ± 0.015 | 0.611 ± 0.010         | 0.624             | 0.610              |   |
| 5.0            | 0.599 ± 0.026 | 0.618 ± 0.021         | 0.603             | 0.588              |   |
| 6.0            | 0.577 ± 0.019 | 0.533 ± 0.014         | 0.554             | 0.540              | - |
| 7.0            | 0.521 ± 0.021 | 0.490 ± 0.010         | 0.511             | 0.499              |   |
| 7.5            | 0.504 ± 0.022 | 0.472 ± 0.011         | 0.492             | 0.480              |   |
| 8.0            | 0.453 ± 0.020 | 0.466 ± 0.009         | 0.474             | 0.462              |   |
| 9.0            | 0.422 ± 0.027 | 0.437 ± 0.011         | 0.440             | 0.430              |   |
| 10.0           | 0.424 ± 0.017 | 0.400 ± 0.007         | 0.410             | 0.402              |   |
| 11.0           | 0.398 ± 0.025 | 0.379 ± 0.009         | 0.383             | 0.376              |   |
| 12.0           | 0.363 ± 0.020 | 0.355 ± 0.007         | 0.359             | 0.354              |   |
| 13.0           | 0.349 ± 0.040 | 0.327 ± 0.015         | 0.337             | 0.333              |   |
| 14.0           | 0.315 ± 0.028 | 0.316 ± 0.008         | 0.317             | 0.314              |   |
| 15.0           | 0.304 ± 0.053 | 0.297 ± 0.015         | 0.299             | 0.297              |   |
| 16.0           | 0.271 ± 0.024 | 0.282 ± 0.006         | 0.283             | 0.282              |   |
| 17.0           | 0.234 ± 0.041 | 0.277 ± 0.008         | 0.267             | 0.268              |   |
| 18.0           | 0.274 ± 0.026 | 0.250 ± 0.005         | 0.253             | 0.254              |   |
| 19.0           | 0.254 ± 0.039 | 0.245 ± 0.008         | 0.240             | 0.242              |   |
| 20.0           | 0.187 ± 0.073 | 0.237 ± 0.010         | 0.228             | 0.231              |   |
| 22.0           | 0.166 ± 0.075 | 0.224 ± 0.007         | 0.207             | 0.211              |   |
| 26.0           |               | 0.178 ± 0.005         | 0.171             | 0.179              |   |
|                | •             | 0.160 ± 0.006         | 0.157             | 0.166              |   |
|                |               | $0.145 \pm 0.006$     | 0.144             | 0.154              |   |

#### Behaviour of the isoscalar form factors

 $G_{ES} = \frac{1}{2} (F_{ch}^{p} + F_{ch}^{n})$  and  $G_{MS} = \frac{1}{2} [(1+\kappa_{p})F_{mag}^{p} + \kappa_{n}F_{mag}^{n}]$  is supposedly dominated by intermediate states of two pions, coupled to  $\omega$  and  $\phi$  mesons. Isovector form factors  $G_{EV} = \frac{1}{2} (F_{ch}^{p} - F_{ch}^{n})$  and  $G_{MV} = \frac{1}{2} [(1+\kappa_{p})F_{mag}^{p} - \kappa_{n}F_{mag}^{n}]$  are dominated by effects of the  $\rho$ -meson.

$$G_{ES} = 0.5 \left\{ \frac{s_{el}}{1 + \frac{q}{15.7}} + \frac{s_{e2}}{1 + \frac{q}{26.7}} + 1 - s_{el} - s_{e2} \right\}$$
(1.5)

$$G_{MS} = 0.44 \left\{ \frac{s_{m1}}{2} + \frac{s_{m2}}{2} + 1 - s_{m1} - s_{m2} \right\} ,$$

$$1 + \frac{q}{15.7} + \frac{q}{26.7} \qquad (1.6)$$

$$G_{EV} = 0.5 \left\{ \frac{v_{el}}{1 + \frac{q}{8.19}^2} + 1 - v_{el} \right\}, \qquad (1.7)$$

$$G_{MV} = 2.353 \left\{ \frac{v_{m1}}{1 + \frac{q}{8.19}} + 1 - v_{m1} \right\} .$$
 (1.8)

Fitted parameters are  $s_{el} = 2.50$ ,  $s_{e2} = -1.60$ ,  $s_{ml} = 3.33$ ,  $s_{m2} = -2.77$ ,  $v_{el} = 1.16$ ,  $v_{ml} = 1.11$ . (See Fig. 5).

Theoretical expression for the elastic electrondeuteron scattering cross section involves deuteron wave function, which is dependent on the choice of internucleon potential. S. Galster et al.  $^{6)}$  used parametric function



tively, are obtained from the Eqs. (1.5) and (1.7).

$$F_{ch}^{n} = -\mu_{n} \frac{\frac{q^{2}}{4M^{2}}}{1 + p\frac{q^{2}}{4M^{2}}} F_{ch}^{p}$$

to fit the parameter p, using different deuteron wave functions. For the McGee  $^{23)}$ , Lomon-Feshbach  $^{24)}$  and Hamada-Johnston  $^{25)}$  wave functions, the corresponding values of p were found equal to 19.7, 5.6 and 10.7. The dependence of  $F_{ch}^{n}$  on the choice of deuteron wave function is shown in Figs. 6(a,b,c).

19

(1.9)

Fig. 6(a)

The solid curve is obtained with the fitting parameter p equal to 19.7, by using the McGee deuteron wave function. The dot-dashed curve corresponding to  $F_{ch}^{n} = -\mu_{n} (q^{2}/4M^{2}) F_{ch}^{p}$  and the dashed one corresponding to  $F_{ch}^{n} = -\mu_{n} (q^{2}/4M^{2})/[1 + (q^{2}/M^{2})] F_{ch}^{p}$  are drawn for comparison in the three Figs. 6(a,b,c).

Fig. 6(b) The solid curve is obtained with the fitting parameter p equal to 10.7, by using the Hamada-Johnston wave function.

Fig. 6(c) The solid curve is obtained by using the Lomon-Feshbach wave function with p = 5.6.











#### CHAPTER II

#### DETERMINATION OF THREE-NUCLEON WAVE FUNCTION AND

#### CALCULATIONS WITH IT

The three-body problem for realistic two-nucleon forces has been tackled in three different ways. Variational calculations with forces like Hamada-Johnston have been done by L. M. Delves et al. <sup>9)</sup> The problem has been solved by diagonalising the hamiltonian for soft-core potentials: for Reid soft-core <sup>22)</sup> - by A. D. Jackson et al. <sup>10,11,12,26)</sup>, and for Riihimaki potential <sup>19)</sup> by P. Nunberg et al. <sup>13)</sup>. For Reid soft-core potential, the Faddeev equations have been solved in momentum space by Malfliet and Tjon <sup>14)</sup>, and Harper, Kim and Tubis <sup>15)</sup>. Harms et al. <sup>16,17,29)</sup> have used unitary pole approximation method in solving the Faddeev equations. The Faddeev equations have been solved in configuration space for Reid and Sprung, de Tourreil forces (Ref. 30).

BEEL DEBE THE CHICK MATCHED CONTRACT OF

#### A. Variational Calculations

A two-nucleon potential is called realistic in the sense that it describes properties of two-nucleon systems fairly well. In a trinucleon system, interactions are considered between nucleons 1 and 2, 2 and 3, 3 and 1. Variational procedure implies choosing a trial function. Any function of three particles F(1,2,3) can be decomposed into three mutually orthogonal functions.

 $F = F_{s} + F_{m} + F_{a}; F_{s} \text{ is completely symmetric in}$ interchanging any two particles.  $F_{a}$  is completely antisymmetric,  $F_{m} = F_{m_{1}} + F_{m_{2}}$  - is a sum of two functions: 1) symmetric under, for instance,  $1 \leftrightarrow 2$  permutation  $F_{m_{1}}$ ; 2) antisymmetric under  $1 \leftrightarrow 2$  permutation  $F_{m_{2}}$ . Trial function is the sum of antisymmetric products of radial and angularspin-isospin parts 2.

$$\Psi = \sum_{k} f_{k}(r_{12}, r_{23}, r_{31}) Y_{k}(\alpha\beta\gamma, \zeta_{1}\zeta_{2}\zeta_{3}, n_{1}n_{2}n_{3})$$
  
$$\equiv f_{s}Y_{a} + f_{a}Y_{s} + f_{m1}Y_{m2} - f_{m2}Y_{m1} . \qquad (2.1)$$

The angular part for given orbital angular momentum L of the system is a combination of the Euler angle functions  $D^{L}_{\mu M}(\alpha\beta\gamma)$ ,  $\mu$ , M = -L, ..., L. The spin-isospin part, in general, has states of S = 1/2, 3/2 and T = 1/2, 3/2. ( $\zeta_{1}\zeta_{2}\zeta_{3}$ ) describes the spin and  $(\eta_{1}\eta_{2}\eta_{3})$  - the isospin parts. In Ref. 9, the trial function of the bound state was taken as

$$\psi_{Q} = \sum_{i,k} f_{i,k}^{(Q)}(r_{12}, r_{23}, r_{31}) Y_{i,k}^{(\alpha\beta\gamma, \zeta_{1}\zeta_{2}\zeta_{3}, \eta_{1}\eta_{2}\eta_{3})} ,$$
(2.2)

Q is an integer parameter, indicating the degree of trial function.

1,2,3 are i-index values for L=0 states (i.e., S,S<sub>a</sub>,S'),
4,5,6,7 are i-index values for L=1 states,

8,9,10 are i-index values for L=2 "old" states,

11,12,13,14 are i-index values for L=2 "new" states.

k is the index for different symmetries.

Radial components  $f_{i,k}^{(Q)}$  are products of a suitable set of one-dimensional functions  $\{\phi_{\ell}(r), \ell = 1, 2, 3, ...\}$ .

$$f_{i,k}^{(Q)} = \sum_{\substack{\ell,m,n \\ \ell+m+n \leq Q}} a_{i\ell m n} P_k \{ \phi_\ell(r_{12}) \phi_m(r_{23}) \phi_n(r_{31}) \} ,$$
(2.3)

 $P_k$ 's are symmetrising operators. The  $P_k$ 's are written out in equations 2.6(a-d).

$$\phi_{\ell}(\mathbf{r}) = \{1 - e^{-\delta(\mathbf{r}-\mathbf{c})}\} \frac{e^{-\gamma \mathbf{r}}}{\mathbf{r}^{\mathbf{p}}}$$

1 - 1

× {1 + 
$$\sum_{k=0}^{l-1} a_{kl} \exp[-2k\gamma(r-c)]$$
}, (2.4)

c is core radius. p = 0.5. Inside the core,  $\phi_{\ell}(r) = 0$ . The factor in curly brackets is to account for boundary condition:  $\phi_{\ell}(c) = 0$ .  $\gamma$ ,  $\delta$  and the  $a_{k\ell}$  are nonlinear variational parameters.  $\phi_{l}(r)$  is taken in the form similar to deuteron wave function.

 $\delta = 4.0 , \quad \gamma = 0.25 \quad \text{for all L=0 states,}$  $\delta = 4.0 , \quad \gamma = 0.2 \quad \text{for all L=2 states.}$ P states contribute only 0.08 MeV for H-J potential.

The expectation value of hamiltonian over the trial function with unit normalisation is minimized by Ritz variational principle. In that way probabilities of different components are estimated.  $a_{kl}$  in the functions  $\phi_l(r)$  are not independent variational parameters, but are chosen so that as many as possible of the sequence of symmetric S- and D-states, are orthogonal. The coefficients  $a_{ilmn}$  are variational parameters.

