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INTRODUCTION 

Study of three-nucleon form factors is beneficial 

from the point of understanding nuclear forces~ Just like 

binding energies, the form factors are quantities, that can 

be measured to a sufficient degree of accuracy. Experiments 

on electron elastic scattering, done at the Stanford Linear 

Accelerator with 4-momentum transfer squared as high as 

20 fm- 2 , can tell about inner structure of the scattering 

nucleus. [It specifically applies to 3He nucleus.] 

The el.m. form factors of 3H and 3He can provide 

information about the ground state wave function of a three-

nucleon bound system. LG I. Schiff gave an extensive 

theoretical analysis of 3H and 3He form factors l) • It is 

known that in the ground state both 3H and 3He have J = 1/2. 

If nuclear forces are charge independent, 3H and 3He can be 

treated as belonging to an isospin doublet (T = 1/2) three-

nucleon system. [In a model calculation of three scalar 

nucleons (i.e., three spin zero nucleons), admixture of 

T = 3/2 component in 3He'wave function was found to be of 

the order 0.01- 0.00l%.] 2)There can be three possible 2s112 

states. of three-nucleon system: 1) fully symmetric in space 

coordinates of all three nucleons (S state) , 2) antisym-

metric in interchanging spatial coordinates<'.l~:a:J-,{' ;3} ... m~xecl_. 

1 



2 

symmetry (S') state (which means that the state is either 

symmetric or antisymmetric under permutation of two nucleons 

out of three) .. Also, there can be three 2 
pl/2 states (L = 1, 

s = 1/2) , 4 
pl/2 (L = 1, s = 3/2) state, 4 and three o112 

(L = 2, s = 3/2) states, present in the wave functionG Spin 

part consists of three types of functions. Let S be +1/2. z 

xl = 6 -1/2 [ ( ++- ) + (+-+) - 2(-++)] 

• s = 1/2 

x2 = 2-1/2 [ (++-) - ( +-+) ] 

x3 = 3-1/2 [ (++-) + ( +·~+) + (-++)] s = 3/2 

A + (or -) in, say, the second position of a 

paranthesis means that nucleon 2 has spin up (down) • Isospin 

part of three-nucleon wave function consists of 

nl = 6-1/2 [ (++-) + (+-+) - 2(-++)] 

n2 = 2~1/2 [ (++-) - ( +-+) ] , fo·r 3He (Tz = 1/2) 

nl = 6-1/2 [ (--+) + (-+-) - 2(+--)] 

n2 = 2-1/2 [ (--+) - ( -+-)] , for 3H (T = -1/2) . z 

- .. ·.; 
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The wave function, consisting of all possible 

products of spatial, spin and isospin components, has to be 

totally an·tisymmetrised, since the system consists of 

ferrnionso (Given explicitly in Chapters II and III). 

The charge and magnetic moment density operators, if 

no distortion or mutual interference of nucleons is 

considered, are 

3 
1 p --I: [-2 (1+-r. )f h(r-r.) 

. l 1Z C ~ 
~= 

1 n --+ -
2

(1-T. )f h(r-r.)] 
~z c ~ 

(1) 

PM <r; -r 1 , r: 2 , r 3 > = E r1
2 

cr. (1+-r. >11 fP (r-r.) 
i ~z ~z p mag ~ 

+ l cr . ( 1-T • ) 11 fn (r-r . ) ] ( 2 } 2 1z ~z n mag ~ 

cr's and T's are unit amplitude Pauli matrices; v's" 

are nucleon magnetic moments. f's can be regarded as 

spatial distribution functions of charge and magnetic 

p - n -moments, i.e., inverse Fourier transforms .of Fch(q}, Fch(q); 

P - n -
Fmag(q)' Frnag(q} • 

The form factors of 3H and 3He are calculated (under 

the_stated assumptions) as 
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ZFch(q) = 1 • Jdr eiqr.Jdr1dr2dr3 

Jdr1dr2dr3~*1)1 
(3) 

llFmag(q) = 1 ._J~r eiqi:Jdr1dr2dr2 

.Jdr
1
dr2dr3,p•,p 

(4) 

where Z = 1, ~ = 2.975 for 3H and Z = 2, ~ = -2.125 for 3He. 

The magnetic moments ~, ~p' ~n are 

equalities F~h(O) = 1, F~h(O) = 0, 

can be deduced that · 

in magnetons. From the· 

Fp (0) = Fn (0) = 1, it mag mag 

3 3 
F c: (0) = F He (0) = 1 • . ch 

Also, 

F 3H- (0) 
3 

= F He (0) = 1. 0 mag mag 

The spatial components in lJJ are the same for 3
H and 3ae .. 

Mutual interference of nucleons is found to make negligible 

contribution to the ·charge density operator, whereas· 

contribution to magnetic moments and magnetic form factors 

is significanto Among various mechanisms of interference 

effects, the interaction of external el.me field with a 

charged pion exchanged by two bound nucleons is dominant~ 
' 

Coupling of the photon with two exchanged pions and 9oupling 

with p, w, <1> mesons is an effect, smaller by an order of 
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magnitude 2 ) 9 There are few qualitative calculations done 

on the distortion of nucleons in bound systemse It is 

believed that contribution from them is less than that from 

interference effects. Essentially, distortion of a nucleon 

is {NTI) resonancee Diagrams of interference effects and 

distortion are given in Figse l(a,b) and 2 respectivelyo 

Ae M. Green and T. H. Schucan 36 ) did calculation of 

magnetic moments of 3H and 3He considering the contribution 

from 6(1236) resonance, and found that at most a 1/4% 

correction to the isoscalar moment and about 2% correction 

to the isovector moment will result, whereas one pion 

exchange contribution to the magnetic moments is of the 

order of 5%. Hence, to a reasonably good approximation, 

the nucleon form factors in Eq. (3) are taken to be those 

of free nucleons in order to calculate the 3H and 3He charge 

form factors, and the information about the 3H and 3He 

charge form factors can be regarded as a first step in 

studying the wave function of a three-nucleon bound system. 



y 

Coupli nf:] of e:.tt,errria! 

photon \iVith chargGd .. 

pion e%chan~ad by 

ttfO nucleons. 

Fig. l(a} 

6 
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CHAPTER I 

EXPERIMENTAL DATA ON FORM FACTORS OF 3H AND 3He 

The elastic scattering cross section of an electron 

by a spin 1/2 particle wi·th the assumption of one photon 

exchange, is described according to the Rosenbluth equation 

('h = c = 1) ., see , e ~ g • , Ref • 3 • 

where 2 e 4 cos 2 1 e 
crNS = 

4E 2 sin 2 e 2Eo . 2 e 
0 2 1 + -- s1n 2 M 

is the cross section for a point-p&rticle scatterer. The 

expression in curly brackets depends on the electromagnetic 

structure of the scatterer., 

E
0 

is ·the incident energy of electron in lab system, 

q is the 4-momentum transfer, 

M is the mass of the scattering nucleus, 

F
0
h(q2) is the charge form factor with unit normalisation 

. :·.;r . ~·~::.:}:: . ·•-::. :-· .. , . . :. • ·. ·. 

for a charged particle: Fch(O) = 1, 



F (q2) is the magnetic form factor with unit mag . 

normalisation: F (0) = 1, mag 

K is the anomalous magnetic moment expressed in 

magnetons. 

Collard et al. 3) analysed the cross section data 

for 3H and 3He for q 2 up to 8 fm- 2 • Validity of the one-

photon~exchange assumption was checked by plotting 

10 

dcr/dQ:crNS versus tan2 6/2 for a given q 2 , and seeing 

whether it is a straight line as the·Rosenbluth equation 

indicates~ From the Rosenbluth plots for every q 2 , the 

absolute values of charge and magnetic form factors of 3H 

and 3He were extracted. Data on the 3H and 3He form factors 

are given in ·Table I. The charge form factors of 3H and 

3He (absolute) are drawn in Fig. 3. 

