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Abstract

It is well-known that the subset sum problem is NP-complete, which is the basis for

the subset sum based public-key cryptosystems. Some attacks on such cryptosystems

have been developed. Those methods reduce the subset sum problem to the problem of

�nding a shortest Euclidean-norm nonzero vector in a point lattice [10, 24, 8, 12, 26].

In this thesis, we propose a new hybrid lattice basis reduction algorithm by in-

tegrating the recent polynomial time Type-I reduction algorithm by Wen Zhang [29]

in 2015 with other techniques. We show that the Type-I algorithm is well suited for

high dimensional lattices and apply the hybrid algorithm to the subset sum problem.

Our experiments demonstrate that our method can solve relatively small size subset

sum problems with higher success rates than the famous existing methods such as

the Lagarias-Odlyzko attack and the Radziszowski-Kreher attack.
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Chapter 1

Introduction

After Rivest, Shamir, and Adleman [25] published the �rst public-key cryptosystem,

the RSA cryptosystem, several subset sum based cryptosystems were proposed [18,

3, 27, 28, 23, 7, 22]. The security of such cryptosystems is based on the di�culty of

solving the subset sum problems which is a (worst case) NP-complete problem [9, 6].

In 1984 and 1985, Brickell [1] and Lagarias and Odlyzko [10] independently proposed

an algorithm for the subset sum problems. Both methods show that it is possible

to solve all subset sum problems of density < 0.6463 . . .. In 1988, Radziszowski

and Kreher [24] evaluated the performance of an improved variant of the Lagarias-

Odlyzko attack. Then Coster, LaMacchia, Odlyzko and Schnorr [4] and Joux and

Stern [8] improved this bound to 0.9408 . . .. In all the above algorithms, the subset

sum problem is reduced to the problem of �nding a shortest(Euclidean norm) nonzero

vector in a lattice, and the LLL algorithm is used to �nd a shortest nonzero lattice

vector. In 1991, LaMacchia [12] used the Seysen's algorithm for �nding a shortest

nonzero lattice vector, combined with the GCD reduction in solving the subset sum

problem. In 1994, Schnorr and Euchner [26] proposed an improved LLL algorithm

1



M.Sc. Thesis - Yang Bo McMaster - Computing & Software

(L3FP algorithm) to attack the subset sum problem. Both LaMacchia and Schnorr

and Euchner solved the subset sum problem with relatively large size(≥ 42). This

thesis studies a new polynomial time approach of lattice basis reduction developed

by Wen Zhang [29] in 2015, the Type-I reduction algorithm, for �nding a shortest

nonzero lattice vector in attacking the subset sum problem. This algorithm is initially

developed to �nd the relatively orthogonal bases of a lattice. However, it can also be

successfully applied to solving the subset sum problem, especially when combined with

other known reduction approaches. Our experiments show that the Type-I algorithm,

when integrated with other techniques, including the LLL, the GCD reduction [2],

the weight reduction [24] and the sort operations, is able to solve relatively small

size(≤ 43) subset sum problems with higher success rates than the Largarias-Odlyzko

attack [10] and the Radziszowski-Kreher attack [24].

1.1 Thesis Outline

In Chapter 2, we introduce basic concepts related to our work. For example, the

de�nitions of a lattice, the unimodular matrix, the volume of lattice, the orthogonality

defect. The relation between two arbitrary bases for a lattice is also shown in this

Chapter.

Chapter 3 �rst discusses some notions of the reduced lattice basis. Then we

introduce two polynomial time lattice basis reduction algorithms, the LLL algorithm

and the Type-I algorithm. After analyzing the complexities of algorithms and some

properties of the reduced bases, the experimental comparisons are shown in the last

section of Chapter 3.

Chapter 4 is the main part of this thesis. We �rst introduce the de�nitions of the

2
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subset sum problem and the density. After that, we present previous theoretical and

experimental results of the subset sum problem. In section 4.4, we propose a new

hybrid algorithm,the Type-I & LLL algorithm, for solving the subset sum problem

and we show the experimental results of the new algorithm in section 4.5.

In the last Chapter, we remark the advantages and disadvantages of the Type-I

and the Type-I & LLL algorithms. We also propose some possible improvements,

which can extend the Type-I & LLL algorithm to attack the subset sum problems

with large sizes.
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Chapter 2

Lattices and Bases

In this chapter, we introduce some concepts of the lattice theory which will be used

for later work.

Let A be a set of linearly independent vectors a1, a2, . . . , an in Rm, m ≥ n . lattice

L(A) is an in�nite set of discrete points, each point is a linear combination of vectors

a1, a2, . . . , an with integer coe�cients. In other words :

L(A) = {x |x =
n∑

i=1

ziai, where zi ∈ Z and 1 ≤ i ≤ n}.

We say that A form a basis for L. A lattice can have multiple bases. For example,

Figure 2.1 illustrates a lattice L and its basis A, where

A = [a1, a2] =

2 2.7

0 1

 . (2.1)

4



M.Sc. Thesis - Yang Bo McMaster - Computing & Software

Figure 2.1: Lattice L and its basis A

Figure 2.2: Lattice L and its bases A and B

Figure 2.2 shows another basis B for L, where

B = [b1, b2] =

0.7 1.3

1 −1

 . (2.2)

Two basis matrices are related by a unimodular matrix de�ned as follows.

De�nition 2.1. Let U be a nonsingular matrix with integer entries, we say U is

unimodular if det(U) = ±1.

Notice that if U is unimodular, then U−1 is also unimodular. To see this, consider

the following equation:

Uu
′

i = ei, (2.3)

where u
′
i is the i

th column vector of U−1 and ei is the i
th column vector of the identity

5
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matrix I.

Recall the Cramer's rule, the solution to (2.3) is given by

u
′

ij =
det([u1, . . . , uj−1, ei, uj+1, . . . , un])

det(U)
, (2.4)

where u
′
i = [u

′
i1, . . . , u

′
in]T and ui is the i

th column vector of U . Clearly, the numerator

of (2.4) is an integer since every column vector ui of U and ei are integer vectors.

Recall that det(U) = ±1, this proves that U−1 is a integer matrix. Matrix U−1 is

unimodular because:

det(U)det(U−1) = det(UU−1) = det(I) = 1, (2.5)

so det(U−1) = ±1.

Theorem 2.1. Let A and B be two bases, then L(A) = L(B) if and only if there

exists a unimodular matrix U , such that B = AU .

Proof. Assume A and B are two bases for the same lattice L(A) = L(B). There

exists integer matrices U and U
′
such that B = AU and A = BU

′
. Combining these

two equations, we get A = AUU
′
, which is equivalent to UU

′
= I or U

′
= U−1. By

equation (2.5), we get det(U) = det(U−1) = ±1 since U and U−1 are integer matrices,

so their determinants are also integers.

Next, assume B = AU for some unimodular matrix U , we also can get A =

BU−1. Equations B = AU and A = BU−1 imply L(B) ⊂ L(A) and L(A) ⊂ L(B),

respectively. So two matrices A and B generate the same lattice.

Recall matrices A from (2.1) and B from (2.2), there exists a unimodular matrix

6
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U such that B = AU where

U =

−1 2

1 −1

 . (2.6)

Theorem 2.2. Let L be the lattice generated by a matrix A = [a1, a2, . . . , an] ∈ Rm×n.

Then the volume of L is de�ned as vol(L) =
√

det(ATA).

If matrix A and B are two bases for lattice L and B = AU , where U is a unimod-

ular matrix then

vol(L) =
√

det(BTB)

=
√

det((AU)T (AU))

=
√

det(UTATAU)

=
√

det(UT )det(AT )det(A)det(U)

=
√

det(AT )det(A)

=
√

det(ATA).

Because the determinant of the unimodular matrix U is ±1 and det(UT ) = det(U).

Hence the volume of a lattice is independent of the choice of basis.

Intuitively, as shown in Figure 2.2, the basis {b1, b2} is �more orthogonal� than the

basis {a1, a2}. In the following, we de�ne the orthogonality defect, a measurement of

orthogonality, of a basis.

De�nition 2.2. The orthogonality defect of a basis A = [a1, a2, . . . , an] for L(A) is

de�ned as γ(A) =
∏n

i=1 ‖ai‖2
vol(L)

.

7
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The orthogonality defect γ(A) is always larger than or equal to 1. From Hardama's

Inequality, det(A) ≤
∏n

i=1 ‖ai‖2, hence

γ(A) =

√(∏n
i=1 ‖ai‖2
vol(L)

)2
=

√∏n
i=1 ‖ai‖2

∏n
i=1 ‖ai‖2

det(AT )det(A)

≥ 1.

