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Abstract

In this paper, a two-stage stochastic facility location problem integrated with inven-

tory and recourse decisions is studied and solved. This problem is inspired by an

industrial supply chain design problem of a large retail chain with slow-moving prod-

ucts. Uncertainty is expressed by a discrete and finite set of scenarios. Recourse

actions can be taken after the realization of random demands. Location, inventory,

transportation, and recourse decisions are integrated into a mixed-integer program

with an objective minimizing the expected total cost. A dual heuristic procedure is

studied and embedded into the sample average approximation (SAA) method. The

computation experiments demonstrate that our combined SAA with dual heuristic

algorithm has a similar performance on solution quality and a much shorter compu-

tational time.
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Chapter 1

Introduction

Facility location problems (FLP), which have been extensively researched since the

first formulation proposed by Weber et al. (1929), have a wide application in supply

chain network design (SCND). Melo et al. (2009) provide a detailed review and dis-

cusses the compatibility of discrete facility location problems and SCND problems.

The uncapacitated facility location problem (UFLP) is one of the most basic and

fundamental discrete FLP models, which acts an important role in SCND models

(Revelle et al. (2008)). In UFLP model, there is a set of potential facility locations

and a set of demand locations. Facilities are chosen to open to minimize overall cost

while satisfying all known demands. Transportations are then made to the demand

location with demand from its closest open facility. It is assumed that each facil-

ity has unlimited capacity, and thus the size of an open facility is automatically the

summation of all demands served.

Stochastic facility location problem (SFLP) is an important extension of UFLP

for several reasons. Location decisions are usually involved with allocations of large

amount of investment, and as such they are difficult to revert and often remain
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effective for a long period of time. This makes it more difficult to estimate model

parameters, like the amount of demand, market price, or transportation cost. It also

increases uncertainty of environment, for example demand pattern might fluctuate

during a long period of time. All of these make deterministic models less reliable for

decision makers upon which to rely. Snyder (2006) provides a thorough review about

recent developments and applications of SFLP.

Louveaux and Peeters (1992) introduce a very interesting extension of UFLP,

which takes uncertainty into account, and models capacity decisions as first stage

decisions similar to location decisions. They use a scenario approach to represent

uncertain demand and cost parameters, and formulate a two-stage mixed-integer

stochastic program with recourse. Location and capacity decisions are established

at the first stage considering all possible scenarios, and then the most profitable dis-

tribution decisions are made. The dual ascent heuristic algorithm, which is developed

by Erlenkotter (1978) for a deterministic UFLP model, is extended for their stochastic

UFLP problem. Their contributions are not only the stochastic extension of UFLP

model and its solution procedure, but also their unique way of regarding capacity

decisions strategic as similar to location decisions.

More and more literature on incorporating inventory decisions in location deci-

sions, known as location-inventory problems, are emerging recently. In typical loca-

tion problems, tactical and operational decisions, like inventory and transportation

decisions, are often neglected while making location decisions. This assumption is

made for the benefit of modelling simplification, and often leads to sub-optimal so-

lutions of realistic problems. On the other hand, most research on inventory man-

agement are built on predetermined facility locations. They focus on deciding the

2
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optimal replenishment policy, like re-order-point and order quantity, and safety stock

level under uncertainty without modifying the existing facility location network. Inte-

grated location-inventory models may lead to better location and inventory decisions,

especially when holding cost and demand variability are high. Farahani et al. (2015)

describe a general location-inventory model and summarize recent developments in

this area.

Inspired by an industrial case from a large retail chain with slow-moving products,

we propose a stochastic UFLP model integrated with inventory and recourse decisions.

A heuristic procedure based on Louveaux and Peeters (1992) is implemented, adjusted

and tested. Based on its experimental results, we propose to embed the heuristic

procedure into the sample average approximation (SAA) method. First, it is not

practical to enumerate all possible scenarios in our two-stage stochastic problem;

Second, computational results show that the heuristic procedure provides a tight

lower bound and other features suitable for SAA method. Experiment results of

both the standard SAA method and the SAA method with heuristic procedure are

reported.

We consider the integrated location-inventory problem of a large retail chain for

spare parts, which have a low turnover rate. In the supply chain, there are a few

national Distribution Centers (DCs) and hundreds of stores. Each DC keeps all the

SKUs, which are stock keeping units. The stores can be divided into two types: the

Super Store (SS) is larger compared with the Regular Store (RS) and keeps more

SKUs. We focus on slow moving SKU. We assume that the demand arrives according

to Poisson process at each store. Usually, an RS does not keep the SKU. Once a

demand happens in an RS, three scenarios could happen. The RS could get one unit

3
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SKU from a nearby SS, or from a national DC, or from a third-party logistics (3PL).

The distribution system structure is illustrated in Figure 1.1.

Note that the lead times and costs of the different sources (SS, DC, or 3PL) are

quite different. The approximate leading times and costs are listed in Table 1.1.

Table 1.1: Lead times and costs of different sources

Source Lead Time Procurement Cost

DC Around one day Cheapest

SS Hours, less than a day Medium

3PL Hours, less than a day Most expensive

Our objective is to minimize the expected total costs under demand uncertainty.

The decisions can be classified into two categories. Before the random demand is

realized, we select SSs to store the SKU and the inventory levels of the SKU at the

selected SSs. After the random demand is realized, we decide the supplier, which

is among the selected SSs, to satisfy the demand. This setting leads to a two-stage

stochastic facility location problem with inventories and penalties (SFLPILP).

Under the assumption of slow-moving demands, our model features two aspects:

first, it models uncertainty of demands using a two-stage stochastic facility location

model with recourse; second, it integrates inventory decisions into the classical un-

capacity facility location model. Although there exists splendid literatures on each

seperated stream of research area, there is a few literature combining inventory de-

cisions with location decisions, especially viewing inventory decisions as strategic

decisions. Another contribution is that we successfully embed the dual heuristic pro-

cedure into the sample average approximation method and demonstrate that the SAA

with heuristic procedure method is more efficient with no significant negative impact

4
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on solution quality.

In the following chapters of this paper, chapter 2 gives a brief literature review

on related research; chapter 3 presents our extended mixed-integer stochastic facility

location model; chapter 4 illustrates sample average approximation method; chapter

5 describes details of a dual heuristic procedure and its adjustment; chapter 6 reports

computational results on the standard sample average approximation procedure, and

the SAA with heuristic procedure.

