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3He charge form factors is brought so that to study
phenomenologically the wave function of a bound three-

nucleon (T = 1/2, J = 1/2) system.
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INTRODUCTION

Study of three-~nucleon form factors is beneficial
from the point of understanding nuclear forces., Just like
binding energies, the form factors are quantities, that can
be measured to a sufficient degree of accuracy. Experiments
on electron elastic scattering, done at the Stanford Linear
Accelerator with 4-momentum transfer squared as high as
20 fm 2, can tell about inner structure of the scattering
nucleus. [It specifically applies to 3He nucleus.]

The el.m. form factors of 34 and 3He can provide
information about the ground_state wave function of a three-
nucleon bound system. L. I. Schiff gave an extensive

3 1)

theoretical analysis of “H and 3He form factors . It is

known that in the ground state both 3H and 3He have J = 1/2.

3 3He can be

If nuclear forces are chafge independent, “H and
treated as belonging to an isospin doublet (T = 1/2) three-
nucleon system. [In a model calculation of three scalar
nucleons (i.e., three spin zero nucleons), admixture of

3He‘wave function was found to be of

T = 3/2 component in
the order 0.01 - 0.001%.]2)There can be three possible 251/2
states of three-nucleon system: 1) fully symmetric in space
coordinates of all three nucleons (S state), 2) antisym-

metric in interchanging spatial coordinates,isaym .3).. mixed. .

1



symmetry (S') state (which means that the state is either

symmetric or antisymmetric under permutation of two nucleons

out of three). Also, there can be three ZPJ_/2 states (L = 1,

4 _ _ 4
P1/2 (L =1, s = 3/2) state, and three Dl/2

(L = 2, 8 = 3/2) states, present in the wave function. Spin

s =1/2),
part consists of three types of functions. Let Sz be +1/2.

X, = 6_1/2[(++—) + (+=+) = 2(=++)1] W

1
‘ + S =1/2
X, = 272 (4em) = (4]
Xy = 3720y 4 (4e) + (-0 S =372 .

A + (or -) in, say, the second position of a
paranthesis means that nucleon 2 has spin up (down). Isospin

part of three-nucleon wave function consists of

671/ 20 (4ao) 4 (4=4) = 2(~44)]

ny =
n, = 27 Y2 (hhmy - -0y ] “for 3vHe (T, = 1/2)
ny = 62— + (=+=) = 2(+=-)]

n, = 272 [(==t) = (=+-)1 , for ’m (T, = -1/2) .



The wave function, consisting of all possible
products of spatial, spin and isospin components, has to be
totally antisymmetrised, since the system consists of
fermions. (Given explicitly in Chapters II and III).

The charge and magnetic moment density operators, if
no distortion or mutual interference of nucleons is

considered, are

3 .
. = = _ l P ==
pc(r,rl,rZ,rB) = iil[z(l+Tiz)fch(r ri)
+ -1, YR (F-F)] (1)
2 iz’ “ch i
0 (F3F,FrF.) = % [% 0. (141, Yu £P  (F-%.)
M*“TT1TT2773 i 2 iz iz’ "p mag i

o's and T1's are unit amplitude Pauli matrices; u's’
are nucleon magnetic moments. f£'s can be regarded as
spatial distribution functions of charge and magnetic
moments, i.e., inverse Fourier transforms .of th(i), th(a);

P = n et
Frag @ r Frag (@ .

The form factors of 3H and 3He are calculated (under

the stated assumptions) as



- 1 — igr _ = =
ZFch(q) = ‘ . [dr etd 'Jdrldrzdra
Jdrldrzdr3w*w
x ¢*pc(-f7?1:;2,?3)¢ ’ (3)
' - _ 1 — igr (o= 4= =
uFmag(q) = : ."jqr e Idrldrzdr2
= 3= 4= 1
Idrldrzdr3w P
x Yo (TiT), T, T30 o - - (4)

where Z = 1, u = 2.975 for °H and Z = 2, u = -2.125 for 34e.

The magnetic moments u, u_, u, are in magnetons. From the"

p

PR P _ n - | S =n = i
equalities Fch(O) =1, Fch(O) = 0, Fmag(O) Fmag(O) l, it

can be deduced that

3 -3
H _ He =
Also,
3., 3
H _ He -
Fmag(o) - Fmag(o) - 1 o

3H and 3He,

The spatial components in J are the same for
Mutual interference of nucleons is found to make negligible
contribution to tﬂe-charge density operator, whereas-
contribution to magnétic moments and magnetic form‘factoré
is significant. Among various mechanisms of interference
effects, the interaction of external el.m. field with a
charged pion exchanged by two bound nucleonskis dominant.
Coupling of,the photon with two exchanged pions and goupliﬁq

with p, w, ¢ mesons is an effect, smaller by an order of



magnitude z)a There are few qualitative calculations done

on the distortion of nucleons in bound systems. It is
believed that contribution from them is less than that from
interference effects. Essentially, distortion of a nucleon
is (Nm) resonance. Diagrams of interference effects and
distortion are given in Figs. l(a,b) and 2 respectively.

A, M. Green and T. H. Schucan 36) did calculation of

3H and 3He considering the contribution

magnetic moments of
from A(1236) resonance, and found that at most a 1/4%
correction to the isoscalar moment and about 2% correction
to the isovector moment will result, whereas one pion
exchange contribution to the magnetic moments is of the
order of 5%. .Hence; to a reasonably good approximation,
the nucleon form factors in Eq. (3) are taken to be those

3H and 3He charge

3H and 3He

of free nucleons in order to calculate the
form factors, and the information about the
charge form factors can be regarded as a first step in

studying the wave function of a three-nucleon bound system.

v
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Coupling of external photon with short range
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Fig. 1(b)
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CHAPTER I

EXPERIMENTAL DATA ON FORM FACTORS OF 3H AND 3He

The elastic scattering cross section of an electron
by a spin 1/2 particle with the assumption of one photon
exchange, is described according to the Rosenbluth eduation

th =c=1). See, e.g., Ref. 3.

2

2 , .2 q 2.2 2
F7, (7)) + —5(1+)"F (g™)
do _ o ch 4M2 mag
dan NS 2
1+ =
aM
+ 2 —3341+K)2F2' (q®) tan® &
A 2 mag ! 2 !
M
where
4 cos2 8
o = -8 2 . 1
NS 2 .. 2 6 2E
4 sin® 3 g, D0 52 8

is the cross section for a point-particle scatterer. The
expression in curly brackets depends on tﬁe electromagnetic
structure of the scatterer.
0 is the incident energy of electron in lab system,
q is the 4-momentum transfer,
M is the mass of the scattering nucleus,
Fch(qz) is the charge form factor with ug}?mpprma}isation

S

for a charged particle: Fch(O) =1,
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Fmag(q ) is the magnetic form factor with unit

normalisation: Fmag(O) =1,

k is the anomalous magnetic moment expressed in

magnetons.

3)

analysed the cross section data

for 3H and 3He for q2 up to 8 fm_z. Validity of the one-

Collard et al.

photon-exchange assumption was checked by plotting

do/dQ:o versus -tan2 8/2 for a given qz, and seeing

NS
whether it is a straight line as the Rosenbluth equation
indicates. From the Rosenbluth plots for every q2, the

absolute values of charge and magnetic form factors of 3H

3 3

and 3He were extracted. Data on the "H and “He form factors

are given in Table I. The charge form factors of 3H and
3He (absolute) are drawn in Fig. 3.

