
THEORETICAL STUDIES OF UNCONVENTIONAL SUPERCONDUCTIVITY IN SR2RUO4





THEORETICAL STUDIES OF UNCONVENTIONAL SUPERCONDUCTIVITY IN

SR2RUO4

By

WEN HUANG, M.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

©Copyright by Wen Huang, August 2016



DOCTOR OF PHILOSOPHY (2016) McMaster University

(Department of Physics and Astronomy) Hamilton, Ontario, Canada

TITLE: Theoretical studies of unconventional superconductivity in Sr2RuO4

AUTHOR: Wen Huang, M.Sc.

SUPERVISOR: Dr. Catherine Kallin

NUMBER OF PAGES: xiii, 95

ii



Abstract

In this thesis we study the edge currents and the multi-band superconductivity in the uncon-

ventional superconductor Sr2RuO4.

Numerous measurements have given strong support for a topologically non-trivial time-reversal

symmetry breaking chiral p-wave state in this material. However, the spontaneous edge cur-

rent expected for this order has eluded experimental detection. In this thesis, we present a

general theoretical description of the edge currents in chiral superconductors. Our results elu-

cidate the connection between the edge currents and the topological property of the chiral

pairing. On this basis, we argue that superconducting gap anisotropy, combined with surface

disorder, may provide an explanation for the absence of observable edge currents in Sr2RuO4.

In addition, contrary to intuitive expectations, the integrated edge current is found to identi-

cally vanish for any non-p-wave chiral superconductor in the continuum limit– a result which

may be connected with the orbital angular momentum problem in chiral superfluids, such as

the A phase of 3He. In lattice models, the integrated edge current may not vanish in non-p-

wave superconductors but, in general, is substantially smaller compared to that of a simple

chiral p-wave.

In a separate study, we investigate the multi-band nature of the superconductivity in Sr2RuO4,

via explicit microscopic calculations of the multi-band interactions. Our results indicate com-

parable pairing correlations on all of the bands and the existence of soft collective phase

fluctuations–a Leggett mode. We also examine the possibility of alternative time-reversal

symmetry breaking multi-band superconductivity which does not necessarily require chiral

p-wave pairing.
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Chapter 1

Introduction

One hundred years after its discovery,[1] superconductivity remains one of the most ex-

tensively studied quantum mechanical phenomena in condensed matter physics. The advent

of the celebrated Bardeen-Schrieffer-Cooper (BCS) theory[2] more than five decades ago laid

the foundation of a microscopic understanding of this novel quantum state. Many more su-

perconductors have since been discovered, some with unconventional properties beyond the

original BCS description. Among them, strontium ruthenate (Sr2RuO4)[3] stands out, thanks

to its unusual superconducting order[4].

Sr2RuO4 is a perovskite oxide iso-structural to to one of the parent compounds of the well

known cuprate superconductors,[5] La2CuO4 (Fig. 1.1). However, unlike the latter which

is a anti-ferromagnetic Mott insulator[6] in the absence of chemical doping, normal state

Sr2RuO4 is a non-magnetic metal with three bands crossing the Fermi level (Fig. 1.1)[7, 8].

Above the superconducting transition and below about 30K, the compound behaves like a

Fermi liquid but with considerable mass enhancement indicative of strong electron correlations[4].

The three bands consist primarily of the Ru t2g d-orbitals – dxz (xz), dyz (yz) and dxy (xy)[9, 10].

Due to the layered structure of the crystal, the bands exhibit minuscule interlayer hopping

along the crystalline c-axis (z-direction). As a consequence, the bands cross the Fermi level

forming cylindrical-shaped Fermi surface sheets around the kz-axis in the Brillouin zone[7,

1
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Figure 1.1: Schematics of a) the crystal structure of Sr2RuO4, and b) its three Fermi surfaces
in a two-dimensional Brillouin zone.

8]. Among them, two quasi-one-dimensional (1D) bands, dubbed α- and β-bands, originate

mainly from the hybridized xz and yz-orbitals which hop dominantly along the respective x-

and y-directions; while the quasi-2D γ-band arises primarily from the xy-orbital. The three

d-orbitals are further hybridized by a significant atomic spin-orbit coupling[10, 11, 12].

Below we summarize the main features of the unconventional superconductivity in Sr2RuO4.

For more exhaustive discussions the readers are referred to existing reviews, Refs [4, 13, 14,

15, 16, 17].

1.1 Spin-triplet odd-parity pairing in Sr2RuO4 The superconduc-

tivity in Sr2RuO4 was first discovered by Maeno in 1994 [3], with a rather low transition

temperature Tc ∼ 0.93K. The Tc was subsequently improved to 1.5K for higher quality sam-

ples [4, 16].

One of the first indications of the unconventional nature of the superconductivity of Sr2RuO4 was

the strong suppression of Tc due to impurity doping[18]. This is not expected in conventional

2
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s-wave superconductors, and is most commonly attributed to the unconventional nature of the

Cooper pairing where the superconducting gap averages to zero around the Fermi surface.

Early evidence for spin-triplet pairing stemmed from both NMR Knight shift [19] and

Neutron scattering [20] measurements, both of which saw constant spin susceptibility across

the superconducting transition down to the lowest accessible temperatures. In the absence

of spin-orbit coupling, constant spin susceptibility below Tc is peculiar to superconductors

with triplet pairing for a magnetic field perpendicular to the direction of zero-spin projection

of the triplet Cooper pairs (see below). Specific to a spin quantization axis parallel to the

magnetic field, the Cooper pairs are formed with electrons carrying the same spin. Thus

the development of superconductivity does not hinder spin polarization. In contrast, spin

polarization is suppressed in a spin-singlet superconductor as it requires breaking the Cooper

pairs.

The Pauli exclusion principle necessarily implies odd parity for the spatial wave function

of a triplet Cooper pair, namely, the wave function must change sign upon an exchange of

the coordinates of the two electrons constituting the Cooper pair. More formally, ∆k =−∆−k.

This is supported by phase-sensitive measurements on superconducting quantum interference

devices (SQUID) by Nelson et al [21]. In these experiments, as is expected for a single-

domain odd parity order parameter, when the magnetic flux threading the junctions is zero,

the critical current reaches a minimum (maximum) for devices with junctions on the opposite

(same) sides of the crystal.

By convention, a generic triplet pairing gap may be written as,

∆σσ′(k) = i[(d(k) ·σ)σy]σσ′ =


−d1(k)+ id2(k) d3(k)

d3(k) d1(k)+ id2(k)


 (1.1)

3
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where the so-called d̂-vector d(k) = (d1,d2,d3) denotes the spin configuration of the pairing

and the k-dependence characterizes the structure of the superconducting gap. Physically, for

the triplet states considered here, the d̂-vector denotes the direction along which the spin of

the Cooper pair has zero projection. For example, taking the spin quantization axis to be along

the c-axis orthogonal to the 2D plane, for an out-of-plane d̂ state, one arrives at ∆↑↑ = ∆↓↓ = 0

and ∆↑↓ = ∆↓↑ = d3(k). Other d̂-vector states may be similarly obtained.

There is a further recent verification of the odd parity triplet pairing: the observation of

half-quantum-vortex (HQV) in the cantilever magnetometry measurements by Jang et al [22]

on mesoscopic ring-shaped samples. A HQV is formed when the d̂-vector rotates by 180◦ as

the phase of orbital part of the Cooper pair wave function winds by π around the vortex core.

It may also be viewed, when taking the spin quantization axis to be orthogonal to the d̂-vector,

as a topological excitation where the order parameter of only one of the two spin species winds

by a phase of 2π. However, the existence of these excitations has not yet been confirmed in

more recent transport studies [23, 24], and questions remain regarding the stability of HQV

under various experimental conditions [25, 26, 27, 28].

1.2 Time reversal symmetry breaking pairing Another novel prop-

erty of Sr2RuO4 is the possibility of time-reversal symmetry breaking (TRSB) superconduc-

tivity. Evidence of TRSB came first in µSR [29] where weak internal magnetic fields were

observed below Tc. Later Kerr effect measurements [30] observed a rotation of the polariza-

tion angle of the reflected linearly polarized light normally incident to the sample below Tc. A

further indirect verification is a Josephson interferometry measurement[31] and a point contact

spectroscopy[32], which indicate the existence of domains of time-reversed superconducting

order parameters.

4
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This peculiar property, combined with the triplet and odd-parity nature of the pairing,

makes chiral px + ipy order the most probable candidate ground state for Sr2RuO4. Such a

novel state breaks time-reversal symmetry in the sense that Cooper pairs carry non-vanishing

and quantized orbital angular momentum Lz =±h̄, similar to the so-called A-phase of 3He[33]

In conjunction with the tetragonal crystal lattice structure and the finite spin-orbit coupling

on the Ru orbitals, a chiral p-wave state should exhibit an out-of-plane d̂-vector and the or-

der parameter belongs to the two-dimensional Eu representation of the underlying D4h point

group.[34] More explicitly,

∆
chiral
σσ′ (k) =


 0 ∆0(kx± iky)

∆0(kx± iky) 0


 . (1.2)

In the absence of spin-orbit coupling which breaks spin rotation invariance, the chiral state is

degenerate with the so-called helical state analogous to 3He B-phase[33],

∆
helical
σσ′ (k) =


∆0(−kx± iky) 0

0 ∆0(kx± iky)


 , (1.3)

which has an in-plane d̂-vector orientation and preserves time reversal invariance by virtue

of the opposite chiral pairing associated with the two spin species. It is widely believed that

spin-orbit coupling in Sr2RuO4 pins the d̂-vector to the ĉ-axis, thereby favoring the chiral

pairing[35].

1.2.1 Topological chiral superconductivity The quantized angular momentum carried by

the Cooper pairs leads to a non-trivial topological property for the ground state. This may be

5
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illustrated using the example of continuum systems, where the gap function of a generic chiral

pairing reads,

∆k = ∆0

(
kx + iky

kF

)m

≡ ∆0(k/kF)
meimθk , m = 1,2, ... (1.4)

where m denotes the orbital angular momentum of the associated Cooper pairs, e.g. m =

1, 2 and 3 for chiral p-,d-, and f -waves, respectively; and θk is the angle of wavevector k

with respect to the x-axis. Remarkably, the quantized orbital angular momentum coincides

with an integer topological invariant that defines the topology of the ground state: the Chern

number [38, 39],

C ≡ 1
4π

∫
d2k ĥ ·

(
∂kx ĥ×∂ky ĥ

)
= m, (1.5)

Here the ĥ denotes a pseudospin given by {Re[∆k],−Im[∆k],ξk} and ĥ =~h/|~h|, with ξk ≡

ε(k)− µ giving the normal state single-particle dispersion. Physically, the Chern number

counts the Berry phase acquired by the pseudospin as it winds adiabatically on the torus of the

2D Brillouin zone[40, 41].

The attribution of non-trivial topology, i.e. the non-vanishing Chern number, is not limited

to continuum models, but also extends to generic lattice systems, as long as the state remains

fully gapped. More generically, a chiral pairing may be expressed as,

∆k = ∆1 f1(k)+ i∆2 f2(k) . (1.6)

Here both of the two components of the order parameter, ∆1 and ∆2, are real, and the form

factors f1(k) and f2(k) are any lattice harmonics that transform the same way as the appropri-

ate basis functions do under the lattice point group symmetry operations.[42] For example, in

a square lattice, the simplest chiral p-wave reads ∆k ∼ sinkx + isinky. Usually, form factors

6
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pertaining to higher harmonics signify substantial gap anisotropy, as can be seen by taking

|∆k|=
√
|∆1 f1(k)|2 + |∆2 f2(k)|2.

Finally, the core of a HQV in a chiral p-wave superconductor supports a zero-energy

Majorana mode [43, 39, 44]. These exotic particles are their own anti-particles [45]. Their

existence are robust against local perturbations and relies purely on a topological property

embedded in a HQV [44]. Multiple Majorana modes in the same system introduce ground state

degeneracy and result in non-Abelian braiding statistics when the HQV’s move around each

other [46], a remarkable property which may be utilized for quantum computing [47]. This

constitutes an important motivation for investigating the unconventional superconductivity in

Sr2RuO4.

1.2.2 Edge current and orbital angular momentum paradox Similar to quantum Hall

insulators or Chern insulators, a chiral superconductor supports chiral edge modes. These

modes have Majorana character [48], and their existence is a manifestation of the non-trivial

topology of the bulk state[49]. The number of the chiral edge branches equals the Chern

number, while their chirality is protected by the topology of the chiral ground state and is

hence robust against local perturbations.

The existence of chiral edge modes leads naturally to the expectation of spontaneous cur-

rents at the edge of the system. A related problem has been studied for decades in relation to

the intrinsic orbital angular momentum in thin films of 3He A-phase (see e.g. [33, 36, 37]).

In analogy to the Bose-Einstein condensate (BEC) limit with tightly-bound molecules, since

each Cooper pair carries a quantized orbital angular momentum 〈Lz〉 = h̄/2, a system of N

particles is intuitively expected to acquire a total orbital angular momentum 〈Ltot
z 〉 = Nh̄/2.

Note that for a U(1)-breaking state, particle number is not conserved, and these expectations

7
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are only accurate up to a factor of 1− (∆/EF)
2. Generalizing to higher angular momentum

Cooper pairing, 〈Ltot
z 〉= mNh̄/2, where m =C is the Chern number. An alternative argument

would suggest that, in the BCS limit only particles within a thin shell of the Fermi level are

paired, resulting in an extra factor of ∆/EF for the expected value of the angular momen-

tum, i.e. 〈Ltot
z 〉 = ∆

EF
mNh̄

2 . A third argument would suggest that, since the average size of the

Cooper pairs, parameterized by the coherence length ξ, is much larger than the inter-particle

spacing, k−1
F , the Cooper pairs strongly overlap and cancel the orbital current generated by

one another. This leads to a much stronger suppression of the orbital angular momentum

〈Ltot
z 〉=

(
∆

EF

)2
mNh̄

2 . The orders-of-magnitude difference in the various predictions constitutes

the so-called angular momentum paradox. Many have contributed insights since the question

was initially raised (see e.g. [50, 51, 52, 53, 54, 55, 56]). Recently, Stone and Roy[48] and

Sauls[57], studying chiral p-wave superfluids, showed explicitly that the total angular mo-

mentum is indeed given by Nh̄/2. However, this is not a direct consequence of summing up

contributions from the N/2 Cooper pairs as mentioned above. More importantly, as we shall

see in this thesis, the conclusion is drastically different for chiral superfluids with m> 1.

A more practical problem, which motivated part of this thesis, arises in relation to Sr2RuO4.

Like the spontaneous angular momentum, the spontaneous currents at the edges or domain

walls are expected as a direct consequence of the chiral p-wave pairing in Sr2RuO4 [58, 59].

Here, a domain wall separates real space domains of Cooper pairing with positive and neg-

ative chiralities. Strikingly, efforts to detect the signature magnetic fields generated by these

spontaneous surface currents have so far returned null results. These include scanning SQUID

and scanning Hall probe microscopies [60, 61, 62], which consistently placed a strict upper

bound for the spontaneous current approximately 10−3 times smaller than what was predicted

for a simple one-band isotropic chiral p-wave model for Sr2RuO4 [58]. Such an apparent
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Figure 1.2: Scanning SQUID measurement by Kirtley et al. [60], showing significant dis-
crepancy between the measured and theoretically predicted magnetic signals as the SQUID
pick-up loop scans across a sample edge.

contradiction imposes stringent constraints on theories of unconventional superconductivity

in Sr2RuO4.

Over the years, a fair amount of work has emerged, attempting to reconcile chiral p-wave

order and the absence of edge currents in Sr2RuO4. Early on, Ashby and Kallin [63] explored

the suppression of edge current due to surface disorder as recently indicated in, e.g. a junction

tunneling measurement [64]. The surface suppression was later substantiated by numerical

BdG calculations of more realistic anisotropic chiral p-wave models for this material [65, 66].

Meanwhile, Imai et al [67] showed that the spontaneous current at an ideal edge remains

substantial in multi-band chiral p-wave models of Sr2RuO4 in which superconductivity resides

dominantly on the quasi-1D bands. Interestingly, in the limit of weak inter-orbital mixing (due

to both hybridization and spin-orbit coupling), the nearly flat edge dispersion associated with

the quasi-1D orbitals promotes the formation of spin polarization at the boundary, which the

authors argued would at least partially negate the magnetic field generated by the spontaneous
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current. However, they also noted that the spin polarization is less pronounced in the presence

of stronger inter-orbital mixing.

Alternative arguments for the absence of observable surface currents have been proposed,

such as the formation of small domains [31, 61] which might cancel the expected signal in

scanning probes. However, to obtain the required degree of cancellation, the domain size

would have to be smaller than a micrometer [14, 15]. This is not compatible with the Joseph-

son phase sensitive [21] and the Kerr effect [30] measurements, both of which indicate single

domain sizes substantially larger than a few micrometers.

1.2.3 Plan of this thesis Part of the goal of this thesis is to develop a most generic descrip-

tion for the edge currents in chiral superconductors and superfluids. We will first formulate in

Ch.2 general theories of the spontaneous current in superconductors with TRSB, using both

phenomenological and semiclassical analyses. We then present in Ch.3 a rather surprising

finding, that the integrated edge current vanishes identically for all non-p-wave chiral super-

conductors in the continuum limit. Extensions to generic lattice models are also discussed.

Next in Ch.4, we explore the connection between the edge current and the intrinsic topology

of the chiral ground state. Finally, in Ch.5 we present a self-consistent numerical Bogoliubov

de-Gennes (BdG) calculation of the edge current in a multi-band model of Sr2RuO4, where

the effect of strong surface disorder is systematically investigated.

1.3 Superconducting mechanism Shortly after the discovery of supercon-

ductivity in Sr2RuO4, Rice and Sigrist [34], and independently Baskaran [68], proposed spin-

triplet pairing, motivated by the strong Hund’s coupling between the Ru d-orbitals which

favors spin-triplet correlations. More studies [69, 35, 70, 71, 72, 73, 74, 75, 76, 77, 78] have

10
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followed, based almost exclusively on unconventional mechanisms associated with Coulomb

correlations and to some extent their associated bosonic charge and/or spin density wave fluc-

tuations.

Among these studies, spin density-wave proposals include: 1) Ferromagnetic fluctuations

on the γ-band due to a filling proximate to a van-Hove singularity, and 2) strong incommen-

surate spin-density-wave fluctuations arising from the quasi-nested α&β-bands. This leads to

the expectation that superconductivity is primarily driven by one of the two subsets of bands

– quasi-2D γ-band or quasi-1D α&β-bands, and that the passive band(s) exhibit much weaker

Cooper pairing by proximity.

Nevertheless, throughout the years, a picture has emerged that superconductivity arises

concurrently on all of the three bands in Sr2RuO4. Experimentally, this is evident in, e.g.

the specific heat measurements, which below Tc do not show any anomaly indicative of the

existence of a weaker superconducting gap on a subdominant band.[79, 80] Theoretically, a

weak-coupling renormalization group analysis by Scaffidi et al [77] predicts comparable gap

amplitudes on all of the bands in a range of band and interaction parameters believed to be

appropriate to Sr2RuO4. However, this is still an unresolved issue, and both experimental[81]

and theoretical[82, 72, 75, 76, 78] indications also exist in support of a state where one subset

of the bands dominates superconductivity.

1.3.1 Plan of this thesis In Ch.6, we ask the question of how the superconducting or-

der parameters of the three-bands in Sr2RuO4 interact with each other, and explore possible

novel physics resulting from the multi-band interactions. Based on microscopic weak cou-

pling calculations, we explicitly evaluate the effective multi-band interactions in the leading

superconducting channels for various regions of interaction parameter space. Our results in-
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dicate comparable superconducting correlations on the two subsets of bands, which lead to

comparable gaps on the bands. We also argue that the comparatively weaker interactions be-

tween the two subsets of bands in general result in a relatively soft collective phase mode, the

Leggett mode. In addition, we also examine the possibility of exotic multi-band TRSB triplet

superconductivity which does not necessarily involve chiral p-wave pairing.
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Chapter 2

Edge currents in time-reversal symmetry breaking

(TRSB) superconductors: General Theories

2.1 Introduction This chapter will present general theories of edge currents in

chiral superconductors. The discussions are not limited to chiral p-wave states, but include

higher angular momentum Cooper pairing states, such as chiral d- and f -wave, etc, as well as

other superconducting order parameters with TRSB. We provide both phenomenological and

semiclassical analyses to elucidate the relation between the edge currents and the underlying

superconducting order. In particular, it will become clear that the edge current depends rather

sensitively on the structure of the gap functions of the two chiral components.

The phenomenological analysis, based on a Ginzburg-Landau effective theory, yields a

powerful qualitative description of the edge current. On the other hand, the semiclassical

argument provides an intuitive explanation to the comparatively smaller edge current in non-

p-wave and anisotropic p-wave chiral superconductors.

This chapter will concentrate on scenarios with sharp confining edges, i.e. the carrier den-

sity drops to zero abruptly over the length scale of the order of k−1
F which is much smaller
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than the coherence length. This is most relevant to solid state superconductors where it is not

feasible to engineer a spatial variation of the particle density while retaining superconductiv-

ity. The soft edge limit, where the density varies over a length scale larger than or at least

comparable to the coherence length, will be discussed in the next chapter. Unless otherwise

specified, we shall focus on single-band systems in this chapter.

2.2 Ginzburg-Landau effective theories To understand the appearance

of edge currents in a TRSB superconductor, one may start from an effective field theory that

encapsulates the low energy electromagnetic responses of the system. Such an effective theory

can be obtained from a gradient expansion of the action of a superconductor given by the

following[83, 84],

S =
∫

dτddr
( |∆|2

V
−Tr lnĜ−1

)
, (2.1)

where ∆ is the superconducting order parameter, −V is the effective interaction which medi-

ates Cooper pairing, and the Gor’kov Greens function Ĝ is obtained via the following relation,

Ĝ−1 =


−∂τ− Ĥ0 ∆

∆∗ −∂τ + Ĥ∗0


 , (2.2)

where Ĥ0 is the single-particle normal state Hamiltonian. An appropriate perturbative expan-

sion of (2.1) depends on the temperature regime under consideration. At T ' Tc, ∆(T )/T � 1,

hence an expansion with respect to ∆/T may be performed, resulting in an effective Ginzburg-

Landau theory (see Appendix A for details). For a generic two-component superconducting

state given by ∆k = ∆1 f1(k)+∆2 f2(k), the effective time-independent Ginzburg-Landau ac-

tion reads [42],
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S[∆∗,∆] =
∫

dr [
α1(T )

2
|∆1|2 +

α2(T )
2
|∆2|2

+
β1

4
|∆1|4 +

β2

4
|∆2|4 +

β12

4
|∆1|2|∆2|2 +

β′

4
(∆∗1∆2 +∆1∆

∗
2)

2 +O(|∆|4)

+ k1|Dx∆1|2 + k′1|Dy∆1|2 + k2|Dy∆2|2 + k′2|Dx∆2|2

+ k3(D∗x ∆
∗
1Dy∆2 + c.c.)+ k4(D∗x ∆

∗
2Dy∆1 + c.c.)+ ...], (2.3)

where “...” stands for higher order gradient contributions, Di = ∂i− ieAi is a covariant deriva-

tive, α j(T ) ∝ (T −Tc, j)/Tc, j where Tc, j is the transition temperature of the j-th component of

the gap, and the β and k coefficients may be obtained in the expansion and are related to the

structure (form factor) of the two superconducting gap components, f1(k) and f2(k), as well

as the underlying band structure. In particular, it can be shown that all of the β-coefficients

are positive, which immediately implies a ground state with (complex) TRSB order param-

eter, i.e. ∆∗1∆2 +∆1∆∗2 = 0. This is consistent with the maximal condensation energy gain

when the two components form a complex superposition to reduce the number of nodes in the

superconducting gap.

Furthermore, if the two components are degenerate [42], i.e. if they belong to an ir-

reducible two-dimensional representation of the underlying lattice point group, Tc,1 = Tc,2,

β1 = β2, k1 = k2 and k′1 = k′2. In general, the form of the action may be deduced on the basis

of symmetry considerations. One can check that all of the terms in (2.3) preserve the required

global U(1) symmetry. And in the case of two degenerate components, such as for a chiral

p-wave on a tetragonal lattice, the D4h point group symmetries are manifest once we impose

the relations mentioned above.
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Figure 2.1: The emergence of edge current at a sharp edge. The distinct spatial variations of
the two components of chiral order parameter at the edge give rise to a spontaneous current
parallel to the edge. The order parameter components are obtained from self-consistent BdG
calculations.

Consider an ideal, translation invariant sharp edge at x = 0 running along the y-axis. Thus

edge current, if any, would flow parallel to y-axis. Since the edge acts as a translational-

invariance breaking perturbation along the x-direction, it drives the two order parameter com-

ponents ∆1 and ∆2 to deviate from their bulk values near the edge (Fig.2.1). This is the origin

of edge currents in a TRSB superconductor. To see this more explicitly, note that

jy =
1
e

∂S
∂Ay

= 2e(k′1|∆1|2 + k2|∆2|2)Ay + e(k3 + k4)(∆
∗
1∆2 +∆1∆

∗
2)Ax

+ 2k3Im[(∂x∆
∗
1)∆2]−2k4Im[∆∗1(∂x∆2)] . (2.4)

The second term vanishes because ∆∗1∆2 +∆1∆∗2 = 0 in a TRSB state. If we ignore screening

effects (i.e. dropping the terms proportional to the vector potential), (2.4) becomes,

jy = 2k3Im[(∂x∆
∗
1)∆2]−2k4Im[∆∗1(∂x∆2)] . (2.5)
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It now becomes apparent that current along y arises as a response to the order parameter

gradients along x (Fig.2.1). In other words, the physics of this Hall-like current response

stems from a current-order parameter gradient correlation. Moreover, one can show that the

k3 and k4 coefficients that govern these correlations as in (2.3) are given by (Appendix A),

k3 = k4 =
∂2

∂qx∂qy

T ∑
iw,k

[−G0(iw,k+q)G0(−iw,−k) f1(k) f2(k)] |q=0

∝ 〈vx(k)vy(k) f1(k) f2(k)〉FS (2.6)

where G0(iw,k) = 1/(iw− ξk) is the usual normal state Greens function, w is the fermionic

Matsubara frequency, and the bracket in the second line of (2.6) represents a line integral over

the Fermi surface.

With k3 = k4, it is obvious that no current should emerge if the two order parameters

exhibit the same spatial variation. Nevertheless, the distinct behaviour of ∆1 and ∆2 near an

edge is in fact guaranteed by their symmetries. Take the simple chiral p-wave as an sample.

Upon a reflection of the two components about the y-axis, ∆1 (kx) component changes sign,

while ∆2 (ky) does not. Thus ∆1 must fall to zero right at the edge, while ∆2 may stay the same

(in reality it varies due to quartic and higher order couplings with ∆1 as in (2.3)), as can be

seen in Fig.2.1. Since the order parameters vary over a length scale of the coherence length ξ

from the edge, the current is also concentrated over the same length scale in the same regime.

In a charged superfluid, screening (Meissner effect) arising from the first term in (2.4)

results in an opposite current distributed over a magnetic penetration depth of the surface,[42,

58, 63] leading to vanishing integrated current. The local current distribution is non-vanishing,

but its maximum magnitude is reduced by screening.
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Thus far, we have seen that edge currents may arise in the presence of spatially varying

order parameter components in a TRSB superconductor, and the current thus-generated is

dictated by an overall coefficient k3. This is a very powerful phenomenological criterion. As

a simple test, one may examine the edge current at the (10) surface of simple dxy + is and

dx2−y2 + is superconductors on a square lattice, for which we obtain, respectively,

k3 ∝ 〈vx(k)vy(k)sinkx sinky(coskx + cosky)〉FS 6= 0 , and

k3 ∝ 〈vx(k)vy(k)(coskx− cosky)(coskx + cosky)〉FS = 0 (2.7)

where we have assumed simple harmonics for the gap structure of the respective components.