McCarthy et al. 4> have analysed data for q 2 up to 

20 fm- 2 in order to find the 3He charge form factor. First 

order correction in the Born approximation due to Coulomb 

distortion is taken into account by using, instead of q, a 

corrected 4-momentum transfer~ Absolute value of -the Fourier 

transform of a preliminary charge distribution, compatible 

with the phase shift results of a relativistic electron, 

scattered by the charge distribution, was compared to the 

experimental (absolute) charge form factor. Thus, an 

expression for the charge distribution with appropriately 

fitted parameters was adoptedo 



Table I Experimental Data on 3H and 3He Form Factors 

(Ref., 3) 



TABLE I 

2 -2 
F ch (3H) F ( 3H) 3 F ( 3

He) q (fm ) Fch( He) mag mag 

1.0 0.622 ± 0.007 0.653 ± 0.022 0.567 ± 0.004 0.676 ± 0 .. 075 

1.5 0.503 ± 0.007 0.475 ± 0.015 0.431 ± 0.004 0 .. 479 ± 0.046 

2 .. 0 0.387 ± 0.007 0.379 ± 0.012 Oe329 ± 0 .. 004 0.385 ± 0 .. 031 

2.5 0.312 ± 0.006 0.312 ± 0.008 0.258 ± 0.003 0.291 ± 0 .. 020 

3.0 0.267 ± 0.005 0 .. 242 ± 0.006 0.209 ± 0.002 0 .. 203 ± 0 .. 014 

3.5 0.215 ± 0.004 0.199 ± 0.005 0.1614 ± 0.0017 0.167 ± 0.010 

4.0 0.175 ± 0.004 0.167 ± 0.004 0.1326 ± 0 .. 0015 0.128 ± 0 .. 009 
.. 
;<: 

=··:~ 4.5 0.187 ± 0.003 0 .. 139 ± 0 .. 003 0 .. 1013 ± 0.0010 0 .. 118 ± 0.005 
\.· .. : 

' .. -;: 

5.0 0.118 ± 0.004 0.109 ± 0.005 0.0813 ± 0.0012 0.093 ± 0.008 

6.0 0.0758 ± 0.0041 0.0792 ±.0 .. 0032 0 .. 0548 ± 0.0015 0.0566 ± 0 .. 0056 
~ 
1-' 

8 .. 0 0.0295 ± 0.0039 0 .. 0416 ± 0.0018 0.0173 ± 0.0010 0.0318 ± 0 .. 0026 
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1.,0 

0" 6 ;;:3 

0.4 

0 2.0 4.0 6 •. 0. 8.0 

Fig. 3 

q 2 ( fm- 2 ) : ~:·· ~.:'·} . ··::- '· . ·. ,.,,.. . . , . . ..... , 

3
H 2 I 3ne 2 I Experimental data on jFch(q) I and Fch (q) are 

fitted by the curves I and II respectively (Ref. 3) 8 



P (r) 

2 
exp(- _E_) 

4a2 

= z [ 8 3/2 -3 
1T a 

in the Born approximation, 

= e 
2 2 -a q 2 2 

b 2 2 -c q q e 

2 2 16c -r 

16c7 

1 

13 

2 
exp(- __!_)] 1 

4c2 

(1" 1) 

which is the 3-d Fourier transform of 1/Z p(r); q 2 = q2 for 

elastic scattering. The form factor FB(q2
) can fit well 

the experimental data on 

-2 up to 8 fm .. So as to produce the diffraction minimum, · 

appearing at q 2 = 11.6 fm- 2 , a correction ~p(r) is added to 

P (r) • 

~P (r) 

three-dimensional Fourier transform of ~p~r) is 

q-qo 2 
=dexp[-(-p-)] 

Best fit was obtained for the values of parameters 

a = 0~675 ± 0.008 fm 

b = 0~366 ± 0.025 fm 

{1 e 3} 

(1.4) 
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c = 0.,836 ± o;o32 fm 

d = (..,6. 78 ± 0.83) X 10-3 

- qo = 3.98 ± 0.09 fm-l 

p = 0.90 ± 0.16 fm- 1 • 

The root mean square charge radius ·is rr.ms = 1.88 fm. (See 

Fig. 4). 

In Ref. 5 it is argued that near the minimum, two 

photon exchange.correction in the elastic cross section is 

about 30 - 40%. Corrections from vector-meson dominance 

(i.e., the electron exchanges a photon by coupling through 

p-meson with the 3He nucleus) were shown by E. Lehman 37 ) 

to be unable to account simultaneously for the form factor 

dip at 11.6 fm- 2 , and the behaviour at high momentum 

transfer. But these corrections are quit~ small, by 

themselves. 

According to the theory given by L. I. Schiff, 

charge form factors of 3H and 3He depend linearly on F~h and 

F~h· Experimental data on 

electron-proton scattering 

good approxima·tion for q 2 

Fp 
ch 

38) 

up to 

are obtained from elastic 

One photon exchange is a 

22 fm- 2 • (See Table II) • 

Neutron form factors are derived from elastic electron

deuteron scattering 6) • The nucleon form factors were 

earlier fitted by Kirson 7>, and de Vries S) by so-called 

three-pole fit! which is a three-pole approximation to the 

dispersion theory of nucleon form factors. 



103 

;-

Cd~ ~ 
!&. .. ·4 

Kl r 
,ot 
_, 

10 

~ 
107 

2 4 
~_.__L-1-.....___,s_..._·~-· -~~-·-~·-ts-~~...__._-J 

~z {~mz) 

Fig. 4 The 3He charge form factor squared is fitted by 

parametric functions [Eqs. (1.2) and (1.4)] with 

parameters 

a = 0.675 ± 0.008 

b = 0.366 ± 0.025 

c = 0.836 ± 0.032 

d = (-6.78 ± 0. 83) 

q 0 = 3.98 ± o.o9 

p = 0.90 ± 0.16 

fm, 

fm, 

fro, 

X 10-3 , 

-1 fm , 
-1 fm • 

The charge root mean square radius for the charge 

distribution [Eqs. (1) and (3)] is equal to the 

experimentally found number. 

15 
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Table II Experimental and Theoretical Values of the Proton 

Form Factors 
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TABLE II 

Experimental Values 37) Three-pole Fit 7, 8) 

. q2(fm-2) pP Fp p p 
ch mag Fch Fmag 

4 .. 00 0.689 ± 0.019 0.623 ± 0.018 0.658 0.644 

4.6 0 .. 615 ± 0 .. 015 0.611 ±. 0.010 0.624 0.610 

5.0 0.59Sl ± 0.026 0.618 ± 0.021 0.603 0.588 

6.0 0~571 ± 0.019 0.533 ± 0.014 0.554 0.540 

7!J((J 0.521 ± 0.021 0.490 ± OoOlO 0.511 0.499 

7s5 0.504 ± 0.022 0.472 ± 0.011 0.492 0.480 

8,.0 0 .'453\ ± 0.020 0.466 ± 0.009 0.474 0.462 

9.0 0.422 ± 0.027 0.437 ± 0.011 0.440 0.430 

10.0 0 .. 424 ± 0.017 0.400 ± 0.007 0.410 0.402 

11 .. 0 0.398 ± 0.025 0.379 ± 0.009 0.383 0.376 

12.0 0.363 ± 0.020 0.355 ± 0.007 0.359 0.354 

13.0 0 .. 349 ± 0.040 0.327 ± 0.015 0.337 0.333 

14.0 0 .. 315 ± 0.028 0.316 ± 0.008 0.317 0.314 

15.0 Oa304 ± 0.053 0.297 ± 0.015 0.299 0 .. 297 

16.0 0 .. 271 ± 0.024 0 .. 282 ± 0 .. 006 0.283 0.282 

17.0 0 .. 234 ± 0 .. 041 0.277 ± 0.008 0.267 0.268 

18.0 0.274 ± 0.026 0.250 ± 0.005 0.253 0.254 

19.0 0.254 ± 0.039 0.245 .± 0.008 0.240 0.242 -
20.0 0.187 ± 0.073 0 .. 237 ± 0 .. 010 0.228 0.231 

