
A Generalization of Square-free Strings

A GENERALIZATION OF SQUARE-FREE STRINGS

BY

NEERJA MHASKAR, B.Tech., M.S.

a thesis

submitted to the department of Computing & Software

and the school of graduate studies

of mcmaster university

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Neerja Mhaskar, August, 2016

All Rights Reserved

Doctor of Philosophy (2016) McMaster University

(Dept. of Computing & Software) Hamilton, Ontario, Canada

TITLE: A Generalization of Square-free Strings

AUTHOR: Neerja Mhaskar

B.Tech., (Mechanical Engineering)

Jawaharlal Nehru Technological University Hyderabad,

India

M.S., (Engineering Science)

Louisiana State University, Baton Rouge, USA

SUPERVISOR: Professor Michael Soltys

CO-SUPERVISOR: Professor Ryszard Janicki

NUMBER OF PAGES: xiii, 116

ii

To my family

Abstract

Our research is in the general area of String Algorithms and Combinatorics on Words.

Specifically, we study a generalization of square-free strings, shuffle properties of

strings, and formalizing the reasoning about finite strings.

The existence of infinitely long square-free strings (strings with no adjacent re-

peating word blocks) over a three (or more) letter finite set (referred to as Alphabet)

is a well-established result. A natural generalization of this problem is that only sub-

sets of the alphabet with predefined cardinality are available, while selecting symbols

of the square-free string. This problem has been studied by several authors, and the

lowest possible bound on the cardinality of the subset given is four. The problem

remains open for subset size three and we investigate this question. We show that

square-free strings exist in several specialized cases of the problem and propose ap-

proaches to solve the problem, ranging from patterns in strings to Proof Complexity.

We also study the shuffle property (analogous to shuffling a deck of cards labeled with

symbols) of strings, and explore the relationship between string shuffle and graphs,

and show that large classes of graphs can be represented with special type of strings.

Finally, we propose a theory of strings, that formalizes the reasoning about finite

strings. By engaging in this line of research, we hope to bring the richness of the

advanced field of Proof Complexity to Stringology.

iv

Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Michael Soltys

for his continuous guidance and support over the years. I would particularly like to

thank him for giving me the opportunity and freedom to work on the problems that

interested me. Without his encouragement, patience, and positivity, I would not have

been able to complete my thesis and in particular enjoy my doctoral studies. He is

truly the best advisor and mentor to have.

I would like to thank my co-supervisor Professor Ryszard Janicki for his support

over the last couple of years. In particular for the financial support during my last

academic term.

I would like to thank the other members of my supervisory committee, Professor

Douglas Down, Professor Bill Smyth and Professor Maxime Crochemore for reviewing

the current work and their valuable comments. It was a particular honor to have

Maxime Crochemore as the external examiner for this thesis.

Finally, I would like to thank my family: my parents for their encouragement, my

husband for his support, patience, and faith in me, and my kids for their unconditional

love and patience throughout this study.

v

Notations and Abbreviations

The following notation is used throughout the thesis.

Table 1: Notations and Abbreviations List

Symbol Description

i, j, k, l,m, n Positive Integers

X1,X2, . . . ,Xn String Variables (Variables ranging over Strings)

X, Y, Z Variables

Σ Finite Alphabet/Finite set of symbols

a, b, c, d, a1, a2, . . . , an Alphabet symbols

[a-z] Strings/Words

w[1..n] String w represented in array form.

w1w2 . . .wn String w represented as sequence of symbols wi, 1 ≤ i ≤ n

|w| Length of string w

ε Empty string (String of length zero)

Σ∗ Set of all finite strings over Σ

Σ+ Σ∗ − ε

Σk Fixed generic alphabet of k symbols

Σw Set of symbols occurring in w

vi

Table 1 – Notation contd...

Symbol Description

|w|a Frequency of a symbol ‘a’ in string w

x1,x2, . . . ,xn List of strings x1 to xn

u · v String u concatenated with string v

f, g, h Functions/Morphisms

L = L1, L2, . . . , Ln Alphabet list with n alphabets

|L| Length of alphabet list L

ΣL L1 ∪ L2 ∪ . . . ∪ Ln (Symbols of an alphabet list L)

L̂ List L in normalized form

L Class of lists with a certain property

Lk Class of lists L = L1, L2, . . . , Ln, s.t |Li| = k

LΣk
Class of lists L = L1, L2, . . . , Ln, s.t Li = [k]

β Border of a string or Logical Formula

[A−Z] String Patterns or Sequences

C(n) n-th Offending Suffix

Cs(n) n-th Shortest Offending Suffix

Zn n-th Zimin word

CMP Consistent Mapping Problem

shuffle Shuffle Problem

parity Parity Problem

w = u� v w is a shuffle of u, v

Shuffle(x,y,w) Shuffle Predicate

Parity(x) Parity Predicate

vii

Table 1 – Notation contd...

Symbol Description

Shuffle Language of Shuffle

Parity Language of Parity

Πn
i=1xi x1 · x2 · . . . · xn, where x1,x2, . . . ,xn are strings

S Three sorted logical theory for strings

viii

Contents

Abstract iv

Acknowledgments v

Notations and Abbreviations vi

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Thesis Outline . 5

1.4 Definitions . 5

1.5 Background on Complexity . 16

2 Square-free Words over Alphabet Lists 21

2.1 Introduction . 21

2.1.1 Square-free Strings over List L 22

2.1.2 Lovász Local Lemma . 23

2.1.3 Square-free Strings over L ∈ L4 23

2.2 Alternate Proof of Thue’s Result . 26

ix

2.3 Admissible Classes of Lists . 29

2.4 Applications . 34

3 String Shuffle 38

3.1 Introduction . 38

3.2 Circuit Complexity Bounds for Shuffle 41

3.3 Further properties of shuffle . 42

3.3.1 Expressiveness of shuffle . 42

3.3.2 Expressing graphs with shuffle 45

4 A formal framework for Stringology 54

4.1 Introduction . 54

4.2 Background . 55

4.3 Formalizing the theory of finite strings 57

4.3.1 The language of strings LS . 57

4.3.2 Syntax of LS . 59

4.3.3 Semantics of LS . 62

4.3.4 Examples of string constructors 68

4.3.5 Axioms of the theory S . 70

4.3.6 The rules of S . 73

4.4 Witnessing theorem for S . 77

4.5 Application of S to Stringology . 79

5 Future Directions and Open Problems 82

5.1 Square-free Strings over Alphabet Lists 82

5.1.1 Offending Suffix Pattern . 83

x

5.1.2 Characterization of Square-free Strings 90

5.1.3 0-1 Matrix Representation . 92

5.1.4 Proof Complexity . 94

5.1.5 Open Problems . 95

5.2 String Shuffle: Circuits and Graphs 96

5.2.1 0-1 Matrix Formulation for Shuffle 96

5.2.2 Another polytime algorithm for Shuffle 101

5.2.3 Open problems . 105

5.3 Formal framework for stringology . 106

References 107

A Main Result of [Grytczuk et al., 2013] 117

xi

List of Figures

1.1 Border β of length |w| − p, and period p of string w 11

1.2 Example of non-nested edges in graph. 15

1.3 Example of nested edges in graph. 15

1.4 Examples of pair-strings and bipartite graphs on their symbol. 15

2.1 Missing Lemma in [Grytczuk et al., 2013]: Case 1, when u = pvav . . 25

2.2 Missing Lemma in [Grytczuk et al., 2013]: Case 3, when uau = qvav

and |au| < |vav| . 26

2.3 Alternate Proof for Thue’s morphism 27

2.4 Consistent Mapping Problem . 32

2.5 Online Game with subset size < 3 . 36

3.1 Examples of graph construction using DP algorithm for Shuffle 41

3.2 Edge representation in wG . 46

3.3 Representation of disconnected vertices in wG 46

3.4 String construction wG for Cliques 47

3.5 String construction wG of Independent Set 48

3.6 Smallest graph without string representation 49

3.7 Tree T rooted at R. 50

3.8 Recursive construction of wG . 52

xii

3.9 Example of a small tree T . 53

5.1 Offending suffix: Case 1, when v = pubu 85

5.2 Offending suffix: Case 2, when v = ubu 86

5.3 Offending suffix: Case 3, when cv = ubu 86

5.4 Offending suffix: case 4, when vcv = ngbu and |cv| < |ubu| 86

5.5 Unique Offending suffix: Case 1, when v = ps 89

5.6 Unique Offending suffix: Case 2, when v = uh(a3)h′(a3)u 90

5.7 Unique Offending suffix: Case 3, when v = uh(a3)ph′(a3)u 90

5.8 ⇒ direction of the proof for Lemma 30 91

5.9 0-1 Matrix Construction (AS) for example. 100

5.10 Permutated Matrix APS for the example. 101

5.11 Binary tree showing recursive algorithm for shuffle problem. 102

5.12 Set of x-coordinates represent the possible elements in ‘Tag’ at the end

of each while loop iteration represented by the level. 104

xiii

Chapter 1

Introduction

The Study of Combinatorics on Words has seen great interest in recent years. This

study which is an area of discrete mathematics, primarily deals with strings, which

are ordered sequences of symbols from a finite set referred to as Alphabet. It dates

back to early nineteen hundreds and the pioneering work done by Axel Thue. In 1906

and 1912, Thue published his now classical papers [Thue, 1906] and [Thue, 1912],

which are primarily about repetitions in strings over a fixed finite alphabet. Berstel

in [Berstel, 1995], gives an excellent translation of the work done in these papers.

Since Thue’s original work was published in an obscure journal, it was noticed

much later and became “classical” only in the later part of the twentieth century.

As a result, some of his work was rediscovered over and over again, for example

see [Ars̆on, 1937], [Morse and Hedlund, 1944], and [Leech, 1957]. The major growth

of interest in this area was only after fifty years, since Thue published his first paper.

[Berstel and Perrin, 2007], gives a nice overview of the origin of this study. A lot of

research has been done in this area since, and has applications in a variety of fields

ranging from abstract algebra, bioinformatics, formal languages to the genetic code.

1

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

While in Combinatorics on Words, we generally study properties of infinitely long

strings, in the area of String Algorithms, we study properties of strings of finite length.

Examples of such properties are: pattern matching and studying the maximum num-

ber of squares in a given string of finite length. For a comprehensive overview of these

subjects see: [Lothaire, 1983], [Lothaire, 2002], [Lothaire, 2005], [Allouche and Shallit,

2003], [Berstel et al., 2008], [Karhumäki, 2004], [Smyth, 2003] and [Crochemore and

Rytter, 1994].

1.1 Motivation

Our research is primarily on strings over a finite alphabet. In the area of avoiding rep-

etitions in strings, it is motivated by the following open problem (posed in [Grytczuk

et al., 2013]): can we construct a square-free string (string which does not contain

the subword vv for any word v) of length n, over an ordered list of (finite) alpha-

bets, L = L1, L2, . . . , Ln, where each alphabet has exactly three symbols and the i-th

symbol of the square-free string is chosen from Li, the i-th alphabet? This problem

is a generalization of square-free strings and the classical results in the area are not

applicable to this setting, which makes the problem even more intriguing.

Although much progress has been done in understanding shuffle, many questions

regarding shuffle remain open. For example, does shuffle square (given a string w, is it

a shuffle of some x with itself), remain NP-hard for some alphabets with fewer than

seven symbols? Motivated by this, we explore further properties of shuffle in order

to better understand this operation and as a result learn an interesting relationship

between graphs and string shuffle.

2

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Finally, while working on finite strings, we observed that although many tech-

niques have been developed over the years in the area of String Algorithms to prove

properties of finite strings, there is no unifying theory or framework formalizing it.

We propose a unifying theory of strings based on a three sorted logical theory, which

we call S. By engaging in this line of research, we hope to bring the richness of the

advanced field of Proof Complexity to Stringology, and eventually create a unifying

theory of strings.

1.2 Contribution

This thesis is the result of four published/accepted papers listed under “List of co-

authored publications” by Neerja Mhaskar and Michael Soltys. Here we give a sum-

mary of our published research and other important results yet to be published. The

main results of our work from [Mhaskar and Soltys, 2015b] and [Mhaskar and Soltys,

2016] are listed below:

• In Theorem 9 (Theorem 1, [Mhaskar and Soltys, 2015b]), we show that alphabet

lists having any one of the properties: SDR, union, consistent mapping, and

partition are all admissible, that is, a square-free string exists over such lists.

In the proofs, we also give constructions of square-free strings over such lists.

• In Lemma 7 (Lemma 6, [Mhaskar and Soltys, 2015b]), we show that given an

alphabet list L = L1, L2, . . . , Ln, where |Li| = 3, finding if it has a consistent

mapping, i.e., the consistent mapping problem (CMP) is NP-hard. We show

this by reducing the 3-colorability of planar graphs to CMP.

• We give an alternate proof of Thue’s result in Section 2.2.

3

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

• In Lemma 2, we show that if a string w (constructed using Algorithm 1,

[Grytczuk et al., 2013]) is square-free, then for any symbol a, either w′ = wa is

still square-free, or w′ has a unique square (consisting of a suffix of w′). This

was assumed but not proved in [Grytczuk et al., 2013].

• In Chapter 5 on future directions, we present an Offending Suffix pattern (Sec-

tion 5.1.1) and later relate it to forcing squares in strings over an alphabet

list in Lemma 26 (Theorem 1, [Mhaskar and Soltys, 2016]), and in Lemma 30

(Lemma 4, [Mhaskar and Soltys, 2016]) we give a characterization of square-free

strings using borders.

In our paper [Mhaskar and Soltys, 2015c], we study the shuffle property of strings.

We show that many string operations can be expressed with string shuffle. We also

explore the relationship between graphs and string shuffle, and show that many classes

of graphs can be represented with strings exhibiting shuffle properties. Particularly,

in Lemma 7 of the paper we show that: if a graph or its complement is isomorphic

to a transitive closure of a tree then it can be represented with a string exhibiting

shuffle property.

Finally in our paper [Mhaskar and Soltys, 2015a], for the first time (as far as we

know) we give a basic logical theory, denoted as S, for finite strings and state various

string constructs as formulas in the theory. In Theorem 1, one of the primary results

of the paper, we show that, if we prove the existence of a string u with some given

property in S1, then we can construct such a string with a polytime algorithm.

4

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

1.3 Thesis Outline

In Chapter 1, we introduce and define the terminology used in the thesis.

In Chapter 2, we give the background on work done in the area of a particular

generalization of square-free strings, and show that solutions exist in many special-

ized cases of the open problem. Some of the results in this Chapter can be found

in [Mhaskar and Soltys, 2015b].

In Chapter 3, we study the shuffle property of strings and explore an interesting

relationship between strings exhibiting shuffle properties and graphs. Most of the

contents of this chapter can be found in our paper [Mhaskar and Soltys, 2015c].

In Chapter 4, we give a formalism for Stringology consisting of a three sorted

logic theory designed to capture reasoning about finite strings. The contents of this

chapter can be found in our paper [Mhaskar and Soltys, 2015a].

In Chapter 5, we conclude the thesis by proposing various strategies for solving

the open problems in each area, and give a summary list of open problems. Some of

the results in this Chapter can be found in [Mhaskar and Soltys, 2016].

1.4 Definitions

Strings (Words)

An alphabet is a set of symbols, and Σ is usually used to represent a finite alphabet.

The elements of an alphabet are referred to as symbols (or letters). In this thesis, we

assume |Σ| 6= 0. A string (or a word) over Σ, is an ordered sequence of symbols from

it. Formally, w = w1w2 . . .wn, where for each i, wi ∈ Σ, is a symbol. For example,

5

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

if Σ = {a, b, c}, then the string abacabaabbabacacc is a string over Σ. In order to

emphasize the array structure of w, we sometimes represent it as w[1..n]. The length

of a string w is denoted by |w|. The set of all finite length strings over Σ is denoted

by Σ∗. The empty string is denoted by ε, and it is the string of length zero. The set

of all finite strings over Σ not containing ε is denoted by Σ+. We denote Σk to be a

fixed alphabet of k symbols, Σw to be the set of symbols occurring in the string w,

that is, Σw = {wi ∈ Σ : 1 ≤ i ≤ k ∧w = w1w2 . . .wk}, and |w|a to be the number of

times the symbol a occurs in w.

A string v is a subword (also known as a substring or a factor) of w, if v =

wiwi+1 . . .wj, where 1 ≤ i ≤ j ≤ n. If i = 1, then v is a prefix of w and if j < n,

v is a proper prefix of w. If j = n, then v is a suffix of w and if i > 1, then v is a

proper suffix of w. We can express that v is a subword more succinctly using array

representation as v = w[i..j]. A word v is a subsequence of a string w if the symbols

of v appear in v in the same order as they appear in w. Note that the symbols of v

do not necessarily appear contiguously in w. Hence, any subword is a subsequence,

but the reverse is not true. For example, if w = ababbacaaacbaba is a string, then

‘ababbac’ is a proper prefix, ‘acaaacbaba’ is a proper suffix, ‘abbacaaacba’ is a subword

and ‘abbca’ is a subsequence of w.

We define string concatenation (using the ‘·’ operator) in the standard way as

follows: If u = u1u2 . . .um and v = v1v2 . . . vn are two strings then u · v (read as

u concatenated with v) is a new string obtained by juxtaposing u and v. Therefore

u · v = u1u2 . . .umv1v2 . . . vn. For example, if u = aaaaa and v = bbbbbb, then

u · v = aaaaabbbbbb.

6

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Morphisms

A map h : Σ∗ → ∆∗, where Σ and ∆ are finite alphabets, is called a morphism if

for all x, y ∈ Σ∗, h(xy) = h(x)h(y). A morphism is said to be non-erasing if for all

w ∈ Σ∗, |h(w)| ≥ |w|. An example of a morphism is given in (1.1). A morphism h,

over some alphabet Σ, is called square-free if h(w) is square-free for every square-free

word w over Σ. The morphism given in (1.1) is also a square-free morphism. Towards

the end of Section 2.2, we discuss a couple of existing characterizations of square-free

morphisms which give an easy way to check if a morphism is square-free.

Repetitions

A string w has a square (or a repetition) if there exists a word v such that vv is a sub-

word of w. We say that w is square-free (or non-repetitive) if no such subword exists.

For example, the word “repetition” has a square “titi” while the word “square” has

no repetition.

It is easy to see that a square-free word of length four or more does not exist over a

binary alphabet. However, Thue in his seminal paper [Thue, 1906] proved Theorem 11,

and showed the existence of square-free strings over a three letter alphabet Σ =

{1, 2, 3} through the use of the following morphism2.

1Since Thue’s original paper is in German, and various sources state his result in different ways,
we were not able to quote verbatim the Theorem stated in his original paper.

2Usually, Thue’s result is over Σ = {a, b, c}, but we use Σ = {1, 2, 3} given in [Grytczuk et al.,
2013].

7

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

g =

1 7→ 12312

2 7→ 131232

3 7→ 1323132

(1.1)

Given a string w ∈ Σ∗3, g(w) is the string with every symbol of w replaced by

its corresponding mapping in the morphism g. Formally, g(w) = g(w1w2 . . .wn) =

g(w1)g(w2) . . . g(wn). Note that the substitutions are simultaneous. Therefore, by

repeatedly applying the morphism given in (1.1) to any square-free string over Σ3 of

non-zero length, one can construct an arbitrarily long square-free string. For example,

using w = 132123, a square-free string, and by applying the morphism g to it we get:

g(w) = g(1)g(3)g(2)g(1)g(2)g(3) = 123121323132131232123121312321323132,

which is also square free.

Theorem 1 (A. Thue). If w ∈ Σ∗3 is a square-free string, then so is g(w).

In Section 2.2, we give an alternate proof of Theorem 1. For a detailed discussion

on the topic see [Berstel et al., 2008], [Smyth, 2003].

Squares are the basic type of repetitions in strings, and we primarily study avoiding

this type of repetition in strings. Some of the other types of repetitions include cubes

(words with three adjacent repeating blocks), overlaps (words of the form avava,

where a ∈ Σ and v ∈ Σ∗), and abelian squares (words of the form ww′, where

|w| = |w′| and w′ is a permutation of w) etc. To further study other types of

repetitions, see for example, [Shallit, 2009], [Rampersad, 2007].

8

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Words over Alphabet Lists

An alphabet list is an ordered list of finite subsets called alphabets consisting of

symbols, where all the alphabets have the same cardinality. Let L = L1, L2, . . . , Ln ,

be an ordered list of alphabets. A string w is said to be over a list L, if w =

w1w2 . . .wn where for all i, wi ∈ Li. Note that there are no conditions imposed on

the alphabets Li’s: they may be equal, disjoint, or have elements in common. The

only condition on w is that the i-th symbol of w must be selected from the i-th

alphabet of L, i.e., wi ∈ Li. The alphabet set for the list L = L1, L2, . . . , Ln is

denoted by ΣL = L1∪L2∪ · · · ∪Ln. L+ denotes the set of strings over the list L. For

example, if L = {{a, b, c}, {c, d, e}, {a, 1, 2}}, then ac1 ∈ L+ but 2ca 6∈ L+.

Given a square-free string w over a list L = L1, L2, . . . , Ln, where L ∈ L3, we say

that the alphabet Ln+1 forces a repetition on w if for all a ∈ Ln+1, wa has a repetition.

For example, if L = {{a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}}

and w = abacaba, then the alphabet {a, b, c} forces a repetition on w, as the strings

wa, wb and wc each has a repetition.

Admissibility

We introduce the concept of admissibility of lists. We say that an alphabet list

L is admissible if L+ contains a square-free string. For example, the alphabet list

L = {{a, b, c}, {1, 2, 3}, {a, c, 2}, {b, 3, c}}, is admissible as the string ‘a1c3’ over L is

square-free.