5
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(a) The System Map (b) Replenishment

(c) Transportation from Super Store (d) Transportation from 3PL

(e) Transportation from DC

Figure 1.1: Distribution System Structure
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Chapter 2

Literature review

Supply chain (SC) design involves three levels of decisions: strategic, tactical, and

operational decisions. Strategic decisions, usually refering to location decisions, are

long-term decisions and are made independently from tactical and operational deci-

sions, which usually refer to inventory and transportation decisions. Discrete facility

location models are naturally applicable for strategic supply chain design; Melo et al.

(2009) provides a thorough analysis on literatures using facility location models to

tackle strategic supply chain design problems. However, Farahani et al. (2015) pointed

out that this traditional way of modeling strategic, tactical, and operational decisions

might cause sub-optimal solutions; and, integrating location and inventory decisions

is a new trending research direction.

2.1 Risk-pooling effects

It is not an innovatory idea to configure an SS as a retailer-based distribution centre

(DC) in a retail chain supply chain network. A retailer-based DC is a retailer who

7
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acts as a DC, receiving replenishment directly from warehouses or higher level of DCs,

and distributing products to retailers assigned to it. It does not lose its function as a

retailer; it can serve customers by itself.

Eppen (1979) first introduce the term ‘Risk-pooling effect’ where centralization

can decrease inventory cost significantly in a decentralized system. Based on the

Newsvendor model, they simulate inventory cost required for a centralized system

and a decentralized system. In the decentralized system, all DCs hold inventory

to satisfy their own demand, while in the centralization system only one DC hold

inventory for all demand in the system.

Barahona and Jensen (1998) approach the inventory decision problem using the fa-

cility location model. Their research is motivated by a logistic system design problem

for computer spare parts. They have a similar assumption as us, which is that distri-

bution decisions are binary. This assumption is very common in the design of spare

parts logistic system models. They consider multiple kinds of products. As well, in-

ventory decisions are also assumed strictly binary. The binary programming problem

is solved using the Dantzig-Wolfe decomposition method. Their main contributions

are integrating inventory decisions into facility location problems, and using a sub-

gradient optimization method to improve the convergence rate of the Dantzig-Wolfe

decomposition method. However, their model is under strict assumptions, which is

deterministic and has binary inventory decisions.

A retailer-based DC not only serve its own demands but also distribute inventories

to other retailers which have demand request, which is exactly our configuration of

Super Stores’ functions. There are several benefits of this setting. Also motivated

8
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by an industrial case, Shu et al. (2005) explain this idea that instead of maintain-

ing inventories at every single retailer, pooling inventory at several selected retailers,

which are referred to as retailer-based DCs, can decrease inventory costs, improve ser-

vice levels, and shorten service waiting times. They study a two-stage scenario-based

stochastic model to minimize the expected total cost including converting retailers to

retailer-based DCs, holding inventory, and transporting products. The fixed conver-

sion cost includes training the personnel to handle this new line of business, upgrading

facilities to fit this new logistic tasks and others related. At the first stage, several

retailer-based DCs are chosen from all retailers upon all possible scenarios under un-

certain demands. Then, transportation decisions are made after the realisation of

random parameters. The inventory holding cost is integrated into the formulation of

their model as a cost component in the objective function, which is expressed as a

concave function of transportation decision variables. In this way, the model takes the

impact of inventory holding cost into consideration while selecting locations. Snyder

et al. (2007) describe a similar and more generic model.

2.2 Location-inventory problem

Recently, there is a growing amount of research focusing on integrating inventory

decisions into facility location models.

Daskin et al. (2002) introduce an integrated model for generic high-volume demand

in which the replenishment cost from suppliers, working inventory holding cost, and

safety stock holding cost at DCs are calculated using Economic Order Quantity (EOQ)

model. The total amount of inventory requests faced by each DC is expressed by

the summation of distribution decisions. Therefore all the inventory related cost

9
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components are non-linear functions of distribution decisions. These cost components

are then incorporated into the object function of the traditional uncapacitated facility

location model, which leads to a non-linear FLP problem. The problem is solved using

Lagrangian solution algorithm. Jayaraman (1998), who proposes a similar model, uses

a linear function to represent inventory related cost components. For more literature

about high-volume demand integrated location-inventory problems, refer to Farahani

et al. (2015).

Nozick and Turnquist (2001) point out that for lower-demand products it is more

beneficial to centralize inventories compared to higher-demand products. The paper

uses two separate models for inventory problems and location problems respectively.

The inventory model provides an estimation value, which serves as cost coefficients

in the location model. In this way, they integrate the effect of inventory policy

into location decision process. Gzara et al. (2014) study an integrated location-

inventory problem for a service-part logistics system, which is closely related to our

research. The assumption of only slow-moving and high-value items are considered

distinguishes it from most of the other literature on this topic. They also state that

for low-volume and random demands, which is the same as our assumption, it is

sufficient to use base-stock (s−1, s) policies to approximate inventory cost instead of

using the economic-order-quantity reorder-point policy used for high demand items

(see Graves (1985), Sherbrooke (2006)). Differing from their approach, where they

use probability constraints to control service levels under uncertain demands, we use

the scenario approach combined with recourse actions to evaluate lost sale costs.

Only slow moving, intermittent and unitary demands are considered in our paper,

that is to say that demands are unpredictable, scarce, and only one unit request per

10
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demand occurrence. This assumption applies to many situations, like vehicle main-

tenance, repair service, spare parts, and service parts. For example, when a vehicle

or a machine breaks down it will require only the one specific spare part for that

specific model of the vehicle or machine. We use base stock replenishment policy

as our inventory management policy. We assume that the supply chain system has

low-volume demands, that the centre warehouses are always well stocked, and that

replenishments are frequent and periodic. Recourse actions are modeled to control

the system-wise service quantity by setting penalties for unmet demands. One of the

difficulties solving integrated location-inventory models is that inventory considera-

tions bring in non-linearities (Erlebacher and Meller (2000), Miranda and Garrido

(2004), Shu et al. (2005)), which is avoided for slow-moving products.

2.3 Stochastic discrete facility location problem

Our model is based on uncapacitated facility location problem (UFLP), see equation

(2.1).

min
∑

i fiyi +
∑

i

∑
j cijxij

s.t.
∑

i xij = 1 ∀j

xij ≤ yi ∀i, j

yi ∈ {0, 1} ∀i

xij ∈ {0, 1} ∀i, j

(2.1)

In the equation, index i ∈ I is the index for potential facilities, and set I is the set

of all potential facilities; index j ∈ J is the index for demand locations, and set J is

11
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the set of all demand locations. All parameters are deterministic, where fi represents

fixed open cost for facility i, and cij represents transportation cost from facility i to

demand location j. For decision variables,

yi =


1, if facility i is open

0, otherwise

xij =


1, if demand j is served by facility i

0, otherwise.