-~~~· 

22 .. 0 0 .. 166 ± 0 .. 075 Os224 ± 0.007 0.207 0.211 

26.0 0.178 ± 0.005 0.171 0.179 

0;160 ± ·o. oo6 0.157 0.166 

0.145 ± 0.006. 0.144 0.154 



Behaviour of the isoscalar form factors 

GES = ~ (F~h + F~h) and GMS = ~ [(1+Kp)F~ag + KnF~ag] is 

supposedly dominated by intermediate states of two pions, 

coupled to w and ¢ mesonso Isovector form factors 

_ 1 p n 1 p n 
GEV - 2 (F ch = F ch) and GMV = 2 [ (l+Kp) Fmag = KnF mag] are 

dominated by effects of the p=mesono 

+ 

GMV 

2 
q 

1 + 26 ... 7 

+ 1 = s - s } el e2 

+ 1 = s - s } ml m2 

I 

17 

(1.,5) 

(1" 8) 

Fitted parameters are s 61 = 2 .. 50, s 62 = -1 .• 60, sml = 3 .. 3 3, 

sm2 = -2 .. 77, vel = 1.,16, vml = 1 .. 11., (See Fig., 5) .. 

Theoretical expression for the el~stic electron~ 

deuteron scattering cross section involves deuteron wave 

function, which is dependent on the choice of internuc1eon 

potential.. s .. Galster et al. G) used parametric function 



1.,0 
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0 .. 2 

r-=-==--~1=·=""=="'===tr=="»=~~ -~-u-~===-""""=u"l'F-=-""'-~-- ....... """''"""'""'"""-""l'""ff.....,..,.""""""-=~=~~;~,-~-
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0 6 12 
q2(fm-2) 

I 

ll 

18 24 

Fig .. 5 Curves I and II, corresponding to F~h (q
2

) ::~n~ .~~h (q_~) ·. re~pec~ 
tively, are obtained from the Eqs. (1.5) and (1.7). 



= -11 n 

19 

(1.9) 

to fit the parameter p, using different deuteron wave 

functionso For the McGee 23 ), Lomon-Feshbach 24 ) and 

Hamada-Johnston 25
) wave functions, the corresponding values 

of p were found equal to 19.7, 5.6 and 10.7. The dependence 

of Fn on the choice of deuteron wave function is shown in ch 

Figs. 6 (a,b,c). 



Fig. 6 (a) 

Fig. 6(b) 

Fig. 6 (c) 

The solid curve is obtained with the fitting 

parameter p equal to 19.7, by using the McGee 

deuteron wave function. The dot-dashed curve 

corresponding to Fnh ~ -~ (q2/4M2)Fph and the c n c 

dashed one corresponding to 

Fn = -~ (q2/4M2)/[l + (q2;M2)] Fp are drawn 
ch n ch 

·for comparison in the three Figs. 6(a,b,c). 

The solid curve is obtained with the fitting 

parameter p equal to 10.7, by using the Hamada-

Johnston wave function. 

The solid curve is obtained by using the Lamon-

Feshbach wave function with p = 5.6. 
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CHAPTER II 

DETERMINATION OF THREE-NUCLEON WAVE FUNCTION AND 

CALCULATIONS WITH IT 

The three-body problem for realistic two-nucleon 

forces has been tackled in three different ways. Variational 

calculations with forces like Hamada-Johnston have been done 

9) 
by L. Mo Delves et al~ The problem has been solved by 

diagonalising the hamiltonian for soft-core potentials~ for 

'd f 22) b J k t 1 10,11,12,26) Re1 so-t-core - y A. D. ac son e a • , 

and for Riihimaki potential lg) by P. Nunberg et al. lJ) e 

For Reid soft-core potential, the Faddeev equations have been 

solved in momentum space by Malfliet and Tjon 14 ) , and 

Harper, Kim and Tubis lS). Harms et al. 16 ,l7 , 29 ) have used 

unitary pole approximation method in solving the Faddeev 

equations. The Faddeev equations have been solved in 

configuration space for Reid and Sprung, de Tourreil forces 

(Ref. 30) ., 

21 



A. Variational Calculations 

A two-nucleon potential is called realistic in the 

sense that it describes properties of two-nucleon systems 

fairly well. In a trinucleon system, interactions are 

22 

considered between nucleons·! and 2, 2 and 3, 3 and 1. 

Variational procedur~ implies choosing a trial function. 

Any function of three particles F(l,2,3) can be decomposed 

into three mutually orthogonal functions. 

F = F
8 

+ Fm + Fa; Fs is completely symmetric in 

interchanging any two particles. Fa is completely ant1sym--

metric, Fm = F + F - is a sum of two functions: 
ml m2 

1) symmetric under, for instance, 1 +-+ 2 permutation Fm ; 
1 

2) antisymmetric under 1 +-+ 2 permutation F • 
m2 

Trial function 

is the sum of antisymmetric products of radial and angular-

spin-isospin parts 2>. 

(2 .1) 

The angular part for given orbital angular momentum 

L of the system is a combination of the Euler angle functions 
L 

DllM(.aSy), lJ, M =- -L, ••• , L. The spin-isospin part, in 

general, has states of S = 1/2, 3/2 and T = 1/2, 3/2. 

Cr;1 r; 2 r;3> describes the spin and Cn 1n2n3) - the isospin parts. 
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In Ref. 9, the trial function of the bound state 

was ·taken as 

tiJQ = 

Q is an integer parameter, indicating the degree of trial 

function. 

1,2,3 are i-index values for L=O states (i.e.,, S,S 1 S')v 
ct 

4,5,6,7 are i-index values for L=l states, 

8,9,10 are i-index values for L=2 "old" states, 

11,12,13,14 are i-index values for L=2 "new" states. 

k is the index for different symmetries. 

Radial components f{~~ are products of a suitable 

set of one-dimensional functions {¢i(r),i = 1,2,3, • .,c}. 

f(Q) = 
i,k E 

i,m,n 
i+m+n~Q (2.3) 

Pk' s are symmet:rising operators. The Pk 1 s are written out 

in equations 2.6(a-d). 

i-1 

-yr 
e 

rP 

x ·{1 + E akt exp[-2ky(r-c)]} , 
k=O 

cis core radius. p = 0.5. Inside the core, ~i(r) = 0 • 

The factor in curly brackets is to account for boundary 

condition: ¢i(c) = 0., y, 8 and the aki are nonlinear 

( 2. 4) 
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variational parameters. ~~(r) is taken in the form similar 

to deuteron wave function. 

0 = 4 .. 0 

0 = 4.0 , 

y = Q.25 

y = 0 .. 2 

for all L=O states, 

for all L=2 states~ 

P states contribute only 0.08 MeV for H-J potential~ 

The expectation value of hamiltonian over the trial 

function with unit normalisation is minimized by Ritz 

variational principleo In that way probabilities of different 

componen·ts are estimated. ak 9 ... in the functions <1> i (r) are not 

independent variational parameters, but are chosen so that as 

many as possible of the sequence of symmetric S- and D-states, 

are orthogonal. 

parameters .. 

