
Multi-Agent Distributed Graph Traversal

MULTI-AGENT DISTRIBUTED GRAPH TRAVERSAL

BY

MARKOV MIKHAIL, Engineer, B.A., C.E.Sc.

A Thesis

Submitted to the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

c© Copyright by Markov Mikhail, August 2016

All Rights Reserved

Master of Science (2016) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Multi-Agent Distributed Graph Traversal

AUTHOR: Markov Mikhail

Engineer, (Control and informatics in engineering sys-

tems), St Petersburg State Electrotechnical University,

St Petersburg, Russia

SUPERVISOR: Dr. Borzoo Bonakdarpour

NUMBER OF PAGES: xiv, 128

LEGAL DISCLAIMER: This is an academic research report. I, my supervisor, de-

fense committee and McMaster University make no claim

as to the fitness for any purpose, and accept no direct or

indirect liability for the usage of the algorithms, findings,

code, or recommendations in this thesis.

ii

To my family

Abstract

The industry of the civil Unmanned Aerial Vehicles (UAVs) has been growing rapidly

in past few years. In many scenarios, accomplishing a task using a single UAV is

either not cost-effective due to the size of the project or not even feasible due to

the existence of unforeseen environment conditions and constraints (e.g., weather

conditions and/or physical obstacles). This limitation motivates the need to move to

solutions that incorporate a network of autonomous UAVs that carry out a joint and

coordinated mission.

This thesis introduces a multi-agent system and related algorithms that solve the

graph traversal problem in a distributed and decentralized manner while optimizing

a set of costs. The environment is modeled as a graph where every node is the point

for the agents to accomplish some task or to distinguish the point as an obstacle

where traveling is not possible. The online distributed algorithms are implemented

on a network of UAVs and we report the results of rigorous simulations and real

experiments with a network of UAVs . The results clearly validate our claim that a

network UAVs can be effectively employed to accomplish a given task.

iv

Acknowledgements

First of all, I would like to thank my supervisor Dr. Borzoo Bonakdarpour for giving

me the opportunity to work on this challenging and exciting area of computer science,

as well as, for his support and guidance throughout my degree.

I would like to thank my committee members, Dr. George Karakostas and Dr.

Alan Wassyng, for their valuable feedback on my research work.

I would also like to thank my colleague Akhil Krishnan for his help with conducting

experiments.

Finally, I would like to thank my parents, family, and friends for their support

and encouragement.

v

Notation and Abbreviations

ANTS – Ants Nearby Treasure Search

CSP – Constraint Satisfaction Problem

DCSP – Distributed Constraint Satisfaction Problem

ILP – Integer Linear Programming

LP – Linear Programming

MADGT – Multi-Agent Distributed Graph Traversal

MADGTA – Multi-Agent Distributed Graph Traversal Algorithm

MRCP – Multi-Robot Coverage Problem

MRPP – Multi-Robot Patrol Problem

mTSP – Multiple Traveling Salesman Problem

OCTO – Octocopter

QUAD – Quadrocopter

RPi – Raspberry Pi

RTL – Return to the Launch

SI – Swarm Intelligence

SFOC – Special Flight Operations Certificate

TSP – Traveling Salesman Problem

UAV – Unmanned Aerial Vehicle

vi

VRP – Vehicle Routing Problem

vii

Contents

Abstract iv

Acknowledgements v

Notation and Abbreviations vi

List of Tables xi

List of Figures xii

1 Introduction and Problem Statement 1

1.1 Informal Problem Description . 1

1.2 Thesis Statement . 4

1.3 Research Goals . 4

1.4 Thesis Organization . 8

2 Related work 9

2.1 Distributed Constraint Satisfaction Problem 9

2.2 Traveling Salesman Problem . 13

2.3 Vehicle Routing Problem . 16

viii

2.4 Swarm Intelligence and Swarm Robotics 20

2.5 Multi-Robot Patrol Problem . 26

2.6 Multi-Robot Coverage Problem . 28

3 Multi-Agent Distributed Graph Traversal Algorithm 32

3.1 Formal Problem Description . 32

3.2 Algorithm Description . 33

3.2.1 Overall Idea of the Algorithm 33

3.2.2 Notation and Assumptions . 36

3.2.3 Detailed Description . 39

3.2.4 An Example of Execution of the Algorithm 45

4 Implementation of the Algorithm 56

4.1 Communication Model of the System 56

4.2 Computation Model of the System 59

4.3 Implementation of the Algorithm in Python 65

5 Simulations and Experiments on UAVs 72

5.1 Simulation Results . 72

5.1.1 Parameters and Metrics of Simulations 72

5.1.2 Results of the Simulations . 74

5.2 Experimental Results . 91

5.2.1 Description of UAVs Used by us in Real Experiments 91

5.2.2 Model and Analysis of Real Experiments 95

6 Conclusion and Future Work 105

ix

6.1 Summary . 105

6.2 Future Work . 106

A Link to Video of the Experiments 109

B Legal Requirements to Conduct Experiments with UAVs 110

Bibliography 113

x

List of Tables

5.1 Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no

obstacles, 1 nest, 3 same agents, part 1 76

5.2 Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no

obstacles, 1 nest, 3 same agents, part 2 77

xi

List of Figures

1.1 Global model of the system . 7

3.1 Dispersion of agents . 35

3.2 Initial graph . 37

3.3 Final graph . 38

3.4 Final graph representation using colors 39

3.5 Initial graph for an example of execution of the algorithm 46

3.6 Step 1 of the example . 47

3.7 Step 2 of the example . 48

3.8 Step 3 of the example . 49

3.9 Step 4 of the example . 50

3.10 Step 5 of the example . 51

3.11 Step 6 of the example . 52

3.12 Step 7 of the example . 52

3.13 Step 8 of the example . 53

3.14 Step 9 of the example . 54

3.15 Final graph for the example of execution of the algorithm 55

4.16 Communication model of the system 57

4.17 Structure of a broadcasted message 57

xii

4.18 Computation model of the system . 59

4.19 Initialization stage of the computation 60

4.20 Mission stage of the computation . 63

4.21 Termination stage of the computation 64

5.1 Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no

obstacles, 3 same agents, 1 nest on the border of the grid 78

5.2 Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no

obstacles, 3 same agents, 1 nest in the middle of the grid 78

5.3 Simulation results in a grid of 10× 10 nodes, 40× 40 meters, with no

obstacles, 5 same agents, 1 nest on the border of the grid 80

5.4 Simulation results in a grid of 10× 10 nodes, 40× 40 meters, with no

obstacles, 5 same agents, 1 nest in the middle of the grid 80

5.5 Simulation results in a grid of 20× 20 nodes, 80× 80 meters, with no

obstacles, 1 nest in the given node number on the border, 10 same agents 81

5.6 Simulation results in a grid of 20× 20 nodes, 80× 80 meters, with no

obstacles, 1 nest in the node in the middle of the grid, 10 same agents 82

5.7 Simulation results in a grid of 10× 10 nodes, 40× 40 meters, with no

obstacles, 1 nest, 2 to 10 same agents 83

5.8 Simulation results in a grid of 15× 15 nodes, 40× 40 meters, with no

obstacles, 1 nest, 2 to 10 same agents 83

5.9 Simulation results in a grid of 15× 15 nodes, 80× 80 meters, with no

obstacles, 1 nest, 2 to 10 same agents 84

5.10 Simulation results in a grid of 20 × 20 nodes, 80 × 80 meters, with

different obstacles, 1 nest, 10 same agents 85

xiii

5.11 Simulation results in a grid of 20× 20 nodes, 80× 80 meters, with no

obstacles, 1 nest, 2 to 10 same agents 86

5.12 Simulation results in a grid of 20× 20 nodes, 80× 80 meters, with no

obstacles, 1 nest, 2 to 10 same agents 87

5.13 Simulation results of a preparation time and the best number of agents

in a grid of 20× 20 nodes, 80× 80 meters, with no obstacles, 1 nest, 2

to 6 same agents . 88

5.14 Simulation results of a preparation time and the best number of agents

in a grid of 20× 20 nodes, 80× 80 meters, with no obstacles, 1 nest, 6

to 10 same agents . 88

5.15 The resulting grid of 20 × 20 nodes, 80 × 80 meters, with multiple

obstacles, 1 nest, 3 same agents . 90

5.16 Energy system of our UAV . 92

5.17 Control system of our UAV . 93

5.18 Our quadrocopter UAV . 94

5.19 A snapshot of a map of an experiment 95

5.20 A snapshot of an experiment from an onboard camera of our octocopter 96

5.21 A photo of our multicopters doing a takeoff from the ground 97

5.22 Initial graph of the third real experiment 100

5.23 The result of the third real experiment 101

5.24 A photo of three UAVs doing their work in the fourth real experiment 102

5.25 The initial graph of the fourth real experiment 103

5.26 The result of the fourth real experiment 103

xiv

Chapter 1

Introduction and Problem

Statement

1.1 Informal Problem Description

The industry of the civil Unmanned Aerial Vehicles (UAVs) has been growing rapidly

in the last few years. In the past, just some rare enthusiasts worked with flying

prototypes and devices. Nowadays, almost everyone can afford to buy a small UAV .

Meanwhile, the companies spend their resources on more complex professional UAVs

that can operate in very hard conditions, can lift quite big cargo, and give the detailed

information about the environment, using the cameras and sensors.

Besides the obvious military applications, UAVs can be used in practice in many

industries. Examples include:

• mining (finding the potential areas for mining using the sensors);

• agriculture (aerial crop surveys);

1

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• aerial photography (for cartographic or 3D mapping, landslide measurement);

• search and rescue (finding the missed people in the forest);

• patrolling (border patrol missions, convoy protection, forest fire detection, crowd

monitoring);

• data collection (inspection of power lines and pipelines, counting wildlife, envi-

ronment monitoring, large-accident investigation);

• logistics (delivering the cargo, for example, the medical supplies to inaccessible

regions; or the new fancy Amazon Prime Delivery);

• motion pictures (fancy effects in the movies, clips, footages); etc.

A UAV can be operated manually by a ground pilot using a remote control device.

It works this way in most of the above mentioned examples. However, automatic

control over a UAV can make a task faster and can exclude the risk of a human error.

In practice, automatic control over UAVs is mostly centralized. A pilot or an

engineer can assign waypoints to a UAV , for instance, with the ‘ground station’ or

‘mission planner’ software. Moreover, the majority of mission planning problems

for UAVs are solved offline, before any particular operation. After that, a UAV

arms its motors, takes off from the ground, flies through the required waypoints in

the environment, accomplishes some tasks, returns to the initial position, lands, and

disarms the motors.

This approach works only for small-scale territories where every UAV is in the

range of communication and we know the precise structure of the environment ini-

tially. In the early stages of our research work, we have implemented this off-line

2

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

centralized algorithm by solving integer linear programs for optimal flights planning

for every UAV .

This offline centralized solution, however, comes short in larger territories with

unforeseen obstacles. It also may not be possible to have centralized communication

with every agent during an operation. There are many real situations where we do

have such constraints, for instance, in search and rescue operation after a catastrophic

event; delivery of a medication to not easily accessable areas, etc. In such cases, we

cannot use the offline centralized algorithm and we cannot solve the problem from

a starting point (nest) in an optimal manner. These constraints motivate a need to

develop online and decentralized step-by-step algorithms. Decentralization inherently

leads us to implementation of a distributed system, where agents should decide how

to operate during a mission, according to real situation with the environment, their

current positions and all known decisions of the other agents (rival agents).

With this motivation, in the thesis, we focus on design and implementation of

online decentralized algorithms for suboptimal multi-agent graph traversal. The en-

vironment here is modeled as a graph. Every node in the graph is a point for an agent

to accomplish some task or to distinguish a point as an obstacle, where traveling is

not possible. There can be made any kind of tasks, for example, search of a target,

delivery of a cargo, taking a photo, recording a video, inspection of something, etc.

Therefore, in such settings the problem can be reduced to the multi-agent distributed

graph traversal (MADGT).

3

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

1.2 Thesis Statement

Our research hypothesis is that it is more practical to design distributed algorithms

for online multi-agent graph traversal and to implement them on UAVs to carry out

real-world autonomous missions, rather than to use offline algorithms and centralized

control over UAVs .

In the rest of the thesis, we defend this statement and propose solutions that

realize our claims.

1.3 Research Goals

Our goals in this research are

• to design an online distributed algorithm for multi-agent graph traversal;

• to implement an algorithm for computer simulation and experimentation with

real UAVs ;

• to produce and record a series of simulations of algorithm implementation with a

different number of distributed agents, different parameters of agents, positions

of initial points, obstacles, etc;

• to conduct real experiments with the implemented algorithm on real UAVs

(multicopters).

Our approach is distributed to achieve robustness and autonomy in our system.

There is no risk of loosing contact with the central unit, even if all agents except

the last one stop their working due to a hardware malfunction, this last agent will

4

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

finish a common mission. We assume broadcast communication among all agents.

In our implementation we use long-range WiFi modules that can cover up to 2 km:

an acceptable range for autonomous UAVs in real-world scenarios. Of course, wider

ranges of communication are possible using 2G or 3G cellular communication. In

most cases, the communication range depends on the quality of the signal and on

external interferences. But if the test area has good coverage by the mobile operator

we can have almost unlimited broadcast range for our agents.

As mentioned earlier, the implementation of the algorithm should work on real

UAVs . This involves the following challenges:

• addressing atmospheric problems such as those experienced by aircraft (e.g.,

weather, humidity, wind, temperature, etc.);

• energy limits: i.e. we can fly a UAV , on average, only up to 15 minutes with a

fully charged battery;

• complex hardware and software system integration. Our experiments depend

on all sensors, moving parts, and electronics working at all times. The loss of

any one of these can lead to a fatal breakdown of a UAV .

The algorithm should work in all complex real-world situations, for instance in

search and rescue operation after a catastrophic event. It should take into account

the hardware and software possibilities of the modern UAV . That is why, in this

thesis, we make the following assumptions:

• an environment is modelled as an undirected graph;

• there exist, at any time, at least 2 agents at any initial nodes of a graph. The

algorithm should not depend on the number and the initial positions of any of

5

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

the agents. However, as the algorithm should work in a distributed manner, at

least two agents are required for any particular mission;

• there is a limited knowledge of the environment (no initial information about

obstacles). An obstacle can be detected by an agent only in nodes adjacent to

its current location. This assumption is based on the real capabilities of sensors

and camera systems which, on average, are effective in the range of 1 to 40

meters;

• there is neither a communication protocol nor a common agreement between

agents. Therefore, only a synchronous broadcast is used. This assumption mim-

ics the most complex situations in which UAVs should work in, such as large

territories with a lot of interferences of communication signals, and more specif-

ically: areas where we cannot wait until the agents establish communication

and come to an agreement. Please note that in this research it is assumed that

the broadcast is global and perfect. However, in future work we need to adapt

this algorithm model to under suboptimal communication conditions;

• the total number of targets is unknown, which is why the agents should travel

through every node of a graph and should continue along in their job (such as

the search and rescue of survivors post-disaster);

• the decisions about the next position that an agent will fly to is made by the

onboard Raspberry Pi of each UAV using the latest local knowledge of the

environment and broadcasts from other UAVs coming in through long-range

WiFi . We also assume that only a limited amount of computations is made by

every agent (as the embedded onboard computers are nowhere near as fast as

6

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

model workstations);

• when an agent starts the work in a common mission, it continues to work until a

termination condition is reached or the agent encounters some form of hardware

problem. An agent cannot become idle so long as there is at least one remaining

vacant node and should always travel with the intent on doing as much work

as possible.

Figure 1.1 shows the overall picture of our multi-UAV system.

Figure 1.1: Global model of the system

Every UAV has a set of devices and sensors. The core computing hardware

components of our UAVs are Pixhawk flight controllers and onboard Raspberry Pis

(RPi). Flight controller takes the information from the GPS module, cameras, and

7

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

sensors. This information helps to operate an agent in an environment, get the precise

position, identify obstacles and avoid collisions with any rival agents. The onboard

computer, in addition to the fact that it is running an implementation of the proposed

algorithm, helps in communication through a long-range WiFi module, to which it

is connected. The WiFi signal goes to an access point, which has even longer range

WiFi antenna than any of the agents which is connected to a server. The server

introduces the required mission parameters to the agents and, under the current

implementation, helps with the broadcasts during the mission. Another feature of

our implementation on the laptop server is that we are able to monitor the current

situation of the agents, which we can see on the constantly updated visualization of

the environment and in reported logs.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses related work.

Chapter 3 presents our distributed algorithm. Chapter 4 describes an implementation

of the algorithm. Chapter 5 discusses results of the simulations and real experiments.

Chapter 6 concludes this thesis.

8

Chapter 2

Related work

In this chapter, we describe the research efforts that are closest to the problem under

investigation in this thesis.

2.1 Distributed Constraint Satisfaction Problem

A distributed constraint satisfaction problem (DCSP) [Yokoo et al., 1998] is a con-

straint satisfaction problem (CSP), in which variables and constraints are distributed

among multiple agents. According to [Yokoo et al., 1998; Yokoo and Hirayama, 2000;

Modi et al., 2005; Yokoo, 2012], a CSP consists of n variables x1, x2, · · · , xn and a

set of constraints at their values. Values of variables are taken from finite discrete

domains D1, D2, · · · , Dn. Each constraint is defined by a predicate pk(xk1, · · · , xkl).

Predicate becomes true when values of variables satisfy constraints. Therefore, solu-

tion of a CSP is obtained when all assigned variables satisfy all constraints.

In an article [Yokoo et al., 1998], authors solve a DCSP using a message passing

communication model with a finite delay. An agent attempts to determine a value

9

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

of its own variable according to inter-agent constraints. A relation belongs(xj, i)

determines that a variable xj belongs to an agent i and that only this agent can

change a value of the variable. A relation known(pk, i) shows that an agent i knows

a constraint pk. Notice that agents can have partial knowledge of constraints.

A DCSP is solved when the next condition is satisfied: “∀i, ∀xj where belongs(xj, i)

the value of xj is assigned to dj and ∀l,∀pk where known(pk, l), pk is true under the

assignment xj = dj”[Yokoo et al., 1998] .

There are several assumptions, proposed by authors [Yokoo et al., 1998]: (1) each

agent has exactly one variable; (2) all constraints are binary; (3) each agent knows

all constraint predicates relevant to its variable.

The authors [Yokoo et al., 1998; Yokoo and Hirayama, 2000; Modi et al., 2005;

Yokoo, 2012] have proposed several algorithms to solve a DSCP:

• ‘Centralized method’, using a selection of a leader agent among all agents,

which should gather all information about variables, domains, and constraints.