UFLPs chose the optimal facility locations and distribution plans to minimize

location and allocation cost under the assumption that each facility has unlimited

capacity. Revelle et al. (2008) summarize some basic facility location models and the

recent development of their applications in their paper.

Two-stage stochastic programming is naturally suitable for facility location prob-

lems under unceratinty. Location decisions, which involve deploying large amount of

resources and incur a relatively high cost, usually remain effective for a long period

of time. During this period, other decisions may need to be made according to the

current situations, like demand or cost parameters at that time. As such, at the first

stage location decisions are made for all possible scenarios; at the second stage the

other decisions are made for each scenario, like inventory, allocation, transportation,

or penalty decisions.

For two-stage stochastic facility location problems, one aspect distinguishes them

12
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from each other, which is that decisions belong to the first stage. Stochastic transportation-

location problems are the ones in which both transportation and location decisions

are the first stage decisions, that is transportation plans are determined for all pos-

sible situations. Albareda-Sambola et al. (2011) also consider allocation decisions as

first-stage decisions, which are decided before the observation of random Bernoulli

distribution demands. Unsatisfied demands are then outsourced when the total re-

quirements exceed the capacity of a facility. Under the assumption that random

demand variable distributions for each demand location are homogeneous, their op-

timization formulation can be re-formed as a mixed-integer programming problem.

Bieniek (2015) considers a similar problem with a more general random demand distri-

bution assumption. Louveaux (1986), Snyder (2006), Melo et al. (2009), and Laporte

et al. (2015) describe both recent developments and applications of stochastic FLP

models.

Louveaux (1986) proposes a scenario-based two-stage stochastic FLP to represent

uncertainties of demands, profits, and transporation costs with an objective to max-

imize the system’s profit. Two distinguished features of their model are that both

locations and capacities are decided before the realisation of uncertain events, and

the most profit actions are taken after random events are observed.

Their model is known as the Stochastic Simple Plant Location Problem (SSPLP)

as follows.

13
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max −
∑

j gjzj −
∑

j fjxj + Eξ max
∑

i

∑
j di(pi − cij)yij

s.t.
∑

j yij ≤ 1 ∀i∑
i diyij − zj ≤ 0 ∀j

yij − xj ≤ 0 ∀i, j

xj ∈ {0, 1} ∀i

yij ≥ 0 ∀i, j

zj ≥ 0 ∀j

x and z represent location and capacity decisions, respectively, which are made

before random demand d, price p, and c are realised. After random variables are

observed, distribution decisions y are made to maximize the objective profit. The

unique feature about this model is that inventory decisions are first-stage decisions,

while most location-inventory problems assume that inventory decisions are opera-

tional, that is to say, second-stage decisions. Based on this formulation, we extended

it by allowing recourse actions and restricted our distribution decision variables as

binary variables and inventory decision variables as integral variables. Since we are

considering slow-moving Bernoulli distribution demand, it does not make sense to use

fractional distribution decisions.

Louveaux and Peeters (1992) later extend an heuristic algorithm based on the

famous dual ascent procedure developed for deterministic facility location problem

(Erlenkotter (1978)) to solve the stochastic FLP model. Recent improvements on

dual heuristic procedure can be found at Cánovas et al. (2007), Janáček and Buzna

(2008), Letchford and Miller (2012), Marques and Dias (2013).

14
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One difficulty in discrete stochastic problems is that the number of scenarios can

be too large to be solvable. Kleywegt et al. (2002) first introduce the sample aver-

age approximation (SAA) method using sampling approach to conquer this difficulty.

Ahmed et al. (2002) study the application of SAA specifically for two-stage stochastic

problems with integer recourse. Both of their studies show that the SAA algorithm

converges under certain parameter settings. Based on their studies, we implemented

the SAA algorithm for our model, and creatively integrated the dual heuristic into

SAA algorithm. We showed that the integrated SAA algorithm has a better perfor-

mance.

15



Chapter 3

The model

Among all the stochastic facility location models, Louveaux and Peeters (1992) at-

tracts our attention, because capacity decisions are made at the first stage in their

model, which is consist with our base stock inventory policy. In our model, inventory

at each opened facility is assumed to be replenished up to a determined level as an

initial status of the system.

3.1 Notations

We use i to denote one SS, where i ∈ I and |I| = N ; j denotes a RS, where j ∈ J

and |J | = M . s ∈ S is the index of scenarios in the second stage of the two-stage

stochastic program; ps is the probability of scenario s. Sets I, J , and S are such the

set of SSs, RSs, and scenarios. We use djs to represent the demand at RS j, where

djs = 0 means that RS j has zero demand under scenario s, and djs = 1 means that

RS j has demand request under scenario s. Note that the demand arrives according

to a Poisson process, so that either djs = 0 or djs = 1. Once the demand arrives, we

16
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can satisfy the demand from SS, DC or 3PL. If the demand is satisfied by DC or 3PL,

we can tell which one to choose by comparing their costs and the customer waiting

time requirements. See table (3.1) for a complete list of notations.

Table 3.1: Notations

Sets(Index)

i index of SS, i ∈ I

j index of RS, j ∈ J

s index of Scenario, s ∈ S

Decision variables

yi binary variables

yi = 1 if and only is SS i has positive stock.

Vi nonnegative integer variables

that indicates inventory level of SS i.

xijs binary variables

xij = 1 if and only if the demand at RS j is satisfied by SS i.

zjs binary variables

zj = 1 if and only if the demand at RS j is satisfied by DC or 3PL.

Parameters

fi fixed cost of SS i

hi Holding cost of one unit in SS i

tij Transportation cost from SS i to RS j

cjs The cost of satisfying the demand at RS j by DC or 3PL.

17
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3.2 Formulation

The optimization problem (P ) is represented as follows:

min
∑
i

fiyi +
∑
i

hiVi +
∑
s

ps
∑
j

(
∑
i

tijxijs + cjszjs) (3.1)

s.t. xijs ≤ yi ∀i, j, s (3.2)∑
j

xijs ≤ Vi ∀i, s (3.3)

∑
i

xijs + zjs ≥ djs ∀j, s (3.4)

yi ∈ {0, 1} ∀i (3.5)

zjs ∈ {0, 1} ∀j, s (3.6)

xijs ∈ {0, 1} ∀i, j, s (3.7)

Vi ∈ Z+ ∀i. (3.8)

The objective funciton (3.1) consists of fixed costs for configuring an RS as a retailer-

based DC, inventory holding costs, transportation costs, and either DC or 3PL cost.