The coefficients a. 0 are variational 
1Nmn 

The energy of 3H is obtained by extrapolating the 

curve E(Q) as E
00 

+ AQ-r.. E(Q) is the expectation value of 

hamiltonian, calculated for $Q' Q can be 1, Q can be 2, up to 

a finite QQ.. A and r are appropriately taken to fit the 

curve E(Q) up to QQ. E , the energy for H-J potentialr was 
00 

found to be -6~5 ± Q.2 MeV. The trial functions converge to 

some wave function with increasing Q. In Ref. 9, the trial 

function corresponding to Q = 7 was taken as the trinucleon 

wave function. For 3He Delves and Hennell did variational 

calculations including both the H-J potential and the Coulomb 

interacti?n between t\'JO point protons, and got 

E(
3

He) = -5.95·± 0.2, neglecting the T = 3/2 admixtur~. In 



25 

Table III are given properties of the 3H and 3He ground 

state wave functions for H~J potential. Also, see Fig. 7. 

Adding a phenomenological three-body force 

v
3

(a) =- v
3 

exp[-a(r12 + r
23 

+ r
31

)] so as to adjust the 

3 binding energy of H to the experimental number 8o418 MeV, 

3 moves the diffraction minimum of H charge form factor to 

-2 14 fm • Probabilities of different components are not 

altered much. The experimental value of E( 3He) is -7.664 MeV. 

3 3 <rch>( H) = 1.70 fro, <rch>( He) = 1.87 fm are the values, 

determined by Collard et al. 3) experimentally. 



Table III Properties of 3H and 3He for H-J Potential 

in case of 3He Coulomb Forces are included as 

well 
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TABLE III 

Property 3H 3He 

Energy (MeV) -6.,5 ± 0 .. 2 -5.,95 ± Oo2 

<rch>(fm) 1.,85 ± Oo02 lo90 

rmass(fm) 2.,00 ± 0 .. 01 2 .. 11 

P (S) (%) 89.,2 89.,4 

P(S ) (%) =5 
OoO 2¥10 a 

p (S v) (%) 1 .. 8 1 .. 93 

p (P) (%) 0 .. 03 0.0 

P(D) (%) 9 .. 0 8.63 

Diffraction 

IF l I (fm -2) 
13.4 ± 0.3 12.5 ± 0 .. 3 

minimum of 
C:l 



If chi 

-r-- .--.-~---.,---:---,-·-,-- ,---.,..--, ~---,i 

.ex pt. 

o----~3H 
£-------QlHe 
)(:-------;.:.:; .3 ~e ex pt. 

. ~ 

U·DI 

DDDOI ~~~~-~----!--~10--:':12-y--,'6 U 2D 22 24 2i ~~ 
q2 

Fig. 7 The absolute charge form factors of 3H and 3He 

for Harnada-Johnstcn potential (adding the 

Coulomb repulsion between point protons in 3He) 

are compared to the experimental curve of 
3 

1Fc~e(q2 ) I (taken from Ref. 9). 
'_._r·,.,-·. 

27 
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B* Diagonalisation of the Hamiltonian Matrix in the Basis 

of Harmonic Oscillator Eigenfunctions 

The harmonic oscillator hamiltonian of three equal 

mass nucleons (harmonic oscillator forces of frequency 

w/13 are acting between two nucleons) in terms of the Jacobi 

coordinates is 

h2 
(\72 v2> 

2 
(f2 + n2> H. + + mw 

= - 2m -2- i ho 7; n 

r;: = -1/2 -6 (x1 + x2 - 2x3> 

-1/2 - - x > n = 2 (x1 2 
( 2. 5) 

Eigenvalues of Hho are ~w(p+3), p = 2n +1 +2n +1 r; r; n n 
is the ·total number of oscillator quanta. Angular momenta 

17; and 1n couple to orbital angular momentum L of the system. 

nr; and nn are radial quantum numbers~ The eigenfunctions of 

-2 -2 
Hho' 17; and 1n: <~,nln~1r;:,nn1n,L>, form spatial parts in 

the total wave function. 

We define operators 

P
5 

= ~ [1 + (1,2) + (1,3) + 2,3) + {1,2,3) + (1,3,2)] , 

( 2. 6 a) 

where (1, 2) is 1 ++ 2 permutation, (1, 3, 2) means 1 + 3-+ 2 + 1; 
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p l [1 = (1,2) ( 1 v 3) ( 2 F 3) + (1,2v3) + 1,3,2)] i = 6 = -
a 

(2.,6b) 

Pml 
1 [21 = (1,2,3) (lu3,2)][1 + (lu2)] (2.,6c) = 6 

~ 

Pm2 
1 [21 ~ (lv2,3) = (1 1 3v2)] [1 = (1,2)] (2.,6d) = 6 

and note that 

P 5 <~,nln~t~,nntn,L> is spatially symmetric ( 2" 7a) 

P <~,nln~i~,n i ,L> is spatially antisyrmnetric f a n n 
( 2" 7b) 

Pm1<~,nln~i~,nntn,L> is symmetric under 1 +-+ 2 

permutation , ( 2 o 7c) 

is antisymmetric under 1 +-+ 2 

permutation 

In the totally antisymmetric wave function, one 

couples Pk[<~,nln~i~,nnin,L>] with the spip-isospin function 

of adjoint symmetry: L should couple with S to J = 1/2, 

Jz = +1/2, or J = 1/2, Jz = -1/2. The eigenstates of Hho' 

antisymmetrised according to the way as discussed above, form 

the basis for diagonalisation of the hamiltonian 

1 2 -2 -2 ... 
H = Hho + [V ( 1, 2) + V ( 2,3) + V ( 1, 3) - 2 mw::;·· (~::· . ·t . .n .. )J ., " ..... 

( 2 0 8) 



p(S) 

L=O 
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30 

26 

26 

26 

34 

34 

34 

(34 

30 

w· serves a.s a parameter, chosen so as to ob·tain maximum 

binding energy. 

Jackson, Lande and Sauer ll) used Reid soft-core 

potential including all partial waves ~ ~ 2e The basis for 

diagonalisation consisted of 34 quanta of symmetric s states 

[p = 34, and the number of states is 273], 12 quanta of 

~ixed symmetry s~ states [27 states], and 20 quanta of D 

states [220 states]. The oscillator length b = (h/mw) 1/ 2 

was treated as a nonlinear variational parameter and the 

value o~ b = Oe85 fm was obtained. Complete basis should 

consist of an infinite number of quanta in all the L = 0, 

L = 2 states. L = 1 states have negligible probability, and 

are not taken in the basis. 

Ca1c·u·la ted triton ground state properties (Ref. 11) 

p(D) p (S') b(frn) B=-E(MeV) Po(%} p s' (%) V(MeV) r (fro) 

L=2 L=O 

18 10 0.80 5.712 9.05 0.39 -58.007 1.588 

18 10 0.,80 5 .. 858 8.91 0.38 -57.005 1.616 

22 10 0.80 5.867 9.07 0 .. 40 -57 .• 684 1.600 

18 14 0 .. 80 5.798 9.22 0.62 -.-58. 369 1.590 

18 2 0.80 5.341 8 .. 39 0.00 -56.065 1~596 

20 12 0 .. 80 6.091 8.92 0.49 -56.316 1 .. 647 

20 12 0.85 6.265 8.89 0.53 -55.352 1.695 

20 12 0.85 6.298 8.92 0.52 -56.109 1.,669 

20 12) 0.85 6.057 8.52 0.43 -54 .. 884 1 .. 680 
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The last row contains results for potential, 

restricted to even partial waves only (~ is even) o 

The calculated root mean square radius of 1.669 fm 

yields the root mean square charge radius of 1.85 fro when 

effects of finite proton size are included. Collard et alo 3 ) 

found <rch>(
3

H) = 1.70 fme 

Difference b.[p(S)] = E(oo,p(D} ,p(S')}-E(p(S) ,p(D) ,p(Sv)) 

of energies for infinite and finite number of quanta in S 

state is fitted to the type of wave Kp{S)-p. E(oo,p(D) ,p(S')) 

need not be known; E(p(S) ,p(D) ,p(Si)) for different p(S) can 

tell what K and p should be. Then E(oo,p(D) ,p(S')} is found. 