McCarthy et al. 4) have analysed data for q2 up to
20 fm_z in order to f£find the 3He charge form factor. First
order correction in the Born approximation due to Coulomb
distortion is taken into account by using, instead of g, a
corrected 4-momentum transfer. Absolute value of the Fourier
transform of a preliminary charge distribution, compatible
with the phase shift results of a relativistic electron,
scattered by the charge distribution, was compared to the
experimental (absolute) charge form factor. Thus, an

expression for the charge distribution with appropriately

fitted parameters was adopted.
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Table I Experimental Data on “H and 3He Form Factors

(Ref. 3)



TABLE I -

2, F_, CH) Fmag(BH) F, (CHe) Fmag(3He)
0.622 + 0.007 0.653 + 0.022 0.567 + 0.004 0.676 * 0.075
0.503 + 0.007 0.475 0;015 0.431 =+ 0.004 0.479 + 0.046
0.387 + 0.007 0.379 + 0.012 0.329 * 0.004 0.385 + 0.031
0.312 + 0.006 0.312 * 0.008 0.258 + 0.003 0.291 + 0.020
0.267 + 0.005 0.242 * 0.006 0.209 + 0.002 0.203 + 0.014
0.215 + 0.004 0.199 + 0.005 0.1614 * 0.0017 0.167 + 0.010
0.175 + 0.004 0.167 + 0.004 0.1326 + 0.0015 0.128 # 0.009
0.187 * 0.003 0.139 * 0.003 0.1013 * 0.0010 0.118 + 0.005
0.118 + 0.004 0.109 * 0.005 0.0813 £ 0.0012 0.093 # 0.008
0.0758 + 0.0041 0.0792 +.0.0032 0.0548 £ 0.0015 0.0566 + 0.0056

-
0.0295 * 0.0039 0.0416 * 0.0018 0.0173 * 0.0010 0.0318 * 0.0026
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2.0 4.0 6.0 8.0

qz(fm_z) IRIRRESS 5 L
Fig. 3 Experimental data on tiﬁ(qz)] and chge(qz)l are

fitted by the curves I and II respectively (Ref. 3).
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2
r
exp (- —)
_ 4a2 b2 l6cz—r2 r2
p(r) - Z[ 3/2 3 - 3/2 ¢ 7 eXp(- '_"“7)] ’
8w a 2T l6c 4c
(1.1)
in the Born approximation,
2 2 2 2
FB(qz) =e 29 bzqze ¢4 P (1.2)
which is the 3-d Fourier transform of 1/2Z p(x): q2 = §2 for

elastic scattering. The form factor FB(qz) can fit well

the experimental data on

3
¥ 1% a?) |

up to 8 fm_z. So as to produce the diffraction minimum, -

appearing at q2 = 11.6 fm_z, a correction Ap(r) is added to

p(x).
deqg sin qp¥ p2 1 22
Ap(x) = [ + cos g,rlexp(- ¥ pr”) ,
2Tr3/2 dyt 2q§ 0 4
. (1.3)
three-dimensional Fourier transform of Ap(r) is
9 d-g
AFS(q7) = d exp[-(—i;g)zl . (1.4)

Best fit was obtained for the values of parameters

a=0.675 + 0.008 fm

I+

b = 0.366

I+

0.025 fm e
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0.836 + 0.032 £m

rms

c =
@ = (-6.78 t 0.83) x 107>
gy =3.98 0.09 fm L
p=0.90 % 0.16 fm L.
The rbot mean sguare charge radius is r = 1.88 fm. (See

Fig. 4).

In Ref. 5 it is argued that near the minimum, two
photon exchange correction in the elastic cross section is
about 30 - 40%. Corrections from vector-meson dominance
(i.e., the electron exchanges a photon by coupling through
p~-meson with the 3He nucleus) were shown by E. Lehman 37)
to be unable to account simultaneously for the form fact&r

dip at 11.6 fm 2

, and the behaviour at high momentum
transfe:. But these corrections are quite small, by
themselves.

According to the theory given by L. I. Schiff,

charge form factors of 3H and 3He depend linearly on th and

th. Experimental data on th are obtained from elastic
electron-proton scattering 38). One photon exchange is a

good approximation for q2 up to 22 fm_z. (See Table II).

Neutron form factors are derived from elastic electron-

" deuteron scattering 6). The nucleon form factors were

7), and de Vries 8 by so-called

earlier fitted by Kirson
three-pole fit, which is a three-pole approximation to the

dispersion theory of nucleon form factors.



Fig. 4

o
1=

T
cns P
—
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The 3He charge form factor squared is fitted by
parametric functions [Egs. (1.2) and (1.4)] with
parameters

a=0.675 + 0.008 fm,

b =0.366 *+ 0.025 fm,

c =0.836 = 0.032 £fm,

d = (-6.78 * 0.83) x 1073,
4, = 3.98 + 0.09 fm T,

p=0.90 *0.16 £m I.

The charge root mean square radius for the charge

distribution [Egs. (1) and (3)]) is equal to the

experimentally found number.

15



Table II Experimental and Theoretical Values of the Proton

Form Factors
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TABLE II | :
Experimental Values 37) Three—polé Fit 7,8)
- qz(fm-z) th Fgag th Fﬂag
4.00 0.689 + 0,019  0.623 £ 0.018  0.658  0.644
4.6 0.615 * 0.015  0.611 % 0.010  0.624  0.610
5.0 0.599 + 0.026  0.618 * 0.021  0.603  0.588
6.0 0.577 + 0.019  0.533 % 0.014  0.554  0.540
7.0 0.521 + 0.021  0.490 * 0.010  0.511  0.499
7.5 0.504 + 0.022  0.472 + 0.011  0.492  0.480
8.0 0.453 + 0.020  0.466 % 0.009  0.474  0.462
9.0 0.422 * 0.027  0.437 + 0.011  0.440  0.430
10.0  0.424 + 0.017  0.400 + 0.007  0.410  0.402
1.0 0.398 + 0.025  0.379 + 0.009  0.383  0.376
12.0 0.363 + 0.020  0.355 + 0.007  0.359  0.354
13.0 0.349 + 0.040  0.327 + 0.015  0.337  0.333
14.0 0.315 + 0.028  0.316 + 0.008  0.317  0.314
15.0 0.304 + 0.053  0.297 + 0.015  0.299  0.297
16.0 0.271 + 0.024 0.282 t 0.006  0.283 0.282
17.0 0.234 + 0.041  0.277 + 0.008  0.267  0.268
18.0 0.274 + 0.026  0.250 + 0.005  0.253  0.254
19.0 0.254 £ 0.039  0.245 % 0.008  0.240  0.242
20.0 0.187 + 0.073  0.237 + 0.010  0.228  0.231
22.0 0.166 + 0.075  0.224 + 0.007  0.207  0.211
26.0 | | 0.178 £ 0.005  0.171  0.179
0:160 + 0.006  0.157  0.166
0.145 +

0.006 0.144 0.154
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Behaviour of the isoscalar form factors

- 1 P - P n ,
GES T2 (Fch tF h) and GMS [(1+Kp)Fmag * KnFmag] is

supposedly dominated by intermediate states of two pions,

c0upled to w and ¢ mesons. Isovector form factors

_ on P _ Fh
GEV (Fch bch) and GMV {(1+:<p)Fmag Ko mag] are
dominated by effects of the p-meson.
s s
_ : el e _ -
GES, - 005 { 2 + 2 + l Sel Sez} 4
15.7 26.7 (1.5)
: ml Sm9 4
GMS = 0.44 { 5 + 5 + 1 - Spm1 smz} p
1+ pag 1+ g (1.6)
: vel ‘
GEV = 005 {m'"‘éfﬂ + l - vel} ¥ ) (l°7)
1+ 539
- V
_ - ml -
GMV - 20353 {—“&__-2’— + l le} © (1-8)
1+ =2
8.19

Fitted parameters are Sa1 = 2.50, Seg = -1.60, Sm1 = 3.33,

sm2 = =2.77, vel le

Theoretical expression for the elastic electron-

= 1.16, = 1.11. (See Fig. 5).

deuteron scattering cross section involves deuteron wave

function, which is dependent on the choice of internucleon

6)

potential. S. Galster et al. used parametric function

R S S R L S BRI

D N



fch\\i’ ]

0 6 12 18 24
q? (£m”2)

1 L ] L : £

Fig. 5 Curves I and II, corresponding to,th(qz)_gq§wggh(q?)_respecf

tively, are obtained from the Egs. (1.5) and (1.7).
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2
gz‘
no_ . ___4M P
Fon = “Hn 5 Fen (1.9)
1+ p—gf
4M

to fit the parameter p, using different deuteron wave

23) 24)

functions. For the McGee ;, Lomon-Feshbach and

25)

Hamada-Johnston wave functions, the corresponding values

of p were found equal to 19.7, 5.6 and 10.7. The dependence

n , . . .
of Fch on the choice of deuteron wave function is shown in

Figs. 6(a,b,c).



