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ABSTRACT

Biological systems, processes, and applications present modeling challenges in the form of

system complexity, limited steady-state availability, and limited measurements. One primary

issue is the lack of well-estimated parameters. This thesis presents two contributions in the

area of modeling and parameter estimation for these kinds of biological processes. The

primary contribution is the development of an adaptive parameter estimation process that

includes parameter selection, evaluation, and estimation, applied along with modeling of cell

growth in culture. The second contribution shows the importance of parameter estimation

for evaluation of experiment and process design.
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Chapter 1

Introduction

Biological systems are often viewed as separate from traditional areas of chemical engineering

research such as process system design, modeling, control, and optimization. However, all

of these tools can be applied to biological systems.

Biological systems have several distinct features that present challenges that need to be

met when it comes to modeling. Biological processes (whether it is cell culturing, drug

production, or others) often take the form of batch processes, with no apparent steady-

state. In a batch process, the process is started with some initial set of ingredients which

then react and change over time. During the batch, additional ingredients may be added or

removed, and changes to the batch conditions will often occur. Batch processes do not tend

to reach any steady-state condition, and often involve highly non-linear reaction dynamics.

These conditions make certain types of system identi�cation and modeling more challenging.

Another challenge that we face with biological systems is de�ning the complexity of the sys-

tem. Depending on the scale, a biological process can seem to be almost in�nitely complex,

with hundreds or thousands of simultaneous reactions. Each cell in a culture of millions is a

tiny chemical factory producing many di�erent products. Deciding at what level we describe

a model of a biological system is an important element to these systems.

1
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Biological systems are also often relatively poorly measured compared to traditional chemical

processes. Whether it is due to risk of contamination, lack of sensitive instruments, or simply

expense, biological systems often have relatively few available measurements, and even fewer

that are available on-line. Many measurements need to be done after the batch has been

completed, or require sampling of the batch to perform complex tests. Linking these few

available measurements to the state of the batch as a whole may be a di�cult task.

Finally, one of the biggest challenges in modeling biological systems is a lack of well-estimated

parameters. Due to the potential complexity of the system, a model of a biological process

can contain numerous parameters that are not available from literature or previous research.

The di�culty with measurements, as described, can make independent measurement of a

parameter di�cult. Therefore, parameter estimation needs to be a priority when creating

models of biological systems.

This work presents two cases of modeling and parameter estimation for a biological process

or application. Chapter 2 presents work that has been done on a T cell culturing process.

In this work, a model of T cells in culture was developed based on a population balance

model, combined with a model of the media conditions. A parameter estimation process

was implemented which including a parameter selection method, training estimation, and

an adaptive estimation process to deal with biological variability between cultures.

Chapter 3 presents a work done on a PEGylation process in which a protein is modi�ed to

enhance its use for drug applications. The PEGylation process was modeled and then pa-

rameter estimation was performed to determine appropriate parameters of reaction kinetics.

The model was then used to determine more optimal reactor conditions. The author of this

thesis was not the primary author of that work, but contributed in the area of modeling,

parameter estimation of the reaction kinetics, optimization, and assisted with collection of

experimental data for validation of the estimated model.

Chapter 4 of this work presents the main conclusions and proposals for future areas of

research in modeling and estimation of biological systems.



Chapter 2

Modeling and Adaptive Parameter

Estimation of a T Cell Culture

Process
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Manuscript Overview

This chapter introduces the primary contribution of this work. In the manuscript presented

below, a model T cell growth in batch cultures is developed. This model uses a population

balance model method to describe the cell growth mechanisms, and links it to a 2-phase

media model which describes the batch conditions the cells are grown in. As the model con-

tains a number of uncertain parameters, we developed a parameter ranking, selection, and

estimation procedure to provide a model with better predictive capabilities. This process is

demonstrated on both simulated cases and on experimental data. One question raised by

working with biological systems is the issue of biological variability. Variations between cells

from di�erent sources and origins, as would be seen in any personalized cell therapies, can be

both signi�cant and di�cult to determine prior to the process. Therefore, we developed an

adaptive estimation approach which uses data from partway into the growth process to up-

date the parameter estimation and provide improved predictive capability for the remainder

of the process.
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Modeling and Adaptive Parameter Estimation of a T

Cell Culture Process

Brian Macdonald, Xueya Feng, Seung Mi Yoo, Jonathan Bramson, Raja

Ghosh, Prashant Mhaskar

Submitted: August, 2016, in Journal of Biotechnology

Abstract

This work considers the problem of control oriented modeling of a human cytotoxic T cell in

vitro growth process that is utilized for cell-mediated therapy products. To this end, �rst,

a population balance is used for describing the growth and division of cells. A structured

two-phase media model is used to describe the external environment. Parameter estimation

is �rst performed using simulated and experimental data. Finally, an adaptive parameter

estimation procedure is implemented to address variations across samples, and demonstrate

the viability of the proposed method for use in online control implementations.
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2.1 Introduction

Cytotoxic T cells are an essential part of the immune system, and there are promising cellular

therapies involving the use of engineered T cells to �ght certain types of cancer [1, 2]. In

order for a therapy to be e�ective, a su�ciently high number of T cells need to be cultured

from a small initial batch. Viability of the process, and eventual automation, relies on the

appropriate choice of the growth protocol, along with the ability to make adaptations to the

protocol to account for biological variability across each new batch of cells.

Several di�erent methods are currently used for T cell expansion. One method, and the one

we will focus on in this paper, is characterized by the use of increasing culture vessel sizes

as the number of cells expand [3]. Beginning with small culture volumes (such as 96 well

plates), the cells are expanded into larger wells and subsequently into tissue culture �asks.

Transferring the cells into larger vessels is intended to keep the cells at optimal cell density

for growth, while also providing greater surface areas for oxygen transfer to occur. The

change also refreshes the media, removing waste and adding nutrients [3]. Another method

is to use larger culture volumes with some method of assisted oxygen transfer. This is seen

particularly in the use of a gas-permeable rapid expansion vessel (G-Rex). Here, the cells

are cultured in a large vessel with a gas-permeable membrane at the bottom of the vessel.

This allows direct oxygen transfer to the site of the settled cells. There is no need to transfer

cells, as new media is added to dilute waste products and renew concentration of nutrients.

The membrane is intended to allows su�cient oxygen transfer [4].

Development of standard protocols provides an excellent base case for producing these cells.

Successful implementation of these protocols however, requires the use of highly skilled

technicians, and is not readily amenable for large scale production, which needs to adapt

to biological variations and disturbances. This motivates the use of models to describe

and predict cell growth, with the key ability to adapt and recognize biological variation.

Developing a model with adaptive capability allows for adjustments to be made during a

batch to reduce the impact of variability on that particular process and to provide a more

consistent outcome.
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Cell growth processes are inherently di�cult to model for a number of reasons. Batch condi-

tions can be di�cult to measure without introducing potential contamination or disturbing

cell growth, so limited measurements are available compared to traditional chemical pro-

cesses. Secondly, cell growth and division are complicated processes. Limited or indirect

measurements and potential noise associated with these measurements makes parameter

estimation (for the model) di�cult.

Despite these di�culties, models of cell growth have been developed for a number of di�erent

cell types under di�erent conditions of growth. Some of the early e�orts include development

of a basis for mathematical modeling of bacterial populations, [5] [6] and mammalian cells

[7]. One issue with these models is that one of the key characteristics used is cell age, which

is not readily available for measurements. Similarly, others have looked at modeling division

synchrony and other dynamics in bacterial populations. [8] [9] Models of eukaryotic cells

have also been developed. One of the model cells for this type of model are hybridoma cells

(hyrbridized antibody-producing cancer cells). Researchers have examined the modeling of

hybridoma cultures in continuous suspension cultures. [10] [11] These models, however, do

not translate directly to use with the T cell culture process in this paper, because both the

cells and processing conditions (settled, un-mixed reactor and batch growth) are di�erent.

More recent e�orts of cell culture modeling have been focused on the promising tool of

population balance modeling (see e.g., [12, 13, 14] for continuous cultures of yeast). Other

works have examined the use and solution of population balance models from a more gen-

eral perspective, and not for a speci�c growth process. [15, 16] This paper uses similar

modeling techniques, although there are signi�cant di�erences that separate the literature

models and the model presented in this work. Most notably, a dynamic growth model for

T Cell cultures simply does not exist. Secondly, existing models have typically been for

continuous, homogeneous cultures as opposed to the present work where the cells grow in

batch, non-homogeneous behavior with no steady-state available. In summary, there does

not exist a model (with associated parameters) that can be potentially utilized for control

and optimization of the T Cell growth process.
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Motivated by these considerations, we present a modeling and adaptive parameter estimation

approach for the T cell growth process. The remainder of this paper is organized as follows:

In the second section, we introduce the necessary preliminaries for population balance models

and parameter estimation. In the following section, we propose a model of cell growth

which contains two main components. A population balance method is used to describe

the growth of the cells, while a two-phase media model is used to model the balance of

substrates and oxygen in the surrounding culture medium. These two components are linked

into a single model of T cell growth in culture. In the next section, parameter ranking and

estimation is �rst performed using simulated and experimental data. An adaptive parameter

estimation procedure is next implemented. The use of an adaptive estimation process is

particularly motivated by the issue of biological variation between di�erent batches of cells

(from di�erent patients). This variation introduces di�culties for parameter estimation

based on previously obtained measurements, as new batches may di�er signi�cantly from

the older data. Simulation results demonstrate the viability of the proposed method for

use in online control implementations. Finally, the last section summarizes the paper and

presents the main conclusions.

2.2 Preliminaries

In this section, we provide an overview of T Cell growth mechanism, followed by a description

of population balance models and parameter estimation concepts.

2.2.1 T Cell growth mechanism

On the individual cell level, cell growth and division are complex processes involving many

biochemical reactions, signalling processes, and regulatory mechanics. At a simple level, the

growth process can be viewed as containing the following main elements: the growth of cells

through consumption of external substrates, and the division of cells to create new daughter

cells, and cell death (see Figure 2.1 for a schematic).
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Figure 2.1: A schematic of generic cell growth processes

Some amount of cell growth must occur before a new daughter cell is ready to divide (oth-

erwise a cell could divide inde�nitely, creating smaller and smaller cells). Therefore, the

division of cells is understood to be dependent on the size (or, in some models, age) of the

cell, which in turn is dependent on the intake of substrates from the surrounding media. A

natural means of modeling this behaviour is through population balance models, which are

brie�y introduced in the next section.