The vanishing k3 in the second line can be inferred from symmetry and is independent of the

band and gap structures. This immediately suggests vanishing edge current (at this lowest

order, see below) for dx2−y2 + is and finite edge current for dxy + is at a (10) surface, as has

been discussed in an earlier study.[59]

To further corroborate the GL theory, we compare in Fig.2.2 the predictions based on the

value of k3 and the numerical BdG calculations of the integrated edge current at a sharp edge of

a chiral p-wave model on a square lattice (see the publication in Chapter 5 for an introduction

to the self-consistent numerical BdG calculations). It is not difficult to see the qualitative

agreement between the two throughout the entire range of chemical potentials relevant to the

tight binding band structures considered.

It is also easy to see from (2.6) that k3 may be generically smaller for TRSB supercon-

ductors whose gap components change sign more frequently across the Fermi surface. This

suggests a mechanism for reducing the edge current in realistic models of a chiral p-wave

superconductor, as will be elaborated in our publications to be presented in Ch.4.
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Figure 2.2: Comparison between the total edge current obtained from GL theory and nu-
merical self-consistent BdG calculations on a square lattice chiral p-wave model with ∆k =
∆0(sinkx + isinky). The tight-binding single particle spectrum is given by ξk = −2t(coskx +
cosky)−4t ′ coskx cosky−µ, with t ′/t = 0.3 in (a) and t ′/t = 1 in (b).

Finally, it should be stressed that (2.4) and (2.5) only constitute the lowest order contribu-

tion to the current, which vanishes when k3 is zero. However, higher order gradient terms in

the effective action (2.3), such as (D3
x ∆1)

∗Dy∆2, may not vanish. These additional contribu-

tions can generate small yet non-vanishing local current distribution, as has been found in a

recent study of edge currents in non-p-wave chiral superfluids[85]. Furthermore, due to the

reduced lattice symmetry, subdominant superconducting components may be induced at the

boundary, which might also lead to finite local current.

2.3 Semiclassical theories Here we turn to a semiclassical perspective which

provides a more intuitive picture of the edge current in a TRSB superconductor.

By analytically solving the BdG equation in the presence of an ideal sharp edge, the energy

dispersion and wavefunctions of the quasi-particle states, including those of the edge modes if

present, may be obtained. These analyses are most easily done assuming constant amplitude

of the order parameter components at the boundary. Note this is not in contradiction with
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Figure 2.3: Edge dispersion of chiral p-, d- and f -wave superconductors, or Chern insulators
with Chern number C = 1,2,3.

the Ginzburg-Landau argument in the previous section, as the energy spectrum thus obtained

corresponds exactly to that in the presence of realistic order parameter profiles at the edge,

due to the absence of spectral flow (see Chapter 4). The edge current can be subsequently

evaluated. For illustrative purpose, we focus below on the topologically non-trivial chiral

superconductors and investigate the contribution from their edge states alone. Earlier studies

specific to chiral p-wave can be found in Refs [59, 48, 57]. For more details of our analyses,

see Appendix B. The BdG Hamiltonian for a chiral superfluid is given by,

Ĥk = ψ
†
k


 ξk ∆(

kx+iky
kF

)m

∆∗(kx−iky
kF

)m −ξ−k


ψk (2.8)

where the Nambu spinor ψk = (c†
k,σ,c−k,σ′)

T , and m gives the angular momentum of the

Cooper pairs. In inversion symmetric case, ξk = ξ−k, the same form of Hamiltonian ma-

trix also describes a Chern insulator[86] with the same Chern number m, but with a different

spinor in particle-particle basis, ψk = (ca,k,cb,k)
T . For convenience, we focus here on the

continuum limit where ξk ∼ k2.

Despite the topological equivalence and the same edge state dispersion at an open bound-

ary (Fig.2.3), there exists a crucial distinction between a chiral superconductor and a Chern

insulator resultant from the U(1) symmetry breaking of a chiral superfluid. More concretely,
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the current operator is jk = ∂kĤk for a Chern insulator, while jk = ∂kξkσ0 for a chiral super-

conductor (σ0 is a 2×2 identity matrix). This has important consequences the current carried

by the individual quasi-particle states.

In a Chern insulator, the current carried by a state is given by its group velocity ∂kEk. This

implies the topological protection of the edge current, as the total current would then be en-

tirely determined by the number and chirality of the edge dispersion and is independent of the

details of the edge spectrum. More concretely, Jtot ∝ C∆0/2 where ∆0 is the size of the gap.

However, an edge state in a chiral superfluid carries a current that is given by ∼ ∂kξk = k/m∗,

where m∗ is the effective mass. A semiclassical understanding of this is the following. The

edge mode of a chiral superconductor is an equal-amplitude linear superposition of particle

and hole components, i.e. γk =
1√
2
(c†

k,σ + ic−k,σ′). Thus charge current is oblivious to the

group velocity of this charge-neutral mode. Meanwhile, the opposite motion of the consti-

tuting electron and hole components, one with momentum k and the other −k, provides a

net flow of charge current. Combined with the energy and momentum distributions of the

edge modes as in Fig 2.3, a striking difference between p-wave and non-p-wave chiral super-

conducting ground states immediately becomes obvious: in the former, all of the individual

occupied chiral modes carry current that flows in the same direction, while in the latter, the

contributions from multiple branches of occupied states can cancel each other. Thus the edge

state contribution is significantly smaller for non-p-wave chiral superconductors–a somewhat

counterintuitive conclusion which otherwise follows naturally from our semiclassical reason-

ing.

One can further show that, due to the symmetry properties peculiar to the continuum lim-

iting cases, the integrated edge state contribution vanishes exactly for non-p-wave pairings.

The total bulk state contribution can also be analytically evaluated and shown to be identically
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Figure 2.4: Low energy dispersion (a,b) and numerical BdG edge current distribution (c)
for two chiral p-wave models on a square lattice, with periodic boundary along y and open
boundaries in x-direction. The modes plotted in red are the edge states belonging to one
of the edges. The single-particle tight-binding dispersion reads ξk = −2t(coskx + cosky)−
4t ′ coskx cosky− µ, with µ = −1.5t in both (a) and (b). The superconducting gap function is
∆1k = ∆0(sinkx + isinky) in (a) and ∆2k = ∆0(sinkx cosky + icoskx sinky) in (b). In (c), the
x-coordinate is measured with respect to a length scale defined by ξ = vF/∆0 with vF ' 1 and
∆0 = 0.2t.

vanishing (see Appendix B). Thus the total integrated current also vanishes [87]. These results

will be elaborated in Ch.3.

Away from the continuum limit in lattice models, the current can be non-zero for non-

p-wave chiral pairing, but would still be smaller than for a simple chiral p-wave. That the

integrated current need not vanish may be understood by the fact that the locations of the zero-

crossings of the chiral edge dispersion in lattice models are constrained by lattice symmetries,

thus the currents carried by the multiple chiral edge branches may not exactly cancel as they

did in the continuum limit. In addition, for anisotropic chiral p-wave models, additional zero-

energy-crossings of the edge dispersion may also occur, introducing cancellations between

the occupied edge states carrying opposite momenta, thus reducing the overall spontaneous

current (see Fig.2.4) [88, 89], consistent with the discussions in the previous section.
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Chapter 3

Vanishing edge currents in non-p-wave topological

chiral superconductors

3.1 Preface The edge current and orbital angular momentum of chiral p-wave superflu-

ids have been studied extensively, largely due to the experimental realization of chiral p-wave

superfluidity in 3He[33, 36, 37] and potential relevance to Sr2RuO4. Here, we take one small

step further by studying the edge current and orbital angular momentum in chiral supercon-

ductors with higher angular momentum Cooper pairing. A intuitive and obvious expectation

is that, the total edge current of a chiral d-wave superconductor is twice as large as that of a

chiral p-wave since the angular momentum per Cooper pair is twice as large. However, this

turns out to be incorrect.

Our conclusion is threefold: 1) while the integrated edge current is non-zero for chiral p-

wave, it vanishes for all non-p-wave chiral superconductors in the continuum limit; This also

implies vanishing total orbital angular momentum when the latter is confined to a finite-size

disk; 2) the integrated edge current, and hence orbital angular momentum, may be recovered

for non-p-wave chiral superconductors in the presence of a soft edge where the Cooper pair
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density varies slowly; 3) for a non-p-wave chiral superconductor on a lattice, the edge current

can be nonzero but is generically smaller compared to that of a chiral p-wave.

These results are verified with numerical BdG calculations and are in agreement with the

phenomenological and semiclassical theories presented in the previous chapter, as well as

a concurrent study using a different analysis[90]. A few subsequent works have also sub-

stantiated and elaborated on this study[66, 85, 91, 92]. Our conclusions hold meaningful

implications for the orbital angular momentum problem in 3He-A[33, 37, 36] and the edge

current problem in putative or proposed chiral superconductors such as Sr2RuO4, UPt3[93],

SrPtAs[94], NaxCoO4·yH2O[95], dopped graphene[96], etc.

3.2 Publication
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I. INTRODUCTION

Two-dimensional topological chiral superconductors break
time-reversal symmetry by virtue of the fact that the Cooper
pairs have nonzero orbital angular momentum. For simple or-
bital eigenstates of the (z component of the three-dimensional)
angular momentum operator such as p-, d-, and f -wave states,
the Cooper pairs each carry m� of angular momentum, with
nonzero integer magnetic quantum numbers m. In a finite
sample of such a superconductor (for convenience, in this paper
we will not distinguish between chiral superconductors and
neutral chiral superfluids such as 3He, using “superconductor”
to describe both), this Cooper pair orbital angular momentum
is expected to give rise to a spontaneous edge current and
related to this, a nonzero total angular momentum.

For p-wave superconductors, both the edge current and total
angular momentum have been studied extensively (see, e.g.,
Refs. [1–5]), largely due to the fact the chiral p-wave A phase
of 3He is the only system which is known to be definitely chiral.
At the same time, the perovskite superconductor Sr2RuO4 is
widely believed to be chiral p wave [6–8], although magnetic
fields consistent with the expected edge current have yet to
be detected [9–11]. This last fact in particular has generated
considerable interest in the question of what exactly is the
relationship between topological chiral superconductivity and
edge currents. Although it can be strongly suppressed by
disorder [5,12] as well as gap anisotropy and band effects [13],
the edge current and total angular momentum of a chiral
p-wave superconductor are generically large, the latter for
instance being Lz = N�/2 [4,14] in the continuum limit for
an ideal surface at T = 0, where N is the total number of
fermions.

In this paper, we generalize previous studies of the edge
current in chiral p- and d-wave superconductors [15–18]. In
addition to being a problem of intrinsic theoretical interest,
giving greater insight into the nature of the edge current in
chiral p-wave superconductors for instance, this work will
be relevant in the quest to find non-p-wave chiral supercon-
ductors such as the possibly chiral f -wave superconductor
UPt3 [19,20]. In contrast to the generically large edge current in
chiral p-wave superconductivity, we find that the edge current
in states with higher orbital Cooper pair angular momentum

can vanish, depending on details of the lattice. All our results
are for unscreened currents.

Drawing on analytic semiclassical Bogoliubov–de Gennes
(BdG) and Ginzburg-Landau (GL) calculations for continuum
systems, we show that, amongst chiral pairing states that
are eigenstates of the angular momentum operator, only
chiral-p superconductors have a nonzero edge current. Our
results extend to three-dimensional (3D) superconductors by
considering eigenstates of the z-component L̂z of the orbital
angular momentum operator: only states with magnetic quan-
tum number m = 1 give rise to a nonzero edge current. This
means, e.g., that the 3D f -wave state k2

z (kx + iky) with m = 1
has an edge current, but the m = 2 state kz[(k2

x − k2
y) ± 2ikxky]

does not. The latter is the continuum analog of a possible order
parameter for UPt3.

Turning to lattice models, numerical BdG and GL calcu-
lations are used to understand how these results carry over
from the continuum. Away from the continuum limit, the edge
current along axes of high symmetry can be nonzero even for
non-p-wave chiral states, although for all cases studied, it is
reduced as compared to that for chiral p wave on a square
lattice. In some cases, such as chiral f wave on a triangular
lattice, we find that the integrated current is extremely small.
In all cases where we find such a small integrated current, the
local current oscillates over a small length scale comparable
to the lattice spacing with an amplitude that decreases linearly
with �0/EF [18] and hence, vanishes in the weak-coupling
limit. A general condition for which the edge current vanishes
consistent with our BdG results is derived within GL theory.

We start in Sec. II by presenting our semiclassical analysis
for systems in the continuum limit. The implications of our
results for the problem of the total angular momentum are
discussed in Sec. III. There, a Chern-Simons-like [4,13,21,22]
expression for the current is also discussed in connection with
the possibility of a “soft” edge, where the density vanishes
slowly as compared to the coherence length. Apart from this
section, and also a brief discussion given in Sec. V, we leave
implicit that all our results are for a sharp edge, where the
density vanishes over a distance on the order of the mean
interparticle spacing k−1

F .
Turning our focus to lattice models, in Sec. IV, results are

given for numerical BdG calculations of the edge current for
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chiral p-, d-, and f -wave order parameters in some representa-
tive lattice systems: px + ipy on a square lattice, dx2−y2 + idxy

on square and triangular lattices, and fx(x2−3y2) + ify(3x2−y2)

on a triangular lattice. In Sec. V, we reproduce our continuum
as well as numerical lattice BdG results using GL theory.
A summary of our results is given in Sec. VI along with a
discussion of their relevance for systems such as Sr2RuO4

and UPt3, which have been proposed as candidate chiral
superconductors.

II. EDGE CURRENT IN THE CONTINUUM LIMIT OF
CHIRAL SUPERCONDUCTORS

We begin by using semiclassical Bogoliubov–de Gennes
calculations to understand properties of the edge current for
an edge in two-dimensional continuum chiral superconductors.
For continuum systems, the Cooper pair eigenstates

�k = �0

(
kx + iky

kF

)m

≡ �0(k/kF )meimθ , m = 1,2, . . .

(1)
of the 2D angular momentum operator are characterized by
the magnetic quantum number m. θ is defined such that k =
k[cos θ, sin θ ]. Not only does the magnetic quantum number
give the angular momentum m� per Cooper pair, it also is
equal to the Chern number (or skyrmion number of the BdG
Hamiltonian) [23],

m = C ≡ 1

4π

∫
d2k ĥ · (

∂kx
ĥ × ∂ky

ĥ
)
, (2)

which counts the number of zero-energy edge modes. Here �h =
{Re[�k], − Im[�k],ξk} and ĥ = �h/|�h|, with ξk ≡ ε(k) − μ

the single-particle dispersion.
The Bogoliubov–de Gennes (BdG) equation for the order

parameter (1) is[
h0 �0

(
k
kF

)m
eimθ

�0
(

k
kF

)m
e−imθ −h∗

0

] [
u

v

]
= E

[
u

v

]
, (3)

where h0 ≡ − �2

2m∗ ∇2 − μ and we have used m∗ to denote the
fermion mass to avoid confusion with the magnetic quantum
number. We seek solutions of (3) for the situation where
there is an edge parallel to the x axis, at y = 0. This edge is
implemented using the boundary condition u(y = 0) = v(y =
0) = 0.

A spontaneous current arises at an edge due to both current-
carrying Andreev-scattered edge states as well as the reflection
of continuum states [4]. The corresponding solutions

�̂ =
∑
σ=±

σ

[
aσ (y)
bσ (y)

]
eikF x cos θ+iσkF y sin θ (4)

of the BdG equations are thus completely parametrized by the
incident angle θ ; see Fig. 1. In (4), the σ = ± components
of the solution represent the transmitted (specular reflection)
and reflected (Andreev reflection) solutions, respectively. Note
that for our chosen geometry, this angle is the same as the one
that enters the order parameter (1). The minus sign (σ = −1)
attached to the reflected solution means that the vanishing
of the wave function at the edge becomes �̂−(0) = �̂+(0),
where �̂†

σ ≡ [aσ ,bσ ]. The current density per spin component

FIG. 1. Specular (t) and Andreev (r) reflection of a quasiparticle
off an ideal edge at y = 0. Adapted from Ref. [4].

corresponding to this solution is thus

jx(y > 0) = �
4m∗i

[�̂†∂x�̂ − (∂x�̂
†)�̂]

= �kF cos θ

2m∗
∑
σ=±

�̂†
σ �̂σ . (5)

As noted in Ref. [4], the seemingly extra factor of 1/2 in this
expression is needed to compensate the double counting in the
particle-hole basis spanned by �̂.

To solve the BdG equations, (3) and (4), we adopt the
elegant approach used by Stone and Roy [4] to solve the m = 1
problem and map these equations onto the one-dimensional
“twisted mass” Dirac problem. The density

∑
σ �̂†

σ �̂σ of
quasiparticle states receives contributions from the bound
edge state as well as the “charge” Qm(θ ) arising from
the phase-shifted bulk continuum states that accumulates
at the edge. Each bound state has unit normalization and
thus its contribution to the integrated current is obtained by
integrating (5) over the values of θ for which the edge mode
spectrum is negative (i.e., occupied):

Jedge =
∫

occupied

kF sin θdθ

2π

(
�kF cos θ

2m∗

)
. (6)

The contribution to the current from bulk continuum states is
similarly

Jbulk =
∫ π

0

kF sin θdθ

2π
Qm(θ )

(
�kF cos θ

2m∗

)
. (7)

In Appendix A we use the solutions of the twisted-mass Dirac
problem to show that the edge mode spectrum and accumulated
charge are given by piecewise functions

E(0) = (−1)j�0 cos(mθ ) for
(j − 1)π

m
� θ <

jπ

m
(8)

and

Qm(θ ) = mθ

π
− j for

(j − 1)π

m
� θ <

jπ

m
, (9)

with j = 1 . . . m. The edge mode dispersion means that
the occupied edge states correspond to incident angles θ ∈
[0,π/2m],[π/m,3π/2m],..., [(m − 1)π/m,(m − 1/2)π/m],
and (6) becomes

Jedge = �k2
F

16πm∗

m∑
j=1

[
cos

(2j − 2)π

m
− cos

(2j − 1)π

m

]
.

(10)
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Using (9) in (7), the bulk state contribution to the current is

Jbulk = − �k2
F

4πm∗

m∑
j=1

[
m

8π

(
sin

(2j − 2)π

m
− sin

2jπ

m

)

+ 1

4
cos

(2j − 2)π

m

]
. (11)

For chiral p wave (m = 1), the bulk contribution is half
in magnitude as the current carried by the chiral edge states,
and flows in the opposite direction: Jedge = �k2

F /(8πm∗) and
Jbulk = −�k2

F /(16πm∗) [4]. The total edge current per spin
component can thus be written as J = n�/4m∗, where n =
k2
F /4π is the number density per spin component. This value

is consistent with numerical BdG calculations in the continuum
limit of lattice models [13] (for simple lattice models at least,
iterating BdG to full self-consistency has negligible impact on
our results). It is also the edge current needed to produce a
macroscopic angular momentum N�/2 for N fermions in a
disk [4] (see below).

On the other hand, the edge state and continuum state
contributions (10) and (11) vanish independently for all
m > 1, a fact that can be proved by induction. Thus the total
edge current is identically zero for any chiral superconductor
with Cooper pair angular momentum >�. Note that although
multiple chiral edge branches with the same chirality exist for
m > 1, the contributions to the current exactly cancel among
those chiral branches. In the continuum at least, p wave is
special [13]! As noted in the Introduction, this result extends
to 3D superconductors by considering eigenstates of the z

component L̂z of the orbital angular momentum operator:
only states with magnetic quantum number m = 1 give rise
to a nonzero edge current.

III. TOTAL ANGULAR MOMENTUM

Before discussing how the continuum limit results carry
over to lattice models of chiral superconductivity, we briefly
touch on a problem of some historic interest, namely the
angular momentum carried by a disk of a neutral chiral
superfluid [24]. The fact that the edge current vanishes for
m > 1 Cooper pair states means that a superfluid of N fermions
arising from these states will not have a macroscopic total
angular momentum

Lz = N�m

2
. (12)

Such a macroscopic angular momentum would arise if there
is a local current density [4,5] j (x) ∼ NmvF �0 exp(−x/ξ0)
confined within a coherence length of the edge at weak
coupling. It is moreover the expected result in the strong-
coupling “BEC limit” [2,25], where the number of Cooper
pairs (i.e., the condensate occupation) asymptotes to N/2.
For p-wave pairing, the edge current indeed gives rise to
a total angular momentum given by (12) for both an ideal
sharp edge [4,5] as well as a soft one [14]. For higher-angular
momentum pairing, however, our BdG results suggest that (12)
is not true in general.

We define the total angular momentum of a disk of radius
R as

Lz =
∫

r�R

drm∗(r × j)z. (13)

Recall that m∗ is the fermion mass. A nonzero local current
j(r) only arises if the density or order parameters components
vary in space. Thus, for a disk having a sharp edge, wherein
the density vanishes over an atomic scale at the edge, the
only current is the edge current we have discussed in previous
sections. For higher-angular momentum Cooper pair states
with m > 1, the total angular momentum is zero.

At the same time, if the edge is softened, such that the
density vanishes over a length scale much longer than the BCS
coherence length, the local edge current per spin component
is given by [4,13,21,22]

j(r) = −�C

8π
( ẑ × ∇)A0(r). (14)

Here A0(r) is an external potential that gives rise to the slow
density variation and C is the Chern number (2) which, as
noted earlier, is equal to the magnetic quantum number m in
continuum systems for Cooper pair states that are eigenstates
of the angular momentum. We have confirmed using numerical
BdG (not shown) that the current is restored as the edge is
softened, in agreement with the lattice discretized form of (14),
with ∂xA0(x) → A0(xi+1) − A0(xi). Some discussion of the
origin of this “Chern-Simons-like” contribution is given in
Sec. V.

Using (14) in (13), for a rotationally invariant potential
A0(r) = A0(r), and using the equilibrium condition ∂rA0(r) =
(∂μ/∂n)∂rn(r) with μ = 2πn/m∗, the total angular momen-
tum is

Lz = −�Cm∗

4

∫ R

0
drr2 (∂μ/∂n) ∂rn(r) = N�C

2
, (15)

where N = 2π
∫ R

0 drrn(r). Thus, equating the Chern number
with the magnetic quantum number m, when the density varies
slowly, one recovers (12) for all cases with nonzero Cooper
pair angular momentum. It is only when the density varies
sharply that the total angular momentum vanishes for all states
except p wave.

We note in passing that (14) is equivalent to the “intrinsic
pair angular momentum” identified by Mermin and Muzikar,
arising from the orbital angular momentum of the Cooper
pairs. It indeed conspires to produce the expected macroscopic
angular momentum (12) but only in general when the density
varies slowly as compared to the BCS coherence length ξ0.
Such a situation can arise, for instance, in an ultracold atomic
gas chiral superfluid confined in harmonic traps [14].

IV. EDGE CURRENT FOR LATTICE MODELS

We now turn to the question of whether our central
continuum-limit result—the vanishing of the edge current
in non-p-wave chiral superconductors—survives outside of
this limit. Some indication of the answer can be found in
the literature, which has largely focused on the possibility of
chiral d-wave superconductivity in the cuprates [15–17] but
also, more recently, chiral d-wave order in graphene [26–28]
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and other materials [18,29,30]. A small (but nonzero) edge
current along the [11] surface was reported in Ref. [16] for
chiral dx2−y2 + idxy superconductivity on a square lattice. It
is unclear, however, whether the calculation reported there
allowed for the possibility that d + is order (expected to
produce a nonzero edge current [16,17]) develops near the
surface. In lattices with hexagonal symmetry, away from
the continuum limit, Ref. [18] finds a finite but small local
current. Nonzero edge currents are also found for chiral d-wave
superconductivity on a honeycomb lattice [28].

Here we expand on these results, presenting numerical BdG
calculations of the unscreened edge current in a few representa-
tive one-band models: chiral p and d wave on a square lattice,
as well as chiral f and d wave on a triangular lattice. The
last has been proposed as a possible superconducting state in
NaxCoO2 · yH2O [29] and SrPtAs [30]. In contrast to p-wave
pairing which has a large edge current along the axes of a
square lattice, we find that the integrated edge current along
the same axes is very small for dx2−y2 + idxy order, consistent
with previous work [17]. The edge current is substantial for this
state when placed on a triangular lattice, however. Considering
chiral f -wave pairing on a triangular lattice, we find a very
small integrated current. In all cases where we find such a small
integrated current, the local current varies rapidly over a scale
∼k−1

F with amplitude decaying linearly with �0/EF , similar
to that in Ref. [18]. We thus take our results to be indicative of
a vanishing edge current in the weak-coupling limit of these
cases.

Our BdG calculations are carried out in the standard
way (see, e.g., Ref. [31] for details) using a strip geometry,
with edges at y = 0 and y = 300 (in units where the lattice
spacing is 1), and periodic boundary conditions imposed along
x. Iterations are carried out to self-consistency. Although
subdominant orders can often be induced at the surface, we
ignore these for simplicity. For chiral px + ipy and dx2−y2 +
idxy pairing on a square lattice, we use �k = �0(sin kx +
i sin ky) and �k = �01(cos kx − cos ky) + i�02 sin kx sin ky ,
respectively. These are allowed by the underlying tetragonal
point group (D4h) symmetry of the lattice; they reduce to
(kx + iky)/kF and (kx + iky)2/k2

F in the continuum limit.
Note the two d-wave components are in general nondegenerate
on a square lattice and �01 	= �02. Using the same interaction
strength for both channels, however, we find the dxy component
to be too small to reliably carry out calculations. To avoid
this difficulty, we tune the interactions to give �01 
 �02.
Changing these values does not affect our conclusion in
cases where the edge current vanishes, however. In addition,
the numerical calculations we present are for systems with
one electronlike Fermi surface around the 
 point. However,
we have also done calculations for other scenarios and the
discussion and conclusions which follow apply equally well
to all cases.

The local currents near the edge at y = 0 for these two
models are shown in Fig. 2. The local current for chiral d

wave oscillates with an amplitude that decays linearly with
�0 [18]. In units of the lattice hopping t , the integrated current
shown in Fig. 2 is J 
 0.006t , as compared to J 
 0.12t

for p wave, and we expect that in the �0 � t limit, the
integrated current vanishes for chiral d wave on a square
lattice. This is true despite the fact that there are two chiral

FIG. 2. Spatial dependence of the local edge current jx(y) for
chiral p- and d-wave order parameters on a square lattice with
hopping t . The edge is at y = 0 and the local currents extend over
several coherence lengths ξ0 ≡ t/�0 ∼ 5 (in units of the lattice
spacing). Calculations are done using μ = −t in conjunction with
the order parameters described in the text for a strip of width 300
lattice sites along y and with periodic boundary conditions along x.

zero-energy (Majorana) bound-state modes present on each
edge; see Fig. 3. In fact, for the contribution to the edge current
from the chiral edge modes, it is precisely because there is
more than one edge state that the contribution vanishes as a
result of canceling contributions. As much is evident from the
continuum-limiting expressions (8) and (10) (we note that the
former well describes the in-gap dispersion shown in Fig. 3
and also the spectra shown in Fig. 4 for d- and f -wave pairing
on a triangular lattice).

For the triangular lattice, the chiral d-wave order takes
the form of �k = �0[cos kx − cos(

√
3ky/2) cos(kx/2)] +

i�0

√
3 sin(

√
3ky/2) sin(kx/2), which also reduces to (kx +

iky)2 in the continuum limit. A chiral f -wave state
of the form �k = �01[sin(2kx) − 2 cos(

√
3ky) sin kx] +

i�02[2 sin(
√

3
2 ky) cos( 3

2kx) − sin(
√

3ky)] can be realized on a
triangular lattice with second and third neighbor odd-parity
pairing. This gap function reduces to (kx + iky)3 in the

FIG. 3. (Color online) Low-energy dispersion of a one-band chi-
ral d-wave model on a square lattice calculated using the same
parameters used in Fig. 2. The arrows point to the chiral edge modes
belonging to the same edge.
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FIG. 4. Edge dispersion of the chiral d- and f -wave models on a
triangular lattice with the same parameters used in Fig. 5.

continuum limit where the two components become degen-
erate. Outside the continuum limit, the two order-parameter
components are not in general degenerate and �01 	= �02.
As with d wave on a square lattice, we tune the interactions
such that �01 
 �02. In Fig. 5 we plot the edge currents
of the chiral d- and f -wave models on a triangular lattice
with an edge along one side of the triangles. For comparison,
we also plot the edge current of a chiral p-wave supercon-
ductor, with �k = �0{sin(

√
3ky/2) cos(kx/2) + i√

3
[sin kx +

cos(
√

3ky/2) sin(kx/2)]}. As with d wave, the two order-
parameter components are degenerate on a triangular lattice.
While the p- and d-wave models do not yield vanishing
edge currents, the local edge current for the chiral f -wave
state oscillates rapidly about zero, integrating to a small
value, J 
 0.017t , much smaller than the corresponding value
(J 
 0.15t) for p wave and about half the size of the value
(J 
 0.036t) for d wave. As with our chiral d-wave results
on a square lattice, we interpret this result as meaning that the
edge current vanishes in the weak-coupling limit for chiral f

wave on a triangular lattice.
Even though the edge current for chiral d wave on a

triangular lattice is nonzero, it is smaller than that for p wave.
Moreover, consistent with our semiclassical analysis and also
Ref. [18], it vanishes in the weak-coupling, continuum limit,
as μ approaches the bottom of the band.