P 6 (4)

Fig. 6(b)

» Fig. 6(c)

The solid curvevis obtained with the fitting
parameter p equal to 19.7, by using the McGee
deuteron wave function. The dot-dashed curve
corresponding to th = -un(q2/4M2)F£h and the
dashed one corresponding to

n

Fch i | (q2/4M2)/[1 + (qz/Mz)] th are drawn

"for comparison in the three Figs. 6(a,b,c).

The solid curve is obtained with the fitting
parameter p equal to 10.7, by using the Hamada-

Johnston wave function.

The so0lid curve is obtained by using the Lomon-

Feshbach wave function with p = 5.6.



By
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CHAPTER II
DETERMINATION OF THREE-NUCLEON WAVE FUNCTION AND

CALCULATIONS WITH IT

The three-body problem for realistic two-nucleon
forces has been tackled in three different ways. Variational

calculations with forces like Hamada-Johnston have been done

9)

by L. M. Delves et al. The problem has been solved by

diagonalising the hamiltonian for soft-core potentials: for

22) 10,11,12,26)
14

Reid soft-core - by A. D. Jackson et al.

and for Riihimeki potential 19) by P. Nunberg et al. 13).
For Reid soft-core potential, the Faddeev equations have been

14)

solved in momentum space by Malfliet and Tjon , and

Harper, Kim and Tubis 15). Harms et al. 16,17,29) have used
unitary pole approximation method in solving the Faddeev
equations. The Faddeev equations have been solved in

configuration space for Reid and Sprung, de Tourreil forces

(Ref. 30).
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A. Variational Calculations

A two-nucleon potential is called realistic in the
sense that it describes properties of two-nucleon systems
fairly well. In a trinucleon system, interactions are
considered between nucleons 1 and 2, 2 and 3, 3 and 1.
Variational procedure implies choosing a trial function.
Any function of three particles F(1,2,3) can be decomposed
into three mutually orthogonal functions.

F=F_+F +F,; F_ is completely symmetric in
interchanging any two particles. Fa is completely antisym4~
metric, Fo =lle + sz - is a sum of two functions:

1) symmetric under, for instance, 1l +«+ 2 permutation le?
2) antisymmetric under 1+-+2 permutation Fm . Trial function

2
is the sum of antisymmetric products of radial and angular-

2)

spin-isospin parts .

‘(2.1)

1¥m2 = fmo¥m -

sta + faYS + fm
The angular part for given orbital angular momentum
L of the system is a combination of the Euler angle functions
DﬁM(usy), gy, M=-L, ..., L. The spin-isospin part, in
general, has states of § = 1/2, 3/2 and T = 1/2, 3/2.

(clczc3) describes the spin and (nlnan) - the isospin parts.
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In Ref. 9, the trial function of the bound state

was taken as

Yo T % fi?é(r12’r23'r31)Yi,k(“BY'§152§3'”1”2”3) '
(2.2)
Q is an integer parameter, indicating the degree of trial
function.
1,2,3 are i-index values for L=0 states (i.e., S,Sa,s')F
4,5,6,7 are i-index wvalues for L=1 states,
8,9,10 are i-index wvalues for L=2 "old" states,
11,12,13,14 are i-index values for L=2 "new" states.
k is the index for different symmetries.

Radial components féQ) are products of a suitable
¥

set of one-dimensional functions {¢2(r),£ =1,2,3,...1}.
£(Q) z a P {d,(r )0 (r, )0 (r,.)}
i, 2 imn "k TLY12 "m 23 'n T 31 !
,M, N
2+m+nsQ (2.3)

P, 's are symmetrising operators. The P, 's are written out

in equationsAZ.G(a-d).

- - ~Yr
pp(x) = {1 - 0Ty e
P
r
‘ -1
x {1+ ¢ a expl[-2ky(r-c)1} , (2.4)
- k%
k=0
¢ is core radius. p = 0.5. 1Inside the core, ¢£(r) = 0.

<
The factor in curly brackets is to account for boundary

condition: ¢£(c) = 0. v, 6 and the a, , are nonlinear
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variational parameters. ¢£(r) is taken in the form similar
to deuteron wave function.

§ = 4.0 ' Yy = 0.25 for all L=0 states,

§ = 4.0 ’ Yy = 0.2 for all L=2 states.

P states contribute only 0.08 MeV for H-J potential.

The expectation value of hamiltonian over the trial
function with unit normalisation is minimized by Ritz
variational principle. In that way probabilities of different
components are estimated. 3y in the functions ¢£(r) are not
independent variational parameters, but are chosen so that as
many as possible of the sequence of symmetric S- and D-states,
are orthogonal. The coefficients a; gy 2re variational
parameters.

The energy of 3H is obtained by extrapolating the
curve E(Q) as E_ + AQ_r. E(Q) is the expectation value of
hamiltonian, calculated for wQ, Q can be 1, Q can be 2, up to
a finite QO. A and r are appropriately taken to fit the
curve E(Q) up to QO‘ E_, the energy for H-J potential, was
found to be -6.5 * 0.2 MeV. The trial functions converge to
some wave function with increasing Q. 1In Ref. 9, the trial
function corresponding to Q = 7 was taken as the trinucleon
wave function. For 3He Delves and Hennell did variational
calculations including both the H~J potential and the Coulomb
interactipn between two point protons, and got

E(3He) = -5,95 '+ 0.2, neglecting the T = 3/2 admixture. In

PEOIUII R 4 e
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Table III are given properties of the 3H and 3He ground
state wave functions for H~J pctential. Also, see Fig. 7.
Adding a phenomenolcogical three-body force

V3(a) = = V3 exp[=a(r12 + r23 + r31)] so as to adjust the
3

binding energy of “H to the experimental number 8.418 MeV,

moves the diffraction minimum of 3H charge form factor to

14 fm_z. Probabilities of different components are not

altered much. The experimental value of E(3He) is -7.664 MeV.

<rch>(3H) =1.70 fm, <rch>(3He) = 1.87 fm are the values,
3)

determined by Collard et al. experimentally.

&



3H and 3He for H-J Potential ;

Table IIT Properties of
in case of ‘He Coulomb Forces are included as

well



Property
Energy (MeV)
<rch>(fm)
rmass (fm)
P(s) (%)
P(s_) (9)
P(S") (%)
P(P) (%)

P(D) (%)

Diffraction

minimum of |F_, | (fm

2)

TABLE IIX

-6.5
1.85
2.00
89.2

2x10°

0.03

2.0

13.4

He

-5.95 %

1.90

2.11

89.4

8.63

12.5 =

00

0.3

26
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Fig. 7 The absolute charge form factors of 3H and 3He
for Hamada-Johnstcn potential (adding the
Coulomb repulsion between point protons in 3He)

are compared to the experimental curve of

3He 2
IFch (q°) | (taken from Ref. 9).
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B. Diagonalisation of the Hamiltonian Matrix in the Basis

of Harmonic Oscillator Eigenfunctions

The harmonic oscillator hamiltonian of three equal
mass nucleons (harmonic oscillator forces of frequency
w/vV3 are acting between two nucleons) in terms of the Jacobi

coordinates is

. ﬁz mow” =2 | =2, .
Hyo = - (V +V)+—2+(c + n7)
- =1/2 - _
L = (xl + X, 2x3) p
- _ _1/2 —_ —
n = 1 X2) © (2.5)

Eigenvalues of Hho are ﬂw(p+3), p = 2nc+2c+2nn+2n

is the total number of oscillator quanta. Angular momenta

TC and Tﬁ couple to orbital angular momentum T of the system.

nC and n  are radial quantum numbers. The eigenfunctions of

=2
ho' £z;
the total wave function.