2.2.2 Population balance models

Population balance models (PBMs) are a useful tool that can be utilized for a variety of

situations in which the system contains both a discrete particulate phase and a continuous

phase in which the particles are dispersed. The mathematical basis of the method was

proposed �rst as a way to model the growth of prokaryotic (bacteria) cells [6]. A similar

work [5] used a slightly di�erent approach for the same subject matter. In more recent work,

PBMs have been proposed to model the growth of yeast in a continuous �ow bioreactor.

[13] [14]
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The central idea behind a population balance model is the notion of modeling the rate of

change of particular state variables which characterize the particles [17]. The choice of state

variable depends on the system in question. Examples include size for a crystal nucleation

and growth process, chemical concentration for the droplets in a liquid-liquid extraction

process, or catalyst spatial density for a �uidized bed reactor [17]. The central part of a

population balance model is a population balance equation (PBE) that maps how these

characteristic variables change.

Although the characteristic variable may exist on a continuous basis, this cannot be readily

captured in the models, as the resulting partial integro-di�erential equation is di�cult to

solve. Analytical solutions are possible, but only under certain restricted assumptions [18].

In order to solve the PBE numerically, it is common to use some method of discretization

of the variable range into appropriate bins. Then the PBE maps the movement of particles

from one bin to another. Finite di�erence methods are one common tool for this discretiza-

tion. [12] [15] An alternate method, and the one used for this paper, is to use orthogonal

collocation on �nite elements for the discretization. In this way, the PBE is approximated

by a set of nonlinear ordinary di�erential equations. The integral expressions in the PBE are

approximated using Gaussian quadrature methods [19]. This method, although more com-

plex, is more computationally e�cient than �nite di�erences, and potentially more accurate,

depending on the collocation.

2.2.3 Parameter estimation

Parameter estimation in essence relies on solving an optimization problem. The starting

point is a model of a system that often contains a number of parameters. These parameters

may relate directly to elements of the real system, they may be simpli�cations of mechanics

that occur in the system, or they may be mathematical constructs that are useful to help

the model behaviour match the real system. In parameter estimation, we want to determine

values of these parameters such that the di�erence between the model and the real system is

minimized. In turn, this introduces the issue of measurements, as measurements provide the
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comparison points between the model and system. In a system where limited measurements

are available, we must realize that we likely cannot estimate all the parameters in our

model. This is due to problems of identi�ability and 'estimateability'. The in�uence of

multiple parameters on a measured output means that the we cannot uniquely identify the

impacts of each parameter on the model, nor can we then estimate all of those parameters.

Instead, we can identify key parameters by the magnitude of their impact on the measured

output of the model, and focus on estimating those key parameters.

A number of papers on parameter identi�ability, 'estimateability', and selection have been

published. Some of these techniques involve repeated parameter estimations to determine

identi�ability of each parameter, which can be very computationally intensive [20]. Other

methods depend on a calculated sensitivity matrix to evaluate the overall e�ect of each

parameter on the outputs [21]. This type of procedure is more prevalent when the outputs are

steady-state, rather than dynamic measurements, as is the case with the present application.

2.3 Model development

The model for the T cell growth process comprises of population and material balances. The

population balance equation appropriate for cell cultures takes the following form:

∂

∂t
W (m, t) +

∂

∂m
[K(S)W (m, t)] + [Γ(m,S)W (m, t+ kd)]W (m, t)

= 2

∫ ∞
m

Γ(m′)P (m,m′)W (m′, t)dm (2.1)

where m is the cell mass; W (m, t) represents the cell mass distribution at time t; S is the

concentration of glucose present in the cell; K(S) is the cell growth rate; Γ(m) is the division

intensity function for a cell of mass m; and p(m,m′) is the partition function which models

the probability distribution function of newborn cells. Γ(m) represents the division intensity
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function, the rate at which cells divide according to their mass and takes the following form:

Γ(m) = 0 if m ≤ mt (2.2)

Γ(m) = γe−ε(m−md)
2
if m ∈ [mt,md] (2.3)

Γ(m) = γ if m ≥ md (2.4)

As mass is conserved during cell division, it serves as the characteristic variable for the

population balance equation. The formulation recognizes that below a minimum mass mt,

the cells are too small to begin dividing. Past mt, the rate of division for a cell increases

in a sigmoidal fashion up to a certain maximum rate γ at mass md. ε is a parameter that

modi�es the curve in the range between zero division and maximum division frequency.

The partition function describes how the mass of a dividing cell is split between the two

daughter cells. Rather than assuming equal partitioning for all cell divisions, it is modeled as

a symmetric beta distribution centred around the equal partition case. The partition func-

tion is governed by one parameter, q, which determines how narrow or broad the distribution

function is.

p(m,m′) =
1

B(q, q)

1

m′

(m
m′

)q−1(
1− m

m′

)q−1
(2.5)

where B(q, q) is the beta function.

The growth rate of the cells is modeled using Monod kinetics, considering only oxidation of

glucose.

K(S′, O) = µmax
S′

KS + S′
O

KO +O
(2.6)

where S′ represents intracellular glucose concentrations and O represents oxygen concentra-

tion in the surrounding media (oxygen di�usion into the cells is assumed to be rapid enough

that external concentration is identical to intracellular concentration). KS represents the

glucose saturation coe�cient, and KO represents the oxygen saturation coe�cient. µmax is

the maximum speci�c growth rate.

The rate of formation of glucose (rs) is modeled using a mass balance based on the growth
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rate of the cells as well as the biomass yield ratio Y , representing the amount of cell mass

gained per mass of glucose consumed.

rS = −
∫ ∞
0

K(S′, O)

Y
W (m, t)dm (2.7)

The overall rate of change of glucose concentration in the media surrounding the cells is

found through a mass balance between the consumption of glucose from Eq. 7 and the

in�ow of glucose through di�usion. Therefore:

dS

dt
= JS

A

Vc
+
rS
Vc

(2.8)

where JS is the mass �ux of glucose into the surrounding media (see Eq. 12), A is the

surface area, and Vc is the volume of the cell-rich layer, and S is the extracellular glucose

concentration.

The rate of change of intracellular glucose depends on the glucose concentration in the

surrounding media.

dS′

dt
= α(S − S′) (2.9)

where α is a constant parameter. The rate of formation of oxygen depends on the rate of

formation of glucose, as the only source of oxygen depletion is through glucose oxidation.

Therefore, oxygen consumption can be modeled on a stoichiometric balance with glucose

consumption.

rO = −192

180

∫ ∞
0

K(S′, O)

Y
W (m, t)dm (2.10)

Similarly to Eq. 8, the change in oxygen concentration is modeled through a mass balance

combining the consumption of oxygen from Eq. 10 and the in�ow through di�usion.

dO

dt
= JO

A

Vc
+
rO
Vc

(2.11)
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where JO is the �ux of oxygen into the cell-rich layer (see Eq. 13).

2-phase media model

Although the population balance model is used to describe how cells grow, it is incomplete

without considering the state of the surrounding cell culture media, as the PBM depends

on the concentrations of glucose and oxygen in the media. To complete the model, this

work develops a 2-phase media model to represent the settling behaviour of the cells, as well

as the impact of oxygen and glucose di�usion through the media. Because of the size and

slightly greater density of T cells, the cells tend to settle to the bottom of the culture vessels

used. Although the settling is a slow process, the long length of the growth period allows

us to assume the cells to be relatively settled for most of the growth process. Therefore, cell

settling is not modeled as a process in this paper. Instead, it is assumed that the cells are

settled into the bottom 1% of the vessel. This type of settling has been shown experimentally

for murine hybridoma cells [22].

This model of settling results in a system with two distinct phases. First, there is a media-

rich phase which composes the large bulk of the total media (99% of the height of the media).

This phase is assumed to contain no cells. This phase is exposed to the external conditions

(atmospheric oxygen), and serves as a di�usion layer through which both oxygen and glucose

must di�use to reach the cells. Second, there is a cell-rich phase below the media-rich phase.

All cells are assumed to exist this layer. Due to the relatively small volume of this layer, the

model assumes this phase to be well-mixed, with no local concentration di�erences of cells

or any substrate (all cells exposed to the same external conditions).

The media rich phase acts as a reservoir of glucose. Di�usion through the media-rich phase

is modeled as occurring along a linear gradient. As the model tracks both the concentration

of glucose in the cell-rich phase as well as the total amount of glucose present, it is possible

to calculate the gradient in concentration between the surface of the culture vessel and the

boundary of the two phases. Subsequently, the �ux can be found through Fick's 1st law:
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Figure 2.2: Diagram of the 2-phase media approximation used for settled cell growth

JS = DS
(S∗ − S)

(hl − hcells)
(2.12)

where S∗ represents the calculated concentration of glucose at the surface of the media:

S∗ = 2
Stot
Vtot
− S (2.13)

where Stot is total mass of glucose in the culture vessel at a particular point in time, Vtot is

the total culture volume, and S is the concentration of glucose in the cell-rich phase.

Di�usion of oxygen also occurs through the media-rich phase. Concentration at the media

surface is considered to be in equilibrium with atmospheric oxygen conditions. At the lower

boundary, the concentration of oxygen is assumed equal to the concentration of oxygen in the

cell-rich phase. Since no oxygen is consumed in the media-rich phase, a linear concentration

gradient exists between the top and bottom of the media-rich phase. The oxygen �ux is

thus given by:

JO = DO
(O∗ −O)

(hl − hcells)
(2.14)

where JO is the �ux of oxygen into the cell layer, DO is the di�usivity (di�usion coe�cient)

of oxygen in cell culture media, O∗ is the oxygen saturation concentration in cell culture
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media, O is the oxygen concentration in the cell layer, hl is the overall height of the media,

and hcells is the height of the cell layer.

It should be noted that this model of di�usion assumes that the concentration at the surface

of the media layer remains at the oxygen saturation point. This assumption was tested

by using an e�ective mass transfer coe�cient to represent the oxygen transfer from the

surrounding atmosphere into the media. For the simulations (and the initial choice of pa-

rameters), it was found that the transfer from the surrounding air into the media was not a

limiting factor. Instead, the limiting rate is the transfer of oxygen through the media layer

from the surface to the cell layer. Therefore, the assumption of saturated concentrations at

the surface hold for the present model.