FIG. 5. Spatial dependence of the local edge current jx(y) for
chiral p-, d-, and f -wave order parameters on a triangular lattice
with hopping t . Calculations are done using μ = 0 and �0 ≈ 0.2t

(ξ0 ≡ t/�0 ≈ 5) in conjunction with the order parameters described
in the text for a strip with the same size as that used for the square
lattice calculations.

V. GINZBURG-LANDAU THEORY

We now seek insight into our BdG results from Ginzburg-
Landau (GL) theory. The current arises from gradient terms
in the GL free-energy density. For a system with two
(complex) component order parameters ψ1 and ψ2, ignoring
the possibility of an external potential, A0(r) = 0, the terms
responsible for the current are [32]

fGL = k3(∂xψ
∗
1 ∂yψ2 + c.c.) + k4(∂yψ

∗
1 ∂xψ2 + c.c.) + · · · ,

(16)

where the ellipsis denotes higher-order terms. Making contact
with our microscopic results, the complex order parameter is

[ψ1(r),ψ2(r)] ≡ [�01(r),i�02(r)] exp[iθ (r)], (17)

where θ (r) is the U(1) phase and �01(r) and �02(r) are the
purely real, spatially varying amplitudes, reducing to the bulk
values �01 and �02 away from an external potential and far
from the edge.

We emphasize that even though the notation of (16) is
usually reserved for systems with tetragonal symmetry (see,
e.g., Table VII in Ref. [32]), one can always construct an
expression of the form given by (16) and it is valid for
systems with arbitrary lattice symmetry. Adopting the notation
in Ref. [32] for instance, our k3 and k4 are equal to K3 and
K4 for a tetragonal lattice; for a hexagonal lattice, terms of the
form (16) also arise however one instead has k3 = K1 − K3

and k4 = −K2 + K3. Moreover, to leading order in the gap
amplitudes �0, k3 and k4 are equal [33].

Using (17), the μ component of the current (where
it appears as a Cartesian index, μ,ν = 1,2 denote the
x,y axes) is

jμ = ∂fGL

∂(∂μθ )
= k3εμν(�0μ∂ν�0ν − �0ν∂ν�0μ), (18)

where εμν is the 2D Levi-Civita symbol. Hence, a vanishing
edge current along one of the crystalline axes is associated
with the vanishing of the k3 GL coefficient.

As in Ref. [33], the GL expression (18) serves as an
alternative and more phenomenological description of the BdG
current. Although (18) is only rigorously valid close to Tc and
does not give the exact current at low temperatures, it has been
well established that GL theory provides a reliable qualitative
description of the current in BdG calculations [31,33,34], and
this is also confirmed here.

The gradient terms (16) in the GL free energy density lead
to the following microscopic expression for k3:

k3 = k4 = ∂2

∂qxqy


−1
12 (q,0)

∣∣∣∣
T =Tc

, (19)

where


−1
αβ (q,0) = −

∑
k

hα(k)hβ(k)(1 − fk − fk−q)

ξk + ξk−q
+ δαβ

g
(20)

is the inverse of the static particle-particle vertex function in
the α-β Cooper pair channel. hα(k) are the dimensionless
form factors that arise in the order-parameter components,
��k = [�01h1(k),i�02h2(k)], and also the attractive inter-
action Vα(k,k′) = −ghα(k)hα(k′) in the relevant channel;
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fk = [exp(βξk) + 1]−1 is the Fermi occupation. Applying (19)
to (20) gives

k3 =
∑

k

h1(k)h2(k)

8ξ 3
k

{
vxvy

[
βcXYξ 2

k + Yξk − 2X
]

+ (
∂kx

vy

)[
2Xξk − Yξ 2

k

]}
. (21)

Here, vi ≡ ∂ki
ξk, X ≡ tanh(βcξk/2), and Y ≡ βcsech2

(βcξk/2), with βc ≡ T −1
c .

Of all eigenstates of the z component of the angular
momentum operator L̂z, (21) confirms that chiral p wave,
with eigenvalue m = 1, is special. Using the continuum-limit
form (1), h1(k) = cos mθ and h2 = sin mθ . Using vx ∝ k cos θ

and vy ∝ k sin θ , k3 can be written as

k3 = I (μ,Tc)
∫ 2π

0
dθ sin θ cos θ sin mθ cos mθ, (22)

where I (μ,T ) is an integral over the radial part of k. This
shows explicitly that k3 vanishes in the continuum limit for
all m except 1 [35], in agreement with our semiclassical BdG
results in Sec. II, showing that the edge current vanishes for
all m 	= 1.

Moving away from the continuum limit, (21) remains valid
for lattice systems using the appropriate forms for h1, h2, and
ξk. The condition for k3 to vanish becomes more complicated
than the continuum result (22), however. More generally,
noting that the integrand in (21) is strongly peaked about
the Fermi surface and that the second line vanishes under
particle-hole symmetry, GL theory predicts that the edge along
a crystalline axis vanishes when

k3 ∝ 〈h1(k)h2(k)vx(k)vy(k)〉FS (23)

does. Here 〈· · · 〉FS denotes an integral over the Fermi surface.
For a dx2−y2 + idxy order parameter on a square lattice,

h1 = cos kx − cos ky , h2 = sin kx sin ky , and (23) vanishes by
symmetry. Turning to a triangular lattice, aligning one of the
symmetry axes with the x axis, vx = ∂kx

ξk and vy = ∂ky
ξk with

ξk = −2t[2 cos(
√

3ky/2) cos(kx/2) + cos kx]. Using the same
forms for the order parameters as we used in our numerical
BdG calculations, we find that (23) vanishes for f wave, but
not chiral p and d wave, consistent with our numerical BdG
results.

Also consistent with our numerical results, the full GL
coefficient (21) for chiral d wave is much smaller than that
for chiral p wave, suggestive of a smaller current. In GL, this
suppression is due to the multiple sign changes of the d-wave
order parameter around the Fermi surface, leading to a partial
cancellation. In the continuum limit, this partial cancellation
becomes complete, tying into our continuum BdG results.

To make contact with the total angular momentum discus-
sion in Sec. III and the “Chern-Simons-like” current (14), we
now discuss the modifications to GL for the case where there
is a spatially varying A0(r). A relevant discussion can be found
in Ref. [33]. The disinterested reader may pass over this and
proceed directly to the Discussion without losing continuity.

The presence of a spatially varying potential A0(r) leads to
new gradient terms in the GL expansion of the form

fGL = c
μν
αβ [ψ∗

α (∂μψβ)(∂νA0) + c.c.] + · · · , (24)

in addition to (16). Here, μ,ν denote Cartesian coordinates
(e.g., x and y) while α,β = 1,2 denote the components of
the order parameter. The real-valuedness of the free energy in
conjunction with U(1) gauge symmetry requires c

μν
αβ ≡ cμνεαβ ,

where εαβ is again the 2D Levi-Civita symbol. The current
arising from this is

jμ = ∂fGL

∂(∂μθ )
= −2cμν�01�02(∂νA0). (25)

Equation (24) leads to the following microscopic definition:

cμν ≡ 1

2�01�02
lim
q→0

∂χ0μ(q)

i∂qν

∣∣∣∣
�01=�02=0

. (26)

Here χ0μ ≡ (2β)−1 ∑
k,ωn

vμ(k)tr[Ĝ0(k + q
2 ,iωn)τ̂3Ĝ0(k −

q
2 ,iωn)] is the static current-charge correlator per spin, where
Ĝ0(k,iωn) is the appropriate matrix Nambu-Gorkov Green’s
function (as a function of the Matsubara frequency ωn) and
τ̂3 is the Pauli spin matrix. This correlation function is readily
evaluated at all temperatures:

lim
q→0

∂χ0μ(q)

i∂qν

=�01�02

∑
k

vμ(k)

4E3
k

tanh(βEk/2)

× [
h2

(
∂kν

h1
) − h1

(
∂kν

h2
)]

, (27)

where Ek ≡
√

ξ 2
k + |�k|2 is the bulk BCS quasiparticles

dispersion.
Using (2), (27), and ∂χ0μ/∂qν = −∂χ0ν/∂qμ, one sees that

at T = 0, modulo terms O(�2
0/E

2
F ) that vanish in the weak-

coupling limit, the Chern number is given by

C

8π
= lim

q→0

∂χ0μ(q)

2i∂qν

ενμ. (28)

Combining this result with (25) and (26) gives the result (14)
for the T = 0 current.

At T = Tc, (26) and (27) give

cμν =
∑

k

vμ(k)

4ξ 3
k

tanh(βcξk/2)
[
h2

(
∂kν

h1
) − h1

(
∂kν

h2
)]

. (29)

In conjunction with (25), this shows that the “Chern-Simons”
current (14) at T = 0 smoothly evolves into a contribution
∝ cμν�01(T )�02(T ) near Tc. The momentum-space integrand
involved with cμν has the same structure as that for the Chern
number in the weak-coupling limit and as a result, cμν will
not vanish as long as the Chern number does not. Moreover,
in the soft edge limit, the two components of order parameter
have the same spatial variation and the contribution to the
current from (18) vanishes. In this limit, the current is given
by (25) and does not vanish for any nonzero m. It is only in the
sharp edge case, where A0 = 0 in the superconductor, that (23)
provides the condition for the edge current to vanish.

VI. DISCUSSION

Using semiclassical Bogoliubov–de Gennes (BdG), we
have shown that the edge current for any chiral superconductor
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TABLE I. Order-parameter (OP) and lattice symmetries and their
relation to the existence of an integrated current. By “degenerate,” we
mean that the two order-parameter components transform with the
same two-dimensional irreducible representation; details are given in
the text. For chiral states in the continuum, all states with m > 1 have
vanishing edge currents.

OP symmetry; lattice Integrated current? Degenerate?

p wave; continuum yes yes
d wave; continuum no yes
p wave; square yes yes
d wave; square no no
p wave; triangle yes yes
d wave; triangle yes yes
f wave; triangle no no

other than p wave vanishes exactly in the weak-coupling,
continuum limit. Using numerical BdG and Ginzburg-Landau
(GL) calculations, this result was generalized to a variety
of lattice models. Specifically, we find nonzero integrated
currents for px + ipy on square and triangular lattices, and
dx2−y2 + idxy on a triangular lattice. We find very small
integrated currents (which vanish in the limit �0/EF → 0,
neglecting the possible growth of subdominant order parame-
ters near the surface) for dx2−y2 + idxy on a square lattice, and
fx(x2−3y2) + ify(3x2−y2) on a triangular lattice. Noting that our
zero-temperature BdG results are in complete agreement with
GL on the matter of which systems we have studied exhibit
edge currents, we expect that the vanishing of the Fermi-
surface integral (23) gives a simple condition for the edge cur-
rent to vanish in both continuum and lattice systems. Although
we have not explored mixed states such as chiral dxy + is

which are not eigenstates of L̂z, (23) also shows that this state
will give rise to a nonvanishing edge current in the continuum,
as expected from semiclassical BdG analyses [16,17].

For the combinations of superconducting states and lattices
that have been studied, the existence of an edge current
for a particular state coincides with the order-parameter
components both transforming like basis functions of the same
2D irreducible representation of the lattice symmetry group
(see Table I). On the square lattice, for instance, px and py

form a basis for the 2D representation E, whereas dxy and
dx2−y2 are bases for two different representations, B1 and B2.
Generally one would expect chiral states to be energetically
favorable only when the two components are degenerate or
nearly degenerate, and our calculations suggest they will
generally have nonzero currents under such conditions, albeit
reduced currents for angular momenta greater than 1.

In the remainder of this concluding section, we discuss
possible implications of our results for some candidate chiral
superconductors.

After superfluid 3He-A, the most studied candidate chiral
superconductor to date is unquestionably Sr2RuO4 [6–8].
While μSR [36] and Kerr effect [37] measurements are
strongly suggestive of spontaneous time-reversal symmetry
breaking below Tc, as noted in the Introduction, superconduct-
ing quantum interference device magnetometry measurements
have not seen evidence for edge currents [9]. Away from the
clean-edge limit explored in the present paper, disorder [12],

gap anisotropy [13], and other edge effects [5,31,34,38] can
have pronounced effects on the edge current, reducing them
significantly. Here we speculate on another possibility, that
Sr2RuO4 is a chiral superconductor, but not p wave. We
emphasize that while we know of no microscopic reason why,
e.g., chiral f -wave pairing should be favored on a square
lattice such as that for Sr2RuO4 (emphasizing that the order-
parameter components are not expected to be degenerate), this
scenario would not necessarily be incompatible with the above
experiments.

There exist some early proposals for chiral f -wave states
such as (k2

x − k2
y)(kx + iky), kxky(kx + iky), and k2

z (kx + iky)
in Sr2RuO4 [39–42]. These correspond to m = 1, however, and
hence, are expected to give rise to substantial edge currents.
On the other hand, the 3D chiral fz(x+iy)2 state would exhibit
the same (vanishing) edge current properties as a dx2−y2 +
idxy state on a square lattice, although as noted before, the
components are not expected to be degenerate on such a lattice.

The vanishing of the edge current for such a state need not be
incompatible with μSR experiments, generally interpreted in
terms of spontaneous edge currents at domain walls separating
regions of opposite chirality [36], as well as around impurities,
including the muons themselves. The irregular structure of
the domain walls as well as the local nature of perturbing
impurities means that some local currents would likely arise
along irregular edges. As much has been seen in BdG studies
of chiral d + id-wave [43] and d + is [44] superconductors. In
Appendix B, we show how to extend the GL theory presented
here to describe edge currents along noncrystalline axes. For
situations where the edge current vanishes along a crystalline
axis, it does not vanish along other edges.

Another major piece of evidence in favor of time-reversal
symmetry-breaking superconductivity in Sr2RuO4 is the ap-
pearance of a Kerr effect below Tc [37] (also seen in UPt3 [20]).
In continuum systems, similar to our results for the edge
current, this effect vanishes for all chiral states except for chiral
p wave [45]. Away from the continuum limit, however, an
intrinsic Kerr effect arises from multiband transitions [46,47].
Although we cannot make any definitive statement about
whether multiband chiral f -wave superconductivity on a
square lattice would allow for a Kerr effect without a specific
model, we note that the Fermi-surface integral (23) involved
with the edge current is quite different than that involved in
the intrinsic Kerr effect [47].

Some other candidate chiral superconductors that have re-
cently attracted interest are UPt3 [19], NaxCoO2 · yH2O [29],
and SrPtAs [30], all of which are conjectured to be either
chiral d-wave or f -wave superconductors with an in-plane
chiral d-wave component. Without detailed knowledge about
the structure of the order parameters, we again cannot draw any
firm conclusions about the edge currents for these candidate
gap symmetries. Our results suggest that one would expect
such states to exhibit edge currents, albeit reduced from that
of chiral p-wave pairing.

Note added. As this paper was being prepared for
submission, a preprint [48] appeared which has some overlap.
Focussing on the problem of the total angular momentum
in the continuum limit, the authors of Ref. [48] find that the
total angular momentum vanishes to order �0/EF in the
weak-coupling BCS limit for all states with m > 1, consistent
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with our results. They also extend these results to the BEC
limit of the crossover, where they derive the result given
by (12) for all m. These results have also been commented on
by Volovik [49].
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APPENDIX A: DIRAC EQUATION

In this section, we show how to map the semiclassical limit
of the BdG equations (3) and (4) onto the one-dimensional
twisted-mass Dirac equation [4] and use its solution to
derive (8) and (9).

Substituting (4) into (3) and making the usual
weak-coupling and semiclassical approximations [μ =
EF ,∂2

y aσ (y) � kF ∂yaσ (y),∂2
y bσ (y) � kF ∂ybσ (y)], the BdG

equation reduces to the two one-dimensional Dirac equations(
−iσ∂x �0e

imθ

�0e
−imθ iσ∂x

)
�̂σ = E�̂σ , (A1)

where, as before, �̂†
σ ≡ [aσ ,bσ ], σ = ±, and we have defined

x ≡ y/�vF sin θ, (A2)

with vF ≡ �kF /m∗. Taking the complex conjugate of the σ =
− Dirac equation, these two equations can be combined into a
single “twisted mass” Dirac equation,(

−i∂x �0e
iφ(x)

�0e
−iφ(x) i∂x

)
�̄ = E�̄, (A3)

for the composite spinor �̄ ≡ �(−x)�̂−(x) + �(x)�̂+(x),
where

φ(x) = −�(−x)mθ + �(x)mθ. (A4)

The two-dimensional edge problem has thus been mapped
onto a one-dimensional problem where the phase of the
order parameter is twisted across a domain at x = 0 from
φL = −mθ on the left-hand side to φR = mθ on the right. The
boundary condition �̂+(y = 0) = �̂−(y = 0) in the original
two-dimensional problem gets mapped onto the condition that
�̄(x) is continuous across x = 0. The integrated quasiparticle
density

∑
σ �̂†

σ �̂σ needed to calculate the edge current is
given by the “charge” Qm ≡ ∑

n

∫ ∞
−∞ dx|χn(x)|2 accumulated

in the vicinity of the domain wall, where χn are the eigenstates
of (A3) for a given magnetic quantum number m.

The solution of (A3) is discussed at length in Ref. [4].
The only difference in our case is that the phase is twisted
between −mθ and mθ instead of between −θ and θ . This
difference manifests itself in two ways. First, everywhere in the
appendix of Ref. [4] where � ≡ φL − φR appears, we replace
this with −2mθ . Second, for the calculation of the edge state
properties, the mismatch between the sin θ factor that arises
when mapping back to the original y coordinate [cf. (A2)] and
the sin mθ, cos mθ factors that arise in the solutions of (A3)

and (A4) leads to piecewise constraints when m 	= 1. (A3), for
instance, supports a bound-state solution [4]

χ0(x > 0/x < 0) ∝
[
E(0) ± iκ + �0

E(0) ∓ iκ + �0

]
e∓κx, (A5)

with κ = �0 sin mθ . Using (A2) and (A5), boundedness in the
original y space means that κ/ sin θ = �0(sin mθ/ sin θ ) must
be positive for all θ . This constraint (sin mθ/ sin θ > 0) plus
continuity [χ0(0+) = χ0(0−)] leads to the result (8).

Turning to the continuum bulk states, the charge Qm is
calculated in exactly the same way as in Ref. [4] with the
replacement � ≡ −2mθ in, e.g., their Eq. (A13). The same
considerations that lead to Eq. (A16) in Ref. [4] yield (9).

APPENDIX B: GINZBURG-LANDAU THEORY FOR
EDGES NOT ALIGNED WITH THE CRYSTALLINE AXES

Here we generalize the GL expression (21) to allow for
the possibility of currents along edges that are not parallel
with crystalline axes. Implicit in the appearance of k3 in the
GL free energy density (16) is that it describes the energy
cost associated with a spontaneous current [U(1) phase] along
the y axis and spatial modulation of the amplitude of the
order parameter along x (and vice versa), as would happen
if there was an edge parallel to the y axis (x axis). One can
generalize the definition of k3 to allow for arbitrary orientation
of the amplitude gradient, with the edge and resulting current
perpendicular to this: k3(φ) ≡ ∂2
−1

12 (q,0)/∂q ′
x∂q ′

y , where
q′ ≡ [q ′

x,q
′
y] is rotated by φ with respect to q. This leads to

k3(φ) ≡ sin φ cos φ

[
∂2
−1

12

∂q2
x

− ∂2
−1
12

∂q2
y

]

+ (cos2 φ − sin2 φ)
∂2
−1

12

∂qx∂qy

. (B1)

This describes the current along an edge oriented by an angle
φ with respect to a crystalline axis.

In the vicinity of an edge that is not parallel with a
crystalline axis, we expect the order parameter to reorient itself
to lower gradient energies, meaning that the h1 and h2 that
enter this expression will be different. For an edge not along
an axis of symmetry of the crystal, an additional calculation
would be required to compute the resulting order parameter.
Otherwise, symmetry and energetic arguments can be used
to infer the correct form. As an example, a sin kx + i sin ky

order parameter on a cubic lattice will become sin kx cos ky −
cos kx sin ky + i(sin kx cos ky + cos kx sin ky) in the vicinity of
the [11] edge; that is, it will simply be rotated in momentum
space by π/4. Likewise, assuming that the dx2−y2 + idxy

order parameter on a cubic lattice is rotated by π/4 gives
h1 = sin kx sin ky and h2 = (sin kx cos ky)2 − (cos kx sin ky)2.
The second line in (B1) vanishes for φ = π/4 while the first
line involves a Fermi-surface average of h1(k)h2(k)(v2

x − v2
y),

which also vanishes. Thus, the generalized GL expression (B1)
predicts a vanishing edge current along the [11] edge as well as
the [01] edge for a dx2−y2 + idxy order parameter on a square
lattice. We have also used (B1) to confirm that s + idx2−y2 on a
square lattice supports a current along [11], even though there
is none along [01] [17].
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Chapter 4

Non-topological nature of the edge current

4.1 Preface The non-topological nature of the edge current is already implied in the

previous chapter, where the integrated current at the sharp edge of a non-p-wave chiral su-

perfluid vanishes, instead of being determined by the Chern number, i.e. the orbital angular

momentum of the Cooper pairs. Similarly, the edge current of a chiral p-wave model on a

general lattice also does not appear to be directly related to a topological invariant (Fig.4.1).

However, in the limit of a soft edge which can be described by a spatially varying potential

A0 and where the carrier density varies smoothly over large distances, the edge current can

be derived from the Chern-Simons-like action[56, 97, 98, 59, 48] L =− m
4π

ε0µνAµ∂νA0, which

gives (up to a correction of the order ∆2/E2
F due to particle non-conservation),

jµ =−
m
4π

ε
0µν

∂νA0 . (4.1)

Hence, the integrated edge current J =
mE f
4π

= mn0
4m∗ where n0 is the bulk carrier density and m∗

is the carrier effective mass, is “topological” (see publication). Moreover, there exist special

chiral p-wave models where the edge current coincides with a “topological” value irrespective

of how the edge potential is deformed (soft, hard, or intermediate). One example is the con-
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tinuum chiral p-wave superfluid. There, the integrated edge current is always given by J ∼ n0
4 .

Remarkably, in a disk geometry with N particles, the angular momentum carried by such a

current coincides with what is intuitively expected of a superfluid with N/2 Cooper pairs each

carrying Lz = h̄. Another example is the simple p-wave model on a square lattice with only

nearest neighbour pairing and nearest neighbour hopping, as can be seen in the inset of fig.4.1.

This work is an attempt to provide some insight into why the edge current in a chiral su-

perconductor is generically non-topological and why it coincides with the topological value in

some special scenarios. As a corollary, we see that the lack of topological protection suggests

a means to reconcile the chiral p-wave order and the absence of edge current in Sr2RuO4—

gap anisotropy. Note in support of the spectral flow argument given in the publication, Ap-

pendix C derives the expression for the total integrated current in terms of the so-called spectral

asymmetry.

Figure 4.1: Integrated edge current as a function of chemical potential for a simple chiral
p-wave model on a square lattice, with ∆k = ∆0(sinkx + isinky) with ∆0 = 0.2t. The single
particle tight-binding dispersion takes the form: ξk =−2t(coskx + cosky)−4t ′ coskx cosky−
µ. For the model with only nearest neighbor (NN) hopping, t ′ = 0, while for the model with
both NN and NNN hoppings, t ′ = 0.375t. The black solid lines are the numerical BdG results
in the presence of sharp edge conditions, and the blue dashed lines are predictions derived
from the Chern-Simons-like action for soft edge limits. The Chern numbers in the respective
regimes of chemical potentials are as indicated.
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The edges of time-reversal symmetry breaking topological superconductors support chiral Majorana bound
states as well as spontaneous charge currents. The Majorana modes are a robust, topological property, but the
charge currents are nontopological—and therefore sensitive to microscopic details—even if we neglect Meissner
screening. We give insight into the nontopological nature of edge currents in chiral p-wave superconductors
using a variety of theoretical techniques, including lattice Bogoliubov–de Gennes equations, the quasiclassical
approximation, and the gradient expansion, and we describe those special cases in which edge currents do
have a topological character. While edge currents are not quantized, they are generically large, but they can be
substantially reduced for a sufficiently anisotropic gap function, a scenario of possible relevance for the putative
chiral p-wave superconductor Sr2RuO4.
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I. INTRODUCTION

Time-reversal symmetry breaking topological supercon-
ductors support branches of chiral Majorana bound states at
their edges [1]. The number of these branches is insensitive
to perturbations such as weak disorder, and it is equal to
a Chern number, a topological invariant that is determined
by the Fermi surface topology and the chirality of the order
parameter. Quantum Hall systems support both topologically
protected edge states and topologically protected quantized
edge currents, with the conductance equal to fundamental
constants multiplied by a Chern number [2]. Even though the
number of topological edge modes is given by a Chern number
in both these systems, the edge current of a topological super-
conductor is not topologically protected or quantized. This fact
is clear from Bogoliubov–de Gennes (BdG) calculations [3–5]
of topological chiral p-wave superconductors that reveal
nonuniversal behavior dependent on microscopic details. This
nonuniversal behavior is present even without taking into
account the effects of Meissner screening (which we neglect
here), which forces the total current to vanish (though the local
currents should still yield observable magnetic signals [6,7]).
One reason to study this issue is that the lack of topological
protection of edge currents in chiral p-wave superconductors
is crucial to any attempt to reconcile the null result of
precision magnetometry experiments on the putative chiral
p-wave superconductor Sr2RuO4 [8–11] with straightforward
theoretical predictions [6].

In this work, we provide insight into the nontopological
nature of edge currents in chiral p-wave superconductors
using a variety of theoretical techniques, including lattice
Bogoliubov–de Gennes equations, the quasiclassical approxi-
mation, a gradient expansion of the effective action, and spec-
tral flow arguments. We begin by examining the circumstances
under which topology does straightforwardly govern edge
currents: (i) the coupling is weak, so that �0 � EF (assumed
throughout this paper), and (ii) a spatially varying site energy
A0(r) (equivalent to a static, unscreened scalar potential) drives
the density to zero at the edge over a distance L much longer
than the coherence length ξ0. [We will refer to condition (ii) as

the soft edge limit.] Under these circumstances, the gradient
expansion gives [12–15]

j (r) = − C

4π
(ẑ × ∇)A0(r) (1)

for the current density, where C is the Chern number and we
use units where the electron charge e = � = 1 throughout.
Apart from a factor of one-half, this is also the current density
in quantum Hall systems, both in fractional quantum Hall
systems where the Chern-Simons action was first derived in a
condensed-matter context [16,17], as well as integer quantum
Hall systems. In the quantum Hall context, (1) implies a
quantized, topological value for the Hall conductance.

Contrary to the above assumptions, the edges of actual
superconducting crystals are atomically sharp: the density
at the edge vanishes over an atomic scale k−1

F � ξ0. This
explicitly invalidates the systematic gradient expansion in
powers of ξ0/L. Even within the gradient expansion, there
are subleading corrections to (1) whose importance grows as
L is diminished; one such correction is discussed in Sec. IV.
That said, despite the fact that (1) fails to even approximately
describe the current density in the sharp edge limit, there
are special models with sharp edges for which the integrated
current (which is roughly proportional to the strength of the
magnetic signal expected in experiment) coincides with the
prediction of (1). These special models include all continuum
models (for which the integrated current can be calculated
using a one-dimensional Dirac equation [12,18]), as well as
certain lattice models with restricted hopping matrix elements.
We analyze these special models in Sec. V, using the “spectral
flow” [19] properties of the BdG eigenvalues, to show that
the integrated current remains equal to its “topological value”
[i.e., the one inferred from the Chern-Simons expression (1)]
as the edge is deformed from soft to sharp.