Similarly, E(p(S),oo,p(S')) and E{p{S) ,p(D),oo)) are evaluatedo 

p{S) 

00 

26 

26 

p(D) 

18 

00 

18 

p {S I) 

10 

10 

00 

B=-E(MeV) 

5.999 

6.009 

5.917 

b.(MeV) 

0.286 

0.298 

0.206 

Then the actual energy E is found as 

E:: E(oo,oo,oo) = E{p(S),p(D),p(S')) + t!.[p(S)] 

+ f!.[p(D)] + l!.[p{S')] 

Binding energy was found to be 6.50 MeV. 

(2 .. 9) 

-:-• ,, ~ . ~ . .. .. ·. . : 
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With the trinucleon wave function thus obtained in 

the basis of 484 harmonic oscillator states, Yang and 

Jackson 12 ) found the minimum in 3He absolute charge form 

2 -2 factor to occur at q ~ 12.9 fro ., Coulomb forces were not 

taken into account in finding the 3He wave function. See 

Fig., 8., 

Hadjimichael and Jackson 26 ) calculated binding 

energy and charge form factor of triton for phase equivalent 

1 3 3 potentials of the Reid soft-core (only s
0 

and s1 - o1 

partial waves of the N-N interaction were included). For 

Reid potential itself, binding energy was found equal to 

. I 3
H 2 I 2 -2 6.25 "eV; dip 1n F h(q ) occurs at q = 13.5 fm • Position 

3 c 

of the dip in jFc~(q2 ) I varies for different phase equivalent 

potentials, which give different binding. 
3H 2 -2 

If BT = 4o753 MeV, dip in JFchl is at q = 13.7 fm , 

5.34 12.4 , 

6.03 12.7 

For Riihimaki potential (in Ref. 13) all partial 

\'laves in the N-N interaction with R.. .S 4 were taken into 

account. Maximum number of oscillator quanta was taken equal 

to p = 24, and the total number of basis states equal to 348. 

The curve for triton binding energy BT(p) is extrapolated as 

· B
00

- Ap-B <r2>112 (3H) and <r2>1/ 2 {3He) were also extra
T 

polated by an exponential formula. Following results were 

obtained .. 



Fig. 8 The absolute charge form factor of 3He for Reid 

soft-core potential compared to the experimental 
3 

curve 1Fc~e(q2 ) I and the curve obtained by Delves 

and Hennell (Ref. 9) (taken from Ref. 12) .. 

33 
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p = 24 

Extrapolated values are 

00 

BT = 7.0 ± Oo3 MeV 

P
0 

= 4.6% 
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c. Solution of the Faddeev Equations 

The nonrelativistic 3-particle scattering matrix T 

is equal to 

T(s) = V- V(H-s)-l V (2.10) 

where hamiltonian H is the sum of the kinetic energy operator 

(in the c.m~ frame) H
0 

and potential energy operator 
3 

V = E v., v. acts between particles j,k ~ i. sis the total 
i=l 1. 1. 

energy of three-nucleon system. 

-1 = (H
0 

- s) 

is Green's function for free nucleons. As Faddeev shows, 

the T-matrix can be decomposed into three parts 

T(i) (s) = T. (s) -
J. 

·-

L T; ( s ) G
0 

( s) T (_j ) ( s) 
j~i ~ 

i = 1,2,3, are a set of three Faddeev equations; T. 's are 
1. 

off-shell two-body T matrices, satisfying the Lippmann-

Schwinger equations. 

( 2., 11) 

(2.12) 

v. 
1. 

: :·y. ·.-:·~·~ . ·-::. ; . -·,, - .... ( 2 ~--13} 
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In the transformation of momentum variables· (Refs. 

14,20) 

m3(kl+k2)-(ml+m2)k3 
q = ~------------------~1~/~2 

[2m3 (m1+m2) (m1+m2+m3)] 

• 

(2 .14) 

, (2.15) 

( 2 .16) 

Eigenstate of H0 , which is simultaneously eigenstate 

of three-nucleon_orbital angular momentum, spin and total 

angular moment::um, is multiplied by isospin functions of · 

definite (t',t'z). 

lp,q,a.> - I [pq (L.t)l, (Ss)S] JJ , (Tt) -r-r > . z z 
, ( 2 .17) 

and the product is antisymrnetrised with respect to 

interchanging any two nucleons. The bound state wave 

function is a sum over antisymmetric basis vectors lp,q,a>A. 

= s <pqai~B>Ipqa>A 
a 

•. (2.18)" 

(2.19a) 
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-2 -2 I (H 0 - p - q ) p,q,a>A = o (2.19b) 

For the energy s = EB, <pqalT(s) I~>A has a bound~ 

state pole, and residue at the pole gives us the value of the 

component <pqaJ~B>c Equations for <pqa!T(i) (s) I~>A 

(i = 1,2,3) are inhomogeneous integral equations of the type 

F(s) = F
0 

(s) - K (s)F(s) 

If the kernel K(s) is multiplied by complex variable Ar one 

.has a different equation 

F ( s, A) - F 0 ( s) - AK ( s) F ( s I A) 

Kernel AK(s) is of Hilbert-Schmidt type. So, F(s,A) is a 

meromorphic function of A with poles at characteristic values 

Aa{s) for givens& That is, F(s,A) can be written as (see 

Ref. 14) 

F (s, A) 
Ba(s) 

= E A (s)-A + R(s,A) 
a a. 

F(s,A) is expanded in power series of A [Neuman Series]. 

2 2 = F
0

(s) - AK(s)F0 (s) +A K (s)F0 (s) 

= n n n E (-1) 1~ K (s)F
0
(s)-

n=O 

(2.22) 

(2.23) 



Since R(s,A.) is an entire function, 

So, 

00 

R(s,A.) = E 
n=O 

F (s) 
n 

Ba(s) 
= E + R (s) 

a [A. (s)]n+l n 

Fn+l(s) 
lim F (s) 
n+oo n 

a. 

= 1 
A.

0 
(s) f 
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(2.24) 

(2,25) 

(2.26) 

A.
0 

(s) is the smallest charac·teristic value where F (s, A.) has 

a pole. 

Since the original equation corresponds to A = 1, 

the pole A. 0 should be equal to one for the energy s = EB. 

This way of finding the pole is known as the ratio method 

(or iteration method) ~ 

Pade approximants method is following 39 ) Nth 

Pade approximant to F(s,A.) is 

F [N ,N] (s, ~) = 
N 
E 

n=O 

2N+l 

i 

this is compared to E AnF (s) , and the coefficients An 
n=O n 

(2. 27) 

and Bn found. The pole of F[N,N] (s,A.) IA=l gives the binding 

energy -EB. Harper, Kim and Tubis 20 ) considered set of 8 

different a., whereas Malfliet and Tjon considered only the 

set of first 3 a. 
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The basis states 39 ) are 

Component {Lt)L {Ss) S {Tt) -r=l/2, T =+1/2 for 3He z 
0: =-1/2 for 3H 

1 ( 00) 0 {0 1/2)1/2 (1 1/2) 

2 (00) 0 (1 1/2)1/2 (0 1/2) 

3 {20)2 (1 1/2)3/2 {0 1/2) 

4 ( 02) 2 (1 1/2)3/2 (0 1/2) 

5 (22) 2 (1 1/2)3/2 (0 1/2) 

6 (22}1 (1 1/2)1/2 (0 1/2) 

7 {22)1 {1 1/2)3/2 (0 1/2) 

8 (22) 0 (1 1/2)1/2 (0 1/2) 

The Lippmann-Schwinger equations [S stands for 

angular, spin and isospin dependence] are 

t
8

(p,p",z) = v
8

(p,p") - 4;r J
oo dp'p'2 Va(p2,p') 

IJ ts(p',pn;z) 
0 p' -z 

z is the energy of two-nucleon system and o8 is the phase 

shif·t. 