The energy of <sup>3</sup>H is obtained by extrapolating the curve E(Q) as  $E_{\infty} + AQ^{-r}$ . E(Q) is the expectation value of hamiltonian, calculated for  $\psi_Q$ , Q can be 1, Q can be 2, up to a finite  $Q_0$ . A and r are appropriately taken to fit the curve E(Q) up to  $Q_0$ .  $E_{\infty}$ , the energy for H-J potential, was found to be -6.5 ± 0.2 MeV. The trial functions converge to some wave function with increasing Q. In Ref. 9, the trial function corresponding to Q = 7 was taken as the trinucleon wave function. For <sup>3</sup>He Delves and Hennell did variational calculations including both the H-J potential and the Coulomb interaction between two point protons, and got  $E(^{3}He) = -5.95 \pm 0.2$ , neglecting the T = 3/2 admixture. In
Table III are given properties of the <sup>3</sup>H and <sup>3</sup>He ground state wave functions for H-J potential. Also, see Fig. 7.

Adding a phenomenological three-body force  $V_3(\alpha) = -V_3 \exp[-\alpha(r_{12} + r_{23} + r_{31})]$  so as to adjust the binding energy of <sup>3</sup>H to the experimental number 8.418 MeV, moves the diffraction minimum of <sup>3</sup>H charge form factor to 14 fm<sup>-2</sup>. Probabilities of different components are not altered much. The experimental value of  $E(^{3}He)$  is -7.664 MeV.  $\langle r_{ch} \rangle (^{3}H) = 1.70$  fm,  $\langle r_{ch} \rangle (^{3}He) = 1.87$  fm are the values, determined by Collard et al. <sup>3</sup> experimentally. Table III Properties of <sup>3</sup>H and <sup>3</sup>He for H-J Potential ; in case of <sup>3</sup>He Coulomb Forces are included as well TABLE III

| Property                                              | 3 <sub>н</sub>     | <sup>3</sup> не |
|-------------------------------------------------------|--------------------|-----------------|
| Energy (MeV)                                          | -6.5 ± 0.2         | -5.95 ± 0.2     |
| <r ch=""> (fm)</r>                                    | 1.85 ± 0.02        | 1.90            |
| r <sub>mass</sub> (fm)                                | 2.00 ± 0.01        | 2.11            |
| P(S) (%)                                              | 89.2               | 89.4            |
| P(S <sub>a</sub> ) (%)                                | 2*10 <sup>-5</sup> | 0.0             |
| P(S') (%)                                             | 1.8                | 1.93            |
| P(P) (%)                                              | 0.03               | 0.0             |
| P(D) (%)                                              | 9.0                | 8.63            |
| Diffraction minimum of $ F_{ch} $ (fm <sup>-2</sup> ) | 13.4 ± 0.3         | 12.5 ± 0.3      |

. **.** .



Fig. 7 The absolute charge form factors of  ${}^{3}$ H and  ${}^{3}$ He for Hamada-Johnston potential (adding the Coulomb repulsion between point protons in  ${}^{3}$ He) are compared to the experimental curve of  $|\mathbf{F}_{ch}^{3}$ He(q<sup>2</sup>)| (taken from Ref. 9).

B. Diagonalisation of the Hamiltonian Matrix in the Basis of Harmonic Oscillator Eigenfunctions

The harmonic oscillator hamiltonian of three equal mass nucleons (harmonic oscillator forces of frequency  $\omega/\sqrt{3}$  are acting between two nucleons) in terms of the Jacobi coordinates is

$$H_{ho} = -\frac{\hbar^2}{2m} (\overline{\nabla}_{\zeta}^2 + \overline{\nabla}_{\eta}^2) + \frac{m\omega^2}{2} (\overline{\zeta}^2 + \overline{\eta}^2) ;$$
  
$$\overline{\zeta} = 6^{-1/2} (\overline{x}_1 + \overline{x}_2 - 2\overline{x}_3) ,$$
  
$$\overline{\eta} = 2^{-1/2} (\overline{x}_1 - \overline{x}_2) . \qquad (2.5)$$

Eigenvalues of  $H_{ho}$  are  $\hbar\omega(\rho+3)$ ,  $\rho = 2n_{\zeta}+\ell_{\zeta}+2n_{\eta}+\ell_{\eta}$ is the total number of oscillator quanta. Angular momenta  $\overline{\ell}_{\zeta}$  and  $\overline{\ell}_{\eta}$  couple to orbital angular momentum  $\vec{L}$  of the system.  $n_{\zeta}$  and  $n_{\eta}$  are radial quantum numbers. The eigenfunctions of  $H_{ho}$ ,  $\overline{\ell}_{\zeta}^2$  and  $\overline{\ell}_{\eta}^2$ :  $\langle \overline{\zeta}, \overline{\eta} | n_{\zeta}\ell_{\zeta}, n_{\eta}\ell_{\eta}, L \rangle$ , form spatial parts in the total wave function.

We define operators

$$P_{s} = \frac{1}{6} [1 + (1,2) + (1,3) + 2,3) + (1,2,3) + (1,3,2)] ,$$
(2.6a)

where (1,2) is  $1 \leftrightarrow 2$  permutation, (1,3,2) means  $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$ ;

$$P_{a} = \frac{1}{6} [1 - (1,2) - (1,3) - (2,3) + (1,2,3) + 1,3,2)];$$
(2.6b)

$$P_{ml} = \frac{1}{6} [21 - (1,2,3) - (1,3,2)] [1 + (1,2)] , \qquad (2.6c)$$

$$P_{m2} = \frac{1}{6} [21 - (1,2,3) - (1,3,2)] [1 - (1,2)] , \qquad (2.6d)$$

and note that

$$P_{s} < \overline{\zeta}, \overline{\eta} | n_{\zeta} \ell_{\zeta}, n_{\eta} \ell_{\eta}, L >$$
 is spatially symmetric , (2.7a)  

$$P_{a} < \overline{\zeta}, \overline{\eta} | n_{\zeta} \ell_{\zeta}, n_{\eta} \ell_{\eta}, L >$$
 is spatially antisymmetric ,  

$$P_{m1} < \overline{\zeta}, \overline{\eta} | n_{\zeta} \ell_{\zeta}, n_{\eta} \ell_{\eta}, L >$$
 is symmetric under  $l \leftrightarrow 2$   

$$permutation ,$$
 (2.7c)  

$$P_{m2} < \overline{\zeta}, \overline{\eta} | n_{\zeta} \ell_{\zeta}, n_{\eta} \ell_{\eta}, L >$$
 is antisymmetric under  $l \leftrightarrow 2$   

$$permutation .$$
 (2.7d)

In the totally antisymmetric wave function, one couples  $P_k[\langle \overline{\zeta}, \overline{\eta} | n_{\zeta} \ell_{\zeta}, n_{\eta} \ell_{\eta}, L \rangle]$  with the spin-isospin function of adjoint symmetry: L should couple with S to J = 1/2,  $J_z = \pm 1/2$ , or J = 1/2,  $J_z = \pm 1/2$ . The eigenstates of  $H_{ho'}$ antisymmetrised according to the way as discussed above, form the basis for diagonalisation of the hamiltonian

$$H = H_{ho} + [V(1,2) + V(2,3) + V(1,3) - \frac{1}{2} m\omega_{2}^{2}(\overline{\zeta}_{2}^{2} + \overline{n}_{2}^{2})] \qquad (2.8)$$

 $\omega$  serves as a parameter, chosen so as to obtain maximum binding energy.

Jackson, Landé and Sauer <sup>11)</sup> used Reid soft-core potential including all partial waves  $l \leq 2$ . The basis for diagonalisation consisted of 34 quanta of symmetric S states  $[\rho = 34$ , and the number of states is 273], 12 quanta of mixed symmetry S' states [27 states], and 20 quanta of D states [220 states]. The oscillator length b =  $(h/m\omega)^{1/2}$ was treated as a nonlinear variational parameter and the value of b = 0.85 fm was obtained. Complete basis should consist of an infinite number of quanta in all the L = 0, L = 2 states. L = 1 states have negligible probability, and are not taken in the basis.

|              | Calc | ulated | triton | ground stat | e prope | rties (             | Ref. 11) |       |
|--------------|------|--------|--------|-------------|---------|---------------------|----------|-------|
| ρ <b>(S)</b> | ρ(D) | ρ(S')  | b(fm)  | B=-E (MeV)  | P_(%)   | P <sub>S</sub> ,(%) | V (MeV)  | r(fm) |
| L=0          | L=2  | L=0    |        |             |         |                     |          |       |
| 26           | 18   | 10     | 0.80   | 5.712       | 9.05    | 0.39                | -58.007  | 1.588 |
| 30           | 18   | 10     | 0.80   | 5.858       | 8.91    | 0.38                | -57.005  | 1.616 |
| 26           | 22   | 10     | 0.80   | 5.867       | 9.07    | 0.40                | -57.684  | 1.600 |
| 26           | 18   | 14     | 0.80   | 5.798       | 9.22    | 0.62                |          | 1.590 |
| 26           | 18   | 2      | 0.80   | 5.341       | 8.39    | 0.00                | -56.065  | 1.596 |
| 34           | 20   | 12     | 0.80   | 6.091       | 8.92    | 0.49                | -56.316  | 1.647 |
| 34           | 20   | 12     | 0.85   | 6.265       | 8.89    | 0.53                | -55.352  | 1.695 |
| 34           | 20   | 12     | 0.85   | 6.298       | 8.92    | 0.52                | -56.109  | 1.669 |
| (34          | 20   | 12)    | 0.85   | 6.057       | 8.52    | 0.43                | -54.884  | 1.680 |

The last row contains results for potential, restricted to even partial waves only (*l* is even).

The calculated root mean square radius of 1.669 fm yields the root mean square charge radius of 1.85 fm when effects of finite proton size are included. Collard et al. <sup>3)</sup> found  $\langle r_{ch} \rangle ({}^{3}_{H}) = 1.70$  fm.

Difference  $\Delta[\rho(S)] = E(\infty, \rho(D), \rho(S')) - E(\rho(S), \rho(D), \rho(S'))$ of energies for infinite and finite number of quanta in S state is fitted to the type of wave  $\kappa \rho(S)^{-p}$ .  $E(\infty, \rho(D), \rho(S'))$ need not be known;  $E(\rho(S), \rho(D), \rho(S'))$  for different  $\rho(S)$  can tell what  $\kappa$  and p should be. Then  $E(\infty, \rho(D), \rho(S'))$  is found. Similarly,  $E(\rho(S), \infty, \rho(S'))$  and  $E(\rho(S), \rho(D), \infty)$  are evaluated.

| ρ <b>(S)</b> | ρ(D) | p(S') | B=-E (MeV) | $\Delta$ (MeV) |
|--------------|------|-------|------------|----------------|
| 00           | 18   | 10    | 5.999      | 0.286          |
| 26           | 00   | 10    | 6.009      | 0.298          |
| 26           | 18   | œ     | 5.917      | 0.206          |

Then the actual energy E is found as

 $\mathsf{E} \cong \mathsf{E}(\infty, \infty, \infty) = \mathsf{E}(\rho(\mathsf{S}), \rho(\mathsf{D}), \rho(\mathsf{S}')) + \Delta[\rho(\mathsf{S})]$ 

+  $\Delta[\rho(D)] + \Delta[\rho(S')]$  (2.9)

Binding energy was found to be 6.50 MeV.

With the trinucleon wave function thus obtained in the basis of 484 harmonic oscillator states, Yang and Jackson <sup>12)</sup> found the minimum in <sup>3</sup>He absolute charge form factor to occur at  $q^2 \simeq 12.9 \text{ fm}^{-2}$ . Coulomb forces were not taken into account in finding the <sup>3</sup>He wave function. See Fig. 8.