H and Iﬁ: <E,ﬁ|nc ,n 2 L>, form spatial parts in

4

We define operators

P = % [1 + (1,2) + (1,3) + 2,3) + (1,2,3) + (1,3.2)1 ,
(2.6a)

where (1,2) is 1 <=2 permutation, (1,3,2) means 1+>3-+2->1;

P e -
IR 4
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P_= 2 [1- (1,2) - (1,3) - (2,3) + (1,2,3) + 1,3,2)] ;

a
(2.6b)
_1 _ _
Pa =7 [21 - (1,2,3) (1,3,2)1101 + (L,2)1 (2.6¢)
_ 1 ~ B _
P o= % [21 - (1,2,3) = (1,3,2)1[1 = (L,2)] (2.6d)

and note that

Ps<f,ﬁ|n £/ Pn 2 ,L> is spatially symmetric , (2.7a)
Pa<f,ﬁln C,n 2 ,L> is spatially antisymmetric ,
(2.7b)
Pml<f,ﬁ|n E,n l yL>  is symmetric under 1<-2
permutation , (2.7¢c)
Pm2<f,ﬁ|n C,n 2 ;L> is antisymmetric‘under 1<+ 2
permutation . : {(2.7d4)

In the totally antisymmetric wave function, one

couples Pk[<f,ﬁ|n ,n 2 ;L>] with the Spin-isospin function

g
of adjoint symmetry: L should couple with S to J = 1/2,

JZ = +1/2, or J = 1/2, Jz = ~1/2., The eigenstates of Hho’

antisymmetrised according to the way as discussed above, form

the basis for diagonalisation of the hamiltonian

H =H  + [V(1,2) + V(2,3) +V(1,3) - % mwl(Z2 4+ 7201 .. .

(2.8)
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w' serves as a parameter, chosen so as to obtain maximum

binding energy.

11) used Reid soft-—-core

Jackson, Landé and Sauer
potential including all partial waves £ 2 2. The basis for
diagonalisation consisted of 34 guanta of symmetric S states
[p = 34, and the number of states is 273], 12 quanta of
mixed symmetry S' states [27 states], and 20 quanta of D
states [220 states]. The oscillator length b = ('h/mm)l/2
was treated as a nonlinear variational parameter and the
value of b = 0.85 fm was obtained. Complete basis should
consist of an infinite number 6f quanta in all the L = 0,

L = 2 states. L = 1 states have negligible probability, and

are not taken in the basis.

Calculated triton ground state properties (Ref. 1l1l)

p(D) p(S') b(fm) B=-E(MeV) P (%) Pg,(3) V(MeV) r(fm)
L=2 L=0
18 10 0.80 5.712 9.05 0.39 -58.007 1.588
18 10 0.80 5.658 8.91 0.38 -57.005 1.616
22 10 0.80 5.867 9.07 0.40 -57.684 1.600
18 14 0.80 5.798 1 9.22  0.62 -.-58.369 1.590
18 2 0.80 5.341 8.32 0.00 ~-56.065 1.596
20 12 0.80 6.091 8.92 0.49 -56.316 1.647
20 12 0.85 6.265 8.89 0.53 -55.352 1.695
20 12 0.85 6.298 8.92 0.52 -56.109 1.669

20 12) 0.85 6.057 8.52 0.43 ~54.884 1.680
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The last row contains results for potential,
restricted to even partial waves only (2 is even).

The calculated root mean square radius of 1.669 fm
yields the root mean square charge radius of 1.85 fm when
effects of finite proton size are included. Collard et al. 3)
found <r_>(’E) = 1.70 fn.

Difference A[p(S)] = E(x,p(D),p(8"))-E(p(8),p(D),p(S"))
of energies for infinite and finite number of gquanta in S
state is fitted to the type of wave Kp(S)npo E(e,p(D),p(S"))
need not be known; E(p(S),p(D),p(S')) for different p(S) can
tell what k and p should be. Then E(»,p(D),p(S8')) is found.

Similarly, E(p(S),»,p(S")) ard E(p(S),p(D),x)) are evaluated.

p(8) p(D) p(8") =~E (MeV) A (MeV)

w 18 10 5.999 0.286
26 w0 10 6.009 0.298
26 18 w 5.917 0.206

Then the actual energy E is found as
E=s E(w,o,») = E(p(S),p(D),p(S")) + Alp(S)]
+ A[p(D)] + Alp(S")] . (2.9)

Binding energy was found to be 6.50 MeV.
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With the trinucleon wave function thus obtained in
the basis of 484 harmonic oscillator states, Yang and
Jackson 12) found the minimum in 3He absolute charge form
Factor to occur at qz ~ 12.9 fmng Coulcmb forces were not
taken into account in finding the 3He wave function. See
Fig. 8.

26)

Hadjimichael and Jackson calculated binding

energy and cherge form factor of triton for phase equivalent
potentials of the Reid soft-core (only 180 and 3Sl=3Dl

partial waves of the N-N interaction were included). For

Reid potential itself, binding energy was found egqual to

6.25 MeV; dip in lFZﬁ(qz)l occurs at q2 = 13.5 fm 2. Position
of the dip in ]Fcﬁ(qz)l varies for different phase equivalent

potentials, which give differént binding.

3,
If By = 4.753 MeV, dip in |F | is at q° = 13.7 fm 2,
5.34 . 12.4 ,
6.03 | 12.7 )

For Riihimaki potential (in Ref. 13) all partial
waves in the N~-N interaction with % £ 4 were taken into
account. Maximum number of oscillator quaﬁta was taken equal
to p = 24, and the total number of basis states equal to 348.
The curve for triton binding energy BT(p) is extrapolated as
o -B r2>1/2(3 2>1/2(3

"B, -~ Ap 7. <

7 H) and <r

He) were also extra-
polated by an exponential formula. Following results were

obtained.
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Fig. 8 The absolute charge form factor of 3He for Reid
soft-core potential compared to the experimental

3
curve |FcEe(q2)] and the curve obtained by Delves

and Hennell {Ref. 9) {(taken from Ref. 12).

P



BT = 6.28 MeV ,

«r?>1/23y = 1.77 £m

<r?51/2 346y = 2.10 fm

Extrapolated values are

(=]

BT = 7.0 £ 0.3 MeV ,

2.1/2

<r”> (3H) = 1.83 fm

2 1/2(3

<r©> He) = 2.14 £fm

P.=4.6% .

r

4

!

r

i
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C. Solution of the Faddeev Equations

The nonrelativistic 3-particle scattering matrix T
is equal to

T(s) =V - vi{g-s) *T v , (2.10)

where hamiltonian H is the sum of the kinetic energy operator

(in the c.m. frame) Ho and potential energy operator
3
V= I Vi’ Vi acts between particles j,k # i. s is the total
i=1
energy of three-nucleon system.

Gy(s) = (Hy - 5) 7 (2.11)

is Green's function for free nucleons. As Faddeev shows,

the T-matrix can be decomposed into three parts

o= p(L) (2 L a3 2.12)
1) gy = T, (s) - I Ti(s)Go(S)T(j) (s)
j#L

i=1,2,3, are a set of three Faddeev equations; Ti's are
off-shell two-body T matrices, satisfying the Lippmann-

Schwinger equations.

T;(s) =V, = V.G, (s)T; (s) . S O 3 )
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In the transformation of momentum variables {Refs.

14,20)
m. k., - m.Kk
T = 21 1 Vel (2.14)
[2mlm2(m1+m2)]
- my (kl+k2)-(ml+m2)k3 ' (2.15)
[2m3(m1+m2)(m1+m2+m3)]
Hy = 52 + 3% .. (2.16)

Eigenstate of HO’ which is simultaneously eigenstate
of three-nucleon orbital angular momentum, spin and total
angular momentum, is multiplied by isospin functions of

definite (T,TZ).
lpsas0> = |lpa(a)d, (88)8137 , (Te) T > (2.17)

and the product is antisyﬁmetrised with respect to
interchanging any two nucleons. The bound state wave

function is a sum over antiéymmetric basis vectors |p,q,u>A.

|¥g> = 8 <pac|vg>|pga>, . - (2.18)°
o : .