Outside of these special models, the integrated edge
current generically evolves to a nontopological value (i.e., one
unrelated to the Chern number) as we adiabatically deform
a soft edge into a sharp one. While it remains generically
substantial, there is nothing to prevent it from being small, and
it can be tuned through zero by varying the band and/or gap
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structure. For example, in a model with an anisotropic p-wave
order parameter consistent with next-nearest-neighbor (NNN)
pairing [20] on the γ band of Sr2RuO4, the integrated edge
current vanishes at a filling fraction close to the experimental
value (see Fig. 2). Although reliant on the fine-tuning of
parameters, this result might be important for reconciling
chiral p-wave superconductivity in Sr2RuO4 [21–24] with the
null results of experiments designed to measure the expected
magnetic fields [8–11].

II. TOPOLOGICAL PROPERTIES IN
THE CONTINUUM LIMIT

The topological properties of a two-dimensional chiral p-
wave superfluid are characterized by the Chern number

C = 1

4π

∫
d2k ĥ · (

∂kx
ĥ × ∂ky

ĥ
)
. (2)

Here �h = {Re[�0(k)], − Im[�0(k)],ξ (k)} and ĥ = �h/|�h|.
�0(k) is the complex chiral order parameter and ξ (k) ≡ ε(k) −
μ, with ε(k) the single-particle dispersion. For a chiral p-wave
order parameter �0(k) = �0(kx ± iky)/kF appropriate for
continuum systems, the Chern number is ±1. For lattice
models, it depends not just on the chirality or winding of the
order parameter, but also the topology of the Fermi surface,
but it always takes an integer value.

One manifestation of a nonzero Chern number is a
quantized value of the “static” Hall conductivity [12–15,25]:
σ̃xy ≡ limq→0 limω→0 σxy(ω,q) = C/4π + O[(�0/EF )2] in
the weak-coupling limit, a result that follows from (1) (which
we derive in Sec. IV). Note that in a continuum system,
reversing the order of limits to evaluate the standard dc Hall
conductivity, σxy ≡ limω→0 limq→0 σxy(q,ω), gives zero [25].
This noncommutativity of limits arises from a subtlety in the
effective action (12), which we will discuss later on.

Closely related to this static quantum Hall effect is the
fact that a long-wavelength density perturbation of a chiral
p-wave superfluid will give rise to a quantized current. With
C = 1 and A0(r) determining the local carrier density n(r)
according to ∇A0(r) = π∇n(r)/m, (1) reduces to the well-
known expression for the current in a chiral superfluid due to
Mermin and Muzikar [26]:

j = 1

4m
(ẑ × ∇n). (3)

Using this result to evaluate the edge current, assuming that
the density evolves slowly from zero at x = −∞ to its bulk
value n0 at x = +∞, the integrated current is

Iy = C

4m

∫ −∞

−∞
dx ∂xn(x) = n0C

4m
. (4)

Remarkably, this result agrees with calculations of the edge
current in a Galilean invariant chiral p-wave superfluid by
Stone and Roy [12] (using BdG) and Sauls [18] (using the
quasiclassical approximation). This is surprising because these
results are obtained for a sharp edge, whereas (1) is obtained
from a gradient expansion of the action and should only be
strictly valid in the soft-edge limit.

III. MODEL AND BDG RESULTS

We now turn to BdG calculations of the edge current for a
range of one-band lattice models of chiral p-wave supercon-
ductivity. For simplicity, we consider spinless fermions on a
two-dimensional square lattice (we will multiply our results
for the current by 2 to compensate):

H = −
∑
r,r′

tr,r′c†rcr′ − μ
∑

r

c†rcr −
∑
r,r′

gr,r′c†rc
†
r′cr′cr. (5)

Here r,r′ denote the lattice positions, and t ≡ tr,r±x̂ = tr,r±ŷ
and t ′ ≡ tr,r±(x̂±ŷ) are the nearest- (NN) and next-nearest-
neighbor (NNN) hopping parameters. Decoupling the interac-
tion term by introducing the two-component order parameter
(�x,�y), the pairing term in the Hamiltonian is

H� =
∑
r,s

[�x(r,s) + �y(r,s)]c†r−s/2c
†
r+s/2 + H.c. (6)

We select the chiral p-wave channel by taking a relative phase
of π/2 between �x and �y , and by assuming �x and �y

transform, respectively, under the px and py representation
of the square lattice point group. Assuming that pairing
occurs in a single lattice harmonic, �α(r,s) ≡ ηα(r)�0,α(s)
can be written as a separable function of the center-of-mass
r and relative s coordinates, where ηα(r) is the dimensionless
amplitude, equal to unity in the bulk. As is well known, this
model supports chiral Majorana modes at the edges of the
superconductor. Modulo a sign factor, the number of such
chiral modes per edge is given by (2), where now

ξ (k) = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky − μ (7)

and

�0(k) = �0,x(k) + �0,y(k), (8)

where �0,α(k) is the Fourier transform of �0,α(s). For the
simplest case of NN pairing, �0(k) = �0(sin kx ± i sin ky).

To calculate the edge current in this model, we perform
BdG calculations in a cylindrical geometry: periodic boundary
conditions are taken in the y direction, and open boundary
conditions in x. The current operator for the link from site i to
site j is

Ĵi,j = idij ti,j [c†i cj − c
†
j ci,], (9)

where dij is the bond length connecting i and j . (Here, in
addition to � = 1, we set e = 1; the unit cell length a is also
set to unity so that dij = 1 for NN sites and dij = √

2 for NNN
sites.) Our primary results for the edge currents will concern
the total current Iy flowing through one-half of the cylindrical
system along the y direction. Let the cylinder be Nx sites wide
and Ny sites in circumference (in all our calculations, we use
Nx = Ny). Then

Iy =
Nx/2∑
n=1

〈
Ĵnx̂,nx̂+ŷ + 1√

2
Ĵnx̂,nx̂+x̂+ŷ

〉
, (10)

where the two terms in the sum are for NN and NNN links.
The mean-field Hamiltonian comprised of the single-

particle terms of (5) and the pairing contribution (6) is
diagonalized, and self-consistency is enforced by iterating
the gap equation. Figure 1 shows the integrated edge current
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FIG. 1. (Color online) The integrated edge current calculated
from T = 0 BdG (solid curves) as a function of the chemical potential
over the entire bandwidth for (a) t ′ = (3/8)t (inset, t ′ = 0) and (b)
t ′ = t . �0 = 0.2t for all plots; this requires varying the interaction g

as the chemical potential is varied. In the inset of (a), for instance,
g/t is varied from 11.2 at μ = −4t to 3.25 at μ = 0. Calculations
are carried out for Nx = Ny = 300 lattice sites. The “topological
current” obtained from 1, with details given in Appendix A, is also
shown (dashed lines) and coincides with the BdG result for t ′ = 0.
Regions of μ with different Chern numbers are separated by a dotted
vertical line.

as a function of the chemical potential for different values
of the NNN hopping t ′. We also show the “topological”
(soft-edge limit) expressions for the integrated currents near
the continuum limit at the top and bottom of the band obtained
from (1) using the Chern numbers for these models (although
this topological expression is not always uniquely defined, as
we discuss in Appendix A). Apart from a coincidence in the
case in which t ′ = 0 [shown in the inset of Fig. 1 and elaborated
on in Sec. V], these topological values differ considerably from
the BdG results, explicitly demonstrating the nontopological
nature of the edge current.

Figure 2 compares the integrated current as a function
of chemical potential for models with chiral p-wave order
parameters of dramatically different anisotropy: the NN
pairing case, �0(k) = �0(sin kx + i sin ky), and the NNN
pairing case, �0(k) = �0(sin kx cos ky + i sin ky cos kx). For
comparison, we also show a suitably defined topological
expression which, away from the top and bottom of the band,
fails to even qualitatively track the current in the case of NNN
pairing. For parameters appropriate for Sr2RuO4, μ ∼ 1.4t

C=1 C=-3 C=-1

4 2 0 2

0.2

00

0.2

0.4

μ t

I y
t

FIG. 2. (Color online) The effect of order parameter anisotropy
on the edge current. The integrated edge current for two different order
parameters is shown for t ′ = 3t/8: �0(k) = �0(sin kx + i sin ky)
[solid curve; same as in Fig. 1(a)] and �0(k) = �0(sin kx cos ky +
i sin ky cos kx) (red dot-dashed curve). The Chern number in the latter
case is equal to 1 for −5.5t � μ < 0, −3 for 0 < μ < 1.5t , and −1
for 1.5t < μ < 2.5t . The topological current value is shown by the
blue dashed curves and coincides for the two order parameters.

[27], the current obtained for NNN pairing is significantly
reduced compared to that for NN pairing.

All our numerical BdG results are well approximated by
the expression

Iy = 1

(2π )d

∮
FS

dd−1k
|v| vxvy tan−1

(
�0,x

�0,y

)
, (11)

which is derived in detail using the quasiclassical approxima-
tion in Appendix B. Here the subscript “FS” denotes an integral
over the Fermi surface, vμ ≡ ∂kμ

ξ (k), |v| ≡
√

v2
x + v2

y , and
�0,x(k) and �0,y(k) are the momentum-dependent order
parameter components [cf. (8)]. This result confirms that the
edge current is generically equal to the Fermi energy times a
number of order 1 and fundamental constants. However, there
can be substantial cancellations in the integral of (11) if the
order parameter components have “accidental” sign changes
around the Fermi surface, as occurs for the anisotropic gap
shown in Fig. 2 at sufficiently large carrier density. For certain
non-p-wave chiral order parameters such as dxy + idx2−y2

on a square lattice, symmetry requires this cancellation to
be complete and the current vanishes identically within a
quasiclassical approximation [28,34].

IV. GRADIENT EXPANSION OF THE BCS ACTION
FOR A CHIRAL p-WAVE SUPERCONDUCTOR

To complement our BdG results, we now turn to a gradient
expansion of the mean-field BCS action for a chiral p-wave
superconductor. Previous authors [12,14,15] have used such
an expansion of the action with respect to gradients of the
scalar A0(r) potential to understand the edge current. A vector
potential A(r) is also included to generate an expression for the
current from the action, taking it to be zero after this is done.
At T = 0, and in the weak-coupling limit, the leading-order
terms that give rise to a spontaneous current in this gradient
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expansion are (see Appendix C)

Leff = − C

4π
ε0μνAμ∂νA0, (12)

where implicit summation over the Cartesian indices μ,ν

is assumed. C is the Chern number defined in (2), and
ελμν is the Levi-Civita symbol corresponding to space-time
indices (0,1,2) = (τ,x,y). Equation (12) resembles the Chern-
Simons term, which arises in the effective theory of the
fractional quantum Hall effect [16,17]. Unlike in that theory,
the “Chern-Simons-like” action (12) lacks the time derivative
−(C/4π )εμ0νAμ∂0Aν [12]. The absence of this only affects
dynamic properties such as the Hall response discussed earlier
and not static ones such as the edge current, and hence it is not
responsible for the nontopological nature of the edge current.
Applying j = δLeff/δA|A=0 to (12) gives the result (1) for the
current.

The gradient expansion leading to (12) is strictly valid
only when A0(r) varies on length scales much longer than
the superconducting coherence length. This is the opposite
limit to a sharp crystalline edge, where the density varies over
an atomic scale k−1

F � ξ0, so the gradient expansion formally
breaks down. As one moves away from the soft-edge limit,
there will be gradient corrections involving A0 beyond (12). In
addition, one expects the order parameter amplitudes ηx and
ηy to vary in space differently in response to the presence of an
edge [29]. Including such textures in the gradient expansion
of the BCS action leads to a term

L� = γ [Ay∂x + Ax∂y](ηy − ηx), (13)

where

γ ≡
∫

d2k
(2π )2

vxvyIm[�∗
0,x(k)�0,y(k)]

2E3
k

, (14)

with Ek =
√

ξ 2(k) + |�0(k)|2. Equation (13) gives rise to an
additional, nontopological contribution

j�,i(r) ≡ γ εij ∂j [ηi(r) − ηj (r)] (15)

to the edge current.
Equation (15) is the zero-temperature analog of the usual

Ginzburg-Landau expression (see, e.g., Ref. [30]) for the
current in the absence of an explicit potential A0(r). [For
A0(r) �= 0, there is also an analog of the Chern-Simons term
at T = Tc [28].] While the expansion involving gradients of
A0 breaks down completely in the sharp-edge limit [31], (13)
remains qualitatively valid since the order parameter textures
vary over the coherence length, putting this term at the edge
of the domain of validity of our gradient expansion. The same
calculation that yields γ at T = 0 gives the GL coefficient
k3 = k4 at T � Tc [28]. At T = 0, in the continuum limit, it
reduces to γ = μ/8π � n/8m, showing that this contribution
to the edge current is generically substantial. Indeed, the γ

coefficient bears a qualitative resemblance to the quasiclassical
expression (11) for the current. Calculating the integrated
current that results from (15) using (14) and self-consistent
values of ηx(r),ηy(r) from BdG calculations, the result is in
qualitative agreement with numerical BdG calculations for all
lattice structures and gap anisotropies studied.

4 2 0 2
0

0.3

0.6

μ t

I y
t Eq. 1

6.5ξ0

2.5ξ0

0.0ξ0

FIG. 3. (Color online) Plots of the integrated edge current from
BdG for t ′ = 3t/8 [see also Fig. 1(b)] with an edge at x = 0 and
an edge potential A0(x) = (μ + 5.5t)[1 − tanh(x/λ)] for μ < 1.5t

and A0(x) = (μ − 2.5t)[1 − tanh(x/λ)] for μ > 1.5t . As the edge
becomes progressively softer (λ/ξ0 increasing), the BdG results
approach the topological value (A3) obtained from (1). All results
should coincide near the bottom (μ = −5.5t) and top (μ = 2.5t) of
the band. The van Hove singularity at μ = 1.5t pushes the region of
agreement near the top of the band to values of μ very close to 2.5t .
For λ = 6.5ξ0, the current does not vanish at the top of the band since
we had to use a large value of the order parameter, �0 = 0.4t , to keep
the coherence length small.

V. TOPOLOGICAL AND NONTOPOLOGICAL
ASPECTS OF THE EDGE CURRENT

The existence of nontopological gradient corrections to the
current density means that the integrated edge current will
generically evolve from a topological to a nontopological value
as the edge is deformed from soft to sharp. This evolution is
shown Fig. 3 for BdG results for a range of edge widths, using
the t ′ = 3t/8 lattice model, which are compared to the current
predicted by (1).

While the current density is never topological near the
atomically sharp edges of superconducting crystals, as noted
in Sec. III, there do exist special models of chiral p-wave
superconductivity for which the integrated current at an
atomically sharp edge agrees exactly with the “topological”
result (1), valid for a soft edge. One such model is the simple
case of NN hopping and pairing on the square lattice with an
edge along the y direction, the results for which are shown
in the inset of Fig. 1(a). In that case, the integrated current is
actually independent of the length scale over which the density
vanishes at the edge (unlike the case shown in Fig. 3), so it
maintains its topological value as we deform a soft edge into
a sharp one.

To understand this curious result, we begin by noting a
property of the energy spectrum. For the cylindrical geometry
considered in Sec. III (open boundary conditions along x,
periodic along y), the single-particle energy levels are enu-
merated by the quasimomentum ky as well as an eigenvalue j

associated with the choice of potential or boundary conditions
implemented along x. The usual particle-hole redundancy of
the BdG equations is reflected as follows: for each value of j
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and ky , there exists a j̄ satisfying

E(ky,j ) = −E(−ky,j̄ ). (16)

This relation allows us to write the integrated current for the
cylindrical geometry with NN hopping as

Iy = − 1

4π

∫
dkyvy(ky)η(ky), (17)

where vy = 2t sin ky is the velocity and

η(ky) ≡
∑

j

sgn(E(ky,j )) (18)

is the spectral asymmetry [32]. This result—valid for both soft
and sharp boundary conditions along x—shows that the only
way the total integrated edge current (i.e., for a cylinder of
width 2L, the integrated current between −L and +L) Iy can
change as one or both edges are adiabatically deformed is if
there is spectral flow of the eigenvalues across zero energy.
That is, the total current only changes if unoccupied states
[E(ky,j ) > 0] evolve to occupied ones [E(ky,j ) < 0] or vice
versa.

Spectral flow was invoked by Volovik [19] (see also Stone
and Gaitan [32]) to argue that the angular momentum of a
disk of N superfluid 3He − A atoms would be equal to N/2
in the weak-coupling BCS limit as long as there is no spectral
flow as the chemical potential is tuned from large and negative
(the so-called “BEC limit” [26,33], where this value for the
angular momentum is evident) to the Fermi energy in the
BCS limit. The absence of spectral flow in a disk geometry
through this BCS-BEC crossover has been confirmed recently
for continuum chiral p-wave superfluids in Ref. [34].

We consider instead the related crossover from a soft to a
sharp edge in a cylinder geometry, amounting to an evolution of
the local chemical potential μ − A0(r). Specifically, consider
the situation in which both boundaries, one at x � 0 and
the other at x 
 0, are initially soft, such that the integrated
currents between (−L,0) and (0,L) are both topological, given
by ±(C/4π )μ(0), where μ(0) is the bulk chemical potential at
x = 0. These two currents are equal in magnitude but opposite
in sign such that the total integrated current Iy over (−L,L)
is zero. Now imagine deforming one of the edges, say the one
in the domain x > 0, into a sharp one. Since the integrated
current over (−L,0) remains unchanged (the two edges are
very far apart), the integrated current at the sharp edge will
remain equal to its soft-edge value if and only if the total
current remains equal to zero. That is, spectral flow as an edge
is deformed is required in order for the integrated current at
a sharp edge to be different from that at a soft one. In turn,
since the total integrated current is initially zero, the spectral
asymmetry η(ky) must evolve to a nonzero value.

In Fig. 4, we compare the spectral flows of the BdG
spectrum for NN hopping but with order parameters corre-
sponding to NN and NNN pairing as the edge is evolved
from soft to sharp. Consistent with the results in Ref. [34],
there is no spectral flow for NN pairing for the smoothly
varying edge potentials that we consider. This is related to the
symmetry protection of the ky = 0 crossing of the chiral edge
branch. Particle hole redundancy (16) is incompatible with any
continuous shift up or down in energy, as would be required to

FIG. 4. Spectral flow plots showing the evolution of BdG
eigenvalues for E

(j )
ky=−0.29π , �(k) = �0(sin kx + i sin ky) (left) and

E
(j )
ky=−0.26π , �(k) = �0(sin kx cos ky + i sin ky cos kx) (right) for NN-

only hopping and μ = −t as the edge width λ is evolved.

have spectral flow, of the edge modes near E = 0 and ky = 0.
In the finite strip geometry studied here, the two lowest energy
ky = 0 edge modes are separated by a finite gap [which scales
as exp(−L/ξ0)], and so it is clear that one cannot have spectral
flow at ky = 0 [34]. However, the symmetry (16) ensures no
spectral flow even in the thermodynamic limit where this gap
closes. By contrast, zero crossings away from ky = 0 do not
individually satisfy (16), but come in pairs with the same
chirality, such that the pair of edge modes satisfy (16). In
this case, one can continuously shift the states up or down in
energy while satisfying (16), so spectral flow is allowed.

The absence of spectral flow for the case of NN pairing
explains why the edge current retains its topological value:
analogous to the constancy of the angular momentum of a
chiral p-wave superfluid through the BCS-BEC crossover,
the integrated edge current does not change as the edge is
deformed, and it remains equal to the topological value inferred
from the gradient expansion. The absence of spectral flow
also explains why a continuum chiral p-wave superfluid in a
disk with sharp edges [12,18,34] has the same total angular
momentum N/2 as one confined to a harmonic trap, where the
density vanishes slowly [35].

In contrast, for the case of NNN pairing, shown in the lower
panel of Fig. 4, there are zeros in the excitation spectrum at
momenta ky �= 0,π , giving rise to spectral flow under edge
deformation. These zeros arise not only from the additional
chiral edge branches that open up when the Chern number
changes, but even for lower filling fractions, as the single
Majorana branch at zero momentum bends over and crosses
E = 0 elsewhere as well. For the spectral flow shown in Fig. 4,
there is a single Majorana branch (C = 1) and the spectral flow
is due entirely to this additional zero crossing of this branch.
In Fig. 5(a), we show the dispersion for the case in which
one edge is sharp while the other is soft. Consistent with the
spectral flow shown in Fig. 4, the Majorana branch for the
soft edge with a single zero crossing at ky = 0 evolves into
one with additional zero crossings at the sharp edge. As with
non-p-wave superfluids [34], these zeros at ky �= 0,π provide
channels for spectral flow, and hence a nonzero spectral
asymmetry [see Fig. 5(b)] and nontopological value of the
integrated current moving to the sharp-edge limit.
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FIG. 5. (Color online) Dispersion (left) and spectral asymme-
try (right) for the NNN-pairing model �(k) = �0(sin kx cos ky +
i sin ky cos kx) for NN-only hopping at μ = −t where one edge is
sharp and the other is soft. Left: arrows point to the Majorana branch
at the sharp edge. Unlike the soft-edge branch, which only crosses
zero at ky = 0, the sharp-edge branch has an additional zero crossing
away from ky = 0, as expected from the spectral flow shown in Fig. 4.
This extra zero crossing gives rise to the nonzero spectral asymmetry
shown in the right panel.

Introducing NNN hopping, the integrated edge current
can be written as a sum of (17) and another component
I ′
y involving the NNN velocity operator v′

y ≡ 4t ′ sin kyf (a),
where a is some quantum number appropriate for the potential
or boundary conditions implemented along x, and f reduces
to cos kx in the sharp-edge limit. As the edge is deformed, f (a)
and hence I ′

y will evolve even without spectral flow across zero
energy, although the component described by (17) will remain
constant without it.

VI. DISCUSSION

In this paper, we have reconciled the nonuniversal and
nontopological nature of the edge currents in chiral p-wave
superconductors, as inferred from BdG calculations [3,4,6,36],
with naive expectations for a topological value based on the
leading-order Chern-Simons term in a gradient expansion of
the action [13,15]. While the integrated edge current is always
dictated by a Chern number in the soft edge limit in which
the density varies over a length scale much longer than the
coherence length—as would happen, for instance, in a chiral p-
wave atomic gas superfluid confined to a harmonic trap [35]—
nontopological gradient corrections to the current can arise
outside this limit. Using numerical BdG and quasiclassical
calculations of lattice p-wave superconductors, we have
investigated the evolution of the integrated edge current as the
edge is evolved from soft to sharp. Symmetry-allowed physics
such as next-nearest-neighbor hopping and gap anisotropy lead
to evolution away from the topological value.

In the special cases—certain lattice models with restricted
hopping as well as the continuum limit of all models—where
the integrated current is found to be topological when the
edge is sharp, we have shown how this result follows from
the soft-edge topological value by invoking the spectral flow
of the BdG eigenvalues as the edge is deformed. In general,
however, the nontopological nature of the edge current in a
topological superconductor means that the edge current is

sensitive to effects such as band structure [3–6] and gap
anisotropy, as well as to disorder and pair-breaking surface
effects [30]. Even for a topologically trivial superconductor
with zero Chern number, such as would arise in the putative
chiral p-wave superconductor Sr2RuO4 were pairing only to
arise on the quasi-one-dimensional α and β bands [37], the
edge current is generically substantial [3,4,36].

On the other hand, the nontopological nature of the edge
current means that circumstances could arise in Sr2RuO4

[4], in which the total edge current arising from all three
bands is strongly suppressed compared to predictions based
on continuum systems [6,7]. For instance, even with a fixed
band structure, gap anisotropy can reduce the edge current
substantially below naive expectations. Large-gap anisotropy
has been predicted from weak-coupling renormalization-group
calculations [37–39]. Note that the reduction in current due to
gap anisotropy discussed here is present in the clean limit and is
unrelated to the disorder effect suggested in Ref. [38], although
disorder near the surface or interface can further reduce the
current. If a sufficiently anisotropic gap is present in Sr2RuO4,
this reduction, along with some interface effect [4,20,36,40],
may reconcile theory with experiment.
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APPENDIX A: TOPOLOGICAL EXPRESSIONS FOR
THE EDGE CURRENT IN LATTICE MODELS

Integrating (1) gives Iy = C(μ)[A0(xedge) − A0(bulk)]/4π

for the integrated edge current where the location xedge of
the edge is determined by the point where the effective local
chemical potential μ − A0(x) equals its “vacuum value” μvac.
Assuming that A0 is zero in the bulk, this result can thus be
written as

Iy = C(μ)[μ − μvac]/4π. (A1)

The value of μvac depends on whether the Fermi surface (FS)
is hole- or electronlike. In the former case, it corresponds to the
value of the chemical potential at the top of the band, whereas
in the latter case, it is the chemical potential at the bottom of
the band. For the model with no NNN hopping, μvac = −4t

in the bottom half of the band (μ < 0) and 4t in the top half
(μ > 0), and (A1) reduces to

Iy = 1

4π
(4t − |μ|). (A2)

For t ′ �= 0, the topological expression fails to describe the
current at intermediate μ, and so we restrict our attention to μ

near the bottom and top of the band. For t ′ = 3t/8, there is a
van Hove singularity at μ = 1.5t where the FS changes from
being electronlike to holelike. This change is accompanied
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by a change in the Chern number from C = 1 to −1. For
the electronlike FS, the bottom of the band is μvac = −5.5t .
For the holelike FS, the top of the band is μvac = 2.5t . Thus,
using (A1),

Iy =
{

1
4π

(5.5t + μ) for μ near band bottom.
1

4π
(2.5t − μ) for μ near band top.

(A3)

For t ′ = t and μ < 0, there is an electronlike FS with C = 1
and μvac = −8t . For μ > t , there are two hole pockets, each
with C = 1 for a total Chern number of 2, and μvac = 4t .
Hence,

Iy =
{

1
4π

(8t + μ) for μ near band bottom.
2

4π
(μ − 4t) for μ near band top.