Let L represent a class of lists; the intention is for L to denote lists with a

given property. For example, we are going to use LΣk
to denote the class of lists

9

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

L = L1, L2, . . . , Ln, where for each i ∈ [n] = {1, 2, . . . , n}, Li = Σk, and Lk will

denote the class of all lists L = L1, L2, . . . , Ln, where for each i ∈ [n], |Li| = k, that

is, those lists consisting of alphabets of size k. Note that LΣk
⊆ Lk. We say that

a class of list L is admissible if every list L ∈ L is admissible. An example of an

admissible class of lists is the class LΣ3 (Thue’s result).

Borders

A border β of a string w, is a subword that is both a proper prefix and proper suffix of

w. Note that the proper prefix and proper suffix may overlap as shown in Figure 1.1.

A word can have more than one border. For example, if w = 121345121, then it has

a border 1 and 121 and the empty border ε. See [Smyth, 2003] for a detailed study

on borders.

Period

A period of a string w is an integer p, such that ∀i ∈ {1, 2, . . . , |w| − p}wi = wi+p

and 0 < p ≤ |w|. A string can have several periods, but we are mostly interested in

the shortest period of the string. Also, every string has a period equal to its length.

Observe the duality between borders and periods. A string w has a period p if and

only if it has a border of length |w| − p. In the definition of period, i ranges over

{1, 2, . . . , |w| − p}, where |w| − p is the length of a border of w. See [Smyth, 2003]

and [Crochemore and Rytter, 1994] for a detailed discussion on periods.

10

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

β

w

β

oo p //

Figure 1.1: Border β of length |w| − p, and period p of string w

Pattern

Given an alphabet Σ, ∆ = {X1,X2,X3, . . . , a1, a2, a3, . . .} is a set of variables, where

the variables Xi range over Σ∗, and the variables ai range over Σ, that is unit length

strings. A pattern is a non empty string over ∆∗; for example, P = X1a1X1 is a

pattern representing all strings where the first half equals the second half, and the

two halves are separated by a single symbol. Intuitively, patterns are “templates” for

strings. Note that some authors define patterns as being words over variables with

no restriction on the size of the variables (see [Berstel and Perrin, 2007]), but we find

the definition given here as more amenable to our purpose.

We say that a word w over some alphabet Σ conforms to a pattern P if there is

a morphism h : ∆∗ −→ Σ∗, such that h(P) = w.

Avoidable and Unavoidable Patterns

We say that a pattern is avoidable, if strings of arbitrary length exist, such that no

subword of the string conforms to the pattern, otherwise it is said to be unavoidable.

For example, the pattern XX is unavoidable for all strings in {w ∈ {0, 1}∗ : |w| ≥ 4},

but it is avoidable over the ternary alphabet (Thue’s result restated in Theorem 1).

11

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Zimin Words

The idea of unavoidable patterns was developed independently by Bean et al. in

[Bean et al., 1979] and by Zimin in [Zimin, 1982]. Zimin words (also known as

sesquipowers) constitute a certain class of unavoidable patterns. The n-th Zimin

word, Zn, is defined recursively over the alphabet ∆ = {X1,X2, . . . ,Xn} of variables

of type string as follows:

Z1 = X1, and for n > 1,

Zn = Zn−1XnZn−1.

(1.2)

The understanding is that the variables Xi, where 0 ≤ i ≤ n, range over words

over some fixed background alphabet Σ. In [Zimin, 1982], Zimin proved that the

n-th Zimin word, Zn, constitutes an unavoidable pattern for strings over Σn. For

example, the pattern Z3 = X1X2X1X3X1X2X1 is unavoidable over a three letter

alphabet Σ3, that is, there always exists a non-erasing morphism h such that h(Z3)

is a subword of w, where w is a sufficiently long word over Σ3. It turns out that for

all strings w ∈ Σ∗3, such that |w| ≥ 29, the pattern Z3 is unavoidable. See [Cooper

and Rorabaugh, 2014] for bounds on Zimin word avoidance. For details on Zimin

patterns, see [Zimin, 1982], [Berstel et al., 2008], [Rampersad and Shallit, 2012],

[Berstel and Perrin, 2007], and [Cooper and Rorabaugh, 2014].

Graphs

An undirected graph G = (V,E), consists of a nonempty set V of vertices (or nodes),

and a set of edges E. A graph in which each edge connects two different vertices is

called a simple graph. All graphs discussed in the thesis are simple graphs.

12

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

A directed graph G, is a graph consisting of directed edges or arcs, and each

directed edge is associated with an ordered pair of vertices.

A bipartite graph G = (V,E), is a graph whose node set can be partitioned into

sets X and Y in such a way that every edge in G has one end in X and the other end

in Y .

The transitive closure of a graph G = (V,E), is the graph G′ = (V,E ′), such that,

E ′ is the smallest superset of E with the following property: if (v, w), (w, u) are two

edges in E ′, then (v, u) ∈ E ′.

The complement of a graph G = (V,E), denoted as Gc = (V,Ec) is a graph

obtained from G such that, e ∈ E if and only if e /∈ Ec.

Parity

The function parity is defined on binary strings. It returns 1 if the number of ones in

the string is odd, otherwise it returns 0. That is, parity(u) =
|u|∑
i=1

ui mod 2, where u

is a binary string. The predicate Parity(u) of a binary string u holds, if the number

of ones in the string is odd.

Shuffle

If u, v, and w are strings over an alphabet Σ, then w is said to be a shuffle of u

and v provided there are (possibly empty) strings ui and vi such that u = u1u2 · · ·uk

and v = v1v2 · · · vk and w = u1v1u2v2 · · ·ukvk. We use w = u � v, to denote that

w is a shuffle of u and v. A necessary condition for the existence of a shuffle is that,

the length of w must be equal to the sum of the lengths of u and v. For example, if

u = 100110101 and v = 010011010, then w = 100011100101011010 = u� v. Also

13

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

note that some ui and vj may be ε. For example, if u1 6= ε, u2 6= ε, and v1 = ε, then

this would mean that we take the first two symbols of u before we take any symbols

from v. In short, by choosing certain ui’s and vj’s equal to ε’s, we can obtain any

shuffle from an ostensibly strictly alternating shuffle.

Shuffle can be defined over any alphabet, but we work with the binary alphabet

Σ = {0, 1}. The predicate Shuffle(u, v,w) holds if w is a shuffle of u and v, that is,

Shuffle(u, v,w)⇔ w = u� v

We use the following naming convention: “shuffle” and “parity” denote the generic

problems, and Shuffle(u, v,w), Parity(u) denote the corresponding predicates, and

Shuffle and Parity without arguments denote the corresponding languages.

Pair-string

A pair-string is a string where each symbol occurs exactly twice, i.e., where ∀a ∈

Σw, |w|a = 2. A pair-string can also be viewed as a shuffle of some string u with

some permutation of the symbols of u, where every symbol of u is distinct. For any

pair-string w, if a is a symbol in w, then we denote the first occurrence of a as a1

and the second occurrence of a as a2.

Pair-string with Monge/Anti-Monge Property

A graph G, is said to have the anti-Monge property if the edges in the graph are

crossed or non-nested, see Figure 1.2. If the edges in the graph are nested, then it is

said to have the Monge property, see Figure 1.3.

14

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

a
""

b
!!

c d

Figure 1.2: Example of non-nested edges in graph.

a
""

b
��
c d

Figure 1.3: Example of nested edges in graph.

A bipartite graph Gw on the symbols of a pair-string w is a graph with nodes being

the symbols of w, lying on a line in a certain order, and edges being arcs joining pairs

of the same symbol.

Given a pair-string w, if in the bipartite graph drawn on the symbols of w, the arcs

connecting instances of symbol a and instances of symbol b are non-nested (crossed

or disjoint) then w is said to be anti-Monge with respect to symbols a, b. If these

arcs are nested then it is said to be Monge with respect to symbols a and b. For

example, consider pair-strings w = abab and u = abba, from the bipartite graph Gw

shown in Figure 1.4, we can see that w is anti-Monge with respect to symbols a and

b. Similarly, from the bipartite graph Gu, u is Monge with respect to symbols a and

b.

a1
$$

b1
$$

a2 b2 a1
$$

b1
##
b2 a2

Figure 1.4: Figure on the left is Gw, the bipartite graph for w = abab, and Figure on
the right is Gu, the bipartite graph for u = abba

Observe that, if a pair-string w is Monge with respect to symbols a and b then

abba or baab is a subsequence of w, and if w is anti-Monge with respect to a, b then

15

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

any of the strings abab, baba, aabb, or bbaa is a subsequence of w.

For more details on the Monge and anti-Monge condition see [Buss and Soltys,

2013] and [Buss and Yianilos, 1998] and its references. The Monge condition has been

widely studied for matching problems and transportation problems. Many problems

that satisfy the Monge condition are known to have efficient polynomial time algo-

rithms; for these see [Buss and Yianilos, 1998] and the references cited therein. There

are fewer algorithms known for problems that satisfy the anti-Monge property, and

some special cases are known to be NP-hard [Burkhard et al., 1998]. Motivated by

this, in Section 3.3.2 we explore the connection between graphs and strings having

Monge and anti-Monge property.

1.5 Background on Complexity

Complexity theory investigates the problem of determining the resources in terms of

time, space and more required in order to solve the problem, and “hardness” is a

lower bound on resources.

In time complexity theory, problems and classes of problems are studied in terms

of the resource ‘time’. The running time is measured as the maximum number of

steps used by a deterministic Turing Machine on any input of length n. The time

analysis of an algorithm is done in the standard way using the O-notation etc. see

[Thomas H. Cormen, 2009], [Kleinberg and Tardos, 2006] for a detailed coverage of

the topic. The two most referenced classes in time complexity theory are P and NP.

In space complexity theory, problems and classes of problems are studied in terms

of the resource ‘space’. The two major classes in space complexity are PSPACE and

NSPACE, and are analogs to P and NP classes.

16

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

We give here a brief introduction of time, space and circuit complexity for com-

pleteness. See [Sipser, 2013], [Papadimitriou, 1994], [Soltys, 2009] for a comprehensive

understanding of the subject.

Basic Definitions

P is the class of languages that are decidable in polynomial time on a deterministic

single-tape Turing machine. Intuitively, all algorithms with polynomial running time

belong to this class. Formally, we define this class as follows: Let f : N → R be a

function. Then, TIME(f(n)), is a time complexity class consisting of all the languages

that are decidable by Turing machines running in time O(f(n)). Therefore, the class

P in terms of the class TIME is:

P =
⋃
k

TIME(nk)

where n is the size of the input and k ∈ N.

NP is the class of languages that are decidable in polynomial time on a non-

deterministic Turing machine. Intuitively, it is the class of problems whose solutions

can be verified in polynomial time. NTIME(f(n)), is a time complexity class con-

sisting of all the languages that are decidable by non-deterministic Turing machines

running in time O(f(n)). Therefore, the class NP in terms of the class NTIME is:

NP =
⋃
k

NTIME(nk)

NP is the class of languages where the membership in the language can be verified

in polynomial time and P is the class of languages where the membership in the

17

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

language can be tested in polynomial time. We know that P ⊂ NP, but whether

P = NP is still an open problem.

In 1970, Steven Cook in his seminal paper [Cook, 1971], and Leonid Levin in

his 1973 paper [Levin, 1973], showed that the complexity of certain problems in the

class NP is related to the entire class. If polynomial time solutions exists for these

problems, then all problems in NP would have polynomial time solutions. These

problems are called NP-complete.

A language A, is said to be NP-complete if it satisfies the following conditions:

1. A is in NP, and

2. Every B in NP is polynomial time reducible to A.

Examples of NP-complete problems are: 3-SAT, 3-color, traveling salesman, Ex-

act Cover with 3-Sets and 3-Partition problem.

PSPACE(f(n)) is the class of languages decided by an O(f(n)) space determin-

istic Turing machine.

NSPACE(f(n)) is the class of languages decided by an O(f(n)) space non-

deterministic Turing machine.

Savitch’s theorem shows that any non-deterministic Turing machine that uses

f(n) space can be converted to a deterministic Turing machine using only f 2(n)

space. Therefore PSPACE = NSPACE.

In circuit complexity theory, a Boolean circuit is a directed, acyclic, connected

graph in which the input nodes are labeled with variables xi and constants 1, 0,

representing true and false, respectively, and the internal nodes are labeled with

standard Boolean connectives ∧,∨,¬, that is, AND, OR, NOT, respectively. We

often use x̄ to denote ¬x, and the circuit nodes are often called gates.

18

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

The fan-in, i.e., number of incoming edges, of a ¬-gate is always one, and the

fan-in of ∧,∨ can be arbitrary. The fan-out, i.e., number of outgoing edges, of any

node can also be arbitrary. Note that when the fan-out is restricted to be exactly

one, circuits become Boolean formulas. Each node in the graph can be associated

with a Boolean function in the obvious way. The function associated with the output

gate(s) is the function computed by the circuit. Note that a Boolean formula can be

seen as a circuit in which every node has fan-out one, and ∧,∨ have fan-in 2, and

¬ has fan-in one. Thus, a Boolean formula is a Boolean circuit whose structure is

tree-like.

The size of a circuit is its number of gates, and the depth of a circuit is the

maximum number of gates on any path from an input gate to an output gate.

A family of circuits is an infinite sequence C = {Cn} = {C0, C1, C2, . . .} of Boolean

circuits where Cn has n input variables. We say that a Boolean predicate P has

polysize circuits if there exists a polynomial p and a family C such that |Cn| ≤ p(n),

and ∀x ∈ {0, 1}∗, P (x) holds iff C|x|(x) = 1.

Let P/poly be the class of all those predicates which have polysize circuit families.

It is a standard result in complexity that all predicates in P have polysize circuits;

that is, if a predicate has a polytime Turing machine, it has polysize circuits. The

converse of the above does not hold, unless we put a severe restriction on how the n-th

circuit is generated; as it stands, there are undecidable predicates that have polysize

circuits. The restriction that we place here is that there is a Turing machine that

on input 1n computes {Cn} in space O(log n). This restriction makes a family C of

circuits uniform.

The predicates (or Boolean functions) that can be decided (or computed) with

19

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

polysize, constant fan-in, and depth O(logi n) circuits, form the class NCi. The

class ACi is defined in the same way, except we allow unbounded fan-in. We set

NC =
⋃
i NCi, and AC =

⋃
i ACi, and while it is easy to see that the uniform

version of NC is in P, it is an interesting open question whether they are equal.

We have the following standard result: for all i,

ACi ⊆ NCi+1 ⊆ ACi+1.

Thus, NC = AC. Finally, SACi is just like ACi, except we restrict the ∧ fan-in to

be at most two.

20

Chapter 2

Square-free Words over Alphabet

Lists

2.1 Introduction

Thue in his paper [Thue, 1906], was the first to show the existence of square-free

words of arbitrary length over a ternary alphabet, by giving a non-erasing square-

free morphism (see 1.1). Since his work was not known for a long time, this result

was rediscovered by many others independently. For example, the following authors

each gave a different square-free morphism over a ternary alphabet: [Ars̆on, 1937],

[Morse and Hedlund, 1944], [Currie, 1991], and [Leech, 1957]. The following morphism

(h : Σ 7→ Σ∗) proposed by Leech over the alphabet Σ = {1, 2, 3} is uniform (each

symbol in Σ is mapped to a same length word in Σ∗) and cyclic (as h(2) can be

obtained from h(1) and h(3) from h(2), by a cyclic permutation of symbols of the

alphabet).

21

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

h =

1 7→ 1232132312321

2 7→ 2313213123132

3 7→ 3121321231213

(2.1)

In all the square-free morphisms proposed to prove the existence of square-free

strings over a ternary alphabet the assumption is that the entire alphabet set is avail-

able when a symbol is picked while constructing the square-free string. A natural

generalization of this problem is that only subsets of the entire possibly infinite al-

phabet are available while selecting symbols of the square-free string with a restriction

that the size of the subsets remain constant. This generalization has been studied

by [Grytczuk et al., 2013, Shallit, 2009, Mhaskar and Soltys, 2015b], among others. In

this chapter we study this generalization and investigate the question: Do square-free

strings exist over any list L ∈ L3? Alternatively, is the class of lists L3 admissible?

2.1.1 Square-free Strings over List L

Using Lovász Local Lemma (see Section 2.1.2) it has been shown that square-free

strings exist over lists where the alphabet size is sufficiently large. The first bound

of 64, on the size of the alphabets was given by Alon et al. in [N. Alon and Riordan,

2002]. The best possible bound of four, for the size of alphabets, is given by Grytczuk,

Przybylo and Zhu in [J. Grytczuk and Zhu, 2011]. They achieved this tight bound

by applying an enhanced version of the Lovász Local Lemma due to [Pegden, 2009].

Grytczuk, Kozik, Micek in [Grytczuk et al., 2013] give a simple argument for the same

bound. This simple argument along with the proof has been explained in detail in

Appendix A. The question whether square-free strings exist over lists with alphabet

22

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

size three still remains open and we investigate this question, i.e., is the class of lists

L3 admissible? We obtain partial results, but the general result remains open.

2.1.2 Lovász Local Lemma

A probabilistic method is a way of proving that a structure with certain desired prop-

erties exists. In this method we define an appropriate probability space of structures

and then show that the desired properties hold in this space with positive probability.

This method is a powerful and often used tool in solving many problems in Discrete

Mathematics without the need of construction.

The popular Lovász Local Lemma, given by Erdős and Lovász, in the paper [Erdős

and Lovász, 1975], is often used in probabilistic methods to show the existence of a

property in a given structure. The lemma states that: given a finite set of events in

a probability space, if a certain subset of these events, where the events in the subset

are mostly independent and have a probability less that one, then the entire subset

of events can be avoided with positive probability.

A constructive variant of this lemma with some restrictions applied, is given by

Beck in his breakthrough paper [Beck, 1991]. The most recent constructive proof of

the local lemma is given by Moser and Tardos in [Moser and Tardos, 2009]. For a

detailed discussion on the lemma and the probabilistic method in general see [Alon

and Spencer, 2008].

2.1.3 Square-free Strings over L ∈ L4

A simple probabilistic way to construct a square-free string over L is as follows: pick

any w1 ∈ L1, and for i + 1, assuming that w = w1w2 . . .wi is square-free, pick a

23

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

symbol a ∈ Li+1, and if wa is square-free, then let wi+1 = a. If, on the other hand,

wa has a square vv, then vv must be a suffix (as w is square-free by assumption).

Delete the right copy of v from w, and continue with the resulting string. [Grytczuk

et al., 2013], uses this algorithm (see Algorithm 1) to prove the main result of the

paper (restated in Theorem 34), which is the existence of square-free strings over any

list L ∈ L4. In the appendix, we restate the main result of [Grytczuk et al., 2013],

and give a detailed explanation of the proof shown in their paper.

Algorithm 1 Erase-Repetition Algorithm

1: i← 1
2: while i ≤ n do
3: si ← random element of Li
4: if s1s2 . . . si is square-free then
5: i← i+ 1
6: else . there is exactly one repetition, say si−2h+1 . . . si−hsi−h+1 . . . si
7: i← i− h+ 1

The correctness of Algorithm 1 in [Grytczuk et al., 2013] also relies on Lemma 2

shown below, which was assumed but not shown in [Grytczuk et al., 2013, line 7

of Algorithm 1, on page 2]. An alternate proof of Lemma 2 can be found in our

paper [Mhaskar and Soltys, 2015b].

Lemma 2. If w is square-free, then for any symbol a, either w′ = wa is still square-

free, or w′ has a unique square (consisting of a suffix of w′).

Proof. The proof is by contradiction. We assume that two distinct squares exists in

w′ and examine different possibilities of overlap between these two squares and prove

that each case leads to a contradiction, thus contradicting the assumption that two

squares exist in w′.

24

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Suppose that w′ = wa has a square; we denote this square as uaua, where u is a

subword of w. Suppose that there is another square vava, where v is a subword of

w. Since the two squares are suffixes of w′ and are distinct, one must be the suffix

of the other. Without loss of generality we assume that |uau| > |vav|. The different

cases of the overlap are examined below:

1. u = pvav as shown in Figure 2.1: Here p 6= v and p 6= a as otherwise it would

create a repetition in w. Then, uau = pvavapvav. This indicates that w has a

square ‘vava’ and this is a contradiction. When p = ε, we get the case u = vav

vavp

u a u

Figure 2.1: u = pvav

and the above contradiction still holds.

2. au = vav: Then the first symbol of v is a, i.e., v1 = a. This causes a repetition

‘aa’ in vav and therefore a repetition in w and this is a contradiction.

3. uau = qvav and |au| < |vav| as shown in Figure 2.2: s 6= ε (otherwise,

u = v, a contradiction) and p 6= ε (otherwise, it contradicts the assumption

|au| < |vav|). From Figure 2.2, we have v = pas and u = sav. Substituting v

in u we get, u = sapas and uau = sapasasapas. Then uau has a repetition

‘asas’ and therefore w has a repetition. This is a contradiction.

We can therefore conclude that w′ is either square-free or has a unique square.

25

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

vasapq

u a u

oo v //

Figure 2.2: uau = qvav and |au| < |vav|

2.2 Alternate Proof of Thue’s Result

In this section we give our proof of Thue’s result stated in Theorem 1. We restate

Theorem 1 below for completeness.

Theorem 1 (restated). If w ∈ Σ∗3 is a square-free string, then so is g(w).

Proof of Theorem 1. We prove it by induction on k = |w|. If k = 1, then w ∈

{1, 2, 3}, and clearly g(w) is square-free in all three cases of g as given in Sec-

tion 1.4, (1.1). Assume the claim holds for all w’s of length k, and consider a square-

free |w| = k+1, that is, w = w1w2 . . .wk+1. Let w′ = g(w) = g(w1)g(w2) . . . g(wk+1);

we want to show that w′ is square-free. We argue by contradiction: suppose there

exists a v such that vv is a subword of w′. Let v` be the left copy of v in w′ and let

vr be the right copy of v in w′, i.e., vv = v`vr a subword of w′.

Therefore:

w′ = xv`vry.