Having such a global view, the leader solves a DCSP alone, using the ordinary

centralized CSP algorithms, and translates its solution to all other agents. The

main problem of such an approach is a huge communication overhead;

• ‘Synchronous Backtracking’, using an order, or priority of agents’ moves. This

order can be achieved via communication with a common agreement. Each

agent instantiates its own variable based on constraints and sends this partial

solution to the next agent according to the mentioned above order. The next

agent appends its value to the partial solution and sends it further. If an agent

cannot find a value that satisfies constraints, the agent sends a backtracking

‘nogood’ message to the previous agent. In such a case the previous agent

10

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

should try to find another solution. Notice, that a partial solution is never

modified, unless it is shown, that it cannot be a part of any complete solution;

• ‘Asynchronous Backtracking’, is an algorithm, which allows agents to run their

computations concurrently and asynchronously. Each agent instantiates its vari-

able concurrently. An agent sends its value to the lower priority agents and

waits for their responses. The agent holds current value of the variable (on ‘ok’

messages) or makes a re-evaluation (on ‘nogood’ messages). For example, each

agent has a set of values from connected agents (an agent’s view), represented

by a set of pairs [(x1, 1), (x2, 2), (x3, 3)]. This means, that a value of a variable

x1 is 1, x2 is 2, and so on. When an agent receives an ‘ok’ message, it adds a

new pair to its agent’s view and checks its consistency. Its own assignment of

a value is consistent with its agent’s view when all constraints are true, and all

communicated ‘nogood’ messages are not compatible with the agent’s view. If

its own assignment is not consistent, the agent tries to change a current value,

so that, it becomes consistent. A subset of an agent’s view is called a ‘nogood’

when an agent is not able to find any consistent values of a subset. Agents try

to avoid situations, previously found to be ‘nogood’. However, due to a time

delay in message delivery, an agent’s view can occasionally be inconsistent, or

identical to a previously found ‘nogood’;

• ‘Asynchronous Weak-Commitment Search’, is an algorithm, which aims to im-

prove weaknesses of an asynchronous backtracking algorithm, where it is pos-

sible to have an exhaustive search after a bad choice of agents’ priority. An

asynchronous weak-commitment search algorithm: “introduces the min-conflict

heuristic to reduce risk of making bad decisions. Furthermore, an agents’ order

11

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

is dynamically changed, so that, a bad decision can be revised, without per-

forming an exhaustive search” [Yokoo and Hirayama, 2000]. According to this

algorithm, each agent concurrently assigns a value to its variable, and sends this

information to the other agents. This time, it sends it to all connected agents,

i.e. to lower and higher priority agents. Notice, that a partial solution here is

not modified. It is completely abandoned after only one failure or backtracking

event.

The DCSP approach and algorithms do not work in our case, because:

• first of all, in the approach of authors [Yokoo et al., 1998; Yokoo and Hirayama,

2000; Modi et al., 2005; Yokoo, 2012], agents use communication with common

agreement. Agents in such an approach do a ‘move’ only when everybody has

agreed on a common solution, i.e. all changes are made to satisfy constraints.

When any agent finds out a problem with satisfaction of constraints, it sends

a ‘nogood’ message, and initiates re-computations. In our case, agents move

asynchronously, without any common solution. They use an information from

broadcasts to improve their own travel time and time of doing a job. However,

agents do not especially care about other participants of a mission. We do

have a rule, that who comes first to a precise position in a node takes it for a

job. Therefore, there is even a contest between agents, rather than a common

agreement;

• agents do not go back in our algorithm when some agent is ‘not happy’ about

a current partial solution. Therefore, we cannot use any analog of a ‘nogood’

message. We cannot use a technique, like a synchronous or asynchronous back-

tracking, proposed by authors [Yokoo et al., 1998] in their paper;

12

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• authors of DCSP algorithms rely on a priority between agents, which helps them

to avoid infinite loops of computation. We do not distinguish leaders between

agents in our algorithm. All agents are equal in their decisions.

Therefore, we cannot use the DCSP approach and algorithms.

2.2 Traveling Salesman Problem

‘Traveling Salesman Problem’ (TSP) is one of the most popular and intensively

studied combinatorial optimization problems. It was formulated in the 1930s by

Merrill Flood. Today, it is used as a benchmark for many optimization methods.

The problem is computationally difficult. However, there exists a large number of

heuristics and exact algorithms, using which, it is possible to solve even big instances

with tens of thousands of nodes in a given graph.

The formal description of a TSP , given by a famous researcher [Laporte, 1992a]:

“Let G = (V,A) be a graph where V is a set of n vertices. A is a set of arcs or edges,

and let C : (Cij) be a distance (or cost) matrix associated with A. The TSP consists

of determining a minimum distance circuit passing through each vertex once and

only once. Such a circuit is known as a ‘tour’ or ‘Hamiltonian circuit’ (or cycle). In

several applications, C can also be interpreted as a cost or travel time matrix. It will

be useful to distinguish between the cases where C (or the problem) is ‘symmetrical’,

i.e. when cij = cji, ∀i, j ∈ V , and the case where it is ‘asymmetrical’. Also, C is said

to ‘satisfy the triangle inequality’ if and only if cij + cjk ≥ cik, ∀i, j, k ∈ V ”.

Finding a Hamiltonian circuit is shown to be NP -complete [Garey and Johnson,

2002]. The TSP is an NP -hard problem, however, there are some special cases of

13

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

TSP , which it is possible to solve in polynomial time [Laporte, 1992a].

There are several variations of a classical TSP . One of them is called a ‘TSP with

Time windows’, where an agent needs to visit some certain nodes in a given amount

of time. An ‘Open TSP ’ is another variation of a TSP , where an agent does not need

to come back to an initial node after it has visited all necessary nodes. There is such

a comeback in the genuine TSP .

There are several ways to solve a TSP using

• ‘Exact algorithms’, which are based on integer linear programming (ILP) for-

mulations, as given by [Dantzig et al., 1954]:

Minimize
∑

i 6=j cijxij s.t.∑
j=1···n xij = 1, i = 1, · · · , n∑
i=1···n xij = 1, j = 1, · · · , n∑
i,j∈S xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n− 2

xij ∈ 0, 1, i, j = 1, · · · , n, i 6= j

In this formulation, a binary variable xij is equal to 1, if it is used in optimal

solution, and i 6= j; otherwise, it is 0. First two constraints specify, that

each node can be entered, or left only once. The third crucial constraint is

a ‘subtour elimination’, which makes it impossible to have tours in subsets of

nodes, less than total number n. The last constraint shows that it is an ILP .

An objective function tries to minimize a total cost of an optimal tour. Overall,

exact algorithms can give an optimal solution. However, they require very

complex computations;

• ‘Heuristics algorithms’, which guarantee a worst-performance, or a good em-

pirical performance. These algorithms require fewer computations, than exact

14

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

algorithms, however, they give relatively good results in a reasonable amount

of time. That is, why heuristics have such a big usage in practice.

The TSP approach and algorithms do not work in our problem, because:

A TSP is a way to find an optimal solution, however, it is only for one agent. We

do have much more than one agent in our problem. That is the most obvious reason,

with the other ones, why we cannot use a TSP . It is a different problem. However,

there are generalizations of a TSP which can be closer to our theme. The first such

a problem is a Multiple TSP .

‘Multiple TSP’ (mTSP) is a generalization of a TSP , such that, more than one

agent is allowed to travel through a graph. In a general case, we are given n nodes

(cities), m agents, one depot where agents are located initially, and costs of travel.

A goal is to find a tour for each agent, such that, a total tour cost is minimized.

Each node can be visited only by one agent, and only once. An ordinary mTSP

formulation, given above, can be named a ‘Single-depot mTSP ’, as it has only one

depot. However, there can be multiple initial points. In such a case, it is named a

‘Multi-Depots mTSP ’. There are also several kinds of mTSP , according to a number

of agents. This number can be given initially, or it can be bounded with some value.

Thus, it can also be necessary to find out an optimal number of agents to make a

work.

An mTSP can be solved with the exact algorithms or heuristics. Exact algorithms

can contain a transformation of an mTSP to a TSP , as it was initially made by

[Gorenstein, 1970; Svestka and Huckfeldt, 1973; Bellmore and Hong, 1974], or can be

done without such a transformation, but, with a relaxation of some constraints, as it

was proposed by [Laporte and Nobert, 1980; Gavish and Srikanth, 1986].

15

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

The mTSP does not work for us, because:

Our problem, in its formulation, seems to be similar to a Multi-Depot Open

mTSP . However, a crucial difference is that an mTSP requires an offline optimal

solution from a nest. It should be solved initially, and final paths are just translated

to agents, as an exact map. This is not what we do in this thesis. Our goal is to

create an online algorithm which should give to distributed agents only immediate

solutions for their next short steps, i.e. which node to visit next, and in which node

to do a job. We cannot use a linear programming or other similar instruments. That

is why we cannot use the mTSP approach and algorithms to solve our problem.

2.3 Vehicle Routing Problem

Vehicle Routing Problem is a popular combinatorial optimization and integer pro-

gramming problem.

‘Vehicle Routing Problem’ (VRP) is a generalization of a TSP . First, it was

proposed by authors [Dantzig and Ramser, 1959]. A VRP solves a problem of how to

find an optimal set of routes for a fleet of vehicles to serve a set of customers [Golden

et al., 2008]. A VRP problem is shown to be NP -hard [Lenstra and Kan, 1981], so,

it is possible to solve it optimally only if it has a limited size graph.

A formal definition of a VRP , given by researcher [Laporte, 1992b]: “Let G =

(V,A) be a graph, where V = {1, · · · , n} is a set of vertices, representing cities with

the depot, located at vertex 1, and A is the set of arcs. With every arc (i, j), such that

i 6= j, is associated a non-negative distance matrix C = (cij). In some contexts, cij

can be interpreted as a ‘travel cost’, or as a ‘travel time’. When C is symmetrical, it

is often convenient to replace A by a set E of undirected edges. In addition, assume,

16

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

there are m available vehicles based at the depot, where mL ≤ m ≤ mU . When

mL = mU , m is said to be ‘fixed’. When mL = 1 and mU = n − 1, m is said to be

‘free’. When m is not fixed, it often makes sense to associate a fixed cost f for the

usage of a vehicle. Each vehicle have the capacity D. The VRP consists of a design

of a set of least-cost vehicle routes in such a way, that 1) each city in V \{1} is visited

exactly once by exactly one vehicle; 2) all vehicle routes start and end at a depot; 3)

some side constraints are satisfied”.

There are a lot of types of a VRP [Caceres-Cruz et al., 2014], that try to solve

different practice problems:

• ‘Asymmetric cost matrix VRP (AVRP)’, where a cost of (i, j) 6= (j, i). It was

represented by [Laporte et al., 1987];

• ‘Distance-Constrained VRP (DCVRP)’, outlined by [Laporte et al., 1984, 1985;

Li et al., 1992]. A total length of arcs in a route of such problem cannot exceed

some maximum route length;

• ‘Heterogeneous fleet VRP (HVRP)’, described by [Gendreau et al., 1999; Li

et al., 2007b; Baldacci et al., 2008], is closer to real-world situations. Accord-

ing to this problem, routes should be designed, taking into account different

capacities of each vehicle. For an unlimited number of vehicles, a problem is

called a ‘Fleet Size and Mix VRP (FSMVRP)’. In a case, when some types of

vehicles cannot reach some clients, a problem is named a ‘Site-Dependent VRP

(SVRP)’. If a vehicle is allowed to perform more than one trip, it is a ‘HVRP

with Multiple usages of vehicles (HVRPM)’;

• ‘Multiple Depots VRP (MDVRP)’ is a problem, in which there are several

17

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

depots, from which a company can serve its customers. Thus, optimal routes,

in such a case, can have the different starting and end points. A problem was

researched by [Min, 1989; Chan et al., 2001; Wu et al., 2002; Nagy and Salhi,

2005; Ho et al., 2008];

• ‘Open VRP (OVRP)’ is a problem, in which routes can be finished at nodes,

different to initial depot locations. It was outlined, for instance, by [Brandão,

2004; Fu et al., 2005; Li et al., 2007a; Fleszar et al., 2009];

• ‘Periodic delivery VRP (PVRP)’, where customers have different delivery fre-

quencies. This problem was described, for example, by [Gaudioso and Paletta,

1992; Cordeau et al., 1997; Alonso et al., 2008; Hemmelmayr et al., 2009];

• ‘Pickup-and-delivery VRP (PDVRP)’, researched, for instance, by [Savelsbergh

and Sol, 1995; Dethloff, 2001; Berbeglia et al., 2007; Bianchessi and Righini,

2007]. In this problem each customer has two parameters: a demand to be

delivered to the customer, and a demand to be picked up and returned to a

depot from the customer. This factor adds new constraints to a problem, such

that, the total pickup and total delivery in a route cannot exceed a capacity of

a vehicle at any point of time. There is another kind of such a problem, when

a pickup demand should be delivered to another customer, instead of returning

it to a depot;

• ‘Split-delivery VRP (SDVRP)’ is a problem, where the same customer can

be served partially by different vehicles. For example, a customer can have a

complex order, which is going to be delivered from different warehouses. A

research on this theme was made, for example, by [Dror and Trudeau, 1990;

18

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Archetti et al., 2006a,b, 2008];

• ‘Green VRP (GVRP)’ is a problem, which includes as constraints different

environmental issues, such as, the pollution, gas emission, waste, noise, etc. A

research on this problem was done, for instance, by [Bektaş and Laporte, 2011;

Erdoğan and Miller-Hooks, 2012];

• ‘VRP with Time Windows (VRPTW)’, where each customer can be served

only in a given personal time interval. A research on this problem was done,

for example, by [Solomon, 1987; Desrochers et al., 1992; Potvin and Rousseau,

1993; Cordeau et al., 2001; Bräysy and Gendreau, 2005];

• ‘Stochastic VRP ’ is a more realistic problem, where we do have an uncertainty in

a presence of a customer, in its demand, a service time we spend for a customer,

a travel time between customers (because of a road traffic). This problem was

outlined, for instance, by [Dror and Trudeau, 1986; Bertsimas and Van Ryzin,

1991; Gendreau et al., 1995, 1996a,b].

As with an ordinary TSP , all algorithms to solve a VRP can be divided to the

exact algorithms and heuristics.

The VRP does not work for us, because:

In a given classification of a VRP , we do have a problem similar to a Symmetric,

Heterogeneous Fleet, Multiple Depots, Stochastic, Open VRP . However, we cannot

use these approaches and algorithms, because they are offline centralized solutions

from a nest. Also, there are no operations in depots, while in our case, we do have a

job to do in each nest node. Therefore, as we need to create a distributed decentralized

19

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

online step-by-step algorithm for multi-agent distributed graph traversal, we cannot

use the VRP approach and algorithms.

2.4 Swarm Intelligence and Swarm Robotics

According to [Wikipedia, 2016b], “Swarm intelligence (SI) is the collective behav-

ior of decentralized, self-organized systems, natural or artificial. SI systems consist

typically of a population of simple agents, interacting locally with each other and

with their environment. The agents follow very simple rules, and although there is no

centralized control structure, dictating how individual agents should behave, l ocal,

and to a certain degree random, interactions between such agents lead to the emer-

gence of ‘intelligent’ global behavior, unknown to the individual agents. Examples in

natural systems of SI include ant colonies, bird flocking, animal herding, bacterial

growth, fish schooling and microbial intelligence. The application of swarm principles

to robots is called Swarm Robotics”.

The biggest inspiration for the SI algorithms comes from insects. According to

[Prabhakar et al., 2012], “Social insect colonies operate without any central control.

Their collective behavior arises from local interactions among individuals”. These

model and behavior are similar to what we implement. We do have a distributed

system of agents, which tries to solve a global problem in, some kind of, cooperation

between each other.

From the most popular SI algorithms we can especially distinguish:

• ‘Ant colony optimization’, which was described by [Dorigo and Gambardella,

1997; Dorigo and Stützle, 2004; Dorigo et al., 2008]. It is a class of optimization

20

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

algorithms that model actions and decisions of a colony of ants. These algo-

rithms aims to find a better path through a graph. Like real ants, that lay down

pheromones to direct the other ants to a source of food, artificial agents keep

the records, so that agents, which come after them, have a better knowledge of

a graph;

• ‘Bees algorithm’, introduced by [Pham et al., 2011; Pham and Ghanbarzadeh,

2007], mimics a food foraging behavior of swarms of honey bees. An algorithm

starts with a random assignment of ‘scout-bees’ to some locations. After that,

these scouts evaluate a fitness function of their areas. The area, that has the

biggest fitness function, is selected for a more precise neighborhood search,

which is made together with additional scouts;

• ‘Particle swarm optimization’, introduced by [Eberhart et al., 1995; Kennedy

and Eberhart, 1997; Shi and Eberhart, 1998; Eberhart and Shi, 2001],“is a

computational method, that optimizes a problem, by iteratively trying to im-

prove a candidate solution, with regard to a given measure of quality. It solves

a problem, by having a population of candidate solutions (dubbed particles),

and moving these particles around in the search-space, according to a simple

mathematical formulae over the particle’s position and velocity. Each particle’s

movement is influenced by its local best known position, but, is also guided to-

ward the best known positions in the search-space, which are updated as better

positions, are found by other particles. This is expected to move the swarm

toward the best solutions” [Wikipedia, 2016a];

• ‘Multi-swarm optimization’, outlined, for instance, by [Liang and Suganthan,

21

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

2005; Blackwell et al., 2004; Li and Yang, 2008; Marinakis and Marinaki, 2010],

is an approach, that is close to a Particle swarm optimization, with a main

difference, that there are a lot of sub-swarms, focused on the different regions of

interest. It also has an additional problem of how to merge these sub-swarms;

• ‘Ants Nearby Treasure Search’ is one of the most modern approaches which we

discuss here.

Ants Nearby Treasure Search (ANTS) problem was first introduced by [Feinerman

et al., 2012]. It became a generalization of a ‘cow-path’ problem, outlined by [Kao

et al., 1996] and other, which is relevant to collective foraging in groups of animals.

According to a model of [Feinerman et al., 2012], there are k mobile agents, ini-

tially placed in a single cell of an infinite grid, which collaboratively do search for

an adversarially hidden treasure. Agents are controlled by Turing machines. There

is no communication. Authors [Feinerman and Korman, 2012] have proved, that it

is necessary to have O(D + D2/k) time units to find a treasure, where D is a dis-

tance between a central location and a target. Such an approach was inspired by

real creatures – Desert ants (Cataglyphys) and honeybees (Apis mellifera). This type

of ants cannot rely on communication, due to a dispersedness of individuals, and

their inability to leave chemical trails [Harkness and Maroudas, 1985]. However, they

can successfully do the food sources search and they can perform: “the large-scale

foraging excursions, and then, return to a nest by path integration” [Wohlgemuth

et al., 2001]. Desert ants use a similar pattern of search, as [Feinerman et al., 2012]

proposed in their work. Desert ants have a long, mostly straight, walk from a nest in

some direction. After they reach a target area, they start a precise search, often with

a trajectory, similar to a spiral [Harkness and Maroudas, 1985; Wehner et al., 2004].

22

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Another group of researchers [Emek et al., 2014] have proposed an adaptation of

this model, with the differences from [Feinerman et al., 2012] in agents’ computation

and communication capabilities. Their agents are controlled by a weak control unit –

asynchronous randomized finite state machine [Emek et al., 2013], which does not

allow these agents to store anything (like coordinates, or even a number of agents),

or to reproduce any complex patterns of a search. However, agents may communi-

cate with each other within the same cell. Authors [Langner et al., 2014] provide a

protocol, that allows agents to locate a treasure in time O(D+D2/n+Df), where D

is a distance to a treasure, and f ∈ O(n) is a maximum number of failures. Authors

[Emek et al., 2015] evaluate a number of agents necessary for a lucky search.

In contrast to this approach, our control system of each UAV gives agents enough

computational power to do their jobs, even with more complex computations. For

instance, we have a collision avoidance protocol, which requires a lot of computations

of a complex data from the rangefinder sensors, cameras, etc. Our agents do have

enough memory to store their own paths, as well as, the graph, travel and job speeds

of each rival agent, current location of each agent, etc.

The ANTS approach is different from our in terms:

• our algorithm does not depend on a form of a graph, i.e. it works in any graph.

The ANTS approach by [Emek et al., 2014] is based only on a grid. Authors

[Feinerman et al., 2012] use an infinite grid, or a plane. Their agents can move

only to the North, South, East, West, or can stay at the same node [Emek et al.,

2014]. However, our agent can choose any edge, connected to a node. There can

be more than 4 adjacent nodes and, thus, more than 4 types of a movement.

23

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Besides our agent does not stay in a node. An agent is always moving;

• all agents of the ANTS approaches by the mentioned authors are identical.

In our case, each agent runs the same algorithm, however, their parameters

can be very different. That is, each agents has a different job or travel speed,

different target altitude, etc. Therefore, swarm control in our case becomes a

more complex problem;

• there is only one starting point (a nest) in the mentioned ANTS approaches.

