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Abstract

Elasto-capillarity is the ability of capillary forces to deform elastic structures. This

phenomenon is found at all length scales and is central to natural phenomena such

as the coalescence of wet hairs as well as technological applications like microfluidics

and microelectromechanical systems. In this thesis we investigate some of the most

fundamental examples of elasto-capillarity – the deformation of thin films and rods

by liquid drops and bubbles. Through novel experiment techniques we are able to

accurately predict the shape of elastic deformations in compliant polymer films as a

function of tension in the film due to capillary forces from liquid drops. We are also

able to accurately predict the onset of winding of slender polymer rods around liquid

bubbles.
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Chapter 1

Introduction

The natural world is full of systems composed of solids and liquids whose character-

istics are determined by the interaction between these phases. From the viscous drag

which slowly carves rivers into the Earth to blood-flow due to the hydrostatic pres-

sure caused by the contraction of your heart, solid-liquid interactions are at the core

of many fundamental phenomena. While many examples of solid-fluid interaction

happen on large scales and are typically described by the fluid’s weight or flow, the

continued development of micro-sized devices requires the understanding interfacial

tension and how a liquid wets a solid.

Wetting of liquids on solids is ubiquitous and can be found in a wide variety of

natural and industrial phenomena such as coalescence and deformation of wet hairs

and fibers [1–4], drying of textiles [5], and spreading of liquids on surfaces [6–8],

among many other examples [9]. Wetting phenomena such as these are a result of

the interaction of two phases at an interface. As the size of the system decreases,

the surface area decreases much slower than the volume does. This increases the

relative magnitude of interfacial tension-based effects compared to effects which scale
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with volume like gravity or some elastic deformations. In fact, as the scale of a

system decreases, interfacial tension effects may become more dominant than typically

much stronger effects like gravity and elasticity. In particular, the subject of elasto-

capillarity aims to understand phenomena resulting from the competition between

elasticity and interfacial tension. Elasto-capillary interactions are relevant in a wide

variety of systems including capillary folding (capillary origami) [2, 10–12], wetting

of fibers, soft tissues [13–15], and micropatterning of elastomeric surfaces [16–18].

While elasto-capillary phenomena are being used in technological applications

today, many fundamental questions still remain. This thesis investigates how the in-

terfacial tension between a liquid and elastic solid can deform the solid. In Chapter 1,

interfacial tension, elasticity and elasto-capillarity as they relate the presented work

are discussed. Chapter 2 discusses details of the experiments in the proceeding chap-

ters. In Chapter 3 liquid drops are found to deform a free-standing thin elastic film.

The contact angle the drop makes with the film and the deformation in the film due

to the drop are studied as the tension in the film changes. In Chapter 4, the way an

elastic fiber can be deformed and subsequently wrap around a liquid membrane-like

bubble is explored.

1.1 Interfacial Tension

At material interfaces, interfacial tension results from the cohesive forces between like-

molecules [19]. Considering a liquid in contact with air, this cohesive force provides

a tension at the surface of the fluid which is tangent to the surface of the fluid.

The interfacial tension between liquid and air is called surface tension and creates a

tendency for the fluid to minimize its surface area under the constraint of constant

3
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volume. Interfacial tension has dimensions of force per unit length, or equivalently,

energy per unit area. In this sense, one can think of interfacial tension as an energy

cost to create additional surface area. One of the effects of the tendency to minimize

surface area is the Laplace pressure.

1.1.1 Laplace Pressure

The Laplace pressure is the pressure difference between the inside and the outside

of a curved surface and is a result of interfacial tension. An illustrative example of

the consequences of Laplace pressure is found by considering the shape of a liquid

drop in air. Ignoring external forces like gravity, it is intuitive that a drop will form a

sphere. This is because the cohesive forces between the molecules which make up the

liquid are attractive, which leads to the drop reducing the amount of surface area in

contact with the surrounding air. For a given volume, forming a sphere minimizes its

surface area. Maintaining a constant volume requires outward-facing pressure inside

the drop to balance the tendency to reduce surface area. This pressure is known as

the Laplace pressure. The magnitude of the Laplace pressure can be calculated by

performing a horizontal force balance around the equator of a drop, of which one

hemisphere is shown in Figure 1.1 [19].

The tension in the horizontal plane can be balanced by the pressure acting in the

horizontal direction by considering the pressure that acts on the cross-sectional area.

The force in the horizontal direction due to pressure is then; Fp = PLπR
2 where PL

is the Laplace pressure, and R is the radius of our drop. Calculating the force due to

surface tension around the hemisphere Fγ (which is in the horizontal direction and

scales with the circumference of the hemisphere) gives Fγ = γ2πR, where γ is the

4
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Figure 1.1: Schematic of one hemisphere of a liquid drop with radius R in air. Forces
due to the Laplace pressure PL within the left hemisphere and surface tension around
the hemisphere γ are depicted with arrows.

surface tension between the drop material and air. The result of the this force balance

is,

FL = Fγ

PLπR
2 = γ2πR

PL =
2γ

R
. (1.1)

Laplace pressure is an important parameter in the study of drops and bubbles. For

example, a drop which is sessile on a surface applies a force into the surface propor-

tional to the drop’s Laplace pressure which can be relevant when drops partially wet

deformable surfaces.
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1.1.2 Partial Wetting and the Capillary Length

A simple example of partial wetting occurs when a liquid drop contacts the surface of

an infinitely rigid solid. Provided the liquid does not spread to cover the whole surface

and gravity can be ignored, the drop will form a familiar spherical cap geometry with

a contact angle θy, known as Young’s angle [20]. This is shown in Figure 1.2. To

assess the significance of gravity the size of the drop can be compared to the capillary

length LGC =
√
γ/ρg where ρ is the density of the liquid and g is the gravitational

acceleration [19]. LGC is a characteristic length scale which compares the significance

of gravity and surface tension. For a drop smaller than LGC sessile on a rigid surface,

interfacial tension effects are larger than gravity effects and the drop will form a

spherical cap. For clean water and air at room temperature, LGC ≈ 2mm.

A liquid drop below LGC which partially wets a rigid surface has three interfacial

tensions which completely define the shape the liquid drop makes with the solid

surface. The solid-vapor, γsv, liquid-vapor, γ, and solid-liquid γsl interfacial tensions

which are shown in Figure 1.2 (A), and can be balanced at the contact line. The

Laplace pressure in the drop applies a force into the solid. However, assuming the

solid is rigid and the deformation of the solid is negligible, the contact angle can be

found by balancing the interfacial tensions in the horizontal direction,

γcos(θy) = γsv − γsl

θy = cos−1
(
γsv − γsl

γ

)
. (1.2)
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A B

Figure 1.2: Liquid drop partially wetting an undeformable solid surface (A) and a
completely deformable liquid surface (B). Interfacial tensions are represented with
arrows.

If a liquid drop now rests on a deformable surface like another liquid, the underly-

ing surface will deform due to the drop’s Laplace pressure creating an interior angle

α. An example of this is a drop of oil floating on water, and a schematic of such a

system is shown in Figure 1.2 (B). Again, for systems below LGC, the shape of the

drop is completely determined by balancing the interfacial tensions at the contact

line. However, to solve for α the vertical as well as the horizontal interfacial tension

components must be balanced. This is known as a Neumann construction.