In Ref. 21, Harper, Kim and Tubis have solved the 

(2 .. 28a) 

Faddeev equations for the Reid soft-core potential, effective 
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1 3 3 .only in the two-nucleon s 0 and s 1- n1 states. Yang and 
12) 1 3 3 Jackson . used o

2
, o

2 
and n

3 
Reid interactions also, 

which do not have significant effect on the final results. 

Only the first five basis states are retained. The 

probabilities are P(S) = 89.7%, P(S.') = ·1.'68%, P(D) = 8.56%. 

Ma1fliet and Tjon 14) using the same forces found 

P(S) = 89.9%, P(S') = 1.8%, P(D) = 8.1%. The difference in 

P(D) is due to the discarding of 4 and 5 components by 

Malfliet and Tjon. Authors of Re·fs .. 14 and 21 get the 

same energy EB = -6.4 MeV, when components. 4 and 5 are 

left aside. If 4 and 5 components are included, 

E = B 
-6.7 MeV 21). General expression for the 3He form 

factor. in momentum variables is (r is symmetry index of 

. . . f . 21) ) sp1n-1sosp1n unct1on 

L 
r,r' 

R. 1 1 J 1 p A ( z) 3H I 

x (i-A)!Al 2 dz qlA <WB elpql(Lt)iw~ JJz> 
-1. 

x <W!"'I ~ [fph(Q2)12(l+T. )+fnh(Q2)12(1-T. )] IWr> 
• i=l C 1Z C 1Z. $ 

, 

1 , = ~ = T = z 2 . 
(2.29) 
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3 
Diffraction minimum in jFc~e(Q2 } I by taking all 

eight components in lwB> was found to occur at a2 ~ l5o5 fm- 2 • 
3He 2 2 See Figo 9. The slope of IFch (Q ) I at Q = 0 gives charge 

radius 1" 96 fmo [Experimental number is 1 o 88 ± 0. 05 fm .. ] 

Using only the l= 0 components in trinucleon wave 

functio11, derived for the (1s0 and 3s1- 3n1} Reid soft-core 

potential, Tjon et ale 27 ) calculated charge form factors of 

3H and 3He as 

3 
2F He (2F~h + 

n 
= Fch)Fl -ch 

3H n p 
Fch = (2Fch + Fch}Fl + 

where 

Fl (q} = I 

P- = l M-1/2 (k k ) 
2 2- 3 , 

~(Fp 
3 ch 

~(F•p 
3 ch 

n 
- Fch)F2 

n 
- Fch}F2 , 

q I> 
(3M)l/2 

{2.30a} 

{2.30b) 

(2.3la} 

(2.3lb) 

Q = 1 (3M)-l/2 (k +k -2k ) 
2 2 3 1 

Functions U and v1 correspond to components 1 and 2. 

For this case 

3 
Rch( He) = 2.05 fm 
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i 

i 
I 

l 
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-1 
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i 

3 
Fig. 9 The solid curve of 1Fc~e(Q2 ) I for Reid soft-core 

potential (with even partial waves) was obtained 

42 

by using all components of the total wave function. 

dashed curve - by using S and S' states in the 

total wave function only, and dot-dashed curve 

was obtained by using (L = 0, t = O)L= 0 in the 

S state and S' state in the total wave function 

(taken from Ref .. 21) • 

· ..... · .. · .. 
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Experimental numbers are 

The minimum in (See 

For calculation of processes that are not strongly 

dependent upon the short range behaviour of the wave 

function, the unitary pole approximation wave function is 

reliable 29 )., 

The unitary pole approximation is a method for 

solving the Lippmann~Schwinger equationse For two spinless 

bosons interacting through s-wave potential only, there is 

one L-S equation (taken as an example) • 

Consider the homogeneous L~s equation~ 

1 



(a) 

-l 
I 
! 
i 
! 

J 
I 
j 
I 

~ 
i I 

! 

20 

Figo 10 The curve (a) is obtained for Reid soft-core 

potential {taken from Refc 27). 

... '• .. . ~. : . . 
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Or, 

{2.33b) 

Fixing s 0 at a negative value -B [B is the two-particle 

binding energy], s 0-dependence is dropped from l~n> and An· 

lw >=A vG0 <-B> 1~ > n n n 

The adjoint equation is' 

with A = ~ being real; n n 

The orthonormality condition is 

-o nm 

The I$ >'s and A 's are such that V = 
n n 

(2.34a) 

(2.34b) 

(2.34c) 

(2.35} 

llJJ ><w I m m 
A m=l m 

N 
~ -

(with N possibly infinite). Then the homogeneous equation 

without s 0-dependence is satisfied. Truncating it to finite 

N means instead of the correct potential, an apporoximation 

of a finite rank separable potential is mad~:~- ·-:'::·Thus ·.the-., 



Lippmann-Schwinger equations can be solved with an 

arbitrary small degree of approximation. 

T(s) = V + VG0 {s)T(s) 

lw ><w I 
= E ~ 

m 

m m 
A 

[1 + G0 {s)T(s}] 
m 

The unitary pole expansion matrix TUPE-matrix is 

TUPE{s) = , 

46 

(2.36) 

{2 .. 37a) 

In each term of V, IW >'s correspond to form factors 
. n 

in a separable potential for different An' and a particular 

energy s
0

• If the two nucleons are known to be bound by an 

energy B, s
0 

is taken to be -B. For antibound nucleons, 

s 0 = 0, and for unbound nucleons any convenient s 0 is taken. 

TUPE(s) is explicitly solved through ~(s), and substituted 

into the Faddeev equations lG) • TUPE gives correct deuteron 

and low energy two-body scattering wave functions. Matrix 

elements of two-nucleon T.-matrices in the three-nucleon 
l. 

space (p,q) are 

. I . 

: ~!~;(. ~~:~·~·. ·~~.~. •. • ..... ~ .... ~ • • . ... 

(2.38) 

tjk is the TUPE-matrix. 
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The unitary pole approximation to Reid (singlet 

and triplet) soft-core potential was performed by Eo Harms 

et alo lG) Only 1 and 2 components in the wave function 

were retainedo Results agree with those of Tjon, Gibson and 

O'Connell 27 ) 

3 
Rch( He) = 1.97 fm 

I 

and q 2 of the dip in the 3He absolute charge form factor is 

-2 l7o0 fm e See Fig. llo 

Faddeev equations were first solved for separable 

Yamaguchi-type potentials analytically by A. N. Mitra 34 ) 
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0' 

~" 

10..., 

Fige 11 Absolute charge form factor of 3He. The long-

dashed curve is obtained by using unitary-pole 

approximation method. The short-dashed curve 

is from the work of Tjon, Gibson and otconnell 

(Ref. 27) • 



CHAPTER III 

THREE-NUCLEON CHARGE FORM FACTORS WITH 

PHENOMENOLOGICAL WAVE FUNCTIONS 

Construction of phenomenological three-nucleon wave 

functions from the symmetry properties has been shown by 

Gibson and Schiff 31) (also see Ref. 32). Spin functions 

for ssz = (1/2 1 1/2) are x1 and x2 • (3/2,1/2) spin function 

is Xs· 

xl = 6-1/2[(++-> + (+-+) - 2(-++)1 I (3.la) 

x2 = 2-1/2[(++-> - c+-+>1 I (3.lb) 