We do not have this constraint in our algorithm. Each agent can start a job

from any node, at any point in time. Therefore, we can have multiple nests;

• there is no communication in our algorithm – only a broadcast, or a global

snapshot. In this meaning our approach is closer to [Feinerman et al., 2012].

Authors [Emek et al., 2014], in their research, explicitly rely on a communication

within a cell;

• a form of a job accomplishing (for instance, a search) in our approach is also

different from both of these. Our search can be made in different ways. It

expands from an initial point in mostly random direction, which depends on

local decisions of all agents. The idea is to move each agent as far, as possible,

from each other in initial stage of a mission, to avoid possible collisions and

multiple entrances to the same nodes. Later, agents come closer, as there are

less not done nodes remaining. Meanwhile, authors [Emek et al., 2014] in their

paper use a ‘diamond’ search, which goes slowly around a nest, consequently

expanding a radius of a search. Authors [Feinerman et al., 2012] have a different

solution. Their agents choose some direction from a nest, go at some distance

24

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

and start a spiral search from that place;

• there is not much treasures (targets) in the ANTS algorithms. In our case, all

nodes can be imagined as targets. There is no chance to find these treasures

somehow faster. We need to go through all nodes of a graph.

Therefore, we need to obtain a balance between the communication simplicity,

minimalism of computations and a quality of doing jobs and travels. We need to

get an information about a path and all metrics of each agent. That is, why in

our case, having such complex hardware and software systems, as UAVs with the

onboard computers, additional devices and sensors, it is necessary to have more com-

plex agents, their control systems and behaviour. That is, why the ANTS algorithms

and approaches do not work for us.

The Swarm Intelligence approach does not work for us, because:

As it was already mentioned about the ANTS problem, we do not have a better

area, one or several treasures, etc. However, this factor prevails almost in all other

SI approaches. We also do not have the inter-agent communication, which can be

crucial. We keep a track of all accomplished nodes and can broadcast this information.

This is similar to pheromones from the Ants Colony Optimization. However, we do

not depend on a nest and we do not try to find a unique path from a nest to a ‘food

source’. We do not try to collect all agents at that place. We do not care about a

formation of a group of our agents, and we even try to do everything, to move them

further from each other, to avoid collisions. Because of these reasons, we cannot use

the SI algorithms to solve our problem.

25

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

2.5 Multi-Robot Patrol Problem

‘Multi-Robot Patrol Problem’ (MRPP) is a problem, where: “agents must co-

ordinate their actions, while continuously deciding, which place to move next, after

clearing their locations. This problem is commonly addressed, using centralized plan-

ners with global knowledge, and/or calculating priori routes for all robots before the

beginning of the mission” [Portugal and Rocha, 2013].

One of the first fundamental works on this problem was introduced by [Machado

et al., 2003]. In their paper authors have given several architectures and a bunch of

evaluation criteria. There is a review of a MRPP , presented by [Portugal and Rocha,

2011], where they have given information about a condition of a research in this field

for the last decade.

Most of researches on a Multi-Robot Patrol Problem can be called ‘Adversarial

Patrol’, as they are facing with a presence of some adversary, or an opponent, an

intruder. This opponent can be weak or strong in its knowledge of an algorithm,

that is used by each agent of a patrolling team. In most cases, a question is how to

coordinate agents, so they can catch an intruder as fast, as possible. We can especially

distinguish a research on an Adversarial Patrol by [Agmon et al., 2011, 2009].

There are two main fields of a research on a MRPP :

• ‘Perimeter Patrol’, outlined by [Agmon et al., 2008b, 2009, 2008a; Marino et al.,

2009] and other, is a problem of how to guarantee the frequent visits of agents

to borders of a given area, to prevent an intruder from an entrance to the area.

There are two main approaches to solve this problem. It can be done using the

deterministic, or non-deterministic patrol algorithms. When a strong opponent

(intruder) is presented, i.e. an opponent that perfectly knows a deterministic

26

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

algorithm, that is used by all agents, there is a probability close to 1, that

the intruder can successfully enter the area. That is, why many researchers

propose the non-deterministic algorithms, in which agents make their decisions

with some probability. In such a case, even a strong opponent has less chances

to enter the area;

• ‘Area Patrol’, presented, for instance, by [Elmaliach et al., 2010; Fazli et al.,

2013], is a problem of how to guarantee frequent visits of agents to every part

of an area, i.e. how to generate concrete patrol paths, such that every point in

these paths is repeatedly covered. Every point of a given area can be repeatedly

visited by one or more agents. Authors [Elmaliach et al., 2010] have presented

an algorithm: “that guarantees maximal uniform frequency, i.e., each point in

the target area is covered at the same optimal frequency”.

The Multi-Robot Patrol does not work for us, because:

• first of all, a patrolling itself has goals different to ours. We do not work currently

on a finding of some moving object. Our goal is to accomplish all tasks in every

node of a graph by distributed agents in the best possible time;

• we do not need to visit nodes multiple times with some frequency. We even do

have a constraint of only one job in each node. And our objective function also

minimizes a number of additional travels through nodes. The only, somehow

close problem, can be a Non-Adversarial Area Patrol. However, it is similarly

about multiple visits, so, it is different.

Therefore, the algorithms and approaches of a MRPP do not work in our case.

27

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

2.6 Multi-Robot Coverage Problem

‘Multi-Robot Coverage Problem’ (MRCP) is a modern problem of how to make

a coverage of some territory in the best way, using multiple robots.

A MRCP has found an application in many fields, as de-mining, lawn mowing,

harvesting, mapping, etc. For instance, there is a big usage of it in a navigation of

cleaning robots. There is a bunch of papers on this theme, for example, by [De Car-

valho et al., 1997; Lawitzky, 2000; Jäger and Nebel, 2002; Luo and Yang, 2002; Luo

et al., 2003; Oh et al., 2004; Liu et al., 2008].

The MRCP can be divided to a coverage and a path planning. A path planning

MRCP is similar to that, what we have described before in a MRPP . A coverage

problem is closer to our theme.

The first solutions of a MRCP were made with heuristics, that can work good

enough, but do not guarantee a success of a coverage, i.e. that agents will cover an

entire environment space. For instance, there can be used some simple behavior, or a

randomized search, which can work on simple robots, without expensive sensors. Such

randomized approach was proposed by [Gage, 1994] and has achieved good results in

a problem of de-mining where a probability of a mine finding by a robot in one search

is less than one.

Later, there came algorithms, based on a cellular decomposition, which can guar-

antee a total coverage. There are three main types of a cellular decomposition:

• ‘Approximate’, where a space is represented by a grid with the same size cells.

A union of such cells can only approximate an environment space. However, it

is assumed, that if a robot enters a cell, it covers it entirely. This approach was

proposed by [Moravec and Elfes, 1985; Elfes, 1987];

28

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• ‘Semi-Approximate’ cellular decomposition – is a partitioning of a space by

cells, which can be fixed in a size of one of its parameters, as a hight or a width,

but otherwise, can be of any form. The are papers on this theme by [Lumelsky

et al., 1990; Hert et al., 1996];

• ‘Exact’ cellular decomposition – is a set: “of non-intersecting regions, each

termed a cell, whose union fills the target environment” [Choset, 2001]. These

cells are made that way, that a robot can cover each cell with simple back-and-

forth movements. That is, a coverage problem is reduced in such a case to a

planning of a movement between cells. There is a ‘trapezoidal decomposition’

[Seidel, 1991], where each cell is represented by a trapezoid, i.e. a convex

quadrilateral with at least one pair of parallel sides. Another popular type

of such an exact decomposition is called a ‘Boustrophedon decomposition’. It

was developed by [Choset and Pignon, 1998; Choset et al., 2000]. Later, it

was used in many MRCP papers, for instance, by [Rekleitis et al., 2004; Kong

et al., 2006]. In this decomposition, “a line segment (slice) is swept through the

environment. Whenever there is a change in connectivity of the slice, a new cell

is formed. When the connectivity increases, two new cells are spawned”. When

decreases - the cells are merged into one [Choset, 2001].

After defining a type of a decomposition to take in a MRCP , the next decision

should be made on an inter-agent communication. There are a lot of papers, that

deal with an unlimited communication range, for instance, by [Kong et al., 2006;

Rekleitis et al., 2008], or a limited communication, for example, by [Rekleitis et al.,

2004; Sheng et al., 2006].

If agents use a communication, in most cases, these MRPP algorithms work with

29

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

a common agreement between agents. For example, authors [Sheng et al., 2006] in

their research use a ‘bidding protocol’, according to which every agent makes its bid

about the next cell, and the best agent takes it, according to a common agreement.

Authors [Kong et al., 2006] use a similar ‘common task selection protocol’.

The difference of our approach and the algorithm from the current

solutions in a MRCP:

• we do solve a more general problem. Our agents can do any job during a mission.

It can be search, coverage, cleaning, delivery, etc. There is an assumption, that

each node should be visited, and in each node, an agent should do some amount

of work. However, it can be a different job.

In a case of a search problem, it can be video recording, or taking a series of

photographies of a territory. This can significantly depend on the cameras and

computer vision algorithms, that are used by each agent. Therefore, a search

of a same territory will take a different search time for each agent. For any our

problem, there should be assigned some measure for each node. We can take

as such a measure, fro example, a radius or a precision of a search. Each agent

can evaluate a search time for a concrete node.

In case of a delivery, in every target node, an agent should do a landing, put a

package, and make a takeoff to a target altitude to continue a mission. Again,

it can be translated to a time of job in every node, depending on a location of

a place, challenges of making a landing, and so on.

Our algorithm can successfully work in a coverage and a cleaning. For instance,

as a graph we can take a grid with the same distances between each adjacent

node. All cells, in such a case, will be of the same size. Therefore, an amount

30

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

of a work for each node becomes the same. Agents need to travel to each node

and do a cleaning, or a coverage of each cell, i.e. some radius of a node. We do

have used such an approach in our simulations and the UAV ’s implementation;

• we do not use a rendezvous communication between agents, and do not run

biddings, or some similar procedures, to find out the best agent to go ‘to that

node’. Our agents are mostly greedy, and they are always in a movement. They

fight for each next node up to the end. Our aim is to show, that even if we

do not have an inter-agent agreement, we still can achieve suboptimal results,

with just a broadcast and movements step-by-step. Besides, we save some time,

when exclude a stage of a bidding from our algorithm. A solution about the next

node is achieved almost immediately, and agents do not stop. Every agent gets

an information about movements of rivals, so, they can evaluate their chances

on every next step. And they can implicitly ‘guess’ all destinations of rivals;

• we do not go with an obvious approach for agents from a MRCP , to stay closer

together, if they have a limited communication range. In opposite, we propose

and prove an idea, that it is better to disperse agents further from each other

in initial stage of a mission, and to come in the same area, only at the end of

the mission. Even in our future algorithms with a limited-range broadcast, we

explicitly force agents to go closer to borders of a graph initially, when they do

not ‘see’ rivals. From borders, they should consequently move closer to a middle

of a graph. If they have received a broadcast from some agent, they start to

move, as in a case of an unlimited range broadcast.

Therefore, we use some elements of a MRCP in our solutions. However, we cannot

use the entire algorithms of MRCP in our problem.

31

Chapter 3

Multi-Agent Distributed Graph

Traversal Algorithm

3.1 Formal Problem Description

Let A = {1, 2, . . . ,m} be a set of agents and G = 〈V,E〉 be an undirected graph

where V = {1, 2, . . . , n}. We consider two cost functions J : A× V → Z≥0 (the cost

of accomplishing a job at a vertex of G) and T : A× E → Z≥0 (the cost of traveling

from one vertex to another). A walk of G is a sequence w = v1 · · · vn, where for all

i ∈ [1, n), we have (vi, vi+1) ∈ E. Let V ′a = {v | v ∈ V ∧ an agent a does a job in v}

and

V ′ =
⋃
a∈A

V ′a

i.e., V ′ contains all nodes where a job was done by all agents.

32

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Thus, the cost of a walk w, taken by an agent a ∈ A (denoted C(a, w)) is

C(a, w) =
∑
v∈V ′

a

J(a, v) +
∑

i∈[1,n)

T (a, (vi, vi+1))

Our problem is to find a set W of walks and a plan function P : W → A, such

that ⋃
v∈V ′

= V

i.e., the walks cover all vertices of G except obstacles, and P achieves the following

optimization objective

min
∑
w∈W

C(P (w), w)

3.2 Algorithm Description

3.2.1 Overall Idea of the Algorithm

One of the most popular solutions for distributed multi-agent coordination with-

out communication and agreement between agents is that they use some formations

(swarm) and go through an environment close to each other doing their jobs. An idea

of our Multi-Agent Distributed Graph Traversal Algorithm (MADGTA) is to obtain

suboptimal solutions without common agreement and without using formations. Fur-

thermore, we have shown in our simulations and real experiments with UAVs , that

it is more beneficial to disperse agents through a graph in initial stage of a mission.

Such disperse helps agents to avoid collisions, when they go to the same node to do

a job. If they work in different subareas of a graph an amount of collisions is reduced

significantly.

33

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Every iteration of the MADGTA goes through the popular in a ‘control world’ pro-

cedures Look, Compute and Move, as it is used, for instance, by authors [Cieliebak

et al., 2003; Gervasi and Prencipe, 2004; Klasing et al., 2008; Flocchini et al., 2008;

Klasing et al., 2010]. The first procedure Look updates agent’s knowledge of a graph.

The second procedure Compute finds out the best node for a travel and a job. The

last procedure Move does these travel and job, as well as updates agent’s knowledge

with a node done by itself.

In our algorithm, every agent starts a mission in its initial nest node. Notice, that

an initial node can be different for every agent. That is, a number of nests in a mission

is from 1 to m, where m is a total number of agents. Agents do the jobs in the nest(s).

After that, they update their knowledge of a graph using incoming broadcasts from

rival agents. In the next step, each agent computes its chances (utility) of going to

one of its adjacent nodes. A node has the best utility for an agent if it is harder

reachable for all rival agents. This leads to a situation, that in every next step of the

MADGTA, an agent tries to move further from its rivals. That is, all agents disperse

in a graph.

After agents have done their jobs mostly in the border areas of a graph, they come

closer to a middle part of the graph. Therefore, they come closer to each other and

finish their work in the entire graph. A graph (grid) in Figure 3.1 clearly demonstrates

this approach. Agents of three different colors start a mission from the initial node

1 (left bottom corner). After that they clearly disperse in the graph. Notice, that

in the given graph a node has a color of an agent that have done a job in it, while

colored edges represent a travel of that agent. Black squares show obstacles.

34

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Our algorithm is based on a greedy nature of agents. In our current implemen-

tation of the MADGTA without communication and common agreement, agents are

rivals, rather than collaborators. However, such competition between agents, with

the proposed restrictions for each agent, leads to a suboptimal solution of a given

problem.

Figure 3.1: Dispersion of agents

Notice, that the MADGTA works in any undirected graph. For example, there

can be some nodes in a graph of a big degree (10, 20, etc). The algorithm gives the

best adjacent node in such a case, the same way, as it makes it in simpler graphs,

like grids. Therefore, for simplicity of explanation we use grids in all our examples,

simulations and experiments in this thesis. For a future work, especially on a prob-

lem of energy efficiency and in an implementation of the algorithm with UAVs in a

complex environment with a lot of heels and obstacles of different height, we want to

use a three dimensional graph representation of an environment, rather than a grid.

35

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

3.2.2 Notation and Assumptions

The input to our algorithm is an undirected graph G = 〈V,E〉, a set of agents A,

and their associated cost functions. The output of the MADGTA is a walk of all

nodes traveled and accomplished by an agent. The algorithm terminates if all nodes

of a graph are visited by agents. It means, that agents accomplished jobs in nodes or

nodes were identified as obstacles.

Assumptions: Each agent a ∈ A is initially located in some arbitrary node of

a graph G. Each agent has two primitives for synchronous broadcast and computing

a global snapshot of a graph. An agent has enough memory to store nodes covered

by itself (PATH) and a current location of all agents, as well as a list of all nodes

accomplished by any other agent. Thus, an agent can determine a status of each

rival agent at each point of time. An agent a has no battery limit, i.e. it can do all

work in the entire graph. All decisions about the next moves are taken by each agent

locally, without any centralized control. There is no inter-agent common agreement.

All agents are equal in their status (there is no hierarchy or leadership). Agents can

enter the same node in a graph, however, there is no physical collisions. That is,

because agents run a collision avoidance protocol. An agent knows all cost functions

J and T . An agent can distinguish obstacles in adjacent nodes.

Notation: Let function loc : A → V return a current location of an agent,

according to the last global snapshot. Set KM defines current agent’s knowledge

of a graph. It is a set of all nodes accomplished by any agent or nodes revealed

as obstacles. Set UN denotes a set of all not accomplished nodes respectively. Set

O denotes nodes known as obstacles. Variable SP denotes a minimum time that is

required for an agent to travel through a shortest path distance between two given

36

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

points, according to its unique travel speed. Sets util , utilv, utilmax , utilmaxmin and

UN are sets of temporary local variables. Function adj() gets all adjacent nodes of

a node given as an input parameter. Sequence PATH stores a sequence of nodes

traveled and accomplished by a current agent.

Initially, all nodes in a graph are marked as 0 (there was done no job in these

nodes). An example is shown in Figure 3.2. These marks are depicted in top right

corner of every node. If an agent encounters an obstacle it changes a value of a node

to −1. If a node is accomplished by an agent a value is changed to an agent’s ID

number, which is some number, more or equal 1. This is shown in Figure 3.3, where

all nodes have values equal to 1, 2 or −1. Values 1 and 2 are specific IDs of agents.

A value −1 demonstrates an obstacle.

Figure 3.2: Initial graph

However, to make it more clear in most examples given further in this work we

37

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

represent obstacles with black squares. Nodes, where agents accomplished jobs, are

depicted with circles of some color (assigned to each agent). In the end of a mission

there should be no red nodes (which depicts not discovered nodes). Such a graph is

given in Figure 3.4, which represents the same example. In some cases, we also add

edges of a color of an agent to depict its travel.

Figure 3.3: Final graph

38

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 3.4: Final graph representation using colors

3.2.3 Detailed Description

In the MADGTA, the first line initializes a set KM and a sequence PATH as empty

set and sequence. Set UN is equal to a set V of all vertices in a graph.

A while loop (lines 2 to 39) runs until a set KM is equal to a set V , i.e. until a

knowledge of vertices of a graph is not becoming full. This condition is a termination

condition of the MADGTA. The while loop executes three consecutive procedures,

namely the Look (lines 3 to 6), Compute (lines 7 to 29), and Move (lines 30 to 38).

In the procedure look (line 4), we define a set of obstacles O. As it is given here,

an obstacle can be found only in an adjacent node to a current node. In practice, a

UAV has the limited range sensors to find out obstacles. That is why we use such

assumption.

39

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Algorithm 1 Agent a

Input: An undirected graph G = 〈V,E〉
Output: PATH

1: KM = ∅, PATH = 〈〉; UN = V ;
2: while |KM | 6= |V | do
3: procedure Look
4: Let O = {v | (loc(a), v) ∈ E ∧ there is an obstacle in v};
5: KM ← KM ∪ {loc(a′)}a′∈A ∪ O;
6: end procedure
7: procedure Compute
8: if (loc(a)) /∈ KM) then
9: v ← loc(a);
10: return v;
11: end if
12: if (∃u.u ∈ adj (loc(a)) ∧ u /∈ KM) then
13: W ← ∅;
14: for each u ∈ adj (loc(a)) ∧ u /∈ KM do
15: W ←W ∪ {u};
16: end for
17: v ← GetBestNode(W);
18: return v;
19: end if
20: if (@u | u ∈ adj (loc(a)) ∧ u /∈ KM) then
21: W ← ∅; UN ← UN \KM ;
22: for each u ∈ UN do
23: W ←W ∪ {u};
24: end for
25: f ← GetBestNode(W);
26: Let v be an arbitrary node in {v | (loc(a), v) ∈ E ∧ v is on the SP(f, loc(a))};

27: return v;
28: end if
29: end procedure
30: procedure Move(loc(a), v)
31: loc(a)← v;
32: PATH = PATH .〈v〉;
33: if (v /∈ KM) then
34: Job (v);
35: PATH = PATH .〈v∗〉;
36: end if
37: KM ← KM ∪ {v};
38: end procedure
39: end while

40

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

The major part of the procedure Look is given in line 5. In every iteration of

an outer while loop, an agent updates its knowledge of a graph (KM) with a set

of nodes traversed by all rival agents ({loc(a′)}) and a set of all obstacles known to

date (O). With an updated knowledge of a graph, we can do an essential part of the

MADGTA defined in the next procedure Compute.