2.3.1 ODE approximation for numerical solution

From the approximation of the PBE shown in Eq. 1 using orthogonal collocation, we arrive

at the following set of nonlinear ODEs:

dWj

dt
= −1

h
K(S′, O)

n∑
i=1

Aj,iWi + h
n∑
i=1

2wiPj,iΓiWi − ΓjWj , j = 1, ..., n (2.15)

where, Wj represents the cell number density at collocation point j, n is the total number

of collocation points. A is the collocation matrix, with w as a vector of the quadrature

weights, and h scales each �nite element to unity. K is the speci�c growth rate, depending

on intracellular glucose and oxygen concentrations (see Eq. 6). Pj,i = p(mj ,mi) (see Eq.

5), and represents the partition function. Γi = Γ(mi) (see Eq. 2-4), and is the division

intensity function. K, P , Γ, and W all vary with time. For this work, the number of

collocation points, n, was 109, with 12 �nite elements each with eight internal collocation

points (any fewer points/elements lead to numerical errors).

The other ODEs used for the numerical solution represent the glucose and oxygen states

in the media surrounding the cells, the calculated surface glucose concentration, and the
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internal glucose concentrations, which are given as follows:

dS

dt
= JS

A

Vc
− K(S′, O)

Y
h

n∑
i=1

wiWi (2.16)

dS′

dt
= α(S − S′) (2.17)

dO

dt
= JO

A

Vc
− 192

180

K(S′, O)

Y
h

n∑
i=1

wiWi (2.18)

The overall ODE system therefore consisted of 113 non-linear ODEs. The ODE system was

written in C, and integrated into the ode15s solver in MATLAB using the MEX interface

tool. The ODE system was used to integrate the system forward for each time-step (simu-

lating one hour of process conditions). An outer loop in MATLAB was used to update the

conditions given to the ODE system, record simulated measurements, and to implement the

sub-batch changes as detailed in the method and meterials section later.

Remark 1 Beyond the use for process control, development of a predictive model allows for

exploratory simulations to be done in the place of physical experiments. Physical experiments

for cell culture processes can be costly and time-consuming, while simulations are cheap and

fast. A predictive model can therefore be implemented to explore promising experimental

conditions or procedures �rst, and can be used to direct the course of physical experiments

to validate those conditions.

2.3.2 Model parameters

Prior to any rigorous parameter estimation, a manual �tting procedure was performed in

order for the initial model to be close to representing the real system. This was done through

the collection of a preliminary data set of experimental measurements, taken through the

procedure outlined above. This manual �tting process resulted in our base model.
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Parameter Symbol Units Value References

Oxygen di�usivity JO cm2/s 2.1 x 10−5 [23]

Glucose di�usivity JS cm2/s 6.0 x 10−6 [24]

Vessel surface area A cm2 Varies along batch Measured

Vessel volume V mL Varies along batch Measured

Cell layer height ratio z � 0.01 [22]

Table 2.1: List of �xed model parameters

The parameters in the model are divided into two groups. The �rst group consists of those

parameters that are considered to be known or estimated to a high degree of certainty

through literature. This includes values such as di�usivity of glucose and oxygen in cell

culture media, as well as parameters that are dictated by the physical layout of the exper-

iment (media surface area, media volume, glucose content of fresh media, and so on), and

are presented in Table 2.1.

The second set of parameters are those for which no independent measurements exist, and

need to be estimated for the process under consideration. These are listed in Table 2.2.

Amonth these parameters, the biomass yield ratio (or growth yield) is known to be quite

variable between cell cultures, di�erent growth conditions, and available substrates. For

glucose oxidation, ranges between 0.4 and 0.7 are found in literature. [25] [14] The cell mass

values were estimated through available measurements of cell size during growth along with

estimated correlations of cell volume to cell mass for similar types of cells [26]. For certain

parameters (such as the division shape factor, the partition coe�cient), initial values were

chosen to create appropriate �ttings. Initial estimates of glucose saturation and oxygen

saturation coe�cients, glucose uptake coe�cient, and maximum growth rate were taken

from work involving the continuous growth of S. cerevisae [14].

Remark 2 The model structure chosen for this application, although based on certain �rst

principles of cell growth and division, is not the only possible structure. The purpose of

the model is to predict the behaviour of the system based on observable conditions, not to
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Parameter Symbol Units Base Value References

Biomass yield ratio Y g/g 0.6 [14] [25]

Minimum cell mass for division mt g 3 x 10−12 [26]

Cell mass of maximum division md g 8 x 10−12 [26]

Maximum division frequency γ � 4 �

Division shape factor ε � 5 �

Partition coe�cient q � 40 �

Maximum growth rate µmax g/h 0.03x 10−12 [14]

Glucose saturation coe�cient KS g/L 0.5 [14]

Oxygen saturation coe�cient KO g/L 5 x 10−4 [14]

Glucose uptake constant α � 20 [14]

Table 2.2: List of uncertain model parameters

represent exactly what is happening in the biological system itself. We cannot know exactly

what is happening beyond using experiments to validate a certain model structure over a

su�ciently broad range of conditions. The model structure outlined in this paper is one such

attempt.

2.4 Parameter ranking and adaptive estimation

In this section, we �rst rank the parameters in the model and then illustrate the ability

to perform parameter estimation using simulated data. Next, we estimate the model pa-

rameters using experimental data. Finally, we present an adaptive parameter estimation

approach and illustrate it using the simulation model.
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2.4.1 Parameter impact and ranking

The model structure is informed by our current understanding/hypothesis of the various

phenomenon that take place during the cell growth process. The description and inclusion

of these phenomenon in the model necessitates the introduction of the model parameters.

Such a model building exercise, however, does not guarantee that all the parameters can

be uniquely identi�ed from the measurements (even if all process variables were continu-

ously measured). The �rst consideration in the parameter estimation procedure therefore

is to evaluate the unique identi�ability of the parameters in the model. The identi�ability,

however, is further in�uenced (and limited) by the availability of measurements. For the

parameter estimation, we therefore perform a sensitivity analysis of the model with respect

to the parameters.

For the cell culture growth process (and the data that is available to us) glucose and cell

number measurements are available during the batch. In order to determine the sensitivity

of the parameters with respect to these available measurements, each uncertain parameter

was modi�ed one at a time by ±5% (ensuring that no physical limits in the parameters were

violated by this change). The updated model was used to generate new simulated measure-

ments of glucose and cell numbers (re�ecting the available physical measurements). The

square of the relative di�erence between the base and updated models in each measurement

at each time point was used as the metric for parameter impact.

RSSE =
N∑
i=1

2∑
k=1

[
(y(ik,base) − y(ik,mod))

y(ijk,base)
]2 (2.19)

where i denotes the time-step, N is the total number of time-steps, yik,base is the measured

variable k at time-step i using the base model parameters, yik,mod is the measured variable

k for time-step i given the current modi�ed parameter. The parameter ranking is presented

in Table 2.3.

Remark 3 Parameter selection for non-linear dynamic systems with no steady-state com-

parisons can be a di�cult task. Recent methods for parameter ranking and selection have been
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Parameter Ranking RSSE

Biomass yield ratio 1 47.39

Cell mass of maximum division 2 16.59

Maximum speci�c growth rate 3 12.59

Oxygen saturation coe�cient 4 1.75

Glucose saturation coe�cient 5 0.518

Maximum division frequency 6 0.038

Division intensity coe�cient 7 0.0059

Partition function coe�cient 8 1.67 x 10−3

Glucose uptake coe�cient 9 1.82 x 10−4

Minimum cell mass for division 10 0

Table 2.3: Parameter impact results

proposed [27], but were chosen not to be used for this work due to computational complexity

reasons.

2.4.2 Parameter estimation using simulated data

As can be seen from Table 2.3, the impact of the parameters ranked fourth and below

drops signi�cantly, suggesting that these parameters cannot be uniquely estimated. Thus

the biomass yield ratio, the maximum speci�c growth rate, and the cell mass required for

maximum division rates were chosen for estimation.

For training data, a set of 40 simulated batches was generated, each representing cells

from a new patient. The biomass yield ratio (the one that has the highest impact on the

observations) was varied across the batches. This parameter was varied following a normal

distribution with a mean determined by the base value, and a standard deviation chosen

to give a wide variation without violating physical limits (such as avoiding a biomass yield

ratio greater than 1). All of the other parameters were constant between each batch, but
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Parameter Base Value Patient Value

Biomass yield ratio 0.6 0.681

Minimum cell mass for division 3 x 10−12 2.16 x 10−12

Cell mass of maximum division 8 x 10−12 11.28 x 10−12

Maximum division frequency 4 2.98

Division shape factor 5 6.03

Partition coe�cient 40 35.64

Maximum speci�c growth rate 0.3 x 10−13 0.23 x 10−13

Glucose saturation coe�cient 0.5 0.456

Oxygen saturation coe�cient 5 x 10−4 4.27 x 10−4

Glucose uptake constant 20 25.24

Table 2.4: List of new parameter values for a selected patient

di�erent from the base model and varied in a random fashion, as shown in Table 2.4.

Parameter estimation was performed using this training data through an optimization frame-

work. The decision variables for the optimization were the three parameters chosen in the

parameter impact evaluation. The objective function was the minimization of the sum of

squares of the relative di�erence between the model prediction and all 40 training batches

in both glucose and cell numbers. Thus, the �rst set of results demonstrate an attempt to

describe the patient behaviours (as best as possible) using a single set of parameters. The

optimization formulation is given as follows:

minimize
θ1,θ2,θ3

N∑
i=1

M∑
j=1

2∑
k=1

[
(y(ijk,base) − y(ik,estim))

y(ijk,base)
]2

s.t. Eq. 13 - 16

lb ≤ θ ≤ ub

where i denotes the time-step, N is the total number of time-steps,M is the total number of
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Parameter Base value Estimated value

Biomass yield ratio 0.6 0.844

Maximum cell size 8 10.9

Maximum speci�c growth rate 0.3 0.244

Table 2.5: Parameter estimation results - Simulated training

simulated batches, θ1 is the biomass yield ratio, θ2 is the maximum speci�c growth rate, θ3

is the size of maximum division frequency, yijk,base is the measured variable k from simulated

batch j at time-step i, yik,estim is the predicted variable k for time-step i given the current

set of parameters. The results of the optimization are shown in Table 2.5.