The equality is achieved if and only if the vectors are orthogonal. The concept

of orthogonality defect is used to measure the degree of orthogonality for a given

matrix. For example, as shown in Figure 2.2, the orthogonality defect γ(A) of basis

A = [a1, a2] equals 2.8792 and the orthogonality defect γ(B) of basis B = [b1, b2]

equals 1.0010.

8



Chapter 3

Reduced Lattice Bases and Lattice

Basis Reduction Algorithm

In this chapter, we �rst introduce some de�nitions of reduced lattice basis and the

related concepts. Then we discuss two polynomial-time lattice basis reduction algo-

rithms, the LLL reduction algorithm and the Type-I reduction algorithm.

3.1 Minkowski Reduced Basis

As we mentioned in Chapter 2, a lattice may have many di�erent lattice bases and

some of them are considered better than others. In this thesis, we use Euclidean norm

as a distance function and say a basis consisting of �shorter� vectors is better. Lattice

reduction algorithm can �nd �good� lattice basis for a particular lattice. There is a

classical lattice reduction theory due to Minkowski [19].

De�nition 3.1. Using the Euclidean norm as a distance function, we say that λi(L),

1 ≤ i ≤ n, is the ith successive minimum with respect to a lattice L, if λi(L) is the

9
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lower bound of the radius λ of the sphere

‖Az‖2 ≤ λ where A is a basis of L and z ∈ Zn

that contains i linearly independent lattice points [15].

Actually, λi(L) is the lowest bound of max(‖a1‖2, ‖a2‖2, . . . , ‖ai‖2) over all sets

of linearly independent vectors a1, a2, . . . , ai of lattice L [15], where ‖ai‖2 denotes

the Euclidean length of vector ai. In particular, the Euclidean length of a shortest

nonzero vectors in lattice L is λ1(L).

De�nition 3.2. The basis {a1, a2, . . . , an} for lattice L is called Minkowski reduced

if ‖ai‖2 = λi(L), where 1 ≤ i ≤ n.

A Minkowski reduced basis can be obtained by 1. Select a shortest nonzero vector

in the lattice as a1, 2. Choose the subsequent basis vectors ai such that ai is a shortest

vector in the lattice and {a1, a2, ..., ai} can be extended to a basis [12]. Currently, the

problem of �nding a shortest nonzero lattice vector in a lattice is non-polynomial.

3.2 The LLL Reduced Basis and the LLL Algorithm

In 1982, Lenstra, Lenstra and Lov�asz [13] introduced a polynomial-time algorithm(the

LLL algorithm) which can reduce a given lattice basis A = {a1, a2, . . . , an} for lattice

L into an LLL-reduced basis AL = {aL1 , aL2 , . . . , aLn}.

10
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De�nition 3.3. The basis {a1, a2, . . . , an} for lattice L is called LLL reduced if

|µi,j| ≤
1

2
for 1 ≤ i < j ≤ n, µi,j =

< aj, a
∗
i >

< a∗i , a
∗
i >

, (3.1)

(ω − µ2
i−1,i)‖a∗i−1‖22 ≤ ‖a∗i ‖22 for 1 < i ≤ n,

1

4
< ω < 1, (3.2)

where A∗ = [a∗1, a
∗
2, . . . , a

∗
n] is the Gram-Schmidt orthogonalized basis generated from

A, that is a∗j = aj −
∑j−1

i=1 µi,ja
∗
i and < a∗i , a

∗
j > denotes the inner product of vectors

a∗i and a∗j , ω is a constant.

The LLL algorithm transforms a lattice basis A into an LLL reduced lattice basis

AL by two types of operations, the size-reduction and the exchange. In the size-

reduction operation, the LLL enforces (3.1) on µi,j, 1 ≤ i < j ≤ n, by performing

the transformation aj = aj − dµi,jcai, where d·c denotes the nearest integer function

and updates the corresponding µi,j. If a∗j and a∗j−1, where 1 < j ≤ n, violate (3.2),

the exchange operation is called. The LLL swaps aj and aj−1, µi,j and µi,j−1, for

1 ≤ i < j − 1 < n. After that, the LLL updates a∗j , a
∗
j−1 and the corresponding

µj−1,l, j − 1 < l ≤ n and µj,k, j < k ≤ n. For details of the LLL algorithm, please

refer to [13].

Lenstra, Lenstra and Lov�asz have shown that the LLL reduced basis is a reasonable

approximation of Minkowski reduced basis [13]. If L is the lattice and AL is the LLL

reduced basis for L, then

γ1−iλ2i (L) ≤ ‖aLi ‖22 ≤ γn−1λ2i (L), for 1 ≤ i ≤ n, (3.3)

11
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where γ = (ω− 1
4
)−1 and λ1(L), λ2(L), . . . , λn(L) are Minkowski minima. In particu-

lar, if ω = 3
4
, we have

21−iλ2i (L) ≤ ‖aLi ‖22 ≤ 2n−1λ2i (L), for 1 ≤ i ≤ n.

From (3.3), it's not hard to see if i = 1, then we can get a bound of the length of the

�rst column vector aL1 in AL

‖aL1 ‖2 ≤ (
4

4ω − 1
)n−1‖v‖2, where v is a shortest vector in L and v 6= 0.

If we set ω = 3
4
, we have

‖aL1 ‖2 ≤ 2n−1‖v‖2, where v is a shortest vector in L and v 6= 0.

Therefore, the length of aL1 is at most the exponential multiple of the length of a

shortest vector v in lattice L. In practice, the LLL algorithm usually performs much

better than the above bound. Lenstra, Lenstra and Lov�asz also proved that the

computational complexity of the LLL algorithm is O(n4logB) if L ⊂ Zn is a lattice

with basis a1, a2, . . . , an, B ∈ R, B ≥ 2 and ‖ai‖22 ≤ B for 1 ≤ i ≤ n [13].

In 2008, Luk and Tracy [16] developed a matrix interpretation of the LLL al-

gorithm, which leads to a new implementation of the LLL algorithm. Consider a

nonsingular matrix A ∈ Rn×n, its QR decomposition is

A = QR,

where Q ∈ Rn×n is orthogonal and R ∈ Rn×n is upper triangular. Then (3.1) and (3.2)

12
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can be rewritten as follows.

De�nition 3.4. A nonsingular upper triangular matrix R is reduced if

|ri,i| ≥ 2|ri,j|, for all 1 ≤ i < j ≤ n, (3.4)

r2i,i + r2i−1,i ≥ ωr2i−1,i−1, for all 2 ≤ i ≤ n,
1

4
< ω < 1. (3.5)

Unlike the LLL algorithm, the new algorithm transforms the upper triangular

matrix R into a reduced upper triangular matrix RL and (3.4), (3.5) are enforced by

two types of operations, the Decrease operation and the Swap-Restore operation. All

column operations are recorded in a unimodular matrix Z.

Algorithm 1 Decrease (j, i)

Require: Upper triangular matrix R, unimodular matrix Z
Ensure: Modi�ed R,Z that satisfy (3.4)
1: γ = d ri,j

ri,i
c

2: Zij = In − γeieTj
3: R = RZij

4: Z = ZZij

5: return R, Z

If ri,i and ri,j fail to satisfy (3.4), where 1 ≤ i < j ≤ n, then the Decrease is called.

After computing the integer nearest
ri,j
ri,i

in line 1, an n × n unimodular matrix Zij

is created by an n × n identity matrix In and the ith and jth unit vector ei and ej.

Actually, Zij equals the n × n identity matrix except that its (i, j)th entry equals γ.

It is easy to check that Zij is a unimodular matrix. Both R and Z are modi�ed by

Zij in lines 3 and 4 to satisfy (3.4). Note that the Decrease operation may increase

13
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the length of vectors in the basis. For example, let

A =


3 −4

3
1

0 5
3

1

0 0 3

 .

After the Decrease operation with parameters j = 3 and i = 2, the matrix A becomes

A =


3 −4

3
7
3

0 5
3
−2

3

0 0 3

 .

Clearly, the length of the third column of A is increased by the Decrease operation.

Algorithm 2 Swap-Restore (j)

Require: Upper triangular matrix R, orthogonal matrix Q, unimodular matrix Z
Ensure: Modi�ed R,Q,Z that satisfy (3.5)
1: Create a plane re�ection 2× 2 matrix Jj
2: Qj = diag[Ij−2, Jj, In−j]
3: QTj = diag[Ij−2, J

T
j , In−j]

4: Πj = diag[Ij−2, P, In−j]
5: R = QjRΠj

6: Z = ZΠj

7: Q = QQTj
8: return R, Q, Z

If rj,j, rj−1,j and rj−1,j−1 violate (3.5), the Swap-Restore operation is performed.