Hadjimichael and Jackson <sup>26)</sup> calculated binding energy and charge form factor of triton for phase equivalent potentials of the Reid soft-core (only  ${}^{1}S_{0}$  and  ${}^{3}S_{1} - {}^{3}D_{1}$ partial waves of the N-N interaction were included). For Reid potential itself, binding energy was found equal to 6.25 MeV; dip in  $|F_{ch}^{3H}(q^{2})|$  occurs at  $q^{2} = 13.5 \text{ fm}^{-2}$ . Position of the dip in  $|F_{ch}^{3H}(q^{2})|$  varies for different phase equivalent potentials, which give different binding. If  $B_{T} = 4.753 \text{ MeV}$ , dip in  $|F_{ch}^{3H}|$  is at  $q^{2} = 13.7 \text{ fm}^{-2}$ , 5.34 12.4 , 6.03 12.7

For Riihimaki potential (in Ref. 13) all partial waves in the N-N interaction with  $l \leq 4$  were taken into account. Maximum number of oscillator quanta was taken equal to  $\rho = 24$ , and the total number of basis states equal to 348. The curve for triton binding energy  $B_T(\rho)$  is extrapolated as  $B_T^{\infty} - A\rho^{-B}$ .  $\langle r^2 \rangle^{1/2} {}^{(3}_{H}$ ) and  $\langle r^2 \rangle^{1/2} {}^{(3}_{He}$ ) were also extrapolated by an exponential formula. Following results were obtained.



Fig. 8 The absolute charge form factor of  ${}^{3}$ He for Reid soft-core potential compared to the experimental curve  $|F_{ch}^{3}He(q^{2})|$  and the curve obtained by Delves and Hennell (Ref. 9) (taken from Ref. 12).

3.901 0.598

•3

1 . . . . . . . . . . .

$$B_{T} = 6.28 \text{ MeV} ,$$

$$< r^{2} > \frac{1/2}{3} (^{3}\text{H}) = 1.77 \text{ fm} ,$$

$$< r^{2} > \frac{1/2}{3} (^{3}\text{He}) = 2.10 \text{ fm} ,$$

$$P_{D} = 4.6\% .$$

.

Extrapolated values are

$$B_T^{\infty} = 7.0 \pm 0.3 \text{ MeV}$$
 ,  
 $1/2 (^3\text{H}) = 1.83 \text{ fm}$  ,  
 $1/2 (^3\text{He}) = 2.14 \text{ fm}$  ,

P<sub>D</sub> = 4.6% .

-

34

\*e=

C. Solution of the Faddeev Equations

The nonrelativistic 3-particle scattering matrix T is equal to

$$T(s) = V - V(H-s)^{-1} V$$
, (2.10)

where hamiltonian H is the sum of the kinetic energy operator
(in the c.m. frame) H<sub>0</sub> and potential energy operator
3
V = ∑ V<sub>i</sub>, V<sub>i</sub> acts between particles j,k ≠ i. s is the total
i=1 i i energy of three-nucleon system.

$$G_0(s) = (H_0 - s)^{-1}$$
 (2.11)

is Green's function for free nucleons. As Faddeev shows, the T-matrix can be decomposed into three parts

$$\mathbf{T} = \mathbf{T}^{(1)} + \mathbf{T}^{(2)} + \mathbf{T}^{(3)} \qquad (2.12)$$

$$\mathbf{T}^{(i)}(s) = \mathbf{T}_{i}(s) - \sum_{j \neq i} \mathbf{T}_{i}(s) \mathbf{G}_{0}(s) \mathbf{T}^{(j)}(s)$$

i = 1,2,3, are a set of three Faddeev equations; T<sub>i</sub>'s are off-shell two-body T matrices, satisfying the Lippmann-Schwinger equations.

• •• •

In the transformation of momentum variables (Refs. 14,20)

$$\overline{p} = \frac{m_2 \overline{k_1} - m_1 \overline{k_2}}{[2m_1 m_2 (m_1 + m_2)]^{1/2}} , \qquad (2.14)$$

$$\overline{q} = \frac{m_3(\overline{k}_1 + \overline{k}_2) - (m_1 + m_2)\overline{k}_3}{[2m_3(m_1 + m_2)(m_1 + m_2 + m_3)]^{1/2}}, \qquad (2.15)$$

$$H_0 = \bar{p}^2 + \bar{q}^2 .$$
 (2.16)

Eigenstate of  $H_0$ , which is simultaneously eigenstate of three-nucleon orbital angular momentum, spin and total angular momentum, is multiplied by isospin functions of definite  $(\tau, \tau_2)$ .

$$|p,q,\alpha\rangle \equiv |[pq(Ll)\mathcal{L},(Ss)\mathcal{S}]JJ_{a},(Tt)\tau_{a}\rangle, \qquad (2.17)$$

and the product is antisymmetrised with respect to interchanging any two nucleons. The bound state wave function is a sum over antisymmetric basis vectors  $|p,q,\alpha\rangle_{a}$ .

$$|\psi_{\rm B}\rangle = \mathop{\rm S}_{\alpha} \langle pq\alpha | \psi_{\rm B}\rangle | pq\alpha\rangle_{\rm A} \qquad (2.18)$$

$$(H - E_B) | \psi_B > = 0$$
 (2.19a)

$$(H_0 - \overline{p}^2 - \overline{q}^2) | p, q, \alpha \rangle_A = 0$$
 (2.19b)

For the energy  $s = E_B^{}$ ,  $\langle pq\alpha | T(s) | \psi \rangle_A^{}$  has a boundstate pole, and residue at the pole gives us the value of the component  $\langle pq\alpha | \psi_B^{} \rangle$ . Equations for  $\langle pq\alpha | T^{(i)}(s) | \psi \rangle_A^{}$ (i = 1,2,3) are inhomogeneous integral equations of the type

$$F(s) = F_0(s) - \kappa(s)F(s)$$
 (2.20)

If the kernel  $\kappa$  (s) is multiplied by complex variable  $\lambda_{r}$  one has a different equation

$$F(s,\lambda) = F_{0}(s) - \lambda \kappa(s)F(s,\lambda) \qquad (2.21)$$

Kernel  $\lambda \kappa$  (s) is of Hilbert-Schmidt type. So, F(s, $\lambda$ ) is a meromorphic function of  $\lambda$  with poles at characteristic values  $\lambda_{\alpha}$  (s) for given s. That is, F(s, $\lambda$ ) can be written as (see Ref. 14)

$$\mathbf{F}(\mathbf{s},\lambda) = \sum_{\alpha} \frac{B_{\alpha}(\mathbf{s})}{\lambda_{\alpha}(\mathbf{s}) - \lambda} + \mathbf{R}(\mathbf{s},\lambda) \quad . \tag{2.22}$$

 $F(s,\lambda)$  is expanded in power series of  $\lambda$  [Neuman Series].

$$F(s,\lambda) = F_0(s) - \lambda \kappa(s) F_0(s) + \lambda^2 \kappa^2(s) F_0(s) \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \lambda^n \kappa^n(s) F_0(s) \equiv \sum_{n=0}^{\infty} \lambda^n F_n(s) \dots (2.23)$$

Since  $R(s,\lambda)$  is an entire function,

$$R(s,\lambda) = \sum_{n=0}^{\infty} \lambda^{n} R_{n}(s) \qquad (2.24)$$

so,

$$F_{n}(s) = \sum_{\alpha} \frac{B_{\alpha}(s)}{[\lambda_{\alpha}(s)]^{n+1}} + R_{n}(s) \qquad (2.25)$$

$$\lim_{n \to \infty} \frac{F_{n+1}(s)}{F_n(s)} = \frac{1}{\lambda_0(s)} , \qquad (2.26)$$

 $\lambda_0^{}(s)$  is the smallest characteristic value where  $F(s,\lambda)$  has a pole.

Since the original equation corresponds to  $\lambda = 1$ , the pole  $\lambda_0$  should be equal to one for the energy  $s = E_B$ . This way of finding the pole is known as the ratio method (or iteration method).

Padé approximants method is following <sup>39)</sup>. N<sup>th</sup> Padé approximant to  $F(s,\lambda)$  is

 $F_{[N,N]}(s,\lambda) = \sum_{n=0}^{N} An\lambda^{n} / (1 + \sum_{n=1}^{N} Bn\lambda^{n}) ; \qquad (2.27)$ 

this is compared to  $\sum_{n=0}^{2N+1} \lambda^n F_n(s)$ , and the coefficients  $A_n$ and  $B_n$  found. The pole of  $F_{[N,N]}(s,\lambda)|_{\lambda=1}$  gives the binding energy  $-E_B$ . Harper, Kim and Tubis <sup>20</sup> considered set of 8 different  $\alpha$ , whereas Malfliet and Tjon considered only the set of first 3  $\alpha$ .

Start 1998 CTA - E. S. MAC, 55 LOCK HARD, 199

| The bas        | sis state | es <sup>39)</sup> are |                                                                          |
|----------------|-----------|-----------------------|--------------------------------------------------------------------------|
| Component<br>« | (LL)L     | (Ss) S                | (Tt) $\tau = 1/2$ , $\tau_z = +1/2$ for $^{3}$ He<br>= -1/2 for $^{3}$ H |
| 1              | (00)0     | (0 1/2)1/2            | (1 1/2)                                                                  |
| 2              | (00)0     | (1 1/2)1/2            | (0 1/2)                                                                  |
| 3              | (20)2     | (1 1/2)3/2            | (0 1/2)                                                                  |
| 4              | (02)2     | (1 1/2)3/2            | (0 1/2)                                                                  |
| 5              | (22)2     | (1 1/2)3/2            | (0 1/2)                                                                  |
| 6              | (22)1     | (1 1/2)1/2            | (0 1/2)                                                                  |
| 7              | (22)1     | (1 1/2)3/2            | (0 1/2)                                                                  |
| 8              | (22)0     | $(1 \ 1/2) 1/2$       | (0 1/2)                                                                  |

The Lippmann-Schwinger equations [ $\beta$  stands for angular, spin and isospin dependence] are

$$t_{\beta}(p,p'',z) = V_{\beta}(p,p'') - 4\pi \int_{0}^{\infty} dp'p'^{2} \frac{V_{\beta}(p,p')}{p'^{2}-z} t_{\beta}(p',p'';z)$$
(2.28a)

$$-2\pi^{2}t_{\beta}(p,p;p^{2}) = \frac{1}{p}\sin\delta_{\beta}(p)e^{i\delta_{\beta}(p)}, \qquad (2.28b)$$

z is the energy of two-nucleon system and  $\delta_{\phantom{\beta}\beta}$  is the phase shift.