(A4)

APPENDIX B: QUASICLASSICAL EXPRESSION
FOR THE EDGE CURRENT

In this section, we extend the calculation of the integrated
edge current in Ref. [18] to an arbitrary band structure
and either two or three spatial dimensions. We consider a
single-band problem on a lattice, near an edge or (surface)
parallel to a reflection plane of the bulk band structure.
In three dimensions, we further assume a symmetry of the
superconducting state under reflection through a horizontal
plane. For triplet order parameters, we assume a fixed d-vector
axis, which we take to be z, so that the spin structure is
trivial for both triplet and singlet cases. We assume a chiral
order parameter �x( �p) + i�y( �p), where �x,y are real and
�p represents a momentum vector on the Fermi surface (FS).
Furthermore, we neglect the texture of the order parameter in
the vicinity of the edge, and so we take �x,y to equal their
uniform bulk values. Note that the presence of a sharp edge
formally invalidates the quasiclassical approximation, which is
valid only on length scales much greater than k−1

F , so the edge
physics is incorporated here as a phenomenological boundary
condition. Form the quasiclassical propagator,

Ĝ(�r, �p; iωn) =
(

g(�r, �p; iωn) f (�r, �p; iωn)

f ∗(�r, �p; iωn) −g(�r, �p; iωn)

)
. (B1)

This object is essentially the Nambu propagator integrated
with respect to relative momentum. It depends on the center-
of-mass position �r , the Fermi surface momentum �p, and
the Matsubara frequency ωn ≡ (2n + 1)πT . Ĝ obeys the
Eilenberger equation:

i�v · ∇�r Ĝ = −[Ĥ ,Ĝ], where (B2)

Ĥ =
(

iωn �x( �p) − i�y( �p)
−�x( �p) − i�y( �p) −iωn

)
(B3)

and �v is the Fermi velocity at momentum �p (with �p on the
Fermi surface). Ĝ is taken to obey the normalization condition

(Ĝ)2 = −π2. (B4)

If we decompose Ĝ into Pauli matrices according to

Ĝ = gτ̂3 + if2τ̂1 − if1τ̂2, (B5)

and form the column vector

|G〉 =
⎛⎝f1

f2

g

⎞⎠ , (B6)

then |G〉 obeys the (vector) differential equation

1

2
�v · ∇�r |G〉 = M̂|G〉, where (B7)

M̂ =
⎛⎝ 0 iωn �y

−iωn 0 −�x

�y −�x 0

⎞⎠ . (B8)

Solutions to (B7) are exponential in position, with the decay
length determined by the eigenvalues of M̂ . Since M̂ is
Hermitian these are real, and they have eigenvectors

|0; �p〉 = 1

λ

⎛⎝−�x

−�y

iωn

⎞⎠ (B9)

for eigenvalue 0, where λ =
√

ω2
n + �2

x + �2
y , and

|±; �p〉 = 1√
2λλ1

⎛⎝±iωnλ − �x�y

λ2
1

iωn�y ∓ λ�x

⎞⎠ (B10)

for eigenvalues ±λ, where λ1 =
√

ω2
n + �2

x . We now assume
the edge is along x = 0, with the superconductor in the region
x > 0, and we use translation invariance along y to write down
the generic solution of (B7):

|G(x, �p)〉 = C0|0; �p〉 + C+ exp

(
2λ

vx

x

)
|+; �p〉

+C− exp

(
−2λ

vx

x

)
|−; �p〉. (B11)

We must exclude solutions that explode as x → +∞. If we
define s ≡ sgn(vx), then

|G(x, �p)〉 = C0|0; �p〉 + C−s exp

(
− 2λ

|vx |x
)

| − s; �p〉. (B12)

The normalization condition fixes C0 = −π . C−s is de-
termined by boundary conditions at x = 0, namely that
|G(0, �p)〉 = |G(0,�p)〉, where �p is the specular reflection of �p,
i.e., �p = (−px,py). Applying this condition yields

C−s =
√

2π�xλ1

iωnλs + �x�y

. (B13)

The current density is computed from the normal part of the
propagator according to

�J (�r) = 2T

(2π )d
∑
iωn

∮
FS

d �p
|�v| �v × g(�r, �p; iωn), (B14)

where d is the spatial dimension. The current flows solely in
the y direction and depends only on x:

Jy(x) = 2T

(2π )d
∑
iωn

∮
FS

d �p
|�v| vy × g(x, �p; iωn). (B15)
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Our solution for the normal part of the propagator can be
written

g(x, �p; iωn) = − π
iωn

λ
+ π

�x

λ

iωn�x − λs�y

(iωn)2 − �2
y

× exp

(
− 2λ

|vx |x
)

. (B16)

The only part of the above whose contribution to the current
density does not vanish by symmetry is

g̃(x, �p; iωn) = π
s�x�y

ω2
n + �2

y

exp

(
− 2λ

|vx |x
)

. (B17)

We compute the integrated current

Iy =
∫ ∞

0
dx Jy(x)

= 2T

(2π )d

∫ ∞

0
dx

∑
iωn

∮
FS

d �p
|�v| vy × g̃(x, �p; iωn)

= 1

2(2π )d

∮
FS

d �p
|�v| vxvy�x�y2πT

∑
iωn

1

λ

1

ω2
n + �2

y

. (B18)

In the zero-temperature limit, the Matsubara sum becomes an
integral: 2πT

∑
iωn

→ ∫
dω,

Iy = 1

2(2π )d

∮
FS

d �p
|�v| vxvy�x�y

×
∫ ∞

−∞
dω

1√
ω2 + �2

x + �2
y

1

ω2 + �2
y

. (B19)

The integral has a closed-form solution:∫ ∞

−∞
dω

1√
ω2 + �2

x + �2
y

1

ω2 + �2
y

= 2

|�x ||�y | tan−1

( |�x |
|�y |

)
(B20)

yielding

Iy = 1

(2π )d

∮
FS

d �p
|�v| vxvy tan−1

(
�x

�y

)
. (B21)

Equation (B21) is the main result. It shows that the edge
current, unless prohibited by symmetry, is generically equal to
the Fermi energy times a number of order 1 and fundamental
constants.

Up until now we have taken the order parameter to be
chiral, but we assumed nothing about its symmetry and very
little about the point group symmetry. We now specialize
to a tetragonal point group and consider various possible
chiral order parameters. For an order parameter of symmetry
dxy + idx2−y2 , the total current of Eq. (B21) vanishes by
symmetry. The total current also vanishes by symmetry
(under reflection y → −y) for a dx2−y2 + is order parameter,
though the analysis above does not directly apply in that
case.

When �x,y corresponds to a two-dimensional representa-
tion of the tetragonal point group (i.e., the order parameter
has either px + ipy or dxz + idyz symmetry), there is a useful

simplification of (B21). Under a 90◦ rotation in the kxky

plane,

�x → �y, �y → −�x, vx → vy, vy → −vx.

vxvy tan−1

(
�x

�y

)
→ vxvy tan−1

(
�y

�x

)
= vxvy

[
π

2
sgn(�x�y) − tan−1

(
�x

�y

)]
.

Accordingly, the relative magnitudes of �x,y are unimportant,
and the zero-temperature current is determined only by the
sign structure of the order parameter components on the Fermi
surface:

Iy = π

4(2π )d

∮
FS

d �p
|�v| vxvysgn(�x�y). (B22)

In the absence of “accidental” zeros of either order parameter
component, the dependence on �x,y drops out entirely, except
for the overall chirality η = sgn(vxvy�x�y):

Iy = πη

4(2π )d

∮
FS

d �p
|�v| |vxvy |. (B23)

For the special case of a two-dimensional system in which
the dispersion relation separates according to ε(k) = εx(kx) +
εy(ky), this simplifies to

Iy = πη

(2π)2

∫
first quadrant dpyvy = η

4π

∫ μ

0 d(εy) = ημ

4π
, (B24)

which coincides with the result gleaned from the gradient
expansion, with η equal to the Chern number.

APPENDIX C: GRADIENT EXPANSION OF THE
MEAN-FIELD BCS ACTION FOR A CHIRAL

p-WAVE SUPERCONDUCTOR

The effective Euclidean Bose action for a superconductor
has the usual form [41,42]

Seff = −
∫

d2+1x

∫
d2+1x ′ |�(x,x ′)|2

V (r,r′)
− Tr ln Ĝ

−1
, (C1)

where V (r,r′) is the attractive effective interaction that
supports p-wave superconductivity and x = (r,τ ), where
τ ≡ it is the Wick-rotated imaginary time variable. Con-
sistent with mean-field BdG, we will deal with the mean-
field, “saddle-point” value of this action by ignoring fluc-
tuations of the phase of the order parameter. The inverse
of the mean-field 2 × 2 matrix Nambu-Gorkov Green’s
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function is thus (� = e = c = 1)

Ĝ
−1

(x,x ′) =
([−∂τ − (−i∇+A)2

2m
+ μ + A0

]
δ(x − x ′) �(r,r′)δ(τ − τ ′)

�∗(r′,r)δ(τ − τ ′)
[−∂τ + (i∇+A)2

2m
− μ − A0

]
δ(x − x ′)

)
,

where the minimal coupling scheme ∂τ → ∂τ − A0,

∇ → ∇ + iA has been used.
We now expand (C1) in gradients of the static potential

A0(r) = A0 sin Q · r (C2)

as well as gradients of the order parameter amplitudes

�α(x,x ′) = �0,α(r − r′)ηα

(
r + r′

2

)
δ(τ − τ ′) (C3)

with

ηα(r) = 1 + λα sin Q · r. (C4)

Here �0,α are the complex mean-field order parameter compo-
nents for α = x,y (only dependent on the relative coordinate
r − r′) and ηα is the corresponding amplitude, equal to unity
in the absence of an external potential. A gradient expansion
need not be applied to the vector potential A(r) since this will
be set to zero at the end of the calculation of the current and we
can simply treat it as small, retaining only terms in the action
that are linear in A.

Fourier transforming (C1) to Matsubara frequency/
momentum space k ≡ (k,iωn), the logarithm is expanded as

Tr ln[Ĝ(k,k′)−1] = Tr ln
[
Ĝ

−1
0

] + Tr[(Ĝ0�̂)]

+ 1
2 Tr[(Ĝ0�̂)2] + · · · , (C5)

where (τ̂α are Pauli matrices)

Ĝ
−1
0 (k) = iωn − ξ (k)τ̂3 + Re�0(k)τ̂1 − Im�0(k)τ̂2, (C6)

�̂(k,k′) = − 1

m

∑
q

A(q) · (k − q/2)δk′,k−q +
{[

A0

2i
τ̂3

+ λα

2i
[Re�α(k − Q/2)τ̂1 − Im�α(k − Q/2)τ̂2]

]
× δk′,k−Q − (Q → −Q)

}
, (C7)

and the trace is performed over frequency and momentum
variables in addition to Nambu indices. �̂ = 0 when Q = 0
and A = 0, and consequently (C5) constitutes a perturbative
expansion in powers of Q and A.

Using (C6) and (C7) in (C5), the leading-order gradients
terms in the action [given by the second term on the right-hand
side of (C5) and discarding terms of order A2] are (from hereon
in, we reserve μ and ν to denote Cartesian components x,y)

S(2) = A0Aμ(Q)

2i
χ0μ(Q) + λμAν(Q)

2i
χ�μν(Q) − (Q → −Q).

(C8)

Here we only show the gradient terms involving the vector
potential A since only these contribute to the current. The

following static correlation functions have been defined
[k ≡ (ωn,k) and q ≡ (0,Q), where ωn is a Fermi-Matsubara
frequency and the external Bose-Matsubara frequency is zero]:

χ0μ(Q) ≡ 1

β

∑
k

vμ(k)tr
[
Ĝ0

(
k + q

2

)
τ̂3Ĝ0

(
k − q

2

)]
(C9)

is the density-current correlation function, and, taking �x(k)
and �y(k) to be purely real and imaginary, respectively,

χ�xν(Q) ≡ 1

β

∑
k

�x(k)vν(k)tr
[
Ĝ0

(
k + q

2

)
Ĝ0

(
k − q

2

)
τ̂1

]
,

×χ�yν(Q)

≡ − 1

β

∑
k

�y(k)vν(k)tr
[
Ĝ0

(
k + q

2

)
Ĝ0

(
k − q

2

)
τ̂2

]
(C10)

are the order parameter–current correlation functions.
vμ ≡ ∂kμ

ξ (k) is the bare velocity vertex.
Continuing with the gradient expansion, we expand the

static correlation functions (C9) and (C10) in powers of Q. At
T = 0,

χ0y(Q) = −iQx

∑
k

vy�y

(
∂kx

�x

)
2E3

k

+ O(Q3), (C11)

χ0x(Q) = iQy

∑
k

vy�y

(
∂kx

�x

)
2E3

k

+ O(Q3), (C12)

χ�xμ(Q) = −iQν

∑
k

vμ�x

2E3
k

[
vν�y − ξ

(
∂kν

�y

)] + O(Q3),

(C13)

and

χ�yμ(Q) = iQν

∑
k

vμ�y

2E3
k

[
vν�x − ξ

(
∂kν

�x

)] + O(Q3).

(C14)

The first terms in the square brackets in (C11) and (C12)
are both equal to the Chern number modulo particle-hole
corrections:∑

k

vy�y

(
∂kx

�x

)
2E3

k

=
∑

k

vx�x

(
∂ky

�y

)
2E3

k

= C

4π
+ O

(
�2

0/E
2
F

)
. (C15)

Note that this is the static Hall conductivity σ̃xy defined in
Sec. II. Turning to (C13) and (C14), the first term in square
brackets is the γ coefficient, also shown in (14). The second
term in both expressions is O(�2

0/E
2
F ) and is related to the

difference in the Ginzburg-Landau coefficients k3 and k4 [30],
which can also be obtained from the order parameter–current
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correlation function (C10), albeit in the limit T → Tc instead
of T = 0.

Using the long-wavelength limiting values (C11)–(C15)
in (C8) and Fourier-transforming back to real space gives
the Chern-Simons action (12) plus the amplitude contribution
(13).

The generalization of the above results to lattice models
is straightforward. As long as the coherence length ξ0 is
much longer than k−1

F ∼ a, where a is the lattice spacing, the

hydrodynamic Lagrangian retains the same form as (12), with
only a few minor modifications to the coefficients. For a single-
band model, one can simply use the expressions (C11)–(C15)
for the hydrodynamic coefficients using values appropriate for
a lattice model, e.g., (7) and (8) instead of ξ (k) = k2/2m − μ

and �0(k) = �0(kx + iky)/kF . For multiband models, one
must go back and evaluate the correlation functions (C9)
and (C10) using the appropriate higher-dimensional matrix
Green’s functions.
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Chapter 5

Suppression of edge currents in Sr2RuO4 by

surface disorder

5.1 Preface We now present a calculation of the edge current in a multi-band chiral p-

wave model of Sr2RuO4. This work was originally motivated by a weak coupling RG analysis

which suggested dominant superconductivity on the two quasi-1D bands.[73] In the proposed

microscopic model, the chiral p-wave pairings on the two-bands are characterized by opposite

Chern numbers, which render the ground state topologically trivial. This was conjectured to

lead to vanishing edge current, thus explaining the experimental null results.[60, 61, 62]

However, as we have seen in the preceding chapters, edge current is generically unre-

lated to the underlying topological properties, and can also arise in a topologically trivial but

TRSB superconductor. Indeed, Imai et al.[67] have shown that simple two-band models of

Sr2RuO4 also exhibit substantial edge current.

Here, we carry out systematic self-consistent BdG calculations for the one-band (γ) and

two-band (α&β) chiral p-wave models of Sr2RuO4. In agreement with the previous studies,

we also found a non-vanishing edge current in our two-band model. More importantly, we
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examine the scenarios with sufficiently strong surface disorder to result in a metallic surface

region. Combined with lattice effects, this results in a substantial suppression of the edge

current. Our numerical results are qualitatively consistent with the Ginzburg-Landau theories.

In addition, due to the abundance of low-energy edge states in the two-band model, the total

edge current is more rapidly suppressed in that model as the temperature increases.

This study has subsequently been substantiated by another work,[66] which uses a more

realistic anisotropic chiral p-wave superconducting gaps obtained from a microscopic weak

coupling calculation.[77]

5.2 Publication
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A major challenge to the chiral p-wave hypothesis for the pairing symmetry of the unconventional
superconductor Sr2RuO4 is the null result of sensitive scanning magnetometry experiments designed to detect
the expected spontaneous charge currents. Motivated by junction tunneling conductance measurements, which
indicate the quenching of superconductivity at the surfaces of even high-purity samples, we examine the
spontaneous currents in a chiral p-wave superconductor near a normal metal/superconductor interface using the
lattice Bogoliubov-de Gennes equations and Ginzburg-Landau theory, and find that the edge current is suppressed
by more than an order of magnitude compared to previous estimates. These calculations demonstrate that interface
details can have a quantitatively meaningful effect on the expectations for magnetometry experiments.

DOI: 10.1103/PhysRevB.90.134521 PACS number(s): 74.70.Pq

I. INTRODUCTION

Strontium Ruthenate, Sr2RuO4, is an unconventional super-
conductor (Tc = 1.5 K) [1] for which there exists substantial
evidence for odd-parity pairing [2–5] as well as for the
spontaneous breaking of time reversal symmetry below Tc

[6–8]. These observations lead naturally to the conclusion
that the pairing symmetry is chiral p wave (px ± ipy), a
two-dimensional analog of the A phase of superfluid 3He.
Though this is the leading phenomenological hypothesis, it
is seemingly contradicted by several experiments. Prominent
among these are high-resolution scanning magnetometry
measurements [9–11], which image magnetic fields across
several μm of sample (including the sample edge) and see
no sign of the expected spontaneous currents.

The presence of spontaneous, persistent charge currents
at edges and domain walls is a robust consequence of time-
reversal symmetry breaking superconductivity. However, the
magnitude of these currents is determined by microscopic
details—they are neither quantized nor universal. The reason
that the null result of the scanning magnetometry experiments
poses such a challenge to the chiral p-wave hypothesis
is quantitative—spontaneous currents of size comparable
to theoretical estimates [12–16] would give a magnetic
signal more than two orders of magnitude greater than
the experimental resolution. Magnetometry measurements
on mesoscopic samples [5] also see no signs of these
currents.

In this paper, we calculate the spontaneous surface cur-
rents for a family of models consistent with the phe-
nomenology of superconductivity in Sr2RuO4. Motivated
by a-axis tunneling experiments [17], we employ a dif-
ferent interface condition than previous studies, modeling
the surface region as a normal metal layer adjoining the
superconducting bulk. We find that, compared to previous
estimates, the expected magnetic signal from edge currents
is reduced by over an order of magnitude. These calculations
demonstrate that interface details can have a quantitatively
meaningful effect on the expectations for magnetometry
experiments.

II. SURFACE IMPERFECTION

The assumption of specular surface scattering as employed
in Refs. [12–16] requires an atomically smooth surface. ab

faces of Sr2RuO4 can be cleaved, but ac and bc faces are
typically polished to a smoothness of several nm [9], on the
order of ten lattice constants. In a-axis junction tunneling
conductance measurements, signatures of superconductivity
at the surface are present only at the sub-1% level on top of a
substantial smooth background [17], as shown in Fig. 2 of that
reference. Accordingly, the best indication from experiment is
that the edge regions of large crystals are metallic [18], with a
superconducting gap developing only further into the sample.
(It has not been established whether a metallic region is present
near the etched edges of Ref. [11].)

The scenario of a metallic edge is plausible given the
fragility of unconventional superconductivity to elastic scat-
tering (i.e., the inapplicability of Anderson’s theorem to a
sign-changing order parameter), which has been explicitly
verified for this material [19]. Rough or pair-breaking surface
effects have been shown [20,21] to sharply reduce the
superconducting order parameter at the surface, although not to
meaningfully alter the surface density of states. Accordingly,
the observation of metallic behavior suggests that there is
a higher density of defects near the surface (presumably
introduced during crystal growth or preparation procedures),
leading to a reduced mean free path and the quenching of
superconductivity near the surface.

To facilitate calculations, we do not directly treat a rough
surface or defects in the surface region, but rather adopt a
model consisting of a clean interface between vacuum and
a metallic region, which in turn has a clean interface with
the superconducting bulk. The metallic region is arranged
by setting appropriate coupling constants to zero in lattice
Bogoliubov de-Gennes Hamiltonians. This introduces artifacts
which will be discussed in Sec. VII. We focus narrowly on
spontaneous currents here, though a calculation of quantities
such as the tunneling conductance (to compare with Ref. [17])
within a more realistic model will be important in evaluating
the consistency of the present scenario with experiment.

1098-0121/2014/90(13)/134521(6) 134521-1 ©2014 American Physical Society
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III. MODEL HAMILTONIANS

We consider spinless fermions on a 2D square lattice
corresponding to the RuO2 plane, and work in a cylinder
geometry: periodic boundary conditions are taken in the y

direction, and open boundary conditions in x. We will consider
two different Bogoliubov-de-Gennes Hamiltonians:

Hγ = −
∑

i,j

T z
ij c

†
z,icz,j

+
∑

i

[
�γ

x (i)c†z,ic
†
z,i+x̂ + �γ

y (i)c†z,ic
†
z,i+ŷ + H.c.

]
,

(1)

Hαβ = −
∑

i,j

∑

η=x,y

T
η

ij c
†
η,icη,j

− t ′
∑

i

∑

s=±1

s[c†x,icy,i+x̂+sŷ + H.c.]

+
∑

i

∑

s=±1

[
�αβ

x (i)c†x,ic
†
x,i+x̂+sŷ

+ s�αβ
y (i)c†y,ic

†
y,i+x̂+sŷ + H.c.

]
, (2)

where Hγ is a minimal Hamiltonian for chiral p-wave
superconductivity on the γ band of Sr2RuO4, which arises
principally from Ru 4d dxy orbitals (represented by the index
z on fermion operators), for which we include the tight
binding matrix elements tz ≡ T z

i,i±x̂ = T z
i,i±ŷ , t ′z ≡ T z

i,i±x̂±ŷ ,
μz ≡ T z

i,i . Hαβ corresponds to the quasi-one-dimensional α

and β bands, which arise principally from the dxz and dyz

orbitals (fermion indices x and y respectively), with tight
binding matrix elements t ≡ T x

i,i±x̂ = T
y

i,i±ŷ , t⊥ ≡ T x
i,i±ŷ =

T
y

i,i±x̂ , μ ≡ T x
i,i = T

y

i,i . For this model, there is also an
important next-nearest-neighbor orbital hybridization matrix
element t ′, whose presence is crucial for establishing a chiral
superconducting gap. We take values {t,t⊥,t ′,μ,tz,t

′
z,μz} =

{1,0.1,0.1,1,0.8,0.3,1.15}, which are consistent with the
Fermi surface measured in ARPES [22] and the quasiparticle
effective masses measured in quantum oscillations [23].

Nearest-neighbor pairing for the dxy orbital and next-
nearest neighbor pairing for the dxz and dyz orbitals repre-
sent the lowest lattice harmonics consistent with a weak-
coupling analysis [24], which predicts a fully gapped dxy

orbital and “accidental” nodes on dxz and dyz that are
lifted to parametrically deep gap minima in the presence of
orbital mixing t ′. Calculations are performed with the self-
consistency conditions �

γ
x (i) = −gγ (i)〈cz,i+x̂ cz,i〉, �

γ
y (i) =

−gγ (i)〈cz,i+ŷ cz,i〉, �
αβ
x (i) = −gαβ(i)〈cx,i+x̂+ŷcx,i〉, �

αβ
y (i) =

−gαβ(i)〈cy,i+x̂+ŷcy,i〉 with attractive interactions gαβ(i) and
gγ (i), which are allowed to vary along the x direction. We
model the metallic edge region adjoining the superconducting
bulk by setting gαβ and gγ to zero in a region of width
Nm sites, and nonzero and uniform in a region of width
Ns sites, with value chosen to yield the desired bulk values
of �αβ and �γ . In this model, superconductivity arises
independently on the quasi-two-dimensional γ band and on
the quasi-one-dimensional α and β bands (i.e., there is no
inter-band proximity effect) and our estimate for the Sr2RuO4

edge current will be the sum of contributions from Hγ and

Hαβ . The consequences of this artificial assumption will be
considered in Sec. VII.

The current operator for the link from site i to site j can be
derived from the lattice version of the equation of continuity
and the Heisenberg equation of motion. It has an intraorbital
part

Ĵ
η

i,j = iT
η

i,j [c†η,i,cη,j − H.c.], (3)

where η = x,y,z is the orbital index. For the model of the α

and β bands, there is also an inter-orbital part for the current
between next-nearest neighbors

Ĵ
xy

i,i+s1x̂+s2ŷ
= it ′s1s2[c†x,i,cy,i+s1 x̂+s2ŷ

+ c
†
y,i,cx,i+s1 x̂+s2ŷ − H.c.], (4)

where s1,s2 = ±1.
We neglect the effect of screening, whose effects have

been explored elsewhere [12,13,20]. Accordingly, our figure
of merit for edge currents will be the total amount of
current I flowing through the metal region and half of the
superconducting bulk, i.e.,

I =
Nm+Ns/2∑

n=1

〈Ĵnx̂,nx̂+ŷ + Ĵnx̂,nx̂+x̂+ŷ〉, (5)

where the two terms in the sum are for nearest neighbor and
next-nearest neighbor links, including intra- and interorbital
contributions as appropriate, and the angle brackets represent
a thermal average. Note that only net currents in the ŷ direction
are allowed by continuity in the cylinder geometry.

IV. GINZBURG LANDAU THEORY

Ginzburg-Landau theory represents an approximate solu-
tion to the BdG equations that becomes exact in the limit
T − Tc → 0−, but provides valuable intuition even at low
temperatures. The expression for the free energy can be found
in the literature [25]:

F = r(|ψx |2 + |ψy |2) + K1(|∂xψx |2 + |∂yψy |2)

+K2(|∂yψx |2 + |∂xψy |2)

+K3([∂xψx]∗[∂yψy] + [∂yψx]∗[∂xψy] + c.c.)

+ higher order terms. (6)

For our purposes, we need not treat quartic terms or those with
more than two derivatives. The equations for the order param-
eter fields must be supplemented by appropriate conditions for
a boundary at fixed x :

ψx = 0 and ∂xψy = 0 for an insulating boundary,

(7)

∂xψx = ψx

bx

and ∂xψy = ψy

by

for a metallic boundary.

(8)

The conditions for an insulating boundary follow from the fact
that specular scattering is fully pair-breaking for ψx (which
is by construction odd under x → −x) [26]. The conditions
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for a metallic boundary involve phenomenological parameters
bx,y , which capture the fact that a metal interface is partially
pair-breaking for both components [27].

We continue to ignore screening, and focus on the sponta-
neous current (i.e., the current which exists in the absence of
phase gradients imposed by an external field):

Jspont ∝ −iK3(ψy[∂xψx]∗ + ψx[∂xψy]∗ − c.c.)

∝ K3(|ψy |∂x |ψx | − |ψx |∂x |ψy |). (9)

In these expressions, we have implemented translation sym-
metry in the y direction and assumed a uniform relative phase
factor of i between ψx and ψy (i.e., positive chirality). Here the
coefficients K1 and K2 determine the coherence lengths of the
two order parameter components, the intercomponent gradient
coupling K3 sets the scale of the currents, and r ∝ T − Tc is
the usual parameter that tunes through the critical point. The
coefficients can be treated as phenomenological parameters or
computed directly from the microscopic Hamiltonians given
above.

V. BDG RESULTS

As previously mentioned, our estimate for the edge current
in Sr2RuO4 is the sum of contributions due to the quasi-2D γ

band and the quasi-1D α,β bands; we initially plot and discuss
these contributions separately. Values of net current are given
in units of I0 ≡ 0.073et/�, which is the net current due to the
γ band with an insulating interface (Nm = 0) at T = 0.2Tc, in
the weak-coupling limit �

γ

0 → 0+. I0 is approximately equal
to the value of the total current per spin in a quasiclassical
approximation (such as the Matsumoto-Sigrist prediction [12]
used in Refs. [9,10]) when screening is neglected. If our model
predicts a current I and screening alters our predictions in
the same way as it does the quasiclassical Matsumoto-Sigrist
results, then our prediction of a magnetic signal (such as
the peak flux) is equal to the Matsumoto-Sigrist prediction
times I/I0.

Plots of the current and both components of the order
parameter as a function of distance from the edge are shown
in Fig. 1. Figure 2 shows the current contributions from the
quasi-2D and quasi-1D bands versus temperature for several
choices of Nm. Data points near Tc are not included due to
computational cost. Figures 3 show the current contributions
as a function of the bulk order parameter (�γ and �αβ respec-
tively), with fixed values of T/Tc and Nm/ξ , where ξ is the su-
perconducting coherence length. Before considering the effect
of the normal-metal region, we note basic results for a clean
insulator (or vacuum) / superconductor (IS) interface (Nm =
0). In that case, compared to the contribution from Hγ , the net
current from Hαβ is reduced by a factor of approximately three
at zero temperature and six at the experimental temperature of
0.2Tc.

Turning to the results for a normal metal / superconductor
(NS) interface (i.e., Nm 
= 0), one feature of the I − T curves
for different values of Nm is that they all coincide at zero
temperature and at sufficiently high temperature, differing
only in an intermediate crossover region. This follows from
the proximity effect: while the superconducting gap �(i) ≡
−g〈cc〉 is zero in the metal (where g = 0), pair correlations

0 20 40 60 80 100 120 140
−0.5

0

0.5

1

1.5

Distance from edge

Arb.
units

 

 

Δγ
x

Δγ
y

Jγ
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0

0.5

1

1.5

Distance from edge

Arb. 
units

Δαβ
y

Δαβ
x

Jαβ

(a)

(b)

FIG. 1. (Color online) Current and the two components of the
order parameter as a function of position for (a) Hγ and (b) Hαβ . The
first 40 sites are the metallic region, in which the gap vanishes, and
clean interfaces with vacuum are present at positions 0 and 140. Pair
correlations in the metallic region are shown in dashed lines. The bulk
order parameter values are �

αβ

0 = �
γ

0 = 0.05t , T = 0.2Tc

〈cc〉 do penetrate. The length scale for this penetration is
set by vF /T , (where vF is the Fermi velocity), and thus
diverges at zero temperature, so that the width of the metallic
region is effectively zero. By contrast, at temperatures such
that vF /T < Nm, pairing correlations decay to zero before
the edge is encountered, so that the metallic region is
effectively infinite. In both cases, an increase in Nm should
have a negligible effect on the currents, consistent with the
calculation.