Observe that g(w1) cannot be a prefix of x, and g(wk+1) cannot be a suffix of y, since

in that case we would be able to obtain a repetitive string by applying the morphism

to a string w of length ≤ k, contradicting our inductive assumption.

26

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Thus, x is a non empty proper prefix of g(w1) and y is a non empty proper suffix

of g(wk+1). Let the suffix of g(w1) that coincides with a prefix of v` be denoted by

s, and let the prefix of g(wk+1) that coincides with the suffix of vr be denoted by p.

Let g(wi) be the word containing the first symbol of vr. Finally, let t be the suffix of

v` that coincides with a prefix of g(wi) (note that it may be the case that t = ε), and

let u be the prefix of vr that coincides with a suffix of g(wi) (by definition, u 6= ε).

For a summary of all these relationships see Figure 2.3.

g(w1) g(w2) . . . g(wi) . . . g(wk+1)

yvrv`x

s t u p

Figure 2.3: The strings w′ = g(w1)g(w2) . . . g(wk+1) = xv`vry.

We consider the possible lengths of s, and the possible corresponding values of

g(w1), g(wi), g(wk+1), as shown in Figure 2.3, and taken from (1.1). We derive a

contradiction in each case, and conclude that the situation presented in Figure 2.3 is

not possible, and hence g(w) is square-free.

1. Suppose that |s| = 1. Then, s = 2, as that is the only suffix of (1.1) of length 1.

We now want to show that the first symbol of u equals the first symbol of

y (that is, u1 = y1). Once we have that, we can shift v`vr one position to

the right, and still have a square, albeit in g(w2 . . .wk+1), contradicting the

inductive assumption. First note that u1 = s = 2, so all we have to show is

that y1 = 2. But if u1 = 2, it follows that t must be one of the following:

(a) g(wi) = 12312 and so t = 1 or t = 1231. If t = 1, then it follows that the

27

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

prefix of g(w2) is 312, which is not possible, as no string in (1.1) starts

with 3. Hence it must be the case that t = 1231, but then 1231 is the

block of symbols immediately preceding y, which forces the first symbol of

y to be 2.

(b) g(wi) = 131232 and so t = 131 or t = 13123. Since t is a block immediately

preceding y, it follows that the first symbol of y must be 2.

(c) g(wi) = 1323132 and so t = 13 or t = 132313. This is similar to sub-

case (1a) above. If t = 13, then the prefix of g(w2) is 3132, which is not

possible. If t = 132313, then again the first symbol of y must be 2.

2. Suppose that |s| = 2. Then, s = 12 or s = 32.

(a) If s = 12, then g(w1) = 12312, and so the initial segment of vr must

be 12, and so g(wi) must be 12312 as well. Further, u can be 12312 (in

which case t = ε), or u = 12 (in which case t = 123). In the former

case, 312 must be a prefix of g(w2), which is not possible. In the latter

case, the segment immediately preceding y must be 123, which implies

that y1y2 = 12, and again a shift of v`vr right by two positions creates a

square in g(w2 . . .wk+1), contradicting the inductive assumption.

3. If |s| ≥ 3, then s identifies g(w1) uniquely, which in turn identifies t uniquely,

which in turn identifies the first |s| many symbols of y uniquely, and shows that

u1 . . .u|s| = y1 . . .y|s|.

This means that shifting v`vr |s| many symbols to the right creates a square in

28

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

g(w2 . . .wk+1), contradicting the inductive hypothesis.

This ends the proof.

Our proof of Thue’s result differs from [Smyth, 2003, Section 3.3, pg. 72] in the

fact that we use induction on the length of w as opposed to introducing and using

blocks, initiators and terminators.

In [Berstel, 1979], Berstel gave the first characterization of square-free morphisms

over three letter alphabet. This characterization requires the given morphism to

be square-free for all square-free words of size three. This result can also be found

in [Berstel, 1995]. In [Crochemore, 1982], Crochemore improved the result in the

general case (not only for words of size three). His characterization requires only the

resulting words of length five, after application of the morphism to square-free words,

to be square-free. He also shows that the bound five given in the characterization is

optimal and that such a result does not exist on an alphabet of size four or more.

2.3 Admissible Classes of Lists

In Section 2.1.1, we point to various results showing admissibility of lists. The best

bound given so far is by Grytczuk et al. in [Grytczuk et al., 2013]. They show that

the class of lists L4 is admissible and conjecture that the class L3 is admissible. In

[Mhaskar and Soltys, 2015b, Theorem 8], we show that certain (large) subclasses of L3

are admissible (Theorem 9), and in Chapter 5 [Mhaskar and Soltys, 2015b, Section 4]

we propose different approaches for proving this conjecture in its full generality.

Corollary 3 (A. Thue, [Thue, 1906]). LΣ3 is admissible.

29

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Proof. Consider any L ∈ LΣ3 , where L = L1, L2, . . . Ln, and for all i ∈ [n], Li = Σ3.

Let T1 = 1, and for all i > 1, let Ti+1 = g(Ti). We show by induction on i that Ti

is a sequence of square-free strings of growing length. The basis case is trivial, and

the induction step follows from Theorem 1. Also, since g is a non-erasing morphism,

|Ti| < |Ti+1|, for all i ∈ [n]. Note that the prefix of any square-free string is also

square-free (in fact the same applies to any subword — but not subsequence).

In order to generate a square-free string of length n, we generate Ti such that

|Ti| ≥ n, and we then take its prefix of length n. This is our square-free w over L.

A System of Distinct Representatives (SDR) of a collection of sets {L1, L2, . . . , Ln}

is a selection of n distinct elements {a1, a2, . . . , an}, ai ∈ Li.

Claim 4. If L has an SDR, then L is admissible.

Proof. Simply let w = w1w2 . . .wn, where wi = ai, for all i ∈ [n], be the string

consisting of the distinct representatives; as all symbols are distinct, w is necessarily

square-free.

It is a celebrated result of P. Hall ([Hall, 1987]) that a necessary and sufficient

condition for a collection of sets to have an SDR is that they have the union property.

A set L = {L1, L2, . . . , Ln} is said to have the union property if for any sub-

collection S = {S1, S2, . . . , Sk}, where 1 ≤ k ≤ n, and Si ∈ L for all i ∈ [k], the

following property holds: |S1 ∪ S2 ∪ . . . ∪ Sk| ≥ k.

Corollary 5. If L has the union property, then L is admissible.

Given a list L, we say that the mapping Φ : L −→ Σ3, Φ = 〈φi〉, is consistent if for

all i, φi : Li −→ Σ3 is a bijection, and for all i 6= j, if a ∈ Li ∩Lj, then φi(a) = φj(a).

30

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

In other words, Φ maps all the alphabets to the single alphabet Σ3, in such a way

that the same symbol is always mapped to the same unique symbol in Σ3 = {1, 2, 3}.

For example, if L = {{a, b, c}, {a, c, d}, {a, b, e}, {a, d, e}}, then the mapping a→

1, b→ 2, c→ 3, d→ 2, e→ 3 is a consistent mapping.

Lemma 6. If L has a consistent mapping, then L is admissible.

Proof. Suppose that L has a consistent mapping Φ = 〈φi〉. By Corollary 3 we pick a

square-free w = w1w2 . . .wn of length n over Σ3. Let

w′ = φ−1
1 (w1)φ−1

2 (w2) . . . φ−1
n (wn),

then w′ is a string over L, and it is also square-free. If it were the case that vv was a

subword of w′, then vv under Φ would be a square in w, which is a contradiction.

Let CMP = {〈L〉 : L has a consistent mapping} be the “Consistent Mapping

Problem,” i.e., the language of lists L = L1, L2, . . . , Ln which have a consistent map-

ping. We show in Lemma 7 that this problem is NP-complete. It is clearly in NP

as a given mapping can be verified efficiently for consistency.

Lemma 7. CMP is NP-hard.

Proof. A graph G = (V,E) is 3-colorable if there exists an assignment of three colors

to its vertices such that no two vertices with the same color have an edge between

them. The problem 3-color is NP-hard, and by [Garey et al., 1976] it remains NP-

hard even if the graph is restricted to be planar.

We show that CMP is NP-hard by reducing the 3-colorability of planar graphs

to CMP. Given a planar graph P = (V,E), we first find all its triangles. There are

31

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

at most
(
n
3

)
≈ O(n3) such triangles, and note that two different triangles may have 0,

1, or 2 vertices in common. If the search yields no triangles in P , then by [Grötzsch,

1959] such a P is 3-colorable, and so we map P to a fixed list with a consistent

mapping, say L = L1 = {a, b, c}. (In fact, by [Dvořák et al., 2011] it is known that

triangle-free planar graphs can be colored in linear time.) Otherwise, denote each

triangle by its vertices, and let T1, T2, . . . , Tk be the list of all the triangles, each

Ti = {vi1, vi2, vi3}; note that triangles may overlap. We say that an edge e = (v1, v2) is

inside a triangle if both v1, v2 are in some Ti. For every edge e = (v1, v2) not inside a

triangle, let E = {e, v1, v2}. Let E1, E2, . . . , E` be all such triples, and the resulting

list is:

LP = T1, T2, . . . , Tk, E1, E2, . . . , E`.

See example given in Figure 2.4.

We show that LP has a consistent mapping if and only if P is 3-colorable.

6

v
v v

v

v

v
1

2

3

4
5

Figure 2.4: In this case the list LP is composed as follows: there are two triangles,
{v2, v3, v4}, {v2, v6, v4}, and there are two edges not inside a triangle giving rise to
{v1, v2, (v1, v2)}, {v4, v5, (v4, v5)}. Note that this planar graph is 3-colorable: v1 7→ 1,
v2 7→ 2, v3 7→ 3, v6 7→ 3, v4 7→ 1, and v5 7→ 2. And the same assignment can also be
interpreted as a consistent mapping of the list LP .

Suppose that P is 3-colorable. Let the colors be labeled with Σ3 = {1, 2, 3}; each

vertex in P can be labeled with one of Σ3 so that no edge has end-points labeled

with the same color. This clearly induces a consistent mapping as each triangle

32

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Ti = {vi1, vi2, vi3} gets 3 colors, and each E = {e, v1, v2} gets two colors for v1, v2, and

we give e the third remaining color.

Suppose, on the other hand, that LP has a consistent mapping. This induces a

3-coloring in the obvious way: each vertex inside a triangle gets mapped to one of

the three colors in Σ3, and each vertex not in a triangle is either a singleton, in which

case it can be colored arbitrarily, or the end-point of an edge not inside a triangle,

in which case it gets labeled consistently with one of Σ3. As the reduction from P to

LP can be accomplished in polynomial time, it follows that CMP is NP-hard.

We say that a collection of sets {L1, L2, . . . , Ln} is a partition if for all i, j, Li = Lj

or Li ∩ Lj = ∅.

Corollary 8. If L is a partition, then L is admissible.

Proof. We show that when L is a partition, we can construct a consistent Φ, and so,

by Lemma 6, L is admissible. For each i in [n] in increasing order, if Li is new i.e.,

there is no j < i, such that Li 6= Lj, then let φi : Li −→ Σ3 be any bijection. If, on

the other hand, Li is not new, there is a j < i, such that Li = Lj, then let φi = φj.

Clearly Φ = 〈φi〉 is a consistent mapping.

Note that by Lemma 6, the existence of a consistent mapping guarantees the

existence of a square-free string. The inverse relation does not hold: a list L may

not have a consistent mapping, and still be admissible. For example, consider L =

{{a, b, c}, {a, b, e}, {c, e, f}}. Then, in order to have consistency, we must have φ1(a) =

φ2(a) and φ1(b) = φ2(b). In turn, by bijectivity, this implies that φ1(c) = φ2(e).

Again, by consistency:

φ3(c) = φ1(c) = φ2(e) = φ3(e),

33

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

and so φ3(c) = φ3(e), which violates bijectivity. Hence L does not have a consistent

mapping, but w = abc ∈ L+, and w is square-free.

Let LSDR,LUnion,LConsist, and LPart be classes consisting of lists with: an SDR,

the union property, a consistent mapping, the partition property, respectively. Sum-

marizing the results in the above lemmas we obtain the following theorem.

Theorem 9. LSDR,LUnion,LConsist, and LPart are all admissible.

For ease of reference, in Section 2.4, we give a table summarizing the notation for

classes with different properties and their admissibility.

2.4 Applications

The applications of this generalization of square-free strings can be seen in non-

repetitive coloring of graphs and online games. A non-repetitive coloring of a path,

is a coloring of its vertices such that the sequence of colors along the path does

not contain two identical consecutive blocks. The ideas behind the erase-repetition

algorithm [Grytczuk et al., 2013] also led to the result in [Kozik and Micek, 2013] that

for every tree and lists of size four one can choose a coloring with no three consecutive

identical blocks on any simple path.

In the area of non-repetitive games, using the same arguments of the proof

of [Grytczuk et al., 2013, Theorem 1], Grytczuk et al. show that one can gener-

ate arbitrarily long square-free sequences, if every second symbol is picked by an

adversary, provided the number of available symbols is at least twelve. A tighter

bound on an alphabet of size eight is shown in [J. Grytczuk and Micek, 2011].

We propose an online game version of the problem, where the list L is presented

34

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

piecemeal, one alphabet at a time, and we select the next symbol without knowing

the future, and once selected, we cannot change it later. More precisely, the Li’s

are presented one at a time, starting with L1, and when Li is presented, we must

select wi ∈ Li, without knowing Li+1, Li+2, . . ., and without being able to change the

selections already committed to in L1, L2, . . . , Li−1.

We present the online problem in a game-theoretic context. Given a class of lists

L, and a positive integer n, the players take turns, with the adversary starting the

game. In the i-th round, the adversary presents a set Li, and the player selects a

wi ∈ Li; the first i rounds of the game can be represented as:

G = L1,w1, L2,w2, . . . , Li,wi.

The condition imposed on the adversary is that L = L1, L2, . . . , Ln must be a member

of L.

The player has a winning strategy for L, if ∀L1∃w1∀L2∃w2 . . . ∀Ln∃wn, such that

L = L1, L2, . . . , Ln ∈ L and w = w1w2 . . .wn is square-free. For example, the player

does not have a winning strategy for any L in LΣ1 and LΣ2 ; see Figure 2.5. On

the other hand, the player has a winning strategy for LΣ3 : simply pre-compute a

square-free w, and select wi from Li. However, this is not a bona fide online problem

(see [Soltys, 2012]), as all future Li’s are known beforehand. In a true online problem

we expect the adversary to have the ability to “adjust” the selection of the Li’s based

on the history of the game.

We present another class of lists for which the player has a winning strategy.

Let sizeL(i) = |L1 ∪ . . . ∪ Li|. We say that L has the growth property if for all

1 ≤ i < n = |L|, sizeL(i) < sizeL(i+ 1). We denote the class of lists with the growth

35

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

{a} a // {a} a // × {a, b} b // {a, b} a // {a, b} b // ×

{a, b}

a
;;

b

$$
{a, b} a // {a, b} b // {a, b} a // ×

Figure 2.5: Player loses if adversary is allowed subsets of size less than 3: the moves
of the adversary are represented with subsets {a} and {a, b} and the moves of the
player are represented with labeled arrows, where the label represents the selection
from a subset.

property as LGrow.

Lemma 10. The player has a winning strategy for LGrow.

Proof. In the i-th iteration, select wi that has not been selected previously; the

existence of such a wi is guaranteed by the growth property.

The growth property places a rather strong restriction on L, as it allows the

construction of square-free strings where all the symbols are different, and hence they

are trivially square-free. Note that the growth property implies the union property

discussed in Corollary 5. To see this, note that the growth property implies the

existence of an SDR (discussed in Claim 4).

36

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Summary of Classes of Lists

L denotes a class of lists

L = L1, L2, . . . , Ln denotes a (finite) list of alphabets

Li denotes a finite alphabet

Class name Description Admissible

LΣk
for all i ∈ [n], Li = Σk for Σk, yes for k ≥ 3; no for k < 3

Lk for all i ∈ [n], |Li| = k yes for k ≥ 4; no for k ≤ 2; for k = 3 ?

LSDR L has an SDR yes

LUnion L has the union property yes

LConsist L has a consistent mapping yes

LPart L is a partition yes

LGrow for all i, | ∪ij=1 Lj | < | ∪i+1
j=1 Lj | yes, even for online games

37

Chapter 3

String Shuffle

3.1 Introduction

In this area of String Algorithms, we investigate properties of string shuffle (see Sec-

tion 1.4). Particularly, we study the relationship between graphs and strings exhibit-

ing shuffle properties. The result of this research can be found in our paper [Mhaskar

and Soltys, 2015c], which is an expansion of the previously published paper [Soltys,

2013].

Interest in the shuffle operation gained momentum in the last thirty years and the

initial work on shuffles arose out of abstract formal languages. Shuffles were later mo-

tivated by applications to modeling sequential execution of concurrent processes. The

shuffle operation was first used in formal languages by Ginsburg and Spanier [Gins-

burg and Spanier, 1965]. Early research with applications to concurrent processes

can be found in [Riddle, 1973, Riddle, 1979] and Shaw [Shaw, 1978]. A number of au-

thors, including [Gischer, 1981], [Gruber and Holzer, 2009], [Jantzen, 1981], [Jantzen,

1985], [Jedrzejowicz, 1999], [Jedrzejowicz and Szepietowski, 2001], [Jedrzejowicz and

38

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Szepietowski, 2005], [Mayer and Stockmeyer, 1994], [Shoudai, 1992] and [Ogden et al.,

1978] have subsequently studied various aspects of the complexity of the shuffle and

iterated shuffle operations in conjunction with regular expression operations and other

constructions from the theory of programming languages.

In the early 1980’s, Mansfield [Mansfield, 1982, Mansfield, 1983], and Warmuth

and Haussler [Warmuth and Haussler, 1984], studied the computational complexity

of the shuffle operator on its own. The paper [Mansfield, 1982] gave a dynamic

programming algorithm for deciding the following shuffle problem: given input strings

u, v and w, is w = u� v? The running time complexity of this algorithm is O(|w|2).

In [Mansfield, 1983] this was extended to give polynomial time algorithms for

deciding whether a string w can be written as the shuffle of k strings u1,u2, . . . ,uk, for

a constant integer k. The paper [Mansfield, 1983] further proved that if k is allowed to

vary, then the problem becomes NP-complete (via a reduction from Exact Cover

with 3-Sets).

Warmuth and Haussler [Warmuth and Haussler, 1984] gave an independent proof

of the above result, and went on to give a rather striking improvement by showing

that this problem remains NP-complete even if the k strings u1,u2, . . . ,uk are equal.

That is to say, the question of, given strings u and w, whether w is equal to an iterated

shuffle of u is NP-complete. Their proof used a reduction from 3-Partition.

In [Buss and Soltys, 2013] it is shown that square shuffle, i.e., the problem of

determining whether a given string w is a shuffle of some u with itself, that is,

whether w = u� u, is NP-hard. [Rizzi and Vialette, 2013] gives an alternate proof

of the same result.

39

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Mansfield Algorithm

In [Mansfield, 1982], Mansfield gave a polynomial time dynamic programming algo-

rithm for shuffle, that is, given input strings u, v and w, the algorithm answers the

question: is w = u � v, in polynomial time. For dynamic programming technique

see, [Thomas H. Cormen, 2009], [Kleinberg and Tardos, 2006] or [Soltys, 2012].

The basic idea of the algorithm is to construct a grid graph, with (|u|+1)× (|v|+

1) nodes; the lower-left node is represented with (0, 0) and the upper-right node is

represented with (|u|, |v|). For any i < |u| and j < |v|, we have the edges:

((i, j), (i+ 1, j)) if ui+1 = wi+j+1

((i, j), (i, j + 1)) if vj+1 = wi+j+1.

(3.1)

Note that both edges may be present, which is what introduces the element of non-

determinism in the traversal of the graph, and reflects the fact that two strings can

be shuffled in many ways that initially may seem promising to form w. This graph

can be interpreted as follows: a path starts at (0, 0), and the i-th time it goes up we

pick ui, and the j-th time it goes right we pick vj.

Therefore, the algorithm reduces the shuffle problem on strings u, v and w to di-

rected graph reachability. The correctness of the reduction follows from the assertion

that given the edges of the grid, defined in (3.1), there is a path from (0, 0) to (i, j)

if and only if the first i+ j bits of w can be obtained by shuffling the first i bits of u

and the first j bits of v. Thus, node (|u|, |v|) can be reached from node (0, 0) if and

only if w = u � v. Given |u| = |v| = |w|
2

= n, the running time of this algorithm is

O(n2).

40

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

For example, consider Figure 3.1. On the left we have a shuffle of 000 and 111 that

yields 010101, and on the right we have a shuffle of 011 and 011 that yields 001111.

The left instance has a unique shuffle that yields 010101, which corresponds to the

unique path from (0, 0) to (3, 3). On the right, there are several possible shuffles of

011, 011 that yield 001111 — in fact, eight of them, each corresponding to a distinct

path from (0, 0) to (3, 3).

Figure 3.1: On the left we have a shuffle of 000 and 111 that yields 010101, and on the
right we have a shuffle of 011 and 011 that yields 001111. The dynamic programming
algorithm in [Mansfield, 1982] computes partial solutions along the grey diagonal
lines. The thick black arrow in the right diagram is there to symbolize that there
are other edges beside the thin black ones; the thick black edge is ((1, 3), (2, 3)) and
it is there because x1+1 = x2 = 1 = w5 = w1+3+1. The edges are placed according
to (3.1).

3.2 Circuit Complexity Bounds for Shuffle

In [Mansfield, 1982], a question was posed of determining a lower complexity bound

for the problem. [Soltys, 2013] and [Mhaskar and Soltys, 2015c] give a tight upper

and lower bound for the shuffle problem in terms of circuit complexity. Specifically,

we show that:

1. bounded depth circuits of polynomial size cannot solve shuffle, that is, Shuffle 6∈

41

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

AC0, but that

2. logarithmic depth circuits of polynomial size can do so, that is, Shuffle ∈ AC1.