In Ref. 21, Harper, Kim and Tubis have solved the Faddeev equations for the Reid soft-core potential, effective

only in the two-nucleon  ${}^{1}S_{0}$  and  ${}^{3}S_{1} - {}^{3}D_{1}$  states. Yang and Jackson <sup>12)</sup> used  ${}^{1}D_{2}$ ,  ${}^{3}D_{2}$  and  ${}^{3}D_{3}$  Reid interactions also, which do not have significant effect on the final results. Only the first five basis states are retained. The probabilities are P(S) = 89.7%, P(S') = 1.68%, P(D) = 8.56%. Malfliet and Tjon 14) using the same forces found P(S) = 89.9%, P(S') = 1.8%, P(D) = 8.1%. The difference in P(D) is due to the discarding of 4 and 5 components by Malfliet and Tjon. Authors of Refs. 14 and 21 get the energy  $E_{B} = -6.4$  MeV, when components 4 and 5 are same left aside. If 4 and 5 components are included,  $E_{\rm B} = -6.7$  MeV <sup>21)</sup>. General expression for the <sup>3</sup>He form factor in momentum variables is (r is symmetry index of spin-isospin function <sup>21)</sup>)

$$2\mathbf{F}_{ch}^{3}_{He}(\mathbf{Q}^{2}) = \int_{0}^{\infty} \mathbf{p}^{2} d\mathbf{p} \int_{0}^{\infty} \mathbf{q}^{2} d\mathbf{q} \sum_{\mathbf{L}, \ell} \sum_{\boldsymbol{\lambda}, \boldsymbol{\beta}} \sum_{\mathbf{r}, \mathbf{r}'} \sum_{\lambda=0}^{\Sigma} (-1)^{\lambda} (\frac{\mathbf{Q}}{\sqrt{3}})^{\lambda} \mathbf{q}^{\ell-\lambda}$$

$$\times \frac{\ell 1}{(\ell-\lambda) 1\lambda 1} \frac{1}{2} \int_{-1}^{1} d\mathbf{z} \frac{\mathbf{P}_{\lambda}(\mathbf{z})}{\mathbf{q}_{1}\lambda} < \psi_{B}^{3}_{He} |\mathbf{p}\mathbf{q}_{1}(\mathbf{L}\ell)\ell \mathbf{W}_{g}^{\mathbf{r}'} \mathbf{J}\mathbf{J}_{z} >$$

$$\times < \mathbf{W}_{g}^{\mathbf{r}'} | \sum_{i=1}^{\Sigma} [\mathbf{f}_{ch}^{P}(\mathbf{Q}^{2}) \frac{1}{2} (1+\tau_{iz}) + \mathbf{f}_{ch}^{n}(\mathbf{Q}^{2}) \frac{1}{2} (1-\tau_{iz}) ] |\mathbf{W}_{g}^{\mathbf{r}} >$$

$$\times < \mathbf{p}\mathbf{q} (\mathbf{L}\ell)\ell \mathbf{W}_{g}^{\mathbf{r}} \mathbf{J}\mathbf{J}_{z} | \psi_{B}^{3}_{He} > ,$$

$$q_1 = (q^2 + \frac{Q^2}{3} - \frac{2q}{\sqrt{3}}Qz)^{1/2}$$
,  $J = J_z = \tau = \tau_z = \frac{1}{2}$ .  
(2.29)

Diffraction minimum in  $|F_{ch}^{3}He(Q^{2})|$  by taking all eight components in  $|\psi_{B}\rangle$  was found to occur at  $Q^{2} \gtrsim 15.5 \text{ fm}^{-2}$ . See Fig. 9. The slope of  $|F_{ch}^{3}He(Q^{2})|$  at  $Q^{2} = 0$  gives charge radius 1.96 fm. [Experimental number is 1.88 ± 0.05 fm.]

Using only the  $\mathcal{L} = 0$  components in trinucleon wave function, derived for the  $({}^{1}S_{0}$  and  ${}^{3}S_{1} - {}^{3}D_{1})$  Reid soft-core potential, Tjon et al.  ${}^{27)}$  calculated charge form factors of  ${}^{3}$ H and  ${}^{3}$ He as

$$2F_{ch}^{3He} = (2F_{ch}^{p} + F_{ch}^{n})F_{1} - \frac{2}{3}(F_{ch}^{p} - F_{ch}^{n})F_{2}$$
, (2.30a)

$$F_{ch}^{3H} = (2F_{ch}^{n} + F_{ch}^{p})F_{1} + \frac{2}{3}(F_{ch}^{p} - F_{ch}^{n})F_{2} , \qquad (2.30b)$$

where

$$F_{1}(\vec{q}) = \int d^{3}P \ d^{3}Q \ U(P,Q)U(P,|\overline{Q} - \frac{\vec{q}}{(3M)^{1/2}}|) \quad , \quad (2.31a)$$

$$F_{2}(\overline{q}) = -3 \int d^{3}P \ d^{3}Q \ U(P,Q) V_{1}(P, |\overline{Q} - \frac{\overline{q}}{(3M)^{1/2}}|) \quad .$$
(2.31b)

$$\overline{P} = \frac{1}{2} M^{-1/2} (\overline{k}_2 - \overline{k}_3) , \quad \overline{Q} = \frac{1}{2} (3M)^{-1/2} (\overline{k}_2 + \overline{k}_3 - 2\overline{k}_1) .$$

Functions U and  $V_1$  correspond to components 1 and 2. For this case

$$E(^{3}H) = -6.8 \text{ MeV}$$

$$R_{ch}^{3}(He) = 2.05 \text{ fm}$$
,  $30000000 \text{ sets over sets of sets of a set of the sets of the sets$ 



Fig. 9 The solid curve of  $|F_{ch}^{3}He(Q^{2})|$  for Reid soft-core potential (with even partial waves) was obtained by using all components of the total wave function dashed curve - by using S and S' states in the total wave function only, and dot-dashed curve was obtained by using (L = 0,  $\ell = 0$ )  $\mathcal{L} = 0$  in the S state and S' state in the total wave function (taken from Ref. 21).

$$R_{ch}(^{3}H) = 1.80 \text{ fm}$$
.

Experimental numbers are

$$R_{ch}(^{3}He) = 1.88 \pm 0.05 \text{ fm}$$

$$R_{ch}^{(3)}(H) = 1.70 \pm 0.05 \text{ fm}$$

The minimum in  $|F_{ch}^{3}He(q^{2})|$  is at  $q^{2} = 17.0 \text{ fm}^{-2}$ . (See Fig. 10.)

For calculation of processes that are not strongly dependent upon the short range behaviour of the wave function, the unitary pole approximation wave function is reliable <sup>29)</sup>.

The unitary pole approximation is a method for solving the Lippmann-Schwinger equations. For two spinless bosons interacting through S-wave potential only, there is one L-S equation (taken as an example).

$$T(s_0) = V + VG_0(s_0)T(s_0)$$
 (2.32)

Consider the homogeneous L-S equation.

$$T(s_0) = VG_0(s_0)T(s_0)$$
 ,  $G_0(s_0) = (s_0 - H_0)^{-1}$  . (2.33a)





Or,

$$|\psi_{n}(s_{0})\rangle = \lambda_{n}(s_{0})VG_{0}(s_{0})|\psi_{n}(s_{0})\rangle$$
 (2.33b)

Fixing s<sub>0</sub> at a negative value -B [B is the two-particle binding energy], s<sub>0</sub>-dependence is dropped from  $|\psi_n\rangle$  and  $\lambda_n$ .

$$|\psi_{n}\rangle = \lambda_{n} VG_{0}(-B) |\psi_{n}\rangle$$
 (2.34a)

The adjoint equation is

$$<\chi_{n}| = \mu_{n} <\chi_{n}|VG_{0}(-B)$$
, (2.34b)

with  $\lambda_n = \mu_n$  being real;

$$|\chi_{n}\rangle = G_{0}(-B)|\psi_{n}\rangle$$
 (2.34c)

The orthonormality condition is

$$\langle \psi_{n} | G_{0}(-B) | \psi_{m} \rangle = -\delta_{nm}$$
 (2.35)

The  $|\psi_n\rangle$ 's and  $\lambda_n$ 's are such that  $V = \sum_{m=1}^{N} - \frac{|\psi_m\rangle\langle\psi_m|}{\lambda_m}$ (with N possibly infinite). Then the homogeneous equation without s<sub>0</sub>-dependence is satisfied. Truncating it to finite N means instead of the correct potential, an apporoximation of a finite rank separable potential is made. Thus the Lippmann-Schwinger equations can be solved with an arbitrary small degree of approximation.

$$T(s) = V + VG_0(s)T(s)$$
  
=  $\sum_{m} - \frac{|\psi_m > \langle \psi_m|}{\lambda_m} [1 + G_0(s)T(s)]$  (2.36)

The unitary pole expansion matrix T<sub>UPE</sub>-matrix is

$$T_{UPE}(s) = \sum_{\substack{n \\ m,n=1}}^{N} |\psi_{m} \rangle \Delta_{m,n}(s) \langle \psi_{n}| , \qquad (2.37a)$$

$$- [\Delta(s)]_{mn}^{-1} = \lambda_{m} \delta_{mn} + \langle \psi_{m} | G_{0}(s) | \psi_{n} \rangle . \qquad (2.37b)$$

In each term of V,  $|\psi_n\rangle$ 's correspond to form factors in a separable potential for different  $\lambda_n$ , and a particular energy  $\mathbf{s}_0$ . If the two nucleons are known to be bound by an energy B,  $\mathbf{s}_0$  is taken to be -B. For antibound nucleons,  $\mathbf{s}_0 = 0$ , and for unbound nucleons any convenient  $\mathbf{s}_0$  is taken.  $\mathbf{T}_{\text{UPE}}(\mathbf{s})$  is explicitly solved through  $\Delta(\mathbf{s})$ , and substituted into the Faddeev equations <sup>16</sup>).  $\mathbf{T}_{\text{UPE}}$  gives correct deuteron and low energy two-body scattering wave functions. Matrix elements of two-nucleon  $\mathbf{T}_i$ -matrices in the three-nucleon space  $(\overline{p}, \overline{q})$  are

 $\langle \overline{pq} | T_{i}(E) | \overline{p'q'} \rangle = \delta(\overline{p} - \overline{p'}) \langle \overline{q}(t_{jk}(E - \frac{3}{4}p^{2}) | \overline{q'} \rangle$  (2.38)

t<sub>jk</sub> is the T<sub>UPE</sub>-matrix.

The unitary pole approximation to Reid (singlet and triplet) soft-core potential was performed by E. Harms et al. <sup>16)</sup> Only 1 and 2 components in the wave function were retained. Results agree with those of Tjon, Gibson and O'Connell <sup>27)</sup>.

$$R_{ch}(^{3}He) = 1.97 \text{ fm}$$

$$R_{ch}(^{3}H) = 1.76 \text{ fm}$$

and  $q^2$  of the dip in the <sup>3</sup>He absolute charge form factor is 17.0 fm<sup>-2</sup>. See Fig. 11.

Faddeev equations were first solved for separable Yamaguchi-type potentials analytically by A. N. Mitra <sup>34)</sup>.



Fig. 11 Absolute charge form factor of <sup>3</sup>He. The longdashed curve is obtained by using unitary-pole approximation method. The short-dashed curve is from the work of Tjon, Gibson and O'Connell (Ref. 27).