We now describe the procedure Compute. This procedure has three main parts

(if conditions) in lines 8 – 11, 12 – 19, and 20 – 28. The first if condition (lines 8 –

11) checks if a current node of an agent (i.e, loc(a)) is not in a set KM , i.e. not done

yet. When a current node is vacant to do a job, v = loc(a), i.e. the same node is

returned to the procedure Move. Notice, that this if condition works only for a nest

node.

Second if condition (lines 12 – 19) checks if there are adjacent nodes u which are

not done yet and are not obstacles (not in a set KM). When there are such vacant

nodes, an agent should evaluate a set of utilities (util) of going to every such a node,

using a function GetBestNode(W). This function is described later. For now, assume

that a result of the GetBestNode(W) is the best next node which should be given as

an input to the last procedure Move.

As a parameter of the function GetBestNode(W) we need to form a set of goal

nodes. We create an empty set W (line 13) and assign to it all vacant adjacent

nodes that are not obstacles (lines 14 – 16). In line 17 we execute the function

GetBestNode(W) and get the best next node v for a travel and a job.

The third if condition (lines 20 – 28) describes a case when there is no vacant

adjacent node to a current. This time an amount of computations is much bigger, as

an agent should find out the best further node to travel and do a job. There can be

41

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

multiple vacant nodes.

In line 21, the algorithm gets a set of all nodes which are known to be vacant. In

the first run of this if condition a set UN is equal to a set of all nodes V (line 1).

Later, the MADGTA works just with a reduced set UN . A set W is initialized as an

empty set.

In lines 22 – 24 the algorithm assigns to a set W all nodes that are vacant. In

line 25 the MADGTA finds the best further node f for a travel and a job. However,

the algorithm works step-by-step and cannot assign an entire path to an agent. That

is why we need to choose only the next intermediate adjacent node. This is done in

line 26. According to this condition, an agent should take as a node v, a node which

is adjacent to a current location, and which is in a shortest path to the best node f .

The procedure Move initiates a travel of an agent from a current node (loc(a))

to an adjacent node v which is given by the procedure Compute. This step is shown

in line 31 where a node v is assigned to a current location of an agent. An agent

updates a path (line 32). In lines 33 – 36 (if condition), when a new node of an agent

is known to be vacant, i.e. it is not in a set KM (line 9), an agent should do a job

in this node. After a job is done, an agent updates a sequence PATH (line 35) and

its set KM with a node done by itself (line 37), so we can find out the entire path of

this agent from a nest.

An agent does a job when it travels to a new node, if possible. Notice that, agents

cannot jump to some profitable areas of a graph. Therefore, having such a requirement

we reduce a greedy nature of agents. There are some cases, when such a solution is

not the best. However, as it is shown by our simulations and real experiments, this

solution is suboptimal in most cases. The MADGTA goes again through the same

42

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

procedures until a termination condition is achieved.

The function GetBestNode(W) is shown in an algorithm 2. It starts with an

initialization of a set util as an empty set (line 2).

Algorithm 2 Function GetBestNode from the set W

function GetBestNode(W)
2: util ← ∅;

for each v ∈W do
4: util v ← ∅;

for each a′ ∈ A \ {a} do
6: util v ← util v ∪ {

(SP(v, loc(a′) + J(a′, v))− SP(v, loc(a)))− J(a, v)
}

;
8: end for

util ← util ∪ util v;
10: end for

utilmaxmin ← maxv∈adj (loc(a))(mina′∈A\{a}(util));
12: if |utilmaxmin| = 1 then

Let v be a node that resulted in utilmaxmin;
14: return v;

end if
16: if |utilmaxmin| 6= 1 then

utilmax ← maxv∈utilmaxmin

∑
a′∈A\{a} util ;

18: if |utilmax | = 1 then
Let v be a node that resulted in utilmax ;

20: return v;
end if

22: if |utilmax | 6= 1 then
Let v be an arbitrary node from utilmax ;

24: return v;
end if

26: end if
end function

There is a nested for loop over all nodes in a given as a parameter set W and

all rival agents a′ (lines 3 – 10). The aim of these construction is to create a set

util, which holds tuples of utilities values for all necessary nodes and rival agents. A

43

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

temporary set utilv, initiated in line 4, and defined in line 7, is a difference between

a time of a travel through a shortest path to a node of interest v and a time cost of

doing a job in that node J(a′, v) by a rival agent, and the same time, of a travel and a

job of a current agent a. At the end of these for loops (line 10), an agent should have

a set util, which is a set of sets of utilities utilv per each node v ∈W . For example,

it can be {−1, 8}, {3, 3}, {3, 4} in a case, if an agent looks at three potential adjacent

nodes, and has only two rival agents.

Notice, that a set utilv mimics a cost of a walk w, given earlier in a formal descrip-

tion of a problem. This way we minimize a sum of costs for each agent, and achieve

an optimization objective. There were tried different approaches to evaluate utilities,

including slicing, utilities arrangement for each node from a nest, etc. However, a

formula for a utility defined in line 7 gives the best results.

In line 11, an agent creates a new set utilmaxmin, which holds the maximum values

from all minimums in each tuple of a set util. In a previous example, minimums form

a set of −1, 3, 3. The maximum of this temporary set is a value 3. Notice that in

a given example, the first node has the biggest utility 8 for one rival, and the same

time the smallest utility -1 for another. We cannot take just a node with the biggest

utility. In this case, an agent can go to a node which is very far from one rival, but

the same time, it is closer to another. There is a bigger risk that such travel will be

useless, i.e. an agent can become not the first agent to do a job in that node. This

is a reason why in the first stage of evaluations of the function GetBestNode(W) we

use a maximum over minimums among utilities.

If there is only one resulting in a set utilmaxmin node, a function executes an if

condition (lines 12 – 15), according to which this single resulting node v is returned

44

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

by the function.

However, there can be more than one resulting node (see an example). In this

case, the function executes an if condition in lines 16 – 26. It evaluates a set utilmax

(lines 17), which combines a maximum of summations of values in tuples of a set

util for all promising nodes, that resulted in a previous step in utilmaxmin. In our

example, a utilmax should find a maximum over summations between 6 and 7. The

maximum here is 7, i.e. the third node in a set of tuples becomes the best node for

a travel and a job. This is defined in the if condition (lines 18 – 21), according to

which the function returns this best node. Notice, that we cannot evaluate just a set

utilmax without preliminary evaluation of a set utilmaxmin. If we try to make it, a

utilmax for a given example could give us the first node either, as it has the same

summation value 7, however, we already have shown, that the first node is the worst

as the next node for a travel and a job.

The last possible outcome is that, even after this stage, an agent can have few

best options, which becomes equal in a previous stage in utilmax . In such a rare case,

according to lines 22 – 25, the function should return only one random node v, that

was resulted in a set utilmax .

3.2.4 An Example of Execution of the Algorithm

An example of execution of the MADGTA is given here.

An initial graph is given in Figure 3.5. It is a 5×5 nodes grid. There are obstacles

in nodes 3, 13, 14 and 19, not known by agents initially. There are 3 agents in the

nest-nodes 1 (yellow agent), 11 (blue agent) and 23 (green agent). All nodes are

initially red (not done). An obstacle is depicted with a black square. A node done

45

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

by an agent takes a color of that agent.

Agents are identical. They have the same time of a travel equal to 2 sec per one

edge. A time of a job in a node is equal to 9 sec. As a time of doing a job, for

simplicity, is taken the same between all agents, it gives us easier computations in a

function GetBestNode(W), as all job cost values J compensate each other. Agents

start their work almost synchronously.

Figure 3.5: Initial graph for an example of execution of the algorithm

Now, we look at the MADGTA execution only for an agent, which starts from

node 11 (blue agent). The execution is given consequently for each iteration of a

while loop of the algorithm:

1. In the first iteration of a while loop, in procedure Look an agent finds out

that there is nothing to add to a KM . It goes to the first if condition of the

procedure Compute. Current node 11 is returned as a node v. In procedure

46

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Move a location remains to be the same, however, a job is done (see in Figure

3.6). An accomplished node is added to a set KM . So at the end of the first

iteration of a while loop, a set KM is equal to V \ loc(a). An agent updates a

path with a starting node and a sign, that it was done. We use a number of a

node with a star to show an accomplished job in a node. The final path of each

agent is demonstrated later. Notice, that a path is updated in every iteration;

Figure 3.6: Step 1 of the example

2. In the procedure Look an agent updates its KM with nodes done by the rival

agents (nodes 1 and 23). There were no obstacles found yet. It goes to the

procedure Compute. An agent in node 11 has 3 vacant adjacent nodes 6, 12,

and 16. A set util is equal to {{0, 8}, {4, 4}, {4, 4}}. Maximum value from

minimums is 4, which gives it two nodes in a set utilmaxmin, namely 12 and 16.

Asathe cardinality of a set utilmaxmin is not equal to one, the function goes to

the next if condition and evaluates a maximum summation of utilities per node

47

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

for remaining nodes. So the function looks only at values of nodes 12 and 16.

A maximum summation is equal to 8. Both nodes 12 and 16 has such a value.

This moves the function to the last if condition, according to which, it should

choose a random node from all equally best. In this run of the MADGTA, a

node number 12 was chosen as the best next node. In procedure Move a travel

and a job were done in node 12 and a set KM is updated (see in Figure 3.7);

Figure 3.7: Step 2 of the example

3. The procedure Look updates a set KM with new nodes of rivals (2 and 24), as

well as, with three obstacles found in nodes 3, 13 and 19. These obstacles from

now change a graph structure and take a role in evaluation of a shortest path.

The procedure Compute for a blue agent is simple at this step as it has just

one vacant adjacent node number 17. In the procedure Move node 17 is done

(see in Figure 3.8);

48

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

4. The procedure Look updates a set KM with new nodes of rivals (7 and 25). The

procedure Compute for a blue agent gives a set util equal to {{4, 8}, {4, 4}, {4, 4}}

for adjacent nodes 16, 18 and 22. A maximum value from minimums is 4. A

set utilmaxmin is even bigger now, and holds all 3 nodes. However, this time,

a set utilmax gives only one best node 16 (the summation values are 12, 8 and

8). In the procedure Move node 16 is done (see in Figure 3.9);

Figure 3.8: Step 3 of the example

49

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 3.9: Step 4 of the example

5. The procedure Look updates a set KM with new nodes of rivals (6 and 20).

The procedure Compute for a blue agent gives only one possible next node 21,

which is done in the procedure Move (see in Figure 3.10);

50

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 3.10: Step 5 of the example

6. The procedure Look updates a set KM with new nodes of rivals (8 and 15),

as well as an obstacle in 14. The procedure Compute for a blue agent gives

one possible next node 22, which is done in the procedure Move (see in Figure

3.11);

7. The procedure Look updates a set KM with new nodes of rivals (9 and 10).

The procedure Compute for a blue agent gives the best further node for a

travel and a job number 18. Node number 23 is found to be the next node in a

shortest path to node 18. In the procedure Move only a travel to node 23 is

executed, as node 23 was done initially by a green agent (see in Figure 3.12);

51

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 3.11: Step 6 of the example

Figure 3.12: Step 7 of the example

8. In the procedure Look, there is nothing to update as the rival agents still

52

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

do their jobs. The procedure Compute for a blue agent gives the best node

number 18, which becomes to be an adjacent in this step of an execution. In

the procedure Move node 18 is done (see in Figure 3.13);

Figure 3.13: Step 8 of the example

9. In the procedure Look, the rival agents come to the last vacant nodes 4 and

5. These nodes are done by rivals, which leads to a termination condition, as

a set KM becomes equal to V . All nodes were done by agents or found to be

obstacles (see in Figure 3.14).

The final paths of agents in the experiment are:

• a yellow agent: 1 - 1* - 2 - 2* - 7 - 7* - 6 - 6* - 7 - 8 - 8* - 9 - 9* - 4 - 4*

(termination condition);

• a blue agent: 11 - 11* - 12 - 12* - 17 - 17* - 16 - 16* - 21 - 21* - 22 - 22*

- 23 - 18 - 18* (termination condition);

53

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• a green agent: 23 - 23* - 24 - 24* - 25 - 25* - 20 - 20* - 15 - 15* - 10 - 10*

- 5 - 5* (termination condition);

As we have already mentioned, if a node was traveled by an agent, it appears in

its path. If a job was done in a node, a node number with a star sign appears

in a path.

Figure 3.14: Step 9 of the example

Figure 3.15 shows agents returned to their initial positions after all nodes were

done.

Clearly, this result is suboptimal, because the agents performed some extra travel.

A yellow agent has an extra travel at node 7, a blue agent - at node 23. Notice, that

the result is close to optimal, because there was only a small number of additional

path segments. Moreover, the chosen flight paths did not result in any potential

collisions.

54

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 3.15: Final graph for the example of execution of the algorithm

55

Chapter 4

Implementation of the Algorithm

4.1 Communication Model of the System

As it was mentioned earlier, there is no inter-agent communication in our algorithm.

That is, agents do not attempt to agree on what to do, for instance, who goes to

the next node, who does a job in that node. We claim that it is possible to obtain

suboptimal results even without such an agreement between agents, using just a

global snapshot, or in our case, using a global synchronous broadcast. In this thesis,

we assume that a broadcast is perfect, i.e. all messages are delivered to all clients in

a reasonable time and properly, as well as the broadcast range can cover an entire

graph. In our future work, we want to relax these conditions to the limited range

imperfect broadcast.

In our system implementation in Python, a communication model is based on a

TCP/IP protocol. We have implemented a TCP server (in a laptop) and TCP clients

for each agent. We use multicopter UAVs or simulated agents to increase a number

of agents in real experiments. A communication model is centralized (see in Figure

56

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

4.16). Every broadcast goes through a server, which in our implementation takes a

role of an access point for agents and acts as a monitor for a researcher or an engineer.

It transmits all received messages to all agents. It does not give any commands of

what to do to agents, besides that are given in the initial stage of computations.

Figure 4.16: Communication model of the system

A structure of a unified broadcast message is shown in Figure 4.17. Each agent

should include in a message its up-to-date information.

Figure 4.17: Structure of a broadcasted message

57

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Every message contains an ID number of a sender.

The second part is a current location of an agent. Depending on an implementa-

tion, it can be just a number of a current node, or a tuple, containing agent’s latitude,

longitude, and altitude.

A ‘job bit’ takes a value 1 when an agent does a job in a current node, and a value

0 when an agent only travels through a node.

The fourth part contains a list of nodes, that were done by an agent or by its

rivals, according to its knowledge (a set KM from the MADGTA). To reduce a size

of this list we introduce a ‘done nodes bit’ in every message right before a list. This

bit takes a value 1 if a number of done nodes is less than a half of a total amount of

nodes in a graph. The bit takes a value 0 when a number of done nodes is more or

equal to a half of a total. When this bit changes its value to 0, a list of done nodes

transforms to a list of not done nodes. That is, an agent from this point in time uses

numbers of all remaining nodes in its broadcast. Therefore, such an approach helps

to reduce a message complexity at least twice in comparison to a broadcast of done

nodes only. To obtain even better message complexity, we encode and compress this

part of a message, according to a specific encoding protocol.

The fifth part of a message is a list of obstacles (a set O from the MADGTA).

This part can be eliminated if a total number of nodes in a graph is very big.

The final part of a broadcasted message is a checksum. An agent updates its set

KM and uses a location of the rival agent in its computations only if a checksum of

the incoming broadcast is correct. If it is not correct, a message is skipped.

In a case of an unlimited range broadcast with a perfect quality, i.e. with a

guaranteed delivery, we can eliminate a done nodes list, as each agent can parse all

58

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

necessary information just from previous parts of a message. However, if a broadcast

is imperfect, or it has a limited range, a done nodes list is a crucial part for a quality

of a solution with the algorithm.

4.2 Computation Model of the System

A computation model of the system consist of three consequent main parts (given in

Figure 4.18):

• ‘initialization’, which is responsible for an initial setup of an agent, safety checks

and a move of the agent at its initial position, i.e. at its target altitude in a

nest node;

• ‘mission’, which is the most important computation part, where the MADGTA

makes it possible to do all travels and jobs in suboptimal time;

• ‘termination’, which returns an agent at a starting home position, and sends all

necessary information and statistics to a server.

Figure 4.18: Computation model of the system

59

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

First, we describe an ‘initialization’ stage (see in Figure 4.19).

Figure 4.19: Initialization stage of the computation

As the most part of this stage goes on a ground in a close distance to a server (lap-

top), it can be made using a communication with acknowledgments. It is important

to assure, that every message from a server comes correctly. We change parameters

of a real UAV here, as well as, give a description of a mission. Wrong changes in

parameters can lead to a crash of a UAV .

In Figures 4.19 – 4.21 each square represents some part of computations. Mes-

sages, that an agent sends currently for testing purposes, hold the same names, as

commands, i.e. ‘C01 ’, ‘C02 ’, etc. These messages help us to determine a crucial

information to broadcast. Also, it guarantees a perfect qualities of a current imple-

mentation of a broadcast.

Each client (virtual device from a simulation or a real UAV) starts its work from

a command ‘C00 ’ with an empty ID ‘D00 ’. The goal of this command is to inform

60

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

a server that there is a new agent, ready to start its work. When a server receives a

message ‘D00 C00 ’ from a client, it chooses an ID for that client from a list of possible

IDs and sends it back. It is also possible to assign concrete IDs to all real UAVs .

The next message from a client should contain a command ‘C22 ’ with an ID ,

that it has received as a result of a previous message. If an ID is incorrect, a server

stops a connection with such a client, as it possibly can be some intruder. If an ID

is correct, a server in response on a message ‘C22 ’, sends back to a client all required

information, including a configuration of a graph, all IDs , job and travel speeds of

each possible in a mission rival agent. A client receives a list of possible commands.

The most important information for a client in the message is its personal parameters

for a mission. It includes an initial node number (only in case of simulations); target

altitude (in meters); travel speed (in cm/sec); job time (in sec, a pattern of a job is

defined by the MADGTA); move up speed (in cm/sec); move down speed (in cm/sec).

In our test system there is a check if a client has sent a message with ‘C22 ’ and

received a response before it sends any other message. If it tries to send another

message without ‘C22 ’, it means that a client has not updated its parameters, which

can be unsafe to people and the other agents. In such a case, a server raises an

error for this client. If everything was good up to this stage, and all parameters were

successfully updated, according to requirements of a server, a client sends a message

‘C01 ’. It contains a current location (node) of an agent. It tells other agents, that

they have a new rival, and they get a location of it to use in the MADGTA. This way

an agent enables a start of a mission, as currently, an agent should wait unless it has

at least one rival before it can start any work. Thus, if there is only two agents in a

mission, such an information can be crucial. A message ‘C01 ’ is just an additional

61

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

information, so a server does not need to send any acknowledgements. However, in

a current implementation, for a convenience of testing of a system and a work of the

algorithm, we use acknowledgments on any message.

The next message from a client is ‘C02 ’. This message is sent only if all safety

pre-arm checks were passed successfully. If not passed, a UAV does not take a

part in a mission, as it can be dangerous. Safety checks include tests of electronics

(gyroscopes, barometer, accelerometers, etc.) and a quality of a GPS lock, i.e. a

precision of positioning, using GPS satellites. If all safety checks are passed, in a

small interval of time a UAV tries to arm its motors. If motors were successfully

armed, a client sends a message ‘C03 ’.