Our proof of the first result relies on the seminal complexity result, due to [Furst et al.,

1984], that parity is not in AC0. We prove that Shuffle 6∈ AC0, by reducing parity to

shuffle. Since by [Furst et al., 1984], Parity 6∈ AC0, it follows that Shuffle 6∈ AC0. The

result that Shuffle ∈ AC1 follows directly from the dynamic programing algorithm

given in [Mansfield, 1982] by Mansfield (also discussed in Section 3.1). The detailed

proofs of these results can be found in the papers [Soltys, 2013] and [Mhaskar and

Soltys, 2015c].

3.3 Further properties of shuffle

Although much progress has been done on understanding shuffle, many questions

regarding shuffle remain open. For example, does Shuffle Square (given a string w,

is it a shuffle of some u with itself), remain NP-hard for some alphabets with fewer

than seven symbols? See [Buss and Soltys, 2013]. We explore further properties of

shuffle in order to better understand the operation.

In the following sections, we show that shuffle can express basic string operations,

and many large classes of graphs can be expressed with strings exhibiting shuffle

properties.

3.3.1 Expressiveness of shuffle

It is interesting that several different string predicates reduce to shuffle in an easy

and natural way. String equality can be expressed as shuffle. Testing if two strings

42

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

are equal is equivalent to using the shuffle predicate with the first argument being an

empty string, that is ε, and the second and third arguments being the two strings.

Formally, u = v ⇐⇒ Shuffle(ε,u, v). Shuffling ε with u always results in u, and

finally checking if v can be obtained from u, is equivalent to testing whether u = v.

Testing whether a string w is a concatenation of two strings u and v also reduces

to shuffle. Let p0, p1 be “padding” functions on strings defined as follows:

p0(u) = p0(u1u2 . . .un) = 00u100u200 . . . 00un00

p1(u) = p1(u1u2 . . .un) = 11u111u211 . . . 11un11

that is, pb, b ∈ {0, 1} pads the string u with a pair of b’s between any two symbols of

u, as well as a pair of b’s before and after u.

To express testing whether a string w is a concatenation of strings u and v using

shuffle operation, we have our first two inputs as p0(u) and p1(v). The third input is

just juxtaposition of the prefix of w of length |u| with the function p0 applied, and the

suffix of w of length |v| with the function p1 applied. We use “juxtaposition” since we

do not want to define concatenation in terms of concatenation. This is summarized

in Claim 11. Here, we assume that |w| = |u|+ |v| to simplify the argument.

Claim 11. w = u · v iff

p0(w1w2 . . .w|u|)p1(w|u|+1w|u|+2 . . .w|u|+|v|) = p0(u)� p1(v).

Proof. The direction “⇒” is easy to see; for direction “⇐” we use the following

43

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

notation, to make the argument cleaner:

r = p0(u) = 00u100 . . .

s = p1(v) = 11v111 . . .

t = p0(w1w2 . . .w|u|)p1(w|u|+1w|u|+2 . . .w|u|+|v|)

= 00w100 . . . 00w|u|0011w|u|+111 . . . 11w|u|+|v|11

If t = r� s, then we must take the first two bits of r (00) in order to cover the first

two bits of t (00). If u1 = w1 = 1, then we could ostensibly take the first bit of s (1),

but the bit following w1 is 0, and u1 = 1 and the second bit of s is 1; so taking the

first bit of s leads to a dead end. Thus, we must use u1 to cover w1.

We formalize this argument by induction on the length of t as follows: The basis

case is trivial, as t1 = r1 = 0. Suppose for all k < |t| the property holds. We need to

show that it holds for k + 1. We examine two cases:

1. If k < 2(|u| + 1), then by induction hypothesis we know that t1t2 . . . tk =

r1r2 . . . rk. The only possibilities for the symbols tk+1tk+2tk+3 in t are: 100, 000, 001

and 010. If t = r � s, we must take the next three symbols of r following k,

that is symbols rk+1rk+2rk+3, to cover symbols tk+1tk+2tk+3 in t as none of the

strings 100, 000, 001 and 010 are subwords of s.

2. If k ≥ 2(|u| + 1), then by induction hypothesis we know that t1t2 . . . tk =

r1r2 . . . r2(|u|+1)sk−2|u|−1 . . . sk. For t = r � s, we must take the remaining bits

of s to cover t, as we used up all the symbols of r to cover the first 2(|u| + 1)

symbols of t.

It follows that t = r� s⇒ t = r · s, which in turn implies w = u · v.

44

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

3.3.2 Expressing graphs with shuffle

In this section we explore the connection between general graphs, and the shuffle

problem. We show that many graphs can be expressed with strings exhibiting shuffle

properties. We start by giving a string construction for graphs and show that large

classes of graphs can be expressed as strings using this construction.

Construction of strings representing graphs

Given a graph G = (V,E), where V = {v1, v2, . . . , vn}, we construct a string wG

where the alphabet set for wG is denoted as ΣV = {v1, v2, . . . , vn}, that is, the string

wG is constructed over the vertices’s of the graph G, with the following properties:

1. wG is a pair-string, that is, each vertex in the set ΣV = {v1, v2, . . . , vn} appears

exactly twice in the string wG.

2. The edges in E are represented based on the ordering of the first and second

instance of the end points of the edge in wG. Specifically, if (v1, v2) is an edge

in E, then the arcs connecting the first and second instance of v1 and v2 are

non nested, that is, wG is anti-Monge with respect to v1, v2 (see Section 1.4).

Therefore, exactly one of the following four strings is a subsequence of wG :

v1
1 v

1
2 v

2
1 v

2
2, v

1
2 v

1
1 v

2
2 v

2
1, v

1
1 v

2
1 v

1
2 v

2
2, v

1
2 v

2
2 v

1
1 v

2
1. Observe in Figure 3.2, the arcs

connecting instances of the same symbol are not nested.

3. If (v1, v2) is not an edge in E, then the arcs connecting the first and second

instance of v1 and v2 are nested, that is, wG is Monge with respect to v1, v2 (see

Section 1.4). Therefore, exactly one of the following two strings is a subsequence

45

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

v1
1

$$
v1

2

$$
v2

1 v2
2 v1

2

$$
v1

1

$$
v2

2 v2
1

v1
1

$$
v2

1 v1
2

$$
v2

2 v1
2

$$
v2

2 v1
1

$$
v2

1

Figure 3.2: Four ways to represent an edge (v1, v2) of a graph G in wG.

of wG : v1
1 v

1
2 v

2
2 v

2
1, v

1
2 v

1
1 v

2
1 v

2
2. Observe in Figure 3.3, the arcs connecting

instances of the same symbol are nested.

v1
1

$$
v1

2

$$
v2

2 v2
1 v1

2

$$
v1

1

$$
v2

1 v2
2

Figure 3.3: Two ways to represent disconnected nodes v1 and v2 of a graph G in wG.

If the string wG can be constructed with the above properties then we say that wG

represents G. We drop the superscripts representing the first and second instance of

a vertex in wG as it clear from the context.

Classes of graphs represented with pair-strings

Many classes of graphs can be represented with the string construction shown in

Section 3.3.2. Examples of classes of graphs represented with this construction are:

Cliques, Independent set and all graphs with four vertices. Below we give string

constructions for Cliques and Independent set.

Let G = (V,E) be a clique, where V = {v1, v2, . . . , vn} = ΣV . The string wG that

represents G is:

wG = (v1v2 . . . vn)(v1v2 . . . vn),

46

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

An alternate way of representing G as a string wG is:

wG = v1v1v2v2 . . . vnvn

Observe in Figure 3.4, the arcs connecting the first and second instances of every

v1 v2
##

v3 . . .
##

vn
##

v1 v2 v3 . . . vn

Figure 3.4: String construction wG for Cliques

symbol in ΣV is non nested with the arcs connecting the first and second instance of

the rest of the symbols in the string wG. Therefore, satisfying the condition that all

vertices share an edge between each other in a Clique.

Let G = (V,E) be an independent set, where V = {v1, v2, . . . , vn} = ΣV . The

string wG that represents G is:

wG = (v1v2 . . . vn)(v1v2 . . . vn)R,

where (w1w2 . . .wn)R = wnwn−1 . . .w1, i.e., the reverse of a string. A trivial, but

alternate way of representing G as a string wG is:

wG = (v1v2 . . . vn)R(v1v2 . . . vn)

Observe in Figure 3.5, the arcs connecting the first and second instances of every

47

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

symbol in ΣV is nested with the arcs connecting the first and second instances of

the rest of the symbols in the string wG. Therefore satisfying the condition of an

Independent set that no edge exists between any two vertices in the set.

v1
&&

v2
&&

v3 . . .
&&

vn
##
vn . . . v3 v2 v1

Figure 3.5: String construction wG of Independent Set

Although we have seen many classes of graphs being represented with strings using

the construction given in Section 3.3.2, there are graphs that cannot be represented

using this construction. For example, the Hamiltonian cycle G on five vertices shown

in Figure 3.6 cannot be represented as a string using this construction.

Suppose wG is the string representing the Hamiltonian cycle G. Recall that in

a pair string representing a graph, an edge (v1, v2) in the graph is represented by

having any one of the subsequences v1v1v2v2, v2v2v1v1, v1v2v1v2, v2v1v2v1 in wG, and

if there is no edge between the vertices v1, v2 then either v1v2v2v1 or v2v1v1v2 is a

subsequence of wG. In Figure 3.6 we see that (v1, v2) (v2, v3), (v3, v4), (v4, v5) and

(v5, v1) are the edges of the Hamiltonian cycle G. Therefore the following strings

cannot be subsequences of wG:

• v1v2v2v1 and v2v1v1v2

• v1v5v5v1 and v5v1v1v5

• v2v3v3v2 and v3v2v2v3

48

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

• v4v3v3v4 and v3v4v4v3

• v4v5v5v4 and v5v4v4v5

Also, since the following pairs of vertices (v1, v3), (v1, v4), (v2, v4) , (v2, v5), and

(v3, v5) are not connected by an edge in G, exactly one string from each item in the

below list is required to be a subsequence of wG.

• v1v3v3v1 or v3v1v1v3

• v1v4v4v1 or v4v1v1v4

• v2v4v4v2 or v4v2v2v4

• v2v5v5v2 or v5v2v2v5

• v3v5v5v3 or v5v3v3v5

Since it is not possible to satisfy each of the above subsequence requirement, a

Hamiltonian cycle G on five vertices cannot be represented with the proposed string

representation.

v1•

v5• v2•

v4• v3•

Figure 3.6: The Hamiltonian cycle G on five vertices is the smallest graph without a
string representation.

In Lemma 12, we show that a large family of graphs can be represented with

strings having shuffle properties.

49

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

We denote the concatenation of strings x1,x2, . . . ,xn by the product notation

Πn
i=1xi, that is, Πn

i=1xi = x1 ·x2 ·. . .·xn. Given a string w of even length, |w| = n = 2k,

we define l(w) to be the left half of w and r(w) to be the right half of w, i.e.,

l(w) = w1w2 . . .wk and (w) = wk+1wk+2 . . .wn. Thus, w = l(w)r(w), i.e., w is the

concatenation of its left and right halves.

A rooted tree is a tree with the root singled out. Thus, a rooted tree is represented

by a pair (T,R) where T is the tree, and R is the root. Given any node v in T , we let

Tv be the subtree of T rooted at v. In particular, the whole tree can be represented

as TR. We view our rooted trees as implicitly directed, where the direction is from

the root to the leaves.

Lemma 12. If G is a graph such that either G or Gc is isomorphic to a transitive

closure of a tree, then G can be represented with a string wG.

Proof. Let T be a rooted tree and consider its representation in Figure 3.7. Here

R is the root of T , and R1, R2, . . . , Rn are the children of R, with their respective

subtrees TR1 , TR2 , . . . , TRn . Note that since the tree is considered to be directed, R is

(for example) connected to every node in TR1 , but node R1 is not connected to node

R2.

R

R1

subtree TR1

R2

subtree TR2

. . . Rn

subtree TRn

Figure 3.7: Tree T rooted at R.

Let T̂ represent the transitive closure of T . Thus, T̂ has all the edges of T plus

50

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

given any node v in T , v has an edge to every node in Tv (except itself). In particular,

following the naming in Figure 3.7, R is connected to every node in T by an edge,

and Ri is connected to every node in TRi
by an edge, and so on. Note that if T were

not directed, its transitive closure would simply be the clique on its nodes. Since

it is directed, a node is connected to any other node on a path from it to some

leaf. However, once all edges are computed their direction is dropped, and so T̂ is

undirected.

We are going to show that given an undirected graph G such that either G or Gc

is isomorphic to some T̂ , the graph G can be represented with a string wG. We show

how to construct wG over ΣV . Note that we work with three graphs: G, T, T̂ , where

G is undirected, T is implicitly directed, and T̂ is obtained from T by a transitive

closure, and then the directions on the edges of T̂ are dropped.

Suppose that G is isomorphic to some T̂ , and throughout the construction keep

in mind Figure 3.7. We build wG = wT̂ inductively, and our procedure maintains the

following property for each subtree: each subtree Ti (i.e., the subtree rooted at Ri)

has a corresponding wT̂i
such that Σl(wT̂i

) = Σr(wT̂i
). Thus, exactly half of the symbols

of wT̂i
are in the left half (and therefore, exactly half of the symbols are in the right

half of wT̂i
). Note that the symbols do not necessarily occur in the same order in the

two halves.

We are going to construct wG = wT̂ by structural induction on T . In the basis

case T consists of a single node R, and wT̂ = RR. Note that the property l(wT̂) =

l(RR) = R = r(RR) = r(wT̂) is maintained. In the inductive step we build wT̂ as

follows:

wG = wT̂ = R
[
Πn
i=1l(wT̂i

)
]
R
[
Π1
i=nr(wT̂i

)
]
. (3.2)

51

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Note that Σl(wT̂) = Σr(wT̂), since inductively, for all i, Σl(wT̂i
) = Σr(wT̂i

), and one copy

of R is in l(wT̂) and the other in r(wT̂). Also note that the product inside the right

square brackets of (3.2) is given in reverse order.

Note that the first occurrence of R is to the left of all other symbols, and the second

occurrence of R falls in the middle of all the “subtrees”; thus any arc associated with

any vertex in the subtree rooted at R overlaps in the right way with the R-arc. On

the other hand, the subtrees associated with each R1, R2, . . . , Rn are such that any

two arcs from different subtrees are nested. See Figure 3.8.

R R1

%%
R2 . . .

$$
Rn

R Rn . . . R2 R1

Figure 3.8: Recursive construction of wG. Note that in the left half the Ri’s are given
in increasing order, and in the right half they are given in decreasing order.

We now give a small example of the construction. Consider the tree T in Fig-

ure 3.9. We are going to construct the corresponding wT̂ . We start with the tree

rooted at R1, where wT̂1
= R1R11R12R1R12R11, and wT̂2

= R2R21R22R2R22R21. We

now combine, inductively, the two sub-trees rooted at R1 and R2 into one tree rooted

at R:

wT̂ = Rl(wT̂1
)l(wT̂2

)Rr(wT̂2
)r(wT̂1

)

= RR1R11R12R2R21R22RR2R22R21R1R12R11

and now note that, for example, R2 and R12 are not connected in T̂ , and so arc (5, 9) is

52

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

nested under arc (4, 13), where the numbers indicate the position of the corresponding

symbol in wT̂ . On the other hand, R is connected to R11 in T̂ , and so are arcs (1, 8)

and (3, 14) are not nested.

R

R1

R11 R12

R2

R21 R22

Figure 3.9: Example of a small tree T .

Suppose now that Gc, where an edge is in Gc if and only if it is not in G, is

isomorphic to T̂ . The basis case, where Gc consists of a single node, is the same as

in the first case (G is isomorphic to T̂). The difference is in the inductive step.

Let wT̂ c
1
,wT̂ c

2
, . . . ,wT̂ c

n
be strings that correspond to the following subtrees:

T̂ c1 , T̂
c
2 , . . . , T̂

c
n, and hence they represent faithfully the connections in the correspond-

ing vertices in G. We now complete the construction of wG by adding the root R, so

that:

wG = wT̂ c = R(Πn
i=1wT̂ c

i
)R.

To see why this works note that if Gc is isomorphic to T̂ , then G is isomorphic to

T̂ c, and any arc in Πn
i=1wT̂ c

i
is nested under the arc between the R’s at the ends of

the string. This means that R is not connected to any of the nodes in T1, T2, . . . , Tn.

This ends our proof.

53

Chapter 4

A formal framework for

Stringology

4.1 Introduction

Many techniques have been developed over the years to prove properties of finite

strings, such as suffix arrays, border arrays, and decomposition algorithms such as

Lyndon factorization. However, there is no unifying theory or framework, formalizing

it. In this chapter, we propose a unifying theory of strings based on a three sorted

logical theory, which we call S. By engaging in this line of research, we hope to bring

the richness of the advanced field of Proof Complexity to Stringology, and eventually

create a unifying theory of strings. Most of the work in this chapter can be found in

our paper [Mhaskar and Soltys, 2015a].

The advantage of this approach is that proof theory integrates proofs and com-

putations; this can be beneficial to Stringology as it allows us to extract efficient

algorithms from proofs of assertions. More concretely, if we can prove in S a property

54

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

of strings of the form: “for all strings v, there exists a string u with property P ,”

i.e., ∃u ≤ I P (u, v), where |u| ≤ I, then we can mechanically extract an actual algo-

rithm which computes u for any given v. For example, suppose that we show that S

proves that every string has a certain decomposition; then, we can actually extract a

procedure from the proof for computing such decompositions.

4.2 Background

In predicate logic or single-sorted first order logic, a language (also called vocabulary)

L is a set consisting of constant symbols, function symbols, and predicate symbols.

If the equality predicate symbol, that is the symbol ‘=’ is in L, then it is always

interpreted as the true equality. The L-Terms and L-Formulas in predicate logic are

strings over the symbols of the language and the following additional symbols:

• An infinite set of variables.

• Logical connectives ¬,∧,∨; logical constants T,F (for False, True)

• Quantifiers ∀,∃ (for all, there exists)

• (,) (parentheses)

In particular, L-Terms are strings built from variables and function symbols. The

basic type of formulas also known as atomic formulas are strings built from the predi-

cate symbols applied to L-Terms, and logical constants. L-Formulas are strings built

from atomic formulas, logical connectives, quantifiers, and parentheses. A subfor-

mula β of a formula α is a substring of α that is also a formula. Note that the use of

parentheses in formulas is primarily for clarity and unambiguity.

55

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

L-Terms and L-Formulas are syntactic objects. The semantics of terms and for-

mulas is given by means of a structure and object assignment. A structureM consists

of a non empty set called the universe of discourse M (variables in L-Terms and L-

Formulas are intended to range over M), and an associated function (relation) for

each function (predicate) symbol in L. An object assignment τ is a map that maps

variables to objects in the universe of discourse. Terms are intended to represent

objects in the universe of discourse and formulas evaluate to logical constants true or

false. If a formula under the structure holds, that is the object assignment evaluates

the formula to true, then the structure is said to be a model for the given formula

and the formula is said to be valid.

A single sorted theory over a vocabulary L is a set of formulas over L which is

closed under logical consequence and universal closure. A multi sorted theory such as

a three sorted theory is an extension of the single sorted first-order logical theory. The

language of the three sorted theory consists of constant symbols, function symbols

and predicate symbols, for each sort. The infinite set of variables consists of three

different types, corresponding to the three different sorts. The terms of a three sorted

theory are of three different types corresponding to the three sorts. The formulas of

a three sorted theory are defined similar to the single sorted theory, with the only

difference being that the given predicate symbol could possibly be applied to terms

of any sort.

The structure for the three sorted theory consists of the universe of discourse,

and is a tuple consisting of three non empty sets corresponding to each sort and an

associated function (relation), with arguments belonging to any of the different sort,

for each function (relation) symbol.

56

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

We give here a brief introduction to the logical theory for completeness. For

a comprehensive understanding of Proof Complexity see [Cook and Nguyen, 2010]

which contains a complete treatment of the subject; we follow its methodology and

techniques for defining our theory S. We also use some rudimentary λ-calculus from

[Soltys and Cook, 2004] to define string constructors in our language.

4.3 Formalizing the theory of finite strings

In this chapter, we propose a three sorted theory that formalizes the reasoning about

finite strings. We call our theory S. The three sorts are indices, symbols, and strings.

We start by defining a convenient and natural language for making assertions about

strings.

4.3.1 The language of strings LS

Definition 13. LS, the language of strings, is defined as follows:

LS = [0index, 1index,+index,−index, ·index, divindex, remindex,

0symbol, σsymbol, condsymbol, ||string, estring;<index,=index<symbol,=symbol,=string]

The table below explains the intended meaning of each symbol.

57

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Formal Informal Intended Meaning

Index

0index 0 the integer zero

1index 1 the integer one

+index + integer addition

−index − bounded integer subtraction

·index · integer multiplication (we also just use juxtaposition)

divindex div integer division

remindex rem remainder of integer division

<index < less-than for integers

=index = equality for integers

Alphabet symbol

0symbol 0 default symbol in every alphabet

σsymbol σ unary function for generating more symbols

<symbol < ordering of alphabet symbols

condsymbol cond a conditional function

=symbol = equality for alphabet symbols

String

||string || unary function for string length

estring e binary fn. for extracting the i-th symbol from a string

=string = string equality

Note that in practice we use the informal language symbols as otherwise it would

be tedious to write terms, but the meaning will be clear from the context. When we

write i ≤ j we abbreviate the formula i < j ∨ i = j.

58

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

4.3.2 Syntax of LS

We use metavariables i, j, k, l, . . . to denote indices, metavariables a, b, c, . . . to denote

alphabet symbols, and metavariables u, v,w, . . . to denote strings. When a variable

can be of any type, i.e., a meta-meta variable, we write it as X, Y, Z We use I

to denote an index term, for example i+ j, S to denote a symbol term, for example

σσσ0 and T to denote string terms. Finally, we use Greek letters α, β, γ, . . ., to denote

formulas.