## CHAPTER III

## THREE-NUCLEON CHARGE FORM FACTORS WITH PHENOMENOLOGICAL WAVE FUNCTIONS

Construction of phenomenological three-nucleon wave functions from the symmetry properties has been shown by Gibson and Schiff <sup>31)</sup> (also see Ref. 32). Spin functions for SS<sub>z</sub> = (1/2,1/2) are  $\chi_1$  and  $\chi_2$ . (3/2,1/2) spin function is  $\chi_s$ .

$$\chi_1 = 6^{-1/2} [(++-) + (+-+) - 2(-++)] , \qquad (3.1a)$$

$$\chi_2 = 2^{-1/2} [(++-) - (+-+)]$$
, (3.1b)

$$\chi_{s} = 3^{-1/2} [(++-) + (+-+) + (-++)] . \qquad (3.1c)$$

Similar functions  $\eta_1$ ,  $\eta_2$  and  $\eta_s$  in isospin space are written for <sup>3</sup>He nucleus. For <sup>3</sup>H, there will be 'minus' instead of 'plus' and vice versa. Different combinations of spin-isospin functions can be formed from  $\chi_1, \chi_2$  and  $\eta_1, \eta_2$ .

$$\phi_1 = \chi_2 \eta_2 - \chi_1 \eta_1 , \qquad (3.2a)$$

$$\phi_2 = \chi_2 \eta_1 + \chi_1 \eta_2 , \qquad (3.2b)$$

$$\phi_{s} = \chi_{2}\eta_{2} + \chi_{1}\eta_{1} , \qquad (3.2c)$$

$$\phi_{a} = \chi_{2} \eta_{1} - \chi_{1} \eta_{2} \quad . \tag{3.2d}$$

Jacobi coordinates of three nucleons can be

$$\overline{\xi} = 6^{-1/2} (\overline{x}_2 + \overline{x}_3 - 2\overline{x}_1)$$
(3.3a)

$$\overline{n} = 2^{-1/2} (\overline{x}_2 - \overline{x}_3)$$
 (3.3b)

$$\overline{R} = 3^{-1/2} (x_1 + x_2 + x_3) . \qquad (3.3c)$$

Under the permutations  $P_{12}$ ,  $P_{23}$ ,  $P_{13}$  of two nucleons, the quantities  $\chi_1$ ,  $\eta_1$ ,  $\phi_1$  and  $\overline{\xi}$  behave in an analogous way.

$$P_{23}\phi_1 = \phi_1 , \qquad (3.4a)$$

$$P_{12}\phi_1 = \frac{1}{2} (\sqrt{3}\phi_2 - \phi_1) , \qquad (3.4b)$$

$$P_{13}\phi_1 = -\frac{1}{2} \left(\sqrt{3}\phi_2 + \phi_1\right) \quad . \tag{3.4c}$$

So do quantities  $\chi_2$ ,  $\eta_2$ ,  $\phi_2$  and  $\overline{\eta}$ .

$$P_{23}\phi_2 = -\phi_2$$
 ,  $P_{12}\phi_2 = \frac{1}{2}(\phi_2 + \sqrt{3}\phi_1)$ 

10000000 CONTROL FRANKLING

$$P_{13}\phi_2 = \frac{1}{2}(\phi_2 - \sqrt{3}\phi_1)$$

 $\chi_{s}$ ,  $\eta_{s}$ ,  $\phi_{s}$  and  $\overline{R}$  are completely symmetric. One defines

$$s_1 = \overline{\eta}^2 - \overline{\xi}^2 \tag{3.5a}$$

$$S_2 = 2\overline{\eta}\overline{\xi}$$
(3.5b)

$$\mathbf{S}_{\mathbf{s}} = \overline{\mathbf{n}}^2 + \overline{\xi}^2 \tag{3.5c}$$

which are elementary scalar functions in spatial coordinates, behaving like  $\phi_1$ ,  $\phi_2$  and  $\phi_s$  respectively under permutations  $P_{12}$ ,  $P_{23}$ ,  $P_{13}$ .  $S_a = 0$ .

The spin function  $\chi_1$  is also equal to

$$12^{-1/2} \overline{\sigma}_1 (\overline{\sigma}_2 - \overline{\sigma}_3) \chi_2 \equiv 12^{-1/2} \overline{\sigma}_1 \overline{\sigma}_{23} \chi_2 . \qquad (3.6)$$

The spatially symmetric component of the trinucleon wave function can be taken as

$$\psi_1 = \phi_a f_1(s_s)$$
 , (3.7)

f, is a spatially symmetric function. Second component is

$$\psi_2 = (\phi_2 S_1 - \phi_1 S_2) f_2(S_s) \quad . \tag{3.8}$$

T = 3/2 admixture can be introduced as

$$\Psi_{(3/2)} = (S_2 \chi_1 - S_1 \chi_2) \eta_s f_{(3/2)} (S_s) . \qquad (3.8')$$

Due to its small contribution, it is neglected.

P-state even parity components of the wave function contain a space vector of even parity  $\overline{\xi} \times \overline{\eta}$ , multiplied by vector functions of spin.

$$\overline{\Pi}_{1} = 12^{-1/2} [\overline{\sigma}_{23} + i(\overline{\sigma}_{1} \times \overline{\sigma}_{23})] \chi_{2} , \qquad (3.9a)$$

$$\overline{\Pi}_2 = \overline{\sigma}_1 \chi_2 \quad (3.9b)$$

$$\overline{\Pi}_{s} = [\overline{\sigma}_{23} - \frac{1}{2} i(\overline{\sigma}_{1} \times \overline{\sigma}_{23})]\chi_{2} \quad .$$
(3.9c)

 $\overline{\mathbb{I}}_{S}$  is S = 3/2 function.

$$\psi_{3} = (\overline{\Pi}_{2} \eta_{2} + \overline{\Pi}_{1} \eta_{1}) (\overline{\xi} \times \overline{\eta}) \mathbf{f}_{3} (\mathbf{s}_{s})$$

$$\psi_{4} = [(\overline{\Pi}_{2} \mathbf{s}_{1} + \overline{\Pi}_{1} \mathbf{s}_{2}) \eta_{2} + (\overline{\Pi}_{2} \mathbf{s}_{2} - \overline{\Pi}_{1} \mathbf{s}_{1}) \eta_{1}]$$
(3.10)

× 
$$(\overline{\xi} \times \overline{\eta}) f_4(S_s)$$
 (3.11)

are two S = 1/2, L = 1 functions.

$$\psi_{\mathbf{s}} = (\mathbf{S}_{2} \mathbf{\eta}_{2} + \mathbf{S}_{1} \mathbf{\eta}_{1}) \overline{\mathbf{I}}_{\mathbf{s}} (\overline{\xi} \times \overline{\mathbf{\eta}}) \mathbf{f}_{\mathbf{s}} (\mathbf{S}_{\mathbf{s}})$$
(3.12)

is of quartet spin.

Symmetric quartet spin states (S = 3/2) are the following [symmetric only under spin permutations].

$$\begin{split} D_{1} &= [(\bar{\sigma}_{1}\bar{n})(\bar{\sigma}_{23}\bar{n}) - (\bar{\sigma}_{1}\bar{\xi})(\bar{\sigma}_{23}\bar{\xi}) \\ &- \frac{1}{3}(\bar{\sigma}_{1}\bar{\sigma}_{23})(\bar{n}^{2} - \bar{\xi}^{2})]\chi_{2} , \end{split} (3.13) \\ D_{2} &= [(\bar{\sigma}_{1}\bar{n})(\bar{\sigma}_{23}\bar{\xi}) + (\bar{\sigma}_{1}\bar{\xi})(\bar{\sigma}_{23}\bar{n}) \\ &- \frac{2}{3}(\bar{\sigma}_{1}\bar{\sigma}_{23})\bar{n}\bar{\xi}]\chi_{2} , \end{aligned} (3.14) \\ D_{s} &= [(\bar{\sigma}_{1}\bar{n})(\bar{\sigma}_{23}\bar{n}) + (\bar{\sigma}_{1}\bar{\xi})(\bar{\sigma}_{23}\bar{\xi}) \\ &- \frac{1}{3}(\bar{\sigma}_{1}\bar{\sigma}_{23})(\bar{\xi}^{2} + \bar{n}^{2})]\chi_{2} , \end{aligned} (3.15)$$

which transforms under both spatial a spin permutations like 
$$\overline{\xi}$$
,  $\overline{\eta}$  and  $\overline{R}$  respectively.

The 3 components L = 2, S = 3/2 in the total wave function are

$$\psi_6 = D_s (S_2 \eta_1 - S_1 \eta_2) f_6 (S_s) , \qquad (3.16)$$

$$\psi_7 = (D_2 \eta_1 - D_1 \eta_2) f_7(S_s) , \qquad (3.17)$$

$$\psi_8 = [(D_2S_1 + D_1S_2)\eta_1 - (D_2S_2 - D_1S_1)\eta_2]f_8(S_s) \quad (3.18)$$

 $\psi_6$  and  $\psi_7$  are not orthogonal, and therefore, instead of  $\psi_6$  the following linear combination of  $\psi_6$  and  $\psi_7$  is taken.

$$\psi_{6} = [(5D_{2}S_{2} - 2D_{2}S_{3})\eta_{1} - (5D_{3}S_{1} - 2D_{1}S_{3})\eta_{2}]f_{6}(S_{3}) .$$
(3.16)

 $f_1, \ldots, f_8$  are invariant functions of  $S_s = \overline{\xi}^2 + \overline{\eta}^2$ (under all permutations  $P_{12}, P_{23}, P_{13}$ ). Choosing the components to be homogeneous in  $S_1, S_2$  and  $S_s$  of the same order, the set of 8 components, orthogonal to one another, is following.

$$\begin{split} \psi_{1} &= (\chi_{2}n_{1} - \chi_{1}n_{2}) (s_{1}^{2} + s_{2}^{2}) f_{1}(s_{s}) \\ \psi_{2} &= [(\chi_{2}(s_{2}^{2} - s_{1}^{2}) + 2\chi_{1}s_{1}s_{2})n_{1} \\ &+ (\chi_{1}(s_{2}^{2} - s_{1}^{2}) - 2\chi_{2}s_{1}s_{2})n_{2}] f_{2}(s_{s}) \\ \psi_{3} &= (\overline{n}_{1}n_{1} + \overline{n}_{2}n_{2}) (\overline{\xi} \times \overline{n}) s_{s} f_{3}(s_{s}) \\ \psi_{4} &= [(\overline{n}_{2}s_{2} - \overline{n}_{1}s_{1})n_{1} + (\overline{n}_{2}s_{1} + \overline{n}_{1}s_{2})n_{2}] (\overline{\xi} \times \overline{n}) f_{4}(s_{s}) \\ \end{split}$$

$$\begin{split} \psi_{5} &= (S_{1}n_{1} + S_{2}n_{2})\overline{II}_{s}(\overline{\xi} \times \overline{\eta})f_{5}(S_{s}) \\ \psi_{6} &= [(5D_{s}S_{2} - 2D_{2}S_{s})n_{1} - (5D_{s}S_{1} - 2D_{1}S_{s})n_{2}]f_{6}(S_{s}) \\ \psi_{7} &= (D_{2}S_{s}n_{1} - D_{1}S_{s}n_{2})f_{7}(S_{s}) \\ \psi_{8} &= [(D_{2}S_{1} + D_{1}S_{2})n_{1} - (D_{2}S_{2} - D_{1}S_{1})n_{2}]f_{8}(S_{s}) \\ \psi &= \sum_{i} \psi_{i} = u_{2}n_{1} - u_{1}n_{2} ; \end{split}$$
(3.19)

 $u_1$  and  $u_2$  are spatial-spin functions. The wave function  $\psi$  has the following well-defined quantum numbers: J = 1/2,  $S_z = 1/2$ , T = 1/2 and  $T_z = +1/2$  for <sup>3</sup>He, and -1/2 for <sup>3</sup>H. Then

$$2 \iint d\overline{\xi} d\overline{\eta} (u_1^* u_1 + u_2^* u_2) \times F_{ch}^{3}_{He}(\overline{q}) = \frac{3}{2} [F_{ch}^p(\overline{q}) + F_{ch}^n(\overline{q})]$$

$$\times \iint e^{-i\sqrt{2/3}} \overline{q}\overline{\xi} (u_2^* u_2 + u_1^* u_1) d\overline{\xi} d\overline{\eta} + \frac{3}{2} [F_{ch}^p(\overline{q})]$$

$$- F_{ch}^n(\overline{q})] \times \iint e^{-i\sqrt{2/3}} \overline{q}\overline{\xi} (-\frac{1}{3} u_2^* u_2 + u_1^* u_1) d\overline{\xi} d\overline{\eta} .$$
(3.20)
$$^{3}_{H_{\epsilon}} F_{\epsilon}^p \text{ and } F^n \text{ should be interchanged.}$$

For  ${}^{3}$ H,  $F^{p}_{ch}$  and  $F^{n}_{ch}$  should be interchanged.