Xs = 3-1/2[(++-) + (+-+) + (-++)] (3.lc) 

Similar functions n11 n2 and ns in isospin space are 

written for 3He nucleus. For 3H, there will be 'minus' 

instead of 'plus' and vice versa. Different combinations of 
~ !• ~ 

spin-isospin functions can be formed from x1 ,x2 and n 1 ~n 2 • 

'2 = x2nl + xln2 I 
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(3.2a) 

(3.2b) 



Jacobi coordinates of three nucleons can be 

r= -1/2 - + X - 2x
1

) 6 (x2 3 

n = 
~1/2 ~ 

2 (x
2 x3> 

R = 3=1/2(x + 
1 x2 + x3) 

Under the permutations P12 , P23 , P13 of two nucleons, the 

quantities x
1

, n
1

, $
1 

and ~behave in an analogous wayo 

p23cpl = ¢1 

1 - cp ) pl2cpl = 2 (/3¢2 ' 1 

pl3cpl 
1 

(/3¢2 + ¢1) = 
2 

So do quantities x2 , n2 , ¢2 and n .. 

' 
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( 3 .. 2c) 

( 3 0 2d) . 

( 3 Q 3a) 

(3 .. 3b) 

(3.,3c) 

(3., 4a) 

(3.,4b) 

( 3., 4c) 
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Xs' n
8

, ~s and R are completely symmetric. 

One defines 

sl = n2 - ~2 (3. Sa) 

(3.5b) 

( 3. Sc) 

which are elementary scalar functions in spatial coordinates, 

behaving like <t> 1 , <t> 2 and 4>
8 

·respectively under permutations 

Pl2' P23' P13· 8a = 0 • 

The spin function Xl is also equal to 

(3. 6) 

The spatially symmetric component of the trinucleon wave 

function can be taken as 

(3. 7) 

£1 is a spatially symmetric function. Second component is 
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T = 3/2 admixture can be introduced as 

Due to its small contribution, it is neglectedc 

P-state even parity components of the wave function 

COntain a space VeCtOr Of even parity ~ X n, multiplied by 

vector functions of spino 

(3., 9a) 

II2 = crlx2 ( 3 0 9b) 

II [a 23 
1 . (-

x ·a 23) 1 x2 (3.,9c) = - - J. cr s 2 1 

IT is s = 3/2 function .. s 

( 3 .10) 

( 3 .11) 

are two S = 1/2, L = 1 functions. 



is of quartet spin. 

Symmetric quartet spin st~tes (S = 3/2) are the 

following [symmetric only under spin permutations]. 
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(3 .12) 

(3 .13) 

(3 .14) 

(3.15) 

which transforms under both spatial a spin permutations like 

~~ nand R respectively. 

The 3 components L = 2, S = 3/2 in the total wave 

function are 

(3.16) 
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(3 .. 17) 

w6 and ~ 7 are not orthogonal, and therefore, instead 

of w 6 the following· linear combination of 1jJ 6 and w7 is taken., 

w6 = [(SD 2s 2 - 2D 2S
5

)n 1 ~ (SD
5

s1 - 2D1S
5

)n 2]f6 (S
5

) c 

{3 .. 16} 

fl, .•• , fa are invariant functions of ss = r2 + n2 

(under all permutations P12 , P23 , P13 ). Choosing the 

components to be homogeneous in s1 , s2 and S
5 

of the same 

order, the set of 8 components, orthogonal to one another, is 

following .. 

\fJl <x2nl -
2 2 = xl n 2 > (s 1 + S2)fl(Ss) 

w2 
2 - 82) + 2x1s 1s 2>n 1 

= [{X2(S2 1 

2 - S2\ - 2x2s 1s 2>n 2J£2 (s
5

) + <xl<s2 1• 
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(3.19) 

u1 and u 2 .are spatial-spin functions. The wave function~ 

has the follc:>tving we_ll-defined quantum numbers: J = 1/2, 

Sz = 1/2, T = 1/2 and Tz = +1/2 for 3He, and ~1/2 for 3
H. 

Then 

(3.20) 

· .For 3H, F~h and F~h should be interchanged. 
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Nonzero scalar products involving different spin functions 

are 

[IIl (~ x n)]*TI 1 (~ X n> = [II2("( x n>J*rr <~ x n) 
2 

1 (S2 2 S2) = 4 = s ~ 
s 1 2 

rn cr x n>J*rr cr x n) = 3 (S2 s2 S2) 
s s 2 s 1 2 

DiD1 2(8 2 + 18 2 S2) DiD2 
2 + iS s <n ~) z) = = 4(38182 X 

s 3 1 2 

D2D2 2(s2 - 82 + 1 8 2) D*D 2 is
2

(n r> z) = = 4 (3S1Ss + X 
s 1 3 2 1 s 

D*D 2(182 + s2 + S2) D*D 8 = = 3
8

2
8 s s s 3 s 1 2 2 s 

It is convenient to use the so-called Irving 

transformation 
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1~1 = pcose , In! = psine 

n = In! (sine cos¢ r sine sin¢ , cose ) n n n n n 

Then 

sl 
2 = ~p cos28 

82 
2 
sin28cose~n = p 

s 2 = p s 

and w 

Jd~dn = ~ Joo dpp5 J dQ~dnn J2 d6(1 - cos4e) 
0 0 

With this transformation, normalisation integrals become 

Jd~dn lw1 1
2 2 3 

f 
13 2 = -'IT dpp fl(p) 3 

(3 .. 22) 

Jd~dn lw2 1
2 2 3 I 13 2 

= - rr dpp f2{p) 3 

Jd~dn I1P312 1 3 

f 
13 2 

= - 1T dpp f3(~) 4 

Jd~dn I1P 41
2 1 3 I 13 2 

= 12'IT dpp f4(p) - (3 .. 25) 
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Jd~dll llP 5 1
2 1 3 

= 4 1T J 
13 2 dpp £5 (p) (3.,26) 

Jd~dll lt/1612 = 35rr3 
3 J 

dppl3f~(p) (3.,27) 

Jd~dll lt/1712 
10 3 

J 
d 13 c2 ( ) (3" 28) = ~-1T pp I7 p 3 

J d~dll lw 8 1
2 14 3 

J 
13 2 (3o29) = -1T dpp f8(p) 3 
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3 
The expression for Fc~e is 

1 2 2 2 2 2 2 4 4 * * 1 2 2 2 
+:r<sl +S2) (ss-sl ~s2 > f 4+2 (sl-s2) (f lf 2+£2fl) + 2sl ss (Ss -sl-s2) 

, 
. (3.30) 



60 

Converting to Irving coordinatesf this becomes [K = 1273 q]o 

= [2FP (-)+Fn {-)] Ja 5Jae (l=cos48) sin(Kpcose) [8 (S4+.§_ 2~2s2 
ch q ch q PP Kpcose 1 3n ~ 1 

x (f*f +f*f )}+9(Fp +Fn )Jdpp 5Jd8{1-cos48) 5 in(KpcosS) 
3 4 4 3 ch ch Kpcose 

x sin(Kpcos8) (4 4 2~2-~8 2 2~2_16 4~4)f2+l 2 (Fp +Fn ) 
Kpcose 3P n ~ 9 1 n '-:> 5 n ~ 5 ch ch 

(continued over) 
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4 2 4 2 16 2 2 4 2. 4 2 8 2 2 +Sp (4s1-p )f6£7+as1p (!f~ n -p )f7£8+8s1p (2p -ssi+g~ n )£6£8}. 