Figure 2.3 illustrates the measurements from a select set of training data, and from the

model after the estimation process. As expected, the model parameters give a `best �t'

value that passes through the observed variables in the training data set. In principle the

�t could be improved by allowing the optimizer to pick a di�erent growth ration for each of

the patients (thus having forty two decision variables instead of just the three). While such

a model would certainly result in a better �t with respect to each patient in the training set,

it would not be very useful for a new patient, for which there is no way of forecasting what

that particular parameter value is before measurements start being recorded. In contrast,

the proposed approach allows for starting with a nominally `good' model for a new patient

with the possibility of improving the model as data is collected.

Remark 4 The choice of estimating only a subset of the parameters, rather than attempting

to estimate all uncertain parameters, revolves around the ability to uniquely identify the

parameters. Because of the non-linear and complex nature of the model, the parameter

estimation problem is likely non-convex. Similarly, certain parameters may interact or be

indistinguishable from others. Therefore, attempting to estimate all parameters is likely to

achieve poor, non unique estimates, and thus was not attempted.
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Figure 2.3: Illustrated training data from three of the patients (dashed, dotted, and dot-dash

lines) and estimated model (solid black line)

2.4.3 Parameter estimation using experimental data

The parameter estimation approach was next implemented on experimental data. Four

separate experimental measurement sets were used to construct the overall data set. These

experiments were performed under similar, but not exact conditions, as described next.

Method and materials

Cell preparation

All studies using human subjects received prior approval by McMaster Immunology Research

Centre (MIRC). After informed consent, peripheral blood mononuclear cells (PBMCs) were

isolated from whole blood using LeucosepTM (Greiner Bio-One International, Monroe, NC)

which is pre�lled with Ficoll-Paque density centrifugation media. The isolated PBMCs were

cryopreserved with 10% DMSO and stored in liquid nitrogen tank for multiple experiments.
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The donors were varied in age and race with designated coding (i.e. MAC 001). On day

1, PBMCs were plated onto 96-well plate (100,000 cells) and cultured in T-cell culture

media (Life Technology, Grand Island, NY), consisting of RPMI media 1640, 10% FBS,

HEPES (1 M), L-Glutamine (0.2 M), Penicillin (100 U/mL)/Streptomycin (100 µg/mL),

NEAA, Sodium Pyruvate (100 mM), 2-Mercaptoethanol (55 mM). Cytokine hIL2 and hIL7

(PeproTech, Rocky Hill, NJ) was added right before media exchange in 1:1000 ratio. 100,000

cells were seeded in each 96 multi-well plate with Gibco Dynabeads human T-activator

CD3/CD28 (Life technology, Burlington, ON) in a bead-to-cell ratio of 0.8:1. On day 2, the

lentivirus for engineering T-cells was added in MOI of 2. On day 3, 100 µL of cell culture

media was added to 96 well plate. On day 5, cells were scaled up to 24 well plate with 1 mL

of fresh media. On day 8, cells were combined from 24 well and transferred to T-25 with

4 mL of fresh media. On day 10, engineered T-cells were scaled up to T-75 with 10 mL of

fresh media. On day 13, the cells were scaled up to a T-150 �ask with 10 mL of fresh media.

Glucose and cell measurements

HydrionTM pH papers (Micro Essential Laboratory, Inc, Brooklyn, NY) and Contour R©
Next EZ glucose meter (Bayer AG, Cleveland, TN) was utilized for measuring glucose con-

centration and pH in the T-cell culture media. Sample was taken 10 µL (3 µL for glucose

strips and 7 µL for pH meter) directly from cell suspensions. Cells were counted using a

Cellometer Auto 2000 Cell Viability counter (Nexelcom Bioscience).

Parameter Estimation Results

Note that two of the experiments only had cell number measurements available, while the

other two had slightly di�erent concentrations of glucose in the fresh media (measured at

2.34 g/L in the fresh media for the �rst set, and 2.52 g/L for the second set). One further

di�erence was that the �rst set had viral transduction performed at 24 hours, while the

second experimental set-up did not. This meant that the �rst experiment had 100 µL of

media replaced with fresh media at 24 hours in to the growth process.
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The parameter impact ranking was retained from the simulated results. However, during

estimation using the parameters shown in Table 2.5, the biomass yield ratio reached the

upper bound provided to the optimization problem. As this upper bound was set due to

physical limitations, this parameter was instead set to that maximum value and removed

from the set of estimated parameters, and the fourth ranked parameter was added to the

estimation set. During the estimation process, it was found that equal weighting on both

measurements did not provide satisfactory model �tting. Therefore di�erent weightings

were performed between the two available measurements in order to improve the model �t.

This weighting also re�ected the increased con�dence in the cell number measurements as

compared to the glucose measurements (due to the di�erences in the experimental methods

used). The resultant optimization problem takes the following form:

minimize
θ1,θ2,θ3

2∑
j=1

Nj∑
i=1

2∑
k=1

wk[
(y(ijk,meas) − y(ijk,estim))

y(ijk,meas)
]2

s.t. Eq. 13 - 16

lb ≤ θ ≤ ub

As two types of experimental data were used (as discussed above), two separate constructed

models were used in the optimization formula. Here, j = 1 and j = 2 represent models

capturing the di�erent batch/experimental conditions. Nj is the number of available mea-

surements for model j. y(ijk,meas) is the measurement i of measured variable k under model

condition j, while y(ijk,estim) is the predicted value of measurement i of measured variable k

using model j. wk represents the weighting factor for each measured variable (1 for glucose

measurements, 10 for cell number measurements). The same set of estimated parameters

(θ1,θ2,θ3) were used in both models. Figures 2.4 and 2.5 show the results of parameter

estimation using an increased weighting on the cell number measurements (weighted by a

factor of 10:1).

Remark 5 The focus of this work is not to develop an entirely predictive and accurate

model. Thus it is not meant to describe and capture all the intricacies of cell behaviour.

Instead, it is intended to predict the characteristics that are important. The characteristics
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Figure 2.4: Experimental glucose measurements and model predictions. Model 1 predic-

tion (solid line) shown with measurements taken under model 1 conditions (x). Model 2

prediction (dashed line) shown with measurements taken under model 2 conditions (o).
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Figure 2.5: Experimental cell number measurements and model predictions. Model 1 pre-

diction (solid line) shown with measurements taken under model 1 conditions (x). Model 2

prediction (dashed line) shown with measurements taken under model 2 conditions (o).
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that are important are the ones that can be observed through the available measurements.

This is not a limitation of the present approach, but a fundamental limitation of all models.

Thus if a cell performs a certain function, and it has no impact on variables that can be

currently observed, there exists no mechanism to capture that behaviour.

Remark 6 It is important to note that the model structure used for this work is in many

ways a simpli�cation, but this simpli�cation does not prevent the model from being useful.

We could model more detailed elements such as regulatory pathways, glucose uptake limi-

tations, additional substrates such as glutamine, and more. However, without additional

measurements to allow us to uniquely identify and estimate the associated parameters, there

is little that the model will gain from these additional details.

Remark 7 Although cells may seem to exhibit di�erent behaviour at di�erent times, this

does not necessarily require a di�erent model. Periods of seemingly low growth rates can

be seen in any system that contains elements of exponential growth. A system of the form

ẋ = αx will have low growth rate initially (when x is very small), and the growth rate will

grow as the variable x grows larger. Thus, just the fact that the growth rate is di�erent

at di�erent points in time does not imply that separate models are required to capture this

behaviour. Additionally, while the cell behaviour could potentially be di�erent under signi�-

cantly di�erent growth conditions, the focus in this work is to be able to capture the behaviour

over a well de�ned set of conditions.

Remark 8 For the current approach, we use a structured model with determined parame-

ters. Future work will focus on utilizing recent results that used subspace based model identi-

�cation in which process measurements are used for model identi�cation [28], and that have

been illustrated for distributed parameter systems [30] and for handling the multi-rate nature

of the process measurements [29].

Remark 9 The goal of the cell growth process highlighted in this work is to produce T

cells that function for cellular therapies (as discussed previously). Therefore, there may be
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important variables surrounding cell functionality besides number and size that this work

does not predict. Without more available measurements, however, we cannot predict those

variables. More experimental work would need to be done to correlate cell functionality to

the available measured variables.

2.5 Adaptive parameter estimation

The previously demonstrated method gives an estimate that essentially serves as the best

�t for the average batch. However, biological variation in individual batches of cells from

new patients means that this set of estimated parameters may be signi�cantly di�erent than

those in a new batch. Therefore, we provide an adaptive estimation process to capture the

biological variation and allow for better estimation.

In the simulated environment, 10 batches (simulating cell cultures taken from 10 new pa-

tients) were simulated by introducing variation in one parameter (the same parameter as

in the training set). In the �rst implementation, no adaptive method was used, so the es-

timated parameter set for the model was the same as shown in Table 2.5. In the second

implementation, a single adaptive update was performed 168 hours into the batch. Using

only the data acquired by measurements up to that point in the batch, the highest impact

parameter was re-estimated using the same optimization framework as before. The quality

of �t for each process was calculated by the relative sum of squared errors (RSSE) over

both measurements. A summary of the results for each patient is shown in Table 2.6. The

improvement can be visualized with an example case in Figure 2.6. It can be seen that

signi�cant improvements were made in all 10 simulated cases, with the lowest reduction in

RSSE being 91.5%. The proposed adaptive estimation step is deemed to be an e�ective and

important addition to the parameter estimation process in order to address the potential

variability in new batches.

Adaptive estimation was not performed on the experimental measurement to limited avail-

able measurements. Future work will focus on using newly available measurements to per-
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Simulated case RSSE - Non-adaptive RSSE - Adaptive Reduction in RSSE (%)

1 48.39 3.340 93.1

2 79.77 4.400 94.5

3 489.5 8.488 98.3

4 7042 17.36 99.8

5 891.9 9.452 98.9

6 1617 10.91 99.3

7 31.33 2.674 91.5

8 732.6 9.099 98.8

9 1178 10.06 99.2

10 1159 10.02 99.1

Table 2.6: Simulated patients - Comparison of non-adaptive to adaptive estimation

Figure 2.6: Example simulation result using adaptive estimation (Simulated patient (solid

line), results using nominal non-adaptive model(dot-dash line), and results using adaptive

estimation (dashed line))
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form the adaptive estimation process and validate its performance on experimental data.