$$\begin{aligned} \iint d\bar{\xi} d\bar{\eta} (u_{1}^{*}u_{1} + u_{2}^{*}u_{2}) \times F_{ch}^{3}(\bar{q}) &= \frac{3}{2} [F_{ch}^{p}(\bar{q}) + F_{ch}^{n}(\bar{q})] \\ &\times \iint e^{-i\sqrt{2/3}} \bar{q}\bar{\xi} (u_{2}^{*}u_{2} + u_{1}^{*}u_{1}) d\bar{\xi} d\bar{\eta} - \frac{3}{2} [F_{ch}^{p}(\bar{q})] \\ &- F_{ch}^{n}(\bar{q})] \times \iint e^{-i\sqrt{2/3}} \bar{q}\bar{\xi} (-\frac{1}{3} u_{2}^{*}u_{2} + u_{1}^{*}u_{1}) d\bar{\xi} d\bar{\eta} . \end{aligned}$$
(3.21)

Nonzero scalar products involving different spin functions are

$$\begin{split} \chi_1^* \chi_1 &= \chi_2^* \chi_2 = 1 & \chi_1^* \overline{\Pi}_1 = \chi_2^* \overline{\Pi}_2 = (0, 0, 1) \\ [\overline{\Pi}_1 (\overline{\xi} \times \overline{\eta})]^* \overline{\Pi}_1 (\overline{\xi} \times \overline{\eta}) &= [\overline{\Pi}_2 (\overline{\xi} \times \overline{\eta})]^* \overline{\Pi}_2 (\overline{\xi} \times \overline{\eta}) \\ &= \frac{1}{4} (S_s^2 - S_1^2 - S_2^2) \\ [\overline{\Pi}_s (\overline{\xi} \times \overline{\eta})]^* \overline{\Pi}_s (\overline{\xi} \times \overline{\eta}) &= \frac{3}{2} (S_s^2 - S_1^2 - S_2^2) \\ D_1^* D_1 &= 2 (S_s^2 + \frac{1}{3}S_1^2 - S_2^2) & D_1^* D_2 = 4 (\frac{2}{3}S_1 S_2 + iS_s (\overline{\eta} \times \overline{\xi}) z) \\ D_2^* D_2 &= 2 (S_s^2 - S_1^2 + \frac{1}{3}S_2^2) & D_1^* D_s = 4 (\frac{2}{3}S_1 S_s + iS_2 (\overline{\eta} \times \overline{\xi}) z) \\ D_s^* D_s &= 2 (\frac{1}{3}S_s^2 + S_1^2 + S_2^2) & D_2^* D_s = \frac{8}{3}S_2 S_s \\ \end{split}$$

It is convenient to use the so-called Irving transformation

$$\begin{aligned} |\overline{\xi}| &= \rho \cos \theta , \qquad |\overline{\eta}| &= \rho \sin \theta \\ \overline{\xi} &= |\overline{\xi}| \quad (\sin \theta_{\xi} \cos \phi_{\xi}, \sin \theta_{\xi} \sin \phi_{\xi}, \cos \theta_{\xi}) \\ \overline{\eta} &= |\overline{\eta}| \quad (\sin \theta_{\eta} \cos \phi_{\eta}, \sin \theta_{\eta} \sin \phi_{\eta}, \cos \theta_{\eta}) \end{aligned}$$

,

Then

$$s_1 = -\rho^2 \cos 2\theta$$
 ,

$$s_2 = \rho^2 \sin 2\theta \cos \theta_{\xi\eta}$$
  
 $s_s = \rho^2$ ,

and

$$\int d\overline{\xi} d\overline{\eta} = \frac{1}{8} \int_{0}^{\infty} d\rho \rho^{5} \int d\Omega_{\xi} d\Omega_{\eta} \int_{0}^{\frac{\pi}{2}} d\theta (1 - \cos 4\theta)$$

With this transformation, normalisation integrals become

$$\int d\bar{\xi} d\bar{\eta} |\psi_1|^2 = \frac{2}{3} \pi^3 \int d\rho \rho^{13} f_1^2(\rho)$$
(3.22)

$$\int d\bar{\xi} d\bar{\eta} |\psi_2|^2 = \frac{2}{3} \pi^3 \int d\rho \rho^{13} f_2^2(\rho)$$
 (3.23)

$$\int d\bar{\xi} d\bar{\eta} |\psi_3|^2 = \frac{1}{4} \pi^3 \int d\rho \rho^{13} f_3^2(\rho)$$
 (3.24)

 $\int d\bar{\xi} d\bar{\eta} |\psi_4|^2 = \frac{1}{12} \pi^3 \int d\rho \rho^{13} f_4^2(\rho) \qquad (3.25)$ 

o

$$\int d\bar{\xi} d\bar{\eta} |\psi_5|^2 = \frac{1}{4} \pi^3 \int d\rho \rho^{13} f_5^2(\rho) \qquad (3.26)$$

$$\int d\bar{\xi} d\bar{\eta} |\psi_6|^2 = \frac{35}{3} \pi^3 \int d\rho \rho^{13} f_6^2(\rho)$$
 (3.27)

$$\int d\bar{\xi} d\bar{\eta} |\psi_{7}|^{2} = \frac{10}{3} \pi^{3} \int d\rho \rho^{13} f_{7}^{2}(\rho) \qquad (3.28)$$

$$\int d\bar{\xi} d\bar{\eta} |\psi_8|^2 = \frac{14}{3} \pi^3 \int d\rho \rho^{13} f_8^2(\rho) . \qquad (3.29)$$

STREET THE REPORT OF A CONTRACT OF A CONTRACT

The expression for 
$$F_{ch}^{3He}$$
 is  

$$2 \int d\bar{\xi} d\bar{\pi} (u_{2}^{4}u_{2} + u_{1}^{3}u_{1}) \times F_{ch}^{3He} (\bar{q})$$

$$= 2\pi^{3} \int d\rho\rho^{13} (\frac{2}{3}(f_{1}^{2} + f_{2}^{2}) + \frac{1}{4}f_{3}^{2} + \frac{1}{12}f_{4}^{2} + \frac{1}{4}f_{5}^{2} + \frac{35}{3}f_{6}^{2} + \frac{10}{9}f_{7}^{2} + \frac{14}{9}f_{8}^{2}) \times F_{ch}^{3He} (\bar{q})$$

$$= \frac{3}{2} (F_{ch}^{P} + F_{ch}^{R}) \int d\bar{\xi} d\bar{\pi} e^{-i\sqrt{2/3}} \bar{q}\bar{\xi} [2(s_{1}^{2} + s_{2}^{2})^{2}(f_{1}^{2} + f_{2}^{2}) + \frac{1}{2}s_{s}^{2}(s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{3}^{2}$$

$$+ \frac{1}{2} (s_{1}^{2} + s_{2}^{2}) (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{4}^{2} + \frac{3}{2} (s_{1}^{2} + s_{2}^{2}) (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{5}^{2} + [16s_{s}^{4} + 50(s_{1}^{2} + s_{2}^{2})^{2}]$$

$$- 42s_{s}^{2} (s_{1}^{2} + s_{2}^{2}) 1f_{6}^{2} + 4s_{s}^{2} [s_{s}^{2} - \frac{1}{3}(s_{1}^{2} + s_{2}^{2})] f_{7}^{2} + 4(s_{1}^{2} + s_{2}^{2}) [s_{s}^{2} - \frac{1}{3}(s_{1}^{2} + s_{2}^{2})] f_{8}^{2}$$

$$+ 16s_{s}^{2} (2s_{1}^{2} + 2s_{2}^{2} - s_{s}^{2}) f_{6}f_{7} + 8s_{1}s_{s} \cdot 2(\frac{4}{3}s_{2}^{2} - s_{1}^{2}) f_{6}f_{8} + 16s_{1}s_{s} (-\frac{1}{3}s_{1}^{2} + s_{2}^{2}) f_{7}f_{8}^{2}]$$

$$+ (F_{ch}^{P} - F_{ch}^{n}) \int d\bar{\xi} d\bar{\pi} e^{-i\sqrt{2/3}} \bar{q}\bar{\xi} [(s_{1}^{2} + s_{2}^{2})^{2} (f_{1}^{2} + f_{2}^{2}) + \frac{1}{4}s_{s}^{2} (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{3}^{2}$$

$$+ \frac{1}{4} (s_{1}^{2} + s_{2}^{2}) (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{4}^{2} + 2(s_{1}^{4} - s_{2}^{4}) (f_{1}^{*} f_{2} + f_{2}^{*}) + \frac{1}{4}s_{s}^{2} (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{3}^{2}$$

$$+ \frac{1}{4} (s_{1}^{2} + s_{2}^{2}) (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{4}^{2} + 2(s_{1}^{4} - s_{2}^{4}) (f_{1}^{*} f_{2} + f_{2}^{*} f_{1}) + \frac{1}{2}s_{1}s_{s} (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{3}^{2}$$

$$+ (f_{s}^{*} f_{4}^{4} + f_{4}^{*} f_{3}) + \frac{3}{4} (3s_{2}^{2} - s_{1}^{2}) (s_{s}^{2} - s_{1}^{2} - s_{2}^{2}) f_{5}^{2} + [8s_{s}^{4} + 2s (3s_{1}^{2} - s_{2}^{2}) (s_{1}^{2} + s_{2}^{2})$$

$$- 47s_{s}^{2} (s_{1}^{2} + s_{2}^{2}) + 52s_{2}^{2}s_{s}^{2} f_{6}^{2} + 2s_{s}^{2} (s_{1}^{2} + s_{s}^{2} - s_{5}^{2}) f_{7}^{2} + 2(s_{s}^{2} - s_{2}^{2})$$
Converting to Irving coordinates, this becomes  $[\bar{\kappa} = \sqrt{2/3} \bar{q}]$ .  $2 \left| d\rho \rho^{13} \{ \frac{2}{3} (f_1^2 + f_2^2) + \frac{1}{4} f_3^2 + \frac{1}{12} f_4^2 + \frac{1}{4} f_5^2 + \frac{35}{3} f_6^2 + \frac{10}{3} f_7^2 + \frac{14}{9} f_8^2 \} \times F_{ch}^{3He}(\bar{q}) \right|$  $= \left[2F_{ch}^{p}(\overline{q}) + F_{ch}^{n}(\overline{q})\right] \int d\rho \rho^{5} \int d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}\xi^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}S_{1}^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}\right)\right] d\theta \left(1 - \cos 4\theta\right) \frac{\sin(\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \left[8\left(S_{1}^{4} + \frac{8}{3}\eta^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1}^{2}S_{1$  $+\frac{16}{5}\eta^{4}\xi^{4})(f_{1}^{2}+f_{2}^{2})+\frac{1}{2}\rho^{4}(\rho^{4}-s_{1}^{2}-\frac{8}{3}\eta^{2}\xi^{2})f_{3}^{2}+2(s_{1}^{2}\rho^{4}-s_{1}^{4}-\frac{8}{3}\eta^{2}\xi^{2}s_{1}^{2})$  $+\frac{4}{3}\eta^{2}\xi^{2}\rho^{4}-\frac{16}{5}\eta^{4}\xi^{4})f_{4}^{2}]+[F_{ch}^{p}(\overline{q})-F_{ch}^{n}(\overline{q})]\left[d\rho\rho^{5}\right]d\theta(1-\cos4\theta)$  $\times \frac{\sin(\kappa\rho\cos\theta)}{\kappa\rho\cos\theta} [8(s_{1}^{4} - \frac{16}{5}\xi^{4}\eta^{4})(f_{1}^{*}f_{2} + f_{2}^{*}f_{1}) + 2s_{1}s_{s}(\rho^{4} - s_{1}^{2} - \frac{2}{3}\xi^{2}\eta^{2})$ ×  $(f_{3}^{*}f_{4}+f_{4}^{*}f_{3})$  +9  $(F_{ch}^{p}+F_{ch}^{n})\int d\rho\rho^{5}\int d\theta (1-\cos 4\theta) \frac{\sin (\kappa \rho \cos \theta)}{\kappa \rho \cos \theta}$ ×  $(\rho^{4}s_{1}^{2}-s_{1}^{4}-\frac{8}{3}\eta^{2}\xi^{2}s_{1}^{2}-\frac{16}{5}\eta^{4}\xi^{4})f_{5}^{2}+9(F_{ch}^{p}-F_{ch}^{n})\left[d\rho\rho^{5}\right]d\theta(1-\cos4\theta)$  $\times \frac{\sin(\kappa\rho\cos\theta)}{\kappa\rho\cos\theta} (\frac{4}{3}\rho^{4}\eta^{2}\xi^{2} - \frac{8}{9}S_{1}^{2}\eta^{2}\xi^{2} - \frac{16}{5}\eta^{4}\xi^{4}) f_{5}^{2} + 12 (F_{ch}^{p} + F_{ch}^{n})$  $\times \int d\rho \rho^{5} \int d\theta (1 - \cos 4\theta) \frac{\sin (\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \{ [8\rho^{8} + 25S_{1}^{4} + \frac{200}{3}S_{1}^{2}\xi^{2}\eta^{2} + 80\xi^{4}\eta^{4} \} \}$  $-21\rho^{4}(s_{1}^{2}+\frac{4}{3}\xi^{2}n^{2})]f_{6}^{2}+2\rho^{4}[\rho^{4}-\frac{1}{3}(s_{1}^{2}+\frac{4}{3}\xi^{2}n^{2})]f_{7}^{2}+2[\rho^{4}(s_{1}^{2}+\frac{4}{3}\xi^{2}n^{2})$  $-\frac{1}{3}(s_1^4 + \frac{8}{3}s_1^2\xi^2\eta^2 + \frac{16}{5}\xi^4\eta^4)]f_8^2 + 8\rho^4(2s_1^2 + \frac{8}{3}\xi^2\eta^2 - \rho^4)f_6f_7 + \frac{8}{3}\rho^2s_1(4\xi^2\eta^2)$  $-S_{1}^{2})f_{7}f_{8}+8\rho^{2}S_{1}(\frac{16}{9}\xi^{2}\eta^{2}-S_{1}^{2})f_{6}f_{8}\}+4(F_{ch}^{p}-F_{ch}^{n})\left[d\rho\rho^{5}\left[d\theta(1-\cos 4\theta)\right]\right]$ 