The extreme cases of partial wetting on rigid solids and liquids have been studied

extensively and are fairly well understood. However, the intermediate case of a liquid

drop wetting a deformable solid surface has garnered much attention recently [17, 21–

30]. The specifics of deformations in the case of an elastic surface can be complicated

and are exemplary of the problems within the field of elasto-capillarity.
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1.2 Elasto-Capillarity

Elasto-capillary phenomena occur when elastic forces and capillary forces compete on

similar length scales. In the example of a liquid drop partially wetting a solid surface,

capillary forces at the interface attempt to deform the solid surface. However, the

high Young’s modulus E or stiffness of most solids means any deformations will be

extremely small. However looking at various length scales and geometries, one can ob-

serve a rich variety of phenomena. Likewise, dealing with soft materials like gels may

also amplify these deformations [17, 21–30]. Figure 1.3 shows examples of the type of

deformations one may observe due to elasto-capillary effects at various length scales.

In all cases pictured, the system is far below LGC and the solid material deforms under

the liquid drop due to the Laplace pressure in the drop. In Figure 1.3 (A) and (B), a

liquid drop rests atop a thin, compliant film and undergoes a uniform bending where

tension in the film defines the morphology. Closer to the interface between drop and

film, Figure 1.3 (C) schematically shows a length-scale which is defined by the bend-

ing energy [2, 23, 31]. This is called the bending elasto-capillary length, LBC. Finally,

a distinct cusp-like shape is shown in Figure 1.3 (D) which demonstrates yet another

length scale – the elasto-capillary length LEC – defined by the bulk elasticity of the

solid [22, 25]. These different length scales will be considered from small to large.

1.2.1 Bulk Elasticity and the Elasto-Capillary Length

The elasto-capillary length LEC determines the length scale over which elastic ef-

fects are comparable to capillary effects. An elastic structure will exhibit significant

deformation when the reduction of interfacial energy during elastic deformation is

comparable to the energetic cost of such a deformation. For example, consider the

8
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cusp in Figure 1.3 (D). The vertical component of surface tension is γsin(θd) which

pulls the elastic material upwards, forming a cusp. If δ is the height of the resulting

cusp above the undeformed surface, the elastic force per unit length is of order Eδ

where E is the elastic modulus of the material. The vertical surface tension com-

ponent must be proportional to the elastic force per unit length, and from this the

length scale of the elastic deformation in the solid can be determined;

γsin(θd) ∼ Eδ

δ ∝ γsin(θd)

E
, (1.3)

and from this, the elasto-capillary length can be defined, LEC = γ
E

. Comparing typical

values for a soft, gel-like solid (Egel ∼ 1 MPa) and a glassy polymer (Eglass ∼ GPa)

deformed by a glycerol drop (γ = 64 mN/m), the elasto-capillary lengths are LEC ∼ 10

nm and LEC ∼ 10 pm respectively. For a soft material like a gel, this length scale is

not out of reach of current technologies and can be relevant in biological systems but

the length scale of deformation in a typical glassy polymer is of atomic scale.

1.2.2 The Bending Elasto-Capillary Length of Films and Slen-

der Rods

At length scales larger than LEC, one reaches the bending elasto-capillary length LBC.

LBC is the length scale over which bending energy becomes dominant. Up until this

point, a system consisting of a drop wetting a thin film has been considered. We now

turn to the case of a liquid drop partially wetting a thin rod as its calculation which

9
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A B

C D

Figure 1.3: Example of two elasto-capillary phenomena. (A) A liquid drop deforms
a soft solid and creates a cusp at the contact line which has a length scale defined by
the system’s elasto-capillary length. (B) A liquid drop deforms a high modulus yet
thin, compliant solid creating a bulge in the solid. The cusp in (B) is much smaller
than in (A) since the elasto-capillary length in the stiff system is much shorter than
in the soft system.
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is used directly in Chapter 4.

A thin, deformable rod partially wet by a spherical liquid drop is shown schemati-

cally in Figure 1.4. The energetic cost of deforming the rod around the drop competes

against the reduction in interfacial energy by the increase of interfacial area between

the rod and drop. By balancing these contributions a threshold for which it is ex-

pected that the rod will spontaneously wrap around the drop can be determined, and

from this, a characteristic length scale can be defined. The interfacial and bending

energies will be calculated in turn.

If the solid rod and a liquid sphere do not begin in contact with one another, each

object will have a interfacial energy equal to the object’s surface area multiplied by its

surface tension. Once the rod and drop make contact, the rod may deform to increase

its total area in contact with the drop, A. Call A = κrl the contact area, where l

is the length of rod in contact with the drop, r is the radius of the rod, and κ is a

dimensionless geometric factor relating r to the area of the rod in contact with the

drop. The liquid drop has then replaced an area A in contact with vapor with an area

A in contact with the rod. Likewise, the rod has lost an interfacial area A in contact

with vapor and replaced it with an area A in contact with the drop. Assuming κr is

constant with respect to l the change in interfacial energy ∆Esurf is then,

∆Esurf = κrl(γsl)− Lκr(γsv + γ), (1.4)

where γ, γsl and γsv are liquid-vapor, solid-liquid and solid-vapor interfacial tensions.

Using Young’s law from Equation 1.2 to obtain the change in interfacial energy per

unit length of rod in contact with the drop,

11
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A B

Figure 1.4: A liquid drop and flexible solid rod before (A) and after (B) making
contact with each other. The liquid drop partially wets the rod, elastically deforming
the rod around the circumference of the drop. Solid-liquid, liquid-vapor and solid-
vapor interfaces are labeled with their interfacial tensions γ, γsv, and γsl.

∆Esurf/l = κr(1− cos(θy)). (1.5)

For a sufficiently thin rod undergoing small deformations, assume the bending

occurs in a single plane, and the internal stresses come from stretching and compres-

sion [32]. That is, approximate the bending of the rod as stretching or compression

of every volume element within our thin rod. Therefore, the bending energy Ebend

can be solved by finding the free energy 1
2
σiεi for each volume element, where σi is

the stress in element i, and εi is the strain. For small deformations, assume linear

elasticity such that σ = Eε where E is the elastic modulus of the rod material. This

gives a free energy per volume element,

12
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Ebend,i =
Eε2i
2
. (1.6)

The strain is calculated by identifying a neutral surface parallel to the length

of our rod which undergoes no stretching or compression. For a cylindrical rod, this

passes through the centre of mass [32]. Taking a surface parallel to the neutral surface

but displaced above or below it, bend the rod uniformly across its length. This new

surface will exhibit a strain which can be calculated considering the surface to be an

arc of constant curvature and comparing its arc length with respect to the arc length

of the neutral surface. Calculating a unit of arc length dz′ displaced x above the

neutral surface,

dz′ =
R + x

R
dz = (1 +

x

R
) dz, (1.7)

where dz is a a unit of arc length of the neutral surface and R is the radius of curvature

of the neutral surface. Therefore the strain is,

ε =
dz′ − dz

dz
=
x

R
. (1.8)

To find Ebend per unit length we substitute Equation 1.8 into Equation 1.6 and

integrate over the cross-sectional area of the rod which again we take to be circular,

13
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∆Ebend

L
=

∫
Eε2i
2

dAv =

∫
Ex2

2R2
dA

=
EI

2R2
=
Eπr4

8R2
, (1.9)

where I =
∫
x2 dA = πr4

4
is the moment of inertia of the cross-section. Setting

Equation 1.9 equal to Equation 1.5,

Eπr4

8R2
= κrγ(1− cos(θy)). (1.10)

Re-arranging, we find R ∝
√

Er3

γ
. R is the radius of curvature of the rod which is a

result of the minimization of interfacial energy between the rod and drop. If the radius

of the drop is roughly equal to R one would expect to observe significant deformation

in the rod. Therefore, we define the bending elasto-capillary length, LBC =
√

Er3

γ
.