Definition 14. LS-Terms are defined by structural induction as follows:

1. Every index variable is a term of type index (index term).

2. Every symbol variable is a term of type symbol (symbol term).

3. Every string variable is a term of type string (string term).

4. If I1, I2 are index terms, then so are (I1◦I2) where ◦ ∈ {+,−, ·}, and div(I1, I2),

rem(I1, I2).

5. If S is a symbol term then so is σS.

6. If T is a string term, then |T | is an index term.

7. If I is an index term, and T is a string term, then e(T, I) is a symbol term.

8. All constant functions (0index, 1index,0symbol) are terms.

We employ the lambda operator λ for building terms of type string as we want

our theory to be constructive, and have a method for constructing bigger strings from

smaller ones. Also, note that a string w of length n, is indexed from zero to n − 1

59

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

in this chapter as opposed to the previous chapters, where we indexed symbols of w

starting from one to n.

Definition 15 (Bound and Free variables). An occurrence of a variable X in a

formula α is said to be bound iff it is in a subformula β of α of the form ∀Xβ or

∃Xβ. Otherwise the occurrence is free.

Definition 16 (Substitution). Let t1, t2 be terms, and α a formula. Then t2(t1/X)

is the result of replacing all occurrences of X in t2 by t1, and α(t1/X) is the result of

replacing all free occurrences of X in α by t1.

Definition 17 (String Constructor). Given a term I of type index, and given a term

S of type symbol, then the following is a term T of type string:

λi〈I, S〉. (4.1)

T is a term of type string, and is of length I and i occurs in S. The j-th symbol

of the string T is obtained by evaluating S at j, i.e., by evaluating S(j/i). Note

that, S(j/i) is the term obtained by replacing every free occurrence of i in S with j.

Since (4.1) is a λ-term, i is considered to be a bound variable and its value ranges

from [0..I − 1]. This concept is formalized in axiom B22. For examples of string

constructors see Section 4.3.4.

Definition 18. LS-Formulas are defined by structural induction as follows:

1. If I1, I2 are two index terms, then I1 < I2 and I1 = I2 are atomic formulas.

2. If S1, S2 are symbol terms, then S1 < S2 and S1 = S2 are atomic formulas.

3. If T1, T2 are two string terms, then T1 = T2 is an atomic formula.

60

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

4. If α, β are formulas (atomic or not), the following are also formulas:

¬α, (α ∧ β), (α ∨ β),∀Xα,∃Xα,

where X is a term.

We say that an index quantifier is bounded if it is of the form ∃i ≤ I or ∀i ≤ I,

where I is a term of type index and i does not occur free in I. Similarly, we say that

a string quantifier is bounded if it is of the form ∃u ≤ I or ∀u ≤ I, where I is an

index term, and means that |u| ≤ I and u does not occur in I.

Definition 19. Let ΣB
0 be the set of LS-formulas without string or symbol quantifiers,

where all index quantifiers (if any) are bounded. For i > 0, let ΣB
i (ΠB

i) be the set of LS

formulas of the form: once the formula is put in prenex form, there are i alternations

of bounded string quantifiers, starting with an existential (universal) one, and followed

by a ΣB
0 formula.

Given a formula α, and two terms S1, S2 of type symbol, cond(α, S1, S2) is a term of

type symbol. We want our theory to be strong enough to prove interesting theorems,

but not too strong so that proofs yield feasible algorithms. When a theory is strong

(say the axioms express strong properties, such as correctness of f(α) = t, where f

is a function computing a satisfying assignment t for formula α, when it exists), then

the function witnessing the existential quantifiers will be of a higher complexity. For

this reason we will restrict the α in the cond(α, S1, S2) to be ΣB
0 . Thus, given such

an α and assignments of values to its free variables, we can evaluate the truth value

of α, and output the appropriate Si, in polytime – see Lemma 22.

The alphabet symbols are as follows, 0, σ0, σσ0, σσσ0, . . ., that is, the unary

61

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

function σ allows us to generate as many alphabet symbols as necessary. We are going

to abbreviate these symbols as σ0, σ1, σ2, σ3, In a given application in Stringology,

an alphabet of size three would be given by Σ = {σ0, σ1, σ2}, where σ0 < σ1 < σ2,

inducing a standard lexicographic ordering. We make a point of having an alphabet

of any size in the language, rather than a fixed constant size alphabet, as this allows

us to formalize arguments of the type: given a particular structure describing strings,

show that such strings require alphabets of a given size (see [Buss and Soltys, 2013]).

4.3.3 Semantics of LS

We denote a structure for LS with M. A structure is a way of assigning values to the

terms, and truth values to the formulas. We base our presentation of the semantics

of LS on [Cook and Nguyen, 2010, §II.2.2]. We start with a non-empty set M called

the universe. The variables in any LS are intended to range over M . Since our theory

is three sorted, the universe M = (I,Σ,S), where I denotes the set of indices, Σ the

set of alphabet symbols, and S the set of strings.

We start by defining the semantics for the three 0-ary (constant) function symbols:

0M
index ∈ I, 1M

index ∈ I, 0M
symbol ∈ Σ,

for the two unary function symbol:

σM
symbol : Σ −→ Σ, ||Mstring : S −→ I,

62

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

for the six binary function symbols:

+M
index : I2 −→ I, −M

index : I2 −→ I, ·Mindex : I2 −→ I

divM
index : I2 −→ I, remM

index : I2 −→ I, eMstring : S × I −→ Σ.

With the function symbols defined according to M, we now associate relations with

the predicate symbols, starting with the five binary predicates:

<M
index⊆ I2, =M

index⊆ I2, <M
symbol⊆ Σ2, =M

symbol⊆ Σ2, =M
string⊆ S2,

and finally we define the conditional function as follows: condM
symbol(α, S1, S2) evalu-

ates to SM
1 if αM is true, and to SM

2 otherwise. Note that =M must always evaluate

to true equality for all types; that is, equality is hardwired to always be equality.

However, all other function symbols and predicates can be evaluated in an arbitrary

way (that respects the given arities).

Definition 20. An object assignment τ for a structure M is a mapping from variables

to the universe M = (I,Σ,S), that is, M consists of three sets that we call indices,

alphabet symbols, and strings.

The three sorts are related to each other in that S can be seen as a function from

I to Σ, i.e., a given u ∈ S is just a function u : I −→ Σ. In Stringology we are

interested in the case where a given u may be arbitrarily long but it maps I to a

relatively small set of Σ: for example, binary strings map into {0, 1} ⊂ Σ. Since the

range of u is relatively small this leads to interesting structural questions about the

mapping: repetitions and patterns.

63

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

We start by defining τ on terms: τM[σ]. Note that if m ∈M and X is a variable,

then τ(m/X) denotes the object assignment τ but where we specify that the variable

X must evaluate to m.

We define the evaluation of a term under M and τ , by structural induction on the

definition of terms given in Section 4.3.1. Suppose I is an index term, we denote its

evaluation as IM[τ]. First, XM[τ] is just τ(X), for each variable X. We must now

define object assignments for all the functions. Recall that I, I1, I2 are index terms,

S is a symbol term and T is a string term.

(I1 ◦index I2)M[τ] = (IM1 [τ] ◦Mindex I
M
2 [τ]),

where ◦ ∈ {+,−, ·} and

(div(I1, I2))M[τ] = divM(IM1 [τ], IM2 [τ]),

(rem(I1, I2))M[τ] = remM(IM1 [τ], IM2 [τ]).

and for symbol terms we have:

(σS)M[τ] = σM(SM[τ]).

Finally, for string terms:

|T|M[τ] = |(TM[τ])|.

(e(T, I))M[τ] = eM(TM[τ], IM[τ]).

64

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Given a formula α, the notation M � α[τ], which we read as “M satisfies α under

τ” is also defined by structural induction. We start with the basis case:

M � (S1 <symbol S2)[τ] ⇐⇒ (SM
1 [τ], SM

2 [τ]) ∈<M
symbol .

We deal with the other atomic predicates in a similar way:

M � (I1 <index I2)[τ] ⇐⇒ (IM1 [τ], IM2 [τ]) ∈<M
index,

M � (I1 =index I2)[τ] ⇐⇒ IM1 [τ] = IM2 [τ],

M � (S1 =symbol S2)[τ] ⇐⇒ SM
1 [τ] = SM

2 [τ],

M � (T1 =string T2)[τ] ⇐⇒ TM
1 [τ] = TM

2 [τ].

Now we deal with Boolean connectives:

M ` (α ∧ β)[τ] ⇐⇒ M � α[τ] and M � β[τ],

M ` ¬α[τ] ⇐⇒ M 2 α[τ],

M ` (α ∨ β)[τ] ⇐⇒ M � α[τ] or M � β[τ].

Finally, we show how to deal with quantifiers, where the object assignment τ plays a

crucial role:

M � (∃Xα)[τ] ⇐⇒ M � α[τ(m/X)] for some m ∈M,

M � (∀Xα)[τ] ⇐⇒ M � α[τ(m/X)] for all m ∈M.

65

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Definition 21. Let S = (N,Σ,S) denote the standard model for strings, where N =

{0, 1, 2, . . .} is the standard set of natural numbers, Σ = {σ0, σ1, σ2, . . .} where the

alphabet symbols are the ordered sequence σ0 < σ1 < σ2, . . ., and where S is the set

of functions u : I −→ Σ, and where all the function and predicate symbols get their

standard interpretations.

Lemma 22. Given any formula α ∈ ΣB
0 , and a particular object assignment τ , we

can verify S � α[τ] in polytime in the lengths of the strings and values of the indices

in α.

Proof. Let t, t1, t2 denote terms of any type (index, symbol or strings). We first show

that evaluating a term t, i.e., computing tS[τ], can be done in polytime. We do this

by structural induction on t. If t is just a variable then there are three cases:

• t is equal to i an index variable. Therefore iS[τ] = τ(i) ∈ N.

• t is equal to a a symbol variable. Therefore, aS[τ] = τ(a) ∈ Σ.

• t is equal to u a string variable. Therefore, uS[τ] = τ(u) ∈ S.

Note that the assumption is that computing τ(X) is for free, as τ is given as a table

which states which free variable gets replaced by what concrete value. Therefore

evaluating t in the base case when it is just a variable is done in constant time.

When t is a term involving function symbols. Recall that all index values are

assumed to be given in unary, and all the function operations we have are clearly

polytime in the values of the arguments (index addition, subtraction, multiplication,

etc.). Therefore, evaluating t in this case is done in polytime in the values of the

arguments. We therefore conclude that evaluating any term t can be done in polytime.

66

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Consider evaluating the atomic formulas (t1 < t2)S[τ] and (t1 = t2)S[τ], where

t1 and t2 are terms of any type (index, symbols or strings). We already established

that tS1[τ] and tS2[τ] can be computed in polytime. Comparing integers can be done

in polytime, and the same holds for other atomic formulas. Therefore, evaluating

atomic formulas can be done in polytime. Now, we consider evaluating formulas with

Boolean connectives ∧,∨. Since performing these Boolean operations can be done

in polytime, we conclude that evaluating formulas with Boolean connectives can be

done in polytime.

Finally, we consider quantification; but we are only allowed bounded index quan-

tification: (∃i ≤ tα)S[τ], and (∃i ≤ tα)S[τ]. This is equivalent to computing:

tS[τ]∨
j=0

αS[τ(j/i)], and

tS[τ]∧
j=0

αS[τ(j/i)].

Since this can be done in polytime, we conclude that evaluating any formula can be

done in polytime.

The point of Section 4.3 is to show that our theory is completely constructive,

that is, our strings can be built from the ground up. For example, we cannot build

a string with the lambda constructor that encodes all the Turing machines that halt

on all input, though such a string exists. This is the point of this meticulous theory;

to have a robust foundation for the field of Stringology. Stringologists study strings,

but where do they come from? We show where they come from.

67

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

4.3.4 Examples of string constructors

The string 000 can be represented by:

λi〈1 + 1 + 1,0〉.

Given an integer n, let n̂ abbreviate the term 1 + 1 + · · ·+ 1 consisting of n many 1s.

Using this convenient notation, a string of length 8 of alternating 1s and 0s can be

represented by:

λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉. (4.2)

Note that this example illustrates that indices are going to be effectively encoded

in unary; this is fine as we are proposing a theory for strings, and so unary indices

are an encoding that is linear in the length of the string. The same point is made

in [Cook and Nguyen, 2010], where the indices are assumed to be encoded in unary,

because the main object under investigation are binary strings, and the complexity

is measured in the lengths of the strings, and unary encoded indices are proportional

to those lengths.

Also note that there are various ways to represent the same string; for example,

the string given by (4.2) can also be written as:

λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉. (4.3)

For convenience, we define the empty string ε as follows:

ε := λi〈0,0〉.

68

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Let u be a binary string, and suppose that we want to define ū, which is u with

every 0 (denoted 0) flipped to 1 (denote σ0), and every 1 flipped to 0. We can define

ū as follows:

ū := λi〈|u|, cond(e(u, i) = 0, σ0,0〉.

We can also define a string according to properties of positions of indices; suppose

we wish to define a binary string of length n which has one in all positions which are

multiples of 3:

v := λi〈n̂, cond(∃j ≤ n(i = j + j + j), σ0,0)〉.

Note that both ū and v are defined with the conditional function where the formula

α conforms to the restriction: variables are either free (like u in ū), or, if quantified,

all such variables are bounded and of type index (like j in v).

Note that given a string w, |w| is its length. However, we number the positions

of a string starting at zero, and hence the last position is |w| − 1. For j ≥ |w| we are

going to define a string to be just 0s.

Suppose we want to define the reverse of a string, namely if u = u0u1 . . .un−1,

then its reverse is uR = un−1un−2 . . .u0. Then,

uR := λi〈|u|, e(u, (|u| − 1)− i)〉,

and the concatenation of two strings, which we denote as “·”, can be represented as

follows:

u · v := λi〈|u|+ |v|, cond(i < |u|, e(u, i), e(v, i− |u|))〉. (4.4)

69

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

4.3.5 Axioms of the theory S

We assume that we have the standard equality axioms (defining that equality is an

congruence relation with respect to the elements, function and predicate symbols in

the language) which assert that equality is true equality — see [Buss, 1998, §2.2.1],

and therefore we don’t give those axioms explicitly.

Since we are going to use the rules of Gentzen’s calculus, LK, we present the

axioms as Gentzen’s sequents, that is, they are of the form Γ → ∆, where Γ,∆ are

coma-separated lists of formulas. Specifically, the sequent is of the form:

α1, α2, . . . , αn → β1, β2, . . . , βm,

where n or m (or both) may be zero, that is, Γ or ∆ (or both) may be empty. The

semantics of sequents is as follows: a sequent is valid if for any structure M that

satisfies all the formulas in Γ, satisfies at least one formula in ∆. Using the standard

Boolean connectives this can be state as follows: ¬
∧
i αi ∨

∨
j βj, where 1 ≤ i ≤ n

and 1 ≤ j ≤ m. To prove a formula α we need to derive → α and to refute it we

need to derive α→.

The index axioms are the same as 2-BASIC in [Cook and Nguyen, 2010, pg. 96],

plus we add four more axioms (B7 and B15, B8 and B16) to define bounded sub-

traction, as well as division and remainder functions. The 2-BASIC axioms: B1, B2,

defines that there are no negative numbers and that the successor function is a bijec-

tion. The axioms B3, B4, and B5, B6 provide recursive definitions of addition and

multiplication respectively. Axioms B9, B10 provide basic properties of ≤ and the

axioms B12 expresses that the elements of the index sort are totally ordered. Finally

70

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

the axiom B11 defines that 0 is the minimum number, B13 defines discreteness, B14

defines the predecessor function.

A formula α is equivalent to a sequent → α, and so, for readability we sometimes

mix the two.

Index Axioms

B1. i+ 1 6= 0 B9. i ≤ j, j ≤ i→ i = j

B2. i+ 1 = j + 1→ i = j B10. i ≤ i+ j

B3. i+ 0 = i B11. 0 ≤ i

B4. i+ (j + 1) = (i+ j) + 1 B12. i ≤ j ∨ j ≤ i

B5. i · 0 = 0 B13. i ≤ j ↔ i < j + 1

B6. i · (j + 1) = (i · j) + i B14. i 6= 0→ ∃j ≤ i(j + 1 = i)

B7. i ≤ j, i+ k = j → j − i = k B15. i 6≤ j → j − i = 0

B8. j 6= 0→ rem(i, j) < j B16. j 6= 0→ i = j · div(i, j) + rem(i, j)

The alphabet axioms express that the alphabet is totally ordered according to

“<” and define the function cond.

Alphabet Axioms

B17. a � σa

B18. a < b, b < c→ a < c

B19. α→ cond(α, a, b) = a

B20. ¬α→ cond(α, a, b) = b

Note that α in cond is a formula with the following restrictions: it only allows

bounded index quantifiers and hence evaluates to true or false once all free variables

have been assigned values. Hence cond always yields the symbol term S1 or the

symbol term S2, according to the truth value of α.

71

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Note that the alphabet symbol type is defined by four axioms, B17–B20, two of

which define the cond function. These four axioms define symbols to be ordered “place

holders” and nothing more. This is consistent with alphabet symbols in classical

Stringology, where there are no operations defined on them (for example, we do not

add or multiply alphabet symbols).

Finally, these are the axioms governing strings:

String Axioms

B21. |λi〈I, S〉| = I

B22. j < I → e(λi〈I, S〉, j) = S(j/i)

B23. |u| ≤ j → e(u, j) = 0

B24. |u| = |v|,∀i < |u|e(u, i) = e(v, i)→ u = v

Note that axioms B22–24 define the structure of a string. In our theory, a string

can be given as a variable, or it can be constructed. Axiom B21 defines the length

of the constructed strings, and axiom B22 shows that if j is less than the length of

the string, then the symbol in position j is given by substituting j for all the free

occurrences of i in S; this is the meaning of S(j/i). On the other hand, B23 says

that if j is greater or equal to the length of a string, then e(u, j) defaults to 0. The

last axioms, B24, says that if two strings u and v have the same length, and the

corresponding symbols are equal, then the two strings are in fact equal.

In axiom B24 there are three types of equalities, from left to right: index, symbol,

and string, and so B24 is the axiom that ties all three sorts together. Note that

formally strings are infinite ordered sequences of alphabet symbols. But we conclude

that they are equal based on comparing finitely many entries (∀i < |u|e(u, i) =

e(v, i)). This works because by B23 we know that for i ≥ |u|, e(u, i) = e(v, i) = 0

72

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

(since |u| = |v| by the assumption in the antecedent). A standard string of length n

is an object of the form:

σi0 , σi1 , . . . , σin−1 ,0,0,0, . . . ,

i.e., an infinite string indexed by the natural numbers, where there is a position so

that all the elements greater than that position are 0.

4.3.6 The rules of S

We use the Gentzen’s predicate calculus, LK, as presented in [Buss, 1998].

Weak structural rules

exchange-left:
Γ1, α, β,Γ2 → ∆

Γ1, β, α,Γ2 → ∆
exchange-right:

Γ→ ∆1, α, β,∆2

Γ→ ∆1, β, α,∆2

contraction-left:
α, α,Γ→ ∆

α,Γ→ ∆
contraction-right:

Γ→ ∆, α, α

Γ→ ∆, α

weakening-left:
Γ→ ∆

α,Γ→ ∆
weakening-right:

Γ→ ∆

Γ→ ∆, α

Cut rule

Γ→ ∆, α α,Γ→ ∆

Γ→ ∆

Rules for introducing connectives

¬-left:
Γ→ ∆, α

¬α,Γ→ ∆
¬-right:

α,Γ→ ∆

Γ→ ∆,¬α

∧-left:
α, β,Γ→ ∆

α ∧ β,Γ→ ∆
∧-right:

Γ→ ∆, α Γ→ ∆, β

Γ→ ∆, α ∧ β

73

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

∨-left:
α,Γ→ ∆ β,Γ→ ∆

α ∨ β,Γ→ ∆
∨-right:

Γ→ ∆, α, β

Γ→ ∆, α ∨ β

Rules for introducing quantifiers

∀-left:
α(t),Γ→ ∆

∀Xα(X),Γ→ ∆
∀-right:

Γ→ ∆, α(b)

Γ→ ∆,∀Xα(X)

∃-left:
α(b),Γ→ ∆

∃Xα(X),Γ→ ∆
∃-right:

Γ→ ∆, α(t)

Γ→ ∆,∃Xα(X)

Note that b must be free in Γ,∆.

Induction rule

Ind:
Γ, α(i)→ α(i+ 1),∆

Γ, α(0)→ α(I),∆

where i does not occur free in Γ,∆, and I is a term of type index. By restricting the

quantifier structure of α, we control the strength of this induction. We call ΣB
i -Ind

to be the induction rule where α is restricted to be in ΣB
i . We are mainly interested

in ΣB
i -Ind where i = 0 or i = 1, as otherwise, it might not be possible to compute

the actual value of the existential quantifier feasibly.

Definition 23. Let Si to be the set of formulas (sequents) derivable from the axioms

B1-24 using the rules of LK, where the α formula in cond is restricted to be in ΣB
0

and where we use ΣB
i -Ind.

Theorem 24 (Cut-Elimination). If Φ is a Si proof of a formula α, then Φ can always

be converted into a Φ′ Si proof where the cut rule is applied only to formulas in ΣB
i .

We do not prove Theorem 24, as it is based on the same type of reasoning given

in [Soltys, 1999].

74

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

The point of the Cut-Elimination Theorem is that in any Si proof we can always

limit all the intermediate formulas to be in ΣB
i , i.e., we do not need to construct

intermediate formulas whose quantifier complexity (number of alternations of ∀ and

∃ quantifiers) is more than that of the conclusion.