(continued over)

$$\times \frac{\sin(\kappa\rho\cos\theta)}{\kappa\rho\cos\theta} \{ [8\rho^{8}+25(3S_{1}^{4}+\frac{8}{3}S_{1}^{2}\xi^{2}\eta^{2}-\frac{16}{5}\xi^{4}\eta^{4})-47\rho^{4}S_{1}^{2}+\frac{20}{3}\rho^{4}\xi^{2}\eta^{2}]f_{6}^{2}$$

$$+2\rho^{4}(S_{1}^{2}-\frac{20}{9}\xi^{2}\eta^{2}+\rho^{4})f_{7}^{2}+2[\rho^{4}(S_{1}^{2}+\frac{4}{3}\xi^{2}\eta^{2})-\frac{26\cdot4}{9}S_{1}^{2}\xi^{2}\eta^{2}+S_{1}^{4}+\frac{16}{5}\xi^{4}\eta^{4}]f_{8}^{2}$$

$$+8\rho^{4}(4S_{1}^{2}-\rho^{4})f_{6}f_{7}+8S_{1}\rho^{2}(\frac{16}{9}\xi^{2}\eta^{2}-\rho^{4})f_{7}f_{8}+8S_{1}\rho^{2}(2\rho^{4}-5S_{1}^{2}+\frac{8}{9}\xi^{2}\eta^{2})f_{6}f_{8}\}.$$

$$(3.31)$$

The following formula is used

$$\int_{0}^{\frac{\pi}{2}} d\theta \sin(\kappa\rho\cos\theta)\cos n\theta = \frac{1}{2}\pi(-1)^{\frac{n-1}{2}}J_{n}(\kappa\rho) \quad . \quad (3.32)$$

and

$$J_{n-1}(z) + J_{n+1}(z) = \frac{2n}{z} J_n(z)$$
 (3.33)

$$\begin{aligned} & \text{Coefficient of } \underbrace{f_{1}f_{2}}_{===} \text{ in the integration over } \rho \text{ is} \\ & 2(\mathbf{F}_{ch}^{p} - \mathbf{F}_{ch}^{n})\rho^{5} \int d\theta (1 - \cos 4\theta) \; \frac{\sin(\kappa\rho\cos\theta)}{\kappa\rho\cos\theta} \cdot 8(\mathbf{S}_{1}^{4} - \frac{16}{5} \; \xi^{4} \eta^{4}) \\ & = \frac{16}{\kappa} \; (\mathbf{F}_{ch}^{p} - \mathbf{F}_{ch}^{n}) \frac{\rho^{12}}{4} \int d\theta \; \sin(\kappa\rho\cos\theta) \left(2\cos 5\theta - 2\cos 7\theta + \frac{2}{5}\cos 9\theta - \frac{2}{5}\cos 11\theta\right) \\ & = \frac{8}{\kappa} \; (\mathbf{F}_{ch}^{p} - \mathbf{F}_{ch}^{n}) \; (\mathbf{J}_{5} + \mathbf{J}_{7} + \frac{1}{5}\mathbf{J}_{9} + \frac{1}{5}\mathbf{J}_{11}) \rho^{12} = \frac{32}{\kappa^{2}} \; (\mathbf{F}_{ch}^{p} - \mathbf{F}_{ch}^{n}) \; (3\mathbf{J}_{6} + \mathbf{J}_{10}) \rho^{11}. \end{aligned}$$

$$\begin{aligned} \frac{f_1^2 \& f_2^2}{(2F_{ch}^{p} + F_{ch}^{n}) \rho^5} \int d\theta (1 - \cos 4\theta) \frac{\sin (\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} &\cdot 8 (s_1^4 + \frac{8}{3} \xi^2 \eta^2 s_1^2 + \frac{16}{5} \xi^4 \eta^4) \\ &= \frac{8}{\kappa} (2F_{ch}^{p} + F_{ch}^{n}) \rho^{12} \int d\theta \sin (\kappa \rho \cos \theta) (\frac{2}{3} \cos \theta - \frac{2}{3} \cos 3\theta + \frac{1}{3} \cos 5\theta - \frac{1}{3} \cos 7\theta \\ &+ \frac{1}{15} \cos 9\theta - \frac{1}{15} \cos 11\theta) \\ &= \frac{16}{3\kappa} (2F_{ch}^{p} + F_{ch}^{n}) (J_1 + J_3 + \frac{1}{2}J_5 + \frac{1}{2}J_7 + \frac{1}{10}J_9 + \frac{1}{10}J_{11}) \\ &= \frac{32}{\kappa^2} (2F_{ch}^{p} + F_{ch}^{n}) (J_2 + 3J_6 + J_{10}) \rho^{11} \\ &- \frac{f_3^2}{m} \end{aligned}$$

$$(2F_{ch}^{p} + F_{ch}^{n}) \rho^5 \int d\theta (1 - \cos 4\theta) \frac{\sin (\kappa \rho \cos \theta)}{\kappa \rho \cos \theta} \cdot \frac{1}{2} \rho^4 (\rho^4 - s_{1-3}^2 g^2 \eta^2) \\ &= \frac{2F_{ch}^{p} + F_{ch}^{n}}{2\kappa} \rho^{12} \int d\theta \sin (\kappa \rho \cos \theta) (\frac{1}{2} \cos \theta - \frac{1}{2} \cos 3\theta - \frac{1}{6} \cos 5\theta + \frac{1}{6} \cos 7\theta) \\ &= \frac{2F_{ch}^{p} + F_{ch}^{n}}{\kappa^2} (J_2 - J_6) \rho^{11} \end{aligned}$$

.

,



en 1598 hinsche Einzelnen einzellen einzellen einen einze



BAT 12 BOT A CONTRACTOR CONTRACTOR

$$\frac{f_{2}f_{8}}{\frac{1}{2}}$$

$$-\frac{16^{2}}{9\kappa^{2}}\rho^{11}[7(F_{ch}^{p}-F_{ch}^{n})J_{4}^{2} + (11F_{ch}^{p}+7F_{ch}^{n})J_{8}] \cdot$$

$$h_{i}(\rho) = \rho^{6}f_{i}(\rho) \quad \vec{\kappa} = \sqrt{2/3} \vec{q} \cdot$$

$$F_{ch}^{3}(\vec{q}) \cdot \int_{0}^{\infty} d\rho \times \rho \{\frac{2}{3}(h_{1}^{2}+h_{2}^{2}) + \frac{1}{4}h_{2}^{2} + \frac{1}{12}h_{4}^{2} + \frac{1}{4}h_{5}^{2} + \frac{35}{3}h_{6}^{2} + \frac{10}{3}h_{7}^{2} + \frac{14}{9}h_{8}^{2}\}$$

$$= \frac{1}{2\kappa^{2}}\int_{0}^{\infty} d\rho \frac{1}{\rho} \{32(2F_{ch}^{p}(\vec{q}) + F_{ch}^{n}(\vec{q})(2J_{2}(\kappa\rho) + 3J_{6}(\kappa\rho) + J_{10}(\kappa\rho)) \}$$

$$\times (h_{1}^{2}+h_{2}^{2}) + 32(F_{ch}^{p}-F_{ch}^{n})(3J_{6}+J_{10})h_{1}h_{2} + (2F_{ch}^{p}+F_{ch}^{n})(J_{2}-J_{6})h_{3}^{2}$$

$$+ \frac{8}{3}(2F_{ch}^{p}+F_{ch}^{n})(J_{2}-J_{10})h_{4}^{2} + \frac{20}{3}(F_{ch}^{p}-F_{ch}^{n})(J_{4}-J_{8})h_{3}h_{4} - 2(F_{ch}^{p}+5F_{ch}^{n})$$

$$\times (J_{2}-3J_{6}+2J_{10})h_{5}^{2} + (\frac{32\cdot35}{3}(2F_{ch}^{p}+F_{ch}^{n})J_{2} + 48(13F_{ch}^{p}-5F_{ch}^{n})J_{6}$$

$$+ \frac{25\cdot16}{3}(7F_{ch}^{p}-F_{ch}^{n})J_{10})h_{6}^{2} + 24\times64F_{ch}^{p}(\vec{q})h_{6}h_{7} + \frac{64}{3}[5(2F_{ch}^{p}+F_{ch}^{n})J_{2}(\kappa\rho)$$

$$- (2F_{ch}^{p}-5F_{ch}^{n})J_{6}(\kappa\rho)]h_{7}^{2} - (\frac{16}{3})^{2}[7(F_{ch}^{p}-F_{ch}^{n})J_{4} + (11F_{ch}^{p}+7F_{ch}^{n})J_{8}]h_{7}h_{8}$$

$$+ [\frac{448}{9}(2F_{ch}^{p}+F_{ch}^{n})J_{2} + \frac{128}{3}(2F_{ch}^{p}+F_{ch}^{n})J_{6} + \frac{16}{9}(25F_{ch}^{p}-67F_{ch}^{n})J_{10}]h_{8}^{2}$$

$$- (\frac{16}{3})^{2}[(11F_{ch}^{p}+4F_{ch}^{n})J_{4} + (43F_{ch}^{p}+4F_{ch}^{n})J_{8}]h_{6}h_{8}\} . (3.34)$$

•

.