2.6 Conclusion

A �rst-principles model of the growth of T cells in culture was developed. The model consists

of a population balance model to track the growth and division of cells paired with a 2-phase

media model of the external environment. A parameter ranking and estimation procedure

was implemented to select and estimate those parameters that can be estimated with the

greatest con�dence. The e�ectiveness of the parameter selection and estimation procedure

was demonstrated using acquired experimental data. To address and minimize the e�ect of

biological variation on model predictions, an adaptive estimation procedure was developed

that added an on-line estimation during the batch process to improve model prediction later

in the process. This adaptive estimation process was validated using a simulated set of data

that had signi�cant variations in a biological parameter. This illustrates the viability of the

proposed parameter estimation process for the development of predictive models that can

be subsequently used in process control implementation and design of experiments.
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Manuscript Overview

In the previous chapter, modeling and parameter estimation for a cell growth process was

considered. This work provided a focus on the linking of model development to a param-

eter estimation procedure. In this chapter, a process of the PEGylation of lysozyme was

considered as a test case for protein PEGylation. This work also built a model based on

�rst-principle understanding of the process involved. In this case, the relative simple reac-

tion kinetics model with fewer parameters allowed the estimation of the full set of kinetic

parameters for each pH condition tested. A quadratic �t was developed to relate the kinetic

parameters to pH. In this way, the developed model could be used for both design of ex-

periments (to suggest future conditions of testing) and for process optimization (to suggest

optimal operating conditions to achieve some goal, whether it was reaction time required or

selectivity for the desired product). The author of this thesis was not the primary author

of the following manuscript, but contributed in the area of modeling, parameter estimation

of the reaction kinetics, optimization, and assisted with collection of experimental data for

validation of the estimated model.
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Abstract

A PEGylated protein is prepared by conjugating polyethylene glycol (or PEG) with the

protein, a process known as PEGylation. Most PEGylation processes lead to synthesis of

di�erent PEGylated forms of the protein, amongst which only one form is typically of inter-

est. In this work we propose a modeling and optimization based approach to determining

optimal operating conditions for protein PEGylation. To this end, a �rst principles models

is proposed and targeted experiments carried out to estimate the model parameters. A sim-

ulation based optimization is then carried out to suggest the best operating conditions for

the experiment. Speci�cally, results suggest that to maximize the concentration of mono-

PEGylated product, the reaction should be carried out at high pH and with a high ratio

of PEG to protein. Subsequent experiments are conducted to con�rm the validity of the

modeling and optimization approach.

39



40

3.1 Introduction

Protein PEGylation, which involves the covalent attachment of one or more poly (ethylene

glycol, or PEG) chains, has become a well-established technology for the covalent modi-

�cation of biopharmaceutical drugs [1, 2]. The primary advantage of PEGylation is the

prolonged in vivo half-life of drug molecules made possible by the increase in hydrodynamic

radius. As a result, PEGylated drugs need to be administered less frequently [3, 4, 5].

Other advantages arise from the shielding-e�ect provided by PEG including reduced enzy-

matic degradation, lower immunogenicity, and lower protein aggregation [3, 4, 6, 7]. Several

PEGylated protein drugs such as AdagenÂ® (PEG-adenosine Deaminase, Enzon Pharma-

ceuticals, approved 1990) [8]; NeulastaÂ® (PEG-G-CSF, Amgen, approved 2002) [8] have

been approved by the FDA.

The amino acid side chains of a protein are the usual target sites for PEG attachment

[10, 11]. Protein PEGylation is usually carried out as a homogeneous liquid phase batch

reaction. Due to the nature of the reaction, various PEGylated forms could potentially be

synthesized. These forms are di�erentiated by the number of PEG chains attached to the

protein molecule as well as in terms of attachment sites [12]. The mono-PEGylated form, is

usually desirable because it retains bioactivity of the protein to the maximum extent while

having the desired pharmacodynamic e�ect [11, 13]. In higher-PEGylated forms it is more

likely for the PEG chain to shield the active site of the protein, resulting in deactivation. A

high PEG:protein molar ratio is typically used to maximize protein PEGylation. Unfortu-

nately, carrying out the reaction in the presence of excess PEG promotes the formation of

higher-PEGylated proteins [14]. The separation of di�erent PEGylated forms of a protein

is technically challenging due to the similarities in their physicochemical properties. These

separations require extensive procedures and are demanding in time and cost. The selective

synthesis of mono-PEGylated form is therefore highly desirable. While the problem of syn-

thesizing mono-PEGylated protein has not been approached from an explicit model-based

optimization standpoint, several researchers have tried and maximize the selectivity of syn-

thesis of the mono-PEGylated form through adoption of alternate PEGylation chemistries
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and experimental process optimization.

Along one such direction, site-speci�c protein PEGylation has been extensively pursued, see

[15, 16, 1, 17, 18, 19, 20] for speci�c examples and excellent reviews. This includes N-terminal

PEGylation, involving the conjugation of PEG at N-terminal α-amino group [15, 1]; cysteine-

speci�c PEGylation, conjugation at thiol group in either a naturally present or a genetically

introduced cysteine residue [15, 1, 16, 17] and other site-speci�c conjugations at histidine

a�nity tag or amide group of glutamine [15, 17]. Note however, that even when a site-speci�c

PEGylation (e.g. N-terminal PEGylation) is carried out, signi�cant amount of by-products

such as di- and tri-PEGylated protein may be synthesized [18, 19, 20]. Some researchers

have also demonstrated physical manipulations for speci�city improvement, such as carrying

out PEGylation reactions using size exclusion chromatography column [10, 21], packed bed

chromatography column [22], membrane stack reactor [23], hollow �ber membrane reactor

[24], and micro�uidic device [25].

Some of the e�orts to study the e�ect of operating conditions on the PEGylation process in-

clude those where the e�ect of pH of the reaction medium is investigated [26, 27, 28, 29, 30].

Other parameters that have been studied include the initial molar ratio of PEG to protein.

Speci�cally, it has been reported that excess of PEG results in the formation of diverse

PEGylated proteins [14, 28, 30]. There also exist results focused on quantifying the kinet-

ics of PEGylation reaction. Some examples include Nojima et al. [26] that quanti�es the

kinetics of the reaction between branched mPEG-NHS and bovine lactoferrin, focusing on

pH dependency. Moosmann et al. [29] evaluated the e�ect of temperature, reaction time,

and protein concentration on conversion and selectivity of PEGylation reactions between

two mPEG-aldehyde of di�erent sizes and two proteins (lysozyme and single-chain vari-

able fragment or scFv). Puchkov et al. [30] investigated the e�ect of pH, bu�er system,

initial concentrations of protein, PEG and sodium cyanoborohydride (used as a reducing

agent) on the yield of conjugation using recombinant granulocyte colony-stimulating factor

(Filgrastim) and mPEG-aldehyde.

In summary, while there exist a number of e�orts focusing on synthetic chemistry-based
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approaches, or relatively simple explorations of the parameters e�ect on the production of

mono-PEGylated protein, the production process stands to bene�t from a rigorous modeling

and optimization approach to the process that allows a more thorough exploration of the

parameter space. Motivated by these considerations, in this work we propose a model

based optimization approach for the protein PEGylation process. The rest of the paper is

structured as follows: First, a mathematical model structure is derived based on an assumed

reaction mechanism and a few key assumptions to reduce the model complexity. In the next

section the experimental procedure for PEGylation of the model protein lysozyme (MW,

14,100, pI 11) by methoxy-PEG-(CH2)5COO-NHS (5kDa PEG equivalent) is described.

Note that the choice of the PEG is consistent with what is used in a typical PEGylation

reaction on a molecular weight equivalence basis a PEG molecule is signi�cantly bulkier than

a protein, so attaching a larger PEG to Lysozyme will completely block out any activity.

Targeted experiments are carried out to determine the parameters in the proposed model.

In Section 3.4, the parameters of the proposed model structure are identi�ed from the

experimental concentration pro�les. Subsequently, in Section 3.5, the resulting model is

used to determine the optimal operating conditions that maximize the production of the

mono-PEGylated form. Additional experiments, presented in Section 3.6, demonstrate the

e�cacy of the proposed modeling and optimization approach. We �nally present some

conclusions and directions for future work.

3.2 Model Construction

In this section, we propose a model structure for the dynamic evolution of the PEGylation

process. A key decision in proposing a process model is determining which model structure

to use. One option is to propose entirely data driven models, where the model structure is

prede�ned, and the model parameters are determined using statistical techniques [31, 32].

Given that there exists some level of understanding of the mechanisms involved in the

process, it was decided to propose a �rst principles model for the process, and determine

the parameters from the experiments. In particular, it is understood that the production of
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mono-PEG follows a pathway of the following form:

L+ P →M (3.1)

M + P → H2 (3.2)

H2 + P → H3 (3.3)

...

Where L represents lysozyme, P represents mPEG-NHS, M represents mono-PEGylated

protein, and Hi represents protein that has been PEGylated i times. With this recognized,

the next key decision was the form of the rate law. The parameters of any given rate

law can only be determined uniquely if they are observable from the measured outputs.

Furthermore, the choice of the rate law dictates the number of parameters in the model.

With these factors in mind we opted to begin our study with a relatively simple �rst order

rate law. This rate law may be revised, as necessary, in subsequent work. Additionally, to

minimize inclusion of parameters that need to be estimated, we decided to carry out the

experiments in constant volume batches.

For the batch con�guration (with constant liquid volume) of the process with the chosen

rate law, a dynamic moles balance on the individual species yields a model of the following

form:

dCL
dt

= −k0CLCP (3.4)

dCP
dt

= −k0CLCP − k1CMCP − · · · (3.5)

dCM
dt

= k0CLCP − k1CMCP (3.6)

dCH2

dt
= k1CMCP − k2CH2CP (3.7)

...

where ki is the rate constant for the reaction of protein that has been PEGylated i times; and

CL, CP , CM , and CHi are the concentrations of lysozyme, mPEG-NHS, mono-PEGylated

protein, and protein PEGylated i times respectively (where i ≥ 2). Note that rate constants

were taken to be functions of pH with the explicit functional dependence (ie ki = ki (pH)). A
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more rigorous model structure might take pH as an additional state (ie de�ne pH dynamics).

Experimentally, however, these reactions are usually carried out in a bu�ered solution. Under

bu�ered conditions, the information needed to determine pH dynamics is unavailable.