As an example of the use of Si we outline an S0 proof of the equality of (4.2)

and (4.3). First note that by axiom B21 we have that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = 8̂

|λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉| = 2̂ · 4̂,

and by axioms B1-16 we can prove that 8̂ = 2̂ · 4̂ as follows,

2̂ · 4̂ = 2̂ · (3̂ + 1)

= (2̂ · 3̂) + 2̂ (⇐ from Axiom B6)

= 2̂ · (2̂ + 1) + 2̂

= (2̂ · 2̂) + 2̂ + 2̂ (⇐ from Axiom B6)

= 2̂ · (1 + 1) + 2̂ + 2̂

= (2̂ · 1) + 2̂ + 2̂ + 2̂ (⇐ from Axiom B6)

= 2̂ · (0 + 1) + 2̂ + 2̂ + 2̂

= (2̂ · 0) + 2̂ + 2̂ + 2̂ + 2̂ (⇐ from Axiom B6)

= 0 + 2̂ + 2̂ + 2̂ + 2̂ (⇐ from Axiom B5)

= 2̂ + 2̂ + 2̂ + 2̂ (⇐ from Axiom B3 and

commutative property of +)

75

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 (⇐ Expansion of 2̂)

Since, 8̂ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, we can conclude by transitivity of equality

(equality is always true equality) that 8̂ = 2̂ · 4̂ and :

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = |λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉|.

Now we have to show that:

∀i < 8̂(cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (4.5)

and then, using axiom B24 and some cuts on ΣB
0 formulas we can prove that in fact

the two terms given by (4.2) and (4.3) are equal.

In order to prove (4.5) we show that:

i < 8̂ ∧ (cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (4.6)

and then we can introduce the quantifier with ∀-intro right. We prove (4.6) by proving:

i < 8̂→ cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0) (4.7)

Now to prove (4.7) we have to show that:

S0 ` ∃j ≤ i(j + j = i)↔ ¬∃j ≤ i(j + j = i+ 1),

Then, using B19 and B20 we can show (4.7).

76

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

If we prove a formula in a theory, say ∃u ≤ Iα(u, v), then the function f which

on input v outputs u, that is f(u) = v, is called the witnessing function.

4.4 Witnessing theorem for S

Recall that S1 is our string theory restricted to ΣB
1 -Ind. For convenience, we some-

times use the notation ~v, to denote several string variables, i.e., ~v = v1, v2, . . . , v`.

We now prove the main theorem for this chapter, showing that if we manage to

prove in S1 the existence of a string u with some given properties, then in fact we

can construct such a string with a polytime algorithm.

Theorem 25 (Witnessing). If S1 ` ∃~u ≤ Iα(u,~v), then it is possible to compute ~u

in polynomial time in the total length of all the string variables in ~v and the value of

all the free index variables in α.

Proof. We give an outline of the proof of the Witnessing theorem. In order to simplify

the proof we show it for S1 ` ∃u ≤ Iα(u,~v), i.e., u is a single string variable rather

than a set, i.e., rather than a block of bounded existential string quantifiers. The

general proof is very similar.

We argue by induction on the number of lines in the proof of ∃u ≤ Iα(u,~v) that

u can be witnessed by a polytime algorithm. Each line in the proof is either an

axiom (see Section 4.3.5), or follows from previous lines by the application of a rule

(see Section 4.3.6). By Theorem 24 we know that all the formulas in the S1 proof

of ∃u ≤ Iα(u,~v) can be restricted to be ΣB
1 . It is this fundamental application of

Cut-Elimination that allows us to prove our Witnessing theorem.

The Basis Case is simple as the axioms have no string quantifiers. In the induction

77

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

step the two cases are ∃-right and the induction rule. In the former case we have:

∃-right:
|T | ≤ I,Γ→ ∆, α(T,~v,~i)

Γ→ ∆,∃u ≤ Iα(u,~v,~i)

which is the ∃-right rule adapted to the case of bounded string quantification, where

T is a string term and I is an index term. We use ~v to denote all the free string

variables, and ~i to denote explicitly all the free index variables. Then u is witnessed

by the function f(~v,~i) and when f is evaluated at ~A and ~b we get u, that is:

f(~A,~b) := T S[τ(~A/~v)(~b/~i)].

By Lemma 22 we know that we can evaluate any LS-term in S in polytime in the

length of the free string variables and the values of the index variables. Therefore,

f is polytime as evaluating T under S and any object assignment can by done in

polytime.

For the induction case we restate the rule as follows in order to make all the free

variables more explicit:

u ≤ I, α(u,~v, i,~j)→ ∃u ≤ Iα(u,~v, i+ 1,~j)

u ≤ I, α(u,~v, 0,~j)→ ∃u ≤ Iα(u,~v, I ′,~j)

where ~j denotes all the free variables and I ′ is an index term. We ignore Γ,∆ for

clarity, and we ignore existential quantifiers on the left side, as it is quantifiers on

the right side that we are interested in witnessing. The algorithm is clear: suppose

we have a u such that α(u,~v, 0,~v) is satisfied. Use top of rule to compute u’s for

i = 1, 2, . . . , IS[τ].

78

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

4.5 Application of S to Stringology

In this section we state some basic Stringology constructions as LS formulas.

Prefix, Suffix and Subwords

The prefix, suffix, and subword are basic constructs of a given string v. The LS-

term for a prefix of length i is given by λk〈i, e(v, k)〉, and a LS-term for a suffix of

length i is given by λk〈i, e(v, |v| − i + 1 + k)〉, and since any subword of length i,

is a prefix (of the same length) of some suffix of length j, the LS-term is given by

λl〈i, e(λk〈j, e(v, |v| − j + 1 + k)〉, l)〉.

We can state that u is a prefix of v with the following ΣB
0 predicate:

pre(u, v) := ∃i ≤ |v|(u = λk〈i, e(v, k)〉),

The predicate for suffix suf(u, v) is defined similarly and is given by:

suf(u, v) := ∃i ≤ |v|(u = λk〈i, e(v, |v| − i+ 1 + k)〉),

Finally, the predicate for subword sub(u, v) is given by:

sub(u, v) := ∃i, j ≤ |v|(u = λl〈i, e(λk〈j, e(v, |v| − j + 1 + k)〉, l)〉)

Counting symbols

Suppose that we want to count the number of occurrences of a particular symbol σi

in a given string u; this can be defined with the notation (u)σi , but we need to define

79

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

this function with a new axiom (as the language given thus far is not suitable for

defining (u)σi with a term). First, define the projection of a string u according to σi

as follows:

u|σi := λk〈|u|, cond(e(u, k) = σi, σ1, σ0)〉.

That is, u|σi is effectively a binary string with 1s where u had σi, and 0s everywhere

else, and of the same length as u. Thus, counting σi’s in u is the same as counting

1’s in u|σi . Given a binary string v, we define (v)σ1 as follows:

C1. |v| = 0→ (v)σ1 = 0

C2. |v| ≥ 1, e(v, 0) = σ0 → (v)σ1 = (λi〈|v| − 1, e(v, i+ 1)〉)σ1

C3. |v| ≥ 1, e(v, 0) = σ1 → (v)σ1 = 1 + (λi〈|v| − 1, e(v, i+ 1)〉)σ1

Having defined (u)σ1 with axioms C1-3, and u|σi as a term in LS, we can now define

(u)σi as follows: (u|σi)σ1 . Note that C1-3 are ΣB
0 sequents.

Borders

Let Brd(v, i) be the border predicate which asserts that the string v has a border (see

Section 1.4) of size i. We define the border predicate as:

Brd(v, i) := λk〈i, e(v, k)〉 = λk〈i, e(v, |v| − i+ 1 + k)〉 ∧ i < |v|,

MaxBrd(v, i) is the predicate that states that i is the largest possible border size:

MaxBrd(v, i) := Brd(v, i) ∧ (¬Brd(v, i+ 1) ∨ |u| = |v| − 1).

80

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Periodicity and Periodicity Lemma

The Periodicity Lemma states the following: Suppose that p and q are two periods

(see Section 1.4) of string v, |v| = n, and d = gcd(p, q). If p + q ≤ n + d, then d is

also a period of v.

Let Prd(v, p) be true if p is a period of the string v. Note that u is a border of

a string v if and only if p = |v| − |u| is a period of v. Using this observation we can

define the predicate for a period as a ΣB
0 formula:

Prd(v, p) := ∃i < |v|(p = |v| − i ∧ Brd(v, i))

We can state with a ΣB
0 formula that d = gcd(i, j): rem(d, i) = rem(d, j) = 0, and

rem(d′, i) = rem(d′, j) = 0 ⊃ d′ ≤ d. We can now state the Periodicity Lemma as the

sequent PL(v, p, q) where all formulas are ΣB
0 as:

Prd(v, p),Prd(v, q),∃d ≤ p(d = gcd(p, q) ∧ p+ q ≤ |v|+ d)→ Prd(v, d).

81

Chapter 5

Future Directions and Open

Problems

We conclude the thesis with future directions related to each chapter followed by a

list of open problems in the area.

5.1 Square-free Strings over Alphabet Lists

In the area of avoiding repetitions in strings and studying admissibility of the class

L3 in particular, we present various approaches to proving the conjecture that L3 is

admissible ranging from patterns in strings to Proof Complexity. We finally conclude

this section with a list of open problems related to this area.

The work presented in Sections 5.1.1 and 5.1.2 has recently been accepted for

publication at the Prague Stringology Conference (PSC) 2016.

82

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

5.1.1 Offending Suffix Pattern

In this section, we introduce a pattern that we call an “offending suffix”, and we

show in Lemma 26 that such suffixes characterize in a meaningful way strings over

alphabet lists with squares.

Let C(n), an offending suffix, be a pattern defined recursively:

C(1) = X1a1X1, and for n > 1,

C(n) = XnC(n− 1)anXnC(n− 1).

(5.1)

To be more precise, given a morphism, h : ∆∗ → Σ∗, we call h({a1, a2, . . . , an}) ⊆ Σ

the pivots of h. When all the variables in the set {X1,X2, . . . ,Xn} map to ε, we get

the pattern for the shortest possible offending suffix for a list L ∈ Ln. We call this

pattern the shortest offending suffix, and employ the notation:

Cs(n) = a1a2a1 . . . an . . . a1a2a1. (5.2)

Note that |Cs(n)| = 2|Cs(n− 1)|+ 1, where |Cs(1)| = 1, and so, |Cs(n)| = 2n − 1.

As we are interested in offending suffixes for L3, we consider mainly:

C(3) = X3X2X1a1X1a2X2X1a1X1a3X3X2X1a1X1a2X2X1a1X1,

Cs(3) = a1a2a1a3a1a2a1,

(5.3)

and observe that Cs(3)ai, for i = 1, 2, 3, all map to strings with squares.

Pattern C in (5.1) bears great resemblance to Zimin words (1.2). Comparing (1.2)

to (5.1), one can see that mapping Xi to ai in (1.2) yields the same string as mapping

83

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Xi to ε in (5.1). In particular, the shortest offending suffix Cs(n) can be obtained

from the Zimin word Zn by mapping Xi’s to ai’s. Despite the similarities, we prefer to

introduce this new pattern, as the advantage of C(n) is that it allows for the succinct

expression of the most general offending suffix possible.

Given a list L, let h : ∆∗ → Σ∗L, be a morphism. We say that h respects a

list L = L1, L2, . . . , Ln, if h yields a string over L. So, for example, an h that maps

each X1,X2,X3 to ε, and also maps a1 7→ a, a2 7→ b, a3 7→ c, yields h(C(3)) = abacaba.

Such an h respects, for example, a list L = {a, e}, {a, b}, {a, d}, {c}, {a, e}, {b, c, d}, {a}.

The main result of the paper, a characterization of squares in strings over lists in

terms of offending suffixes, follows.

Lemma 26. Suppose that w = w1w2 . . .wi−1 is a square-free string over a list L =

L1, L2, . . . , Li−1, where L ∈ L3. Then, the pivots Li = {a, b, c} force a square on w

iff w has a suffix conforming to the offending suffix C(3).

Proof. The proof is by contradiction. We assume throughout that our lists are from

the class L3.

(⇐) Suppose w = w1w2 . . .wi−1 has a suffix conforming to the offending suffix C(3),

where a, b, c are the pivots. Clearly, if we let Li = {a, b, c}, then each wa,wb,wc has

a square, and hence by definition Li forces a square on w.

(⇒) Suppose, on the other hand, that Li = {a, b, c} forces a square on the word w

over L = L1, L2, . . . , Li−1. We need to show that w must have a suffix that conforms

to the pattern C(3), with the symbols a, b, c as the pivots. Since Li forces a square,

we know that wa,wb,wc has a square for a suffix (as w itself was square-free). Let

tata,ubub, vcvc be the squares created by appending a, b and c to w, respectively.

Here t,u, v are treated as subwords of w.

84

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

As all three squares tata,ubub, vcvc are suffixes of the string w, it follows that

t,u, v must be of different sizes, and so we can order them without loss of generality

as follows: |tat| < |ubu| < |vcv|. It also follows from the fact that all three are

suffixes of w, the squares from left-to-right are suffixes of each other. Hence, while

t may be empty, we know that u and v are not. We now consider different cases of

the overlap of tat,ubu, vcv, showing in each case that the resulting string has a suffix

conforming to the pattern C(3). Note that it is enough to consider the interplay of

ubu, vcv, as then the interplay of tat,ubu is symmetric and follows by analogy. Also

keep in mind that the assumption is that w is square-free; this eliminates some of the

possibilities as can be seen below.

1. v = pubu as shown in Figure 5.1, where p is a proper non-empty prefix of

v. Since w is square-free, we assume that pubu has no square, and therefore

p 6= u and p 6= b. From this, we get vcv = pubucpubu. Therefore, this case is

possible.

ubup

v c v

Figure 5.1: v = pubu

2. v = ubu as shown in Figure 5.2. Then, vcv = ubucubu. This case is also

possible.

3. cv = ubu as shown in Figure 5.3, then u1 = c. Let u = cs, where s is a proper

non-empty suffix of u, then vcv = csbcsccsbcs. The subword ‘cc’ indicates a

square in w. This is a contradiction and therefore this case is not possible.

85

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

ubu

v c v

Figure 5.2: v = ubu

ubu

v c v

Figure 5.3: cv = ubu

4. vcv = qubu and |cv| < |ubu| as shown in Figure 5.4, where q is a proper prefix

of vcv. Let u = pcs, where p, s are proper prefix and suffix of u. Therefore

v = sbpcs. Since p is also a proper suffix of v, one of the following must be

true:

ubscpq

v c v

oo u //

Figure 5.4: vcv = ngbu and |cv| < |ubu|

(a) |s| = |p| and so s = p. Since s = p, v = sbscs and vcv = sbscscsbscs.

The subword ‘scsc’, indicates a square in w. This is a contradiction and

therefore this case is not possible.

(b) |s| > |p| and so s = rp, where r is a proper non-empty prefix of s. Substi-

tuting rp for s, we have v = sbpcs = rpbpcrp and vcv = rpbpcrpcrpbpcrp.

The subword ‘crpcrp’ indicates a square in w. This is a contradiction and

86

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

therefore this case is not possible.

(c) |s| < |p| and so p = rs, where r is a proper non-empty prefix of p. Sub-

stituting rs for p, we have v = sbpcs = sbrscs and vcv = sbrscscsbrscs.

The subword ‘scsc’ indicates a square in w. This is a contradiction and

therefore this case is not possible.

From the above analysis, we can conclude that for Li to force a square on a square-

free string w, it must be the case that v = zubu, where z is a prefix (possibly empty)

of v and z 6= u and z 6= b.

Similarly, we get u = ytat, where y is a prefix (possibly empty) of u and y 6=

t and z 6= y. Substituting values of u in v, we get v = zytatbytat and vcv =

zytatbytatczytatbytat. But vcv, is a suffix of the square-free string w, and it conforms

to the offending suffix C(3) where the elements a, b, c are the pivots.

Therefore, we have shown that if an alphabet Li forces a square in a square-free

string w, then w has a suffix conforming to the offending suffix C(3).

From (5.3), we get the size of an offending suffix for lists L ∈ L3, and it is given

by:

|C(3)| = 2|X3|+ 4|X2|+ 8|X1|+ 7 (5.4)

and therefore the size of the shortest offending suffix for lists L ∈ L3 is seven. From

these observations we have the following Lemma.

Corollary 27. If L is a list in L3 of length at most 7, then L is admissible.

Proof. It follows from Lemma 26, and the fact that the shortest possible offending

suffix is of length, |Cs(3)| = 7. (See equation (5.3).)

87

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Corollary 28. If L ∈ LΣn, where |L| ≤ 2n − 1, then L is admissible.

Proof. The length of the shortest offending suffix Cs(n) is equal to 2n − 1 (See equa-

tion (5.2) and the discussion following it). Although Lemma 26 relates to lists L ∈ L3,

this result can easily be extended to L ∈ LΣn . From this and the length of the short-

est offending suffix Cs(n), we can conclude that a square-free string confirming to the

pattern Cs(n) and of length 2n − 1 can be generated over lists L ∈ LΣn .

From Lemma 26, we know that an alphabet in a list L ∈ L3 can force a square

on a square-free string w iff w has a suffix s conforming to the offending suffix C(3).

The question is whether s is unique, that is, does the square-free string w contain

more that one suffix that conforms to the offending suffix pattern? In Lemma 29, we

show that any square-free string w over L ∈ L3 has only one suffix s conforming to

the offending suffix (w.r.t fixed pivots) if any, that is s is unique.

Lemma 29. Suppose w is a square-free string over L = L1, L2, . . . , Ln−1, and L ∈ L3.

If w has suffixes s,s′ conforming to C(3) with pivots Ln (where |Ln| = 3), then s = s′.

Proof. The proof is by contradiction. Suppose that the square-free string w over

L ∈ L3 has two distinct suffixes s and s′ conforming to the offending suffix C(3) with

pivots Ln = {a, b, c}. That is ∃h, h(C(3)) = s and ∃h′, h′(C(3)) = s′, and s 6= s′, and

both have pivots in {a, b, c}. Without loss of generality, we assume that |s| < |s′|,

and since they are suffixes of w, s is a suffix of s′. We now examine all possible cases

of overlap. Note that s′ = h′(C(3)) = h′(X2C(2)a3X2C(2)) for some morphism h′. To

examine the cases of overlap, let v = h′(X2C(2)), then s′ = vh′(a3)v, where h′(a3)

represents the middle symbol of s′. Similarly, the middle symbol of s is represented

by h(a3) for some morphism h. We intentionally use h′(a3) in s′ (and h(a3) in s) as

88

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

we want to cover all the six different ways in which the variables a1, a2, a3 are mapped

to pivots a, b, c.

1. If |s| ≤ b|s′|/2c, then v = ps (see Figure 5.5), where p is a prefix of v, and

psh′(a3) is a prefix of s′. Observe that, when |s| = b|s′|/2c, p = ε. Since s is an

offending suffix, we know that sh′(a3) has a square and hence s′ has a square

and it follows that w has a square — contradiction.

sp

v h′(a3) v

oo s′ //

Figure 5.5: v = ps

2. If |s| = b|s′|/2c + 1, then s = h′(a3)uh(a3)h′(a3)u (see Figure 5.6), where u

is a non-empty subword of s, and v = uh(a3)h′(a3)u. If the morphisms h and

h′ map a3 to the same element in {a, b, c}, that is h′(a3) = h(a3), then s has

a square ‘h(a3)h(a3)’ and therefore w has a square — contradiction. When

h′(a3) 6= h(a3), without loss of generality, we assume h′(a3) = c and h(a3) = a,

then v = uacu and s′ = vcv = uacucuacu has a square ‘cucu’ and it follows

that w has a square — contradiction.

3. If |s| > b|s′|/2c + 1, then s = ph′(a3)uh(a3)ph′(a3)u, where p is a non-empty

prefix of s and u is a subword (possibly empty) of s. Also, v = uh(a3)ph′(a3)u

and s′ = vh′(a3)v = uh(a3)ph′(a3)uh′(a3)uh(a3)ph′(a3)u. We can see that s′

has a square ‘h′(a3)uh′(a3)u’, and it follows that w has a square — contradic-

tion.

89

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

uh′(a3)h(a3)uh′(a3)

v h′(a3) v

oo s′ //

oo s //

Figure 5.6: v = uh(a3)h′(a3)u

uh′(a3)ph(a3)uh′(a3)p

v h′(a3) v

oo s′ //

oo s //

Figure 5.7: v = uh(a3)ph′(a3)u

This ends the proof.

5.1.2 Characterization of Square-free Strings

In this section, we give a characterization of square-free strings using borders (see

Section 1.4), shown in Lemma 30. There is a lot of literature related to borders

(see [Smyth, 2003]), and it seems a plausible future direction that we could build

on to design an algorithm for constructing, and therefore proving the existence of

square-free strings over lists L ∈ L3.

Lemma 30. A string w is square-free if and only if for every subword s of w, if β is

a border of s then, |β| < d|s|/2e.

Proof. (⇒) Suppose that s is a subword of w and it has a border β such that |β| ≥

90

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

d|s|/2e. From Figure 5.8 we can see that β must have a prefix p which yields a square

pp in s and hence in w, and so w is not square-free — contradiction.

(⇐) Suppose w has a square s = uu. But s is a subword of w and it has a border

β = u where |β| ≥ d|s|/2e — contradiction.

p

s

p

oo β //

oo β //

Figure 5.8: ⇒ direction of the proof for Lemma 30

This characterization can be used to construct a square-free string w, over an

alphabet set Σ, where |Σ| is sufficiently large, and is as follows: select any symbol

from Σ as the first symbol of w, then in the i-th step pick the wi-th symbol from Σ

such that, the resulting string w1w2 . . .wi satisfies the border condition in Lemma 30.

From the characterization, we know that any string that satisfies the border condition

is square-free, therefore w[1..i] is square-free. Also, the sufficiently large alphabet size

ensures the existence of an element in Σ, satisfying the border condition.