The 2× 2 plane re�ection matrix Jj is the matrix with form

Jj =

c −s
s c

 ,

14
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where c =
rj−1,j−1

r
, s = − rj,j−1

r
and r =

√
r2j−1,j−1 + r2j,j−1. In [14], Luk and Qiao show

that the purpose of Jj is to let

Jj

rj−1,j−1 rj−1,j

0 rj,j

P =

r̂j−1,j−1 r̂j−1,j

0 r̂j,j

 , where P =

0 1

1 0

 .
In lines 2 and 3, matrices Qj and Πj are created. In line 4, the jth and j−1th column

of R are swapped by multiplying Πj then R is restored back to the upper triangular

matrix by multiplying Qj. The unimodular matrix Z and orthogonal matrix Q are

correspondingly updated in lines 5 and 6.

Algorithm 3 MatrixLLL Algorithm

Require: Lattice basis A, parameter ω
Ensure: Unimodular matrix Z, such that AZ is a LLL reduced basis
1: n = size(A, 2)
2: compute Q and R such that A = QR by QR decomposition
3: Z = In
4: j = 2
5: while j ≤ n do
6: if |rj−1,j| > 1

2
|rj−1,j−1| then

7: [R, Z] = Decrease (j, j − 1)

8: if r2j,j + r2j−1,j < ωr2j−1,j−1 then
9: [R, Q, Z] = Swap-Restore (j)

10: if j > 2 then
11: j = j − 1

12: else
13: for i = j − 2 to 1 do
14: if |ri,j| > 1

2
|ri,i| then

15: [R, Z] = Decrease (j, i)

16: j = j + 1

17: return Z

The MatrixLLL algorithm (Algorithm 3) and the LLL algorithm [13] have similar

15
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iterative structure, except the MatrixLLL generates a reduced upper triangular matrix

RL. At the end of the MatrixLLL algorithm, a unimodular matrix Z is returned. The

columns of AZ form a reduced basis as de�ned in [13]. For detailed proofs, please

refer to [16] and [14].

3.3 The Type-I Reduced Basis and the Type-I Re-

duction Algorithm

Since Lenstra, Lenstra and Lov�asz published the LLL algorithm in 1982, various

improvements of the algorithm have been proposed. However, almost all of these

improvements are based on the Gram-Schmidt orthogonalization or the QR decom-

position and have the same iteration structure as the original LLL algorithm. In

2015, Wen Zhang [29] proposed a new lattice basis reduction algorithm, the Type-I

algorithm. This algorithm does not require the Gram-Schmidt orthogonalization nor

the QR decomposition and has a di�erent iteration structure.

De�nition 3.5. The basis matrix A = [a1, a2, a3, . . . , an] ∈ Rm×n for lattice L is

called Type-I reduced if

‖a1‖2 ≤ ‖a2‖2 ≤ . . . ≤ ‖an‖2, (3.6)

δ‖aj‖22 ≤ ‖aj −

(
aTi aj
‖ai‖22

+
1

2

)
ai‖22, 1 ≤ i < j ≤ n,

1

4
< δ < 1. (3.7)

The Type-I algorithm also transforms a lattice A into a Type-I reduced basis by

two types of operations, the exchange operation and the size-reduction operation.

However, the trigger conditions of these two types of operations are di�erent from

16
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the trigger conditions in the LLL.

Algorithm 4 Type-I Algorithm

Require: Lattice basis A, parameter δ
Ensure: Type-I reduced basis A
1: n = size(A, 2)
2: done = False
3: while not done do
4: done = True
5: for i = 1 to n− 1 do
6: for j = i+ 1 to n do
7: if ‖ai‖22 > ‖aj‖22 then
8: done = False
9: Swap ai and aj

10: m = b a
T
i aj
‖ai‖22
e

11: tmp = aj −mai
12: if ‖tmp‖22 < δ‖aj‖22 then
13: done = False
14: aj = tmp

15: return A

It is not hard to see that in Algorithm 4, the Type-I algorithm does not stop

unless both (3.6) and (3.7) are satis�ed. For each pair of ai and aj where 1 ≤ i <

j ≤ n, the Type-I algorithm exchanges them to meet (3.6)(the exchange operation) if

needed. The Type-I enforces (3.7) by subtracting b a
T
i aj
‖ai‖22
eai from aj(the size-reduction

17
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operation) since

δ‖aj‖22 ≤ ‖aj − b
aTi aj
‖ai‖22

eai‖22

= ‖aj −

(
aTi aj
‖ai‖22

+ k

)
ai‖22

= ‖aj −
aTi aj
‖ai‖22

ai‖22 − 2k(aj −
aTi aj
‖ai‖22

ai)ai + k2‖ai‖22

= ‖aj −
aTi aj
‖ai‖22

ai‖22 + k2‖ai‖22

≤ ‖aj −
aTi aj
‖ai‖22

ai‖22 +
1

4
‖ai‖22

≤ ‖aj −

(
aTi aj
‖ai‖22

+
1

2

)
ai‖22,

where k ∈ R, b a
T
i aj
‖ai‖22
e =

aTi aj
‖ai‖22

+k and k2 ≤ 1
4
. Note that aj− aTi aj

‖ai‖22
ai is orthogonal to ai.

The size-reduction operation of the Type-I algorithm calculates the integer nearest

aTi aj
‖ai‖22

, which is di�erent from what the size-reduction operation does in the LLL. In

addition, the column vectors aj will be replaced by aj −b a
T
i aj
‖ai‖22
eai only if the length of

aj − b a
T
i aj
‖ai‖22
eai is shorter. Thus, unlike the LLL, the Type-I algorithm never increases

the length of vectors in the basis matrix.

Recall from the previous section that the LLL algorithm guarantees the column

vector aL1 of the LLL reduced basis AL satis�es:

‖aL1 ‖2 ≤ 2n−1‖v‖2, where v is a shortest vector in L(AL) and v 6= 0.

However, the Type-I algorithm cannot guarantee the length of column vectors in the

Type-I reduced basis, but it guarantees that the acute angle between any pair of the

reduced basis vectors is at least 60◦.

18
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Proposition 3.1. Let AI = [aI1, a
I
2, . . . , a

I
n] be a Type-I reduced basis, then the acute

angle between any pair of aIi and aIj , 1 ≤ i < j ≤ n is at least 60◦.

Proof. Let c =
(aIi )

T aIj
‖aIi ‖22

, from (3.7) we have

δ‖aIj‖22 ≤ ‖aIj −

(
c+

1

2

)
aIi ‖22

= ‖aIj − caIi ‖22 +
1

4
‖aIi ‖22

= ‖aIj‖22 − c2‖aIi ‖22 +
1

4
‖aIi ‖22,

since aIj − caIi is orthogonal to ai and (aIi )
TaIj = c‖aii‖22. It then implies

c2‖aIi ‖22 ≤ (1− δ)‖aIj‖22 +
1

4
‖aIi ‖22

≤ 1

4
‖aIi ‖22

if δ = 1, which implies that |c| ≤ 1
2
. Let θ be the angle between aIi and aIj where

1 ≤ i < j ≤ n, then

|cosθ| =
|(aIi )TaIj |
‖aIi ‖2‖aIj‖2

≤
|(aIi )TaIj |
‖aIi ‖22

≤ 1

2
.

This shows that the acute angle between any pair of reduced lattice basis vectors is

at least 60◦ when δ = 1.
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We can expect that the acute angle between any pair of vectors in the reduced

lattice basis is at least 60◦ when δ is close to one. Wen Zhang has proved that the

complexity of the Type-I reduction is O(n3log( Mn

vol(L)
)).

Proposition 3.2. Let L ⊂ Rn be a lattice with basis vectors a1, a2, . . . , an ∈ Rm,

where n ≤ m and M = max1≤i≤n‖ai‖22. Then the computational complexity of the

Type-I reduction algorithm(Algorithm 4) is O(n3log( Mn

vol(L)
)).

Proof. First we introduce the quantity

D = ‖a1‖22‖a2‖22 . . . ‖an‖22.

It is not hard to see that the number of the iterations of the while-loop is bounded

by the number of times that the exchange and the size-reduction are executed. We

now estimate the number of the iterations. Note that each time the size-reduction

operation is executed, the corresponding ‖aj‖22 will be reduced by a factor smaller than

δ ≤ 1, while the other ‖a1‖22, ‖a2‖22, . . . , ‖aj−1‖22, ‖aj+1‖22, . . . , ‖an‖22 remain unchanged.

Consequently, D will be reduced by a factor smaller than δ. At the beginning of the

algorithm, we have D ≤ Mn and throughout the algorithm D ≥ vol(L). Therefore,

the number of times that the Type-I algorithm passes through the size-reduction

operation is at most O(log( Mn

vol(L)
)). After (3.7) is satis�ed, the Type-I algorithm just

needs one more time of the while-loop to enforce (3.6) since the Type-I only needs

to go through every pair of vectors once to sort them into increasing order of length.