The final part of the initialization stage forces a UAV to move to a starting

position, i.e. it assures that a UAV has done a take off to a target altitude and a

travel to the closest node of a graph. These operations can take some time, depending

on a move up speed and a target altitude, as well as a distance to a real point of an

environment. When an agent reaches a necessary position and altitude, it sends a

message ‘C04 ’ and goes to a mission stage.

The mission stage (see in Figure 4.20) starts with a command ‘C05 ’ and the

same name message, containing the next node of an agent. Our algorithm makes its

computations in this stage, and a result of it goes to a message.

The next message is ‘C06 ’. An agent sends it on a half way to the next node.

An agent just informs everyone that it enters a radius of a node. Having such an

information, rival agents can operate in neighboring areas at higher speeds, without

a risk of collisions.

When an agent finishes its travel to an exact position of the next node, it sends

62

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

a message ‘C07 ’ to inform about it, and that it initiates a job in that node. Agents

should have this information to avoid double jobs in the same nodes. A node which

is started by any agent is marked as ‘conditionally accomplished’. If some serious

error happens during a job, and an agent does not finish that job, a status of a node

comes back to ‘not done’. If a job is done successfully, an agent informs about it with

a message ‘C08 ’. If an agent gets a termination condition at this time, it goes to a

termination stage of computations. If there are any not done nodes in a graph, an

agent repeats a cycle. It goes to a computation of the next node with the MADGTA,

sends a message ‘C05 ’, etc.

Figure 4.20: Mission stage of the computation

Transfer to a termination stage of a computation can happen in any point of

time, as soon as an agent has received an information, that all nodes of a graph are

accomplished or found as obstacles. Therefore, it can be before or after messages

‘C05 ’, ‘C06 ’, ‘C07 ’ or ‘C08 ’. It is not shown in Figure 4.20 to keep it clear.

The termination stage of a computation, shown in Figure 4.21, can be started in

two cases. In the first case, a correct termination condition is achieved, i.e. all nodes

63

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

were done or distinguished as obstacles. The second case is when some serious error

occurs with an agent during a mission stage. It can be a low battery level or any

serious hardware problem.

Figure 4.21: Termination stage of the computation

The termination stage starts with the finding a way to a nest, or some other

position, that should be a final destination of an agent. In an ordinary case, it is

the same position as a starting point. An agent sends a message ‘C09 ’, initiates a

command ‘return to the launch’ (RTL), and goes towards that node. When an agent

has reached an exact position in a final destination node, and it is ready to land, it

informs about it with a message ‘C10 ’. After a message, an agent lands to a ground.

A UAV disarms its motors and informs about it with a message ‘C11 ’. The final

part of a termination stage is a transfer of statistics and information, that an agent

gets during a mission.

64

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

4.3 Implementation of the Algorithm in Python

An implementation of the MADGTA was made, using Python language. A choice of

this programming language was made, mostly because of real UAVs , that we use in our

experiments. Our UAVs - multicopters (octocopters, hexacopters and quadrocopters)

are controlled by a flight controller Pixhawk, which has an API ‘DroneKit-Python-

API ’. Therefore, it is more convenient to use the same programming language, as

the API uses.

The programming implementation of the MADGTA and its environment consists

of three Python files, of more than 6000 lines of code overall:

• ‘server.py’ - a file, that is executed in a laptop. This file creates a TCP server,

which provides agents with an initial information and all requirements for a

mission, as well as, gives a response to every client’s command. A server does

not control agents. It only works in a monitor mode, which is very convenient for

a testing purposes. In the future work, we want to transform an implementation

of a server, to be able to work in an ad-hoc mode, without usage of an access

point;

• ‘client.py’ - the main file of our implementation, which creates a TCP client,

and holds all logic of the MADGTA and its environment. We run instances

of this file in every agent’s onboard computer in a real experiment mode, or

we can create multiple virtual agents in a simulation mode in a computer. As

every agent makes its personal decisions, using a logic from this file, we obtain

a distributed autonomous system of UAVs ;

• ‘simulations.py’ - the file that gives us an opportunity to run a required number

65

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

of simulation experiments with the different number of agents, specific configu-

rations of a graph and different parameters.

We describe some major modules and functions of our implementation of the

MADGTA.

The first file to describe is a ‘server.py’. We create a socket, bind hosts and port

numbers and start listening, having in mind all possible exceptions. When a server

receives a connection request from a new client, it opens a personal thread for this

client. After that, a server implements all logic of a computation model, described

by us earlier.

We do have multiple options for a giving of an input. We have implemented

several functions to get an input from a file, from arguments, entered through a com-

mand line, and an input through a python file itself. We have implemented a function

‘writegraphToArray(radius , pointsOnEdge, centerLat , centerLon, *obstacles)’ which

creates a grid just with a given central point’s GPS coordinates, i.e. latitude and

longitude of a point, with a required radius of work from this point, number of nodes

in an edge of a grid and a number of nodes, containing obstacles. For instance, a com-

mand ‘python server .py –portNum 1000 –radius 50 –nodesOnEdge 9 –lat 43.268304

–lon –79.911135 –obstacles 2 10 23 35 46 48 59 64 76’ gives a grid of size 100 by 100

meters, with 81 nodes in total, with a central point (not a node) in a given latitude

and longitude, with obstacles in nodes 2, 10, 23. As a result, we have a graph table

in a format ‘[1, 43.267849, -79.911591, 0] [2, 0, 0, 0] [3, 43.268051, -79.911591, 0][4,

43.268152, -79.911591, 0] [5, 43.268253, -79.911591, 0] · · · ’. Each of nodes has a pre-

cise latitude and longitude. For example, a string ‘1, 43.267849, -79.911591, 0’ tells

us, that node number 1 has such a latitude and longitude, and it is not done yet. If a

66

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

node was done by an agent, a server changes the last ‘0’ value to an ID number that

agent. The second node was defined as an obstacle. In our graph table, it is shown as

‘2, 0, 0, 0’. Therefore, an implemented function creates any configurations of a grid

with almost the same distances between adjacent nodes and with real coordinates for

field experiments with UAVs . A server holds a list of all commands, that can be used

in the mission by clients, a list of vacant IDs for clients, and all personal parameters

for each agent, according to its ID . For instance, it can look as ‘D01 ’,‘2’, ‘5’, ‘300’,

‘10’, ‘150’, ‘30’, ‘D02 ’,‘12’, ‘15’, ‘200’, ‘12’, ‘250’, ‘50’, ‘D03 ’, · · · , which shows, that

an agent with an ID ‘D01 ’ has a nest in node number 2, a target altitude equal to 5

meters, a travel speed 300 cm/sec, it needs to spend 10 sec to do a job in each node,

a speed of moving up is 150 cm/sec and moving down 30 cm/sec. An agent with an

ID ‘D02 ’ has a different starting node 12. It works at a higher altitude of 15 meters.

The second agent has a slower travel speed of 200 cm/sec, and worse abilities to do

a job, as it needs to spend 12 sec per node. For instance, in a search problem, it can

be, because of a worse quality of a computer vision and sensors. However, an agent

moves faster up and down with the speeds of 250 cm/sec and 50 cm/sec respectively.

A list of personal parameters continues in the same way.

As it was already mentioned, a server in our implementation works as a monitor,

so we can see a progress of an experiment in all modes: simulations, real experiment

or hybrid. A server also combines all statistics from clients and outputs it to files.

We also have implemented several functions to achieve a maximum robustness of the

system. For instance, if an agent stops its work preliminary, because of some error,

including a low battery level, its ID is entered back to a list of vacant IDs . So if we do

have some spare agent, we can arm it in a process of a mission and continue the work

67

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

of that broken agent. A list of IDs is also used by a server, to determine when a test

mission is over, i.e. all agents came back to their initial positions, have successfully

landed and disarmed their motors, transmitted all statistics of the mission. An ID of

each such an agent returns back to a list. So if the list is the same, as it was initially,

a mission is done and a server can output all combined statistics.

The most important file of our implementation is a ‘client.py’.

First of all, this file works both at real UAVs , in field experiments, and at virtual

UAVs , in a simulations mode. The type of a device for a current experiment can

be switched very simple, just with a change of a value of one variable. The file has

specific implementations for both cases.

The program creates a TCP client. Therefore, it creates a socket, tries to connect

to a server, and starts its work after a successful connection. If a client was not able to

connect properly to a server, the program prints out a code of an error and continues

to try to connect within a given time interval.

When a connection with a server (through an access point) is established, a client

starts its work, according to a computation model, that we have described earlier.

An agent first tries to get its ID for a current mission. It sends a message, containing

a command ‘C00 ’ and receives an ID from a list of vacant IDs . After that a client

requests from a server its personal parameters and all initial information about a

mission.

Here comes the first difference between a virtual agent and a real UAV . For a

virtual agent, it is enough just to assign its parameters values to some variables. In

a case of a real UAV , we need to flash every single parameter and check that it was

changed correctly.

68

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

After that, a real UAV should go through a stage of a safety pre-arm checks. It

can take quite a big amount of time and it strongly depends on an environment. For

instance, if a sky is very cloudy, there is a big risk that a GPS lock is not enough to

make a real experiment. For instance, a GPS module finds just 5–6 satellites, which

gives a bad precision of the GPS positioning with several meters radius. A GPS lock

also depends on many other factors. Having in mind real UAVs , our virtual agents

goes through the same stages. The only thing, that with virtual agents, we assume

that every such a stage goes successfully every time within a given time interval.

However, with real UAVs it can be different in every experiment, depending on the

result of a special function ‘uavPreARMcheck()’.

An agent also needs to check, that it has at least one rival, according to our

assumption. When an agent finds a rival or rivals and their location, it arms its

motors with a function ‘uavARM ()’, goes to a target altitude in a takeoff mode,

using a function ‘uavTakeOff (uavTakeOffAltitude)’, and starts its mission.

A UAV does its travel in two stages, using the next functions. First function

‘uavGoToCell(pointLat , pointLon, pointAlt , pointNum)’ just leads a UAV to a given

radius of a node. Therefore, it can be taken, as entering borders of a cell. After a

UAV has reached such a radius, it continues its movement toward a precise position

in a middle of a cell, i.e. to a given nodes coordinates, using a different function

‘uavGoToPoint(pointLat , pointLon, pointAlt)’.

A UAV does a job using a function ‘uavDoJob()’. For example, in a case of a

coverage, we can give as parameters a radius of a circle in centimeters and a number

of circles to do. A UAV makes a given number of circles of such a radius around a

central point of a node. A pattern of a job can be made differently, according to a

69

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

problem we solve. However, as it is not a main purpose of our research, in real-world

experiments we use just an altitude change movements.

We have implemented dozens of useful functions to make a parsing of incoming

messages, to form our messages, to make a rounding, to get a relation between a node

number and its coordinates, to get adjacent nodes to a current, to evaluate a time

necessary to travel to a point, to find a shortest path between nodes of a graph, to

write an information in a proper data structures, to count a time of each step, to

write an information to a log file, etc.

We have implemented commands, according to a given before computation model.

Every such command contains its different logic. The most important for us is a

command ‘C05 ’ where our algorithm is used. The MADGTA is written as the com-

bination of functions ‘doAlgorithm()’ and ‘GetBestNode(W)’. It implements a logic

of our algorithm and a mentioned function.

In a final termination stage a UAV consequently uses the next functions ‘uavRTL()’,

‘uavLAND()’ and ‘uavDISARM ()’. After a UAV has returned to an initial point, it

sends to a server all statistics of its work during a mission, including a path, that it

has traveled, nodes in which a job was done by an agent, the total travel, job and

additional time, etc.

The last file of our implementation is the ‘simulations.py’.

We have implemented different options of an input for simulations. One of such

options is to use command line arguments. For example, the next line ‘python

simulations .py –radius 100 –nodesOnEdge 10 –portNum 9087 –agentsNum 4 –obstacles

10 23 35 46 48 59 64 76’ gives us as a result an experiment in a simulation mode with

four agents with parameters from a file ‘server.py’, in a grid of 200 by 200 meters with

70

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

100 nodes and given obstacles. The nest for each agent is also defined in a ‘server.py’.

Simulations are made, using a ‘subprocess’ library. First, we start a server, to which

we consequently connect new clients in some time interval, like 0.5 sec from each

other. We can assign a number of experiments to do. A result of all experiments is

written into the log files. After that, we can use an additional program, written by us

to get statistics in a format that is given in tables in the next chapter of this thesis.

71

Chapter 5

Simulations and Experiments on

UAVs

In this chapter, we present our results of simulations and experiments in Sections 5.1

and 5.2.

5.1 Simulation Results

5.1.1 Parameters and Metrics of Simulations

Parameters that have been changed in simulations:

• a number of nests (from 1 nest to m nests, where m is a total number of agents

in a current experiment) and their location in a graph;

• a number of obstacles;

• a type of agents, i.e agents with the same, slightly different, or very different

72

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

costs.

Notice, that costs of a job Cj in given simulations are the same for all agents.

We evaluate the following metrics for each agent i in every experiment:

• numNodesDone i, a total number of nodes where a job was done by an agent i;

• numNodesTraveled i, a total number of nodes traveled by an agent i;

• numNodesWoJ i = numNodesTraveled i − numNodesDone i;

• travelTime i a total time spent on travel by an agent i;

• jobTime i, a total time spent on accomplishing of jobs by an agent i;

• totalTime i = travelTime i + jobTime i;

• additionalTime i, a time parameter equal to a summation of the takeoff, return

to a launch (RTL), and land time spent by an agent i.

The following global metrics are additionally measured for all agents in each ex-

periment:

• totalTimeAll =
∑

i∈[1,m](travelTime i + jobTime i), a total time spent on a travel

and accomplishing of a job by all agents, where m is a number of agents in the

current experiment;

• numNodesWoJAll =
∑

i∈[1,m](numNodesTraveled i − numNodesDone i), a num-

ber of nodes travelled without doing a job by all agents, where m is a number

of agents in the current experiment.

73

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

5.1.2 Results of the Simulations

Impact of a Location of a Nest

The first series of a simulations was done with a 6× 6 grid, without obstacles, with a

total size of 40× 40 meters. Each adjacent node is located at almost equal distance

from each other (about 6.67 meters).

In the first experiment we use 3 identical agents with the following parameters:

• a travel time between every two nodes is around 2.2 sec (a travel speed = 300

cm/sec);

• a job time is 10 sec per node for all agents;

• parameters, that are used in evaluation of an additional time: a target altitude

= 5 meters; a move up speed = 150 cm/sec; a move down speed = 30 cm/sec.

Each agent starts its work in a mission consequently with a time interval equal to

0.5 sec. It goes through a stage of pre-arm safety checks, which we do not count in

our time metrics as this time depends on a specific hardware and safety settings in

each concrete case. Important time metrics that we need to count are

• a takeoff time, i.e. a time taken by an agent to reach a target altitude;

• a time of traveling back to a nest from a final agent’s node of a graph when a

termination condition was achieved (RTL);

• a time of landing, according to a move down speed and some other parameters

of a flight controller.

74

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

All these time values are included in a metric additionalTime i.

The first simulation is done with the aforementioned parameters of agents and a

graph settings. Only a location of a nest was changed. The experimental results are

given below in Tables 5.1 and 5.2.

In Figures 5.1 and 5.2 the given graphs are based on Tables 5.1 and 5.2, re-

spectively. Notice, that for all remaining simulations only their resulting graphs are

shown. The graphs in Figures 5.1 and 5.2 demonstrate a relation between a location

of a single nest for 3 agents, and an accumulated time (totalTimeAll). Figure 5.1

shows such a relation when a nest is moved at the border of a grid in nodes from 1 to

3. Each bar of a graph shows four values. Two whiskers give a minimum and a maxi-

mum values of the totalTimeAll among all experiments. In most cases, there are done

100 or more experiments for each metric, which gives us a 95% confidence interval.

A body of a candlestick shows a confidence interval. Notice, that in the remaining

graphs with candlesticks they show the same values of a maximum, minimum, and a

confidence interval. Figure 5.2 shows a similar relation between a location of a nest

in the middle of a grid in nodes in a physical diagonal, at a distance from 1 to 3 from

a corner node number 1.

The results in Tables 5.1 and 5.2 show:

• There is a relation between a location of a nest and a totalTimeAll on such

a small grid, as 6 × 6 nodes. If a nest is located in one of the corners of a

given grid, we see the best confidence interval of [450.45, 453.07] seconds of an

accumulated time with a probability 95%.

The next ‘good’ stable location for a nest is on the border of a grid, closer to a

corner, with a confidence interval of [452.75, 455.4] seconds.

75

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Parameter A nest in node 1, 6, 31 or 36
Min Max Median Mean STD CI

totalTimeAll 439.89 475.32 451.08 451.76 6.94 [450.45,453.07]
numNodesWoJAll 1.0 17.0 6.0 6.33 3.12 [5.73,6.92]
totalTime i 85.55 209.97 151.15 150.59 20.25 [146.76,154.42]
travelTime i 15.55 44.37 31.02 30.59 4.95 [29.66,31.52]
jobTime i 70.0 170.0 120.0 120.0 16.88 [116.81,123.19]
additionalTime i 24.47 42.22 35.58 34.74 4.33 [33.93,35.56]
numNodesDone i 7.0 17.0 12.0 12.0 1.69 [11.68,12.32]
numNodesTraveled i 7.0 21.0 14.0 14.11 2.34 [13.67,14.55]
numNodesWoJ i 0.0 9.0 2.0 2.11 1.77 [1.77,2.45]

Parameter A nest in node 2, 7, 5, 12, 25, 32, 30 or 35
Min Max Median Mean STD CI

totalTimeAll 439.86 473.3 453.285 454.07 7.0 [452.75,455.4]
numNodesWoJAll 1.0 16.0 7.0 7.36 3.15 [6.77,7.96]
totalTime i 77.75 195.49 151.09 151.36 18.87 [147.79,154.93]
travelTime i 17.75 51.11 31.09 31.36 5.14 [30.39,32.33]
jobTime i 60.0 160.0 120.0 120.0 15.86 [117.0,123.0]
additionalTime i 22.2 39.98 33.35 31.98 4.41 [31.15,32.81]
numNodesDone i 6.0 16.0 12.0 12.0 1.59 [11.7,12.3]
numNodesTraveled i 8.0 24.0 14.0 14.45 2.44 [14.0,14.91]
numNodesWoJ i 0.0 13.0 2.0 2.45 2.1 [2.06,2.85]

Parameter A nest in node 3, 4, 13, 18, 19, 24, 33 or 34
Min Max Median Mean STD CI

totalTimeAll 437.66 495.44 454.4 455.22 8.54 [453.61,456.83]
numNodesWoJAll 0.0 26.0 7.5 7.88 3.84 [7.15,8.62]
totalTime i 57.78 214.4 151.09 151.74 18.26 [148.29,155.19]
travelTime i 15.58 51.04 31.09 31.74 5.83 [30.63,32.85]
jobTime i 40.0 170.0 120.0 120.0 14.91 [117.18,122.82]
additionalTime i 22.2 37.78 31.15 30.4 4.21 [29.61,31.2]
numNodesDone i 4.0 17.0 12.0 12.0 1.49 [11.72,12.28]
numNodesTraveled i 7.0 23.0 14.0 14.63 2.82 [14.09,15.16]
numNodesWoJ i 0.0 12.0 2.0 2.63 2.53 [2.15,3.1]

Table 5.1: Simulation results in a grid of 6×6 nodes, 40×40 meters, with no obstacles,
1 nest, 3 same agents, part 1