(H - Ej) |zpB> = 0 ‘ | (2.19a)
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2= @ piqsa, =0 . (2.19b)

(Hy - p

For the energy s = Eg, <pq0L|T(s)|1,b>A has a bound-
state pole, and residue at the pole gives us the value of the
component <pq0,]1pB>° Equations for <pqoa!T(l)(s)|1p>A

(i = 1,2,3) are inhomogeneous integral eguations of the type
F(s) = Fo(s) - k(s)F(s) . (2.20)

If the kernel k(s) is multiplied by complex variable XA, one

‘has a different equation
F(s,A) =’F0(s) - A (s)F(s,)) . (2.21)
Kernel Ak (s) is of Hilbert-Schmidt type. So, F(s,A) is a

meromorphic function of X with poles at characteristic wvalues

la(s) for given s. That is, F(s,A) can be written as (see

Ref. 14)
B (s) . '
F(s,\) = I 7‘%5727 + R(s,\) . (2.22)
o o

F(s,A) is expanded in power series of A [Neuman Series].

F(s,\) = Fy(s) - A(s)F(s) + Asz(s)Fo(s) ...

RS P mpe e

ATF () . (2.23)

= 3 (“l)nAnKn(s)Fo(s) = 3

n=0 n=0
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Since R(s,X) is an entire function,

oo

R(s/2) = I 2R (s) . : (2.24)
n=0 .
So,

(s) =2 i (s) (2.25)
Fol8) = + R_(s) . )

n o [)\a(s)]n+l n .

F (s)

: n+l _ 1

N I ) B W ) N (2.26)

Ao(s) is the smallest characteristic value where F(s;A) has
a pole.

Since the original equation corresponds to A = 1,
the pole AO should be equal to one for the energy s = EB'
This way of finding the pole is'known as the ratio method

(or iteration method).

Padé approximants method is following 39). Nth
Padé approximant to F(s,A} is
: N n N n
F (s,A) = ¥ An)x /(1 + I Bn)\") : (2.27)
[N,N] - =
n=0 n=1
2N+1
this is compared to I A Fn(s), and the coefficients An
n=0

and Bn found. The pole of F[N,N](S'A)IA=1 gives the binding

20)

energy -E_. Harper, Kim and Tubis considered set of 8

B
different o, whereas Malfliet and Tjon considered only the

set of first 2 o.
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The basis states 39) are
Component (szi (ss) § (Tt) t=1/2, TZ=+1/2 for 3He
P =~1/2 for 3H
1 (00)0 (0 1/2)1/2 (1 1/2)
2 (00)0 (L 1/2)1/2 (0 1/2)
3 (2002 (1 1/2)3/2 (0 1/2)
4 (02)2 (L 1/2)3/2 (0 1/2)
5 (22) 2 (L 1/2)3/2 (0 1/2)
6 (22)1 (1 1/2)1/2 (0 1/2)
7 (22)1 (1 1/2)3/2 (0 1/2)
8 (22)0 (L 1/2)1/2 (0 1/2)

The Lippmann—Schwingef equations [B stands for

angular, spin and isospin dependence] are

2 Vg(p,p")

tB(p,p",z) = VB(p,p“) - 47 J dp'p’ —;Tizzw— tB(P':P";z)
0 (2.28a)
. © i (p)»
-2n?tg (p,pip?) = L sinsg(pre’ P , (2.28b)

z is the energy of two-nucleon system and §, is the phase

8
shift.
In Ref. 21, Harper, Kim and Tubis have solved the

Faddeev equations for the Reid soft~core potential, effective
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.only in the two-nucleon lso and 381-3Dl states. Yang and

Jackson ;2) used 1D2, 3D2 and 3D3»Reid interactions also,

which do not have significant effect on the final results.
Only the first five basis states are retained. The

probabilities are P(S) = 89.7%, P(S') =-1.68%, P(D) = 8.56%.

14)

Malfliet and Tjon using the same forces found

‘P(S) = 89.9%, P(S') = 1.8%, P(D) = 8.1%. The difference in
P(D) is due to the discarding of 4 and 5 components by
Malfliet and Tjon. Authors of Refs. 14 and 21 get the

same energy E_ = -6.4 MeV, when components 4 and 5 are

B
left aside. If 4 and 5 components are included,

EB = -6.7 MeV 21). General expression for the 3He form

factor in momentum variables is (r is symmetry index of

spin-isospin function 21))

2che ? = f p2dp I qldq ¢ £ I (DM AL
0 0 L, 4,8 r,r* A=0 /§'
1 P (z) 3 \
X =0 IAT 2 I 4z 5% Vs |pa, (La)lw, 33>

-1 .

X

g llz: 18, (%) (et +e0y @3-ty ) 11>

X

r 3He
<PQ(L2)£W8JJZ [wB >,
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Diffraction minimum in IFzﬁe(Qz)l by taking all
eight components in IwB> was3found to occur at 02 % 15.5 fm
See Fig. 9. The slope of IFéEe(QZ)] at Q2 = (0 gives charge
radius 1.96 fm. [Experimental number is 1.88 * 0.05 fm.]

Using only the i,= 0 components in trinucleon wave

.
function, derived for the (“S0 and 3Sl=3Dl) Reid soft-core

potential, Tjon et al. 21) calculated charge form factors of

3H and 3He as

2F3He (2FP 4+ 72 . - 2(FP ~ FD ) (2

ch ch ch’"1 3'ch ch’'" 2 ' *

F3H = (2F® + FPyF. + 2P - PR )P (2

ch ch ch’” 1 3'"ch ch’72 7 )

where

Fil@) = f a’r a’q u(e,0)u(e, |0 - (_3_»5_175“ ' (2.

— 3, .3 5 - 49
Fz(q) = -3 I d”P d47Q U(P,Q)VI(P,IQ ATEQ;T7§|) .
{2.

= _1 ~1/2 ¢ & o
= F(am (kK y+k 3-2Kk, )

Functions U and V., correspond to components 1 and 2.

1
For this case

ECH) = -6.8 MeV

3 =
Rch( He) = 2.05 fm ,

2

30a)

30b)

31la)

31b)
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Fig. 9 The solid curve of ]Fzge(Qz)[ for Reid soft-core
potential (with even partial waves) was obtained
by using all components of the total wave function.
dashed curve - by using S and S' states in the
total wave function only, and ddt-dashed curve
was obtained by using (L = 0, & = O)i.= 0 in the
S state and 5' state in the total wave function

(taken from Ref. 21).
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: 5 i
Rch( H) = 1.80 fm .

Experimental numbers are

R 3

i
H
20
(o]
|

ch( He) * 0.05 fm

R 3

i
=
o
~J
<o
I+

H) 0.05 fm .

ch(

17.0 fm 2. (See

3
The minimum in chge(qz)l is at g2
Fig. 10.)

For caléulation of processes that are not strongly
dependent upon the short range behaviour of the wave
function, the unitary pole approximation wave function is
reliable 29),

The unitary pole approximation is a method for
solving the Lippmann-Schwinger equations. For two spinless
bosons interacting through S-wave potential only, there is
one L-S equation (taken as an example).

T(so) =V + VGO(SO)T(S (2.32)

0) °
Consider the homogeneous L-S eguation.

T(sy) = VG (s,)T(s,) , Gylsy) = (s-Hy) ™% . (2.33a)



(a)

3 Fog(“He) =10

1

o

! 1] "
5 C"(l z 4

Fig. 10 The curve (a) is obtained for Reid soft-core

potential (taken from Ref. 27).
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[, (s4)> = A, (50VG,(s0) [¥ (s)> . (2.33b)

Fixing SO

binding energyl, g
v, > = Anveo(—3)|¢n> .

The adjoint equation is

n' =Un<Xn]VG0 (—’B) ’
with kn = U, being real;
|%,> = Go(-B) v, > .

The orthonormality condition is

<y 16, (-B) [v > = -6 .

at a negative value -B [B is the two-particle

-dependence is dropped from Iwn> and A_.

(2.348a)

(2.34Db)

(2.34c)

(2.35)

N ep><y ]

The [y _>'s and A 's are such that V= I - ————

m=1 m

(with N possikly infinite). Then the homogeneous equation

without so—dependence is satisfied.

Truncating it to finite

N means instead of the correct potesntial, an apporoximation

of a finite rank separable potential is madé. “Thus the
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Lippmann-Schwinger equations can be solved with an

arbitrary small degree of approximation.