Hence, the number of the iteration of the while-loop is bounded by O(log( Mn

vol(L)
)).

It is not hard to verify that the operations of the exchange operation and the size-

reduction operation require O(n) �ops. As a result, the operations in each iteration
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of the while-loop require at most O(n3) �ops. Then the computational complexity of

the Type-I reduction is O(n3log( Mn

vol(L)
)).

In [29], Wen Zhang also mentions the Type-I algorithm can be implemented by

the Gram matrix ATA, rather than the original lattice basis matrix A to improve

the e�ciency. Let the original basis matrix A = [a1, a2, a3, . . . , an] ∈ Rm×n, then the

Gram matrix is

G = ATA =



a11 a21 a31 . . . am1

a12 a22 a32 . . . am2

...
...

...
. . .

...

a1n a2n a3n . . . amn





a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn



=



‖a1‖22 aT1 a2 aT1 a3 . . . aT1 an

a1a
T
2 ‖a2‖22 aT2 a3 . . . aT2 an

...
...

...
. . .

...

a1a
T
n a2a

T
n a3a

T
n . . . ‖an‖22


.

The Gram matrix G ∈ Rn×n and the elements in G have some special properties,

such as Gi,j = Gj,i = aTi aj and Gi,i = ‖ai‖22, where 1 ≤ i, j ≤ n.

Algorithm 5 is the Type-I algorithm implemented with Gram matrix G. We record

all column operations on A by a unimodular matrix Z. Recall Theorem 2.1 from

Chapter 2, L(A) = L(AZ) is guaranteed. The Gram matrix G is calculated in

lines 5 to 7. Notice that we only compute the upper triangular part of G because

Gi,j = Gj,i = aTi aj. Lines 13 to 20 implement the exchange operation. If ai is

exchanged with aj, where 1 ≤ i < j ≤ n, then the GType-I records this exchange

operation in the unimodular matrix Z and all related entries of G are updated. In the
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Algorithm 5 GType-I Algorithm

Require: Lattice basis A, parameter δ
Ensure: Type-I reduced basis AZ
1: n = size(A, 2)
2: G = n× n zero matrix
3: Z = n× n identity matrix
4: for i = 1 to n do
5: for j = i to n do
6: Gi,j = aTi aj

7: done =False
8: while not done do
9: done = True

10: for i = 1 to n− 1 do
11: for j = i+ 1 to n do
12: if Gi,i > Gj,j then
13: done =False
14: Swap zi and zj
15: Swap Gi,i and Gj,j

16: Swap G(i,j+1:end) and G(j,j+1:end)

17: Swap G(1:i−1,i) and G(1:i−1,j)
18: for k = j − 1 to i+ 1 do
19: Swap Gi,k and Gk,j

20: m = bGi,j

Gi,i
e

21: tmp = Gj,j − 2mGi,j +m2Gi,i

22: if tmp < δGj,j then
23: done =False
24: zj = zj −mzi
25: Gj,j = tmp
26: G(i:j−1,j) = G(i:j−1,j) −mGT

(i,i:j−1)
27: for k = i− 1 to 1 do
28: Gk,j = Gk,j −mGk,i

29: G(j,j+1:n) = G(j,j+1:n) −mG(i,j+1:n)

30: return AZ
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size-reduction operation(lines 21 to 30) of the GType-I algorithm, the variable tmp

stores ‖aj −mai‖22 instead of the vector aj −mai. The expression ‖aj −mai‖22 can

be written as follows:

‖aj −mai‖22 = ‖aj‖22 − 2maiaj +m2‖ai‖22

= Gj,j − 2mGi,j +m2Gi,i.

If tmp is less than ‖aj‖22, the column vector aj is updated to aj −mai. The GType-I

algorithm records this operation by zj = zj −mzi. Because the vector aj is changed,

all related entries of the Gram matrix G should be updated. After the entry Gj,j is

updated by variable tmp, for 1 ≤ i ≤ k < j ≤ n, the elements

Gk,j = aTk aj

= aTk (aj −mai)

= aTk aj −maiaTk

= Gk,j −mGi,k.

For 1 ≤ k < i < j ≤ n, the entries

Gk,j = aTk aj

= aTk (aj −mai)

= aTk aj −maTk ai

= Gk,j −mGk,i,
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and for 1 ≤ i < j < k ≤ n, the elements

Gj,k = aja
T
k

= (aj −mai)aTk

= aja
T
k −maiaTk

= Gj,k −mGi,k.

The GType-I returns AZ instead of A, because all exchange and size-reduction oper-

ations are recorded in the unimodular matrix Z and the Type-I reduced basis equals

AZ. By implementing the Type-I algorithm with Gram matrix G, the computational

complexity is further reduced to O(n2log( Mn

vol(L)
)) since the operations of the exchange

and the size-reduction only require O(1) �ops while the number of the iterations of

the while-loop remains the same, that is O(log( Mn

vol(L)
)).

3.4 Experimental Results of the LLL and the Type-I

Algorithm

In previous sections, we have introduced the LLL and the Type-I reduction algo-

rithms. We also detailed some properties of the LLL and the Type-I reduced bases.

In this section, we will compare the running times of these two algorithms, the or-

thogonality defects of the reduced bases and the Euclidean norms of the shortest

vectors. In our experiments, we set n = 10, 15, 20, 25, . . . , 95, 100. For each value

of n, we use MATLAB function rand(n,n) times 100 to generate 20 random n × n

bases, where all entries of these bases are real numbers between 0 and 100. We apply
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Figure 3.1: Running Times of Applying the LLL, GType-I and the Type-I on n× n
Bases.

both the LLL algorithm with ω = 0.99 and the Type-I algorithm with δ = 0.99 on

the 20 random bases only once then calculate the average values of the running time,

the orthogonality defect and the Euclidean norm of a shortest vector in the reduced

basis.

Figure 3.1 shows the average running times of applying the LLL the GType-I and

the Type-I algorithms on the n × n bases. When n = 10, three algorithms approx-

imately took same time to reduce a basis. However, the LLL algorithm performed

better than the GType-I and Type-I algorithms as the value of n grows.

We measure the quality of the reduced basis by the orthogonality defect and the
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Figure 3.2: Common Logarithm of the Orthogonality Defects of the LLL and the
Type-I Reduced Bases
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Figure 3.3: Euclidean Norm of a Shortest Vector in the LLL and the Type-I Reduced
Bases
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Euclidean norm of a shortest vector in the reduced basis. In Figure 3.2, we use the

common logarithm of the orthogonality defect as Y-axis, which is denoted as log10γ(A)

where A is a matrix. We can see clearly that when n < 45, log10γ(AL) < log10γ(AI),

where log10γ(AL) is the common logarithms of average values of the orthogonality

defect of the LLL reduced matrix and log10γ(AI) is the common logarithms of average

values of the orthogonality defect of the Type-I reduced basis. But when n ≥ 45,

log10γ(AI) ≤ log10γ(AL), which means the Type-I reduced bases are more orthogonal

than the LLL reduced bases. The di�erence(log10γ(AI)− log10γ(AL)) becomes larger

when n approaches 100. The Euclidean norm of a shortest vector in reduced bases is

shown in Figure 3.3. The LLL almost performs as well as the Type-I algorithm. When

10 ≤ n ≤ 45, the LLL �nds shorter vectors than the Type-I algorithm. However, when

45 < n ≤ 100, the Type-I algorithm �nds short vectors. Overall, we can say that

the LLL runs faster than the Type-I, but in high dimensional, the Type-I algorithm

generates better reduced bases than the LLL algorithm.
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Chapter 4

Solving the Subset Sum Problem

In the previous chapter, we introduced two lattice basis reduction algorithms and their

implementations, the length bounds of shortest vectors and the time complexities of

two lattice basis reduction algorithms. In this chapter, we introduce the subset sum

problem and outline some methods for solving the problem. At last, we will show

how to use the Type-I reduction algorithm in conjunction with the LLL algorithm

and other techniques to attack the subset sum problem.

4.1 The Subset Sum Problem

De�nition 4.1. Given a set of positive integers(the weights) W = {w1, w2, . . . , wn}

and a positive integer s, the subset sum problem is to �nd a set E = {e1, e2, . . . , en},

where ei ∈ {0, 1}, 1 ≤ i ≤ n, such that

s =
n∑

i=1

wiei.
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In other words, the subset sum or the knapsack problem is to �nd, given the weight

W and the sum s, some subset W ′ of W , such that the sum of the elements in W ′

equals s.