(3.31) 

The following formula is used 

1T n-1 

t de sin(Kpcos6)cos ne "1 -r J (Kp) =-n(-1) 2 n 
(3. 32) 

0 

and 

(3.33) 

Coefficient of f 1f 2 in the integration over p is 
-

I de (1 _ cos 4 e) sin (Kpcos6) • 8 (S4 _ 16 ~4n 4) 
Kpc_ose 1 5 

_ 16 (Fp -Fn )-p _ 12 I 
K chch4 d6 sin(Kpcos6) (2cos56-2cos79+~os96-~os116) 
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1 4( 4 8 2 8c2 2) 2 p p - 1-3s n 



63 

(F~h - Fnch) Ps J d8 (1 - cos48) sin {Kpcose) • 2S P2 {p4-s2_£z:-2n2) 
Kpcose 1 1 3s 

Fp n 
20 ch = Fch =-- (J ~ J )pll 
3 K2 4 8 

= 

+4i:"2 2 4 16i:"4 4) 
-~ n P --~ n 3 5 

? f ... 
4 

8 {2Fp +Fn ) 
ch ch • !. ( J + J _ _! J _1· J ) 12 

3K 4 1 3 5 9 5 11 p 
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32 .. 35( 2Fp +Fn) llJ +~(l 3Fp -SFn) 11J+25.16(?Fp ~Fn )ollJ ., 

3 
2 ch ch P 2 2 ch ch P 6 

3 
2 ch ch ' 10 

K K K 

f6f7 

11 pP J
6 P ch 

32 .. 22 Pll [5 (2Fpch + Fcnh) J2 - (2Fp - 5Fn ) J ] 
ch ch 8 • 3K 



16 
2 

11 [ 7 (Fp _ Fn ) J p n J - - P h h 4 + (1 lFch + ?Fch) al " gK2 C C 

6 
hi (p) = p fi(p) 

3
He - Jco 2 2..~ 2 1 2-' 1 2 1 2 35 2 10 2 14 2 

Fch (q) • dpxp{3(hlrh2)+4h3 1-12h4+4h5+3h6+Th7+9h8} 

0 

= 212 r dp~{32 (2F~h (q) +F~h (q) (2 J2 (Kp) +3 J6 (Kp) + JlO (Kp)) 
K Q 
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(3.34) 
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Function h can be taken in the form cpbe-ap (b = 2 

for the Irving function). In practice, it is necessary to 

investigate the importance of each h. some wayo Since the 
1 

3 3 magnetic moments of H and He appear not to depend on the 

probability of P states, the terms containing h 3 , h 4 and h 5 

may be ignoredo The parametric functions h. can be fitted 
3 1 

He - p - n (-to the experimental numbers on Fch (q), Fch(q), Fch q) · 

In Ref. 35, the author has given expressions fitting the 

experimental data on 3H and 3He charge form factorso The 

factor e-ap defines behaviour of the wave function near the 

outer edge of the nuclear potentialQ Parameter a is roughly 

of the same magnitude for different h .• 
1 

h. {p) approaches p = 0 as some power of 
1 

For short distances, 
b. 

p: p 1 L. Ie Schiff 

considered three types of phenomenological wave functions: 

exponential, Gaussian and Irving functions, and compared the 

h 0 1 ° f 3 d 3 1 1 d I h th h p ys1ca propert1es o H an He ca cu ate w1t e t ree 

different wave functions. Irving function was found to be a 

physically plausible phenomenological wave function, that is 

reasonably easy to work with. 
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SUMMARY 

Results of the variational calculations do not give 

unambiguous information about true nature of the trinucleon 

wave function for a given hamiltonian. It is, in principle, 

possible for different types of trial functions to converge 

t.o different wave functions and give the same binding energy. 

Method of diagonalising the hamiltonian is applica-

ble for soft-core potentials only. If the basis is taken 

sufficiently large, diagonalisation method gives a reliable 

wave function~ Diagonalisation of the hamiltonian for Reid 

soft-core potential in the basis of 484 harmonic oscillator 

states {discarding the P states) yielded a binding energy of 

the three-nucleon bound system equal to 6.30 MeVe The 

extrapolated value is 6.5 MeV. With this wave function, 

minimum in the 3He absolute charge form factor was found to 

be at q 2 = 12., 9 fro - 2 • Probability of the D sta·tes equals 

13) to 7.8% {Refo 11) e Nunberg et al. diagonalised the 

hamiltonian for Riihimaki potential in the basis of 348 

harmonic oscillator states. Binding energy in the truncated 

basis was found equal to 6.28 MeV, and the probability of D 

states - 4.6%a In finding the extrapolated value of the 

binding energy {7.0 MeV), P states were not completely 

neglected. From rough estimates of the isoscalar mag_netic 
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moment it is concluded by Nunberg et al~ that P(D) ~ 4%, and 

therefore, Riihimaki potential is more favoured with respect 

to other realistic potentials. Form factor calculations for 

the Riihimaki potential have not been performed. Extrapol-

ating procedures are different in the two diagonalisation 

calculations. 

For solving Faddeev's equations, the wave function is 

expanded over a basic set of states [See Chape II] . Each 

basic state is characterised by (L~)i(ss)~(Tt)TTZ., L = 0 

should couple with 8 = 1/2, since the total angular momentum 

is J = 1/2 .. L and ~ should both be equal to each other, 

i., e., L = ~ = n, where n = 0, 1, 2, 3, ., II> 0 , so that l. be zero. 

Harper, Kim and Tubis, and others consider only n = 0, 1, 2., 

Similar remarks can be made for != 1, L= 2 basic states, 

used in expanding the wave function. This can be a reason 

of disagreement in the results of Jackson et alo and Harper 

et al. and others for the same potential, i.e., Reid soft-

core. Therefore, among different calculations on the three-
( 

nucleon bound system for given two-nucleon forces, diagonal-

isation method seems to be suitable, provided the basis is 

quite large. 

The summary of the calculations by different methods 

for particular realistic nucleon-nucleon forces is given 

in Table IV. 



Table IV Summary of the Calculations, presented in the 

Review 



Ref. Potential 

9 Hamada-Johnston 

(Coulomb forces are 

included in case of .3He) 

13 Riihimaki 

11 Reid soft-=core 

12 

26 

14 
r 

16 

21 ;~~ ; 
~~ 

27 .t : . 
... 

17 ·_; 

· .. Experimental 
,. 

TABLE IV 

Triton 

binding energy 

(MeV) 

6.5 ± 0.2 

7.0 

6.5. 

6.25 

6.5 

6.7 

6.8 ± 0.5 

7.58 

8.48 

<r·~;~h2 (3H) 

(fm) 

1.85 ± Oe02 

1.83 

1.87 

1.76 

1.80 

1.70 ± o.os 

<r2>1/2(3He) 
ch 
(fm) 

1.90 

2.14 

2.09 

I 

1.97 

1.96 

2.05 

1.88 ± 0~05 

2 -2 q (fm ) of. 

· the minimum 
. 3 
.in 1Fc~e(q2) I 

12.5 ± 0.3 

12.9 

17.0 

15.5 

17.0 

11.6 
en 
\&) 
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From the ·table it can be seen that all the 

calculations give a binding energy 1-2 MeV less thari the 

experimental binding energy. The mentioned calculations 

assume only two-nucleon forces to be acting in the three-

nucleon system, and the discrepancy between theory and 

experiment suggests that three-body forces may play a 

significant role in obtaining the correct binding energy. 

3 If the experimental data on He are considered as well, and 

3 compared with those on H, one can get information about the 

charge dependence of the nucleon-nucleon forceso 

The wave function of (T = 1/2, J = 1/2) three-nucleon 

bound system can be investigated from the form factor data. 

CORRECTION (on page 54) 

J 

In constructing phenomenological wave function, it 

seems likely to choose 
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