For vF /T < Nm, there is a pronounced suppression of the
current in both the one and quasi-1D cases compared with
the current without a metallic region (Nm = 0). The amount
of this suppression depends on the size of the pairing gap.
For Sr2RuO4, the pairing gap is on the order of 10−3t , so
that extrapolation to the weak-coupling limit �0 → 0+ is
necessary for a quantitative estimate. For a model including all
three bands in this weak-coupling limit, we find a suppression
of approximately twenty compared to the initial Matsumoto-
Sigrist predictions.
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FIG. 2. (Color online) Contributions to the current near a metallic
edge region from (a) the γ band and (b) the α,β bands vs temperature
for several values of Nm, the thickness of this metallic edge region
abutting the superconducting bulk. The superconducting bulk is of
width Ns = 100 sites, and currents are quoted in units of I0, which
is essentially the Matsumoto-Sigrist result [12] in the absence of
screening. The bulk order parameter values are �

αβ

0 = �
γ

0 = 0.05t .
For the current from α,β there are finite size effects associated
with near-nodal quasiparticles, which render the results at very
low temperature less well behaved. We have verified that the zero-
temperature current values in the thermodynamic limit are within
15% of those shown here.

VI. QUALITATIVE EXPLANATION
FROM GINZBURG-LANDAU THEORY

The results of the previous section can be summarized as
follows: (1) the contribution from the α,β bands is several
times smaller than that of the γ band for the IS geometry;
(2) both contributions are substantially suppressed in the NS
geometry; and (3) the suppression due to the NS geometry
is considerably larger for the γ band than for the α,β bands.
Ginzburg-Landau theory, though it is not quantitatively valid
at low temperatures, can nonetheless qualitatively explain each
of these results.

(1) With a conventional insulating interface, the scale of
spontaneous currents is set by the coefficient K3. In the quasi-
2D model, this is a number of order one, whereas in the quasi-
1D model, it vanishes in the limit of zero interorbital mixing t ′.
Since t ′ = 0.1t , it follows that Kαβ

3 is substantially smaller than
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0.6

0.8

1

1.21.2

Δγ
0
/t

I/I
0

Iγ
NS

Iγ
IS

NS Extrapolation
IS Extrapolation

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

Δαβ
0

/t

I/I
0

Iαβ
NS

Iαβ
IS

NS Extrapolation

IS Extrapolation
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FIG. 3. (Color online) Extrapolation of current contributions of
(a) the γ band and (b) the α,β bands to the weak-coupling limit
�

αβ

0 ,�
γ

0 → 0+ for the both insulator/superconductor (IS) and normal
metal/superconductor (NS) interfaces. Currents are quoted in units
of I0, which is essentially the Matsumoto-Sigrist result [12] in the
absence of screening. As the bulk gap is reduced, the temperature is
reduced and the length scales Nm, Ns are increased in order to fix the
values T/Tc = 0.2, Nm/ξ ≈ 4, Ns/ξ ≈ 12. The metallic boundary
leads to suppression of over an order of magnitude in both the quasi-
1D and quasi-2D cases.

K
γ

3 and similarly for the currents. A microscopic calculation
gives K

αβ

3 ≈ 0.02K
γ

3 .
(2) The suppression in current in the NS geometry can be

viewed as a consequence of the different boundary conditions
on the order parameter. The boundary values of of |ψx | and
|ψy | are respectively increased and decreased compared to the
insulating case. At a fixed distance from the edge, |ψx | and
∂x |ψy | are larger, while |ψy | and ∂x |ψx | are smaller than their
corresponding values for the insulating boundary. Equation (9)
for the current shows that this yields a numerical (though not
parametric) reduction in the current for any choice of G-L
coefficients.

(3) The tremendous suppression of the current in the
quasi-2D NS model is a lattice effect. For the fine-tuned case
K1 = K2, one can show that bx = by and the two components
of the order parameter heal away from the metal in precisely
the same way, leading to a vanishing current in lowest-order
G-L theory [20]. For a quadratic dispersion and an order
parameter kx + iky , as is often used to describe the γ band
[12–14,16], the coefficients satisfy K1 = 3K2. However, for a
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lattice-compatible order parameter sin kx + i sin ky as treated
here and for an appropriate tight-binding band structure for the
γ band, K1 = 0.71K2. The large suppression of the γ band
current due to the NS geometry can be roughly identified with
the proximity of this result to the fine-tuned case K1 = K2.

VII. DISCUSSION

Superconductivity on the quasi-1D bands was previously
conjectured [24] to lead to dramatically reduced edge currents
compared to a quasi-2D scenario due to trivial topology (i.e.,
the Chern numbers of the two bands add to zero, yielding no
net chiral edge modes). The results shown above for the IS
interface show a substantial reduction (by a factor between
three and six), but nonetheless of order one, falsifying the ini-
tial conjecture and illustrating the tenuous connection between
topology and edge currents in chiral p-wave superconductors
(this topic will be treated in depth in a forthcoming paper).

Even if the quasi-1D bands had vastly reduced currents in
the IS case, the contribution from the γ band would generically
be large, even if it were not the “dominant” band. The neglect
of the current contribution from the subdominant band(s) is
only justified if the experimental temperature exceeds the
subdominant gap scale. However, thermodynamic evidence
shows that the gaps on all bands are at least comparable to
Tc = 1.5 K ≈ 0.13 meV [28]. At low temperatures, the edge
currents should then correspond to the sum of contributions
from the quasi-1D and quasi-2D bands, with the weak-
coupling limit taken for both �αβ and �γ . At low temperatures
and with a clean interface, the generic scale of edge currents
is “of order one” regardless of microscopic mechanism details
such as the identity of the dominant band(s).

Though there does not seem to be any physical reason for a
parametric suppression of edge currents, we find a meaningful
quantitative reduction of over an order of magnitude compared
to previous estimates by considering the effect of surface
imperfection. Within a model of a clean metal of width ∼4ξ0

abutting a clean superconductor, with T = 0.2Tc, the total
current from all three bands is suppressed by a factor of
more than twenty in the weak-coupling limit compared to
the result for the γ band and an IS interface. Within our
model, there is essentially no suppression in the limit of
sufficiently low temperatures and/or narrow metallic regions,
where superconducting correlations induced by the proximity
effect extend all the way to the edge. This is an artifact of
our model, however, which does not treat surface roughness
or disorder directly. For example, pair-breaking and diffuse
scattering effects are known to reduce the zero-temperature
current [20,21].

The calculations presented here are not expected to be
quantitatively correct for the actual superconducting gap
structure and surface physics of Sr2RuO4. Our model of
spinless fermions entirely neglects spin-orbit coupling (SOC),
which has been proposed to qualitatively affect pairing [29].
However, as far as the edge current is concerned, the primary
effect of SOC is to modestly renormalize the band structure;
hence, its explicit inclusion would not change any of our
results substantially. A more serious unphysical assumption
is the neglect of the interband proximity effect, without which
superconductivity would generically arise at very different

temperatures on the γ and α/β bands. While interband prox-
imity coupling would not change the additivity of the current
contributions from the different bands, it would alter the length
scale over which the various order parameter components
heal away from an interface. The resulting currents could be
reduced or increased compared to our results, depending on
microscopic details.

These defects notwithstanding, the model treated above
illustrates that substantial reductions in magnetic signal can
arise from interface effects. We now consider the consequences
of a twenty-fold reduction for the interpretation of magne-
tometry experiments. Even with this reduction the magnetic
signal at the edge would still be estimated to be several
times the resolution of scanning magnetometry experiments,
and should therefore be observable. However, if multiple
domains of sufficiently small size are present in the sample
and intersect the edge, the magnetic fields from spontaneous
currents would be unobservable. Kirtley et al. [9] find that,
to be consistent with the Matsumoto-Sigrist predictions [12],
ab-plane domains below about 1.5 μm in size are necessary.
To be consistent with a prediction twenty times smaller, the
domains could be as large as perhaps 5 μm. However, the
presence of multiple ab-plane domains within the sample
would lead to spontaneous currents at the domain walls, which
have not been treated here. Unless domain walls are pinned
by crystal defects that, like a rough edge, lead to quenched
superconductivity (an unlikely proposition), the suppression
indicated in the foregoing calculations would not apply to the
domain wall currents.

One scenario for the lack of an edge signal which would
not imply a signal at interior domain boundaries is the
c-axis stacking of planar domains of macroscopic horizontal
extent and alternating chirality. The energetic cost of the
domain boundaries would be small, due to the very weak
dispersion of the electronic band structure along the c
direction, and symmetry requires that no spontaneous current
would flow at these boundaries. The measurements of Hicks
et al. [10] place an upper bound of 20–400 nm on the
height of such domains, depending on microscopic domain
details, and again assuming Matsumoto-Sigrist predictions for
edge currents [12] (similar bounds have not been estimated
for the experimental geometries of Refs. [5,11]). Here, a
twenty-fold reduction of expected edge currents for a single
domain would revise upward the experimental bound on
domain size, possibly reconciling the null result of scanning
magnetometry experiments with the spontaneous time reversal
symmetry breaking seen in Kerr effect measurements with
mesoscopic spot size (∼50 μm) and skin depth (∼150 nm
[30]).

We have shown that spontaneous currents in a chiral p-wave
superconductor are highly sensitive to interface details, in
particular that surface disorder leading to a micrometer-
thickness metallic surface region can cause a suppression of
more than an order of magnitude compared to naive estimates.
We propose that a scenario of c-axis domain stacking, along
with surface disorder, might resolve the seeming disagreement
between scanning magnetometry and Kerr probes, and further
suggest that the edge of a crystal fractured in vacuum might
host a much lower defect density and potentially lead to
observable edge currents.

134521-5

PhD Thesis — Wen Huang ——————— McMaster University —- Physics & Astronomy

53



LEDERER, HUANG, TAYLOR, RAGHU, AND KALLIN PHYSICAL REVIEW B 90, 134521 (2014)

ACKNOWLEDGMENTS

SL thanks Aharon Kapitulnik, Steven Kivelson, Kathryn
Moler, and Boris Spivak for helpful discussions. This work
is supported by NSERC and CIFAR at McMaster and by the

Canada Research Chair and Canada Council Killam programs
(CK). At Stanford, this work is supported in part by the
DOE Office of Basic Energy Sciences, contract DE-AC02-
76SF00515 (SL and SR), an ABB fellowship (SL), and the
Alfred P. Sloan Foundation (SR).

[1] A. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
[2] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao,

Y. Mori, and Y. Maeno, Nature (London) 396, 658 (1998).
[3] K. D. Nelson, Z. Q. Mao, Y. Maeno, and Y. Liu, Science 306,

1151 (2004).
[4] F. Kidwingira, J. D. Strand, D. J. Van Harlingen, and Y. Maeno,

Science 314, 1267 (2006).
[5] J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung,

P. M. Goldbart, and Y. Maeno, Science 331, 186 (2011).
[6] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin,

B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori et al.,
Nature (London) 394, 558 (1998).

[7] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin,
B. Nachumi, Y. J. Uemura, J. E. Sonier, Y. Maeno, Z. Q. Mao,
Y. Mori et al., Physica B 289-290, 373 (2000).

[8] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and
A. Kapitulnik, Phys. Rev. Lett. 97, 167002 (2006).

[9] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A.
Moler, Y. Maeno, and K. D. Nelson, Phys. Rev. B 76, 014526
(2007).

[10] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick,
M. E. Huber, Y. Maeno, W. M. Yuhasz, M. B. Maple, and K. A.
Moler, Phys. Rev. B 81, 214501 (2010).

[11] P. J. Curran, S. J. Bending, W. M. Desoky, A. S. Gibbs, S. L.
Lee, and A. P. Mackenzie, Phys. Rev. B 89, 144504 (2014).

[12] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999).
[13] A. Furusaki, M. Matsumoto, and M. Sigrist, Phys. Rev. B 64,

054514 (2001).
[14] M. Stone and R. Roy, Phys. Rev. B 69, 184511 (2004).
[15] Y. Imai, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 85,

174532 (2012).

[16] J. A. Sauls, Phys. Rev. B 84, 214509 (2011).
[17] S. Kashiwaya, H. Kashiwaya, H. Kambara, T. Furuta,

H. Yaguchi, Y. Tanaka, and Y. Maeno, Phys. Rev. Lett. 107,
077003 (2011).

[18] S. Kashiwaya (private communication).
[19] A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G.

Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev.
Lett. 80, 161 (1998).

[20] P. E. C. Ashby and C. Kallin, Phys. Rev. B 79, 224509
(2009).

[21] Y. Nagato, M. Yamamoto, and K. Nagai, J. Low Temp. Phys.
110, 1135 (1998).

[22] A. Damascelli, D. H. Lu, K. M. Shen, N. P. Armitage,
F. Ronning, D. L. Feng, C. Kim, Z.-X. Shen, T. Kimura,
Y. Tokura, Z. Q. Mao, and Y. Maeno, Phys. Rev. Lett. 85, 5194
(2000).

[23] C. Bergemann, A. P. Mackenzie, S. R. Julian, D. Forsythe, and
E. Ohmichi, Adv. Phys. 52, 639 (2003).

[24] S. Raghu, A. Kapitulnik, and S. A. Kivelson, Phys. Rev. Lett.
105, 136401 (2010).

[25] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[26] V. Ambegaokar, P. DeGennes, and D. Rainer, Phys. Rev. A 9,

2676 (1974).
[27] P. de Gennes, Superconductivity of Metals and Alloys (Benjamin,

New York, 1966).
[28] I. A. Firmo, S. Lederer, C. Lupien, A. P. Mackenzie, J. C. Davis,

and S. A. Kivelson, Phys. Rev. B 88, 134521 (2013).
[29] C. Veenstra, Z.-H. Zhu, M. Raichle, B. Ludbrook, a. Nicolaou,

B. Slomski, G. Landolt, S. Kittaka, Y. Maeno, J. Dil et al., Phys.
Rev. Lett. 112, 127002 (2014).

[30] A. Kapitulnik (private communication).

134521-6

PhD Thesis — Wen Huang ——————— McMaster University —- Physics & Astronomy

54



PhD Thesis — Wen Huang ——————— McMaster University —- Physics & Astronomy

Chapter 6

Leggett modes and multi-band superconductivity

6.1 Preface Multi-band superconductors exhibit physical properties that are not avail-

able in single-band superconductors. In the latter, Cooper pairing is driven by interactions that

scatter pairs of electrons within the band. However, in a multi-band system, Cooper pair scat-

tering exists not only within the individual bands, but also in general between the bands. In

an unconventional superconductor, non-vanishing inter-band interactions may originate from

direct Coulomb interactions between the multiple bands (oribtals), and may also derive from

higher order scattering processes associated with spin and/or charge density wave fluctuations.

In this chapter, we examine the multi-band nature of the superconductivity in Sr2RuO4, and

discuss several potentially novel aspects related to it.

6.1.1 Leggett modes In each superconducting channel, the effective interactions between

the bands mediate effective Josephson-like couplings between the superconducting order pa-

rameters on the bands. In Sr2RuO4, due to the disparate dimensional characters of the α/β-

and γ-bands, it is expected that the Cooper pairing scattering amplitude between the two sets
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of bands will be significantly smaller than that within each subset[99]. This naturally leads to

weak inter-band Josephson couplings between the order parameters on the two sets of bands.

In the ground state, the system stabilizes a three-band order parameter configuration which

minimizes the intra-band and inter-band interactions. Here, an order parameter configuration

denotes the relative magnitudes and signs of the superconducting gaps on the three bands. In

the presence of perturbing electromagnetic fields or at finite temperatures, the relative magni-

tudes and phases of the band gaps may fluctuate and form coherent collective modes. These

modes were first discussed by Leggett[100] (thus termed Leggett modes), and their excitation

gaps (masses) are determined by the effective inter-band Josephson couplings. In Sr2RuO4, a

relatively low-energy Leggett mode may emerge due to the weaker Josephson coupling, cor-

responding to relative phase oscillations between the γ and the other two bands. In principle,

this Leggett mode can be probed by optical experiments, such as Raman spectroscopy.

6.1.2 Comparable gaps on the bands The distinction between the two sets of bands also

leads to another expectation, that superconductivity in this material is dominated by one subset

of the bands.[99] This follows from two observations: 1) the γ-band Fermi surface is close to

a van-Hove singularity, which promotes small wavevector spin density wave fluctuations[101]

favorable for the development of p-wave superconductivity[76]; 2) the two quasi-nested 1D

bands are associated with strong large wavevector spin density wave fluctuations[101] which

may promote noticeable p-wave superconducting correlations on their own.[78] The qualita-

tive differences between the two kinds of bands might lead one to believe that superconductiv-

ity is dominated by one kind of band or the other. However, given 1) and 2), it is possible that

the microscopics may lead to the amplitude of the p-wave order parameter being comparable

on the two sub-bands.
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In fact, through a weak coupling renormalization group calculation[77] that is believed to

be appropriate to Sr2RuO4, we find that the two sets of bands are characterized by comparable

effective interactions in the Cooper channel. These interactions conspire with the relatively

weaker interactions between the two sets of bands to drive comparable superconducting gaps

on the three bands, as is compatible with specific heat measurements[79] and tunneling spec-

troscopic measurements.[80]

6.1.3 Novel multi-band TRSB pairing? There is yet another possible novel phenomenon

in a multi-band system, namely, a time-reversal symmetry breaking (TRSB) superconducting

order which does not originate from chiral pairing [102]. This has been discussed in the

context of MgCNi3,[103] some three-band models of iron-based superconductors,[104, 105]

and SrPtAs.[106] There, the frustrated interband interactions result in two degenerate or near

degenerate configurations of order parameters on the bands, with distinct sets of relative gap

amplitudes and phases. In such a scenario, a stable ground state may be realized in which

the order parameter is composed of a complex linear superposition of the two configurations,

thereby breaking time reversal symmetry. In relation to Sr2RuO4, this possibility would arise

purely from the multi-band physics and be independent of the intrinsic TRSB associated with

the putative chiral p-wave pairing within the individual bands. Note that the TRSB state

generated by inter-band frustration requires two successive thermodynamic transitions if the

two configurations are non-degenerate.

A closely related possibility is a multi-band helical state with TRSB. Helical pairing in

a one-band system is intrinsically time-reversal invariant, analogous to the B-phase of 3He.

However, as discussed in the previous paragraph, a multi-band system may allow for a com-

plex TRSB order parameter to develop out of the otherwise time-reversal-invariant helical
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Cooper pairing on the individual bands. Such a state possesses no spontaneous edge current

at its boundaries, and hence may be compatible with the puzzling absence [60, 61, 62] of

the edge current, while being consistent with the strong evidence for spin-triplet odd-parity

superconductivity.[19, 20, 21]

The novel TRSB helical state is also appealing due to the possible close competition

between the chiral and helical pairings in Sr2RuO4. This is evident, e.g. from the invari-

ance of spin susceptibility below Tc for all external field orientations in NMR Knight shift

measurements.[19, 107] Remarkably, the in-plane d̂-vector orientation inherent to the helical

state naturally explains the experimental indications of Pauli limiting behavior: anomalous

suppression of the in-plane upper critical field Hc2[108] and signatures of first order transi-

tions for in-plane Hc2[109] at low temperatures. The Pauli limiting effect is expected to be

absent in the chiral p-wave order. On the theory front, a weak coupling RG[77] found leading

instability in the helical channel over a broad range of interaction parameters.

In our model for Sr2RuO4, however, the inter-band interactions turn out to be unfrustrated

in both chiral and helical channels. Thus the complex multi-band order parameter seems

unlikely to occur. However, given the difficulties in reconciling the expectations for chiral

p-wave order and the few key experiments mentioned above, it may be helpful to study al-

ternative forms of TRSB superconductivity which do not necessarily involved chiral p-wave

pairing.

6.2 Publication
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Sr2RuO4 is a prototypical multi-band superconductor with three bands crossing the Fermi level. These bands
exhibit distinct dimensional characteristics, with one quasi-2D γ-band and two quasi-1D α- and β-bands. This
leads to the expectation that the superconductivity on the γ-band may be only weakly Josephson-coupled to that
on the other two bands. Based on an explicit microscopic weak coupling calculation appropriate for Sr2RuO4,
we study the collective Leggett modes associated with the relative phase oscillations between the bands and
show that a relatively soft Leggett mode exists due to the comparatively weaker inter-band Josephson coupling.
These calculations also provide insight into why the superconducting gap magnitudes may be comparable on
all three bands, despite the noticeable differences between the γ and α/β bands. The analyses can be readily
applied to other multi-band superconductors.

Multi-band superconductors possess physical properties
that are not present in single-band superconductors. Depend-
ing on the nature of the interactions driving the Cooper pairing
and the orbital character of the bands, the superconducting or-
der parameter may not be dominated by one band with only
much weaker induced superconductivity on the other bands.
This is particularly so in multi-band systems with unconven-
tional pairing symmetry, where the correlations underlying the
superconductivity often involve electrons on different bands
strongly interacting with each other. These inter-band inter-
actions give rise to effective Josephson couplings between the
superconducting order parameters of the different bands1. As
a consequence, in the ground state, the multiple order param-
eters are locked in a configuration with a particular set of rel-
ative phases and magnitudes.

Under external perturbations or at finite temperatures, the
relative phase between the multiple order parameters can fluc-
tuate, costing a finite amount of energy that is determined
by the inter-band couplings. These collective excitations are
commonly referred to as Leggett modes.1 They respond to
electromagnetic fields in a peculiar manner, and are unlike the
usual global U(1) phase fluctuations which are pushed up to
the plasma frequency due to Coulomb interactions.2

The putative chiral p-wave superconductor Sr2RuO4
3–5 is

a prototypical multi-band system, with three bands crossing
the Fermi energy – two quasi one dimensional (1D) α/β-
bands and one quasi two dimensional (2D) γ-band (Fig. 1).9

The quasi-1D bands originate primarily from the hybridized
4d xz and yz-orbitals, while the γ-band is dominated by the
xy-orbital. These orbitals are further mixed by spin-orbit
coupling.6–8

The exact superconducting gap structure in this material is
an ongoing debate.9–11 In spite of this, a few things can be
said regarding the effective interactions between the low en-
ergy fermions on the three Fermi surfaces. Firstly, the intra-
band Cooper pair scattering on the quasi-1D bands may be
markedly different from that on the quasi-2D band. This could
lead to one set of bands or the other dominating the super-
conductivity, as was first pointed out by Agterberg et al.12

However, as we will see, inter-band interactions make this

Α

Β Γ

kx

k
y

FIG. 1: The three Fermi surfaces of Sr2RuO4 in the kz = 0 plane.
The c-axis dispersion is small and is ignored in our calculations.

less likely. Secondly, due to the quasi-1D nature of the α/β-
bands, the inter-band scattering between these two must be
much stronger compared with that involving the γ-band. This
naturally leads to a relatively weaker Josephson coupling be-
tween γ and α/β-bands.

There is some experimental evidence in favor of compara-
ble superconductivity on all three bands of Sr2RuO4,13,14 and
theoretically, a weak-coupling renormalization group analysis
by Scaffidi et al.15 predicts comparable pairing strength on all
of the bands in the parameter range believed to be appropriate
to Sr2RuO4. However, this is an unresolved issue, and both
experimental16,17 and theoretical18–24 indications exist in sup-
port of a state where one of the two sets of bands dominates.

Zhitomirsky and Rice18 have studied the effects driven by
the inter-band interactions in a simplified two-band model, us-
ing phenomenological estimates for the interactions. There,
it was found that a reasonable amount of inter-band inter-
action is necessary to bind together the primary and the
passive superconducting bands. In this work, we evaluate
the effective inter-band interactions and Josephson couplings
in Sr2RuO4 via explicit microscopic calculations following
Scaffidi et al.15 We will show that a relatively soft Leggett
mode should be present because of the comparatively weaker

PhD Thesis — Wen Huang ——————— McMaster University —- Physics & Astronomy

59



2

coupling between the quasi-2D γ- and quasi-1D α/β-bands.
This detailed investigation into the inter-band interactions also
helps to elucidate how the three bands may or may not support
comparable Cooper pairing.

In a chiral p-wave superconductor, whether single-band or
multi-band, additional phase modes may also arise in connec-
tion with the relative phase fluctuations between the two chiral
components. These are referred to in literature as “clapping”
modes.25 While we do not study these modes in detail, we ar-
gue that some of their experimental signatures differ from the
Leggett modes and the two types of collective modes may be
distinguished.

Finally, although there is strong evidence for the time-
reversal symmetry breaking (TRSB) chiral p-wave supercon-
ductivity in Sr2RuO4,26–30 difficulties remain in reconciling
the expectations for this order and a few key experiments, in-
cluding the puzzling absence31–34 (or smallness35) of spon-
taneous edge current (although recent years have seen nu-
merous attempts to explain the absence of edge current36–42),
the anomalous suppression of the in-plane upper critical field
Hc2

43 and indications of a first order transition for in-plane
Hc2 at low temperatures44 (see Ramires et al.45 for a recent
attempt to explain this). It is thus tempting to ask whether
Sr2RuO4 could in fact support an alternative TRSB odd-
parity superconducting order, made possible by the multi-
band nature,46 analogous to what has been discussed in the
context of MgCNi3,47 some iron-based superconductors,48–50

and SrPtAs.52 There, TRSB is associated with a complex or-
der parameter configuration on three or more bands. In rela-
tion to Sr2RuO4, a helical p-wave pairing with complex multi-
band order parameter for example would seem consistent with
the experiments mentioned above. Note that a one-band heli-
cal p-wave is intrinsically time-reversal invariant, in the sense
that the spin up and down electrons form Cooper pairs of op-
posite orbital angular momenta.25 However, in our model, we
find that Sr2RuO4 lacks the ingredients favorable for the for-
mation of this type of TRSB multi-band superconductivity.

The rest of the paper is organized as follows. We first for-
mulate in Sec I a qualitative description of the multi-band su-
perconductivity in Sr2RuO4, and then substantiate in Sec II
with inputs obtained from microscopic weak coupling calcu-
lations. We then make specific analyses of the Leggett modes,
along with a discussion of the experimental consequence in
connection with Raman scattering in Sec III. Finally we ex-
amine the possibility of exotic TRSB multi-band chiral and
helical pairings in Sec IV.

I. EFFECTIVE MODEL

As is clear from the above discussion, a study of the
multi-band dynamics in Sr2RuO4 requires a knowledge of the
Josephson couplings between the multiple order parameters
on the three bands. We start here by introducing an effective
model to qualitatively capture the main features of the inter-
band couplings. Despite the lack of microscopic accuracy,
this model is instructive for understanding the properties of
the ground state and the collective phase modes.

The effective Hamiltonian may be written as,

H =
∑

µ,σ

∫
drψ†µ,σ(r)(

p̂2

2mµ
− µ)ψµ,σ(r)

+
∑

µ,ν
σ,σ′

∫
drψ†µ,σ(r)ψ†µ,σ′(r

′)V µνσσ′(r − r′)ψν,σ′(r
′)ψν,σ(r) .

(1)

Here µ = α, β, γ are the band indices, mµ is the effec-
tive mass for band-µ, and σ represent pseudospins which dif-
fer from the original spin indices due to spin-orbit coupling.
The second term describes the effective electron-electron in-
teractions between band-µ and band-ν in a particular pre-
sumed pairing channel (different channels are characterized
by different effective interactions). These interactions pre-
sumably originate from Coulomb correlations and their asso-
ciated particle-hole density-wave fluctuations.

Note that we are only considering intra- and inter-band in-
teractions which scatter pairs of electrons, respectively, within
a band and from one band to another. Effectively, this
amounts to having no inter-band Cooper pairs. No partic-
ular forms are specified for the interactions V µν(r − r′) at
this point. However, it is assumed that such interactions lead
to the highly anisotropic chiral p-wave pairing with compara-
ble pairing amplitudes on all of the bands, as found in earlier
calculations.15 In particular, the inter-band interactions V αγ

and V βγ are considered weak compared to V αβ as well as
to the intra-band interactions, while V αβ is relatively strong
and may even exceed V αα/ββ due to the quasi-1D nesting.53

One may make a further simplifying approximation and set
V αα ' V ββ on account of the similarity of the two 1D band
structures.