T(s) =V + VGO(s)T(s)
ly_><y_|
= I - —F—T— [1 + Gy(s)T(s)] . (2.36)
m m
The unitary pole expansion matrix TUPE—matrix is
N
Tpg(S) = I lo>dy p(sd<u | s (2.37a)
m’n—l
_l _
= (A o= A8+ <v |G (s) v > . (2.37b)

In eachvterm of Vv, |wn>'s correspond to form factors
in a separable potential for different An’ and a particular
energy s;- If the two nucleons are known to be bound by an
energy B, SO is taken to be -B. For antibound nucleons,

s, = 0, and for unbound nucleons any convenient S is taken.

0
TUPE(s) is explicitly solved through A(s), and substituted
into the Faddeev equations 16). TUPE gives correct deuteron

and low energy two-body scattering wave functions. Matrix
elements of two-nucleon Ti-matrices in the three-nucleon

space (p,g) are

B3|Ty (8 |5'3"> = 8(B-B) <Fleyy (B - 3 pIIT>

Y (2.38)

tjk is the TUPE—matrlx.
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The unitary pole approximation to Reid (singlet

and triplet) soft-core potential was performed by E. Harms

16)

et al. Only 1 and 2 compcnents in the wave function

were retained. Results agree with those of Tjon, Gibson and

O'Connell 27)0

3 _
R, (*He) = 1.97 fm
R . (H) = 1.76 £m
ch ¢ '

and qz of the dip in the 3He absolute charge form factor is

17.0 fm_z. See Fig. 1ll.

Faddeev equations were first solved for separable

Yamaguchi-type potentials anélytically by A. N. Mitra 34).



Fig. 11
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Absolute charge form factor of 3He. The long-
dashed curve is obtained by using unitary-pole
approximation method. The short-dashed curve
is from the work of Tjon, Gibson and O'Connell

(Ref. 27).
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CHAPTER III

THREE-NUCLEON CHARGE FORM FACTORS WITH

PHENOMENOLOGICAL WAVE FUNCTIONS

Construction of phenomenological three-nucleon wave
functions from the symmetry properties has been shown'by
Gibson and Schiff 31) (also see Ref. 32). Spin functions
for SSz = (1/2,1/2) are X1 and Xq+ (3/2,1/2) spin function

is Xg*

xp = 6 2(H+) + (4-4) - 2(-+0)] (3.1a)
Xg = 2 Y2440y = =011, (3.1b)
Xg = 3TV 2[(+4=) + (+=4) + (=+4)] . (3.1c)

Similar functions Nys Ny, and ng in isospin space are
written for 3He nucleus. For 3H, there will be 'minus'
instead of 'plus' and vice versa. Different combinations of

spin-isospin functions can be formed from Xy 7Xg and NyrMye.
¢l = inz‘- Xlnl r ‘ ’ (3.2a)

¢2 = XoNg + XqNy (3.2b)
9
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¢_ = inl = Xlnz o (3o2d)‘

a

Jacobi coordinates of three nucleons can be

t = 6“1/2(§2 + Xy - 2%;) (3.32a)
- .=1/2,= =

n =2 (x2 x3) (3°3b)
R = 3”1/2(x1 +ox, + x3) . (3.3c)

Under the permutations Plz’ p of two nucleons,; the

237 P13
quantities Xy¢ Nye ¢, and £ behave in an analogous way.

Pogdy = 94 (3.4a)
_ 1 _

P12¢l - 5 (/§¢2 ¢1) r (304b)
__1 |

Pi3y = = 3 (/§¢2 + ¢l) . (3.4¢)

So do guantities Xgr Nor ¢2 and n.

Py3by = =0y + Pyy0y = 5le, + V38))
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Xgr Nge ¢s and R are completely stmétric.

One defines

s; =n° -E (3.5a)
s, = 2n | (3.5b)
s_ =72+ E2 (3.5¢)

which are elementary scalar functions in spatial coordinates,
behaving like ¢1, ¢2 and ¢s'respectively under permutations
Pyar Pa3s Py3- S5 =0. |

The spin function X3 is also equal to

12172 5 = 1272 37

(o - 63)X2 = gy 23)(2 . (3.6)

The spatially symmetric component of the trinucleon wave

function can be taken as

¥, = ¢ fl(s ) , (3.7)

fl is a spatially symmetric function. Second component is
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- T = 3/2 admixture can be introduced as

(S (3.8")

¥ (3/2) 2Xy T S1XpIngf 30y (8g) -

Due to its smell contribution, it is neglected.
P-state even parity components of the wave function
contain a space vector of even parity & X n, multiplied by

vector functions of spin.

’I‘[‘l = 12‘“1/2[8”23 + i(&"l x 523)]x2 ' (3.9a)
ﬁé = glxz . (3.9b)
I'I"S = [323 - = 1(El X 500 1xy - (3.9c)
ﬁé is § = 3/2 function.
¥y = (n, + Mny ) (8 x mEgs) (3.10)
by = [M8;  + W 8y)n, + (IS, - I;8;)n,]
x (€ x m)f,(5,) (3.11)

are two § = 1/2, L = 1 functions.
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¥g = (S,n, + S )T _(E x ﬁ)fs{ss)

(3.12)
is of quartet séin. ‘
Symmetric quartet spin states (S = 3/2) are the
following [symmetric only under spin permutations].
Dy = [(0;1) (0,30) = (5,8) (5,4E)
- %&31623)(ﬁ2 - E’Z)]x2 ' (3.13)
D, = [(040) (0,5) + (3,E) (T,40)
- 2(5,5,,)7E1x, (3.14)
319192305 1Xy v :
Dy = [(3;7) (Gyy) + (548) (3,,8)
- 25,5, (B2 + 7D 1x, (3.15)

which transforms under both spatial a spin permutations like

Z, n and R respectively.

The 3 components L = 2, S = 3/2 in the total wave

function are

b = Dg(S,n) - S )Ec(S) (.16
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¥y = (Dyny = Dy )E,(S) (3.17)

<
©
|

[(Dzsl + Dlsz)nl - (DZSZ - Dlsl)nZ]fS(SS) . (3.18)

ws and w7 are not orthogonal, and therefore, instead

of ¢6 the following linear combination of ¢6 and w7 is taken.

wG = [(SDZS2 - 2D285)nl - (SDSSl - 2DlSS)n2]f6(SS)
(3.16)

2

£ fq are invariant functions of S_ = Ez +1n

1‘1 . o e 7 8
(under all permutations Plz' P23, Pl3)‘ Choosing the
components to be homogeneous in Sl’ 82 and SS of the same
order, the set of 8 components, orthogonal to one another, is

following.
_ 2 2
Py = (Xyng = xgny) (87 + SH) £, (Sy)

2 2

<=
N
!

, .
+ X085 - Si) = 2X585,8,)n,1E,(8))

Yy = (Ing + T,n,) (€ x F)sz3(ss)

<=
P~
|
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Vg = (5yn) + SN )T (T x ME(S,)

- znzss)n1 - (snss - 2nlss)n2]f6(ss)

[+)}
]

[(59552 1

¥y = (D8 ny - DS M, £, (S )

= [(D,S; + D;8 (D,S, = DySy)n,1£5(8,)

2)0y -

T
.00
|

i .

u, and u,-are spatial-spin functions. The wave function Yy

has the following well-defined quantum numbers: J = 1/2;

Sz =1/2, T = 1/2 and Tz = +1/2 for 3He, and ?1/2 for 3H.

Then

3
[jdsdn(ul u, + ugu,)*F (@) = 3e8 @ + PR (@]

X II -1/273 qg(u*u + u l)d;dn + [th(a)

- th(a)]><jje-i 2/3 qg(_% uju, + uiul)dfaﬁ .
(3.20)

- 3 P T . '
For °H, Fch and Fch should be interchanged.



56

3
[ [azatagu; + wgur E@ = 368, @ + P @)

8 J,fe_i 2: 3 qg (uiéuz + uiul)dgdﬁ - %[th (a—)

~-iv2/3 q&,_1 Fa
e ( 3 u%u + uiul)dgdn .