The subset sum problem, in general, is NP-complete [9, 6]. Many subset sum

based cryptosystems are built on the di�culty of solving the subset sum problem, but

almost all of these cryptosystems have been shown to be insecure [20, 21, 11]. There

are two famous independent attacks that attempt to solve the certain type of subset

sum problems, one due to Lagarias and Odlyzko [10] and one due to Radziszowski

and Kreher [24].

De�nition 4.2. The density d of a weight set W = {w1, w2, . . . , wn} is de�ned by

d =
n

log2 max
1≤i≤n

wi

. (4.1)

Although Brickell and Lagarias-Odlyzko attacks depend in theory only on the

density of the subset sum problem, in practice, the success rate of these methods is

still bounded by the performance of lattice reduction technique used in attack.

4.2 Previous Results of the Subset Sum Problem

In 1984 and 1985, two algorithms have been proposed independently, one by Brickell

[1] and another by Lagarias and Odlyzko [10]. Di�erent from the majority of attacks

on the subset sum based cryptosystems which exploit the speci�c construction of the

cryptosystems, these algorithms show that almost all low-density subset problems

may be solved in polynomial time if a polynomial time algorithm(lattice oracle) for
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�nding a shortest non-zero vector in a lattice could be invoked. The density of subset

problems d is de�ned in (4.1), we are only interested in the problems where d ≤ 1,

since if d > 1, there will, in general, be many subsets of weights for the same sum s,

therefore, such sets cannot be used for transmitting information.

Both Brickell and Lagrias-Odlyzko attacks reduce the subset sum problem to the

problem of �nding a shortest nonzero vector in a lattice, a lattice basis reduction

algorithm, the LLL algorithm, is applied to produce a reduced basis for a lattice that

contains a shortest nonzero vector. Given a lattice basis as input, consider a lattice

oracle with high probability �nds in polynomial time a shortest nonzero vector in the

given lattice. We do not know how to construct such an oracle, but it is shown in

[10, 24] that the LLL algorithm acts like such an oracle in relatively low dimensions.

In [10], the analysis shows that it is possible to solve all subset problems of density d <

0.6463 . . . in polynomial time, but no higher than that. In 1992, Coster, LaMacchia,

Odlyzko and Schnorr [4] and Joux and Stern [8] independently demonstrated via

di�erent techniques that the bound could be improved to d < 0.9408 . . ..

The Lagarias-Odlyzko attack proceeds as follows. LetM be a positive integer and

{w1, w2, . . . , wn} be a set of random integers with 0 < wi ≤M for 1 ≤ i ≤ n. Let the

set E = {e1, e2, . . . , en} ∈ {0, 1}n and E 6= {0, 0, . . . , 0} be �xed and depend only on

n, also let

s =
n∑

i=1

eiwi, t =
n∑

i=1

wi.

We may assume

1

n
t ≤ s ≤ n− 1

n
t, (4.2)
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because if s < t
n
then any wi ≥ t

n
cannot be in the subset W ′. If s > n−1

n
t then every

wi ≥ t
n
must be in subset W ′. In both cases, the complexity of solving the subset

sum problem is reduced. Now, de�ne a matrix A = [a1, a2, . . . , an, an+1] ∈ Rn+1×n+1

as follows:

A =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

Nw1 Nw2 Nw3 . . . Nwn Ns


, (4.3)

where N is a positive integer and N >
√
n. Let L be the lattice generated by A, that

is,

L = {
n+1∑
i=1

ziai, where zi ∈ Z and 1 ≤ i ≤ n+ 1}.

Notice that the solution vector ê = [e1, e2, . . . , en, 0]T is in L, since



1 0 0 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

Nw1 Nw2 Nw3 . . . Nwn Ns





e1

e2
...

en

−1


=



e1

e2
...

en

0


, (4.4)

and ê is believed a �short� vector in L. Then the Lagarias-Odlyzko attack uses the

LLL algorithm as the lattice oracle to �nd the solution vector ê.

Lagarias and Odlyzko also derive the theoretical bound of the attack. Let P be the
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probability that there exist another vector x̂ = [x1, x2, . . . , xn, xn+1]
T which satis�es:

x̂ ∈ L,

‖x̂‖2 ≤ ‖ê‖2,

x̂ /∈ {0, ê,−ê}.

(4.5)

Following the proof in [5], we only consider the situation that

n∑
i=1

ei ≤
1

2
n,

because if
∑n

i=1 ei >
1
2
n, we can let s′ = t− s, e′ = [e′1, e

′
2, . . . , e

′
n]T where e′i = 1− ei,

for 1 ≤ i ≤ n, then the solution vector will be ê′ = [e′1, e
′
2, . . . , e

′
n, 0]T . Clearly,∑n

i=1(1 − ei) ≤ 1
2
n. It is not hard to see that x̂ satis�es (4.5) only if xn+1 = 0,

otherwise ‖x̂‖2 ≥ |xn+1| ≥ N >
√
n ≥ ‖ê‖2, contradicting the hypothesis (4.5).

Similar to (4.4), we can get a new equation for x̂,



1 0 0 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

Nw1 Nw2 Nw3 . . . Nwn Ns





x1

x2
...

xn

−y


=



x1

x2
...

xn

0


,
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where y is an integer. It is clear that
∑n

i=1wixi = sy, it follows:

s|y| =

∣∣∣∣∣
n∑

i=1

wixi

∣∣∣∣∣
≤ ‖x̂‖2

n∑
i=1

wi

≤ t

√
1

2
n,

notice that
∑n

i=1wi = t and ‖x̂‖2 ≤ ‖ê‖2 ≤
√

1
2
n. Therefore, by (4.2) above, we get

|y| ≤ n

√
1

2
n. (4.6)

Notice that P denotes the probability of there exist a vector x̂ which satis�es (4.5),

let x = [x1, x2, . . . , xn]T denote an element of Zn since x̂ ∈ L. By the de�nition of

lattice, x1, x2, . . . , xn are all integers, then ‖x̂‖2 = ‖x‖2 and as a special case we have

‖ê‖2 = ‖e‖2, where e = [e1, e2, . . . , en]T . In [4], the probability P is estimated by

P ≤ Pr

(
∃ x, y s.t. ‖x‖2 ≤ ‖e‖2, |y| ≤ n

√
1

2
n, x /∈ {0, e,−e},

n∑
i=1

xiwi = sy

)

≤ Pr

(
n∑

i=1

xiwi = sy : 0 < ‖x‖2 < ‖e‖2, |y| ≤ n

√
1

2
n, x /∈ {0, e,−e}

)

· |{x : ‖x‖2 ≤ ‖e‖2}| ·

∣∣∣∣∣{y : |y| ≤ n

√
1

2
n}

∣∣∣∣∣ .
(4.7)

For estimating the �rst part of (4.7) easily, in [4] authors rewrite
∑n

i=1 xiwi = sy as:

n∑
i=1

wizi = 0, where zi = xi − yei.

34



M.Sc. Thesis - Yang Bo McMaster - Computing & Software

We have z = [z1, z2, . . . , zn]T 6= 0 because x 6= 0 and ‖x‖2 ≤ ‖e‖2. We assume without

loss of generality that z1 6= 0, let z′ = −
(∑n

i=2 wizi
z1

)
then

Pr

(
n∑

i=1

wizi = 0

)
= Pr (a1 = z′)

=
M∑
j=1

Pr (w1 = z′|z′ = j)Pr (z′ = j)

=
M∑
j=1

Pr (w1 = z′)Pr (z′ = j)

=
M∑
j=1

1

M
Pr (z′ = j)

≤ 1

M
. (4.8)

The second part of (4.7) is estimated in [10] as:

|{x : ‖x‖2 ≤ ‖e‖2}| ≤

∣∣∣∣∣{x : ‖x‖2 ≤
√

1

2
n}

∣∣∣∣∣
≤ 2c0n. where c0 = 1.54724 . . . . (4.9)

It is clear that the last part of (4.7) can be estimated by

2n

√
1

2
n+ 1. (4.10)

Combining (4.8) (4.9) (4.10), we can get

P ≤ n

(
2n

√
1

2
n+ 1

)
2c0n

M
, where c0 = 1.54724 . . . ,
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this implies if M = 2cn with c > c0, lim
n→∞

P = 0. Also, if the density of a subset sum

problem is less than 0.6463 . . ., then

n

log2 max
1≤i≤n

wi

< 0.6463 . . . =⇒ max
1≤i≤n

wi > 2
n

0.6463... =⇒M > 2c0n. (4.11)

Therefore, all subset sum problems with density less than 0.6463 . . . can be solved in

polynomial time if given a lattice oracle.