As is elaborated in Appendix A, the eigenvectors of the in-
teraction matrix V̂ qualitatively approximate the possible or-
der parameter configurations in the presumed pairing channel.
In particular, the eigenstate with the most attractive eigenvalue
corresponds to the most favorable configuration.

After a Hubbard-Stratonovich transformation in the Cooper
channel using auxiliary fields ∆µ (the superconducting order
parameter) and integrating out the fermionic fields, the effec-
tive action becomes,

S =

∫
dτd2r

(∑

µ,ν

∆∗µV̂µν∆ν −
∑

µ

Tr lnG−1
µ

)
, (2)

where the first term may be simplified to (∆̂∗)T V̂∆̂ with ∆̂ =

(∆α,∆β ,∆γ)T and V̂ = −V̂ −1, and the Gor’kov Green’s
function is given by

Ĝ−1
ν = −

(
∂τ − ∇2

2mν
− µν −∆ν

−∆∗ν ∂τ + ∇2

2mν
+ µν

)
. (3)

In this action we have ignored the vector potential which is
irrelevant to our discussion.

Particular attention is due for the coupling matrix V̂ , whose
off-diagonal elements describe inter-band Josephson cou-
plings. Our expectation of much weaker V αγ and V βγ com-
pared to V αβ as well as the other interactions immediately
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leads to interband couplings of similar nature. On these bases,
we take,

V̂ =
1

V0



a1 λ η1

λ a2 η2

η1 η2 a3


 . (4)

with |η1|, |η2| � |λ|. Here V0 sets the overall interaction
energy scale, the quantities λ and η1/η2 describe respectively
the inter-band α-β and γ-α/β Josephson couplings, while the
ai’s are the intra-band couplings irrelevant to the rigidity of
the relative phases between the bands. Noting the similarity
between the quasi-1D bands, one may approximate |η1| '
|η2| = η.

The rigidity of the relative phase between the bands is deter-
mined by the inter-band couplings. Assuming the same order
parameter amplitude on all bands, and setting λ > 0, η1 ∼
η2 = η < 0 in light of our numerical results to be presented
in the next section, our analyses follow the standard proce-
dure49,54 and are given in detail in Appendix B (see a more
thorough derivation in Marciani et al.51). To simply quote the
main conclusion: the system exhibits a relatively soft Leggett
mode, with an excitation gap that is determined by the inter-
band couplings η in the following way,

wL =

√
3|η|
N0V0

∆0 , (5)

where for simplicity we have assumed similar density of states
N0 and gap amplitudes on all bands. This mode is a conse-
quence of phase fluctuations on the γ-band with respect to the
other two bands. In the limit of vanishing interaction between
the two sets of bands, this mode becomes massless.

The particular set of inter-band couplings considered above
is free of frustration (see Sec IV). On the other hand, a set
of frustrated inter-band interactions not realized in our model
of Sr2RuO4, such as one that would lead to λ > 0, η1 >
0 and η2 < 0, gives rise to an anomalously soft Leggett mode,
as has been shown previously49,54 (see Appendix B).

II. WEAK COUPLING CALCULATIONS

We now present a microscopic calculation of the interac-
tion matrix V̂ for Sr2RuO4. The first step is to obtain the ef-
fective band interactions using the microscopic Hamiltonian
of the three Ru t2g 4d-orbitals. This can be achieved follow-
ing the weak coupling renormalization group calculations by
Scaffidi et al.15 of the effective interaction V µν(k,p) associ-
ated with each Cooper pair scattering process on any pair of µ-
and ν-band Fermi surfaces. For the sake of brevity, we refer
to Ref. 15 for details and only sketch the calculations here.

Most crucially, the study starts with on-site Coulomb inter-

actions in the orbital basis,

Hint =
∑

i,a,s6=s′

U

2
niasnias′ +

∑

i,a6=b,s,s′

U ′

2
niasnibs′

+
∑

i,a 6=b,s,s′

J

2
c†iasc

†
ibs′cias′cibs

+
∑

i,a 6=b,s6=s′

J ′

2
c†iasc

†
ias′cibs′cibs , (6)

where i is the site index, a = xz, yz, xy is the orbital in-
dex, s denotes the spin, nias ≡ c†iascias, U

′ = U − 2J , and
J ′ = J where J is the Hund’s coupling. Following Raghu et
al.,20 these interactions are treated perturbatively in the limit
U, J � W where W is the bandwidth. Thus J/U fully pa-
rameterizes the interactions in the model. Projecting all inter-
actions to the Fermi level, V µν(k,p) in the Cooper channel is
then evaluated up to the one-loop level, as is appropriate in the
weak coupling limit. Finally, the superconducting gap func-
tion is obtained by solving the linearized gap equation using
V µν(k,p).

For a range of interaction and tight-binding parameters
thought to be appropriate for Sr2RuO4, an anisotropic chi-
ral p-wave pairing emerges as the most attractive solution to
the gap equation (although a helical pairing represents a close
competitor, see also Sec IV). We denote this gap in the fol-
lowing form,

∆̂k =




∆0αφα(k)
∆0βφβ(k)
∆0γφγ(k)


 , (7)

where φµ(k) is the normalized form factor of the full
anisotropic chiral p-wave gap function on band-µ, and the
vector ∆̂ = (∆0α,∆0β ,∆0γ)T , with its elements indicating
the relative phase and magnitude of the order parameters on
the three bands, specifies the order parameter configuration.
Note that these anisotropic pairing gaps in general lead to no-
ticeably reduced edge current,38,39,42 with strong further sup-
pression when combined with surface disorder.37,39. Similarly
anisotropic gaps on the two quasi-1D bands have also been
invoked to explain tunneling conductance along the c-axis.14

In Appendix A we formulate an approach to extract the ef-
fective intra- and inter-band interactions. Essentially, in anal-
ogy to Scalapino et al.55 formulated for a one-band model, the
integrated inter-band interaction is approximated by,

V µν =

∮
µFS

dk
∮
νFS

dp
φ∗µ(k)V µν(k,p)φν(p)

vµ(k)vν(p)
(∮

µFS
dk
|φµ(k)|2
vµ(k)

) 1
2
(∮

νFS
dp |φν(p)|2

vν(p)

) 1
2

, (8)

where vµ(k) is the µ-band Fermi velocity at Fermi wavevector
k. For the parameters J/U = 0.06, λSOC = 0.1t,56 used in
Scaffidi et al.15 (t is the primary in-plane hoping intergral of
the 1D orbitals), we obtain,

V̂ = V0




0.5206 −1.2181 −0.0635
−1.2181 0.3427 −0.0608
−0.0635 −0.0608 −1.0000


 (9)
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where V0 > 0 sets the overall interaction energy scale in the
pairing channel under consideration. Most notable features
of this matrix include: a rather strong interaction between
the two quasi-1D bands, considerably weaker inter-band in-
teractions between the quasi 1D and 2D bands, and compa-
rable intra-band couplings on the two quasi-1D bands, all of
which are roughly consistent with the qualitative observation
in the previous section. We verify that these main features
are generic for a broad range of interaction parameters (also
see (12) in Sec IV), and for spin-orbit coupling smaller than
0.1t. Note that in this calculation, λSOC = 0.1t already rep-
resents a rather strong spin-orbit coupling56 suggested by re-
cent measurements.6–8 The relative inter-band interactions be-
tween γ and the other two bands depends on λSOC and are
weaker for smaller spin-orbit coupling.

Following Appendix A, solving the compact gap equation
(A4) which is related to (9), we obtain two attractive solutions,
with the leading one given by ∆̂ ∼ (0.33, 0.31, 0.89)T ,57 i.e.
comparable gap amplitudes on the three bands similar to what
was originally obtained in Ref. 15. In this regard, the V̂ -
matrix encapsulates crucial information about the multi-band
character of the superconducting state in the pairing chan-
nel under consideration. The noticeable attractive interac-
tion on the γ-band can be attributed to the proximity to the
van Hove singularity on that band. Interestingly, the quasi-
1D bands experience repulsive intra-band interactions which
disfavor Cooper pairing. This is however compensated by a
strong interaction induced by the pronounced incommensu-
rate spin fluctuations between the two bands, which is even
stronger than the intra-band interaction on γ, to make the pair-
ing strengths on the two sets of bands comparable. In fact,
over a wide parameter range (0 < J/U < 0.3) one finds com-
parable gap magnitudes on all bands.15

As an important remark, while the one-loop weak coupling
calculations likely have captured reasonably well the struc-
ture of the interactions and hence the symmetry and structure
of the gaps, they could potentially predict inaccurate relative
gap amplitudes on the bands. For example, at finite inter-
action scale, due to the quasi-nesting, the inter-band interac-
tions between the 1D bands can in principle be enhanced once
higher order scattering processes, such as at the level of ran-
dom phase approximation, are included. This would accord-
ingly enhance the pairing on these two bands with respect to
that on γ. Of course, higher order contributions could also
enhance the effect of the van Hove singularity, which would
have the opposite effect, but this may be mitigated somewhat
by the fact that the odd-parity gap function must vanish at the
van Hove point.

In addition, in contrast to the results found here and orig-
inally in Scaffidi et al.15, two recent numerical functional
renormalization group approaches22,24 have reported domi-
nant triplet superconductivity on one of the two sets of bands.
However, the two predictions differ in an important manner.
Wang et al.22 argued that the small wavevector spin fluctua-
tions associated with the γ-band van-Hove singularity domi-
nates the superconducting correlation (see also alternative ar-
gument by Huo et al.23), while in Tsuchiizu et al.24 supercon-
ductivity is driven primarily by the large wavevector spin fluc-

tuations associated with the quasi-1D bands. The latter study
also found noticeable proximity induced superconductivity on
the γ-band once spin-orbit coupling is included. While we
cannot resolve the on-going debate with our calculations, it
may not be ruled out that both the small and large wavevector
spin fluctuations enter at low energies with similar strength,
promoting comparable pairings on all bands, as is found in
this work.

III. LEGGETT MODES AND THEIR DETECTION IN
RAMAN SPECTROSCOPY

To analyze the collective phase modes, we turn to the
Josephson coupling matrix V̂ = −V̂ −1 using (9),

V̂ =
1

V0




0.2653 0.9302 −0.0734
0.9302 0.4019 −0.0835
−0.0734 −0.0835 1.0000


 . (10)

The qualitative features of the inter-band couplings we dis-
cussed below (4) are reproduced. The excitation gap of the
soft Leggett mode may now be obtained following Appendix
B,

wL '
√

0.08

N0V0
∆0 , (11)

where we have used the relation 2.8∆0α ' 2.8∆0β ' ∆0γ =
∆0 obtained above. One may use a rough weak-coupling es-
timate N0V0 ' 0.2. Thus the energy required to excite this
mode (∼ 0.64∆0) is lower than the 2∆0 needed to break a
Cooper pair in a fully gapped isotropic superconductor. Nev-
ertheless, due to the strong anisotropy of the superconducting
gap structure, low-lying quasi-particles should also exist well
below 2∆0. Furthermore, with weaker spin-orbit coupling, η1

and η2 decrease, thus the Leggett mode becomes softer ac-
cordingly. Finally, at constant ∆0γ , wL increases (decreases)
with increasing (decreasing) ∆0α,β .

We now discuss the experimental consequences for the
Leggett modes. These collective phase modes couple indi-
rectly to external electromagnetic fields and hence can be ex-
cited by photons in optical probes, such as electronic Raman
spectroscopy. The Raman response can be derived via stan-
dard linear response theory, and we refer to Refs 49,58–60
for details. Essentially, when the frequency difference be-
tween the appropriate incident and scattered photons matches
the excitation gap of a collective mode, the Raman spectrum
exhibits a sharp resonance, as has been observed in the multi-
band MgB2 superconductor61. Moreover, since the Leggett
modes correspond only to the relative phase fluctuations be-
tween the bands and do not perturb the symmetry of the
Cooper pair wavefunction within the individual bands, they
couple only to the A1g channel. Thus the Raman spectrum
in the A1g channel is a direct measurement of the properties
of these phase modes. In realistic situations, the sharp reso-
nances are broadened due to damping effects introduced by
impurities and low energy quasi-particles in anisotropic su-
perconductors62.
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FIG. 2: Typical low-frequency electronic Raman response in
Sr2RuO4 in the A1g channel in the cases of two different gap ra-
tios between the 1D and 2D bands: (a) |∆0γ | ' 2.8|∆0α,β |, (b)
|∆0γ | ' |∆0α,β |. The continuum contribution (black dashed), ex-
hibiting nonvanishing intensity below ω = 2∆0, is evaluated using
an anisotropic three-band chiral p-wave model. The gap anisotropy
resembles the one obtained in Ref. 15. A small imaginary part
τ = 0.004∆0 is used in the analytic continuation of the Raman
susceptibility for regularization. The Leggett mode contribution is
shown in red (solid). Here we have simplified the calculation by us-
ing a broadening of τL = 0.5∆0 to model the damping due to the
coupling with the low-lying quasi-particle states. This does not alter
the Leggett mode peak position62.

In addition to the Leggett modes, there exists another
form of collective phase fluctuations in chiral superconduc-
tors – the so-called clapping modes25. These modes origi-
nate from relative phase oscillations between the two com-
ponents of the chiral order parameter (thus belonging to an-
gular momentum 2~ fluctuations) and are characterized by
an excitation gap

√
2∆0 for a two dimensional isotropic chi-

ral p-wave superconductor.63–66 The excitation energy may
become smaller for anisotropic superconductors.66,67 Note
that by symmetry orthogonal order parameter components
from different bands do not couple, so that one can treat
the Leggett and clapping modes separately. In principle,
the clapping modes also manifest as resonances in optical
spectroscopies.62,63,65,66 However, they do not couple to the
Raman A1g channel,65 thus distinguishing them from the
Leggett modes.

Following the derivations in Ref. 49, we plot in Fig 2 typi-
calA1g Raman response for a three-band chiral p-wave model
of Sr2RuO4 using (10). We have considered two different sce-
narios, one with smaller gap amplitude on the α and β-bands,
another with approximately equal gaps on all bands. In both
cases, the Leggett mode manifests as a peak in the spectra. In
the cases of sufficiently distinct gaps on the two sets of bands,
however, the Leggett mode peak can in principle overlap (as
in Fig.2 a), or even switch position with the continuum peak
associated with the smaller gap(s), thus potentially complicat-
ing the identification of the soft mode.

In summary, the existence of a low-frequency peak in the
A1g channel of the Raman spectrum should be a character-
istic feature of the relatively soft Leggett mode in the multi-
band Sr2RuO4. However, some technical difficulties in Ra-
man spectroscopy, such as laser heating, must be overcome
in order to perform measurement at sub-Kelvin temperatures.
Furthermore, since the Leggett mode resides at sub-meV fre-
quency range, it may be obscured by the wings of the elastic

peak in the Raman spectrum.

IV. NEAR DEGENERATE ORDER PARAMETERS AND
TRSB

Here we examine the possibility of TRSB multi-band pair-
ing. This has been predicted for some multi-band (three or
more bands) systems when there are two degenerate or near
degenerate order parameters, as can occur when the inter-band
interactions are frustrated.46–50,52 In that case, the system may
pick a complex linear combination of the two near-degenerate
order parameters and, consequently, break time-reversal sym-
metry. Typically for there to be only a single transition with
the TRSB phase condensing at Tc, it requires fine tuning and
degenerate order parameters. But this phase may exist over
a range of parameters (for example as doping is varied), con-
densing at a second transition below Tc.

For the chiral channel of Sr2RuO4, the inter-band interac-
tions in (9) are unfrustrated, as they are all attractive, i.e. the
three band gaps can choose to have the same sign to simulta-
neously minimize the inter-band interactions. However, due
to the relatively weak interactions between γ and the other
two bands, the system might still permit two near degenerate
solutions, with ∆0γ taking opposite signs with respect to the
other bands.

If two solutions are sufficiently close to degeneracy,
whether the two solutions would form a TRSB complex order
parameter can then be analyzed using an effective Ginzburg-
Landau theory (see Appendix C). Taking order parameter
fields ∆1 and ∆2 to denote the respective amplitudes of the
leading and subleading solutions, we find that the relative
phase between the two is determined by three quartic terms in
the free energy: β′|∆1|2(∆∗1∆2 + ∆1∆∗2), β′′|∆2|2(∆∗1∆2 +
∆1∆∗2), and β(∆∗1∆2 + ∆1∆∗2)2 (β > 0), the first two of
which favor a non-TRSB real superposition of the two fields,
while the last term promotes complex superposition. Since
∆1 dominates below Tc, the β′ term is most significant. We
thus conclude that this type of complex multi-band order pa-
rameter is unlikely to develop in our system.

Another interesting possibility is a TRSB helical state.
However, we verify through our microscopic calculations that
the inter-band interactions in the helical channel are qualita-
tively similar to those of the chiral channel (thus our previ-
ous discussions of a relatively soft Leggett mode equally ap-
plies to the helical channel). For example, using J/U = 0.08,
λSOC = 0.1t, as in Ref. 15, we obtain for the helical channel,
similar to (9),

V̂ = V0




0.6185 −1.6331 −0.0635
−1.6331 0.5193 −0.0677
−0.0635 −0.0677 −1.0000


 . (12)

Thus the inter-band interactions are also unfrustrated. The
leading attractive order parameter has ∆̂ ∼ (0.50, 0.65, 0.57),
i.e. comparable gap amplitudes on the thee bands as in the
chiral channel. Combined with the Ginzburg-Landau analysis,
we see that the TRSB multi-band pairing is equally unlikely
in this channel.
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V. CONCLUSIONS

In this work we have focused on some novel aspects of
Sr2RuO4 associated with the multi-band nature of the super-
conductivity in this material. Our qualitative and quantitative
analyses yield a consistent description of the multi-band in-
teractions and couplings between the three bands. In particu-
lar, in line with an earlier argument,12 the distinct dimensional
characters of the quasi-2D γ-band and the quasi-1D α/β-
bands in general results in a rather weak coupling between
the two sets of bands. Such a peculiar coupling scheme per-
mits a relatively soft Leggett mode, which may be detected in
optical probes such as Raman scattering, thereby providing a
testing ground for understanding the nature of the multi-band
unconventional superconductivity in Sr2RuO4.

In addition, our microscopically evaluated band interac-
tions indicate comparable pairing interactions on the quasi-
1D and 2D bands, although from quite different origins, thus
clarifying the origin for Sr2RuO4 to exhibit comparable gaps
on the three bands. We note this is compatible with spe-
cific heat measurements13 and recent tunneling spectroscopy
measurements.14

We also discussed the possibility of novel TRSB multi-band
superconductivity, in both chiral and helical channels. How-
ever, Sr2RuO4 lacks the frustrated inter-band interactions fa-
vorable for the formation of the complex multi-band order
parameter. Nevertheless, given the difficulties in reconciling
chiral p-wave pairing9–11,31 and the strict experimental upper
bounds placed on the edge current,32–35 as well as the indica-
tions of Pauli limiting effect in this material,43,44 it might be
instructive to investigate the possibility of alternative TRSB
superconductivity which does not necessarily involve chiral
p-wave pairing.

Finally, although our discussions are focused on Sr2RuO4,
the analyses are suitable for studying the nature of multi-band
superconductivity in other systems.
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Appendix A: Gap equation and inter-band Josephson coupling

In the weak coupling renormalization group calcula-
tion presented in Scaffidi et al.,15 the effective interaction
V µν(k,p) that scatters Cooper pairs is obtained by including
all of the contributing diagrams up to the one-loop level. Here
the wavevectors k and p are Fermi wavevector on band µ and
ν, respectively. As will be further elaborated below, the “av-
erage” inter-band interaction in a particular pairing channel
is a good measure of the strength of the inter-band Josephson
coupling pertaining to that channel.

One can solve the linearized gap equation to obtain solu-
tions belonging to different pairing channels,

φµ(k)∆0µ = −C
∑

ν=α,β,γ

∮

νFS

dp

vν(p)
V µν(k,p)φν(p)∆0ν .

(A1)
Here C = ln 1.13WD

Tc
, ∆0µ is the amplitude of the supercon-

ducting gap on band-µ, φµ(k) is the normalized form factor
characteristic of the symmetry and structure of the gap, and
vν(p) is the Fermi velocity of band-ν. The most attractive
eigen solution of (A1) corresponds to the leading supercon-
ducting instability with largest Tc.

The Josephson coupling between the bands in any partic-
ular pairing channel may be extracted through the following
procedure. First multiply both sides of (A1) by 1

vµ(k) , perform
an integration over k, and define the following quantities,

Aµ =

∮

µFS

dk
φ∗µ(k)φµ(k)

vµ(k)
(A2)

V µν0 =

∮

µFS

dk

∮

νFS

dp
φ∗µ(k)V µν(k,p)φν(p)

vµ(k)vν(p)
(A3)

It is easy to show that V µν0 = (V νµ0 )∗. The gap equation (A1)
can then be transformed into a simple matrix form,



Aα∆0α

Aβ∆0β

Aγ∆0γ


 = −C · V̂0




∆0α

∆0β

∆0γ


 , (A4)

where,

V̂0 =



V αα0 V αβ0 V αγ0

V βα0 V ββ0 V βγ0

V γα0 V γβ0 V γγ0


 . (A5)

Eq (A4) thus constitutes a set of compact gap equations where
the form factors of the gap functions are integrated out. Note
that all of the eigen solutions of this gap equation belong with
the same underlying pairing channel specified by those form
factors. In other words, the eigen solutions of (A4) only give
the order parameter configurations (relative amplitudes and
signs of the gaps) on the three bands, and the actual gap func-
tions must necessarily contain the characteristic form factors.
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We define the effective interactions between the bands as,

V µν =
V µν0√
AµAν

. (A6)

For a one-band system, this returns the effective interaction
originally formulated in Ref. 55. Note that if we take a loose
approximation Aα ' Aβ ' Aγ = A0 (which is roughly cor-
rect for most of our numerical calculations), the eigen vectors
of V̂0 (or V̂ ) constitute the solutions to the gap equation.

In conjunction with the discussions below (2) in the main
text, we obtain for the inter-band Josephson coupling, up to
an overall constant of the order of the density of states,

V̂ = −V̂ −1
0 . (A7)

As a side remark, the relative signs of the ∆0µ’s depend
on the choice of gauge but the physics remains the same. For
example, one can assign an arbitrary sign to the form factor
of, say band-i, which according to (A3) results in a change
in the signs of both V ij0 and V ik0 for i 6= j and i 6= k. This
yields sign changes in the corresponding Josephson couplings
Vij and Vik. However, neither the eigenvalues of (A4) nor the
masses of the collective phase excitations are altered because
of the sign change.

A gauge transformation cannot change the sign of only
one of the three inter-band couplings. Thus one can clas-
sify the multi-band superconductivity based on the configu-
ration of the signs of the inter-band Josephson couplings –
a classification beyond the lattice point group symmetries.54

For example, sgn[Vαβ ,Vαγ ,Vβγ ] = [+ +−] is equivalent to
sgn[Vαβ ,Vαγ ,Vβγ ] = [+−+], as the two can be transformed
into one another by changing the sign of the form factor of the
γ-band.

Appendix B: Leggett modes

Here, we analyze the effective model introduced in Sec I
in detail and highlight the important features of the collective

excitations associated with the relative phase fluctuations be-
tween the bands.

We ignore the generically massive order parameter ampli-
tude modes. Making explicit the complex phases of the three
gaps, ∆le

iθl with ∆l ≡ ∆0l positive real, we can then proceed
to derive the dispersion relations for the phase modes, follow-
ing the standard procedure68. After a gauge transformation,
(ψlσ, ψ

†
lσ̄)T → (eiθl/2ψlσ, e

−iθl/2ψ†lσ̄)T , the effective action
in Eq. (2) becomes,

S =

∫
dτd3r


∑

l,j

∆lV̂lj∆je
i(θl−θj) −

∑

l

Tr ln(1 + Ĝ0lΣl)




(B1)
where the Green’s function satisfies,

Ĝ−1
0l = −σ0∂τ + ∆lσ1 − σ3(− ∇

2

2ml
− µl) (B2)

and the self-energy follows as,

Σl = −
(
i∇θl · ∇

2ml

)
σ0 +

[
−i∂τθl

2
− 1

2ml

(∇θl
2

)2
]
σ3

(B3)
where σµ’s are the usual Pauli matrices.

Consider small amplitude deviations of the phases from the
stable state θl = θ0l + φl , the action in Eq. (B1) can be
expanded with respect to the φl’s as49,54

S[φ] =
∑

n

∫
d3qφ̂(−wn,−q)TMφ̂(wn, q) (B4)

where φ̂(wn, q) = (φα, φβ , φγ)T (wn, q) with wn = 2nπ/T ,
and the matrix,

M =
1

V0



Kα − λεαβ − ηεαγ λεαβ ηεαγ

λεαβ Kβ − λεαβ − ηεβγ ηεβγ
ηεαγ ηεβγ Kγ − η(εαγ + εβγ)


 (B5)

with Kl = Nl(w
2
n + v̄2

Flq
2/2), εlj = cos(θ0l − θ0j)∆0l∆0j ,

where Nl and v̄Fl are respectively the density of states and
average Fermi velocity of the l-band.

It is worth noting that the relative phase θ0l−θ0j , and hence
the most stable order parameter configuration, depends on the
relative magnitude and signs of the original inter-band interac-
tions. For example, if all inter-band interactions are attractive
as in our (9) and (12), the obvious most favorable state has all

three order parameters in phase, i.e. εlj = 1. In this case, now
consider a rough approximation, Nα = Nβ = Nγ = N0 and
v̄Fα = v̄Fβ = v̄Fγ = v̄F0, and take the amplitude of the gaps
to be the same on all bands. After an analytic continuation,
the dispersion relations for the phase modes may be obtained
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by diagonalizing (B5),

w2
G =

1

2
v̄2
Flq

2 (B6)

w2
L1 = −3

∆2
0

N0V0
η +

1

2
v̄2
Flq

2 (B7)

w2
L2 = − ∆2

0

N0V0
(η + 2λ) +

1

2
v̄2
Flq

2 (B8)

Here wG denotes the usual U(1) Goldstone mode, which
would be massive had we properly included the vector po-
tential in our formalism; wL1 and wL2 are the relative phase
Leggett modes. Crucially, the excitation gap of the L1 mode,
as determined by the γ-α/β inter-band Josephson coupling,
may be considerably smaller than the superconducting gap.
This is the soft Leggett mode we anticipated. Interestingly, in
our case described by, e.g. (9) and (10), the L2 mode is over-
damped. This mode is related primarily to a relative phase
oscillation between the two 1D bands dominated by an inter-
band interaction. The readers are referred to Marciani et al.51

for a more extensive discussion of the models containing dom-
inant inter-band interactions.

Similar analyses carry through when the Josephson cou-
plings take different signs. An interesting scenario arises
when the inter-band interactions are frustrated (Sec IV), where
a much softer Leggett mode is shown to be present49,54. From
our calculations, this mode is given by w2

L1
=

3∆2
0

2N0V0

|η|
|λ| |η|.

To summarize, a relatively soft Leggett mode exists in all sce-
narios, provided the ground state features comparable pairing
gaps on the three bands.

Appendix C: Two near-degenerate solutions

Here we discuss the scenario where two nearly degenerate
attractive order parameter configurations emerge,

∆̂1k = ∆1



η1αφα(k)
η1βφβ(k)
η1γφγ(k)


 , ∆̂2k = ∆2



η2αφα(k)
η2βφβ(k)
η2γφγ(k)


 ,

(C1)
where η̂i = (ηiα, ηiβ , ηiγ)T (i = 1, 2) are eigen vectors
to (A4) with eigenvalues λ1 and λ2 ( assume |λ1| & |λ2|,
Tc1 & Tc2), and the two fields ∆1 and ∆2 describe the am-
plitude of the superconducting order parameter in the cor-
responding solutions. In correspondence with the interac-
tions given in (9), for example, η̂1 = (0.33, 0.31, 0.89)T and
η̂2 = (0.70, 0.67,−0.25)T . Note we have included in (C1)
the form factors of the gaps on the respective bands for clar-
ity. We are interested in the possibility of TRSB in connection

with a complex superposition of the two configurations. This
may be best examined within an effective Ginzburg-Landau
theory.