We next simplify the model by de�ning CH as the concentration of all protein PEGylated

more than once. Mathematically this can be represented as:

CH = CH2 + CH3 + CH4 + · · · (3.8)

Given this de�nition of CH , we can describe dCH
dt as:

dCH
dt

=
dCH2

dt
+
dCH3

dt
+ · · · (3.9)

By substituting in our original expressions for
dCHi
dt we obtain:

dCH
dt

= (k1CMCP − k2CH2CP ) + (k2CH2CP − k3CH3CP ) + · · · (3.10)

Which, by term cancellation and without loss of accuracy, simpli�es to

dCH
dt

= k1CMCP (3.11)

In experimental practice, it is only practicable to quantitatively distinguish between the

mono-PEGylated and higher order product. Therefore, we make the assumption that the

reaction rate for protein PEGylated more than one time is approximately the same. This

simpli�cation is made to retain only the parameters in the model that can be identi�ed with

reasonable con�dence. Having made this assumption, the equation describing the evolution

of mPEG-NHS can be rewritten as:

dCP
dt

= −k0CLCP − k1CMCP − khCHCP (3.12)

where kh denotes the lumped reaction rate.

The assumption about the equality of the reaction rates was adopted in this work because

it allows the development of a model structure which describes experimental data. As more

data is obtained, the model structure could be further re�ned as appropriate.
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Equations 3.4, 3.12, 3.6, and 3.11 represent the simpli�ed dynamic models structure used

throughout the remainder of this work. These equations are reproduced below for conve-

nience:

dCL
dt

= −k0CLCP (3.13)

dCP
dt

= −k0CLCP − k1CMCP − khCHCP (3.14)

dCM
dt

= k0CLCP − k1CMCP (3.15)

dCH
dt

= k1CMCP (3.16)

This simpli�ed description of the system depends on only three parameters. These are

the reaction rate constants: k0, k1 and kh. This model structure describes the evolution

of the concentrations of lysozyme, mPEG-NHS, mono-PEGylated protein, and the total

concentration of protein PEGylated more than one time.

Note that this model structure does not explicitly account for temperature. It is well known

that temperature plays a signi�cant role in the evolution of this process. However, the in-

clusion of temperature e�ects in the model would signi�cantly increase the complexity of

the identi�cation problem. Furthermore, experimental setup required to capture dynamic

temperature behavior is signi�cantly more complex. Moreover, biological conjugation reac-

tions such as protein PEGylation are typically carried out at room temperature. Therefore,

in this work the decision was made to assume constant temperature.

Remark 1: The dynamic model presented in equations 3.14 to 3.16 is valid for the batch

con�guration of the process. As a result, optimization of this model is limited to o�ine

determination of the optimal initial recipe. However, given the �rst-principals basis of the

model, it can be easily extended, without the need for additional parameter estimation,

to describe fed-batch or other con�gurations. These con�gurations present the problem of

determining optimal input trajectories (see, e.g., [33]). Furthermore, for these con�gurations

implementation of online measurement would allow the model to be used in online monitoring

and control (see, e.g., [34, 35, 36]).
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3.3 Experimental Design and Procedure

In this section, we describe the methodology of the set of experiments carried out to obtain

data for modeling the PEGylation process. The �rst two sections, sections 3.3.1 and 3.3.2,

describe the materials and methods used for the PEGylation reaction itself. The subsequent

section, section 3.3.3, describes two measurement techniques which were used to qualitatively

and quantitatively analyze the resulting PEGylated protein. To collect the data to estimate

the model parameters, the following set of experiments were planned (see Table 3.1).

Table 3.1: Summary of all experiments

Bu�ered pH Ratio of PEG to protein Repetitions Number of sample times

7.0 4:1 1 7

7.5 4:1 3 7

8.0 4:1 3 7

8.5 4:1 1 8

7.0 2:1 1 1

7.5 2:1 2 7

8.0 2:1 1 1

7.0 8:1 1 1

7.5 8:1 1 1

8.0 8:1 1 1

3.3.1 Materials

Ammonium persulfate (A3678), 30% acylamide solution (A3699), bromophenol blue (B0126),

Brilliant Blue R concentrate (B8647), glycerol (G2025), 25% glutaraldehyde solution (G6257),

glycine (G8898), lysozyme (L6876), sodium dodecyl sulfate (L3771), sodium phosphate

monobasic (S0751), sodium phosphate dibasic (S0876), sodium hydroxide (S5881), sodium

chloride (S7653), Trizma base (T1503), Trizma-hydrochloride (T3253), N,N,N',N'-tetra-

methylethylenediamine (T9281), DL-dithiothreitol (43817), 70% perchloric acid (77227),
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barium chloride (202738), hydrochloric acid (258148), and iodine (326143) were purchased

from Sigma-Aldrich, St. Louis, MO, USA. Acetic acid (1000-1) and methanol (6700-1)

were purchased from Caledon Laboratories LTD., Georgetown, ON, Canada. Potassium

iodide (74210-140) was purchased from Anachemia, Montreal, QC, Canada. Methoxy-PEG-

(CH2)5COO-NHS (5 kDa, catalog number SUNBRIGHT ME-050HS) was purchased from

NOF Corporation, Tokyo, Japan. Puri�ed water (18.2 M cm) was obtained from a SIM-

PLICITY 185 water puri�cation unit (Millipore, Molsheim, France) for preparation of all

test and bu�er solutions. AmiconÂ® Ultra-4 centrifugal �lters (3 kDa MWCO, UFC800324)

purchased from EMD Millipore Co., Billerica, MA, USA were used for concentrating and

desalting samples. Hydrophilized PVDF membrane (0.22 µm, GVWP) purchased fromMilli-

pore (Billerica, MA, USA) were used for hydrophobic interaction membrane chromatography

of liquid phase PEGylation mixtures.

3.3.2 Reaction Method

PEGylation reactions were carried out using 3 mL reaction mixture consisting of lysozyme

(1 mg/mL) and PEG-NHS ester (PEG: lysozyme ratio as listed in Table 3.1), at pH listed

in Table 3.1 at room temperature (22±1◦C), with constant stirring. PEG-NHS ester is a

commonly used reagent for protein PEGylation. As shown in Figure 3.1, the conjugation is

based on stable amide linkages formation through acylation in the pH range of 7 to 9, with

the NHS group being replaced by the protein [26, 27]. The N-terminal α-amino group (pKa

7.6-8) and the Îµ-amino group on lysine residues (pKa 9.3-9.5) are potential sites for PEG

conjugation.

The reaction media contained 100 mM sodium phosphate and 150 mM sodium chloride.

For each pH, seven reaction mixtures were prepared to carry out the reactions for seven

di�erent durations (5 min, 15 min, 30 min, 1 h, 2 h, 4 h, and 24 h). The reaction mixtures

were quenched by adding hydroxylamide hydrochloride solution to make its �nal concentra-

tion of 50 mM. All quenched reaction mixtures were processed using centrifugal ultra-�lters

to remove low molecular weight species and to enhance concentration. The resultant re-
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action mixtures were analyzed using SDS-PAGE and hydrophobic interaction membrane

chromatography (HIMC) [19]. The experiments for pH 7.5 and 8 were repeated three times.

Refer to Table 3.1 for a complete list of experimental conditions.

Figure 3.1: PEGylation reaction using PEG NHS esters.

Remark 2: In this study, methoxy-PEG-(CH2)5COO-NHS (5kDa PEG equivalent) was

used to PEGylate the model protein - lysozyme (MW, 14,100, pI 11) in liquid phase batch

reaction. NHS ester reactive group is known to be very susceptible to hydrolysis [27]. By

increasing the distance between this group and the PEG group, its hydrolysis half-life could

be improved dramatically [27]. For example, a PEG-NHS ester with three ether groups in

between has a hydrolysis half-life of 23 h, while that of a PEG-NHS ester with only one

ether group in between is only 0.75 h [37]. Therefore, the PEG-NHS ester used in this work

is inferred to have a hydrolysis half-life substantially longer than 23 h.

3.3.3 Analytical Techniques

In this section two independent measurement techniques are discussed. First, in section 3.3.3,

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is described. SDS-

PAGE is an electrophoresis method for qualitatively verifying the PEGylated forms resulting

in the reaction mixture. In section 3.3.3, hydrophobic interaction membrane chromatography

(HIMC) method is presented which provides quantitative analysis of the reacted protein.

Particularly, this method provides partial concentration measurements.
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SDS-PAGE

To verify the composition in the reaction mixtures, SDS-PAGE experiments [38] were car-

ried out with an equal amount of total protein (∼6 µg) loaded onto lanes of 12.5% non-

reducing gels, using a miniVE vertical electrophoresis system (80-6418-77) purchased from

GE Healthcare Life Sciences, Baie d'Urfe, QC, Canada. Coomassie Brilliant Blue R dye

was used to stain the gel for visualization of protein-containing bands. The visualization

of PEG-containing bands was made by the following protocol [39]: the gel was sequentially

soaked in 50 mL of 5% glutaraldehyde solution, then 20 mL of 0.1 M perchloric acid, and

�nally a mixture of 5 mL 5% barium chloride and 2 mL 0.1 M iodine/potassium iodide.

Each soak took 15 min.

Figures 3.2a and 3.2b show two example gels (generated using SDS-PAGE to identify the

components) for the reaction mixture prepared at pH 8 and PEG: lysozyme molar ratio

of 4:1. Both �gures have protein molecular weight marker in lane 1 and reaction mixtures

with di�erent durations of 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, and 24 h in lanes 3 to 9,

respectively. Lane 2 consisted of pure lysozyme and pure PEG-NHS ester 5 kDa in �gures

2a and 2b, respectively. Lane 3 (containing the 5-min reaction mixture) has mainly mono-

PEG lysozyme (band between 15 and 25 kDa) and a very small amount of di-PEGylated

lysozyme (band between 25 and 35 kDa) as shown in both �gures. There are also unmodi�ed

lysozyme (band corresponding to the pure lysozyme band in lane 2) as shown in �gure 2a

and quenched PEG 5 kDa (band around 10 kDa) as shown in �gure 2b. The amount of

di-PEG form was increased greatly from the 5-min reaction (lane 3) to the 15-min reaction

(lane 4), which can be seen from the intensity di�erence of the di-PEG form bands in both

lanes. Tri-PEG form (band between 55 and 70 kDa) started to show up in lane 4 (15-min

reaction). Lanes 5 to 9 contained faint bands of tetra-PEG lysozyme (band between 70 and

100 kDa) besides the bands of unmodi�ed, mono-, di- and tri-PEG forms of lysozyme as well

as quenched PEG. These two gels are clearly showing the components, the complexity of

the components and their relative quantities in each reaction mixture. Generally speaking,

longer duration results in more complex reaction mixtures with predominance of higher

PEGylated forms of protein.
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(a) Coomassie blue stained gel for liquid-

phase PEGylation carried out at pH 8 and

molar ratio of PEG: lysozyme of 4:1.