Constraint (3.2) indicates that only when an SS is configured as retailer-based DC,

its inventory can be transported to satisfy a demand of RS. Constraint (3.3) requires

that the total amount of SKUs transported from an SS can not exceed its inventory

level. Constraint (3.4) requires that a demand will always be satisfied either from

an SS within its feasible range, or a DC, or a 3PL. Constraints (3.5), (3.6), (3.7)

and (3.8) define the decision variables respectively. Note that we use Z+ to represent

nonnegative integer variables.

18



Chapter 4

Sample Average Approximation

algorithm

Solving our discrete stochastic problem exactly is not practically possible, as the scale

of the number of scenarios makes it computationally prohibitive. If we only consider

two possibilities for each demand location, with demand or no demand, there would

be 2M different scenarios, where M is the number of demand locations. That is

without considering varieties brought by varying waiting time. Ahmed et al. (2002)

studies the Sample Average Approximation (SAA) Method for stochastic problems

with integer recourse, which provides us theoretical foundations for applying SAA

method to our problem. For stochastic problems with discrete and finite first stage

decision variables and recourse decision variables, it is shown that the probability of

an SAA problem solution being a true optimal solution approaches one exponentially

fast as the size of SAA problem increases. They also point out that solutions of SAA

problems are all candidate optimal solutions of the true problem, where the true

problem refer to the original problem. The SAA problem with sample size N for our

19
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problem is shown in equation (4.1).

min
∑

i fiyi +
∑

i hiVi + 1
N

∑N
s=1

∑
j(
∑

i tijxijs + cjszjs)

s.t. xijs ≤ yi ∀i, j, s∑
j xijs ≤ Vi ∀i, s∑
i xijs + zjs ≥ djs ∀j, s

yi ∈ {0, 1} ∀i

zjs ∈ {0, 1} ∀j, s

xijs ∈ {0, 1} ∀i, j, s

Vi ∈ Z+ ∀i.

(4.1)

The main idea of SAA method is quite simple. Since we know the solution of our

SAA problem is potentially optimal with positive probability, we can replicate and

solve SAA problems until it reaches a stopping criteria. With M replications and p

probability that an SAA problem solution is optimal, the probability that at least one

of the solutoins is optimal is 1 − (1 − p)M (Kleywegt et al. (2002). Random sample

variables are generated independently, the corresponding SAA problems are solved

and a lower bound is estimated based on their solutoins.

The estimated lower bound for our original problem (P) is given as follow, using

the notation convention used for SAA method in (Kleywegt et al. (2002)). Using f̂N to

represent the SAA problem based on a sample with size N , the expected value of the

optimal objective value of SAA problem for M iterations provides us the estimated

lower bound, f̄MN is:
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f̄MN =
1

M

M∑
m=1

f̂mN . (4.2)

For every iteration, paired with one SAA problem, another random sample is

generated independently with the sample size N ′, and the corresponding problem,

called reference problem, is solved. The reference problem, given in equation (4.3),

provides an estimate upper bound for the SAA problem solution. The upper bound

f̂N ′ for the first stage decisions (ŷ, V̂ ) is given as:

f̂N ′(ŷ, V̂ ) =
∑
i

fiŷi +
∑
i

hiV̂i +
1

N ′

N ′∑
n=1

Q(ŷ, V̂ , ξn), (4.3)

where Q(ŷ, V̂ , ξn) is the second-stage recourse function

Q(ŷ, V̂ , ξn) = min
∑

j(
∑

i tijxij + cj(ξ)zj)

s.t. ŷi − xij ≥ 0 ∀i, j

V̂i −
∑

j xij ≥ 0 ∀i

zj +
∑

i xij ≥ dj(ξ) ∀j,

zj ∈ {0, 1} ∀j

xij ∈ {0, 1} ∀i, j.

With the lower and upper bound, the optimality gap is estimated by

f̂N ′(ŷ, V̂ )− f̄MN (4.4)

Details of the SAA algorithm are given in algorithm (1).

An important measurement parameter on the solution quality is the variance of
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Algorithm 1 SAA Algorithm

1: Initialize:
2: sample size N and N ′;
3: iteration number M .
4: for m = 1, ...,M do
5: Generate random sample ξ1, ..., ξN ;
6: Solve the SAA problem (4.1) to optimal, and record its solution as (ŷ, V̂ )mN and

objective value as f̂mN ;
7: Generate random sample ξ1, ..., ξN

′
;

8: Evaluate f̂mN ′(ŷ, V̂ ) using (4.3);
9: end for
10: Evaluate f̄ using (4.2);
11: for m = 1, ...,M do
12: Calculate the estimated optimality gap for solution (ŷ, V̂ )mN using (4.4);
13: end for
14: Return the candidate solution with the smallest estimated optimality gap

SAA problem solutions and reference problem solutions. Based on Ahmed et al.

(2002), the solutoin variance can be estimated by equation (4.5):

1

M(M − 1)

M∑
m=1

(f̂mN − f̄MN )2 +
1

N ′(N ′ − 1)

N ′∑
n=1

[
Q(ŷ, V̂ , ξn)− 1

N ′

N ′∑
n=1

Q(ŷ, V̂ , ξn)

]2

.

(4.5)

Solving SAA problems to optimal at every iteration can be extremely time consum-

ing. We propose an SAA method with dual heuristic algorithm, the dual embedded

SAA algorithm, in which SAA problems are solved by a heuristic algorithm to being

near-optimal. This heuristic procedure provides a lower bound for the objective and

a feasible primal solution of the SAA problem, which is suitable for replacing step (6)

in algorithm (1). We use LB(f̂N) to represent the lower bound given by the heuristic

procedure for an SAA problem with sample size N , and (ŷε, V̂ ε) to represent its cor-

responding near-optimal primal solution within ε optimality gap. The upper bound

is thusly estimated as f̂N ′(ŷε, V̂ ε), similar to equation (4.3), and the lower bound is
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estimated as 1
M

∑M
m=1 LB(f̂mN ) similar to equation (4.2). The rest of algorithm (1)

remains the same.

Near-optimal solutions from the heuristic procedure for the SAA problems are

potential optimal solutions for the real problem. We know that the feasibility of the

near-optimal solutions for SAA problems are guaranteed by the heuristic procedure.