Chapter 4 involves a polymer fiber deforming in a similar manner around a liquid

bubble of radius ∼ LBC .

Returning to a thin film deformed by a drop with radius > LBC , one would expect

a bending-dominated morphology at length scales ∝ LBC as shown in Figure 1.3

(C). However, at lengths > LBC forces related to bending are expected to be small

compared to the tension in the film. Because of this, a liquid drop can readily deform

the underlying film, resulting in a morphology that can be determined by considering

the tension in the film.

Considering Γ, γ, γsv, and γsl at the contact line, a Neumann construction can be

made, just as was done above in the case of a liquid partially wetting a liquid. The

14
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Figure 1.5: A liquid drop partially wetting a compliant solid film. The interior angle
of the drop α is shown, which is divided into a drop θd and bulge θb contant angle.
The contact line is shown with interfacial tensions γ, γsv, and γsl and elastic tension
Γ.

interior angle α us divided into two angles, α = θd + θb where θd is the angle the drop

makes with the undeformed solid, and θb is the angle the bulge in the film makes with

the undeformed film as shown in Figure 1.5. Performing a vertical tension balance,

γcos(θd) = (γsv + γsl + Γ)cos(θb)

cos(θd)

cos(θb)
=
γsv + γsl + Γ

γ
. (1.11)

Under the assumption that the drop has a radius LBC < R < LGC , the drop and bulge

will take on the shape of spherical caps at macroscopic length scales. By solving for the

interior angle of the drop, the shape of the deformation can be completely determined.

Comparing this result to a liquid partially wetting another liquid, a drop partially

wetting a deformable solid should converge to the liquid-liquid case as Γ→ 0.
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Chapter 2

Experimental Details

This chapter describes in detail the experiments which follow in Chapter 3 and Chap-

ter 4. All of the following experiments are performed on scales similar to that of dust

particles. As such, cleanliness is of the utmost importance. Additionally, the following

experiments depend on the interfacial tensions of various materials. Contamination

can cause significant changes in surface properties of materials, so it is important

that samples be pure and uncontaminated. Whenever possible, samples preparation

took place in a laminar flow hood and samples were used as soon after production as

possible.

2.1 Spincoating

Chapter 3 involves the deformation of thin, free-standing films by sessile liquid drops.

The films were produced through the spincoating process. In this process, polymer is

dissolved in a volatile solvent and and the solution is placed on a substrate. Both the

solvent and solution are filtered with 0.2 mm Milipore filters (Millex). The substrate is

16



M.Sc. Thesis - Adam Fortais McMaster - Physics & Astronomy

rotated at high speeds, producing a thin, uniform layer of solution. As the substrate

rotates, solvent evaporates from solution leaving behind a thin, uniform film. By

adjusted the spin speed and concentration of solution, the thickness of a resulting film

can range from several nm to several µm. For example, samples in Chapter 3 were

made from several polystyrene (PS) solutions with molecular weight Mn = 451, 000

kg/mol and PDI = 1.10 (Polymer Source Inc.). PS was dissolved in toluene (Fisher

Scientific, Optima grade) with concentrations ranging from 0.5-2%. The solution was

spin cast on to freshly cleaved mica films (Ted Pella Inc.) at speeds between 1000-4000

rpm resulting in films of uniform thicknesses between 30-110 nm. After spincoating,

the polymer film could be divided into several usable films by scoring the film with a

scalpel. Typically 4 samples were made from a single polymer film.

2.2 Substrates

Three substrates were used to prepare samples in Chapter 3. Polymer solutions were

spin cast on mica films. Mica films were cleaved by separating two layers of mica

with a scalpel. By carefully pulling these layers apart, a large, clean, atomically flat

surface can be prepared. Silicon (Si) wafers were used as substrates while measuring

the thickness of polymer films. The films were water-transfered from mica on to

roughly 1 cm squares of Si with a ≈ 5 nm native oxide layer. To produce these

small Si squares, large Si wafers are cleaved along the (100) crystallographic planes

after which nitrogen gas is blown across the surface to remove any Si dust produced

from cleaving. Free-standing films were prepared by water-transferring polymer films

from mica to 1 cm x 1 cm steel washers with 3 mm diameter circular holes. The

water-transfer process is detailed below.
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2.3 Annealing

Before water-transferring polymer films from mica to another substrate, the films were

vacuum annealed for a minimum of 12 hours at 130 ◦C (above the glass transition

temperature of PS) to remove any remaining solvent trapped in the film as well as

relax any internal stress or polymer-alignment caused by shear forces induced through

spincoating. This is an important step as internal stress and polymer-alignment may

affect polymer properties like surface energy. Additionally, trapped solvent may act

as a plasticizing agent in the polymer, reducing the glass transition temperature. By

heating above the glass transition temperature, the polymer becomes fluid allowing

polymer chains to re-orient and release trapped solvent.

Samples which had been water-transferred to steel washers were annealed again

at 102 ◦C for 2 minutes on a hot stage (Linkam) to relax any pre-tension and remove

wrinkles which may have formed during the transfer process. This process takes

different lengths of time for different samples, however 2 minutes was found to be

enough time to relax wrinkles in the slowest to relax films without having the film

rupture. The steel washer has a much lower thermal expansion coefficient than PS

so cooling the sample results in an isotropic tension in the film due to differential

expansion between the washer and the film, similar to the tensioning of a drum head.

2.4 Preparation of Free-standing and Supported

Films via Water Transfer

Polymer films on a mica substrate which has been scored could be transferred to

different substrates by floating the films on the surface of an ultra-pure water bath
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(18.2 MΩ·cm) and picking them up again with the new substrate. Since water has

a greater affinity for mica than PS, the water will displace the PS film, leaving the

film floating on the surface of the bath. Films were then picked up from under the

surface of the bath with either a Si substrate or steel washer, resulting in a supported

polymer film or a free-standing polymer film respectively. After water-transferring,

samples were allowed to dry for 15-20 minutes.

2.5 Measuring Polymer Film Thickness via Ellip-

sometry

Ellipsometry is a technique that can be used to determine the thickness and polariza-

tion of polymer films, and is the technique used in Chapter 3. After dividing a polymer

film on mica into several smaller films, one of these sections was water-transferred on

to a 1 cm x 1 cm Si square. This produced a supported polymer sample with which

ellipsometry (Accuron EP3) could be performed. The basic principle of ellipsometry

is straightforward, though the analysis of the results is more involved [33]. A laser

provides linearly polarized monochromatic light directed towards a thin film sample.

The laser is first passed through a quarter-wave plate to create circularly polarized

light. Then the beam passes through the first polarizer to fix the polarization which

is now approximately the same intensity in any orientation of the polarizer because of

the first quarter-wave plate. The beam passes through a second quarter-wave plate to

produce light of a unique ellipticity. Now, when elliptically polarized light is reflected

from the thin film sample it will become linearly polarized. The beam then passes

through another polarizer – the analyzer – before reaching the detector. During this
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process, the polarizers can be rotated to obtain a minimum in the intensity at the

detector. Information about the angle of the polarizers can be used to determine the

thickness and refractive index of the sample [33].