We wish to see if it is favorable for ∆2 to coexist with the
primary ∆1 below the superconducting transition and form a
complex order parameter. The free energy density reads,

f =
α1

2
|∆1|2 +

α2

2
|∆2|2

+
β1

4
|∆1|4 +

β2

4
|∆2|4 +

β12

4
|∆1|2|∆2|2

+
β′

4
|∆1|2(∆∗1∆2 + ∆1∆∗2) +

β′′

4
|∆2|2(∆∗1∆2 + ∆1∆∗2)

+
β

4
(∆∗1∆2 + ∆1∆∗2)2 + ... , (C2)

where “...” stands for higher order terms, αi ∼ (T−Tc,i)/Tc,i,
and all of the β-coefficients can be derived from the micro-
scopic band structure and (C1). Here ∆1 and ∆2 share the
same point group symmetry and U(1) symmetry (instead of
separate U(1)), thus the terms with β′ and β′′ are allowed.

It can be shown that β1,2, β12, β > 0, while β′ and β′′

can take both signs and are in general non-vanishing. Note
in Maiti and Chubukov50, β′ = β′′ = 0 due to the particular
structure of the eigenbasis resulting from the effective multi-
band interactions of their model. In our case for the type of
interactions similar to (9) and (12), β′, β′′ 6= 0 and their mag-
nitudes are of the same order as β.

Although ∆2 is not expected to condense right below Tc1,
the coupling between ∆1 and ∆2 associated with the β′ term
immediately induces a non-vanishing ∆2 growing with ∆1 as
|∆2| ∝ |∆1|3 ∝ [(Tc − T )/Tc]

3
2 . Similarly the third possi-

ble order parameter (which is not near-degenerate and not ex-
plicitedly written down in (C1)) will mix in below Tc1, but, in
general, with a smaller amplitude. These sub-dominant com-
ponents grow slower than ∆1, but this nevertheless suggests
that determining the low temperature multi-band gap ampli-
tudes requires going beyond the weak-coupling approxima-
tions we used.

Irrespective of how a non-vanishing ∆2 may arise below
Tc1, when the two fields coexist, their relative phase is de-
termined by the last three quartic terms in the free energy,
of which the β-term favors a TRSB complex superposition,
while the β′- and β′′-terms favor non-TRSB order parame-
ters. Since |∆1| � |∆2|, the β′ term dominates. Thus we
conclude that our system is unlikely to sustain a TRSB com-
plex multi-band order parameter.
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Chapter 7

Conclusions

Despite more than twenty years of study, the unconventional superconductivity in Sr2RuO4

continues to attract considerable interest. This material exhibits highly two-dimensional elec-

tronic structure with simple Fermi surface geometry, and is an ideal Fermi liquid free of any

other competing orders at the temperatures immediately above the superconducting transition.

Moreover, superconductivity occurs without the need of doping. These salient features are not

available in many other unconventional superconductors, such as the cuprates and iron-based

superconductors.

A wide range of measurements have given strong support for spin-triplet odd-parity time-

reversal symmetry breaking superconductivity in this material, making chiral p-wave order

the most probable candidate ground state. However, such an order cannot be straightfor-

wardly reconciled with several key experiments, the most notable of which is the absence of

spontaneous surface currents.

In this thesis and in the associated publications, we have presented a general theory of the

edge currents in chiral superconductors. We showed that edge current is not protected by the

topology of the chiral ground state, and that it is sensitive to microscopic details such as band

and gap structures. In particular, in the presence of a highly anisotropic superconducting gap
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potentially relevant to Sr2RuO4, the edge current may be significantly reduced compared with

the prediction based on a simple isotropic chiral p-wave model. When combined with surface

disorder, this would lead to substantial further suppression of the edge current, which may

be compatible with the stringent experimental upper bounds placed on the size of the surface

current in this compound.

As a side product of our studies on Sr2RuO4, we found that, rather surprisingly, the in-

tegrated edge current (and hence the total orbital angular momentum in the case of a finite

system) at a sharp confining edge vanishes identically for any continuum chiral superconduc-

tors with higher angular momentum Cooper pairing. In this regard, chiral p-wave is special!

In lattice models, the net edge current for non-p-wave superconductors may not vanish but

is significantly smaller than that of a simple isotropic chiral p-wave superconductor. In the

limit of a soft confining edge, the orbital angular momentum and the corresponding total in-

tegrated edge current is recovered. These results hold important meaningful implications for

the “angular momentum paradox” in 3He A-phase which has been scrutinized for decades. In

particular, we show that the total orbital angular momentum of a finite size chiral superfluid in

rigid confinement is not straightforwardly related to the Cooper pair angular momentum.

Finally, we also delved into the superconducting mechanism of Sr2RuO4 and studied a

few novel aspects of the multi-band nature of the superconductivity in this material. Our

calculations elucidated the possible origin for the multiple bands to superconduct with com-

parable gap amplitudes, and pointed out the existence of a soft Leggett mode as a test of this

conclusion. On account of the edge current problem and a few other measurements that are in-

consistent with chiral p-wave pairing, we also examined the possibility of a novel multi-band

TRSB superconductivity which does not require chiral pairing. However, within our model,

Sr2RuO4 lacks the frustrated inter-band interactions required for the formation of such order.
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In this thesis, we primarily focussed on issues related to the absence of observable edge

currents and did not cover the other outstanding issues regarding the putative chiral p-wave

order in Sr2RuO4. One example concerns the size of the chiral domains. The µSR [29] and

Josephson interferometry [31] measurements are consistent with domains of the order of one

µm, while the interpretations of the SQUID tunneling [21] and the Kerr effect [30] measure-

ments require much larger domains. Another example is the absence of split superconduct-

ing transitions in the presence of an in-plane magnetic field. For an in-plane field oriented

along the crystalline a-axis, the proposed two-component chiral order is expected to lead to

two successive transitions corresponding respectively to the onset of the two components.[42]

An early specific heat measurement showed indication of multiple transitions [108], which

is however not observed in more recent measurements on much smaller single crystalline

samples.[109] Thus more thorough theoretical investigations are needed in order to fully un-

derstand the nature of the unconventional superconductivity in Sr2RuO4.
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Appendix A

Derivation of Ginzburg-Landau free energy

Here we outline the derivation of the Ginzburg-Landau free energy of multi-component

superconductors with arbitrary pairing symmetries, up to the quartic order in the order param-

eter amplitudes. The theory is expected to provide excellent phenomenological descriptions

near Tc [42]. The original microscopic derivation of Ginzburg-Landau theory for an s-wave su-

perconductor was due to Gor’kov[110]. Here we adopt a functional integral approach[83, 84]

and restrict the discussions to a one-band model. Generalizations to multi-band models are

straightforward.

For a general two-component superconductor, we write the position-dependent order pa-

rameter as ∆(r,r′) = ∆1(r,r′) + ∆2(r,r′), where r&r′ are the coordinates of the electrons

constituting the Cooper pairs. In a uniform system, this order parameter may be Fourier trans-

formed to obtain the gap function ∆0k = ∆10 f1k +∆20 f2k , where k is the relative momentum

of the two electrons, and f1k and f2k are real form factors characteristic of the symmetry of

the Cooper pair wavefunctions. We start from the functional of the form of (2.1) in which the

electrons are already integrated out,

S[∆∗,∆] =
∫

β

0
dτ

∫
dr

∫
dr′
( |∆1(r,r′)|2

V1(r,r′)
+
|∆2(r,r′)|2
V2(r,r′)

−Tr lnĜ−1(τ,r,r′)
)
, (7.1)
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where the Gor’kov Greens function is given by,

Ĝ−1(τ,r,r′) =


 −∂τ− Ĥ0(r,r′) ∆1(r,r′)+∆2(r,r′)

∆∗1(r,r
′)+∆∗2(r,r

′) −∂τ + Ĥ∗0 (r,r
′)


 , (7.2)

Assume translational invariant effective interactions Vi(r,r′) which depend only on the center-

of-mass (COM) coordinate of the Cooper pairs, (r+r′)/2, the first two terms in the integrand

of (7.1) reduces to |∆i((r+ r′)/2)|2/Vi, i.e. without explicit dependence on the relative co-

ordinate. The last part in (7.1) may be expanded perturbatively in powers of ∆i. Using the

relation,

Tr lnĜ−1 = Tr ln(Ĝ−1
0 + ∆̂) = Tr lnĜ−1

0 (1+ Ĝ0∆̂)

= const.+Tr ln(1+ Ĝ0∆̂)

= const.− 1
2n

∞

∑
n=0

Tr[Ĝ0∆̂]2n , (7.3)

after a Fourier transformation to momentum space using the COM and relative momenta q and

k, and to Matsubara frequency space with no external frequency (not considering dynamics),

the expansion returns the following second and fourth order terms,

S2 = ∑
q

{
|∆1q|2

V1
+
|∆2q|2

V2
+

T
2Ld ∑

w,k
Tr
[
Ĝ0(w,k+

q
2
)∆̂∗k,qĜ0(w,k−

q
2
)∆̂k,−q

]}
, (7.4)

and

S4 = ∑
q,q1,q2

T
4Ld ∑

w,k
Tr[Ĝ0(w,k+

q
2
)∆̂∗k,qĜ0(w,k−

q1
2
)∆̂k,−q1Ĝ0(w,k+

q2
2
)∆̂∗k,q2

·Ĝ0(w,k−
q−q1 +q2

2
)∆̂k,−(q−q1+q2)] , (7.5)
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where

Ĝ0(w,k) =




1
iw−ξk

0

0 1
iw+ξ−k


=


g(w,k) 0

0 ḡ(w,k)


 , (7.6)

and,

∆̂k,q =


 0 ∆1q f1k +∆2q f2k

∆∗1q f1k +∆∗2q f2k 0


 . (7.7)

The gradient-free terms in the free energy are associated with an expansion with vanishing

COM momentum, q = 0. Employing this condition to both (7.4) and (7.5) and explicitly

evaluating the traces, we obtain,

S20 =

[
1

V1
+

T
Ld ∑

w,k
g(w,k)ḡ(w,k) f 2

1k

]
|∆1|2 +

[
1

V2
+

T
Ld ∑

w,k
g(w,k)ḡ(w,k) f 2

2k

]
|∆2|2

=
α1(T )

2
|∆1|2 +

α2(T )
2
|∆2|2 , (7.8)

where αi(T )
2 = 1

Vi
+ T

Ld ∑w,k g(w,k)ḡ(w,k) f 2
ik ∼ (T −Tc,i)/Tc,i, and

S40 =
T

2Ld ∑
w,k

[g(w,k)ḡ(w,k)]2 [(∆1 f1k +∆2 f2k)(∆
∗
1 f1k +∆

∗
2 f2k)]

2

=
β1

4
|∆1|4 +

β2

4
|∆2|4 +

β12

4
|∆1|2|∆2|2 +

β′

4
(∆∗1∆2 +∆1∆

∗
2)

2

+
β3

4
|∆1|2(∆∗1∆2 +∆1∆

∗
2)+

β4

4
|∆2|2(∆∗1∆2 +∆1∆

∗
2) , (7.9)

with the following relations,

β1 = 2
T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f 4

1k , (7.10)
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β2 = 2
T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f 4

2k , (7.11)

β12 = 4
T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f 2

1k f 2
2k , (7.12)

β
′ = 2

T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f 2

1k f 2
2k =

β12

2
, (7.13)

β3 = 2
T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f 3

1k f2k , (7.14)

β4 = 2
T
Ld ∑

w,k
[g(w,k)ḡ(w,k)]2 f1k f 3

2k . (7.15)

Note that although the first four β-coefficients do not vanishing, the last two may by symmetry,

such as for a p-wave superconductor with f1k ∼ kx and f2k ∼ ky.

The lowest order gradient terms in the free energy are obtained from a small-q expansion

of the second term in (7.4). Keeping the expansion up to the quadratic order of q (terms

associated with linear order of q vanish),

S2∂ = ∑
i, j=1,2

∑
l,m=x,y

{
T
Ld ∑

w,k
fik f jk

∂2

∂ql∂qm

[
g(w,k+

q
2
)ḡ(w,k− q

2
)
]

q→0

}
·qlqm∆

∗
iq∆ jq

= ∑
i, j=1,2

∑
l,m=x,y

ki j
lmqlqm∆

∗
iq∆ jq (7.16)

→ ∑
i, j=1,2

∑
l,m=x,y

ki j
lm∂l∆

∗
i ∂m∆ j , (7.17)

where ql is the l-th component of q, and in the final step we have performed a Fourier trans-

formation back to real space. Finally, the k-coefficients are given by,
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ki j
lm =

T
Ld ∑

w,k
fik f jk

∂2

∂ql∂qm

[
g(w,k+

q
2
)ḡ(w,k− q

2
)
]

q→0

∝

∮
FS

dk√
v2

k,l + v2
k,m

vk,lvk,m fik f jk

≡ 〈vk,lvk,m fik f jk〉FS , (7.18)

where the final expression is a Fermi surface integral, with vk,l the l-th component of the Fermi

velocity. This can be directly used to obtain, e.g. the k3-coefficient in (2.6).
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Appendix B

Semiclassical derivation of integrated edge current

in chiral superconductors

Here we derive the integrated edge current of chiral superconductors with arbitrary Cooper

pair angular momentum Lz = mh̄. Our analysis is based on the semiclassical approach devel-

oped by Stone and Roy[48] for chiral p-wave superfluids. They mapped the specular and

Andreev reflection of an incident quasi-particle wave at the edge (Fig.7.1) to the reflection

and transmission of Dirac waves at the domain wall of a one-dimensional twisted mass Dirac

Hamiltonian, i.e. a Dirac Hamiltonian with opposite masses on the two sides of the normal

(“domain wall”).[111, 112] For such a 1D Dirac problem, excess charge Q accumulates at the

domain wall, due to the formation of edge states as well as the phase shift of the extended con-

tinuum states. The spontaneous current arising from the occupied quasi-particle states with

momenta parallel to an incident trajectory is given by QvFy , i.e. a product of the component of

Fermi velocity parallel to the edge and the amount of accumulated charge of the corresponding

1D twisted-mass Dirac Hamiltonian.
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Figure 7.1: Specular and Andreev reflection of a quasiparticle wave at an ideal boundary.
The angle θ is measured with respect to the positive y-direction parallel to the edge and in-
creases in clockwise sense. The chirality imposes a diretional-dependent phase to each prop-
agating wave, i.e. for the incident wave, φin = m(π/2−θ), while for the specularly-reflected
wave φout = m(π/2+θ), both originating from the superconducting gap function ∆k = ∆0eimθk

where θk denote the direction of the wavevector with respect to the x-direction. Translating
to the effective 1D Dirac Hamiltonian, the specular and Andreev reflections correspond re-
spectively to transmission and reflection of an incident Dirac wave. The arrow in on circle
indicates the chirality of the Cooper pairing.

Generalizing the derivation in Stone and Roy[48] to arbitrary m, one can show that the

total amount of accumulated charge arising from the extended continuum states with incident

trajectory shown in Fig.7.1 is,

Qcon(θ) = Const.−∆sin(mθ)e−2∆|sin(mθ)||x|+
∫

∞

∆

dk
2π

∆sin(2mθ)

k2−∆2 sin2(mθ)

k√
k2−∆2

e−2k|x| ,

(7.19)

where the constant is θ-independent and will be dropped in the following discussions, while

the second term is a pole contribution that is present only if 2iπ < 2mθ < (2i+1)π (negative

energy edge modes exist for these incident angles), with i being an integer. Integrating over
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x from −∞ to ∞, this second term gives total charge -1. After the same x-integration, and

rescaling the variable by taking x = k/∆, the last term becomes,

∫
∞

1

dx
2π

sin(2mθ)

x2− sin2(mθ)

1√
x2−1

=
2mθ

2π
, −π< 2mθ< π (7.20)

This expression is a 2π periodic function of 2mθ. Notice that in Fig.7.1, θ runs from 0 to

π. For 2mθ not in the range (−π,π), it is given by mod(2mθ+π,2π)−π, except when 2mθ

is odd multiples of π where there exists a discontinuity due to the loss of edge modes to

the upper continuum. Note also that this would lead to vanishing accumulated charges for

incident angles corresponding to the upper ends of the chiral edge branches. Physically this

is because for these angles the phases of the incident wave and the specularly-reflected wave

(or the transmitted wave in the mapping to the 1D problem in Fig.7.1), are equivalent, i.e.

φout− φin = mod 2π in Fig.7.1. To be more concrete, we consider in the following the first

three representative cases with m = 1,2,3, i.e. chiral p-, d-, f -wave superfluids.

7.0.1 Chiral p-wave For chiral p-wave, n = 1. For the geometry shown in Fig.7.1, a chiral

edge dispersion peels off the lower continuum at an incident angle θ = 0 and makes it way to

the upper continuum as θ increases from 0 to π (Fig.2.3). The dispersion is expressed as,

Eky =−∆cosθ =−∆ky/kF . (7.21)

Notice the group velocity of the edge dispersion is in opposite sense to the actual flow of the

current. Due to charge-neutrality, the current carried by each of the individual edge mode is

independent of their group velocity and is simply proportional to its wavevector parallel to the

edge, ky/m∗. The expression in Eq.7.20 now simplifies to,
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



θ

π
0< θ< π

2

θ

π
−1 π

2 < θ< π

(7.22)

Taking into account the pole contribution, Eq.7.19 follows as,

Qcon(θ) =
θ

π
−1. 0< θ< π (7.23)

This is the charge drawn to the “domain wall” of the 1D twisted-mass Dirac problem as in-

duced by the reflection of the continuum states. Note that as explained before, the accumulated

charge is zero for θ = π.

Translating back to our 2D problem, (7.23) corresponds to a total amount of current

jcon(θ) = Qcon(θ)kF cosθ/m∗ resulting from all of the phase-shifted occupied continuum

states with incident trajectory angle θ. In the ground state, the occupied bound states cor-

respond to incident angles θ ∈ (0,π/2), and each carries one unit charge, Qedge = 1. Taken

together, the total accumulated charge at θ= π is zero, a manifestation of sudden loss of bound

state at the upper end of the chiral edge dispersion.

One can now compute the spontaneous current for any particular incident angle, where the

continuum contribution is,

Jp
con =

1
2

∫ 0

π

−kF sinθdθ

2π

kF cosθ

m∗

(
θ

π
−1
)
=− k2

F
16πm∗

(7.24)

where the factor 1/2 accounts for double counting[48] in arriving at Eq.(7.19), m∗ is the

effective mass of carrier which is not to be confused with the angular momentum of the Cooper
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pairs. The occupied edge states exist for incident angles θ ∈ (0,π/2). Hence the bound state

contribution follows as,

Jp
edge =

1
2

∫ 0

π/2

−kF sinθdθ

2π

kF cosθ

m∗
=

k2
F

8πm∗
(7.25)

Thus the continuum state contribution is half of the edge state contribution, and in opposite

direction! These results are obtained by both Stone and Roy[48], and Sauls[57]. The total

edge current of a chiral p-wave superfluid is then,

Jp =
k2

F
16πm∗

=
ρ

4m∗
(7.26)

for a spinless model. This current flows in positive y direction, and induces a macroscopic

angular momentum (had the superfluid been confined in a finite disk) coinciding with the sum

of the angular momentum of the Cooper pairs!

7.0.2 Chiral d-wave For chiral d-wave, m = 2. As shown in Fig.2.3, there exists two

branches of topologically protected edge modes with the same chirality. The edge dispersion

is given by

Eky =





−∆cos(2θ) = ∆(k2
F −2k2

y)/k2
F 0≤ θ≤ π

2

∆cos(2θ) =−∆(k2
F −2k2

y)/k2
F

π

2 < θ≤ π

(7.27)

In the following, the bulk of the analysis in the previous section carries through, with the

only complication that one now needs to compute the accumulated charge for θ ∈ (0,π/2)

and θ ∈ (π/2,π) separately. In addition, the occupied edge mode in this case correspond

respectively to incident angles θ ∈ (0,π/4) and θ ∈ (π/2,3π/4) for the two branches of edge
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dispersion. A detailed analysis leads to the following piecewise function for the accumulated

charge from the continuum states,

Qcon(θ) =





2θ

π
−1 0≤ θ≤ π

2

2θ

π
−1−1 π

2 < θ≤ π

(7.28)

which again satisfies the requirement that the accumulated charge be zero for the incident

trajectory associated with the wavevectors at the upper ends of the chiral branches, i.e. for

incident angles θ = π/2 and θ = π. The current arising from the phase-shifted continuum

states then follows as,

Jd
con =

1
2

∫ 0

π/2

−kF sinθdθ

2π

kF cosθ

m∗

(
2θ

π
−1
)
+

1
2

∫
π/2

π

−kF sinθdθ

2π

kF cosθ

m∗

(
2θ

π
−2
)

= 0 (7.29)

Similarly, the edge state contribution reads,

Jd
edge =

1
2

(∫ 0

π/4
+
∫

π/2

3π/4

)−kF sinθdθ

2π

kF cosθ

m∗

= 0 (7.30)

It has been shown before[113, 114] that the edge state contribution should vanish in a chiral

d-wave. Here we have moved one step further by showing that the continuum contribution is

zero as well! Taken together, the total edge current of a chiral d-wave superfluid vanishes,

Jd = 0 (7.31)
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It is also interesting to see from (7.29) and (7.30) that the one-half relation between the contin-

uum and edge state contribution does not hold in chiral d-wave models. In fact, this relation is

a peculiar property of chiral p-wave superfluids, and is absent for all higher angular momen-

tum Cooper pairings, as will be illustrated further in the next section.

7.0.3 Chiral f -wave For chiral f , m = 3. Figure 2.3 shows the three branches of chiral edge

modes of an isotropic chiral f -wave model, where,

Eky =





−∆cos(3θ) = ∆(3k2
Fky−4k3

y)/k3
F 0≤ θ≤ π

3

∆cos(3θ) =−∆(3k2
Fky−4k3

y)/k3
F

π

3 < θ< 2π/3

−∆cos(3θ) = ∆(3k2
Fky−4k3

y)/k3
F

2π

3 < θ≤ π

(7.32)

Notice that in the ground state the occupied edge modes correspond to incident angles θ ∈

(0,π/6),(π/3,π/2) and (2π/3,5π/6). With some analyses analogous to the previous sections,

one can show that the accumulated charge from the continuum is,

Qcon(θ) =





3θ

π
−1 0≤ θ≤ π

3

3θ

π
−2 π

3 < θ≤ 2π/3

3θ

π
−3 2π

3 < θ≤ π

(7.33)
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Evaluating the current explicitly,

J f = J f
edge = J f

con = 0 (7.34)

i.e. the edge current of a chiral f -wave superfluid is also zero! Similar calculations can be

generalized to m> 3, all of which have Jm = Jm
edge = Jm

con = 0.
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Appendix C

Spectral asymmetry and integrated edge currents

In Eq. (17) of the publication in Chapter 4, we expressed the total integrated current of the

ground state of a chiral p-wave superconductor across the two edges of a cylindrical geometry

in terms of the so-called spectral asymmetry of the energy spectrum. Here we give a derivation

of the integrated current, assuming two open boundaries in x-direction and periodic boundary

condition in y.

The translational invariance in y allows one to Fourier transform the Hamiltonian along

that direction. For each wavevector ky, the BdG equation reads,

Ĥky(x)


u j,ky(x)

v j,ky(x)


= E j,ky


u j,ky(x)

v j,ky(x)


 , (7.35)

where E j,ky is the energy of the j-th quasi-particle state, and the wavefunction satisfies the

following normalization relation,

∫
dx
(
|u j,ky(x)|2 + |v j,ky(x)|2

)
= 1 . (7.36)
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The corresponding BdG Hamiltonian may be expressed in terms of the quasi-particle operators

HBdG = ∑ j,ky

(
E j,kyγ

†
j,ky

γ j,ky−E j,ky γ̄ j,−ky γ̄
†
j,−ky

)
. Using these operators, the fermion field can

be decomposed as the following,

ψ(x) = ∑
ky, j

(
u j,ky(x)γ j,ky + v j,ky(x)γ̄

†
j,−ky

)
. (7.37)

Specific to the problem under consideration, the usual particle-hole redundancy of the BdG

Hamiltonian is manifest in the following: for each state (labeled j) with wavevector ky and

wavefunction (u,v)T , there exists another state (labeled j̄) at wavevector −ky with the exact

opposite energy and with a wavefunction (v∗,−u∗)T , i.e.

E j,ky =−E j̄,−ky
. (7.38)

Next, use the current operator Î(x) = ψ†(x)V̂y(x)ψ(x) to evaluate the current density dis-

tribution, where V̂y =−i∂y is the y-component of the velocity operator. The derivation below

is only valid when V̂y is independent of the x-coordinate, thus we drop the the explicit x-

dependence of the operator hereafter. In the ground state, the current density is computed as

the following,

I(x) = 〈Î(x)〉= ∑
ky

∑
E j,ky>0

Vky |v j,ky(x)|2 , (7.39)

where 〈〉 stands for a ground state expectation where the ground state is taken as the vacuum of

positive-energy states, and we made a simplification by using Vky to denote the y-component

velocity operator. Usually, when the normal state single-particle Hamilton in momentum

space is expressed in separable forms of kx and ky, Vky is only explicitly dependent on ky,

such as Vky = ky/m for a continuum model and Vky = t sinky for a tight-binding model on a

square lattice with only nearest neighbor (NN) hoppings. For more general lattice models, Vky
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may also depend on |kx|, e.g. Vky = t ′ coskx sinky for a square lattice with only next nearest

neighbor (NNN) hoppings. In this case, for our derivation to be valid, it is required that |kx| be

a good quantum number, i.e. there should not be external potential variation along x-direction

within the geometry.

Similar to (7.39), the time-reversed current density is given by,

−I(x) = 〈Î(x)∗〉= ∑
ky

∑
E j,ky>0

V−ky|u j,ky(x)|2 =−∑
ky

∑
E j,ky>0

Vky |u j,ky(x)|2 , or,

I(x) = ∑
ky

∑
E j,ky>0

Vky|u j,ky(x)|2 . (7.40)

Consequently, the final expressions on the right-hand-side of (7.39) and (7.40) equal one an-

other,

I(x) = ∑
ky

∑
E j,ky>0

Vky |v j,ky(x)|2 = ∑
ky

∑
E j,ky>0

Vky |u j,ky(x)|2 . (7.41)

Note that in both (7.39) and (7.40), only the positive-energy states are summed over. In

fact, by utilizing the particle-hole redundancy (7.38), the current may also be evaluated using

the negative-energy states. This yields a current opposite to (7.39),

I(x)′ =−I(x) = 〈Î(x)〉′ = ∑
ky

∑
E j,ky<0

Vky |u j,ky |2 = ∑
ky

∑
E j,ky<0

Vky|v j,ky |2 , (7.42)

where 〈〉′ denotes a ground state expectation where the ground state is taken as the vacuum of

negative-energy states, and the last equation follows the same lines as those leading to (7.41).

Combining (7.41) and (7.42) leads to the following expression for the current density,
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I(x) =
1
4
[ ∑

ky

∑
E j,ky>0

Vky |v j,ky(x)|2 +∑
ky

∑
E j,ky>0

Vky |u j,ky(x)|2

−∑
ky

∑
E j,ky<0

Vky |v j,ky(x)|2−∑
ky

∑
E j,ky<0

Vky |u j,ky(x)|2 ]

=
1
4 ∑

ky


 ∑

E j,ky>0
Vky(|v j,ky(x)|2 + |u j,ky(x)|2)− ∑

E j,ky<0
Vky(|v j,ky(x)|2 + |u j,ky(x)|2)


 .

(7.43)

The integrated current across the geometry may then be written as,

I =
∫

dx I(x) =
1
4 ∑

ky

Vky


 ∑

E j,ky>0
− ∑

E j,ky<0


=

1
4 ∑

ky

Vkyηky , (7.44)

where in the second equation we have used the normalization condition (7.36), and ηky is the

spectral asymmetry defined as,

ηky = ∑
j

sgn[E j,ky ] . (7.45)

Thus the spectral asymmetry at each ky gives the difference between the number of positive-

and negative-energy quasi-particle states. An additional factor of 2 must be included in (7.44)

for spinful systems. This concludes our derivation!
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