And, for stochastic programs with integer recourse, it is proved by Ahmed et al.

(2002) that feasible solutions for SAA problems are also feasible solutions for the

real problem. Kleywegt et al. (2002) states that as N → ∞, near-optimal solutions

(ŷεN , V̂
ε
N) belong to the set of all feasible solutions for the original problem within

ε optimality gap. As such, we can conclude that near-optimal solutions for SAA

problems are potential optimal solutions for the real problem. Although we can not

be certain of the convergent rate of heuristic solutions, experimental results show that

it has similar performance as the standard SAA algorithm.

Similar to the reasoning for the selection process from optimal solutions of SAA

problems, with a positive probability pε that the near-optimal solution for SAA prob-

lem is the optimal solution for the real problem, the probability that at least one of

the solutions is indeed optimal for the real problem is 1− (1− pε)M . In the following

section, we discuss the heuristic procedure.
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Chapter 5

A primal-dual algorithm

In this section, a primal-dual heuristic algorithm is proposed to solve the two-stage

stochastic facility location problem with penalties and inventories. The procedure

is inspired by Erlenkotter (1978) for deterministic uncapacitated problems and Lou-

veaux and Peeters (1992) for extended stochastic uncapacitated problems. The al-

gorithm was original designed for stochastic problems with linear recourse functions,

and our problem features integer recourse function. However, as shown in Louveaux

and Peeters (1992), the primal-dual heuristic algorithm naturally returns integral

solutions, which is suitable for our problem with some minor adjustments.

5.1 Dual procedures

The condensed dual problem formulation is essential for dual ascent heuristic proce-

dure, which is shown as below.
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ZD = max
∑
j

∑
s

djsvjs (5.1)

s.t.
∑
j

∑
s

max{0, vjs − uis − t′ijs} ≤ fi ∀i (5.2)

∑
s

uis ≤ hi ∀i (5.3)

vjs ≤ c′js ∀j, s (5.4)

uis ≥ 0 ∀i, s (5.5)

vjs ≥ 0 ∀j, s. (5.6)

Comparing our condensed dual problem with the one in Louveaux and Peeters

(1992), there are some differences deriving from their original problems. Our model

requests that all demand are satisfied either by allocaitons from SS or by penalty

actions from 3PL, whereas their model only require an allocation resulting in a max-

imum profit. Therefore, there are three obvious differences: first, demand random

variables are integrated in the objective function of our condensed dual problem; sec-

ond, there is an upper boundary on the value of variable v. The dual variable v

represents the marginal cost of shipping one unit of product from a SS and it should

not exceed 3PL cost. Third, the coefficients of dual variable u are uniform in the first

constraints. Tcha and Yoon (1985) extend the dual heuristic procedure on a more

complicated situation, where coefficients of both the objective and constraint of the

condensed dual problem are nonuniform. By associating each dual variable with a

measure based on the value of their coefficients, they distinguish their priorities in

the dual ascent procedure. Our case is quite straightforward, for the dual variables
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with zero coefficients, djs = 0, do not contribute any improvement on the objective

value, so we can simply omit them, that is, set them to be zero.

Similar to the approach by Louveaux and Peeters (1992), we have two separate

procedures corresponding to v and u variables. In the v-ascent procedure, the ob-

jective is increased by increasing the value of v until it is blocked by constraints; in

the u-ascent procedure, the slackness constraints are loosened as much as is allowed

by increasing the value of u. In the following section, we present both dual heuris-

tic procedures. The combination of both procedures return the final result for the

condensed dual problem, based on which we can construct solutions for the primal

problem.

5.1.1 The v-ascent procedure

Based on Louveaux and Peeters (1992), we fix the value of u and try to increase the

value of v. For ease of discussion, we introduce the slack variables si of (A.10) written

as

si = fi −
∑
j

∑
s

max{0, vjs − (uis + t′ijs)}, ∀i ∈ I.

The value of slack variables decreases while we increase the value of variable v till it

reaches zero. At the beginning, each vjs is set to vjs = mini∈I{uis + t′ijs} for all j ∈ J

and s ∈ S if djs = 1; otherwise, vjs is set to be zero. When this procedure is repeated

in a subsequent iteration, the initial vjs values are set to the last computed values.

Starting from an initial and feasible solution, the v-ascent procedure repeatedly

increases the value of {vjs|djs 6= 0} to the next higher value of uis+t
′
ijs. The procedure

terminates when an increase in the value of v leads to a violation of constraints (A.10)

or (A.12). The procedure improves the dual objective value monotonically since we
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only increase the v varaibles with positive coefficient in the objective function. Values

of t′ijs + uis are computed and ordered nondecreasingly for each pair of index j and s

similar to Louveaux and Peeters (1992).

A detailed description of the algorithm is provided in algorithm (2) and (3).

Algorithm 2 Initialization

1: Calculate and order sequence qjs(∗) for each pair of index (j, s).
2: Initialize vjs ← qjs(1) for each j ∈ J, s ∈ S, or the nearest value in sequence qjs

to its last computed result.
3: Initialize si ← fi −

∑
j

∑
smax{0, vjs − (uis + t′ijs)} for each i ∈ I

4: Initialize index k(j, s)← min{k : vjs ≤ qjs(k)} for all j ∈ J, s ∈ S

5.1.2 The u-ascent procedure

In u-ascent procedure, the value of the v variables are fixed and u variables are

updated to create more slack values of the first constraints.

The slack variables si of (A.10) can be written as

si = fi −
∑
j

∑
s

max{0, (vjs − t′ijs)− uis} ∀ i.

For a given i∗, we would like to minimize
∑

j

∑
s max{0, (vjs − t′i∗js) − ui∗s} to

increase the value of si∗ . The optimization problem can be written as:

min
∑

j

∑
s max{0, (vjs − t′i∗js)− ui∗s}

s.t.
∑

s ui∗s ≤ hi∗

ui∗s ≥ 0 ∀s.