In 1991, two improvements of Lagarias-Odlyzko attack have been presented by

Coster, LaMacchia, Odlyzko and Schnorr [4] and by Joux and Stern [8], both of them

increase the bound of density to d < 0.9408 . . .. In [4], the modi�cation suggested

is to replace an+1 = [0, 0, . . . , 0, Ns]T by a′n+1 = [1
2
, 1
2
, . . . , 1

2
, Ns]T , therefore the new

matrix is

A′ =



1 0 0 . . . 0 1
2

0 1 0 . . . 0 1
2

...
...

...
. . .

...
...

0 0 0 . . . 1 1
2

Nw1 Nw2 Nw3 . . . Nwn Ns


.

Let L′ be the lattice generated by A′. Similar to (4.4), the new equation is:



1 0 0 . . . 0 1
2

0 1 0 . . . 0 1
2

...
...

...
. . .

...
...

0 1 0 . . . 1 1
2

Nw1 Nw2 Nw3 . . . Nwn Ns





e1

e2
...

en

−1


=



e1 − 1
2

e2 − 1
2

...

en − 1
2

0


,
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therefore, L′ does not contain the solution vector ê, instead it contains the vector

ê′ = [e′1, e
′
2, . . . , e

′
n, 0]T = [e1 − 1

2
, en − 1

2
, . . . , en − 1

2
, 0]T . Similar to (4.5), now we

are interested in the probability P ′ that there exists a vector x̂′ which satis�es the

following:

x̂′ ∈ L,

‖x̂′‖2 ≤ ‖ê′‖2 ≤
1

2

√
n,

x̂′ /∈ {0, ê′,−ê′},

because e′i ∈ {−1
2
, 1
2
} for 1 ≤ i ≤ n, then ‖ê′‖22 ≤ 1

4
n. In [4], it is shown that the

probability P ′ is bounded by:

P ′ ≤ n(4n
√
n+ 1)

2c′0n

M
where c′0 = 1.0628 . . . ,

by using the similar techniques to [10, 17, 5]. Since 1
c′0

= 0.9408 . . ., similar to (4.11),

we get

n

log2 max
1≤i≤n

wi

< 0.9408 . . . =⇒ max
1≤i≤n

wi > 2
n

0.9408... =⇒M > 2c′0n.

Therefor any subset sum problem with density d < 0.9408 . . . may be solved by a

lattice oracle in polynomial time.
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4.3 Previous Empirical Methods for Solving the Sub-

set Sum Problem

Lagarias and Odlyzko [10] presented the results of �rst empirical attacks on the general

subset sum problem along with their theoretical results in 1985. Figure 4.1 is a

�owchart representation of the Lagarias-Odlyzko attack. They �rst �xed the vector

e as follows:

e = [e1, e2, . . . , en]T where ei = 1, if 1 ≤ i ≤ n

2
and ei = 0, otherwise.

Then a basis A (4.3) is generated using e and the set of random integers {w1, w2, . . . , wn}.

After that, a multiprecision version of the LLL algorithm was applied to A. The LLL

parameter ω was set to 1 instead of 0.75, they claimed when ω = 1 the LLL algorithm

was not proved to run in polynomial time, but in practice, it just takes three times as

long as the LLL algorithm with ω = 0.75, and it seems to �nd much shorter vectors

than the LLL algorithm with ω = 0.75. After the LLL reduction, their algorithm tried

to �nd the solution vectors ±ê = ±[e1, e2, . . . , en, 0]T in the reduced basis. In cases of

failure, the LLL algorithm was run again to another permutation of the basis A (4.3)

and this was repeated for up to �ve trials since di�erent initial orderings generated

di�erent LLL-reduced bases. If all these �ve trials failed, the basis A was rede�ned

with s =
∑n

i=1wi − s and the process was repeated that is shown in Figure 4.1.

In 1988, Radziszowski and Kreher [24] described an improvement of Lagarias and

Odlyzko method. The new method has two signi�cant advantages: running time is

an order of magnitude shorter and can attack higher density subset sum problems.

Figure 4.2 presents the procedure of the Radziszowski-Kreher attack. The input basis
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Figure 4.1: Lagarias-Odlyzko Attack Process
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B of the Radziszowski-Kreher attack equals A (4.3) except that the last row of B is

[w1, w2, w3, . . . , wn, s]. A modi�ed multiprecision algorithm was applied to B which

is called the MP algorithm. The MP algorithm is built on one important equation:

let basis B be the input matrix, then

[
w1 w2 . . . wn

]


b1,i

b2,i
...

bn,i


= kis+ bn+1,i, (4.12)

where w1, w2, . . . , wn are weights of the subset sum problem, ki = 0 if 1 ≤ i ≤ n

and ki = −1 if i = n + 1. Let BL be the reduced basis after running the LLL

algorithm with input B, there exist some integers ki where 1 ≤ i ≤ n + 1, such

that (4.12) remains true since the only operations performed in the LLL algorithm

are the Decrease and Swap-Restore and equation (4.12) is an invariant of both of

them. As it is shown in [24], the MP algorithm can reduce the number of required

multiprecision calculations by a divide and conquer approach, all calls to the LLL

algorithm(ω = 0.99) in the MP are executed entirely in single precision arithmetic.

Let t = an integer smaller than the machine word(a word is the amount of data that

a machine can process at one time) size, for example, t = 28 for a 32−bit computer,

which can reduce the possibility of raising the over�ow errors during the calculation.

top = blog2Max(an+1,1, an+1,2, . . . , an+1,n, an+1,n+1)c + 1, k = Max(top− t, 0) and the

last row of B is changed to [ bn+1,1

2k
, bn+1,2

2k
, . . . , bn+1,n+1

2k
]. In essence, the MP algorithm

call the LLL algorithm approximate top/t times on B. The resulting basis of each call

of the LLL will be the input of next call. Please refer to [24] for detailed explanations.
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Figure 4.2: Radziszowski-Kreher Attack Process

After applied the MP algorithm to B, as it is shown in Figure 4.3, a combinational

process includes solution check, weight-reduction, sort and the LLL algorithm was

run on that LLL-reduced basis. They de�ned the total weight(the squared Frobenius

norm) of the basis B as follows:

weight(B) =
n+1∑
i=1

‖bi‖22.

The weight-reduction procedure searches pairs of vectors bi and bj in the input basis
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Figure 4.3: Combined Operations

42



M.Sc. Thesis - Yang Bo McMaster - Computing & Software

satis�es:

‖bi + bj‖2 < max(‖bi‖2, ‖bj‖2) or ‖bi − bj‖2 < max(‖bi‖2, ‖bj‖2),

when such pair is found, then the longer(in terms of square-norm) of bi and bj is

replaced by bi + bj or bi − bj. Another important feature of the Radziszowski-Kreher

attack is: each time before the LLL algorithm is run, the vectors in the output basis

of the weight-reduction procedure is sorted in increasing order of length. Therefore,

the length of the shortest vector in the basis is guaranteed not to increase by the

application of the LLL algorithm. Because if vector b1 is a shortest vector in the

output basis of sort procedure, the LLL can replace b1 with vector b2 in lattice if and

only if

‖b2‖2 <
√
ω‖b1‖2, ω = 0.99 in Radziszowski-Kreher attack.

This may not hold for every bi, but it is true for b1. If such combinational process can-

not reduce weight(B) and the combinational procedure can not �nd solution vectors

±ê, the Radziszowski-Kreher attack ran the �nal weight-reduction and the solution

check processes, and then algorithm terminated. Similar to the Lagarias-Odlyzko

attack, if solution vectors ±ê were not found after the whole process, the attack is

repeated on the rede�ned basis B which with s =
∑n

i=1wi − s.
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4.4 Using the Type-I Algorithm to Solve the Subset

Sum Problem

Both the Lagarias-Odlyzko attack [10] and the Radziszowski-Kreher attack [24] use

the LLL algorithm almost exclusively to perform the lattice reduction. As shown by

the analysis of the LLL and the Type-I algorithms in Chapter 3, the Type-I algorithm

alone does not perform well for solving the subset sum problem. In this section, we

propose a hybrid method, which integrates the Type-I, the LLL and other techniques,

to �nd a shortest vector. We de�ne an initial matrix similar to the one used by Coster,

LaMacchia, Odlyzko and Schnorr in [4]:

A =



1 0 0 . . . 0 1
2

0 1 0 . . . 0 1
2

...
...

...
. . .

...
...