(b) PEG stained gel for liquid-phase PEGy-

lation carried out at pH 8 and molar ratio of

PEG: lysozyme of 4:1 at various durations.

Figure 3.2: SDS-PAGE for a representative reaction condition

Fractionation and analysis of PEGylation reaction mixtures using HIMC

After centrifugation, each PEGylation reaction mixture was fractionated using HIMC [23]

with a stack of hydrophilized PVDF membranes. The working principle of HIMC is described

in [19]. The membranes are environment-responsive, becoming hydrophobic when lyotropic

salt is present and reverting back to hydrophilic when salt is removed. PEG is hydrophilic

in nature, but becomes mildly hydrophobic in the presence of lyotropic salt as well. There-

fore, a PEG-containing species has hydrophobic interaction with the environment-responsive

membrane when a lyotropic salt is present. The fractionation of di�erent species in a reac-

tion mixture (i.e. unmodi�ed protein, quenched PEG, mono-, di-, tri-, tetra- and/or high-

PEGylated protein) depends on the di�erence in their apparent hydrophobicity in presence

of salt. A greater number of PEG chains attached to a protein results in a higher apparent

hydrophobicity of the protein, i.e. unmodi�ed protein with no PEG attached is the least

hydrophobic form, and followed by mono-, di-, tri-, tetra- and/or high-PEGylated forms. As

described in the paper [19], during a HIMC experiment, unmodi�ed lysozyme �ow through
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Figure 3.3: A sequence of HIMC chromatographs for a representative PEGylation batch

the membrane stack without any interaction under the operating condition, whereas all PE-

Gylated forms are bound on the membranes. The bound species are eluted out in order of

increasing apparent hydrophobicity by lowering the salt concentration in a gradient manner.

Speci�cally, the mono-PEG form is eluted �rst, followed by di-, tri-, and tetra-PEG forms

if present.

In this work, the eluting bu�er contained 100 mM sodium phosphate at pH 7. The binding

bu�er with an ammonium sulfate concentration of 1.4 M was prepared in eluting bu�er and

adjusted to pH 7. A membrane module having 15 membrane discs with a diameter of 18

mm stacked inside was integrated with an AKTA Prime liquid chromatography system (GE

Healthcare Bio-Sciences, QC, Canada). The separation was executed at 1 mL/min with

500 µL of feed sample containing about 250 µg of total protein loaded. A 50 mL gradient

from 0% to 100% of eluting bu�er was used for elution of bound species. Figure 3.3 shows

a sequence of chromatograph results for one batch condition.

From the chromatographs generated by HIMC, the composition of each mixture was quanti-
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�ed by software, PrimeView, based on the integration of individual chromatographic peaks.

Because each peak corresponds to one component present in the mixture, the relative mole

percentage of each species can be calculated. Then, by mole balance, concentration for

each species in each sample can be determined. By applying this for the batches quenched

at di�erent times, time-series concentration data was obtained for each lysozyme species.

Figure 3.4 shows the resulting concentration trajectories.
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Figure 3.4: Modeled concentration trajectories (pH 7.0: dashed line, pH 7.5: dot dashed

line, pH 8.0: solid line) compared to experimental data (pH 7.0: star, pH 7.5: x, pH 8.0:

plus)
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Remark 3: The results of HIMC can be veri�ed to some extent by a comparative analysis

with the SDS-page results. Particularly, the width of the bands in SDS-page corresponds

in some sense to the relative concentration of species. For instance, unmodi�ed lysozyme

bands were reduced from 5 minute to 30 minute reactions, meaning that signi�cant amount of

unmodi�ed lysozyme was being consumed from 5 minutes to 30 minutes. Such comparative

analysis universally con�rmed the results obtained by HIMC.

3.4 Parameter Estimation

Having obtained concentration evolution with time, least squares estimation was applied

to determine the model coe�cients from the model structure proposed in section 2. To

estimate the parameters the following dynamic optimization problem was solved:

min
k0,k1,kh

n∑
i=0

(
CM (ti)− ĈM (ti)

)2
+
(
CH (ti)− ĈH (ti)

)2
(3.17)

s.t.
dĈL
dt

= −k0ĈLĈP (3.18)

dĈP
dt

= −k0ĈLĈP − k1ĈM ĈP − khĈHĈP (3.19)

dĈM
dt

= k0ĈLĈP − k1ĈM ĈP (3.20)

dĈH
dt

= k1ĈM ĈP (3.21)

ĈP (t0) = CP (t0) (3.22)

ĈM (t0) = CM (t0) (3.23)

ĈL (t0) = CL (t0) (3.24)

ĈH (t0) = CH (t0) (3.25)

Where ti denote the times at which measurements of CM and CH are available experimen-

tally. In essence, the optimization problem computes the `best-�t' values of the parameters

(k0, k1, kh) that enable matching the predicted values of CM and CH with the measured

values. Note that the initial concentrations of all the species was known (based on the initial

ration chosen for a particular run), and thus does not need to be estimated. The optimiza-
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tion problem was solved using MATLAB's NLP solver fmincon. Note that the e�ect of the

molar ratio on the model is accounted for explicitly by the initial concentrations CL (t0) and

CP (t0). Furthermore, it is known that there are no PEGylated forms initially, which allows

setting their initial concentrations to zero in the above optimization. However, pH is not

explicitly accounted for. Therefore, the optimization problem was solved independently for

each pH using only the experimental data collected at that pH (i.e. the problem was solved

independently for data taken at pH 7.0, 7.5, and 8.0). By this process, di�erent kinetic

parameters were obtained for each pH value in the data set. A nonlinear function was then

�t relating each kinetic parameter to pH. To this end, quadratic models were used. These

quadratic models were �t to the values of the parameters at pH 7.0, 7.5, and 8.0. In this

way the overall system behavior was related to the bu�er pH.

Remark 4: The intent of the present contribution is not to develop `the' perfect model for

the PEGylation process, but demonstrate the possibility of using a dynamic model, estimat-

ing parameters, and utilizing the model subsequently to optimizing operating conditions.

The data set used for the training, thus, does not contains repeats for all operating condi-

tions (although it does for some of the conditions), and does not report parameter estimates

with error bars. The key is that parameter estimation using this data set still yields useful

information about the process dynamics, and suggests meaningful operating condition that

yields an improvement. Future work will focus on using this approach in a variety of ex-

perimental set up to obtain a richer data set, and also perform optimization not just over

operating conditions but also experimental con�guration.

Remark 5: Note that the quadratic �t through three points used in this work exactly passes

through each point. While this approach likely leads to over-�t, the three data points were

not well explained by a linear relationship. The proposed approach, using quadratic rela-

tionships, provides an interpolation method between the experimental observations. With

su�cient additional measurements a more rigorous approach to identifying the pH depen-

dency (similar to that in [40]) would be possible.

Figure 3.4 shows the model �t compared to experimental data. This �gure illustrates the
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ability of the proposed model structure to explain the trends in the data. Note that the

proposed model structure does not include a backward reaction. Even in the absence of

backward reaction, the forward reaction rate, for instance for the lysozyme molecule, depends

not only on the presence of lysozyme, but also the mPEG-NHS concentration. If there was

abundance of mPEG-NHS (or atleast that mPEG-NHS was not the limiting reagent), then

we expect the concentration of L to approach zero. However, if mPEG-NHS is the limiting

reagent, the concentrations of neither L no M will approach zero. This is found to happen in

the experiments, and is consistent with the proposed model structure. The model parameters

obtained from least squares regression for each pH are shown in Table 3.2.

Table 3.2: Parameters for data collected at di�erent pH values

pH k0 k1 kh

Units L mol−1 s−1 L mol−1 s−1 L mol−1 s−1

7.0 15.08 12.72 0.9958

7.5 49.87 44.91 432.4

8.0 186.0 194.3 3123

Remark 6: Insight about the e�ect of pH on the reaction can be drawn by comparing the

rate coe�cients, k0, k1, and kh, for di�erent pHs. The clear trend is that the coe�cients

increase for increasing pH. This indicates that the overall rate of the reaction increases as

pH is increased. Note that k0 and k1 are similar in magnitude and increase with a similar

trend. Recall that k0 and k1 correspond to the rate constants for the reaction to the mono

and di-PEGylated forms respectively. The similar increasing trend and similar magnitudes

of k0 and k1 indicate that the pH has minimal impact on the relative reaction rates to the

mono and higher PEGylated forms.

Remark 7: It is believed that the nucleophilic attack involved in this type of PEGylation

takes place when the operating pH is near or higher than the pKa value of the amino acid

group [27]. As a result, PEGylation at the α-amino group should be favored at a pH value

near or above the pKa of α-amino group and below the pKa of ε-amino group, and mainly
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mono-PEGylated protein should be synthesized. A higher pH than the pKa of ε-amino

group should in turn facilitate conjugation at the abundant ε-amino groups, resulting in the

synthesis of the higher-PEGylated forms. Thus, in the proposed model, parameter values

for k1 should increase much faster than k0 with increasing pH. The best �t values of the

parameters, however, do not follow this trend, neither do the experimental results. There

could be two reasons for this mismatch. The �rst is because of the simplifying assumptions

made in the model, or insu�cient experimental data, due to which the parameters estimated

from the model do not re�ect the reaction mechanism in su�cient detail. The other reason

would point toward a reevaluation of the current understanding of the reaction mechanism

of protein PEGylation. Both these avenues will be pursued as future directions of research.

Remark 8: PEG reagents are usually designed to be mono-functional, i.e. one PEG

molecule can be attached to only one protein molecule, whereas one protein molecule can

react with several PEG chains at its various conjugation sites. Therefore, it could be pre-

sumed that an excess of protein would increase the speci�city of mono-PEGylated form but

at the cost of low conversion and wastage of expansive raw materials. However, the experi-

mental data, and the proposed model suggest a di�erent underlying physical phenomenon.

Speci�cally, experimental results suggest that by increasing the concentration of PEG, the

reaction rates for all reactions are proportionally increased. This is demonstrated in Fig-

ure 3.5 which shows two reactions carried out at pH 7.5 where one experiment is run with a

ratio of 4:1 PEG to lysozyme and one with 2:1. Note that the 2:1 curve looks like a stretched

version of the 4:1 curve. This observation is re�ected in the modeling assumption that the

reactions are �rst order. Mathematically this means that increasing the concentration of

PEG would proportionally accelerate all reactions (i.e. to higher order PEGylated forms as

well) regardless of the concentration of protein. Figure 3.5 also plots the model predictions.