= Fop (@1 x f[ 2

(3.21)

Nonzero scalar products involving different spin functions

are
X{Xy = X3Xp =1 Xy = x50, = (0,0,1) .
(M (€ x M1 (€ x ) = [T, x MI*L,(E x )
=3 (52 -5 -5 .
[Ty (€ x MIML(E x ®) =3 (82 - ] - sd)
D#D, = 2(s2 + %si - sg) D§D, = 4(Zs,5, + i‘ss(ﬁ x %) z)
D%D., = 2(s§ - s_.zL + ;l-sg) D¥D_ = 4(—%5155 ;z- isz(ﬁ x E)z)
DEDg = 2(%52 + 83 +s2)  pip_ = 85,8, -

It is convenient to use the so-called Irving

transformation



Then

and

With this transformation, normalisation integrals become

™
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i

= |Z| (sind

_ .2
S1 = =p"cos20

w0
i

fazaﬁ = % I dpp” J ae an, J
0

[ =

aEan [v,|?
[ == 2
dEdn |9, ]
. ,
dgan [y,

f o 2
jagan v, |

pzsinzecose

It
Wi
=

ENT
3

g

4

gn

(

f

L
12

]
cos¢g, sinegsin¢g, cosBE)

n inod ind sin cosb
In] (sin ncos¢n, sinb_ ¢n, n)

M E

o

dppl3fi(p)

dppl3f§(p)

13.2
apo™3£3 (p)

dppt3£2 (p)

de (1l - cos4b)

°
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(3.22)

(3.23)

(3.24)

. {3.25)



Jagai Jug1?
Jagar 1ug1?
[ = — 2
atan |v,|
[ = 2
jagan |vgl

it

]

132

f
dpp fs(p)

f 2
dopl3fg(p)

132

[
dpp f7(p)

13.2

dpp fg(p)

58

(3.26)

(3.27)

(3.28)

{(3.29)
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3
The expression for Fcﬁe is

3
2 f dgdﬁ(ugu + ufu,) x F Ee(q)

3He -

142
ch ()

1
fs}xF

12

3 13;2,.2,.2,,1 2 2 l 2 35.2,10 2
27 Idpp {§(f1+f2)4z VLT AV T R A

3 p =.— =1/2/3 qf 2, 42,2 1.2 2_g2) g2
(F o HE h)[dgdne {2(s+s3) (f +£2 )+ ss(s -81-55) £3
1,2 20,2 .2 .2..23,.2..92...2 2 2 .2 4 2..2.2
T5(81+5,) (5=57-85) £+5(57+85) (S =S7-85) £5+[165,+50 (5 +5,)
2,02 020122, 1202 1,02 20402 2.2, ..21,.2 .2 ..2
: 4zss(sl+sz)]rs+4ss[ss -3-(81+Sz)]f7+4 (sl+sz) [SS E(stz)]fa

1 2
l

2_.2 4 2
2—Ss)f £.,488 S 2(§S +165S S (- +Sz)f7f

67785, 2)£gE

51 8}

2 2
+IGSS(ZSI+ZS 6is

P _.n == =iv273 Q& 102,02y 2 .2
+(Fe, Fch)Jdgdne {(s]+83) “(£7+f

2,.1.2,.2 02 o2, .2
)32 (52-52-52) £2

2_ 2

2
1753)

(s 51752

1,.2,.2 4
+Z(Sl+82) )f +2(S 2)(fif2+f§fl)+ S (S -S

3 2 .2 2 o2 o2, .2 4 2_.2 2, a2
X (f§f4+f2f3)+z(352w81)(ss Sl-Sz)f5+[SSS+25(BSl*SZ)(Sl+82)

_ 2,22_5.2 264242
47s (S] 245 )+5zs ]f +282 S (s{+85-385)£7 +?[s (s +8 ) 55155
4 2_42 2,2:2

+sl+s 1£4 2,852 S (487-82) £ £.+85S_ (2s 5S1+555) £cEg

4.2 .2 '
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Converting to Irving coordinates, this becomes [k = v2/3 dJ.

3
1.2,1.2 35 2,14 He ,—
1554ttt ERDM 9f3}XF (q)

2,10
FEe*h

13,2 =2
2[ { (f +f )+ 3+ 3

sin(Kpcose)[8(84 8 zgzsz

_ P ;= .ol = 5 -
= IZFch(q)+Fch(q)1fdpp Ide(l COS40) === =00 3"

2 4 2,2.2
416 4.4 43 4 .2 4 %ﬂ £?s?

2 4
+ENnE ) (£ +f2) 5P (p =51~ 3n E )f +2(S P84~

+éﬂ2£2 ‘- 16 454)f21+[th(§)—F2h(§)]Idpps[de(b—cos&le)

sin(kpcoso) 4 16,4 4 2 2.2 27

x K pCOSD [8(S1 £ =€ )(f*f +f*f )+zs Sq (p =55 36 n

sin (kpcosgh)
Kpcosob

" P n 5 o 4
X (f3f4+f2f3)}+9(Fch+Fch)Jdpp Idexl cosin)

(948

X

2 4 2 2.,2_ 16 4 2 P _on 5 _
1" l £ S E )f5+9(Fch Fch)(dpp Jde(l cos46}

sin(kpcosf) 4 4 2.2 8 2 2,2 16 4.4, .2 P n
Kpcosbd (3p ntEt- 1 & - & )f5+12(Fch+Fch)

X

4 200 2,2 2

sin(kpcosb) £2n
l 3 1

KpcosH

{[8p +255 +80£ n

X

Jdppsfde(l—cos4e)

Ys2egein?1e2ra0t 0% FTis 2t T 1224210 (245250 %)

1,.4,8.2.2 2,16.4 4 2.8.2 2 8.2
(s1rgste?n®+ et nty 122480% (282486020 £ £, 4802 (4x2n?

2, 2 16,2 2 42 P _oh 5 -
"5  E45g¥87S) (N T-87) £gf I (F Fch)[SEﬁU£??9¥Tc??4?}

(continued over)
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sin(kpcos8) ;o 8. 4,8.2,2 2 16,4 4, _,. 4.2.20 4,2 2. 2
* Kpcosd {[8p +25(3Sl+§slE n =g £n7)-47e SI+3 pTE™ ]f6

+2p* (Sf-ggo-izn 240h) f.27+2 [p* (Si+%€2n2) -——-8269'4 i£2n2+si+-l-5§-s4n4} fg

2,16.2.2 .4 2,, 4 ..2.8,2 2
(TTE n“-p )£, £ +8$lp (2p -531+§£ n )foS}'

+8p% (452-0%) £, £_+85 15
' (3.31)

1 67" °23P

The following formula is used

I do sin(xpcosb)cos no = % T(-1) 2 Jn(Kp) . (3.32)
0

vand
I (z) +3 .. (z) =223 (2) . (3.33)
n-1 n+l Z n i

Coefficient of f1f2 in the integration over p is

Z(Fgh - th)p5 I de (1 - cos46)

sin(kpcosB) 4 _ 16 .4 4
Kpcost 8(Sl 5 &)
= 16 (Fp . )BEE dé sin(kpcosd) (2 0550—2c057e+2c039e-gcoslie)
k ‘“ch ch’ 4 pe © 5 5o
- 8 (wP _ 1.1 12 _ 32 ,.p _on 11
= & (Fon-Fop) (Tg+I +5Tg+53,,) 07" = 2 FenFen) (39610l

=
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P .0 5 B sin (kpcos®) 4,8,2 252,16, 4 4
(2Fch+Fch)p [ do(l-cos4b) K pCOS0 B(Sl+3£ l+ 5 n)

= 8,5pP g 12 e 2 2 1 _1
= |<(ZFch+‘Fch)p 16631n(kpcose)(§cose §cos3e+500556 gcos79
+72-c0590--2c0S110)

15 L5

_ 16 P n 1 1 1
= §E(2Fch+Fch)(J +J +5 J +237 10J N I&l)

= (2th+F D) (T +33 43 11
K

¢tJ10)P .