76

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Parameter A nest in node 8, 11, 26 or 29
Min Max Median Mean STD CI

totalTimeAll 444.34 491.11 457.75 459.32 9.19 [457.58,461.07]
numNodesWoJAll 3.0 24.0 9.0 9.7 4.14 [8.93,10.47]
totalTime i 87.78 208.84 155.585 153.11 21.01 [149.14,157.08]
travelTime i 17.75 51.11 33.29 33.11 6.21 [31.94,34.28]
jobTime i 70.0 160.0 120.0 120.0 17.14 [116.77,123.23]
additionalTime i 20.0 37.75 28.87 29.33 4.3 [28.52,30.14]
numNodesDone i 7.0 16.0 12.0 12.0 1.71 [11.68,12.32]
numNodesTraveled i 8.0 24.0 15.0 15.23 2.95 [14.68,15.79]
numNodesWoJ i 0.0 12.0 3.0 3.23 2.46 [2.78,3.69]

Parameter A nest in node 9, 10, 14, 17, 20, 23, 27 or 28
Min Max Median Mean STD CI

totalTimeAll 440.01 486.49 457.75 459.83 9.97 [457.94,461.71]
numNodesWoJAll 1.0 22.0 9.0 9.94 4.49 [9.08,10.79]
totalTime i 72.26 220.04 154.985 153.28 21.39 [149.23,157.32]
travelTime i 15.55 53.2 33.29 33.28 6.49 [32.05,34.51]
jobTime i 50.0 180.0 120.0 120.0 17.07 [116.77,123.23]
additionalTime i 20.0 35.55 28.87 28.23 3.95 [27.48,28.99]
numNodesDone i 5.0 18.0 12.0 12.0 1.71 [11.68,12.32]
numNodesTraveled i 8.0 24.0 15.0 15.31 3.03 [14.74,15.89]
numNodesWoJ i 0.0 12.0 3.0 3.31 2.52 [2.84,3.79]

Parameter A nest in node 15, 16, 21 or 22
Min Max Median Mean STD CI

totalTimeAll 444.41 488.84 460.045 462.02 9.04 [460.31,463.73]
numNodesWoJAll 3.0 23.0 10.0 10.92 4.07 [10.14,11.69]
totalTime i 92.26 207.77 155.53 154.01 20.73 [150.08,157.94]
travelTime i 20.02 51.15 33.33 34.01 6.3 [32.82,35.2]
jobTime i 70.0 170.0 120.0 120.0 16.77 [116.83,123.17]
additionalTime i 20.0 33.35 26.67 26.92 2.9 [26.37,27.48]
numNodesDone i 7.0 17.0 12.0 12.0 1.68 [11.68,12.32]
numNodesTraveled i 9.0 24.0 15.0 15.64 3.01 [15.06,16.21]
numNodesWoJ i 0.0 11.0 3.0 3.64 2.55 [3.16,4.12]

Table 5.2: Simulation results in a grid of 6×6 nodes, 40×40 meters, with no obstacles,
1 nest, 3 same agents, part 2

77

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

 440

 450

 460

 470

 480

 490

 500

 0 1 2

A
c
c
u
m

u
la

te
d
 t
im

e
 (

s
e
c
)

Distance from the corner (number of edges)

Grid 6x6 nodes, 40x40 m, 1 Nest on the border of the GRID, 3 Same Agents

Figure 5.1: Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no
obstacles, 3 same agents, 1 nest on the border of the grid

 440

 450

 460

 470

 480

 490

 500

 1 2 3

A
c
c
u
m

u
la

te
d
 t
im

e
 (

s
e
c
)

Distance from the corner (number of edges diagonally)

Grid 6x6 nodes, 40x40 m, 1 Nest in the middle of the GRID, 3 Same Agents

Figure 5.2: Simulation results in a grid of 6 × 6 nodes, 40 × 40 meters, with no
obstacles, 3 same agents, 1 nest in the middle of the grid

The position of a nest on the border, somewhere in the middle of the grid (lower

Table 5.1), also gives pretty good results of the [453.61, 456.83] seconds.

As a location of a nest is moved out from a border, closer to an exact central

point of a grid (Table 5.2), we get worse results of a confidence interval and

a bigger standard deviation. Such a relation can appear, because of a ‘bigger

freedom’, that agents achieve, when a nest is somewhere in the middle. That

is because there is a lack of a space. Agents have bigger options for beginning

of a mission. It means, that they have a bigger amount of possible starting

78

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

points, which can make a difference in a direction of their job and travel. As

agents start their work almost synchronously, they are not able to distinguish a

first movement of rivals. So, they can choose the same starting direction, which

leads to a bigger amount of useless travels (collisions). A situation can become

even worse, if they choose a direction to a small subarea of a graph, closer to

the borders, and they will continue to work in such an area for some time;

• As can be seen in Tables 5.1 and 5.2, individual agent’s results are also bet-

ter, when a nest is located in corners and in a border of a grid, rather than

somewhere in the middle. Agents have the least number of traveled nodes,

with a confidence interval from [13.67, 14.55], while a middle position of a nest

gives [15.06, 16.21]. So, each agent in a ‘middle’ nest has about 2 extra travels.

As a number of nodes done by different agents is, more or less, the same in all

these cases, an additional useless travel shows up in a metric numNodesWoJAll.

Again, when agents start from a corner or a border, they have cumulatively from

1 to 17 nodes without a job for all of them. A ‘middle’ nest gives from 3 to 23

nodes without a job.

Therefore, when we need to get more stable results in our mission, it is better to

position the only nest closer to the borders and the corners of a small grid, as 6× 6

nodes. Meanwhile, a location of a nest even in the middle of such a grid does not

mean, that we are not able to receive any good results. Actually, according to our

simulations, it is possible to get even an optimal result in 2-5% of experiments.

The second part of our experiments is done with a bigger grid of 10 × 10 nodes,

but, of the same physical size 40 × 40 meters. All parameters of a UAV remains

the same, i.e. a travel speed = 300 cm/sec; a job time = 10 sec per node; a target

79

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

altitude = 5 meters; a move up speed = 150 cm/sec; a move down speed = 30 cm/sec.

However, this time, we use from a minimum of 2 agents to a maximum of 10 agents

in the same experiment.

All simulations are done in the same manner, as given before. However, this time,

we omit all tables, and just show their resulting graphs on a base of an information

in a similar format. Two graphs 5.3 and 5.4 demonstrate a result of a relocation of a

single nest for 5 agents at a border and in a middle part of a grid respectively.

 1130

 1140

 1150

 1160

 1170

 1180

 1190

 1200

 1210

 1220

 0 1 2 3 4

A
c
c
u
m

u
la

te
d
 t

im
e
 (

s
e

c
)

Distance from the corner (number of edges)

Grid 10x10 nodes, 40x40 m, 1 Nest on the border of the GRID, 5 Same Agents

Figure 5.3: Simulation results in a grid of 10 × 10 nodes, 40 × 40 meters, with no

obstacles, 5 same agents, 1 nest on the border of the grid

 1130

 1140

 1150

 1160

 1170

 1180

 1190

 1200

 1210

 1220

 1230

 1 2 3 4

A
c
c
u
m

u
la

te
d

 t
im

e
 (

s
e
c
)

Distance from the corner (number of edges diagonally)

Grid 10x10 nodes, 40x40 m, 1 Nest in the middle of the GRID, 5 Same Agents

Figure 5.4: Simulation results in a grid of 10 × 10 nodes, 40 × 40 meters, with no

obstacles, 5 same agents, 1 nest in the middle of the grid

80

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Now a relation, between a position of a nest and a totalTimeAll , does not seem to

be that clear. As it is shown in our next graphs, this correlation disappears in bigger

grids.

The last part of experiments is done with a big grid of 20×20 nodes, of a physical

size 80× 80 meters.

The first two graphs (in Figures 5.5 and 5.6) demonstrate a relation between a

location of a single nest for 10 agents and an accumulated time (totalTimeAll).

 4600

 4625

 4650

 4675

 4700

 4725

 4750

 4775

 4800

 4825

 4850

 4875

 4900

 4925

 4950

 4975

 5000

 0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

m
u

la
te

d
 t

im
e

 (
s
e

c
)

Distance from the corner (number of edges)

Grid 20x20 nodes, 80x80 m, 1 Nest on the border of the GRID, 10 Same Agents

Figure 5.5: Simulation results in a grid of 20 × 20 nodes, 80 × 80 meters, with no

obstacles, 1 nest in the given node number, 10 same agents

Figure 5.5 shows a relation between a location of a nest on a border of a grid

in nodes from 1 to 10, i.e. to a middle part of the grid, as it is symmetric. Such a

relation to a middle location of a nest is demonstrated in Figure 5.6.

It is clear, that in a big grid of 20× 20 nodes, of a size 80× 80 meters, there is no

more correlation between a location of a single nest and a totalTimeAll . All values

are close to each other – about 4750 seconds. However, we should mention that a

number of agents in that experiment was raised to 10. Nevertheless, this leads us to a

81

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

conclusion, that in a case of a big grid and a bigger number of agents, the MADGTA

works stable, with the similar results, wherever we introduce a nest node. However,

for a smaller grid and smaller number of agents, there can be a correlation, and it is

recommended to position a nest closer to a border and a corner of a grid.

 4600

 4625

 4650

 4675

 4700

 4725

 4750

 4775

 4800

 4825

 4850

 4875

 4900

 4925

 4950

 4975

 5000

 1 2 3 4 5 6 7 8 9 10

A
c
c
u

m
u

la
te

d
 t

im
e

 (
s
e

c
)

Distance from the corner (number of edges diagonally)

Grid 20x20 nodes, 80x80 m, 1 Nest in the middle of the GRID, 10 Same Agents

Figure 5.6: Simulation results in a grid of 20 × 20 nodes, 80 × 80 meters, with no

obstacles, 1 nest in the node in the middle of the grid, 10 same agents

Impact of a Number of Active Agents

The next graph (Figure 5.7), shows a relation between a number of agents in an

experiment and a resulting accumulated time in seconds. As we can see, the accumu-

lated time goes up rapidly, as we raise the number of agents. It is, because of a lack

of a common decision between agents and a raised number of collisions. It is much

easier to avoid such collisions if there are just few agents.

We also have evaluated an accumulated time for a similar settings, but, for a

bigger grid of 15× 15 nodes of a size 40× 40 meters (Figure 5.8), and 15× 15 nodes

of a twice bigger size 80× 80 meters (Figure 5.9).

82

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

 1130

 1140

 1150

 1160

 1170

 1180

 1190

 1200

 1210

 1220

 1230

 1240

 1250

 1260

 1270

 1280

 1290

 1300

 2 3 4 5 6 7 8 9 10

A
c
c
u

m
u

la
te

d
 t

im
e

 (
s
e

c
)

Number of agents in experiment (units)

Grid 10x10 nodes, 40x40 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

Figure 5.7: Simulation results in a grid of 10 × 10 nodes, 40 × 40 meters, with no

obstacles, 1 nest, 2 to 10 same agents

 2450

 2475

 2500

 2525

 2550

 2575

 2600

 2625

 2 3 4 5 6 7 8 9 10

A
c
c
u

m
u

la
te

d
 t

im
e

 (
s
e

c
)

Number of agents in experiment (units)

Grid 15x15 nodes, 40x40 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

Figure 5.8: Simulation results in a grid of 15 × 15 nodes, 40 × 40 meters, with no

obstacles, 1 nest, 2 to 10 same agents

From two graphs (Figures 5.8, 5.9) we can see the same relation between a number

of agents and an accumulated time. It seems, that the best number of agents in terms

of the accumulated time is less than 5 (Figure 5.9).

83

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

 2650

 2675

 2700

 2725

 2750

 2775

 2800

 2825

 2850

 2875

 2900

 2925

 2950

 2975

 3000

 3025

 2 3 4 5 6 7 8 9 10

A
c
c
u
m

u
la

te
d
 t
im

e
 (

s
e
c
)

Number of agents in experiment (units)

Grid 15x15 nodes, 80x80 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

Figure 5.9: Simulation results in a grid of 15 × 15 nodes, 80 × 80 meters, with no

obstacles, 1 nest, 2 to 10 same agents

Impact of Obstacles

The last part of experiments is done in a big grid of 20× 20 nodes, of a physical size

80 × 80 meters. Figure 5.10 shows a relation between a number of obstacles and an

accumulated time. Notice, that all bars in a given graph have different bodies length

because of a different number of experiments made.

In Figure 5.10 we can see, that with an increase of an amount of nodes-obstacles,

an accumulated time decreases. It happens because agents need to make fewer jobs

in a grid, which is the most time-consuming operation. In opposite, the obstacles

detection time for an agent is almost 0. A travel time in our settings here is less than

a job time. Therefore, it can be even faster to go around a node-obstacle or even

several obstacles, rather than to enter a node and to make a job. The bars in the

graph has long whiskers, i.e. the difference between the minimum and maximum is

84

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

big. It mostly depends on a dispersion of obstacles and their density in some areas

of a grid.

 4300

 4400

 4500

 4600

 4700

 4800

 4900

 5000

 0 5 10 15

A
c
c
u
m

u
la

te
d
 t
im

e
 (

s
e
c
)

Percent of obstacles of the entire GRID (%)

Grid 20x20 nodes, 80x80 m, One Nest in the #1, 10 Same Agents, different obstalces

Figure 5.10: Simulation results in a grid of 20×20 nodes, 80×80 meters, with different

obstacles, 1 nest, 10 same agents

Impact of Preparation Time

The next graph (see Figure 5.11) demonstrates a relation between a number of the

same agents in an experiment (starting from a nest in node 3) and a totalTimeAll . As

we can see from this graph, a smaller number of agents gives us the best totalTimeAll

about 4580 seconds, while each new agent introduced in the experiment raises this

time up to 4760 seconds.

It could be an easy solution, to use a minimum number of agents in every exper-

iment. However, in a real-world situation, we are interested not in an accumulated

time totalTimeAll . An operational time totalTime i is a better metric in such a case.

This personal parameter gives us more precise information about an experiment. The

maximum value totalTime i of all agents from an experiment, in a case when they start

85

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

to work almost synchronously, shows us how much time should we spend ‘in a field’

to make a necessary amount of a total work. And so, this parameter leads us to a

different conclusion.

 4525

 4550

 4575

 4600

 4625

 4650

 4675

 4700

 4725

 4750

 4775

 4800

 4825

 4850

 4875

 4900

 4925

 2 3 4 5 6 7 8 9 10

A
c
c
u

m
u

la
te

d
 t

im
e

 (
s
e

c
)

Number of agents in experiment (units)

Grid 20x20 nodes, 80x80 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

Figure 5.11: Simulation results in a grid of 20 × 20 nodes, 80 × 80 meters, with no

obstacles, 1 nest, 2 to 10 same agents

A graph in Figure 5.12 demonstrates, how bad it can be if we use just 2 agents

in a mission. In such a case, we need to wait (work) at least about 2300 seconds in

total. Introducing the third agent decreases this time to 1500 seconds. And every

new agent gives us much better time, up to 450 seconds, if we use all 10 agents in a

mission. Thus, this graph shows that a bigger number of agents is better.

However, if we look at a situation realistically, it is not easy and not economically

efficient to use a total number of UAVs , that we have to do the jobs. A preparation

time of a UAV is an easiest to measure and compare parameter. In practice, it is

unavoidable to spend a lot of time on preparation of a UAV before an experiment.

It is necessary to assemble propellers, to check the sensors, accelerometers, GPS ,

compass, WiFi , cameras, gimbals, etc. And thus, every new UAV in an experiment

86

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

leads to these preparation time expenses.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2 3 4 5 6 7 8 9 10

O
p

e
ra

ti
o

n
a

l
ti
m

e
 (

s
e

c
)

Number of agents in experiment (units)

Grid 20x20 nodes, 80x80 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

Figure 5.12: Simulation results of totalTime i in a grid of 20 × 20 nodes, 80 × 80

meters, with no obstacles, 1 nest, 2 to 10 same agents

In this thesis we simplify a situation. We assume that every agent has an unlimited

battery charge, and UAVs do not have an amortization and are risk-free. But, at

least, we can evaluate a relation between a preparation time of each UAV and the

best number of agents to use in an experiment.

Suppose, that on a preparation of UAVs , we have only one person (engineer, pilot).

This person should prepare every UAV consequently. We can tell, that a preparation

time for each similar UAV is on average equal. Thus, we can take it as a constant.

The results of such an evaluation are given in Figures 5.13 and 5.14.

If a preparation time is close to 0, or, at least, less than 48 seconds, it is recom-

mended to use all 10 UAVs . If the preparation time, for instance, is between 81 and

104 seconds, we should use 7 UAVs , 227 to 377 – 4 agents, more than 764 seconds

– the minimum number of 2 UAVs . These values are very realistic. For example, a

preparation time of an OCTO , used in our real experiments, can easily be about 5–7

87

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

minutes.

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

 3700

 3800

 150 200 250 300 350 400 450 500 550 600 650 700 750

A
c
c
u

m
u

la
te

d
 t
im

e
 (

s
e

c
)

Preparation time per one agent (sec)

Grid 20x20 nodes, 80x80 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

2 agents
3 agents
4 agents
5 agents
6 agents

Figure 5.13: Simulation results of a preparation time and the best number of agents

in a grid of 20× 20 nodes, 80× 80 meters, no obstacles, 1 nest, 2 to 6 same agents

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

A
c
c
u

m
u
la

te
d

 t
im

e
 (

s
e

c
)

Preparation time per one agent (sec)

Grid 20x20 nodes, 80x80 m, 1 Nest in the 3rd node, 2 to 10 Same Agents

6 agents
7 agents
8 agents
9 agents

10 agents

Figure 5.14: Simulation results of a preparation time and the best number of agents

in a grid of 20× 20 nodes, 80× 80 meters, no obstacles, 1 nest, 6 to 10 same agents

Of course, these values are for a given grid and specific parameters of agents.

88

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

In a different situation, these values also should be different. Nevertheless, it is

necessary to remember, that we need to find the best number of agents in a mission.

It should give us a balance between the costs and outcome. In most cases, it should

be somewhere in between of a minimum and a maximum number of agents, that we

have can use in a mission.

Simulation Runs in a Big Graph

To finish with our simulations, we attach Figure 5.15, which shows two consecutive

runs of the MADGTA in a big grid of 20 × 20 nodes, 80 × 80 meters, with multiple

obstacles, one nest in node 1, and 3 same agents.

In Figure 5.15, it is clearly shown, that final paths of agents are different from

one run to another in such a big graph, where agents have bigger options to move

differently. However, results of such missions are very close to each other (up to a

second, while overall each mission has taken about 23 minutes in our settings). In

these graphs, it is shown, how three agents disperse from a nest, which is located in

a bottom left corner of a grid. The green agent has mostly done a left sub area of a

grid. The yellow agent has a complex path, and mostly did a right part of the graph.

While the blue agent did its work in a bottom part of the graph. In the end of a

mission, all agents came close to each other in a middle part of the graph.

Therefore, the simulations, described in this thesis, clearly show the abilities of

the MADGTA to give stable suboptimal results for most cases, graphs of a different

size, a different number of agents, obstacles, nests, etc.

89

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 5.15: The resulting grid of 20 × 20 nodes, 80 × 80 meters, with multiple

obstacles, 1 nest, 3 same agents

90

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

5.2 Experimental Results

5.2.1 Description of UAVs Used by us in Real Experiments

Real experiments were made with UAVs , more precisely, with multicopters. The con-

ducted experiments were done with a satisfaction of all legal requirements of Transport

Canada (see in Appendix B for a detailed description).

In experiments of our laboratory we use two types of multicopters: (1) an octo-

copter 3DR X8+ (in this thesis we call it shortly the OCTO), and (2) a modification

of a quadrocopter RCT Spider (QUAD). These multicopters have a big size, powerful

motors and can lift all necessary additional cargo. It is important, as our experiments

are made outdoors. Therefore, there is a strong dependence on the environmental con-

ditions, i.e. a speed of the wind, levels of the humidity and temperature, an amount

of clouds, etc. Nevertheless, these UAVs have a better stability to do their work in

such complex conditions.

Our multicopters combine two principal systems, which we describe here.