There are other characterizations for square-free strings with much better running

times, for example [Crochemore, 1986] and [Main and Lorentz, 1985] give linear time

algorithms to test if a given string is square-free. However, we study this characteriza-

tion as we intend to use borders and border arrays in conjunction with the offending

suffix in investigating the original problem.

91

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

5.1.3 0-1 Matrix Representation

In this section, we represent our problem as a 0-1 matrix (matrix consisting of only

0’s and 1’s). The attraction of this setting is that it may potentially allow us to use

the machinery of combinatorial matrix theory to show that L3 is admissible.

Instead of considering alphabets, we consider sets of natural numbers, i.e., each

Li ⊆ N, and L = L1, L2, . . . , Ln, and L is a class of lists as before. As a consequence,

every string over L is a sequence of natural numbers. Note that any L = L1, L2, . . . , Ln

can be normalized to be L̂, where each Li is replaced with L̂i ⊆ [3n]. This can be

accomplished by mapping all integers in ∪L, at most 3n many of them, in an order

preserving way, to [3n]. Clearly, L is admissible iff L̂ is admissible, and given a list

L, it can be normalized in polynomial time.

The integer restatement suggests an approach based on 0-1 matrices. Given a

normalized list L̂ = L̂1, L̂2, . . . , L̂n, we define the 0-1 n× 3n matrix AL as follows:

AL = [AL(i, j)],where AL(i, j) =

1, if j ∈ L̂i

0, if j /∈ L̂i

Observe that, for any normalized list L̂, where L ∈ L3, each row of the matrix AL

consists of exactly three one’s, and the number of one’s in each column represents

the total number of times the element j appears in the list L̂, that is, how many

alphabets contain j.

It is easy to see that L̂ is admissible iff there is a selection S that picks a single 1

in each row in such a way that there are no i consecutive rows equal to the next i

consecutive rows. More precisely, L̂ is admissible iff there does not exist i, j, such that

92

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

1 ≤ i ≤ j ≤ bn
2
c, and such that the sub matrix of AL consisting of rows i through j

is equal to the sub matrix of AL consisting of rows j + 1 through 2(j + 1)− i.

Suppose that ΣL̂ is re-ordered bijectively by π, where π is a permutation, that

is, a bijection π : [n] −→ [n]. We define π(L̂) as follows: for all alphabet in L̂, if

L̂i = {j, k, `}, then π(L̂i) = {π(j), π(k), π(`)}. Therefore,

π(L̂) = {π(L̂1), π(L̂2), . . . , π(L̂n)}.

Claim 31. L̂ is admissible iff π(L̂) is admissible.

Proof. (⇒) Suppose L̂ is admissible. Then there is a square-free string w = w1w2 . . .wn

of length n over L̂. Let

w′ = π(w1)π(w2) . . . π(wn),

then w′ is a string over π(L̂), and it is also non-repetitive. If it were the case that

vv was a subword of w′, then vv under π−1 would be a square in w, which is a

contradiction.

(⇐) Suppose π(L̂) is admissible. Then there is a square-free string w = w1w2 . . .wn

of length n over π(L̂). Let

w′ = π−1(w1)π−1(w2) . . . π−1(wn),

then w′ is a string over L̂, and it is also non-repetitive. If it were the case that vv was

a subword of w′, then vv under π would be a square in w, which is a contradiction.

Note that a bijective re-ordering of ΣL̂ is represented by a permutation of the

columns of AL. Thus, permuting the columns of AL does not really change the

93

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

problem; the same is not true of permuting the rows, which actually re-orders the list

L, changing the constraints, and therefore changing the problem.

5.1.4 Proof Complexity

By restating the generalized Thue problem in the language of 0-1 matrices, as we did

in Section 5.1.3, we can more easily formalize the relevant concepts in the language

of first order logic, and use its machinery to attack the problem.

We adopt the logical theory V0 as presented in [Cook and Nguyen, 2010], whose

language is L2
A = [0, 1,+, ·, ||; =1,=2,≤,∈] (see [Cook and Nguyen, 2010, Defini-

tion IV.2.2, pg. 76]). Without going into all the details, this language allows the

indexing of a 0-1 string x; on the other hand, a 0-1 matrix AL can be represented as

a string xL with the definition: xL(3n(i− 1) + j) = AL(i, j). Hence, L2
A is eminently

suitable for expressing properties of strings.

Define the following auxiliary predicates:

• Let Three(xL) be a predicate which states that the matrix AL corresponding to

xL has exactly three 1s per row.

• Let Sel(YL,xL) be a predicate which states that YL is a selection of XL, in the

sense that YL corresponds to the 0-1 matrix which selects a single 1 in each row

of AL.

• Let SF(YL) be a predicate which states that YL is square-free.

Lemma 32. All three predicates Three, SF, Sel are ΣB
0 .

Our conjecture, lists in L3 being admissible, can be stated as a ΣB
1 formula over

94

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

L2
A as follows:

α(xL) := ∃YL = n(Three(xL) ∧ Sel(YL,xL) ∧ SF(YL)).

Suppose we can prove that V0 ` α(xL); then, we would be able to conclude

that given any L, we can compute a square-free string over L in AC0. Likewise, if

V1 ` α(xL), then we would be able to conclude that the non-repetitive string can be

computed in polynomial time.

5.1.5 Open Problems

We conclude this section with the following list of open problems:

1. Is the class of lists, L3, admissible?

2. How can we de-randomize [Grytczuk et al., 2013, Algorithm 1] in polynomial

time? The näıve way to de-randomize it is to employ an exhaustive search

algorithm: given an L in L4, examine every w ∈ L+ in lexicographic order until

a square-free string is found, which by [Grytczuk et al., 2013, Theorem 1] must

happen. In that sense, the correctness of the probabilistic algorithm implies the

correctness of the deterministic exhaustive search algorithm. However, such an

exhaustive search algorithm takes 4|L| steps in the worst case. Is it possible to

de-randomize it, to a deterministic polytime algorithm?

3. What is the relationship between admissible L in the original sense, and those

L for which the player has a winning strategy in the online game sense. Clearly,

if there exists a winning strategy for L, then L is admissible; what about the

converse?

95

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

5.2 String Shuffle: Circuits and Graphs

In the area of studying properties of string shuffle and determining tighter complexity

lower bound for the shuffle problem, we propose a formulation of the shuffle problem

as an instance of a 0-1 matrix problem, and hope to use the tools of combinatorial

matrix theory to determine a tighter circuit complexity lower bound, if one exists.

In [Soltys, 2013] and [Mhaskar and Soltys, 2015c] it has been shown that shuffle

can be decided in AC1, but, can we given a tighter upper bound and show that

Shuffle ∈ NC1?

Given strings u, v and w, where |u| = |v| = |w|
2

= n. If a symbol in string u

(or v) is equal to a symbol in string w we say that the symbols match and call it a

matching. If the j-th symbol in u (or v) matches any of the symbols with indices in

the set {j, j + 1, . . . , j + n} in w then we call this a valid matching with respect to

uj (or vj). The set of indices {j, j + 1, . . . , j + n} is called a valid set with respect

to symbol uj (or vj). For example, if the first symbol of u, that is, u1 matches any

of the symbols w1,w2, . . . ,wn+1 then it is a valid matching with respect to u1. The

intuition behind this is that when u and v are shuffled to get w, it is pointless to

check a matching of u1 with wn+2-th symbol of w or any symbol further, as less than

n− 1 positions exist in w to accommodate the n− 1 symbols of u.

5.2.1 0-1 Matrix Formulation for Shuffle

In this section we show a 0-1 matrix formulation of the shuffle problem. This entire

matrix can be constructed in NC1. Since boolean addition, product and symmetric

96

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

functions are all in NC1, if we can show that using polynomial number of these oper-

ations in parallel we can permute the columns of the matrix such that the resultant

permutated matrix has certain desired properties (stated in Claim 33), then we can

show that Shuffle ∈ NC1. The advantage of this result is that it would mean an

efficient parallel algorithm exists for the shuffle problem.

Given three strings u = u1u2 . . .un, v = v1v2 . . . vn and w = w1w2 . . .w2n over

a binary alphabet, we formulate the question, is w a shuffle of strings u and v as a

0-1 matrix problem. This matrix AS consists of 3n + 1 rows and 2n columns and is

defined as follows:

AS = [AS(i, j)],where [AS(i, j)] =

0, if i = 1 ∧ 1 ≤ j ≤ n

1, if i = 1 ∧ n+ 1 ≤ j ≤ 2n

1, if i > j ∧ 1 < i ≤ n+ 1 ∧ 1 ≤ j ≤ n

0, if i ≤ j ∧ 1 < i ≤ n+ 1 ∧ 1 ≤ j ≤ n

1, if i > j − n ∧ 1 < i ≤ n+ 1 ∧ n+ 1 ≤ j ≤ 2n

0, if i ≤ j − n ∧ 1 < i ≤ n+ 1 ∧ n+ 1 ≤ j ≤ 2n

1, if uj = wi−n−1 ∧ n+ 1 < i ≤ 3n+ 1 ∧ 1 ≤ j ≤ n ∧ j ≤ i− n− 1 ≤ n+ j

0, if uj 6= wi−n−1 ∧ n+ 1 < i ≤ 3n+ 1 ∧ 1 ≤ j ≤ n ∧ j ≤ i− n− 1 ≤ n+ j

0, if n+ 1 < i ≤ 3n+ 1 ∧ 1 ≤ j ≤ n ∧ i− n− 1 < j ∨ i− n− 1 > n+ j

1, if vj−n = wi−n−1 ∧ n+ 1 < i ≤ 3n+ 1 ∧ n+ 1 ≤ j ≤ 2n ∧ j − n ≤ i− n− 1 ≤ j

0, if vj−n 6= wi−n−1 ∧ n+ 1 < i ≤ 3n+ 1 ∧ n+ 1 ≤ j ≤ 2n ∧ j − n ≤ i− n− 1 ≤ j

0, if n+ 1 < i ≤ 3n+ 1 ∧ n+ 1 ≤ j ≤ 2n ∧ i− n− 1 < j − n ∨ i− n− 1 > j

97

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Let Cj be the j-th column vector of AS. The first n columns represent information

about the n symbols of u, and the columns n+ 1 to 2n represent information about

the n symbols of v. In particular, the j-th symbol in u (uj) is represented by the

j-th column in AS, and encodes the information regarding its position in u (that is

j), followed by the details about valid matchings with symbols in w. Similarly, vj is

represented by the (n + j)-th column in AS. Therefore, C1, C2, . . . , Cn column vec-

tors represent symbols u1,u2, . . .un and column vectors Cn+1, Cn+2, . . . , C2n represent

symbols v1, v2, . . . , vn.

The column vectors representing u have their first element 0 and those representing

symbols in v have their first element 1. Hence, the first row consists of n zeros

followed by n ones. The rows 2 to n + 1 keep track of the ordering of symbols in

u and v. Suppose, a symbol appears in the j-th position in u, then the (j + 1)-th

row consists of all ones staring from the first column to the j-th column in AS. The

remaining elements of the row upto the n-th column are zero. Thus, forming a lower

unit triangular matrix in the sub matrix consisting of C1, C2 . . . , Cn column vectors

and rows two to n + 1. Similarly, if an element appears in the j-th position in v,

then the (j + 1)-th row consists of all ones staring from (n + 1)-th column to the

(n + j)-th column in AS. The remaining elements of the row from (n + j + 1)-th

column to 2n-th column are zero. Thus, forming a lower unit triangular matrix in the

sub matrix consisting of Cn+1, Cn+2, . . . , C2n column vectors and rows two to n + 1.

Observe that, the position of the j-th symbol in u can also be identified from the

Cj-th column vector with its initial symbol being a 0 (indicating that it is a symbol

of u), followed by (j − 1) zeros and (n− j − 1) ones.

The sub matrix consisting of 2n rows starting form (n+ 2)-th row to (3n+ 1)-th

98

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

row encodes the information about valid matchings of symbols in u, v with w. In

particular, the valid set for symbol uj or vj is {j, j + 1, . . . , n+ j}. The valid set for

symbol uj is represented by cells AS[n+ j+1, j], AS[n+ j+2, j], . . . , AS[2n+ j+1, j],

and for the symbol vj it is represented by cells AS[n+ j + 1, j + n], AS[n+ j + 2, j +

n], . . . , AS[2n + j + 1, j + n]. If a valid matching exists then the corresponding cell

is filled with one otherwise it is filled with zero. For example, if uj = wj+2 then the

corresponding cell AS[n+ j+2, j] = 1, otherwise it is zero. All the other cells that do

not correspond to a valid set in the column j of the sub matrix are filled with zero.

Observe that the first n + 1 rows are the same for any input u, v and w, where

|u| = |v| = |w|
2

= n . Therefore, each cell in these rows can be computed in NC1. Now

consider the sub matrix starting from (n+2)-th to (3n+1)-th row. The cells in this sub

matrix that do not represent the valid set with respect to the symbols in u and v are

all zero and computed in NC1. The cells that do represent a valid set with respect to a

symbol in u or v can be computed using constant number of boolean product (∧) and

boolean addition (∨) operations. To be precise, if wi = uj is a valid matching, then

the value of the cell representing it is computed as: AS[i+n+1, j] = (wi∧uj)∨(w̄i∧ūj).

Therefore, the entire matrix AS can be computed in NC1.

Claim 33. w is a shuffle of u and v if and only if there exists a permutation of

columns of AS such that, the resulting matrix (APS) has the following properties:

• The diagonal elements of the sub matrix consisting of rows n+ 2 to 3n+ 1 are

all one,

• The sub matrix consisting of column vectors C1, C2 . . . , Cn and rows 2 to n+ 1

has a unit lower triangular matrix, and

99

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

• The sub matrix consisting of column vectors Cn+1, Cn+2 . . . , C2n and rows 2 to n+

1 has a unit lower triangular matrix.

Proof. (⇒) If Shuffle(u, v,w) holds, then the permutation of columns corresponding

to the symbols of u and v in w results in a permutated matrix APS satisfying the

conditions in Claim 33. In particular, the ordering of symbols of u and v is maintained

in w thus satisfying the last two conditions. The fact that Shuffle(u, v,w) holds,

indicates that their is a valid matching for symbols in strings u and v with w resulting

in all ones in the diagonal elements of the sub matrix consisting of rows n+2 to 3n+1.

(⇐) The two unit lower triangular matrix in the sub matrix consisting of rows 2

to n+ 1 ensure the ordering of symbols of u and v in w is maintained. The diagonal

elements of the sub matrix consisting of rows n+2 to 3n+1 being all one ensure that

a valid matching for all symbols in u and v with w exists. Therefore w is a shuffle of

u and v.

To understand the construction of AS and Claim 33, we provide the following

example. Let u = 10, v = 11 and w = 1101. The 0-1 matrix AS is given below:

Observe that, permuting column vectors C2 with C3 gives the resulting permuted

C1 C2 C3 C4

AS =

0 0 1 1

1 0 1 0

1 1 1 1

1 0 1 0

1 0 1 1

0 1 0 0

0 0 0 1

Figure 5.9: 0-1 Matrix Construction (AS) for example.

100

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

C1 C3 C2 C4

APS =

0 1 0 1

1 1 0 0

1 1 1 1

1 1 0 0

1 1 0 1

0 0 1 0

0 0 0 1

Figure 5.10: Permutated Matrix APS for the example.

matrix APS that satisfies the conditions of Claim 33. In particular,

1. Sub matrix consisting of rows 4 to 7 of APS have all the diagonal elements equal

to one.

2. Sub matrix consisting of columns C1 and C2 (which represent symbols of u)

and rows two and three of APS has a lower unit triangular matrix, and the sub

matrix consisting of columns C3 and C4 (which represent symbols of v) and

rows two and three of APS has a lower unit triangular matrix.

Therefore by Claim 33, Shuffle(u, v,w) holds.

5.2.2 Another polytime algorithm for Shuffle

In this section we propose another polytime algorithm for shuffle. The aim is that

the new approach could possibly be used to devise an efficient parallel algorithm for

shuffle and further show that shuffle is in NC1.

A simple algorithm for checking whether w is a shuffle of u, v is to recursively check

if w1w2 . . .wi+j is a shuffle of u1u2 . . .ui and v1v2 . . . vj for values of 1 ≤ i ≤ n and

101

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

1 ≤ j ≤ n. This algorithm can be represented as a binary tree and works as follows:

starting from the root and at each internal node, compare the left most element of w

with the left most element of u (v), if the symbols match then discard them from the

respective strings and continue till either all the symbols of u, v and/or w have been

discarded or the symbols do not match. In particular, the left arrows correspond to

checking whether the left most symbol of w matches the left most symbol in u, and

the right arrows correspond to checking whether the left most symbol of w matches

the left most symbol in v. If this tree contains the leaf ε,ε/ε then w is a shuffle of u, v.

Note that, the tree can contain more than one such leaf. The total number of leaves

ε,ε/ε represents the number of ways in which w is a shuffle of u, v. An example of

the algorithm working is shown in Figure 5.11 where, u = 11, v = 10 and w = 1101.

11,10/1101

1,10/101

ε,10/01

x x

1,0/01

x 1,ε/1

ε,ε/ε x

11,0/101

1,0/01

x 1,ε/1

ε,ε/ε x

x

Figure 5.11: Binary tree showing recursive algorithm for shuffle problem.

Since the recursive solution takes exponential time, it is not efficient. A dynamic

programming algorithm was given by Mansfield in [Mansfield, 1982], and has a run-

ning time of O(n2). We propose another polytime algorithm for shuffle. We first

102

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

define the term matching index and then develop an algorithm (Algorithm 2) to com-

pute a matching index for strings u, v and w. If the matching index returned by the

algorithm is equal to |w|, then w is a shuffle of u and v.

A Matching Index (MI), is defined as the length of the longest prefix of w which

is a shuffle of a prefix of u and v such that if the prefixes of u and v are of lengths

i and j respectively, then the length of the longest prefix of w is i + j, that is, the

matching index is i+ j. Therefore, if Shuffle(u, v,w) holds, then the Matching Index

is equal to 2n = |w|.

Algorithm 2 Matching Index Algorithm

1: procedure MI(u, v, w)
2: Tag[]← []
3: if u1 6= w1 and v1 6= w1 then
4: return 0
5: if u1 = w1 then
6: Tag = Tag ∪ {1}
7: if v1 = w1 then
8: Tag = Tag ∪ {0}
9: i← 2 . Looping through symbols of w

10: while i ≤ 2n do
11: Temp[]← []
12: for all j ∈ Tag do
13: if j < n and uj+1 = wi then
14: Temp = Temp ∪ {j + 1}

. i− j − 1 = index of symbol in v upto which shuffle holds
15: if i− j − 1 < n and vi−j = wi then
16: Temp = Temp ∪ {j}
17: Tag = Temp
18: if Tag = [] then
19: return i− 1 . Return the Matching Index till this point
20: else
21: i = i+ 1 . Check next symbol of w with symbols in u and v

22: return i− 1

103

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

In Algorithm 2, ‘Tag’ is a set consisting of indices of u upto which the shuffle

property holds, that is, if w1w2 . . .wi is a shuffle of u1u2 . . .uj and v1v2 . . . vi−j then

Tag consists of all possible values of j for which the above statement holds. The

outline of the algorithm is as follows: first check whether the first symbol of u (u1)

matches with the first symbol of w (w1), if it does then add one to the set Tag.

Repeat this with the first symbol of v (v1) and w1, if they match add zero to Tag.

If the first symbol of w is not equal to the first symbol of u or v return 0. At each

iteration of the while loop we keep checking if the prefix w1w2 . . .wi of w is a shuffle of

u1u2 . . .uj+1 and v1v2 . . . vi−j−1 (or is a shuffle of u1u2 . . .uj and v1v2 . . . vi−j), if it is

we increment i by one, otherwise return the matching index obtained till that point.

If the algorithm exits the while loop normally, then the matching index returned is

2n and therefore w is a shuffle of u and v.

(2, 0) (1, 1) (0, 2) Level 2, i = 2

(1, 0) (0, 1) Level 1

(0, 0)

(2, 1) (1, 2) Level 3, i = 3

(2, 2) Level 4, i = 4

Figure 5.12: Set of x-coordinates represent the possible elements in ‘Tag’ at the end
of each while loop iteration represented by the level.

104

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

Figure 5.12 shows all possible ways in which strings u and v can be shuffled to

obtain w. The levels represent the symbol in w being matched (which corresponds

to the value of i at each while loop iteration), and the ordered pairs represent the

possible symbol of strings u and v being matched. In particular, the x-coordinate

represents the index of the symbol in u being matched and the y-coordinate represents

the index of the symbol in v being matched. Therefore the set of all x-coordinates at

each level represents the possible values of the elements of set Tag at the end of the

corresponding while loop iteration.

In Algorithm 2, the while loop runs for 2n − 1 times and the set Tag can have

at most n (as |u| = n) elements in it. Hence, the running time of this algorithm is

O(n2). Therefore, by calling the procedure MI(u, v,w), we can check whether w is

a shuffle of u, v in polynomial time. Although, the running time of the algorithm is

not an improvement to the running time known for shuffle (O(n2)), the constants for

this algorithm are less and we hope to improve this algorithm further to device an

efficient parallel algorithm for shuffle.

5.2.3 Open problems

We conclude this section with a list of open problems in the area.

1. Can shuffle be decided in NC1?

2. Can we characterize graphs with strings having shuffle properties where more

repetitions of symbols are allowed?

3. Regarding Lemma 12, can we test in polynomial time whether a given graph or

its complement are isomorphic to the transitive closure of a tree?

105

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

5.3 Formal framework for stringology

In Chapter 4, we mentioned the richness of the field of Stringology arises from the fact

that a string u is a map I −→ Σ, where I can be arbitrarily large, while Σ is small.

This produces repetitions and patterns that are the object of study for Stringology.

On the other hand, Proof Complexity has studied in depth the varied versions of

the Pigeonhole Principle that is responsible for these repetitions. Thus the two may

enrich each other.