Note that both of the model prediction trajectories plotted in Figure 3.5 are based on a

model built solely from the plotted 4:1 data. The predictive ability of this model for the 2:1

case strongly suggests that the �rst-order assumption is valid.
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Figure 3.5: Comparison of reactions carried out with a 2:1 ratio of PEG to lysozyme (ex-

perimental data: stars, model predictions: solid line) and a 4:1 ratio of PEG to lysozyme

(experimental data: dashed line, model prediction: plus)

Remark 9: Lysozyme is widely used as a model protein as its structure and properties have

been extensively studied. It consists of a single chain, potential PEGylation sites are known,

and it is relatively easy to analyse. It is therefore ideally suited for the present study which

focuses on reaction engineering aspects of PEGylation. Note also that while it would be

interesting to test for biological activity of mono-PEGylated lysozyme, such analysis would

be better suited in a paper that focuses on clinical, biochemical and biophysical fundamentals

regarding PEGylated proteins, and as such is outside the scope of the present work. Also,

note that larger PEGs are attached to some therapeutic proteins. However, these molecules

are also signi�cantly bigger than lysozyme. The 1:3 peg:protein MW ratio was intentionally

chosen to represent the typical ratio used in PEGylation.
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3.5 Optimization

In this section we discuss the optimization of the operating conditions for batch PEGylation.

In this work, the operating conditions were de�ned in terms of the bu�er pH and the initial

ratio of PEG to lysozyme. Correspondingly, these two parameters were the decision variables

in our optimization problem. In this work optimization was performed using a grid search

method. In this method, the decision variable space is discretized into a su�ciently �ne

mesh and the objective function is evaluated for each discrete point. The optimal is then

arrived at by selecting the maximum (or minimum) corresponding objective value. The

objective function was de�ned to maximize the concentration of the mono-PEGylated form.

Note that it is much easier to separate reactants from mono-PEGylated protein compared to

byproducts like di-PEGylated protein. Thus, terminating the batch at the peak of the mono-

PEGylated protein concentration is bene�cial from the downstream processing standpoint,

and allows the possibility of recycling the unreacted reagents. This objective function was

selected based on the assumption that the goal of the process is to generate the highest yield

of mono-PEGylated product (which is synonymous with maximizing the concentration for a

constant volume batch reactor where the initial concentration of protein is unchanged from

batch to batch).

Figure 3.6 shows the objective function for the grid-search optimization carried out over a

pH range of 7.0 to 9.0 and an initial ratio (PEG: lysozyme) range of 2:1 to 8:1. A greater

than 1:1 ratio is essential to ensure adequate pegylation. 2:1 represents a low ratio and 8:1

represents a high ratio, thus the range includes all the relevant conditions. This �gure clearly

demonstrates the results of the optimization. In particular, it is apparent that maximum

concentrations of mono-PEGylated lysozyme can be obtained by operating at high pH and

a high ratio of PEG to lysozyme.

Remark 10: In addition to determining the optimal operating conditions, the optimization

also predicts the optimal batch duration. Figure 3.7 shows the optimal batch durations

for the range of operating conditions shown in �gure 6. Note that the proposed operating

conditions (high pH and high ratio PEG:lysozyme) also has the lowest optimal operating
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Figure 3.6: Model prediction of maximum concentration of mono-PEGylated product for a

range of pH and ratio of PEG to lysozyme

duration. The yield reaches a maximum before it decreases. This is not a mathematical

artifact. It is observed in the experiments (although not very pronounced; see Figure 3.4b

and Figure 3.8b) and is consistent with the model structure. The mono-PEGylated protein

will keep reacting and form higher PEGylated forms if left to react. A model (such as the

one developed in this study) which captures this phenomenon can be utilized in determining

not just optimum batch times, but also optimum operating conditions for other reactor

con�gurations.

Remark 11: Note that after a model has been developed, the optimization criteria can

be readily altered to investigate di�erent requirements. Speci�cally, an alternate objective

function could be to maximize the selectivity for mono-PEGylated product. The choice

of this alternate objective function would be motivated by a desire to reduce downstream

separation costs associated with separating mono-PEGylated from higher order PEGylated

forms. However, an intuitive analysis of the process suggests that using the selectivity

objective would complicate the optimization problem signi�cantly. This is because it is
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Figure 3.7: Model prediction of maximum concentration of mono-PEGylated product for a

range of pH and ratio of PEG to lysozyme

possible (and in fact probable) that the highest selectivity would occur near the beginning

of the batch before mono-PEGylated product reacts to higher order PEGylated products. In

this case, the yield of mono-PEGylated product could be very low. In practice then, using

selectivity as an objective function would require at least a hard constraint on minimum

yield. Further research will focus on formulating a dual objective function considering both

yield and selectivity, weighted by a factor determined by the costs of downstream operations.

3.6 Validation

To validate these results (as well as the original model parameters and structure), a new

experimental batch was run at pH 8.5 and molar ratio of 4:1. Recognizing that excessively

high pH values would lead to deleterious e�ects such as degradation, we avoided the higher

pH value suggested by the optimization solution. The concentration of mono PEGylated

protein for this batch is plotted in Figure 3.8, as well as the model predictions (based on
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training data not including the new experiment). This �gure demonstrates the predictive

ability of the proposed model. Moreover, the experimental observation at 10 minutes (the

projected optimal batch length) for the new batch demonstrates one of the highest concen-

trations of mono-PEGylated lysozyme over all the experiments conducted. Note that the

model development is not aimed at developing a `perfect' model, but rather a model that

captures the qualitative behavior of the process, and can be used in an adaptive framework,

to inform further experiments, and enable optimal operation of the process. A graphi-

cal representation of the prediction is therefore presented in the validation step instead of

quantifying the error in the prediction.
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Figure 3.8: Model predictions (solid line) and experimental measurements (stars) for a batch

run at pH 8.5 and a ratio of 4:1, PEG to lysozyme.
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3.7 Conclusions and Future Work

In this study, PEGylation reaction kinetics were investigated. First a model form was pro-

posed based on �rst-principals and a few key assumptions. Model parameters were identi�ed

from experimental data. To obtain this data, batch PEGylation reactions were carried out

for a range of pH and initial concentration conditions. Concentration measurements for the

resulting batch products were obtained by hydrophobic interactive membrane chromatog-

raphy. By repeating the reactions with di�ering durations, concentration trajectories were

obtained. These trajectories were used to �nd the model parameters using the pre-de�ned

model structure and least squares. The model was then applied in an optimization framework

to determine the optimal operating conditions for the PEGylation process. Optimization

results suggest that to maximize the concentration of mono-PEGylated product, the reac-

tion should be carried out at high pH and with a high ratio of PEG to protein. Both the

model and optimization results were validated by carrying out an additional experiment at

pH 8.5. This experiment demonstrated both the ability of the model to predict the reaction

outcome and the validity of the optimization result.

Optimization of the initial recipe and pH provide a starting point for the optimal PEGyla-

tion of protein. However, the inevitable reaction of mono-PEGylated product to undesired

higher-PEGylated species provides motivation to investigate other reactor con�gurations.

One of the bene�ts of this work is that the developed model is not restricted to application

in the batch arrangement. Speci�cally, it is possible to use the existing model and parame-

ters to make prediction for continuous and semi-continuous reactor arrangements with the

hope that the yield of mono-PEGylated product can be improved.
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Chapter 4

Conclusions and Future Work

The contributions shown above develop the idea that modeling of biological systems and

applications is assisted greatly by the use of some type of method for parameter estimation.

It also shows that modeling and parameter estimation must be closely linked if we are to

develop accurate and predictive models of these kinds of systems. The decision of complexity

in�uences how we approach both the modeling and estimation parts of the problem. In

the T cell work, the population balance model was based on �rst-principle notions of our

understanding of cell growth, and it was combined with a model of media behaviour that �t

our empirical understanding of the conditions in which the cells were grown. However, this

resulted in a model with a number of unknown or uncertain parameters, with relatively few

available measurements. In turn, this required the use of the parameter selection process

shown, as estimation of the complete set of parameters would have been impossible. Finally,

our understanding of the biological variability inherent in the cell culture process motivated

the development of the adaptive process that was illustrated in that work.

On the other hand, the process in the PEGylation work was modeled as a simpler reaction

mechanism, with relatively few parameters in the model. Therefore, the estimation technique

used was able to estimate all of the parameters. Because this process did not have the

kinds of biological variability that the cell culture process had, no adaptive estimation was

developed.

70
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There are many areas of potential for future investigations in this avenue of research. First,

the parameter estimation procedures, especially in the case of the T cell culture process, had

limited experimental data available. This limited the ability of the parameter estimation

process (in terms of 'estimateable' parameters). Work should be directed in this area of

linking the availability of measurements (both in number of measured variables, and in the

frequency) to the utility of the parameter estimation process.

Another potential area of work is using the biological modeling shown above in the de-

sign of experiments. By developing these �rst-principle models and parameter estimation

procedures, the goal is to build a predictive model for these biological systems. One issue

with biological systems is the expense of experiments, in terms of both time and money.

Predictive models should be used in combination with statistical tools in order to design

experiments that get the maximum useful data at the lowest possible costs. A related area

would be in design optimization, wherein the biological model created through the param-

eter estimation procedure is used to design a process to achieve some optimal goal or set

target, and then validated experimentally.

One of the goals of process modeling is to be able to develop a model for use in control algo-

rithms. This is of particular interest in the developing �eld of personalized cell therapies, as

discussed in the T cell manuscript. The reliance on highly-skilled technicians for long-batch

processes means very high production costs. Automated processes that can adapt to chang-

ing process conditions, biological variability, and other disturbances would be very useful to

create better manufacturing processes. With the modeling and parameter estimation work

shown, a next step could be the development of control algorithms for these batch-type cell

culture processes.

In conclusion, biological systems and applications provide a rich �eld of potential research

that demands the development of high quality models that can meet the needs of the appli-

cation. Alongside of modeling, we must consider the question of parameter estimation, as

these models will always contain some level of uncertain parameters, often with associated

di�culties in process measurements due to the nature of the biological application in ques-
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tion. This thesis presents two contributions to this �eld. Although these cases considered

very di�erent types of systems, both works were able to use �rst-principle modeling and

parameter estimation techniques to provide predictive models for biological applications.
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