First, we show an energy system of our typical UAV . A scheme of a connection

of all major parts is demonstrated in Figure 5.16.

The moving parts (motors and propellers) are connected to the speed controllers.

Wires of the speed controllers goes to a module ‘XT60 to the bullet connectors’.

Instead of a module ‘XT60 to the bullet connectors’, in our OCTO there is a factory

made ‘power board’ module. UBECs 5V are important modules, necessary to power

all additional devices. A UBEC gives a power to our onboard computer Raspberry

Pi. The XT60 module (or the power board) is connected through a Pixhawk (or its

analog Fixhawk) ‘power module’ to a battery. Also, we recommend using the small

91

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

devices – battery voltage testers, to control a level of a charge of each cell of a battery.

Another connector from a power module goes to the flight controller Pixhawk, which

is shown in Figure 5.17.

Figure 5.16: Energy system of our UAV

The module ‘XT60 to the bullet connectors’ makes an energy system more agile,

as we can easily change a speed controller, or a motor, in a case of malfunctioning.

We can make an additional power supply to all new devices and sensors with the

sUBEC . Otherwise, we need to solder everything, as it is made with a factory power

board of our OCTO .

A control system of our UAV , which is shown in Figure 5.17, is the most important

92

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

for our algorithm.

Figure 5.17: Control system of our UAV

There are two main modules in the control system: a flight controller and an

onboard computer. A flight controller Pixhawk that we use in our UAV is a high-

performance autopilot-on-module. We also use an exact analog of it by the name

Fixhawk. As an onboard computer, we have chosen a Raspberry Pi 2 model B.

All additional devices and sensors are connected to either a Pixhawk or to an RPi .

A Pixhawk has a bunch of modules, as the GPS and compass module, radio receiver,

switch, speaker, etc.

In some of our UAVs we have attached cameras, to get the best views of an

experiment. We use different cameras: from a small FPV to a GoPro camera.

The most important part for a communication is a WiFi module. We have chosen

a long-range WiFi module Alfa, as we need to obtain the biggest possible communi-

cation coverage with the WiFi . These modules are lightweight, do not consume much

93

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

power, and can work up to two kilometers from each other.

Figure 5.18 demonstrates one of our QUADs , on a base of the RCT Spider model,

which was assembled from scratch by us for the experiments. Our QUAD has princi-

pally new design, introduced by us. A step-by-step manual on how to assemble such

a multicopter is prepared and should be available to download soon.

Figure 5.18: Our quadrocopter UAV

Some of the mentioned above major parts of the energy and control systems of

a UAV can be seen in Figure 5.18. An onboard computer and a long-range WiFi

module are positioned inside a body of a QUAD . The WiFi module is a green

box with an antenna in the middle of a picture. The onboard computer sits right

below this module. A GPS and compass module, which is crucial for all outdoors

94

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

autonomous experiments, is located on the top part of the UAV (the black circle

box).

5.2.2 Model and Analysis of Real Experiments

Real experiments were done in a field. A snapshot of a map of the field is given in

Figure 5.19. This figure demonstrates 9 nodes, which gives us a small grid of a size

3× 3.

UAVs can be located in any place of a map. If we position a UAV outside a

graph, it finds the closest node of a graph and initially goes to that node. A UAV

starts a mission only when it reaches a target initial node. When a UAV is located

initially within a given radius of some node of a graph, it just goes to a precise GPS

position of that node and starts a mission.

Figure 5.19: A snapshot of a map of an experiment

95

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

A snapshot of an experiment from the onboard GoPro camera of our OCTO is

shown in Figure 5.20. The snapshot has additional marks of nodes of a grid. A rival

agent can be seen in the top right corner of the picture. In this case, it is a QUAD .

Figure 5.20: A snapshot of an experiment from an onboard camera of our octocopter

A photo of an experiment from the ground is demonstrated in Figure 5.21. The

photo shows a moment of a synchronous takeoff from the ground of an OCTO with

an onboard camera and a QUAD .

We have attached a video of several experiments from the ground and from the

onboard GoPro camera (see a link in Appendix A).

In the first experiment, we use two agents: an OCTO and a QUAD . The OCTO

has a travel speed = 250 cm/sec and a target working altitude = 4 meters. The

QUAD has a slightly slower travel speed = 200 cm/sec and a higher target working

altitude = 9 meters. Both of them has the same speed up = 150 cm/sec and speed

down = 30 cm/sec. Two meters altitude change signals that a job in a node is done.

96

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 5.21: A photo of our multicopters doing a takeoff from the ground

The QUAD starts a mission first. In a small interval of time, the OCTO joins

the mission. Both agents start their work outside a grid. The OCTO finds that the

closest node of the grid is node 1. Similarly, the QUAD goes to node 4. As they

reach the exact positions in the target initial nodes, they start the mission.

A trace of an experiment is:

• The OCTO : 0, 1, 1*, 2, 2*, 3, 3*, 6, 9, 8, 8*, 7, 7* – done (RTL);

• The QUAD : 0, 4, 4*, 5, 5*, 6, 6*, 9, 9*, 8 – not done (a WiFi connection error).

The numbers with a star in a given trace denotes a job done by an agent in a

node, while only the numbers denotes a travel made by an agent.

This experiment has shown, how agents can finish all work in the entire grid,

even in a case of malfunctioning of the other agents. Thus, our code gives us a good

reliability of the system.

97

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Agents have started a mission from the initial nodes 1 and 4 respectively. Initial

nodes were vacant, therefore agents accomplished these nodes first. After that, agents

have initiated our algorithm and have found the best next nodes to travel, as 2 and 5.

The QUAD could also choose node 7, but, it has chosen one of possible nodes, i.e.

node 5. For the OCTO a choice was obvious and it has chosen node 2. The next,

agents moved to nodes 3 and 6 respectively, doing their jobs. At a moment of finishing

a job in node 3, the OCTO has found that there are no vacant adjacent nodes to do

a job, and it has chosen a further node 7, as a potential target. While travelling to

that node, it has taken an adjacent node number 6 in the shortest path to a further

node 7. Then it has taken node 9, and later 8. Meanwhile, the QUAD was able to

finish a job in node 9. It has moved to an exact position of node 8. And at this point

in time, its WiFi has given a malfunctioning response, which lead the QUAD to be

stopped at node number 8 at 9 meters altitude. That implementation of our code, in

a case of an error, stopped a UAV in a current position in the air. Later, we have

introduced an RTL for such cases. As we have mentioned before, this moment shows

a reliability of the entire system. As one of two agents has stopped its work, because

of some malfunctioning, another agent finished a mission by itself. On its way to

target node 7, the OCTO did a job in node 8 either. After that, it has traveled to

the last node number 7, did a job, and has finished the entire mission in the grid.

In the second experiment, we use the same two agents: an OCTO and a QUAD .

However, the parameters of UAVs were changed. The OCTO now has a faster travel

speed = 400 cm/sec and a target working altitude = 9 meters. The QUAD has a

travel speed = 250 cm/sec and a target working altitude = 4 meters. Both of them,

again, has the same speed up = 150 cm/sec and speed down = 30 cm/sec. Two

98

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

meters altitude change signals that a job in a node is done.

This time, an OCTO starts at the same position outside a grid, while a QUAD

was moved to the GPS coordinates of node 4.

A trace of an experiment is:

• The OCTO : 0, 1, 1*, 2, 2*, 3, 3*, 6, 6*, 9, 9* – done (RTL);

• The QUAD : 4, 4*, 5, 5*, 8, 8*, 7, 7* – done (RTL).

In the second experiment, the mission was done, without any malfunctioning of

UAVs . Therefore, we have a trace, demonstrating an optimal solution without any

additional travel. As the OCTO has much higher travel speed, it was able to do a

job in 5 out of 9 nodes of a grid. The QUAD did the remaining 4 nodes.

The third experiment was done in a much bigger and more complex grid. It was

done in the same field, as shown in Figure 5.19, however, now a grid has 5 by 5

nodes and a size of 40 by 40 meters. In this experiment we have introduced 3 nodes,

containing obstacles, which create a corridor near two borders of a grid. An initial

graph is shown in Figure 5.22.

In this experiment, we use two agents: an OCTO (blue agent) and a QUAD

(yellow agent) with mostly the same parameters. Both of them has the same travel

speed = 400 cm/sec, speed up = 150 cm/sec, and speed down = 30 cm/sec. The

difference is in a target working altitude: 4 meters for the QUAD and 9 meters for

the OCTO . Two meters altitude change signals that a job in a node is done.

The OCTO starts from node 6 of a grid, the QUAD starts from node 22.

A trace of an experiment is:

• The OCTO (blue agent): 6, 6*, 1, 1*, 2, 2*, 7, 7*, 8, 8*, 3, 3*, 4, 4*, 5, 5*, 10,

10*, 9, 9*, 10, 15, 15*, 20, 20*, 25, 25* – done (RTL);

99

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• The QUAD (yellow agent): 22, 22*, 21, 21*, 16, 16*, 11, 11*, 12, 12*, 17, 17*,

18, 18*, 23, 23*, 24, 24* – done (RTL).

Figure 5.22: Initial graph of the third real experiment

This time, a mission was done with some hardware errors of the QUAD (yellow

agent), which can be seen in the attached video (in Appendix A) in not precise

evaluation of a current altitude during a mission. The OCTO (blue agent) worked

perfectly. That is, why the OCTO was able to do the work in a bigger number of

nodes. However, other than that, the MADGTA itself was reproduced correctly. As

a result, we can see only one additional travel back by the OCTO in node 10. After

the work in the entire graph was done (see Figure 5.23), UAVs made the return to

the initial positions and landed almost synchronously.

100

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 5.23: The result of the third real experiment

In the fourth experiment, we use three agents: one OCTO and two QUADs ,

which are shown in Figure 5.24. The OCTO (green agent) has a travel speed = 250

cm/sec, a target working altitude = 13 meters. Both QUADs has a travel speed =

400 cm/sec, one of them has a target working altitude = 8 meters (blue agent), while

the second – 3 meters (yellow agent). All three UAVs have the same speed up = 150

cm/sec and speed down = 30 cm/sec. Two meters altitude change signals that a job

in a node is done.

A grid has the same structure and parameters, as from the third experiment, with

only one difference in an additional obstacle in node 3 (see Figure 5.25). Starting

nodes of UAVs in a mission are 1, 16 and 22 (which was the closest to the initial

location of that QUAD).

101

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 5.24: A photo of three UAVs doing their work in the fourth real experiment

A trace of an experiment is:

• The OCTO (green agent): 1, 1*, 2, 2*, 7, 7*, 8, 8*, 9, 9*, 4, 4*, 5, 5*, 10, 10*

– done (RTL);

• The QUAD (blue agent): 16, 16*, 11, 11*, 6, 6*, 11, 12, 12*, 17, 17*, 18, 18*,

23, 22, 21, 21* – done (RTL);

• The QUAD (yellow agent): 0, 22, 22*, 23, 23*, 24, 24*, 25, 25*, 20, 20*, 15,

15* – done (RTL).

The mission was done according to the MADGTA and without any errors. The

final grid is shown in Figure 5.26. As expected, three agents did a mission faster in

comparison to the results of the previous experiments.

102

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Figure 5.25: The initial graph of the fourth real experiment

Figure 5.26: The result of the fourth real experiment

103

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Thus, the provided experiments demonstrates a real implementation of the MADGTA.

The programming implementation of the MADGTA and UAVs created by us dur-

ing the research work proves a high reliability of the entire network of a distributed

UAVs . Our agents are able to do their work in a fast manner with the least number

of additional travels. And, even when some agents crashes, the remaining agents are

able to successfully finish a mission.

104

Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis, we studied the problem of decentralized and multi-agent graph traversal

with application in the UAV technology. In particular, we

• proposed the online distributed algorithm for multi-agent graph traversal. The

MADGTA works for any number of agents, their speed parameters, initial lo-

cations, position of obstacles, initially unknown by agents;

• implemented the MADGTA in Python. The programming implementation of

the MADGTA works in computer simulations and experimentation with real

UAVs , where each vehicle is controlled by an onboard Raspberry Pi 2 and a

flight controller Pixhawk. In addition, our implementation allows a hybrid mode

of real and simulated UAVs ;

• evaluated our algorithm by a series of simulations on the MADGTA with dif-

ferent number of distributed agents, different parameters of agents, positions

105

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

of initial points, obstacles, etc. Our algorithm obviously exhibits suboptimal

results in most cases;

• conducted experiments on the MADGTA implementation on a real network of

UAVs (multicopters), which in practice confirms all results of the simulations.

Our simulations and experiments clearly validate our claim that multi-agent graph

traversal to accomplish a joint mission is indeed feasible and significantly improves

the operation time.

6.2 Future Work

There are still numerous open research and practical problems:

• Energy. An important challenge in the UAV technology is energy efficiency.

Thus, one has to consider the energy limits of agents during a joint mission.

The most obvious solution for such a case is to measure the energy necessary

to make a come back to a nest at each point in time. If an agent reaches the

limit, it initializes a return to the launch command;

• Fault-tolerance. One can design algorithms that can tolerate the different

type of faults. This includes crash faults (that stop an operation of an agent),

message loss, and Byzantine faults (that misrepresent a location or a job accom-

plishment of an agent). Our current algorithm implementation in the simulation

mode, with minor improvements, can give us the tools, to stop any agent at any

point in time, invoking a crash fault. If a crash fault is detectable, other agents

should immediately correct their knowledge, and continue a mission with an

addition of a node where the agent crashed;

106

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

• Environment. The environment can contribute to the overall operation

of UAVs . For instance, computer vision can give us tools for finding and dis-

tinguishing targets and obstacles, to introduce a feedback from UAVs to do a

better implementation of planning, collision avoidance, etc;

• Number of agents. An interesting problem for the future research, is the

evaluation of an optimal number of agents, depending on a goal we choose. For

instance, we need to find what is a minimum number of agents to make the

tasks in the entire environment in a guaranteed suboptimal time with the least

energy waste. We already have mentioned a relation between a preparation

time and the best number of agents in an experiment, however, there can be

done much more;

• Scale of experiments. We are planning to scale up our experiments to the

range of tens of kilometers size of the environment, represented by a graph. This

means, that a perfect WiFi broadcast, that we use currently, will be translated

to an ‘any-cast’, as some agents will be out of a coverage range and will not

get messages. However, with a reasonably big amount of a battery charge, our

approach should work in this case. We also are planning to introduce ‘dummy

agents’ in nodes, closer to the borders of the next area of a global environment.

That is, this will be made in the places, from which rival agents have bigger

chances to appear in the subarea of a graph, where a current agent is located.

This way, a ‘real’ agent, using our algorithm, will make a job in its part of a

graph from the further area to the borders with dummy agents. Later, an agent

can switch to another area of the environment, when it is done with its part.

Therefore, the algorithm should work, even in a case of a presence of only one

107

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

agent, while currently, we require having initially at least two working agents;

• Improvement of message complexity. We are going to try different

approaches to the creation of the optimal checksums with a reduced size, which

should guarantee the same quality of checks of the broadcasted messages.

108

Appendix A

Link to Video of the Experiments

https://drive.google.com/open?id=0B61bDhJZgNFKOUQwVlB3eWxGdVE

109

Appendix B

Legal Requirements to Conduct

Experiments with UAVs

According to the Transport Canada, “most UAV operators must get Transport

Canada’s permission to use a UAV for any kind of work or research. However, under

very specific, lower-risk circumstances, you may qualify for an exemption if you meet

all the safety conditions” [A1].

The experiments conducted with the Quadrocopter UAVs of a maximum take-off

weight not exceeding 2 kilograms and with the Octocopter UAVs of weight equal,

or slightly bigger than 2 kg. For both types of UAVs the conducted experiments

are under the exemptions and do not require a Special Flight Operations Certificate

(SFOC).

First exemption is for UAVs that weigh two kg or less. According to [A2], “This

exemption relieves persons conducting non-recreational UAV system operations uti-

lizing a UAV with a maximum take-off weight not exceeding 2 kilograms, operated

within visual line-of-sight from the requirement to obtain a Special Flight Operations

110

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Certificate (SFOC) as required by sections 602.41 and the requirement to comply

with the conditions of an SFOC as required by section 603.66 of the CARs. The

exemption will permit non-recreational UAVs with a maximum take-off weight not

exceeding 2 kilograms to be operated away from built-up areas, controlled airspace,

aerodromes, forest fire areas and other restricted locations. The exemption includes

conditions which address the need for the safe and responsible use of certain UAV

systems”.

Second exemption is for UAVs above two kg up to and including 25 kg. According

to [A3], “This exemption relieves persons conducting non-recreational UAV system

operations utilizing a UAV with a maximum take-off weight exceeding 2 kgs but not

exceeding 25 kgs, operated within visual line-of-sight from the requirement to obtain

a Special Flight Operations Certificate (SFOC) as required by sections 602.41 and the

requirement to comply with the conditions of an SFOC as required by section 603.66

of the CARs. The exemption will permit non-recreational UAVs with a maximum

take-off weight exceeding 2 kgs but not exceeding 25 kgs and with maximum cali-

brated airspeed of 87 knots or less to be operated away from built-up areas, airspace,

controlled aerodromes, forest fire areas and other restricted locations. The exemption

includes conditions which address the need for the safe and responsible use of certain

UAV systems”.

Both documents contain similar general and flight conditions. The document

[A3] has more additional conditions, as the UAVs with a bigger take-off weight are

obviously more dangerous in terms of safety.

However, for both types of UAVs used in the experiments all general, flight, and

other conditions were satisfied. We mention here the most important requirements.

111

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

The UAVs were operated away from built-up areas, controlled airspace, aerodromes,

forest fire areas and other restricted locations. The UAVs had the maximum speed of

4 meters per second. A requirement of a visual contact with the UAVs was satisfied,

as the experiments were conducted in a field with the straight unaided view of the

environment. It was done in the territory about 40× 40 meters and at the altitude,

not exceeded 16 meters. The UAVs were operated with a backup of a single control

station and with the ability to take immediate active control of a UAV at all times.

Therefore, all legal requirements to conduct the experiments with the UAVs were

satisfied.

[A1] http://www.tc.gc.ca/eng/civilaviation/opssvs/getting-permission-fly-drone.html

[A2] http://www.tc.gc.ca/civilaviation/regserv/affairs/exemptions/docs/en/2880.htm

[A3] http://www.tc.gc.ca/civilaviation/regserv/affairs/exemptions/docs/en/2879.htm

112

Bibliography

Agmon, N., Sadov, V., Kaminka, G. A., and Kraus, S. (2008a). The impact of adver-

sarial knowledge on adversarial planning in perimeter patrol. In Proceedings of the

7th International Joint Conference on Autonomous Agents and Multiagent Systems

- Volume 1, AAMAS ’08, pages 55–62, Richland, SC. International Foundation for

Autonomous Agents and Multiagent Systems.

Agmon, N., Kraus, S., and Kaminka, G. A. (2008b). Multi-robot perimeter patrol

in adversarial settings. In Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on, pages 2339–2345.

Agmon, N., Kraus, S., Kaminka, G. A., and Sadov, V. (2009). Adversarial uncertainty

in multi-robot patrol. In IJCAI, pages 1811–1817.

Agmon, N., Kaminka, G. A., and Kraus, S. (2011). Multi-robot adversarial patrolling:

facing a full-knowledge opponent. Journal of Artificial Intelligence Research, pages

887–916.

Alonso, F., Alvarez, M., and Beasley, J. E. (2008). A tabu search algorithm for

the periodic vehicle routing problem with multiple vehicle trips and accessibility

restrictions. Journal of the Operational Research Society, pages 963–976.

113

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Archetti, C., Speranza, M. G., and Hertz, A. (2006a). A tabu search algorithm for

the split delivery vehicle routing problem. Transportation Science, 40(1), 64–73.

Archetti, C., Savelsbergh, M. W., and Speranza, M. G. (2006b). Worst-case analysis

for split delivery vehicle routing problems. Transportation science, 40(2), 226–234.