We have so far only presented the ground work for the formalism for strings. As

the first few steps towards the future direction, Lemma 22 can likely be strengthened

to saying that evaluating LS-terms can be done in AC0 rather than polytime. Also,

giving an application of the Witnessing theorem, will provide a deep insight into the

nature of strings. One such application can be found in the Lyndon decomposition

of a string (see [Smyth, 2003, pg. 29]). Recall that our alphabet is ordered, that is,

σ0 < σ1 < σ2 Hence, we can easily define a lexicographic ordering of strings, by

defining a predicate u <lex v. We can define a Lyndon word with a ΣB
0 formula as

follows: ∀i < |v|(v <lex λk〈i, e(v, |v| − i+ 1 + k)〉).

Let v be a string; then v = v1 · v2 · . . . · vk is a Lyndon decomposition if each

vi is a Lyndon word, and vk <lex vk−1 <lex · · · <lex v1. The existence of a Lyndon

decomposition can be proven as in [Smyth, 2003, Theorem 1.4.9], and we assert that

the proof itself can be formalized in S1. We can therefore conclude that the actual

decomposition can be computed in polytime.

106

References

[Allouche and Shallit, 2003] Allouche, J.-P. and Shallit, J. (2003). Automatic Se-

quences: Theory, Applications, Generalizations. Cambridge University Press.

[Alon and Spencer, 2008] Alon, N. and Spencer, J. H. (2008). The probabilistic

method,. Wiley-Interscience Series in Discrete Mathematics and Optimization, John

Wiley and Sons Inc.,Hoboken, NJ, third edition.

[Ars̆on, 1937] Ars̆on, S. (1937). Proof of the existence of asymmetric infinite se-

quences (russian). Mat. Sbornik, 2:769779.

[Bean et al., 1979] Bean, D. R., Ehrenfeucht, A., and McNulty, G. F. (1979). Avoid-

able patterns in strings of symbols. Pacific Journal of Mathematics, 85(2):261–294.

[Beck, 1991] Beck, J. (1991). An algorithmic approach to the lovász local lemma.

Random Structures and Algorithms, 2(4):343–365.

[Berstel, 1979] Berstel, J. (1979). Sur les mots sans carré définis par un morphisme.

In Proc. 6th ICALP Symposium, volume 71 of Lecture Notes in Computer Science,

pages 16–25. Springer Berlin Heidelberg.

[Berstel, 1995] Berstel, J. (1995). Axel Thue’s papers on repetitions in words: a

translation. Technical report, Université du Québec a Montréal.

107

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Berstel et al., 2008] Berstel, J., Lauve, A., Reutenauer, C., and Saliola, F. V. (2008).

Combinatorics on Words: Christoffel Words and Repetitions in Words. American

Mathematical Society.

[Berstel and Perrin, 2007] Berstel, J. and Perrin, D. (2007). The origins of combina-

torics of words. Electronic Journal of Combinatorics, 28:996–1022.

[Burkhard et al., 1998] Burkhard, R. E., Çela, E., Rote, G., and Woeginger, G. J.

(1998). The quadratic assignment problem with a monotone anti-Monge and a

symmetric Toeplitz matrix: Easy and hard cases. Mathematical Programming,

82:125–158.

[Buss, 1998] Buss, S. R. (1998). An introduction to proof theory. In Buss, S. R.,

editor, Handbook of Proof Theory, pages 1–78. North Holland.

[Buss and Soltys, 2013] Buss, S. R. and Soltys, M. (2013). Unshuffling a square is

NP-hard. Journal of Computer and System Sciences, 80(4):766–776.

[Buss and Yianilos, 1998] Buss, S. R. and Yianilos, P. N. (1998). Linear and

O(n log n) time minimum-cost matching algorithms for quasi-convex tours. SIAM

J. Comput., 27(1):170–201.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In

Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC

’71, pages 151–158, New York, NY, USA. ACM.

[Cook and Nguyen, 2010] Cook, S. A. and Nguyen, P. (2010). Logical Foundations of

Proof Complexity. Cambridge Univeristy Press.

108

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Cooper and Rorabaugh, 2014] Cooper, J. and Rorabaugh, D. (2014). Bounds on

zimin word avoidance. Electronic Journal of Combinatorics, 21(1).

[Crochemore, 1982] Crochemore, M. (1982). Sharp characterizations of squarefree

morphisms. Theoretical Computer Science, 18:221–226.

[Crochemore, 1986] Crochemore, M. (1986). Transducers and repetitions. Theoretical

Computer Science, 12:63–86.

[Crochemore and Rytter, 1994] Crochemore, M. and Rytter, W. (1994). Text Algo-

rithms.

[Currie, 1991] Currie, J. D. (1991). Which graphs allow infinite non-repetitive walks?

Discrete Mathematics, 87:249–260.

[Dvořák et al., 2011] Dvořák, Z., Kawarabayashi, K.-I., and Thomas, R. (2011).

Three-coloring triangle-free planar graphs in linear time. ACM Trans. Algorithms,

7(4):41:1–41:14.

[Erdős and Lovász, 1975] Erdős, P. and Lovász, L. (1975). Problems and results on

3-chromatic hypergraphs and some related questions. Infinite and Finite Sets, Coll.

Math. Soc. J. Bolyai, 11:363–375.

[Furst et al., 1984] Furst, M., Saxe, J. B., and Sipser, M. (1984). Parity, circuits, and

the polynomial-time hierarchy. Math. Systems Theory, 17:13–27.

[Garey et al., 1976] Garey, M., Johnson, D., and Stockmeyer, L. (1976). Some sim-

plified np-complete graph problems. Theoretical Computer Science, 1(3):237 – 267.

109

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Ginsburg and Spanier, 1965] Ginsburg, S. and Spanier, E. (1965). Mapping of lan-

guages by two-tape devices. Journal of the Association of Computing Machinery,

12(3):423–434.

[Gischer, 1981] Gischer, J. (1981). Shuffle languages, Petri nets, and context-sensivite

grammars. Communications of the ACM, 24(9):597–605.

[Grötzsch, 1959] Grötzsch, H. (1959). Ein dreifarbensatz für dreikreisfreie netze auf

der kugel. 8:109–120.

[Gruber and Holzer, 2009] Gruber, H. and Holzer, M. (2009). Tight bounds on the

descriptional complexity of regular expressions. In Proc. Intl. Conf. on Develop-

ments in Language Theory (DLT), pages 276–287. Springer Verlag.

[Grytczuk et al., 2013] Grytczuk, J., Kozik, J., and Micek, P. (2013). A new approach

to nonrepetitive sequences. Random Structures and Algorithms, 42:214–225.

[Hall, 1987] Hall, P. (1987). On representatives of subsets. In Gessel, I. and Rota, G.-

C., editors, Classic Papers in Combinatorics, Modern Birkhäuser Classics, pages

58–62. Birkhäuser Boston.

[J. Grytczuk and Micek, 2011] J. Grytczuk, J. K. and Micek, P. (2011). Nonrepeti-

tive games.

[J. Grytczuk and Zhu, 2011] J. Grytczuk, J. P. and Zhu, X. (2011). Nonrepetitive

list colorings of paths. Random Structures Algorithms, 38:162–173.

[Jantzen, 1981] Jantzen, M. (1981). The power of synchronizing operations on strings.

Theoretical Computer Science, 14:127–154.

110

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Jantzen, 1985] Jantzen, M. (1985). Extending regular expressions with iterated shuf-

fle. Theoretical Computer Science, 38:223–247.

[Jedrzejowicz, 1999] Jedrzejowicz, J. (1999). Structural properties of shuffle au-

tomata. Grammars, 2(1):35–51.

[Jedrzejowicz and Szepietowski, 2001] Jedrzejowicz, J. and Szepietowski, A. (2001).

Shuffle languages are in P. Theoretical Computer Science, 250(1-2):31=53.

[Jedrzejowicz and Szepietowski, 2005] Jedrzejowicz, J. and Szepietowski, A. (2005).

On the expressive power of the shuffle operator matched with intersection by regular

sets. Theoretical Informatics and Applications, 35:379–388.

[Karhumäki, 2004] Karhumäki, J. (2004). Combinatorics on words: A new challeng-

ing topic. Technical Report 645, Turku Center for Computer Science.

[Kleinberg and Tardos, 2006] Kleinberg, J. and Tardos, É. (2006). Algorithm Design.

Pearson/Addison-Wesley.

[Kozik and Micek, 2013] Kozik, J. and Micek, P. (2013). Nonrepetitive choice number

of trees.

[Leech, 1957] Leech, J. (1957). A problem on strings of beads. Mathematical Gazette,

page 277.

[Levin, 1973] Levin, L. (1973). Universal search problems. Problems of Information

Transmission (translated from Russian), 9:115–116.

[Lothaire, 1983] Lothaire, M. (1983). Combinatorics on Words, volume 17 of Ency-

clopedia of Mathematics. Addison-Wesley.

111

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Lothaire, 2002] Lothaire, M. (2002). Algebraic Combinatorics on Words, volume 90

of Encyclopedia of Mathematics. Cambridge University Press.

[Lothaire, 2005] Lothaire, M. (2005). Applied Combinatorics on Words, volume 105

of Encyclopedia of Mathematics. Cambridge University Press.

[Main and Lorentz, 1985] Main, M. G. and Lorentz, R. J. (1985). Linear time recog-

nition of squarefree strings. In Combinatorial Algorithms on Words, volume F12

of NATO ASI Series, pages 271–278. Springer.

[Mansfield, 1982] Mansfield, A. (1982). An algorithm for a merge recognition prob-

lem. Discrete Applied Mathematics, 4(3):193–197.

[Mansfield, 1983] Mansfield, A. (1983). On the computational complexity of a merge

recognition problem. Discrete Applied Mathematics, 1(3):119–122.

[Mayer and Stockmeyer, 1994] Mayer, A. J. and Stockmeyer, L. J. (1994). The com-

plexity of word problems — this time with interleaving. Information and Compu-

tation, 115:293–311.

[Morse and Hedlund, 1944] Morse, M. and Hedlund, G. A. (1944). Unending chess,

symbolic dynamics and a problem in semigroups. Duke Math. J, 11:1–7.

[Moser and Tardos, 2009] Moser, R. A. and Tardos, G. (2009). A constructive proof

of the general lovasz local lemma. CoRR, abs/0903.0544.

[N. Alon and Riordan, 2002] N. Alon, J. Grytczuk, M. H. l. and Riordan, O. (2002).

Nonrepetitive colorings of graphs. Random Structures Algorithms, 21:336–346.

112

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Ogden et al., 1978] Ogden, W. F., Riddle, W. E., and Rounds, W. C. (1978). Com-

plexity of expressions allowing concurrency. In Proc. 5th ACM Symposium on

Principles of Programming Languages (POPL), pages 185–194.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.

Addison-Wesley.

[Pegden, 2009] Pegden, W. (2009). Highly nonrepetitive sequences: winning strate-

gies from the local lemma. Random Structures Algorithms (to appear).

[Rampersad, 2007] Rampersad, N. (2007). Overlap-free words and generalizations.

PhD thesis, Waterloo University.

[Rampersad and Shallit, 2012] Rampersad, N. and Shallit, J. (2012). Repetitions in

words.

[Riddle, 1973] Riddle, W. E. (1973). A method for the description and analysis of

complex software systems. SIGPLAN Notices, 8(9):133–136.

[Riddle, 1979] Riddle, W. E. (1979). An approach to software system modelling and

analysis. Computer Languages, 4(1):49–66.

[Rizzi and Vialette, 2013] Rizzi, R. and Vialette, S. (2013). On recognizing words

that are squares for the shuffle product. In Computer Science – Theory and Appli-

cations, 8th International Computer Science Symposium in Russia, CSR, Lecture

Notes in Computer Science 7913, pages 235–245.

[Shallit, 2009] Shallit, J. (2009). A second course in formal languages and automata

theory. Cambridge Univeristy Press.

113

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Shaw, 1978] Shaw, A. C. (1978). Software descriptions with flow expressions. IEEE

Transactions on Software Engineering, SE-4(3):242–254.

[Shoudai, 1992] Shoudai, T. (1992). A P-complete language describable with iterated

shuffle. Information Processing Letters, 41(5):233–238.

[Sipser, 2013] Sipser, M. (2013). Introduction to the Theory of Computation. Cengage

Learning.

[Smyth, 2003] Smyth, B. (2003). Computing Patterns in Strings. Pearson Education.

[Soltys, 1999] Soltys, M. (1999). A model-theoretic proof of the completeness of LK

proofs. Technical Report CAS-06-05-MS, McMaster University.

[Soltys, 2009] Soltys, M. (2009). An introduction to computational complexity. Jagiel-

lonian University Press.

[Soltys, 2012] Soltys, M. (2012). An introduction to the analysis of algorithms. World

Scientific, second edition.

[Soltys, 2013] Soltys, M. (2013). Circuit complexity of shuffle. In Lecroq, T. and

Mouchard, L., editors, International Workshop on Combinatorial Algorithms 2013,

volume 8288 of Lecture Notes in Computer Science, pages 402—411. Springer.

[Soltys and Cook, 2004] Soltys, M. and Cook, S. (2004). The proof complexity of

linear algebra. Annals of Pure and Applied Logic, 130(1–3):207–275.

[Stanely, 2015] Stanely, R. P. (2015). Catalan numbers.

[Stanley, 1999] Stanley, R. P. (1999). Enumerative Combinatorics, volume 2. Cam-

bridge Univeristy Press.

114

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

[Thomas H. Cormen, 2009] Thomas H. Cormen, Charles E.L̃eiserson, R. L. R. C.

(2009). Introduction to Algorithms. MIT Press, third edition.

[Thue, 1906] Thue, A. (1906). Über unendliche zeichenreichen. Skrifter: Matematisk-

Naturvidenskapelig Klasse. Dybwad.

[Thue, 1912] Thue, A. (1912). Über die gegenseitige lage gleicher teile gewisser Ze-

ichenreihen. Kra. Vidensk. Selsk. Skrifter., I. Mat. Nat. Kl., 1:1–67.

[Warmuth and Haussler, 1984] Warmuth, M. K. and Haussler, D. (1984). On

the complexity of iterated shuffle. Journal of Computer and System Sciences,

28(3):345–358.

[Zimin, 1982] Zimin, A. I. (1982). Blocking sets of terms. Mat. Sbornik, 119:363–375.

115

Co-authored Publications

[Mhaskar and Soltys, 2015a] Mhaskar, N. and Soltys, M. (2015a). A formal frame-

work for stringology. In Prague Stringology Conference (PSC), to appear in Lecture

Notes in Computer Science. Springer Berlin Heidelberg.

[Mhaskar and Soltys, 2015b] Mhaskar, N. and Soltys, M. (2015b). Non-repetitive

string over alphabet list. In WALCOM: Algorithms and Computation, volume 8973

of Lecture Notes in Computer Science, pages 270–281. Springer Berlin Heidelberg.

[Mhaskar and Soltys, 2015c] Mhaskar, N. and Soltys, M. (2015c). String shuffle: Cir-

cuits and graphs. Journal of Discrete Algorithms, 31:120–128.

[Mhaskar and Soltys, 2016] Mhaskar, N. and Soltys, M. (2016). Forced repetitions

over alphabet lists. In Prague Stringology Conference (PSC), to appear in Lecture

Notes in Computer Science. Springer Berlin Heidelberg.

116

Appendix A

Main Result of [Grytczuk et al.,

2013]

In this section, we restate the main result of [Grytczuk et al., 2013] and give a detailed

proof of the result.

Theorem 34 ([Grytczuk et al., 2013], Theorem 1). Given any alphabet list, L =

L1, L2, . . . , Ln, where each alphabet is of size at least four, there always is a square-

free word over it.

Proof. The proof is by contradiction. Suppose, it is not possible to construct a square-

free string over some list L using Algorithm 1. Then, by this assumption, Algorithm 1

will not terminate on the input L, i.e., the number of steps will be infinite. Let us

evaluate the scenario on the m-th step of the algorithm on L. Note that, when we

refer to the j-th step of the algorithm, we refer to the j-th iteration of the while loop.

Also, let us assume that m > n22n, where n = |L|.

Let us arbitrarily order the symbols of each alphabet in L. Let rj, where 1 ≤

117

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

j ≤ m, denote the position of the symbol picked from the corresponding alphabet

(this is not necessarily the list Lj) at the j-th step. Therefore, r1, r2 . . . , rm is the

sequence representing the symbols picked from the corresponding alphabet in the steps

1, 2, . . . ,m respectively and 1 ≤ rj ≤ 4. This sequence is termed as an evaluation.

For a fixed evaluation Algorithm 1, becomes deterministic.

For a fixed evaluation (r1, r2 . . . , rm), let d1 = 1 and dj, where 2 ≤ j ≤ m, denote

the difference between the values of i at the end of the j-th step and (j − 1)-th step.

d = d1,d2, . . . ,dm is referred to as the difference sequence. Note that,

1. dj ≤ 1, for all 1 ≤ j ≤ m. The idea here is that whenever a symbol is appended

to the sequence constructed in Algorithm 1, i is incremented by only one, but

when a repetition occurs, the second copy of the repeating word is deleted and

hence the value of i can possibly be decremented by more than one depending

on the size of the repetition (h).

2. Σk
j=1dj ≥ 1, for all 1 ≤ k ≤ m. The summation of all the values of the difference

sequence equals the length of the sequence constructed by the algorithm by step

m. Since the first symbol by default has no repetition, the length of the sequence

constructed by the algorithm is greater than or equal to one.

The pair (d, s) is called the log and s = s1, s2 . . . , sl (where l is the length of the

sequence s) is the sequence of symbols picked at the end of the m-th step.

Claim 35. Every log corresponds to a unique evaluation.

Proof. To prove this claim, we consider the three possible values of dj and for each

case uniquely determine the values of rj. We first look at the last symbol of d, i.e.,

118

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

dm and determine the value of rm. Below are the scenarios for the different values of

dm:

1. dm = 1: This means that the symbol picked from the Ll-th alphabet (sl) is

simply appended to the existing square-free sequence. Thus the value of rm

equals the position of the symbol sl in the alphabet list Ll, and the sequence at

the end of the (m− 1)-th step is s1, s2, . . . , sl−1.

2. dm < 0: This means that the symbol picked from the appropriate alphabet

created a repetition, and the repeating block of size h = |dm| + 1 was erased.

Since the first part of the repeating block still exists in the sequence s, which

is the sequence sl−h+1, . . . , sl, we can use it to re-construct the sequence at the

end of (m − 1)-th step by simply appending the repeating block sans its last

element to the sequence s. Therefore the sequence at the end of the (m− 1)-th

step is s1, sl, sl−h+1, . . . , sl−1 and the value of rm is the position of the symbol

sl picked from the Ll+h-th alphabet.

3. dm = 0: This means that the symbol picked from the alphabet Ll+1 created a

repetition and the repeating block of size h = |dm| + 1 = 1 (in this case the

symbol picked) was erased. The value of rm is the position of the symbol sl

in the Ll+1-th alphabet and the sequence at the end of the (m − 1)-th step is

s1, . . . , sl.

Applying the same reasoning as above, one can iterate other values of the evaluation

from the corresponding symbol in d.

Let Tm be the number of difference sequences d, satisfying the following conditions:

1. dj ≤ 1, for all 1 ≤ j ≤ m

119

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

2. Σk
j=1dj ≥ 1, for all 1 ≤ k ≤ m, and additionally

3. Σm
j=1dj = 1

Such sequences are in close relation to planar trees and are enumerated with

Catalan numbers.

Catalan numbers form a sequence of natural numbers. Using a zero-based num-

bering, where the n-th Catalan number is given in terms of binomial coefficients by:

Cn =
1

n+ 1

(
2n

n

)
=

2n!

(n+ 1)!(n)!

Asymptotically, the Catalan numbers grow as

Cn ∼
4n

n3/2
√
π

These sequences occur in various counting problems mostly involving recursively-

defined objects. For example, the n-th Catalan number, Cn, is the number of rooted

binary trees with n internal nodes. For more details regarding this sequence and its

vast application see [Stanely, 2015] and [Stanley, 1999].

Therefore, Tm = 1
m+1

(
2m
m

)
. Note, that every feasible difference sequence in a log

has a total sum less than n (as Algorithm 1 never terminates per our assumption).

The number of difference sequences satisfying (i), (ii) but with a total sum equal k

(fixed k ≥ 1) is at most Tm. Thus, the number of all feasible difference sequences

is at most n.Tm = n n
m+1

(
2m
m

)
. Clearly, for every feasible difference sequence d the

number of sequences which can occur in log with d is at most 4n. The total number

of evaluations is 4m, and from Claim 35, the number of logs equals 4m. Therefore, we

120

Ph.D. Thesis - Neerja Mhaskar McMaster Univ. - Computing and Software

get the following inequality:

4m ≤ n
1

m+ 1

(
2m

m

)
4n ≤ n

4m

m
√

2m
4n

Hence m
√

2m ≤ n22n, which contradicts our assumption. This means that Algo-

rithm 1 terminates. Therefore, square-free strings exist over any L ∈ L4.

To understand the concepts of evaluation, difference sequence, etc. of the proof

we consider an example, where the list L ∈ LΣ4 and |L| = 8. We order the symbols of

each alphabet in list L in ascending order. Applying the same techniques as discussed

in the proof of Theorem 34, we compute the evaluation, difference sequence etc. for

the first eight steps. These values are summarized in the table below.

Algorithm 1 Example

Step number(j) i (end of step) dj s (end of step) r1, r2, . . . , rj

1 2 1 1 1

2 3 1 12 12

3 4 1 123 123

4 5 1 1231 1231

5 6 1 12312 12312

6 4 -2 123 123123

7 5 1 1231 1231231

8 6 1 12312 12312312

Note that in the above example Σ8
j=1dj = 5, and this equals the length of the

sequence s at the end of the eighth step.

121