2.6 Micropipettes

Micropipettes are used in Chapter 3 and Chapter 4 for two distinct purposes. In

Chapter 3, micropipettes are used to place micron-sized liquid drops on the polymer

films described above. In Chapter 4, micropipettes are used to pull polymer fibers

from polymer melts. The preparation and use of these micropipetttes are discussed

below.

2.6.1 Fabrication

Micropipettes are made by stretching glass capillary tubes with an inner diameter

of 0.7 mm and outer diameter of 1.0 mm (World Precision Instruments Inc.) with a

pipette puller (Narishige PN-30) over a hot filament. This results in pipettes with

ends with an inner diameter of ∼ 10 µm and an outer diameter of ∼ 20 µm. The

length of the thin end is approximately 2-4 cm long but can be snipped to a shorter

length.

2.6.2 Droplet Production

Micron-sized liquid drops are produced by dipping the thin end of a micropipette

into a liquid and rapidly pulling it out. A thin layer of fluid coats the end of the

micropipette before dewetting into several micron-sized droplets. Droplets can be
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flicked from the micropipette, or gently placed, onto a new surface. Placing droplets

on to a free-standing polymer film can be difficult as films are typically very delicate.

Flicking has the advantage that the micropipette never comes more than ∼1 cm from

the film, reducing the risk of damaging the film with the micropipette.

2.6.3 Polymer Fiber Production

Polymer fibers with micron-sized radii were also produced using micropipettes. Fibers

were made from several different polymers, requiring slightly different fiber produc-

tion techniques. PS (Mn = 25000 kg/mol, PDI = 1.04, Polymer Source Inc.) and

Elastollan 1185A 10 (BSF Inc.) fibers were made by dipping a micropipette into the

polymer which was supported on a Si wafer held at 170 oC and 235 oC respectively via

hot stage. The micropipette was then quickly pulled out of the polymer. This resulted

in fibers with radii 1 µm < r < 10 µm, as measured by optical microscopy. Fibers

of similar dimensions were made from styrene-isoprene-styrene (SIS) by dipping a

micropipette into a viscous solution of the polymer dissolved in toluene supported on

a Si wafer and quickly pulling the pipette out. In both cases a long, thin polymer

fiber was produced with uniform radii over ∼ 1 cm length scales.
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Chapter 3

Deformation of Thin Free-standing

Films with Sessile Droplets

Through the Glass Transition

3.1 Preamble

The following chapter contains a manuscript intended for a peer-reviewed publication.

It is an extension to the work of R. D. Schulman and K. Dalnoki-Veress which was

published in Physical Review Letters in 2015 [29]. In their work, the contact angle

of a drop which partially wets thin, deformable, free-standing films is considered,

and a minimal model is developed which accurately predicts the contact angle as a

function of interfacial and elastic tensions in the film. In the following manuscript,

this model is tested in glassy polymer films, where the tension is modulated within a

single experiment via temperature. It is found that the model continues to accurately

predict the contact angles between drop and film over a wide range of elastic tensions,

22



M.Sc. Thesis - Adam Fortais McMaster - Physics & Astronomy

even through the glass transition temperature where the polymer film becomes liquid

and tension becomes zero. This chapter confirms the minimal model presented by

Schulman and Dalnoki-Veress is sufficient for describing elasto-capillary deformations

in films in the membrane limit where deformations in the film by liquid droplets

are perturbative to the total area of the film. This chapter also demonstrates the

robustness of the tension measuring technique presented by Schulman and Dalnoki-

Veress.

I designed and performed all experiments, data analysis, and wrote the following

manuscript in collaboration with my coauthors Schulman and Dalnoki-Veress.

3.2 Introduction

Elasto-capillarity; the interplay between interfacial tension and elasticity, is of fun-

damental importance in many active areas of research including microfluidics [34],

self-assembly [2, 10, 31, 35, 36], substrate patterning [16, 18, 21], wetting of fibers

[1, 3, 37–39], and biological systems [13–15]. With such a wide range of applications,

a fundamental aspect of these systems – the contact angle a liquid drop makes with

a soft solid – has garnered a great deal of interest [17, 21–30].

Partial wetting of a liquid on a hard solid and partial wetting of a liquid on

a liquid are well understood [19]. Below the capillary length LGC gravity can be

ignored and a liquid drop which is supported by an undeformable solid substrate will

form a spherical cap. The spherical cap will exhibit a contact angle which can be

calculated by performing a horizontal interfacial tension balance, which is known as

Young’s law [20]. Forces in the vertical direction are compensated by the elasticity

of the substrate. On a liquid substrate, the Laplace pressure of the droplet is able
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to deform the underlying liquid. The construction of a Neumann triangle in which

the vertical and horizontal components of the interfacial tensions are simultaneously

balanced allows one to determine the interior angle formed between the two liquids

[19]. For intermediate systems where substrates are soft, the droplet deforms the

substrate at the contact line into a cusp with a length scale comparable to LEC

for bulk deformation γ/E where γ is surface tension and E is the elastic modulus

[21, 23, 25, 26, 40]. Microscopically, the contact angle between drop and substrate

cusp satisfy a Neumann construction balancing the interfacial tension of the liquid

and surface stresses between solid-liquid and solid-vapor interfaces. Macroscopically,

the contact angle a drop larger than γ/E makes with the planar, undeformed film

satisfies Young’s law [17, 22, 24, 30]. However, for drops smaller than γ/E these

contact angles deviate from Young’s law [17].

In order to observe micron-scale deformations in the substrate, experiments are

typically limited to soft materials with E in the kPa range such that the elasto-

capillary length LEC is on the order of microns. Alternatively, stiff but compliant

materials (ie. thin, free-standing films similar to a taut drum head with E on the

order of GPa) having sub-nanometer values of LEC may still exhibit macroscopic

deformations with length scales greater than the bending elasto-capillary length LBC

of the substrate [28, 29, 41].

In this chapter the contact angles between liquid drops on thin, deformable films

(E ∼ GPa) as a function of film tension are studied. Tension is modulated via film

thickness and temperature, and contact angles are measured continuously from well

below the glass transition Tg of the film, into the melt state. A Neumann construction

is developed and found to accurately predict the contact angle made between drops
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and the film, from the high tension regime where the system approaches partial

wetting on a rigid solid, into the melt state where the system becomes partial wetting

between two liquids. With these measurements, the elastic modulus of our film can

also be determined.

3.3 Experiment

Polystyrene (PS) with molecular weight Mn = 451, 000 kg/mol and polydispersity

PDI = 1.10 (Polymer Source Inc.) was dissolved in toluene (Fisher Scientific, Optima

grade) and spin cast on to freshly cleaved mica films (Ted Pella Inc.) creating films

with uniform thicknesses between 30-110 nm. The samples were vacuum annealed

for a minimum of 12 hours at 130 oC. After cooling to room temperature, films were

cut into several smaller films and floated on the surface of an ultra-pure water bath

(18.2 MΩ·cm), then transferred to 1 cm x 1 cm steel washers with a 3 mm diameter

circular hole, producing free-standing films. Additionally, one film from each sample

was transferred to a silicon wafer for its thickness to be measured via ellipsometry

(Accurion, EP3).

The samples were placed in the experimental set-up shown schematically in Fig-

ure 3.1 (A) and pre-annealed at 102 oC for 2 minutes to relax any pre-tension and

remove wrinkles which may have formed from transferring the film to the washer. The

sample was quenched to 70 oC creating a taut film with uniform tension. Glycerol

(Caledon Laboratories Ltd.) drops were deposited on either side of the films. In this

way, both liquid drops on the top side and the deformations in the film due to drops

(bulges) could be imaged simultaneously from the side using an optical microscope.