Archetti, C., Speranza, M. G., and Savelsbergh, M. W. (2008). An optimization-based

heuristic for the split delivery vehicle routing problem. Transportation Science,

42(1), 22–31.

Baldacci, R., Battarra, M., and Vigo, D. (2008). Routing a heterogeneous fleet of

vehicles. In The vehicle routing problem: latest advances and new challenges, pages

3–27. Springer.

Bektaş, T. and Laporte, G. (2011). The pollution-routing problem. Transportation

Research Part B: Methodological, 45(8), 1232–1250.

Bellmore, M. and Hong, S. (1974). Transformation of multisalesman problem to

the standard traveling salesman problem. Journal of the ACM (JACM), 21(3),

500–504.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup

and delivery problems: a classification scheme and survey. Top, 15(1), 1–31.

Bertsimas, D. J. and Van Ryzin, G. (1991). A stochastic and dynamic vehicle routing

problem in the euclidean plane. Operations Research, 39(4), 601–615.

Bianchessi, N. and Righini, G. (2007). Heuristic algorithms for the vehicle routing

problem with simultaneous pick-up and delivery. Computers & Operations Re-

search, 34(2), 578–594.

114

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Blackwell, T., Branke, J., et al. (2004). Multi-swarm optimization in dynamic envi-

ronments. In EvoWorkshops, volume 3005, pages 489–500. Springer.

Brandão, J. (2004). A tabu search algorithm for the open vehicle routing problem.

European Journal of Operational Research, 157(3), 552–564.

Bräysy, O. and Gendreau, M. (2005). Vehicle routing problem with time windows,

part i: Route construction and local search algorithms. Transportation science,

39(1), 104–118.

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., and Juan, A. A. (2014). Rich

vehicle routing problem: Survey. ACM Comput. Surv., 47(2), 32:1–32:28.

Chan, Y., Carter, W. B., and Burnes, M. D. (2001). A multiple-depot, multiple-

vehicle, location-routing problem with stochastically processed demands. Comput-

ers & Operations Research, 28(8), 803–826.

Choset, H. (2001). Coverage for robotics–a survey of recent results. Annals of math-

ematics and artificial intelligence, 31(1-4), 113–126.

Choset, H. and Pignon, P. (1998). Coverage path planning: The boustrophedon

cellular decomposition. In Field and Service Robotics, pages 203–209. Springer.

Choset, H., Acar, E., Rizzi, A. A., and Luntz, J. (2000). Exact cellular decompositions

in terms of critical points of morse functions. In Robotics and Automation, 2000.

Proceedings. ICRA’00. IEEE International Conference on, volume 3, pages 2270–

2277. IEEE.

Cieliebak, M., Flocchini, P., Prencipe, G., and Santoro, N. (2003). Solving the robots

115

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

gathering problem. In International Colloquium on Automata, Languages, and

Programming, pages 1181–1196. Springer.

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997). A tabu search heuristic for

periodic and multi-depot vehicle routing problems. Networks, 30(2), 105–119.

Cordeau, J.-F., Laporte, G., Mercier, A., et al. (2001). A unified tabu search heuristic

for vehicle routing problems with time windows. Journal of the Operational research

society, 52(8), 928–936.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-

salesman problem. Journal of the operations research society of America, 2(4),

393–410.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Manage-

ment science, 6(1), 80–91.

De Carvalho, R. N., Vidal, H., Vieira, P., and Ribeiro, M. (1997). Complete coverage

path planning and guidance for cleaning robots. In Industrial Electronics, 1997.

ISIE’97., Proceedings of the IEEE International Symposium on, volume 2, pages

677–682. IEEE.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm

for the vehicle routing problem with time windows. Operations research, 40(2),

342–354.

Dethloff, J. (2001). Vehicle routing and reverse logistics: the vehicle routing problem

with simultaneous delivery and pick-up. OR-Spektrum, 23(1), 79–96.

116

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Dorigo, M. and Gambardella, L. M. (1997). Ant colonies for the travelling salesman

problem. BioSystems, 43(2), 73–81.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. Bradford Company,

Scituate, MA, USA.

Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., and Winfield, A. F. T.,

editors (2008). Ant Colony Optimization and Swarm Intelligence, 6th International

Conference, ANTS 2008, Brussels, Belgium, September 22-24, 2008. Proceedings,

volume 5217 of Lecture Notes in Computer Science. Springer.

Dror, M. and Trudeau, P. (1986). Stochastic vehicle routing with modified savings

algorithm. European Journal of Operational Research, 23(2), 228–235.

Dror, M. and Trudeau, P. (1990). Split delivery routing. Naval Research Logistics

(NRL), 37(3), 383–402.

Eberhart and Shi, Y. (2001). Particle swarm optimization: developments, applica-

tions and resources. In Evolutionary Computation, 2001. Proceedings of the 2001

Congress on, volume 1, pages 81–86 vol. 1.

Eberhart, R. C., Kennedy, J., et al. (1995). A new optimizer using particle swarm

theory. In Proceedings of the sixth international symposium on micro machine and

human science, volume 1, pages 39–43. New York, NY.

Elfes, A. (1987). Sonar-based real-world mapping and navigation. Robotics and

Automation, IEEE Journal of, 3(3), 249–265.

Elmaliach, Y., Agmon, N., and Kaminka, G. A. (2010). Multi-robot area patrol

117

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

under frequency constraints. Annals of Mathematics and Artificial Intelligence,

57(3), 293–320.

Emek, Y., Langner, T., Uitto, J., and Wattenhofer, R. (2013). Ants: Mobile finite

state machines. CoRR, abs/1311.3062.

Emek, Y., Langner, T., Uitto, J., and Wattenhofer, R. (2014). Solving the ANTS

Problem with Asynchronous Finite State Machines. In Automata, Languages, and

Programming, pages 471–482. Springer Berlin Heidelberg, Berlin, Heidelberg.

Emek, Y., Langner, T., Stolz, D., Uitto, J., and Wattenhofer, R. (2015). How many

ants does it take to find the food? Theoretical Computer Science, 608, Part 3,

255 – 267. Structural Information and Communication Complexity.

Erdoğan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem. Trans-

portation Research Part E: Logistics and Transportation Review, 48(1), 100–114.

Fazli, P., Davoodi, A., and Mackworth, A. K. (2013). Multi-robot repeated area

coverage. Autonomous Robots, 34(4), 251–276.

Feinerman, O. and Korman, A. (2012). Distributed Computing: 26th International

Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings, chap-

ter Memory Lower Bounds for Randomized Collaborative Search and Implications

for Biology, pages 61–75. Springer Berlin Heidelberg, Berlin, Heidelberg.

Feinerman, O., Korman, A., Lotker, Z., and Sereni, J.-S. (2012). Collaborative search

on the plane without communication. In Proceedings of the 2012 ACM Symposium

on Principles of Distributed Computing, PODC ’12, pages 77–86, New York, NY,

USA. ACM.

118

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Fleszar, K., Osman, I. H., and Hindi, K. S. (2009). A variable neighbourhood search

algorithm for the open vehicle routing problem. European Journal of Operational

Research, 195(3), 803–809.

Flocchini, P., Ilcinkas, D., Pelc, A., and Santoro, N. (2008). Remembering without

memory: Tree exploration by asynchronous oblivious robots. In International Col-

loquium on Structural Information and Communication Complexity, pages 33–47.

Springer.

Fu, Z., Eglese, R., and Li, L. Y. (2005). A new tabu search heuristic for the open

vehicle routing problem. Journal of the operational Research Society, 56(3), 267–

274.

Gage, D. W. (1994). Randomized search strategies with imperfect sensors. In Optical

Tools for Manufacturing and Advanced Automation, pages 270–279. International

Society for Optics and Photonics.

Garey, M. R. and Johnson, D. S. (2002). Computers and intractability, volume 29.

wh freeman New York.

Gaudioso, M. and Paletta, G. (1992). A heuristic for the periodic vehicle routing

problem. Transportation Science, 26(2), 86–92.

Gavish, B. and Srikanth, K. (1986). An optimal solution method for large-scale

multiple traveling salesmen problems. Operations Research, 34(5), 698–717.

Gendreau, M., Laporte, G., and Séguin, R. (1995). An exact algorithm for the vehicle

routing problem with stochastic demands and customers. Transportation science,

29(2), 143–155.

119

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Gendreau, M., Laporte, G., and Séguin, R. (1996a). Stochastic vehicle routing. Eu-

ropean Journal of Operational Research, 88(1), 3–12.

Gendreau, M., Laporte, G., and Séguin, R. (1996b). A tabu search heuristic for

the vehicle routing problem with stochastic demands and customers. Operations

Research, 44(3), 469–477.

Gendreau, M., Laporte, G., Musaraganyi, C., and Taillard, É. D. (1999). A tabu

search heuristic for the heterogeneous fleet vehicle routing problem. Computers &

Operations Research, 26(12), 1153–1173.

Gervasi, V. and Prencipe, G. (2004). Coordination without communication: the case

of the flocking problem. Discrete Applied Mathematics, 144(3), 324–344.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The vehicle routing problem:

latest advances and new challenges, volume 43. Springer Science & Business Media.

Gorenstein, S. (1970). Printing press scheduling for multi-edition periodicals. Man-

agement Science, 16(6), B–373.

Harkness, R. and Maroudas, N. (1985). Central place foraging by an ant (cataglyphis

bicolor fab.): a model of searching. Animal Behaviour, 33(3), 916 – 928.

Hemmelmayr, V. C., Doerner, K. F., and Hartl, R. F. (2009). A variable neighborhood

search heuristic for periodic routing problems. European Journal of Operational

Research, 195(3), 791–802.

Hert, S., Tiwari, S., and Lumelsky, V. (1996). A terrain-covering algorithm for an

auv. In Underwater Robots, pages 17–45. Springer.

120

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Ho, W., Ho, G. T., Ji, P., and Lau, H. C. (2008). A hybrid genetic algorithm for

the multi-depot vehicle routing problem. Engineering Applications of Artificial

Intelligence, 21(4), 548–557.

Jäger, M. and Nebel, B. (2002). Dynamic decentralized area partitioning for cooper-

ating cleaning robots. In Robotics and Automation, 2002. Proceedings. ICRA’02.

IEEE International Conference on, volume 4, pages 3577–3582. IEEE.

Kao, M.-Y., Reif, J. H., and Tate, S. R. (1996). Searching in an unknown environment:

An optimal randomized algorithm for the cow-path problem. Information and

Computation, 131(1), 63 – 79.

Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the particle

swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cyber-

netics and Simulation., 1997 IEEE International Conference on, volume 5, pages

4104–4108. IEEE.

Klasing, R., Markou, E., and Pelc, A. (2008). Gathering asynchronous oblivious

mobile robots in a ring. Theoretical Computer Science, 390(1), 27 – 39.

Klasing, R., Kosowski, A., and Navarra, A. (2010). Taking advantage of symmetries:

Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer

Science, 411(34), 3235–3246.

Kong, C. S., Peng, N. A., and Rekleitis, I. (2006). Distributed coverage with multi-

robot system. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006

IEEE International Conference on, pages 2423–2429. IEEE.

121

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Langner, T., Uitto, J., Stolz, D., and Wattenhofer, R. (2014). Distributed Comput-

ing: 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15,

2014. Proceedings, chapter Fault-Tolerant ANTS, pages 31–45. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Laporte, G. (1992a). The traveling salesman problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59(2), 231 –

247.

Laporte, G. (1992b). The vehicle routing problem: An overview of exact and approx-

imate algorithms. European Journal of Operational Research, 59(3), 345–358.

Laporte, G. and Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen

problem. Journal of the Operational Research Society, pages 1017–1023.

Laporte, G., Desrochers, M., and Nobert, Y. (1984). Two exact algorithms for the

distance-constrained vehicle routing problem. Networks, 14(1), 161–172.

Laporte, G., Nobert, Y., and Desrochers, M. (1985). Optimal routing under capacity

and distance restrictions. Operations research, 33(5), 1050–1073.

Laporte, G., Nobert, Y., and Taillefer, S. (1987). A branch-and-bound algorithm

for the asymmetrical distance-constrained vehicle routing problem. Mathematical

Modelling, 9(12), 857–868.

Lawitzky, G. (2000). A navigation system for cleaning robots. Autonomous Robots,

9(3), 255–260.

Lenstra, J. K. and Kan, A. (1981). Complexity of vehicle routing and scheduling

problems. Networks, 11(2), 221–227.

122

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Li, C. and Yang, S. (2008). Fast multi-swarm optimization for dynamic optimization

problems. In Natural Computation, 2008. ICNC’08. Fourth International Confer-

ence on, volume 7, pages 624–628. IEEE.

Li, C.-L., Simchi-Levi, D., and Desrochers, M. (1992). On the distance constrained

vehicle routing problem. Operations research, 40(4), 790–799.

Li, F., Golden, B., and Wasil, E. (2007a). The open vehicle routing problem: Algo-

rithms, large-scale test problems, and computational results. Computers & opera-

tions research, 34(10), 2918–2930.

Li, F., Golden, B., and Wasil, E. (2007b). A record-to-record travel algorithm for

solving the heterogeneous fleet vehicle routing problem. Computers & Operations

Research, 34(9), 2734–2742.

Liang, J.-J. and Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm

optimizer with local search. In Evolutionary Computation, 2005. The 2005 IEEE

Congress on, volume 1, pages 522–528. Ieee.

Liu, Y., Lin, X., and Zhu, S. (2008). Combined coverage path planning for au-

tonomous cleaning robots in unstructured environments. In Intelligent Control and

Automation, 2008. WCICA 2008. 7th World Congress on, pages 8271–8276. IEEE.

Lumelsky, V. J., Mukhopadhyay, S., and Kang, S. (1990). Dynamic path planning in

sensor-based terrain acquisition. IEEE Transactions on Robotics and Automation,

6(4), 462–472.

123

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Luo, C. and Yang, S. X. (2002). A real-time cooperative sweeping strategy for mul-

tiple cleaning robots. In Intelligent Control, 2002. Proceedings of the 2002 IEEE

International Symposium on, pages 660–665. IEEE.

Luo, C., Yang, S. X., and Stacey, D. A. (2003). Real-time path planning with deadlock

avoidance of multiple cleaning robots. In Robotics and Automation, 2003. Proceed-

ings. ICRA’03. IEEE International Conference on, volume 3, pages 4080–4085.

IEEE.

Machado, A., Ramalho, G., Zucker, J.-D., and Drogoul, A. (2003). Multi-Agent-Based

Simulation II: Third International Workshop, MABS 2002 Bologna, Italy, July 15–

16, 2002 Revised Papers, chapter Multi-agent Patrolling: An Empirical Analysis

of Alternative Architectures, pages 155–170. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Marinakis, Y. and Marinaki, M. (2010). A hybrid multi-swarm particle swarm opti-

mization algorithm for the probabilistic traveling salesman problem. Computers &

Operations Research, 37(3), 432–442.

Marino, A., Parker, L., Antonelli, G., and Caccavale, F. (2009). Behavioral control for

multi-robot perimeter patrol: A finite state automata approach. In Robotics and

Automation, 2009. ICRA ’09. IEEE International Conference on, pages 831–836.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and

pick-up points. Transportation Research Part A: General, 23(5), 377–386.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). Adopt: asynchronous

124

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

distributed constraint optimization with quality guarantees. Artificial Intelligence,

161(12), 149 – 180. Distributed Constraint Satisfaction.

Moravec, H. P. and Elfes, A. (1985). High resolution maps from wide angle sonar.

In Robotics and Automation. Proceedings. 1985 IEEE International Conference on,

volume 2, pages 116–121. IEEE.

Nagy, G. and Salhi, S. (2005). Heuristic algorithms for single and multiple depot ve-

hicle routing problems with pickups and deliveries. European journal of operational

research, 162(1), 126–141.

Oh, J. S., Choi, Y. H., Park, J. B., and Zheng, Y. F. (2004). Complete coverage nav-

igation of cleaning robots using triangular-cell-based map. Industrial Electronics,

IEEE Transactions on, 51(3), 718–726.

Pham, D. and Ghanbarzadeh, A. (2007). Multi-objective optimisation using the bees

algorithm. In Proceedings of IPROMS 2007 Conference.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2011). The

bees algorithm–a novel tool for complex optimisation. In Intelligent Production

Machines and Systems-2nd I* PROMS Virtual International Conference 3-14 July

2006, page 454. Elsevier.

Portugal, D. and Rocha, R. (2011). Technological Innovation for Sustainability: Sec-

ond IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and

Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23,

2011. Proceedings, chapter A Survey on Multi-robot Patrolling Algorithms, pages

139–146. Springer Berlin Heidelberg, Berlin, Heidelberg.

125

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Portugal, D. and Rocha, R. P. (2013). Distributed multi-robot patrol: A scalable and

fault-tolerant framework. Robotics and Autonomous Systems, 61(12), 1572 – 1587.

Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building algorithm for the

vehicle routing and scheduling problem with time windows. European Journal of

Operational Research, 66(3), 331–340.

Prabhakar, B., Dektar, K. N., and Gordon, D. M. (2012). The regulation of ant

colony foraging activity without spatial information. PLoS Comput Biol, 8(8), 1–7.

Rekleitis, I., Lee-Shue, V., New, A. P., and Choset, H. (2004). Limited commu-

nication, multi-robot team based coverage. In Robotics and Automation, 2004.

Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 4, pages

3462–3468. IEEE.

Rekleitis, I., New, A. P., Rankin, E. S., and Choset, H. (2008). Efficient boustrophe-

don multi-robot coverage: an algorithmic approach. Annals of Mathematics and

Artificial Intelligence, 52(2-4), 109–142.

Savelsbergh, M. W. and Sol, M. (1995). The general pickup and delivery problem.

Transportation science, 29(1), 17–29.

Seidel, R. (1991). A simple and fast incremental randomized algorithm for com-

puting trapezoidal decompositions and for triangulating polygons. Computational

Geometry, 1(1), 51–64.

Sheng, W., Yang, Q., Tan, J., and Xi, N. (2006). Distributed multi-robot coordination

in area exploration. Robotics and Autonomous Systems, 54(12), 945–955.

126

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Shi, Y. and Eberhart, R. C. (1998). Parameter selection in particle swarm optimiza-

tion. In Evolutionary programming VII, pages 591–600. Springer.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations research, 35(2), 254–265.

Svestka, J. A. and Huckfeldt, V. E. (1973). Computational experience with an m-

salesman traveling salesman algorithm. Management Science, 19(7), 790–799.

Wehner, R., Meier, C., and Zollikofer, C. (2004). The ontogeny of foragwehaviour in

desert ants, cataglyphis bicolor. Ecological Entomology, 29(2), 240–250.

Wikipedia (2016a). Particle swarm optimization — wikipedia, the free encyclopedia.

[Online; accessed 20-March-2016].

Wikipedia (2016b). Swarm intelligence - wikipedia, the free encyclopedia. https://

en.wikipedia.org/wiki/Swarm_intelligence. Online; accessed 14-March-2016.

Wohlgemuth, S., Ronacher, B., and Wehner, R. (2001). Ant odometry in the third

dimension. Nature, 411(6839), 795–798.

Wu, T.-H., Low, C., and Bai, J.-W. (2002). Heuristic solutions to multi-depot

location-routing problems. Computers & Operations Research, 29(10), 1393–1415.

Yokoo, M. (2012). Distributed constraint satisfaction: foundations of cooperation in

multi-agent systems. Springer Science & Business Media.

Yokoo, M. and Hirayama, K. (2000). Algorithms for distributed constraint satisfac-

tion: A review. Autonomous Agents and Multi-Agent Systems, 3(2), 185–207.

127

M.Sc. Thesis - Markov Mikhail McMaster - Computing and Software

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1998). The distributed

constraint satisfaction problem: formalization and algorithms. IEEE Transactions

on Knowledge and Data Engineering, 10(5), 673–685.

128