0 0 0 . . . 1 1
2

w1 w2 w3 . . . wn s


. (4.13)

Note that the solution vectors of (4.13) should have the form ê = [e1 − 1
2
, e2 −

1
2
, . . . , en− 1

2
, 0]T or −ê = [−e1 + 1

2
,−e2 + 1

2
, . . . ,−en + 1

2
, 0]T . As pointed out in [12],

the algorithms of [10, 24, 4] search vectors of the form (e1, e2, . . . , en, 0). A problem

with these methods is that often the last element of the short vectors produced by

the LLL reduction not equals zero, which means that the sum
∑n

i=1wixi does not

describe any relation with the target subset sum problem. One way to reduce the

possibility that the LLL algorithm(or the Type-I algorithm) produces such vectors

in the reduced basis is to scale all wi and s by some constant N . This method
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increases the length of any vector having a nonzero last element by about
√
N if N

is su�ciently large. This is the reason of the last row of the initial matrix de�ned in

[10, 24, 4] has the form [Nw1, Nw2, Nw3, . . . , Nwn, Ns]. However, this approach has

one disadvantage: it increases the size of numbers that are already large, therefore

the multiprecision arithmetic is required. In [12], a new approach is introduced to

eliminate the consideration of all lattice vectors with en+1 6= 0: the GCD-reduction.

The GCD-reduction performs column operations on the lattice basis to make

the entire n + 1th row contains only one nonzero element, the GCD of the weights

w1, w2, . . . , wn. This idea of implementing the GCD-reduction is described by Brun

[2]. We use matrix A (4.13) as the input of the GCD-reduction algorithm, the �rst

step is to sort the column vectors of A in order of decreasing an+1,i where 1 ≤ i ≤ n+1.

Then a2 is repeatedly subtracted from a1 until an+1,2 > an+1,1. The column vectors

are then sorted in decreasing order of an+1,i again and the process repeats. Eventually,

the only nonzero element will be an+1,1 and an+1,1 = GCD(w1, w2, . . . , wn). After the

GCD-reduction procedure, we can remove the vector a1 and all an+1,i where 2 ≤ i ≤

n+ 1 from A, which reduces an n+1 dimensional lattice basis A to an n dimensional

lattice basis AG. Thus, the solution vectors of AG are êG = [e1− 1
2
, e2− 1

2
, . . . , en− 1

2
]T

or −êG = [−e1 + 1
2
,−e2 + 1

2
, . . . ,−en + 1

2
]T . Figure 4.4 shows that we apply the GCD-

reduction to A before the Type-I reduction because the GCD-reduction requires all

an+1,i where 1 ≤ i ≤ n + 1 be positive integers. If we applied the Type-I algorithm

�rst, then the output basis would include negative integers in the (n+1)th row. After

the GCD-reduction is applied to the basis A, the process enters the I&LLL phase.

Figure 4.5 shows the details in the I&LLL phase. The input to this phase is the

lattice basis AG which is the result of the GCD-reduction. We apply the Type-I
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Figure 4.4: Type-I & LLL Attack Process
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Figure 4.5: I&LLL Phase
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reduction with parameter δ = 1 to AG. In our experiments, the Type-I & LLL al-

gorithm still terminates even δ = 1. Recalling the property of the Type-I reduction,

when δ = 1, the acute angle between any pair of the Type-I reduced basis vectors

is guaranteed at least 60◦. When the value of n is small (n ≤ 15), with high prob-

ability that solution vectors ±êG will be in this Type-I reduced basis AI , thus we

search for the solution vectors in AI . If solution vectors are not found, then a number

of iterations of the weight-reduction-sort-LLL operation are applied to the basis AI .

By calling the sort(sort just sorts the basis vectors by length in increasing order)

after the weight-reduction, the shortest vector in AI is the �rst column of the basis

AI . Hence the length of it is guaranteed not to increase by following iterations of

the weight-reduction-sort-LLL operation. Recalling the Radziszowski-Kreher attack

from Section 4.3, they show that iterations of the weight-reduction-sort-LLL (Fig-

ures 4.2, 4.3) yield better results than a single application of the LLL algorithm. The

Type-I & LLL algorithm incorporates this approach. The weight-reduction-sort-LLL

loop stops when certain conditions are satis�ed and we will specify the conditions

later. In each iteration of the weight-reduction-sort-LLL, we use the LLL algorithm

with ω = 0.75. Although in [10, 24, 4], the LLL algorithm is run with parameter

ω ≈ 0.99, Lenstra, Lenstra and Lov�asz [13] show that ω could be any value between

in the range 1
4
< ω < 1. After each iteration of the weight-reduction-sort-LLL,

we compute the boolean value of the following expression, which is �rst used by

LaMacchia in [12]. Let Awsl,in be the input basis of each iteration of the weight-

reduction-sort-LLL loop and Awsl,out be the resulting basis of each iteration of the
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weight-reduction-sort-LLL loop,

(min{‖ai‖2 ∈ Awsl,out} < min{‖ai‖2 ∈ Awsl,in})

OR ((min{‖ai‖2 ∈ Awsl,out} = min{‖ai‖2 ∈ Awsl,in})

AND (max{‖ai‖2 ∈ Awsl,out} < max{‖ai‖2 ∈ Awsl,in})).

(4.14)

If the value of (4.14) is true, then the output basis Awsl,out is the input again into

the weight-reduction-sort-LLL loop. Thus, we perform the weight-reduction-sort-

LLL loop until either the length of the shortest vector in basis has increased after

the weight-reduction-sort-LLL loop or if the length of the shortest vector has not

changed and the length of the longest vector has not decreased. The looping structure

in Figure 4.5 and the exit condition in (4.14) make the LLL algorithm perform as

many Decrease operations as possible [12]. In [13], Lagarias and Odlyzko show that

applying the LLL algorithm multiple times on input bases with di�erent orders can

improve the success rate. The Type-I & LLL algorithm incorporates this approach. If

no solution vectors are found in the I&LLL phase, we randomly permute the column

vectors in AG then apply the I&LLL phase again on it. Based on our experiments and

the trade-o� between the running time and the success rates, we set the maximum

number of permutations to 15. If all these 15 trials fail, then we rede�ne the initial

basis A with s =
∑n

i=1wi−s and apply the attack (Figure 4.4) again on the modi�ed

basis A.
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4.5 The Experimental Result of the Type-I & LLL

Attack

In the previous section, we have detailed the operations of the Type-I & LLL algo-

rithm, a combination of the Type-I and the LLL algorithm. Also, we have utilized

the GCD-reduction, the weight-reduction and the sort approach. In this section, we

will present the results of our experiments.

All algorithms of the Type-I & LLL, including the GType-I(Algorithm 5) and

the LLL algorithm(Algorithm 3) in Chapter 3 are implemented in 64-bit MATLAB

R2015b. All lattice bases are stored in double precision �oating point format. Recall

from Section 4.2 that if the density of the subset sum problem is greater than 1, then

generally, there are many subsets W ′ of weights with the same sum s. Therefore such

set cannot be used for transmitting information. In our experiment, we set the size

of the subset sum problem 10 ≤ n ≤ 43 and keep the density d ≤ 1. Although the

Type-I and the LLL algorithms both need dot multiplication of vectors which may

lead rounding error, this implementation of the Type-I & LLL algorithm is satisfactory

for our purpose if the value of n ≤ 43. When n ≥ 43, the success rates drop rapidity.

Following the test results of [10, 24], we attempt to solve some random subset sum

problems of various values of n. For each value of n, we choose a set of b values, where

each b represents the number of bits in the binary representation of the maximum

weight. The Type-I & LLL algorithm is run on some randomly generated subset

sum problems for each pair of (n, b). If it is possible, we choose the pairs of n and b

corresponding to the (n, b) pairs that are used in [10, 24].
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Table 4.1: Test Result of the Type-I & LLL Algorithm for 10 ≤ n ≤ 30
20 trials for each density d for each size n

size
n

bits
b

density
d

number of successes success rate
average time
(in seconds)

10 10 1.000 20 1.00 0.0273
20 0.500 20 1.00 0.0437
30 0.333 20 1.00 0.0945
40 0.250 20 1.00 0.1218
50 0.200 19 0.95 0.1421

14 14 1.000 20 1.00 0.0679
16 0.875 20 1.00 0.0710
20 0.700 20 1.00 0.0890
30 0.466 20 1.00 0.0750
40 0.350 20 1.00 0.1125
50 0.280 20 1.00 0.1179

20 20 1.000 20 1.00 0.1328
21 0.952 20 1.00 0.1906
24 0.833 20 1.00 0.1828
30 0.667 20 1.00 0.1445
36 0.555 20 1.00 0.1851
40 0.500 20 1.00 0.1960
50 0.400 20 1.00 0.1859

26 26 1.000 20 1.00 0.6265
27 0.963 20 1.00 0.3711
30 0.866 20 1.00 0.4101
35 0.743 20 1.00 0.2109
36 0.722 20 1.00 0.2820
40 0.650 20 1.00 0.2570
44 0.590 20 1.00 0.3257
50 0.520 18 0.90 0.8773