The main step of u-ascent procedure is decreasing the value of ui∗s where (vjs−t′i∗js)−
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Algorithm 3 The v-ascent procedure

1: repeat
2: δ ← 0
3: for all j such that j ∈ J+ do
4: for all s such that s ∈ S+ do
5: if djs > 0 and vjs < c′js then
6: ∆← mini∈I{si : vjs − (uis + t′ijs) ≥ 0}
7: if ∆ > qjs(k(j, s) + 1)− vjs or ∆ > c′js − vjs then
8: if qjs(k(j, s) + 1) > c′js then
9: ∆← c′js − vjs
10: else
11: ∆← qjs(k(j, s) + 1)− vjs
12: k(j, s)← k(j, s) + 1
13: end if
14: δ ← 1
15: for i ∈ {i : vjs − (uis + t′ijs) ≥ 0} do
16: si ← si −∆
17: end for
18: vjs ← vjs + ∆
19: end if
20: end if
21: end for
22: end for
23: until δ = 0
24: return Znew

D =
∑

j

∑
s djsvjs
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ui∗s > 0 if it is allowed by constraints
∑

s ui∗s ≤ hi∗ . A detailed description is given in

algorithm (4). The initial idea of the algorithm is to increase the value of ui∗s where

(vjs− t′i∗js)− ui∗s is the smallest positive value. However, finding the minimum value

of (vjs − t′i∗js)− ui∗s > 0 itself requires O(|J | ∗ |S|) complexity. Instead, we increase

the first ui∗s where (vjs − t′i∗js) − ui∗s > 0, which shortens the computational time

significantly.

Algorithm 4 The u-ascent procedure

1: initialization
2: gi∗ ← hi∗ −

∑
s ui∗s

3: qi∗js = t′i∗js + ui∗s for all (j, s)
4: repeat
5: δ ← 0
6: (∆, s′)← {(vjs − qi∗js, s)|vjs − qi∗js > 0}
7: ∆← min{∆, g∗i }
8: ui∗s′ ← ui∗s′ + ∆
9: g∗i ← g∗i −∆
10: if g∗i ≥ 0 then
11: δ ← 1
12: end if
13: for all j do
14: if vjs′ − qi∗js′ > 0 then
15: Slack variables from v-ascent procedure are updated by si∗ = si∗ + ∆
16: end if
17: qi∗js′ ← qi∗js′ + ∆
18: end for
19: until δ = 0

5.1.3 The u-v ascent procedure

By applying v-ascent and u-ascent procedure sequentially, we have v-u ascent proce-

dure, which increases the objective value of the condensed dual problem nondecreas-

ingly and returns a feasible solution.
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5.2 Construction of primal feasible solution

By the complementary slackness theorem from linear programming theory (Luen-

berger and Ye (1984)), the primal optimal solution of the linear relaxation problem

and the dual optimal solution of the condensed dual problem must satisfy the follow-

ing conditions:

yi × si = 0 ∀i (5.7)

Vi × (
∑
s

uis − hi) = 0 ∀i (5.8)

zjs × (vjs − c′js) = 0 ∀j, s (5.9)

max{0, vjs − uis − t′ijs} × (yi − xijs) = 0, ∀i, j, s (5.10)

uis × (Vi −
∑
j

xijs) = 0, ∀i, s (5.11)

vjs × (
∑
i

xijs + zjs − djs) = 0 ∀j, s (5.12)

We define eligible facilities as I∗ = {i ∈ I|si = 0} and the subset I+ ∈ I∗ where

for each {(j, s)|djs 6= 0}, there exists some i ∈ I+ such that vjs > t′ijs + uis. The

construction of I+ follows a revised procedure of Erlenkotter (1978) and is described

in algorithm (5).

For each demand location j and scenario s, the minimum cost facility location

i+(j, s) ∈ I+ is defined by :

i+(j, s) = argmin
i∈I+

{t′ijs + uis}. (5.13)

When we try to decide which facility to serve a demand for a location and scenario
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Algorithm 5 I+ construction procedure

1: Define Bjs ← {i ∈ I∗ | t′ijs + uis ≤ vjs} for all {(j, s) |djs 6= 0}
2: I+ ← ∅
3: for all j ∈ J do
4: for all s ∈ S do
5: if Bjs = {i} then
6: I+ = I+ + {i}
7: end if
8: if |Bjs| > 1 and Bjs

⋂
I+ = ∅ then

9: i+ = argmini{t′ijs + uis|i ∈ I∗}
10: I+ = I+ + {i+}
11: end if
12: end for
13: end for

(j, s), the natural thought is to pick the minimum cost facility location, suggested by

Louveaux (1986). However, in our discrete stochastic problem, this approach might

not be optimal or near optimal. Under different scenarios, inventories at each facility

have a pooling effect. That is, the inventory decision made at one scenario prevade

all the other scenarios. Under a single scenario, the scenario-based optimal solution

might be adding an extra unit of inventory to the closet facility to the new added

demand. However, if there already exists extra inventories in a sub-optimal facility,

it would be more economic to use the existing inventory instead of increasing any

inventory levels. We propose algorithm (6) to construct transportation decisions and

inventory decisions, where extra inventories are used prior to the increasement of any

inventory level. We use Vis to represent the inventory used at facility i under scenario

s.

Since we assume that inventory holding costs are relatively smaller than facility

opening costs, which is a practical assumption, u-ascent procedure guarantees that∑
s uis − hi = 0 when si = 0. By applying complementary slackness conditions
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Algorithm 6 xijs and Vi construction algorithm

1: Initialize xijs = 0, Vi = 0, Vis = 0 for all i, j, s.
2: for all {j, s|djs = 1 and vjs > 0} do
3: if There is {i|Vi > Vis} then
4: i+ = argmini∈I+{t′ijs|Vi > Vis}
5: xi+js = 1
6: Vi+s = Vi+s + 1
7: else
8: i+ = argmini∈I+{t′ijs + uis}
9: xi+js = 1
10: Vi+s = Vi+s + 1
11: if Vi+s > Vi+ then
12: Vi+ = Vi+s
13: end if
14: end if
15: end for

(5.7)-(5.9) and (5.12), the primal solution is constructed as

yi =


1 if i ∈ I+

0 otherwise

zjs =


1 if vjs = c′js

0 otherwise

xijs =


1 if c′js > vjs > 0 and i = i+(j, s)

0 otherwise

(5.14)

From the above, complementary slackness conditions (5.7)-(5.9) and (5.12) are

satisfied. However, conditions (5.10) and (5.11) might be violated. Conditions (5.10)

are violated when there are more than one i ∈ I+ satisfying t′ijs + uis ≤ vjs, and

conditions (5.11) are violated when there are different units of transportation request
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for a facility under different scenarios, that is Vis < Vi for some s ∈ S.

Lemma 1. Let (u,w, v) be the dual feasible solution resulting from our dual-ascent

procedures, and (y, V, x, z) be the primal feasible solution we construct from the above.