This is shown schematically in Figure 3.1 (B). The size and number of drops deposited
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were limited to contact radii between 25-100 µm, covering a combined contact area

< 5% of the film. The lower limit was imposed to reduce the effects of evaporation

of the drop, while the upper limit minimizes additional stretching of the film as the

size of deformations of the film increased during measurements.

The temperature of the system was increased in 5 oC increments up to 95 oC

at a rate of 90 oC/min., remaining at each temperature for 5 minutes to allow the

drops to reach an equilibrium contact angle before images were captured. For mea-

surements above 95 oC, the temperature was increased to the desired temperature at

the same rate, at which point images were captured at 15 second intervals. For mea-

surements of bulge dynamics above Tg, samples were prepared in the same manner,

using polyethylene glycol (PEG) with Mw = 0.6 kg/mol (Sigma-Aldrich) in place of

glycerol to reduce the effects of evaporation at high temperatures.

The radius of the contact patch the drop makes with the substrate rc shown in

Figure 3.1 was measured directly from the microscope images, and the profiles were

fit to spherical caps. Examples are shown in Figure 3.1 (B). From these fits, the

radius of curvature of the drop and bulge Rd and Rb were determined. The contact

angle subtended by the spherical caps and the undeformed film θd and θb could be

determined through the geometric identitiy, sin(θ) = R/rc.

3.4 Results and Discussion

3.4.1 Determining Tension

It has been shown previously that in the limit of thin, highly bendable films deformed

by drops with radii r >> LBC >> LEC where the deformation caueses a significant
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A

B
C

Figure 3.1: (A) Schematic of the side-view of glycerol drops on either side of a film
between two temperature-controlled plates, not to scale. (B) Microscope image of
a bulge (top) and drop (bottom) with spherical cap fits (blue curves). The contact
diameters 2rc are indicated with dashed lines. Below these lines is the reflection of the
bulge/droplet off the film itself. The scale bar corresponds to 25 µm (C) Neumann
construction accounting for interfacial and mechanical tension acting at the contact
line of a drop. The interior angle α is the sum of θb and θd.
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change in area of the film, anisotropic tensions are observed leading to striking wrin-

kling patterns around the liquid drop [31, 41]. However, if the deformation in the

film is only a small perturbation to the area of the film, the tension in the film can

be assumed isotropic and therefore can be determined by constructing a Neumann

triangle at the contact line which includes both interfacial tensions and mechanical

tension within the film due to elasticity [29]. Figure 3.1 (C) is a schematic of the ten-

sions acting at the contact line. By balancing these tensions in the vertical direction,

an expression relating θd and θb to the tension in the film can be found;

sin(θd)

sin(θb)
=

Γmech + γsv + γsl
γ

, (3.1)

where γ, γsv and γsl are the liquid-vapor, solid-vapor, and solid-liquid interfacial ten-

sions, and Γmech is the mechnical tension within the film.

Equation 3.1 shows that by simultaneously measuring a drop and bulge contact

angle for a particular film at a particular temperature, the tension in the film normal-

ized by the surface tension of glycerol can be determined provided a drops are smaller

than LGC and the deformation in the film is a perturbation to the area of the film.

The latter requirement is achieved by preparing samples with clamped boundaries

and a significant mechanical pre-tension. The accuracy of this technique has been

confirmed elsewhere by comparison with micropipette deflection techniques [29]. By

measuring the tension in films of various thicknesses at different temperatures, the

way the contact angles of drops and bulges on deformable free-standing films are

affected by the tensions in the film can be found.

The normalized tension within the film is shown as a function of temperature for

various film thicknesses in Figure 3.3. As seen in the plot, the normalized tension
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Figure 3.2: Contact angle of glycerol drops on a thin, supported PS substrate as a
function of temperature.

decreases with temperature as well as film thickness. Young’s angle θy for glycerol

and PS as a function of temperature can be measured and is shown in Figure 3.2. The

data in Figure 3.2 is well described by a linear relationship of the form cos(θy) = aT+b

where a = (0.24 ± 0.08) · 10−2 ◦C−1 and b = (20 ± 5) · 10−2. Using this empirical

relationship along with literature values for γ of glycerol [42] and γsv of PS [43], γsl

as a function of temperature is calculated. Finally, subtracting (γsv + γsl)/γ from the

normalized tension given in Equation 1 yields Γmech/γ as a function of temperature

and film thickness.

Changes in mechanical tension upon heating are predominantly caused by the

thermal expansion of the PS films which is much larger than rather than the thermal

expansion of the steel. The film is fixed to the steel washer, so ignoring the contraction
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of the steel washer, a decrease in temperature of the system results in a uniform strain

∆L within the film given by ∆L = cPS∆T/(1 − ν) where cPS = 7 · 10−6m/(m K) is

the linear expansion coefficient of PS and ν = 0.34 is the Poisson ratio of PS [44]. For

an elastic membrane, the mechanical tension is equal to Γmech = σh = hE∆L/(1−ν),

where σ is the uniform stress within the film. Normalizing Γmech/γ by film thickness

should thus collapse our data to a single line, as seen in Figure 3.3 We fit a straight line

to the data below 97 oC, while constraining it to pass through the point Γmech/γh =

0 at T = Tg = 97 oC, which is the glass transition of PS [44]. Above Tg the film

is a liquid which cannot have a mechanical tension. The constraint on the line of

fit reflects this quality of PS. Using values for cPS and ν from literature and the

slope of this line, E for the PS films are found to be 3.0 ± 0.4 GPa which agrees

with literature values [44]. The linear expansion coefficient of steel is dependent on

its alloy composition so an exact value could not be found, however the expansion

coefficients of several common stainless steel alloys are approximately 1/10th that of

PS [45]. Therefore the lower bound on E is expected to be approximately 10% lower

than the true value.

3.4.2 Contact Angle and Tension

Considering the Neumann construction in Figure 3.1 (C), the tensions acting in

parallel directions at the contact line can be grouped together (inwards; Γin =

γsl + Γmech + γsv, in the plane of the film; Γout = Γmech + 2γsv) [29]. Using the

cosine law can be used to calculate both θd and θb resulting in:
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Figure 3.3: Tension within the PS film normalized by γ as a function of temperature
for several film thicknesses is shown on the left. Mechanical tension within the film
normalized by γ and h is shown on the right. A straight line with an x-intercept of
97 oC is fit to the data.
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cos(θd) =
(Γout/γ)2 + 1− (Γinγ)2

2Γout/γ
(3.2a)

cos(θb) =
(Γout/γ)2 − 1 + (Γinγ)2

2ΓoutΓin/γ
. (3.2b)

Recognizing Γout = Γin + γsin(θy), Equation 2 allows for the prediction of θd and

θb as a function of Γin/γ, only requiring that θy be measured separately. Figure 3.4

shows θd and θb as a function of Γin/γ for one film thickness. However, the experiment

described here uses temperature as well as film thickness to modulate Γin, so θy

will also change within a single experiment. Over the range of temperatures in this

experiment, cos(θy) is well described as a linear function of temperature. Likewise,

Figure 3.3 shows the temperature dependence of Γin/γ can be approximated by a

straight line until Tg is reached. Therefore, θy is expected to take on the functional

form θy(Γin/γ) ∝ cos−1(Γin/γa + b − 97◦C) between 60 and 97 ◦C. Finally, Γin was

calculated for a 54 nm film at 60 oC and 101.5 oC using the linear fit from Figure 3.3,

temperature data could be converted to Γin, allowing for the prediction of θd and θb

as a function of Γin while varying temperature. This prediction is show in Figure 3.4

represented by a solid line.