2 .
)
r .
(2F§h + th)p5 deé (1 - cos4h) Slnézgggsg) y % 04(94—55-%£2n2)
ZFP +F ¢
_ ch 12 . 1 .1l o1 1
= 2K P .de 51n(KpcosG)(2cose 700539 6cosse+gcos7e)
P
_ 2F h+Fch

11
— o (3, T 3gen
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£.7,
P _ .n 5 _ sin (kpcosH) 2,4 .22
=2 - 2 ) f d6 (1 - cos40) p2o8b) . 25,02 (e -sl-ggznz)
P - T n
_ 20 Fon T Fep (5. - 11
3 2 Jg ~ Jgle °

f2

4
P n 5 _ sin(<pcosb) 2 4 4 8,2 2.2
(2Fch+Fch)p' Jde (1=-cos49) TYTT 2(S 1 35 n Sl

44,2 2 4_16 4 4
+384n %025

g8 (2FP, +7™ )
= ch ch }_(J I U G S )plz
3K £'°17 37597511
8 (2FP, +F% )
_ ch2 ch (@, - Jlo)pll .
3k
2
s
2(FP. + 570
ch ch 11
-Kz (J2 3J6 + 2J10)p .




64

2
e
32.35 p 11 48 P _epn ll 25. 16 P 11
5 (2Fch+F p) J = (1375, -5F7 ) o I + (785, -F h) T10°
3K K 3K
Fety
24.64 11 _p
2 P Fen V6
2
fy
7.64,,.D 1l¢ ,2.64,..p 11 P _
~=2s(2F h+F on) P 32+ 5 (2F ) +F h) J +——~(25F ch 67Fch)p Ji0°
9« 3k Ok
£etg
_4.8.8 P n 11 : P n 11
o [(LIF, + 4F )P J; + (43F, + 4F )0 18]
2
fl
32.2 11 P n _ P _ gn
2 p TS (2FF, + Fch)J2 (25, SFCh)Je] .
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h
h

|

2
_ 16 11 P _ 0 P
P I (R, Fch)J; + (11F

n
ch + 7Fch) J8]

h, (p) = 08£. (0) K =vV2/3 q

3 oo
He ,— 2.1
Foh (q) J dpxp{ (h +h?2 )+ h3412h

0

S Y et 14 hz}

21235
4453

2,10
6

2,
3h7

1 (7L P = ..n =

x (h )+32(FP —F2 ) (3J+ T, )h ho+ (28D 4F h)(Jz-Jg)hg

220

P
+ (2F 4

P P n
Yhé+ (F -F h)(J’ J )h 2(Fch+5F

+F h)(J’ ch‘)

ch 0

x (3,-33+23) ynde (22533 (2P 487 ) T +48 (1372 -5F0 ) T,

+

25.16 64 P
3 3 =[5 (2F

n
entFon) Tp (k0)

(7th o

P
ch)Jlo]h +24X64F h(q)h

617"

- (2FF, =570 ) To (ko) 1h2- (32 217 (78, -7 ) T+ (11FP +777 ) T1hohy

ch

+[ii§(2Fp +F2h)J2+l§§(2Fp +F0 10]h§

16 .
ch ch ch)J6+9 (25F

n
ch 67Fch) J

16,2 P n P
( 3) [(11Fch+4Fch)J4+(43Fch

n
+4Fch)38]h6h8} . (2.34)
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Function h can be taken in the form cpbe_ap (b = 2
for the Irving function). In practice, it is necessary to
investigate the importance of each hi some way. Since the
magnetic moments of 3H and 3He appear not to depend on the

h, and h

4 5

may be ignored. The parametric functions hi can be fitted
3

L He ,— P - n ,—
to the experimental numbers on Fch (q) ., Fch(q), Fch(q).

probability of P states, the terms containing h3,

In Ref. 35, the author has given expressions fitting the

3H and 3He charge form factors. The

experimental data on
factor e 2P defines behaviour of the wave function near the
outer edge of the nuclear potential. Parameter a is roughly

of the same magnitude for different hi' For short distances,

b.
hi(p) approaches p = 0 as some power of p: p 1., L. I. Schiff

considered three types of phénomenological wave functions:
exponential, Gaussian and Irving functions, and compared the
physical properties of 3H and 3He calculated with the three
different wave functions. Irving function was found to be a
physically plausible phenomenological wave function, that is

reasonably easy to work with.



67

SUMMARY

Results of the wvariational calculations do not give
unambiguous information about true nature of the trinucleon
wave function for a given hamiltonian. It is, in principle,
possible for different types of trial functions to converge
to different wave functions and give the same binding eneragy.

Method of diagonalising the hamiltonian is applica-
ble for soft-core potentials only. If the basis is taken
sufficiently large, diagonalisation method gives a reliable
wave function. Diagonalisation of the hamiltonian for Reid
soft-core potential in the basis of 484 harmonic oscillator
states (discarding the P states) yielded a binding energy of
the three-nucleon bound system equal to 6.30 MeV. The
extrapolated value is 6.5 MeV. With this wave function,
minimum in the 3He absolute charge form factor was found to
be at g2 = 12.9 fm 2. Probability of the D states equals
to 7.8% (Ref. 11). Nunberg et al. 13) diagonalised the
hamiltonian for Riihimaki potential in the basis of 348
harmonic oscillator states. Binding energy in the truncated
basis was found equal to 6.28 MeV, and the probability of D
states - 4.6%. In finding the extrapolated value of the
binding energy (7.0 MeV), P séates were not completely

neglected. From rough estimates of the isoscalar magnetic

N N TR
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moment it is concluded by Nunberg et al. that P(D) & 4%, and
therefore, Riihimaki potential is more favoured with respect
to other realistic potentials. Form factor calculations for
the Riihimaki potential have not been performed. Extrapol-
ating procedures are different in the two diagonalisation
calculations.

For solving Faddeev's equations, the wave function is
expanded over a basic set of states [See Chap. II]. Each
basic state is characterised by (L2)d (ss)§(Tt)t712. L=0
should couple with 8 = 1/2, since the total angular momentum
is J = 1/2. L and % should both be equal to each other,
i.e., L=%=n, wheren =0, 1, 2, 3, ..., so that L be zero.
Harper, XKim and Tubis, and others consider only n = 0, 1, 2.
Similar remarks can be made for i,= 1, i,= 2 basic states,
used in expanding the wave function. This can be a reason
of disagreement in the results of Jackson et al. and Harper
et al. and others for the same potential, i.e., Reid soft-
core. Therefore, among different calculations on the three-
nucleon bound system for given two—nﬁcleon forces, diagonal-
isation method seems to be suitable, provided the basis is
guite large.

The summary pf the calculations by different methods
for particular realistic nucleon-nucleon forces is given

in Table IV.



Table IV Summary of the ‘Calculations, presented in the

Review



Ref.

13
11
12
26
14

16 L
i

Potential

Hamada-Johnston
" (Coulomb forces are
included in case of $He)
Riihimaki

Reid soft-core

Experimental

TABLE IV

2.1/2

. | 3
Triton <r.>ch (TH)
binding energy (£m)
(MeV) |
6.5 + 0.2 1.85 + 0.02
7.0 : 1.83
6.5. ' 1.87
6.25
6.5
1.76
6.7
6.8 £ 0.5 1.80
7.58
8.48 1.70 + 0.05

1/2(3

<z'2>ch He) 'qz(fm-z)

of .
(£m) . the minimum

5 3
; He, 2, .
in |F " (g9 |

1.90 12.5 + 0.3
2.14
2.09 |
12.9
1.97 17.0
1.96 15.5
2.05 17.0
1.88 + 0.05 11.6

69



70

From the table it can be seen that all the
calculations give a binding energy 1-2 MeV less than the
experimental binding energy. The mentioned calculations
assume only two-nucleon forces to be acting in the three-
nucleon system, and the discrepancy between theory and
experiment suggests that three-body forces may play a
significant role in obtaining tﬁe correct binding energy.

If the experimental data on 3He are considered as well, and
compared with those on 3H, one can get information about the
charge dependence of the nucleon-nucleon forces.

The wave function of (T = 1/2, J = 1/2) three-nucleon

bound system can be investigated from the form factor data.

CORRECTION (on page 54)

P .
In constructing phenomenological wave function, it

seems likely to choose

_ _ 2
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