The gap ZP − ZD between the primal objective value ZP and the dual objective value

ZD is bounded by

∑
i

∑
s

(Vi −
∑
j

xijs)uis +
∑
i

∑
j

∑
s

max{0, vjs − uis − t′ijs}(yi − xijs) (5.15)

Proof. As we know (y, V, x, z) is feasible, ZP =
∑

i fiyi+
∑

i hiVi+
∑

s

∑
j

∑
i t
′
ijsxijs.

And both the dual solution and primal soluton satisfy complementary slackness con-

ditions (5.7)-(5.9) and (5.12), we have

yi ∗ si = 0 ∀i

Vi ∗ (
∑
s

uis − hi) = 0 ∀i

zjs ∗ (vjs − c′js) = 0 ∀j, s

vjs ∗ (
∑
i

xijs + zjs − djs) = 0 ∀j, s

which equal to
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∑
i

yi ∗ (fi −
∑
j

∑
s

wijs) = 0 (5.17a)

∑
i

Vi ∗ (
∑
s

uis − hi) = 0 (5.17b)

∑
j

∑
s

zjs ∗ (vjs − c′js) = 0 (5.17c)

∑
j

∑
s

vjs ∗ (
∑
i

xijs + zjs − djs) = 0. (5.17d)

Such that,

ZP − ZD

=ZP − (5.17a) + (5.17b) + (5.17c)− ZD − (5.17d)

=
∑
i

∑
s

Viuis +
∑
i

∑
j

∑
s

wijsyi

+
∑
i

∑
j

∑
s

tijsxijs −
∑
i

∑
j

∑
s

vjsxijs

=
∑
i

∑
s

Viuis −
∑
i

∑
j

∑
s

uisxijs

+
∑
i

∑
j

∑
s

wijsyi

−
∑
i

∑
j

∑
s

(vjs − uis − tijs)xijs

where i ∈ I+, j ∈ J, s ∈ S

(5.18)
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With wijs = max{0, vjs − uis − t′ijs} and vjs − uis − t′ijs ≥ 0, where i ∈ I+, we have

ZP − ZD

=
∑
i

∑
s

(Vi −
∑
j

xijs)uis +
∑
i

∑
j

∑
s

max{0, vjs − uis − t′ijs}(yi − xijs)
(5.19)
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Chapter 6

Computational results

All computations are conducted on a PC with 2.6 GHz Intel Core i5 processor and

8GB 1600 MHz memory. Both the SAA algorithm and the dual heuristic algorithm are

programmed using C + + programming language. We also compared our algorithms

with a general solver, IBM ILOG CPLEX Optimization Studio 12.6.2, which is also

implemented in C++ programming language using Concert technology to call CPLEX

solver.

Since there are no existing problem instances for our model, instances are gener-

ated randomly within a given range according to table (6.1). The total number of

demand requests under one scenario are generated according to Poisson Distribution

with a mean value λ. Then, demand locations with demand request are chosen ran-

domly without exceeding the total number of demand request at each scenario. Cost

parameters are generated according to uniform distribution within the determined

range. Unless explicitly indicated, all instances are generated according to this table.
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Table 6.1: Parameter settings

Number of potential facility locations 30
Number of demand locations 100
Mean demand occurance at one scenario 40
Open cost Uniform[200,300]
Hold cost Uniform[50,10]
Transportation Uniform[10, 100]
3PL or DC cost Uniform[10, 100]

6.1 SAA algorithm

We first examine the performance of the standard SAA algorithm briefly, where both

the SAA problem and the reference problem at each iteration are solved to optimal

using the general sovler. We use N ′ = 1000 as the sample size for reference problems

for all instances. Experiment instances with different parameters, N for the sample

size of SAA problems and M for the number of replications, are repeated four times.

We study cases where N = 20, 40, and M = 20, 40. Because all instances find their

estimated optimal solution, that is the optimality gap is zero, we therefore focus

on the statistical quality of the results, which is measured by variance. The results

are reported in table (6.2). Column M is the number of replication; Column N is

the sample size for SAA problem; Column Avg Var is the average variance of four

instances under the same parameter M and N . The smaller the variances, the more

reliable the optimal solution. From the table, both the increase of M and N improves

the quality of results; and, the change of N has a better impact than M . Especially

when N = 40, the variance improves a little from 109.35 to 93.78 where M doubles

from 20 to 40.
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Table 6.2: Variance of SAA statistical optimal solutions with varying M and N

M N Avg Var

20 20 191.19
20 40 109.35
40 20 130.15
40 40 93.78

6.2 SAA algorithm with dual heuristic and its im-

provement

In this section, the standard SAA algorithm and SAA algorithm with dual heuristic

are compared in table (6.3). All instances are with M = 20, N = 40, and N ′ = 1000

for the ease of comparison. Column λ is the mean demand request for each scenario;

Column Opt. is the estimated optimal objective for the real problem; Column Var. is

the variance of SAA problems; Column Time is the computational time. It shows that

SAA with dual heuristic is almost one hundred times faster than the standard SAA

algorithm where every SAA problem is solved to optimal. However, the estimated

optimal solution selected by SAA with dual heuristic is not as good as standard SAA,

especially when λ increases. This consists with our observation of the dual heuristic

algorithm. When demand request increases, the original dual heuristic algorithm

perform poorly on allocating inventories.

As such, we improved the inventory decision logic introduced in section (5.2),

and similar comparison is given in table (6.4) for the SAA algorithm with improved

dual heuristic. It is surprising that with improved heuristic the estimated solutions

are sometimes even better than the standard SAA algorithm. We then focused on

experimental results for SAA with improved heuristic algorithm.
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Table 6.3: SAA and SAA with dual heuristic results

SAA SAA with dual heuristic

λ Opt. Var. Time(sec) Opt. Var. Time(sec)
20 1006.23 186.03 86.89 1006.23 187.03 1.53
40 1778.53 187.87 134.43 1784.41 206.17 1.98
60 2292.26 170.14 297.97 2372.90 181.35 2.50

Table 6.4: SAA and SAA with improved dual heuristic results

SAA SAA with improved heuristic

λ Opt. Var. Time(sec) Opt. Var. Time(sec)
20 994.38 135.85 87.74 1020.34 134.32 1.51
40 1683.49 198.09 214.62 1671.74 177.61 2.05
60 2238.59 187.65 222.97 2171.36 169.40 2.57

Table (6.5) shows results emphasizing estimated optimal objective gaps between

the standard SAA algorithm and SAA with improved dual heuristic. All experiments

have parameter M = 20, N ′ = 1000, and λ = 40. Column N is the value of N ; and,

Column Gap is the relative gap of the estimated optimal objective between SAA with

improved heuristic and the standard SAA algorithm. Negative values of Gap mean

that the estiamted optimal objective of SAA with improved dual heuristic are better

than the standard SAA algorithm. From the results, it can be concluded that SAA

with improved heuristic is not worse than the standard SAA algorithm based on the

measure of optimality gap, solution variance and computational time.