3.4.3 Dynamics

With this model, the growth of θb above Tg is believed to be through viscous relax-

ation. PEG drops were placed on 100 ± 5 nm free-standing PS films at 95 oC for 5

minutes to allow the system to reach an equilibrium contact angle. The temperature

was increased to a final temperature (98 oC, 100 oC, or 101.5 oC) and measured until
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Figure 3.4: θd (blue circles) and θb (red diamonds) as a function of film tension
normalized by γ for a 54 nm film. Contact angles predicted by a Neumann triangle
at the contact line for a 54 nm film where tension is modulated by temperature is
shown as solid lines, while the upper and lower dashed lines are at fixed temperatures
(60 oC and 101.5 oC respectively), which correspond to the range of temperatures
used in this particular data set.
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film rupture, imaging the bulge in 15 second increments. The contact angles were

normalized by the contact angle measured at 95 oC, θi, and the equilibrium contact

angle measured at this elevated temperature θeq. The results are shown as a function

of time in the inset of Figure 3.5. The average of up to the first four data points which

were all within 1 ◦C of each other were used to determine θeq for each sample, and

were found to be 19.1◦, 18.9◦ and 21.1◦ for 98 oC, 100 oC, or 101.5 oC respectively.

The contact angle predicted by a Neumann construction was found to be ∼ 24◦.

When the temperature of the system is raised suddenly, the temperature of the

film and drops should increase almost instantaneously due to their small thermal

masses. Likewise, interfacial tensions to also increase quickly. This creates an imbal-

ance between Laplace pressure in the drop and pressure due to tension in the film

which is what drives the growth of θb. Below Tg the rate of growth should be related

to the rate of thermal expansion in the film. Above Tg, the film is in a melt state

which cannot support a mechanical tension. Therefore the growth of θb should be

related to the viscous relaxation of PS. Re-scaling the time over which θb changes by

the ratio of viscosities of PS at 100 oC and the viscosity of PS at the measured tem-

perature (calculated with the Vogel-Fulcher-Tammann equation [44]) causes the data

to collapses to one curve suggesting that viscosity determines the rate of relaxation

of our film above Tg.

If the temperature of the system is increased too quickly, a transient, negative

mechanical tension can develop in the film due to thermal expansion which in some

cases can manifest as buckles in the film. The increase in curvature in the film would

be energetically unfavorable, and these buckles would undergo viscous relaxation. For

temperatures used in these experiments, no obvious buckles were observed, however
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Figure 3.5: The bulge contact angle normalized by θi and θeq as a function of time
normalized by the ratio of the viscosity of PS at the temperature measured and the
calculated viscosity of PS at 100 oC. The inset shows the same data as a function of
unscaled time.

35



M.Sc. Thesis - Adam Fortais McMaster - Physics & Astronomy

Figure 3.5 shows a small rightwards shift in the data at 101.5 oC. It is possible that

this is due to a small amount of buckling in the film.

3.5 Conclusions

In this work, thin glassy films were deformed by the Laplace pressure of sessile liquid

drops. The contact angles made by the droplets and corresponding deformations with

the underformed film were measured as tension was continuously varied by tuning film

thickness and temperature. Through a Neumann construction at the contact line, it

was found that the contact angle of the drop and bulges could be predicted as a

function of temperature and film thickness. From this data the Young’s modulus of

PS was deduced. Furthermore, it is shown that as the film is raised above the glass

transition, the mechanical stress in the film vanishes at which point it enters the

regime of partial wetting of a liquid on a liquid substrate.

Bae et al. presented a method for determining elastic modulus of thin polymer

films with liquid drops [12]. Nadermann et al. used a similar experiment to measure

solid interfacial tensions [27]. Likewise, we have shown that droplets atop glassy, free-

standing films are well described by a force balance at the contact line incorporating

three interfacial tensions and a mechanical tension. Knowing any three of these

variables allows for the determination of the fourth with reasonable accuracy.

36



Chapter 4

Fibers and Bubbles

4.1 Preamble

The following chapter contains significant portions of a manuscript intended for a

peer-reviewed publication. It is closely related to a manuscript currently submitted

for publication in which I made theoretical and experimental contributions [46]. In

that work, a fiber is observed to bend more as the size of the contacting droplet

is increased. At a critical droplet size, proportional to the bending elastocapillary

length, the fiber is seen to spontaneously wind around the droplet. In this work

a novel process for the self-assembly of fiber coils is presented. A model based on

elastic beam theory is developed and found to accurately describe experimental data,

resulting in an accurate prediction for the onset of this self-assembly process. We

believe this process can be used to produce micro-coils of various materials.

In the manuscript presented below, a fiber is brought into contact with an air bub-

ble emerging from a liquid bath. As the membrane of liquid forming the bubble wall

thins, the contacting fiber is able to bridge the membrane. For certain combinations
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of bubble size and fiber diameter, the fiber is found to spontaneously wrap around the

circumference of the bubble. A theory based on interfacial and bending energies is

presented which accurately predicts the onset of winding. I developed the theory and

wrote the manuscript presented below in consultation with Schulman and Dalnoki-

Veress. I performed the experiments with significant help from K. Charlesworth, an

undergraduate research assistant.

4.2 Introduction

Wetting of planar surfaces are attractive systems to study due to their simple ge-

ometry, however liquids which wet fiberous materials are also interesting on both a

fundamental and practical level. Despite seeming like a simple class of problems, liq-

uid drops partially wetting fibers can be complicated. Even the case of a liquid drop

partially wetting an undeformable, rigid rod can be complex as it may take on one

of two equilibrium states: an axisymmetric “barrel” where the fiber penetrates the

drop, and non-axisymmetric “clam-shell” configurations where the fiber arcs around

the circumference [6, 7, 47–49]. In a series of beautiful experiments it was shown

that drops placed on a taut elastic fiber would reach a barrel configuration [50, 51].

With reduced tension, these fibers would buckle and collapse inside the drop if the

radius of the drop was on the order of LBC or greater. As the fiber coils inside the

drop, a consistent tension in the fiber is maintained – much like a windlass. This

incredible process is in fact used by some types of spiders in web construction [51].

Alternatively, for smaller drop to fiber radius ratios or less wettable combinations of

materials, the clam-shell configuration may be observed [9, 49]. In this case capillary

forces are capable of inducing large deformations in the fiber resulting in the fiber
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wrapping around the drop, which is the subject of the work by Schulman et al. which

I made contributions to [46]. In both cases, length-scale of these deformations can

be determined by balancing elastic bending and capillarity, resulting in the bending

elasto-capillary length, LBC =
√
Er3/γ where E is the elastic modulus, r is the fiber

radius, and γ is the liquid-air surface tension. Large-scale deformations in the fiber

are expected when capillary forces act over lengths greater than LBC.

In this chapter, air bubbles below the surface of a liquid bath are used to deform

the surface of the bath into an approximately spherical cap defined by a thin liquid

membrane. This is shown schematically side-on in Figure 4.1 (A). Microfibers are

placed on top of the deformed surface. The fiber is found to migrate to and wrap

around the perimeter of the deformed liquid surface for certain bubble-fiber radius

ratios. Optical images of this process, viewing the top of the air bubble, are shown

in Figure 4.1 (B) and (C). This process is characterized by balancing the interfacial

and bending energies of the system.