30 30 1.000 19 0.95 1.6625
31 0.968 20 1.00 1.2156
36 0.833 20 1.00 0.6507
40 0.750 20 1.00 0.5835
44 0.682 20 1.00 0.3906
50 0.600 16 0.80 1.6086
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Table 4.2: Test Result of the Type-I & LLL Algorithm for 34 ≤ n ≤ 43
20 trials for each density d for each size n

size
n

bits
b

density
d

number of successes success rate
average time
in seconds

34 34 1.000 16 0.80 4.1265
35 0.971 16 0.80 3.4781
38 0.895 19 0.95 2.8398
40 0.850 20 1.00 1.9851
43 0.790 20 1.00 1.5102
45 0.755 20 1.00 1.1851

37 37 1.000 16 0.80 23.3078
38 0.974 13 0.65 5.3063
40 0.925 12 0.60 17.4039
42 0.881 16 0.80 18.8875
45 0.822 19 0.95 9.9117
47 0.787 19 0.95 9.7227

42 42 1.000 4 0.20 13.8984
44 0.955 3 0.15 14.8679
46 0.913 2 0.10 15.6937
48 0.875 8 0.40 14.2898

43 43 1.000 1 0.05 11.3602
44 0.977 2 0.10 10.7156
46 0.935 5 0.25 8.4602
48 0.896 6 0.30 12.8297
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Tables 4.1 and 4.2 illustrate the test results of the Type-I & LLL algorithm per-

forms on random subset sum problems with di�erent (n, b). For each problem, we

de�ne a 0 − 1 set K, where b1
2
nc's 1 and n − b1

2
nc's 0 in K. After that, we use

MATLAB function randi() to randomly generate a set {w1, w2, . . . , wn−1}, where

1 ≤ wi ≤ 2b and wi ≤ wi+1, also, let wn = 2b to guarantee the density is n
b
. Then

we use the MATLAB function randperm() to randomly permute all elements in K

and let s = [k1, k2, . . . , kn]T [w1, w2, . . . , wn]. After that, we generate a initial matrix

A (4.13) with w1, w2, . . . , wn and s and apply the Type-I & LLL algorithm on A. All

experiments are run on 64-bit Windows 10 Pro operating system with the 6th Gen

2.4GHz Intel Core i5-6300U processor and 8GB memory. The columns in Tables 4.1

and 4.2 show the value of following variables:

n: The size of the subset sum problem. The initial matrix A of the Type-I & LLL

algorithm has size (n+ 1)× (n+ 1).

b: The number of bits in the binary representation of the maximum weight. Each

weight is chosen randomly from 1 to 2b.

d: The density of the subset sum problem, d = n
b
.

number of successes: How many subset sum problem are solved by the Type-I

& LLL algorithm.

success rate: The success rate measured as a fraction of the number of attempted

problems.

average time: The average amount of CPU time(in seconds) required to run the

Type-I & LLL algorithm on 20 subset problems, which are generated with a �xed

pair (n, b).

From Tables 4.1 and 4.2, it is not hard to see that the Type-I & LLL algorithm has
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Figure 4.6: Lagarias-Odlyzko Results: Success Rate vs. Density
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Figure 4.7: Radziszowski-Kreher Results(26 ≤ n ≤ 50): Success Rate vs. Density
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Figure 4.8: Results of the Lagarias-Odlyzko(n = 30), the Radziszowski-Kreher(n =
34) and the Type-I & LLL(n = 34)
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great performance for the subset sum problems with small size n ≤ 37. Figure 4.6

graphically shows the performance of the Lagarias-Odlyzko method, Lagarias and

Odlyzko only solve approximate 45% of the problems for n = 26, density ≈ 0.9.

However, Table 4.1 shows that the Type-I & LLL algorithm solved almost all problems

with n = 26 and d ≤ 1. In fact, the Type-I & LLL algorithm works as well as a lattice

oracle for all problems with n ≤ 30. A true lattice oracle should have been able to

solve all subset sum problem with the density d < 0.9408. However, the Type-I &

LLL algorithm still performs well for problems with n ≤ 37 and 0.9408 < d ≤ 1.

Figure 4.7 graphically shows the experimental results in [24]. We can see that if the

density of the subset sum problems greater than 0.85, then Radziszowski and Kreher

are only able to solve at most approximate 45% of the problems for n = 26.

Figure 4.8 graphically compares the results of applying the Radziszowski-Kreher,

the Largarias-Odlyzko and the Type-I & LLL algorithm to the subset sum problem

with n = 30 or n = 34. On the one hand, when the density of the subset sum problem

approaches 1, the success rates of all these three algorithms decrease. On the other

hand, the success rate of the Type-I & LLL algorithm drops much slower than others.

When 0.75 . density ≤ 1, the Type-I & LLL algorithm has the highest success rate.

Although the Type-I & LLL algorithm performs particularly well for the subset

problem with small values of n, its performance retrogresses quickly if n ≥ 42. As

it is shown in Table 4.2, at n = 42, the Type-I & LLL solves at most 40% of the

problems for 0.875 ≤ d ≤ 1. The maximum success rate drops to 30% if n = 43 and

0.896 ≤ d ≤ 1.
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Chapter 5

Conclusions and Future Work

In this thesis, we introduce a new lattice reduction algorithm, the Type-I algorithm,

which does not require the Gram-Schmidt orthogonalization or the QR decomposition.

Also, we propose a hybrid method, which integrates the Type-I algorithm, the LLL

algorithm, the GCD-reduction and the weight-reduction for solving the subset sum

problem. After the concepts of lattices and bases are introduced in Chapter 2, we

present the LLL and the Type-I reduction algorithm in Chapter 3. Also, we compare

them by the running time, the orthogonality defect and the Euclidean norm of the

shortest vector in the reduced bases. When ω in the LLL is set to 0.99 and δ in

the Type-I is also set to 0.99, the Type-I generates more orthogonal reduced bases

and �nds shorter shortest lattice vectors than the LLL algorithm, if the dimension

of lattices is high(≥ 45). However, when the dimension of lattices is less than 45,

the LLL reduced bases are better than the Type-I reduced bases. Also, The LLL

algorithm runs much faster than the Type-I algorithm for almost all experimental

bases. In Chapter 4, we introduce the subset sum problem and discuss some previous

methods for solving the problem. Then we propose the Type-I & LLL algorithm for
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solving the subset sum problem. The experimental results are shown in section 4.5

and compared with the results of the Lagarias-Odlyzko method and the Radziszowski-

Kreher method. The Type-I & LLL almost performs as well as a lattice oracle for

all problems with size n ≤ 30. Although the performance declines over the range

34 ≤ n ≤ 43, the success rate of the Type-I & LLL algorithm is still much higher than

those of the Lagarias-Odlyzko attack and the Radziszowski-Kreher attack(Figure 4.8).

The future work includes how to extend the experiments in order to attack the

subset sum problems of large sizes. There are several ways to improve this. One way

is using a multi-precision LLL algorithm. For example, we can use the MP algorithm

[24] instead of the MatrixLLL algorithm(Algorithm 3) in the I&LLL phase. The

implementation of the LLL in the MP algorithm uses �oating-point approximations to

the rational values of µi,j and ‖a∗i ‖22, where 1 ≤ i < j ≤ n. The MP algorithm almost

eliminates the accumulated errors in the �oating-point µi,j, since at each iteration of

the while loop, µi,j are initialized directly from the de�nition [24]. An improved LLL

algorithm(L3FP algorithm) [26] can also be used to take the place of the MatrixLLL.

The L3FP algorithm produces considerably shorter vectors than the original LLL

algorithm but may be ine�cient in the worst case. Another way of extending the

Type-I & LLL algorithm is to use symbolic computation. The symbolic computation

is only used in the LLL part of the I&LLL phase because the Type-I algorithm does

not require the Gram-Schmidt orthogonalization or the QR decomposition.

Finally, it is possible to modify the initial matrix to take into account the addi-

tional information related to the creation of the speci�c subset sum problem. In [4],

it is shown how to modify the input basis for a subset sum problem if it is known
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that

n∑
i=1

ei = βn.

The input matrix can be changed to

A =



1 0 0 . . . 0 β

0 1 0 . . . 0 β

...
...

...
. . .

...
...

0 0 0 . . . 1 β

w1 w2 w3 . . . wn s


,

so that a solution vector with length
√
nβ(1− β) exists (In our experiments, we

choose β = 1
2
). Although no information of

∑
ei is known for general subset sum

problems, some subset sum based cryptosystem, such as the Chor-Rivest system [3],

do use subsets with relatively few weights. The Type-I & LLL algorithm could be

modi�ed to use the tailored lattice basis described in [4] when attacking such systems.
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