Table (6.6) shows results similar to the previous table (6.5). It provides extra

computational results for different problem instances. Column Fac. represents the

number of potential facility location; Column Loc. represent the number of demand

location. The meaning of the rest columns are the same as table (6.5). The unspecified

parameters are as default, where M = 20, N = 60, N ′ = 1000 and λ = 40.
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Table 6.5: SAA with improved dual heuristic results

SAA SAA with improved heuristic

N Opt. Var. Time(sec) Opt. Var. Time(sec) Gap
60 1749.28 111.49 286.46 1747.38 96.22 3.48 -0.1%
60 1684.61 179.90 299.37 1677.95 168.08 3.22 -0.4%
60 1725.65 192.94 282.71 1703.36 173.72 3.26 -1.3%
70 1774.10 159.40 407.62 1785.46 134.21 4.45 0.6%
70 1715.79 106.33 532.39 1704.56 84.22 4.29 -0.7%
70 1703.84 100.25 529.14 1703.30 97.48 4.34 0.0%
80 1699.26 170.96 230.36 1696.16 145.10 4.92 -0.2%
80 1685.18 151.19 258.45 1693.51 138.73 4.54 0.5%
80 1724.58 128.36 256.65 1725.69 117.69 4.63 0.1%

Table 6.6: SAA with improved dual heuristic results (2)

SAA SAA with improved heuristic

Fac. Loc. Opt. Var. Time(sec) Opt. Var. Time(sec) Gap
30 50 1445.42 144.60 254.99 1435.01 120.44 2.84 -0.7%
30 50 1471.55 106.06 267.04 1482.52 91.12 3.18 0.7%
30 50 1479.48 87.60 268.02 1473.32 77.99 3.18 -0.4%
40 50 1442.03 121.65 613.38 1455.81 106.71 4.82 1.0%
40 50 1437.83 103.06 597.90 1437.83 106.73 4.70 0.0%
40 50 1466.94 131.20 584.86 1466.90 127.47 4.65 0.0%
40 100 1697.20 139.47 954.69 1665.63 106.64 5.09 -1.9%
40 100 1726.12 144.25 892.90 1727.99 130.99 6.41 0.1%
40 100 1675.76 116.85 918.39 1711.58 105.38 6.20 2.1%
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At last, we examined how the values of N ′ affect the solution quality on both SAA

and SAA with improved heuristic algorithm. Table (6.7) shows that smaller N ′ lead

to larger solution variance, which means that the estimated optimal solutions are less

reliable.

Table 6.7: SAA with varying N ′

SAA SAA with improved heuristic

N ′ Opt. Var. Time(sec) Opt. Var. Time(sec) Gap
500 1722.73 163.00 237.82 1726.44 163.53 5.10 0.2%
500 1723.06 165.87 236.85 1735.64 165.95 4.75 0.7%
500 1704.87 170.27 245.59 1694.07 128.80 5.00 -0.6%

1000 1699.26 170.96 230.36 1696.16 145.10 4.92 -0.2%
1000 1685.18 151.19 258.45 1693.51 138.73 4.54 0.5%
1000 1724.58 128.36 256.65 1725.69 117.69 4.63 0.1%
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Chapter 7

Conclusion

We proposed a stochastic facility location problem with inventory and recourse de-

cisions for a multiple-location supply chain problem. To solve the large discrete

stochastic problem, we studied Sample Average Approximation algorithm. Taken

into the feature of a heuristic procedure, we combined these two algorithms. Fur-

thermore, we improved the original heuristic procedure. Our experiments show that

the combined algorithm with our adjustment provides solutions which have similar

quality as the standard SAA algorithm and much less computational time. We as-

sumed that demand requests were unitary; in the future, we would like to expand

the assumption to small integral number of requests. Another direction for future

research is expanding the assumption of one product to multiple products.
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Appendix A

Condensed dual problem

Follow Louveaux and Peeters (1992) and Erlenkotter (1978), to obtain a natural

integral solution, we will apply the dual-primal heuristic procedure on a condensed

dual problem from the relaxation problem of the original problem (P ). The relaxation

problem (RP ) is obtained by relaxing the integral constraints on variables y, V, x, z

to nonnegative constraints. The formulation of problem (RP ) is given as below.

min
∑

i fiyi +
∑

i hiVi +
∑

s

∑
j

∑
i t
′
ijsxijs +

∑
s

∑
j c
′
jszjs

s.t. yi − xijs ≥ 0 ∀i, j, s

Vi −
∑

j xijs ≥ 0 ∀i, s

zjs +
∑

i xijs ≥ djs ∀j, s

Vi ≥ 0 ∀i

yi ≥ 0 ∀i

zjs ≥ 0 ∀j, s

xijs ≥ 0 ∀i, j, s,
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where we substitute t′ijs = pstij and c′js = pscjs to simplify the formulation. The dual

problem of (RP ) is the following:

ZD = max
∑
j∈J

∑
s∈S

djsvjs (A.1)

s.t. vjs − uis − wijs ≤ t′ijs ∀i, j, s (A.2)∑
j

∑
s

wijs ≤ fi ∀i (A.3)

∑
s

uis ≤ hi ∀i (A.4)

vjs ≤ c′js ∀j, s (A.5)

wijs ≥ 0 ∀i, j, s (A.6)

uis ≥ 0 ∀i, s (A.7)

vjs ≥ 0 ∀j, s, (A.8)

where the w, u, and v variables are dual variables corresponding to constraints (3.2),

(3.3) and (3.4), respectively. As showed in Spielberg (1969),we can replace wijs by

max{0, vjs − uis − t′ijs} without affecting the dual problem’s feasibility and objective

value to have the condensed form of the dual problem. The condensed dual problem

formulation is essential for dual ascent heuristic procedure, which is shown as below.
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ZD = max
∑
j

∑
s

djsvjs (A.9)

s.t.
∑
j

∑
s

max{0, vjs − uis − t′ijs} ≤ fi ∀i (A.10)

∑
s

uis ≤ hi ∀i (A.11)

vjs ≤ c′js ∀j, s (A.12)

uis ≥ 0 ∀i, s (A.13)

vjs ≥ 0 ∀j, s. (A.14)
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