4.3 Experiment

Thin polymer fibers were made from several materials: Polystyrene (PS) with molec-

ular weight Mn = 25000 kg/mol and polydispersity PDI = 1.04 (Polymer Source Inc.)

which is a glass at room temperature, Elastollan 1185A 10 (BASF Inc.) which is a

polyether-based physically cross-linked elastomer which is solid at room temperature,

and styrene-isoprene-styrene (SIS) triblock copolymer (14% styrene content, Sigma-

Aldrich), which is a physically crosslinked elastomer at room temperature. PS and

Elastollan fibers were made using a glass micropipette with an inner diameter of 0.7

mm and outer diameter of 1.0 mm (World Precision Instruments Inc.), pulled and
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1
A

2
1

2

B

C

Figure 4.1: (A) Schematic of the fiber-bubble system side-on. The fiber is shown in
light blue in position 1 and 2, representing the pre-flopped and post-flopped positions
of the fiber. (B) and (C) are top-down optical images of a fiber-bubble system before
and after flopping. Red circles indicate the point of the fiber that the schematic
cross-section represents. The scale bar is 250 µm.
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clipped to have a short tapered end with an inner diameter of ∼ 10 µm and an outer

diameter of ∼ 20 µm as described in Chapter 2. The tapered end was dipped into

the polymer – which was held at 170 ◦C for PS and 235 ◦C for Elastollan – and then

quickly pulling the pipette out. The resulting fibers had radii between 1 µm < r <

10 µm, as measured by optical microscopy. Fibers of similar dimensions were made

from SIS by dipping a micropipette into a viscous solution of the polymer dissolved

in toluene and quickly pulling the pipette out.

Once a fiber was made it was placed atop a glycerol bath. Small air bubbles were

blown below the surface of the bath, directly below the fiber, with a micropipette with

the same dimensions as the micropipette described above, connected to a syringe filled

with air. As the bubble rises due to buoyancy, the surface of the film as well as the

fiber are pushed above the undeformed surface of the bath into a cap-like shape. A

side-on schematic of this process as well as two optical images of the process are shown

in Figure 4.1. This cap has some curvature which causes glycerol to drain from the

curved surface into the undeformed bath, resulting in the thinning of the deformed

glycerol layer. The thinning process is observed optically by imaging the cap with

monochromatic light. Depending on the film thickness, the light will constructively

or destructively interfere with itself as it passes through the film and is reflected back

to the objective. The film begins with a uniform color and with time, interference

fringes form. An example of these fringes is shown in Figure 4.2. The fringes move

radially outward, signifying that material is moving from the centre, outwards.

When the cap reaches a critical thickness, the fiber will bridge across the liquid

membrane as shown schematically in Figure 4.3. At this point, the fiber may begin to

migrate down the cap toward the circumference of the light circle which demarcates
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Figure 4.2: Optical image of an air bubble rising from below the surface of a glycerol
bath, taken with monochromatic light. This scale bar is 250 µm. As the air bubble
rises, the surface of the bath becomes deformed into an approximately spherical cap
creating a thin glycerol membrane above the undeformed surface of the bath. As
the membrane thins, interference fringes (black and white concentric circles) form
and move radially outward. As the bubble reaches its equilibrium height above the
surface of the bath, a single distinct inner circle emerges like in Figure 4.1.

where the cap converges with the undeformed surface of the bath. This process is

shown in Figure 4.1. The outer radius of the bubble Rb and inner radius Rc – which

is located at the circumference of the light circle – are measured optically. If the fiber

migrates all the way to the inner circumference, it is considered to have “flopped”.

In some instances where the fiber is thin and readily deformed and the air bubble is

large, this migrating process can be replaced by the fiber creating an S-like shape on

the cap as a large extent of fiber is pulled on to the cap. An example of this is shown in

Figure 4.4 (A). The experiments are limited to fiber-bubble size combinations where

this will not happen.

After the fiber has migrated to the edge of Rc, the fiber may continue to wrap

around the circumference of Rc similar to Figure 4.4. This appears to continue until

the fiber is unable to continue bridging the increasingly thick glycerol membrane, an
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Figure 4.3: Schematic of an end-on fiber sitting atop a fluid bath and an end-on fiber
bridging a fluid film.

imperfection in the fiber or bath (such as a dust particle) slows its progression, or the

bubble pops, however, this process is not yet fully understood. Bubbles for which a

fiber has stopped winding but have not immediately popped have been observed to

last for several hours

4.4 Results and Discussion

In the experiment described above, an air bubble is produced below the surface of

a glycerol bath which deforms the surface of the bath creating a “cap” that extends

above the surface of the glycerol as shown in Figure 4.1. A thin polymer fiber (Elas-

tollan, SIS or PS) is laid across the cap and as the glycerol film forming the cap thins,

the fiber “bridges” across the film and in some instances, will “flop” to one side of

the cap. Figure 4.3 schematically shows an end-on cross-section of the fiber in the

unbridged and bridged orientations. The bridging process removes a solid-liquid and

liquid-vapor interface and replaces it with an solid-vapor interface. Bridging results

in a change in interfacial energy per unit length,

∆Esurf

L
= (2rθy(γsv − γsl)− 2rγ sin(θy)) (4.1)
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A

B

Figure 4.4: (A SIS fiber of r ≈ 5 µm winds around an air bubble on a glycerol bath
before (A) and after (B) the bubble pops.
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where L is the length of fiber which bridges, r is the radius of the fiber, θy is the

Young’s angle made between glycerol and fiber material, γsv is the solid-vapor inter-

facial tension, and γsl is the solid-liquid interfacial tension. When this parameter is

negative, it is more favorable for the fiber to be in the bridged state. This creates a

tendency for the fiber to be pulled on to the bubble and subsequently wind around

the perimeter of the cap – the longer the length of fiber that bridges, the larger the

reduction in interfacial energy in the system.

Initially, the fiber is laid across the top surface of the air bubble. As more fiber

is pulled on to the air bubble, the fiber must reorient to accommodate this extra

length. The easiest way to achieve this is for the fiber to “flop” to one side of the

air bubble. Figure 4.1 shows a top-view of a fiber-bubble system before and after

a flopping event. This type of flopping event allows for an increase in the length of

fiber which bridges, while minimizing bending energy - a term which will be described

later. Higher order bending may occur involving multiple inflection points, but these

events are less likely due to the higher bending energy associated with these shapes.

Calculating the change in interfacial energy of the system during a flopping event

is done by applying Equation 4.1 to the change in length of fiber which is bridged in

Figure 4.1 (A) and (B). To determine this lenght a description of the shape of the

glycerol-air cap is required. For small bubbles it has been shown that the Laplace

pressure of the bubble is high enough that gravity does not significantly alter its

shape, such that the entire air bubble can be treated as being spherical [52]. Outside

Rc the thickness of the glycerol film thickens which makes it impossible for the fiber

to bridge beyond the point where the thickness is greater than the radius of the fiber.