1000 0100 CONTRACTOR CONTRACTOR CONTRACTOR

Function h can be taken in the form  $c\rho^{b}e^{-a\rho}$  (b = 2 for the Irving function). In practice, it is necessary to investigate the importance of each h, some way. Since the magnetic moments of <sup>3</sup>H and <sup>3</sup>He appear not to depend on the probability of P states, the terms containing  $h_3$ ,  $h_4$  and  $h_5$ may be ignored. The parametric functions h; can be fitted to the experimental numbers on  $F_{ch}^{^{3}He}(\overline{q})$ ,  $F_{ch}^{p}(\overline{q})$ ,  $F_{ch}^{n}(\overline{q})$ . In Ref. 35, the author has given expressions fitting the experimental data on <sup>3</sup>H and <sup>3</sup>He charge form factors. The factor  $e^{-a\rho}$  defines behaviour of the wave function near the outer edge of the nuclear potential. Parameter a is roughly of the same magnitude for different h. For short distances, p<sup>b</sup>i  $h_i(\rho)$  approaches  $\rho = 0$  as some power of  $\rho$ : L. I. Schiff considered three types of phenomenological wave functions: exponential, Gaussian and Irving functions, and compared the physical properties of  ${}^{3}$ H and  ${}^{3}$ He calculated with the three different wave functions. Irving function was found to be a physically plausible phenomenological wave function, that is reasonably easy to work with.

## SUMMARY

Results of the variational calculations do not give unambiguous information about true nature of the trinucleon wave function for a given hamiltonian. It is, in principle, possible for different types of trial functions to converge to different wave functions and give the same binding energy.

Method of diagonalising the hamiltonian is applicable for soft-core potentials only. If the basis is taken sufficiently large, diagonalisation method gives a reliable wave function. Diagonalisation of the hamiltonian for Reid soft-core potential in the basis of 484 harmonic oscillator states (discarding the P states) yielded a binding energy of the three-nucleon bound system equal to 6.30 MeV. The extrapolated value is 6.5 MeV. With this wave function, minimum in the <sup>3</sup>He absolute charge form factor was found to be at  $q^2 = 12.9 \text{ fm}^{-2}$ . Probability of the D states equals to 7.8% (Ref. 11). Nunberg et al. <sup>13)</sup> diagonalised the hamiltonian for Riihimaki potential in the basis of 348 harmonic oscillator states. Binding energy in the truncated basis was found equal to 6.28 MeV, and the probability of D states - 4.6%. In finding the extrapolated value of the binding energy (7.0 MeV), P states were not completely neglected. From rough estimates of the isoscalar magnetic Envertigen man i en standade de essa en de

moment it is concluded by Nunberg et al. that  $P(D) \lesssim 4$ %, and therefore, Riihimaki potential is more favoured with respect to other realistic potentials. Form factor calculations for the Riihimaki potential have not been performed. Extrapolating procedures are different in the two diagonalisation calculations.

For solving Faddeev's equations, the wave function is expanded over a basic set of states [See Chap. II]. Each basic state is characterised by  $(Ll) \pounds (Ss) \S (Tt) \tau \tau z$ .  $\pounds = 0$ should couple with \$ = 1/2, since the total angular momentum is J = 1/2. L and  $\ell$  should both be equal to each other, i.e., L = l = n, where n = 0, 1, 2, 3, ..., so that  $\hat{l}$  be zero. Harper, Kim and Tubis, and others consider only n = 0, 1, 2. Similar remarks can be made for  $\pounds = 1$ ,  $\pounds = 2$  basic states, used in expanding the wave function. This can be a reason of disagreement in the results of Jackson et al. and Harper et al. and others for the same potential, i.e., Reid soft-Therefore, among different calculations on the threecore. nucleon bound system for given two-nucleon forces, diagonalisation method seems to be suitable, provided the basis is quite large.

The summary of the calculations by different methods for particular realistic nucleon-nucleon forces is given in Table IV.

68

HERE CARE CONTRACT OF A CONTRACT OF A SUCCESSION OF A SUCCESSI

Table IV Summary of the Calculations, presented in the Review

1990 1999 CM COLONATION STATES

. . .

|           |                                | TABLE IV                              |                                       |                                                                                                                                                                                                                                                                             |                                              |
|-----------|--------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Ref.      | Potential                      | Triton                                | $< r^{2} > \frac{1/2}{ch} (^{3}_{H})$ | <r<sup>2&gt;1/2 (<sup>3</sup>He)<br/>ch</r<sup>                                                                                                                                                                                                                             | $q^2(fm^{-2})$ of                            |
|           |                                | binding energy                        | (fm)                                  | (fm)                                                                                                                                                                                                                                                                        | the minimum                                  |
|           |                                | (MeV)                                 |                                       |                                                                                                                                                                                                                                                                             | in $ \mathbf{F}_{ch}^{^{3}\text{He}}(q^{2})$ |
|           |                                |                                       |                                       |                                                                                                                                                                                                                                                                             |                                              |
| 9         | Hamada-Johnston                | 6.5 ± 0.2                             | 1.85 ± 0.02                           | 1.90                                                                                                                                                                                                                                                                        | $12.5 \pm 0.3$                               |
|           | (Coulomb forces are            |                                       |                                       | •                                                                                                                                                                                                                                                                           |                                              |
|           | included in case of $^{3}$ He) | • • • • • • • • • • • • • • • • • • • |                                       |                                                                                                                                                                                                                                                                             |                                              |
| 13        | Riihimaki                      | 7.0                                   | 1.83                                  | 2.14                                                                                                                                                                                                                                                                        |                                              |
| 11        | Reid soft-core                 | 6.5                                   | 1.87                                  | 2.09                                                                                                                                                                                                                                                                        |                                              |
| 12        |                                |                                       |                                       | an an taon 1997.<br>An taona amin' a                                                                                                                                                          | 12.9                                         |
| 26        |                                | 6.25                                  |                                       | ł                                                                                                                                                                                                                                                                           | ۰.                                           |
| 14        | . r                            | 6.5                                   |                                       | n de la composition de la composition<br>La composition de la composition de la<br>La composition de la c |                                              |
| 16        |                                | · · ·                                 | 1.76                                  | 1.97                                                                                                                                                                                                                                                                        | 17.0                                         |
| <b>21</b> |                                | 6.7                                   |                                       | 1.96                                                                                                                                                                                                                                                                        | 15.5                                         |
| 27 🎝      |                                | 6.8 ± 0.5                             | 1.80                                  | 2.05                                                                                                                                                                                                                                                                        | 17.0                                         |
| 17        |                                | 7.58                                  |                                       | · · ·                                                                                                                                                                                                                                                                       |                                              |
|           | Experimental                   | 8.48                                  | 1.70 ± 0.05                           | 1.88 ± 0.05                                                                                                                                                                                                                                                                 | 11.6                                         |

From the table it can be seen that all the calculations give a binding energy 1-2 MeV less than the experimental binding energy. The mentioned calculations assume only two-nucleon forces to be acting in the three-nucleon system, and the discrepancy between theory and experiment suggests that three-body forces may play a significant role in obtaining the correct binding energy. If the experimental data on <sup>3</sup>He are considered as well, and compared with those on <sup>3</sup>H, one can get information about the charge dependence of the nucleon-nucleon forces.

The wave function of (T = 1/2, J = 1/2) three-nucleon bound system can be investigated from the form factor data.

## CORRECTION (on page 54)

In constructing phenomenological wave function, it seems likely to choose

$$\psi_1 = (\chi_2 \eta_1 - \chi_1 \eta_2) S_s^2 f_1(S_s)$$
.

1960 (MBC CONC. A CARACE AS CONCRETE AND

## REFERENCES

- 1. L. I. Schiff. Phys. Rev. 133, B802 (1964).
- L. M. Delves and A. C. Phillips. Rev. Mod. Phys. <u>41</u>, 497 (1969).
- 3. H. Collard et al. Phys. Rev. <u>138</u>, B57 (1965).

4. J. S. McCarthy et al. Phys. Rev. Lett. 25, 884 (1970).

- 5. V. N. Boytsov et al. Preprint. Role of two-photon exchange in the large angle scattering of high energy electrons on <sup>3</sup>He and <sup>4</sup>He nuclei.
- 6. S. Galster et al. Nucl. Phys. B32, 221 (1971).

7. M. Kirson. Phys. Rev. 132, 1249 (1963).

8. C. de Vries. Phys. Rev. 134, B848 (1964).

- L. M. Delves and M. A. Hennell. Nucl. Phys. <u>A168</u>, 347 (1971).
- 10. A. D. Jackson, A. Landé and P. U. Sauer. Nucl. Phys. <u>A156</u>, 1 (1970).
- 11. A. D. Jackson, A. Landé and P. U. Sauer. Phys. Lett. 35B, 365 (1971).

12. S. N. Yang and A. D. Jackson. Phys. Lett. 36B, 1 (1971).

P. Nunberg, D. Prosperi and E. Pace. Phys. Lett. <u>40B</u>,
 529 (1972).

14. R. A. Malfliet and J. A. Tjon. Ann. Phys. <u>61</u>, 425 (1970).
15. E. P. Harper, Y. E. Kim and A. Tubis. Phys. Rev. C <u>6</u>, 126 (1972).

- 16. E. Hadjimichael, E. Harms and V. Newton. Phys. Lett. <u>40B</u>, 61 (1972).
- S. C. Bhatt, J. S. Levinger and E. Harms. Phys. Lett.
   40B, 23 (1972).
- 18. M. Moshinsky. The Harmonic Oscillator in Modern Physics: From Atoms to Quarks. Gordon & Breach Publishers.
- 19. E. Riihimaki. Thesis M.I.T. (1970).
- 20. E. P. Harper, Y. E. Kim and A. Tubis. Phys. Rev. C 2, 877 (1970).
- 21. E. P. Harper, Y. E. Kim and A. Tubis. Phys. Rev. Lett. 28, 1533 (1972).
- 22. R. V. Reid. Ann. Phys. 50, 411 (1968).
- 23. I. McGee. Phys. Rev. 151, 772 (1966).
- 24. H. Feshbach and E. L. Lomon. Ann. Phys. 48, 94 (1968).
- 25. T. Hamada and I. D. Johnston. Nucl. Phys. <u>34</u>, 382 (1962).
- 26. E. Hadjimichael and A. D. Jackson. Nucl. Phys. <u>A180</u>, 217 (1972).
- 27. J. Tjon, B. F. Gibson and J. O'Connell. Phys. Rev. Lett. 25, 540 (1970).
- 28. R. A. Malfliet and J. A. Tjon. Phys. Lett. <u>35B</u>, 487 (1971).
- 29. E. Harms. Phys. Rev. C 1, 1607 (1970); C 2, 1214 (1970).
- 30. A. Laverne and C. Gignoux. Preprint. A Detailed Analysis of <sup>3</sup>H from Faddeev Equations in Configuration Space.

- 31. B. F. Gibson and L. I. Schiff. Phys. Rev. <u>138</u>, B26 (1965).
- 32. R. G. Sachs. Nuclear Theory. Addison-Wesley Publishing Co. (1953).
- 33. A. N. Mitra. "The Nuclear Three-body Problem" in Advances in Nuclear Physics. Vol. 3 (1969) eds. Baranger, Vogt.
- 34. D. D. Brayshaw. Technical Report, Univ. of Maryland. Evidence for a strong three-body force in the <sup>3</sup>H.
- 35. A. M. Green and T. H. Schucan. Nucl. Phys. <u>A188</u>, 289 (1972).
- 36. E. Lehman. Phys. Rev. D 4, 3324 (1970).
- 37. T. Janssens et al. Phys. Rev. 142, 922 (1966).
- 38. J. A. Tjon. Phys. Rev. D 1, 2109 (1970).
- 39. E. Harper, Y. E. Kim and A. Tubis. Phys. Rev. C <u>6</u>, 126 (1972).