Qualitatively, it is found that a fiber that flops to the side of an air bubble will stop
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at Rc, taking on a radius of curvature given by Rc. By measuring Rb and Rc optically,

we can measure the curvature in the fiber in both the flopped (Rc) and unflopped

(Rb sin−1(Rc/Rb) positions. Using this information we can calculate the total change

in interfacial energy,

∆Esurf = (2rθy(γsv − γsl)− 2rγ sin(θy))

(
πRc − 2Rb sin−1

(
Rc

Rb

))
, (4.2)

where the 2 sin−1(Rc

Rb
) term is equal to the angle defining the arc length of the cap

shown in the cross-sectional schematic of Figure 4.1 (C) which is geometrically similar

to Figure 4.3. Using Young’s law, γ cos(θy) = γsv − γsl, Equation 4.2 becomes,

∆Esurf = (2rγ(θy cos(θy)− sin(θy)))

(
πRc − 2Rb sin−1

(
Rc

Rb

))
. (4.3)

Equation 4.3 accounts for the difference in energy between a fiber floating on a

bath and bridging a film, and is applied across the difference in length between the

fiber lying atop the cap and wrapping exactly half-way around the perimeter of the

cap. We find qualitatively that the fiber will bridge across the diameter of a bubble

and the points of the fiber on the circumference of the bubble remain roughly fixed

which, if a fiber flops, will result in a fiber which wraps half-way around the bubble.

Since this new radius is smaller than the maximum radius of the air bubble, there

is an increase in bending energy associated with “flopping” to one side of the air

bubble which is given by,

∆Ebend =
πEr4

8

(
πRc

R2
c

−
2Rb sin−1(Rc

Rb
)

R2
b

)
, (4.4)

where E is the elastic modulus of the fiber. Accounting for both the difference in
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interfacial energy and bending energy before and after flopping (∆Etotal = ∆Esurf +

∆Ebend), a value of ∆Etotal < 0 would result in spontaneous flopping. We can define

a “flopping” criteria by setting the change in energy equal to zero,

∆Etotal = 0

= (2rγ(θy cos(θy)− sin(θy)))

(
πRc − 2Rb sin−1

(
Rc

Rb

))
+

πEr4

8

(
πRc

R2
c

−
2Rbsin

−1(Rc

Rb
)

R2
b

)
.

(4.5)

Equation 4.5 can be re-arranged to define a function F (Rc, Rb) =
πR2

c−2RcRbsin
−1(Rc

Rb
)

π−2sin−1(Rc
Rb

)Rc
Rb

which depends exclusively on E, r, θy, and γ:

πR2
c − 2RcRb sin−1

(
Rc

Rb

)
π − 2 sin−1

(
Rc

Rb

)
Rc

Rb

=
πEr3

16(sin(θy)− θy cos(θy))γ
. (4.6)

E, θy, and γ can be measured independently, and using fibers and bubbles of various

sizes, F (Rc, Rb) can be calculated. F (Rc, Rb) is plotted as a function of Er3

(sin(θy)−θycos(θy))γ

in Figure 4.5 for various fiber materials. A fiber that migrates to the perimeter of

the cap is considered a successful flop, and the point is plotted in green. Otherwise,

if the fiber does not reach the perimeter of the cap, the point is plotted in red. By

plotting Er3

sin(θy)−θycos(θy)γ on the x-axis, the theory predicts a slope of π
16

, independent

of fiber and fluid material. This line is shown to in Figure 4.5 in excellent agreement

with the data.

After flopping, the bridging phenomenon still drives the movement of fiber from

the bath to the bubble. Likewise, this creates an increase in the curvature of the fiber
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Figure 4.5: Phase diagram of the flopping transition for Elastollan (circles), SIS
(diamonds) and PS (triangles) fibers in glycerol. F (Rc, Rd) is a function related to
the geometric properties of the air bubble. The slope defining the transition is π2

16
.
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as the fiber takes on a radius of curvature Rc. Balancing these changes in energy as

was done previously, a winding threshold can be calculated,

R2
c =

πEr3

16(sin(θy)− θycos(θy))γ
. (4.7)

For bubbles above this threshold (or conversely, fibers below a certain thickness), the

fiber will spontaneously wind around the bubble. This process is show in Figure 4.6.

Comparing Equation 4.6 and Equation 4.7, we find that the winding process will

occur for a thicker fiber than the flopping process for a given bubble size. This means

if a fiber flops, it will continue to wind around the bubble. Figure 4.4 (A) shows

a SIS fiber that has wound many times around a bubble. SIS adheres to itself, so

when the bubble Figure 4.4 (A) pops, a stunning fiber coil is left behind, shown in

Figure 4.4 (B). We believe the non-circular shape of the fiber loop in Figure 4.4 (B)

is due to a 3-dimensional, circular coil (recall the fiber is winding around a spherical

cap) being confined to a 2-dimensional surface via surface tension.

4.5 Conclusions

In this work, a unique self-assembly process is presented which occurs when thin

polymer fibers were brought in contact with air bubbles below the surface of a glycerol

bath. The fibers were found to deform around the bubbles to allow longer lengths

of fiber to bridge across the glycerol membrane, thus reducing the interfacial energy

of the system. The decrease in interfacial energy of the fiber comes at a cost of

increasing the bending energy of the system. A critical bubble size as a function
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Figure 4.6: Spontaneous winding of a SIS fiber around an air bubble in a bath of
glycerol. The scale bar in the top right frame is 200 µm.
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of fiber material was derived for which fibers would spontaneously wind around a

bubble, and was confirmed experimentally for several fiber materials.

Using solids to stabilize liquid bubbles is an active area of research [53–57]. Wrap-

ping a bubble cap with a bridged fiber should be able to reduce the flow of material

from high curvature back into the bath. The thinning of the liquid membrane is

what ultimately causing bubbles to pop. It is found qualitatively that wound bubbles

last longer than non-wound bubbles. In fact, some wound bubbles were observed to

last for more than 12 hours. It is possible a deformable collection of fibers which

spontaneously wrap around bubbles could be used as a bubble stabilizing technique.

Additionally, it is possible that sufficiently thick or high-modulus fibers could be used

in such an environment to arrange bubbles in a predetermined pattern. Finally, this is

a method which can be used to spontaneously produce micron-sized circular polymer

loops and coils.
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Chapter 5

Conclusions

Elasto-capillarity is the ability of capillary forces to deform elastic structures. This

phenomenon is found at all length scales in the natural world as well as industrial

applications. However ubiquitous these effects may be, many fundamental questions

still remain. In this thesis I have presented two main projects which elucidated elasto-

capillary phenomena in the context of films and liquid drops, as well as fibers and

bubbles.

In Chapter 3, the shape of elastic deformations in compliant polymer films as a

function of tension in the film due to capillary forces from liquid drops was studied.

By balancing interfacial and elastic tensions at the contact line, the interior angle of

a liquid drop in contact with an elastic film was predicted as the tension in the film

was modulated via temperature. While this chapter was limited to a simple system

involving single drops on films of uniform tension, the interaction of several drops on

both sides of a film has yet to be explored. Additionally, the use of non-symmetrically

tensioned films may yield interesting and useful results.

In Chapter 4, the spontaneous winding of slender polymer rods around liquid
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bubbles was investigated. A minimal interfacial energy model was developed and

by balancing the free energy reduction predicted by this model with the increase in

bending energy of the polymer rods, a winding criteria based on the dimensions and

materials of the bubble and rod was found. The winding criteria was confirmed for

several fiber materials. The winding phenomenon in isolation has yet to be fully

understood, as well as the shape the 3-dimensional coil makes when confined to 2

dimensions. Additionally, the applications of this phenomena such as bubble stabi-

lization and self-assembly of fiber loops have yet to be explored.
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