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Abstract  

This dissertation contains three essays on the predictability of asset returns and its 

implications.  All essays contain tests and applications that could be implemented 

in real time, and a summary of economic and statistical significance.  The 

dissertation as a whole adds to the growing literature that returns can be 

predictable, enough so to provide economically significant differences in returns.  

The same applies to predicting market returns, or market timing.  The first essay 

modifies a popular measure of investor sentiment (Baker and Wurgler, 2006) with 

the idea in mind that market-wide sentiment will partially reverse itself in the next 

period.  Economic fundamentals are removed to provide a more pure measure of 

sentiment, which is found to predict returns better (with sentiment having a 

negative relationship with market returns), resulting in a better investment 

strategy.  The second essay implements a statistical methodology which allows 

many predictors (portfolio returns) to be aggregated into a composite index.  This 

index predicts returns well, and also gives insight into why two well-observed 

stock market anomalies, size and value premiums, may occur: they predict future 

market returns and are therefore an ICAPM state variable that reflects future 

wealth opportunities.  For this reason they carry a risk premium.  The third essay 

provides a new forecasting approach that imposes the restrictions of the popular 

arbitrage pricing theory (APT) on an existing statistical approach (principal 

components analysis).  The result is that the expected returns of asset positions 
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hedged against systematic risk are better estimated, and average error is greatly 

reduced out-of-sample. 
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Chapter One: Introduction 

The focus of this dissertation is to examine the potential predictability of returns; 

both the market returns and asset/portfolio returns.  The findings add to the 

growing literature (Kelly and Pruitt, 2013; Li, Ng, and Swaminathan, 2013; 

Ferreira and Santa-Clara, 2011; Rapach, Strauss, and Zhou, 2010 as examples) 

that returns can be predictable up to a point where economically significant return 

differences can be obtained.  This applies to market timing as well.  In what 

follows, I examine the statistical and economic significance of the predictions, as 

well as various applications of the forecasts.  Various predictors and 

methodologies are used in each essay.  The first uses a modified measure of 

investor sentiment; the second, a statistical approach which creates a composite 

index of predictors, allowing a large-cross section of data with minimal 

measurement error; the third, imposing the arbitrage pricing theory (APT) 

restrictions while simultaneously maximizing covariance among test assets. 

 The purpose of the first essay is to create a better measure of investor 

sentiment, and then to investigate how well the new index compares with the 

existing measures when forecasting aggregate market returns (equity premium). 

The new index is formed by altering the Baker and Wurgler (2006) investor 

sentiment index in a way that better captures investor irrationality. Using 

sentiment to forecast returns follows the theory of DeLong et al. (1990). They 

show that noise traders can create mispricing which is then corrected in the next 

period.  Thus, some assets may be predictable due to noise traders.  The essay 
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tests whether or not this will hold in the aggregate.  If it does, then a sentiment 

measure that is pure sentiment (capturing only irrational behavior) should work 

better than other measures which may contain a rational element.  The essay 

argues that existing sentiment measures fall short in this regard. 

 In an attempt to properly remove fundamentals from the Baker and 

Wurgler (BW hereafter) investor sentiment index, the first essay follows the 

methodology of Lemmon and Portniaguina (2006).  Lemmon and Portniaguina 

separate the fundamental and non-fundamental components of consumer 

confidence (CC hereafter).  The essay follows their methodology, but applies it to 

the Baker and Wurgler index by first regressing CC on a set of fundamentals, then 

regressing BW on the fitted (fundamental/rational) value from this initial 

regression, and finally using the residuals from this regression as a proxy for pure 

sentiment.  Basically, the Lemmon and Portniaguina measure of fundamental 

consumer confidence is removed from the Baker and Wurgler index.  Thus, a 

composite index of fundamentals based on consumer confidence is removed from 

Baker and Wurgler’s composite index of sentiment.  This composite index of 

fundamentals would limit any measurement errors or over-fitting of fundamentals 

when removing them from BW.   

Instead of directly following Lemmon and Portniaguina, the essay uses 

BW for forecasting instead of CC, as it is a market measure of investor sentiment.  

Market measures of sentiment are composed of real actions by investors directly 
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involved in the market.  For surveys (especially consumer confidence surveys), a 

participant may feel overly optimistic but may not actually act on this optimism.  

Surveys are also open to problems such as dishonesty, bias, and incomplete 

responses.  A market measure of sentiment (such as BW) will match investors’ 

actions as it relates to their overall feeling regarding the stock market.  Thus, the 

essay proposes that a market measure of investor sentiment will forecast market 

returns better than a survey-based measure.   

To measure the predictive power of the new index, a linear forecasting 

model is used to forecast one-month-ahead market returns.  A simple investment 

strategy is used: if the one-month-ahead predicted excess market return is higher 

than the historical average of all previous months in the sample at the time of 

forecasting, then the investor will invest in the market.  Otherwise, she invests in 

a risk-free asset (T-bills).  Essentially, the goal is to time the market.  This differs 

from both Baker and Wurgler (2006) and Lemmon and Portniaguina (2006), 

where no market timing is involved.  Market timing is considered here for two 

reasons. First, it is a practical application of investor sentiment, in that it is usable 

by practitioners.  Since a common goal in the sentiment literature is predicting 

returns, market timing is a natural extension.  The second reason for using a 

market timing approach is that it provides economic significance (via realized 

returns) in addition to statistical significance.    
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Following the investment strategy (essentially switching between stocks 

and bonds), the forecast model that removes the fundamental component of CC 

from BW provides average realized excess returns of around 10.6% annually 

compared to around 5.3% annually for BW and 8.0% annually for BWA.  This 

realized return is found to be both statistically and economically significant.  The 

new sentiment index also has significant market timing ability.  The excess 

market return average over the forecasting sample is around 6.7% annually (the 

return from a buy-and-hold strategy), so a forecast model utilizing only BW 

would not beat the market on average.  This evidence supports the hypothesis that 

investor sentiment should have no fundamental (rational) component, and that the 

existing measures of sentiment do not properly remove fundamentals. 

The purpose of the second essay is to examine which portfolios matter 

more when predicting future market returns/equity premia.  Specifically, 

portfolios sorted on size and book-to-market are used as predictors, and the 

methodology allows for a single composite index to be formed from a large group 

of predictors (portfolio returns).  The results provide a possible explanation for 

the frequently-observed size and value premiums: these small and value 

stocks/portfolios carry a risk premium as they reflect changes in future wealth 

opportunities.  Cochrane (2005) demonstrates that any variable which can explain 

future market returns is inherently a state variable.  Hence, the composite index 

can be considered an ICAPM (Merton, 1973) state variable.   
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The essay utilizes a statistical approach, partial least squares (PLS), to 

allow for a large number of predictors when forecasting market returns.  PLS was 

recently introduced to the Finance literature by Kelly and Pruitt (2013).  PLS 

estimates jointly the factors and factor sensitivities that in-sample provide the 

highest covariance with the forecast variable.  This also provides stable forecasts 

and avoids OLS issues of over-fitting, extreme weights, and collinearity.  It is also 

shown in the essay that OLS coefficients are more volatile over time, and the out-

of-sample performance of OLS is inferior to both the historical mean and PLS.  

PLS produces positive, diffuse, and stable weights that would be more useful in 

practice (in addition to superior forecasts). 

 To perform partial least squares, this essay uses the SIMPLS algorithm of 

de Jong (1993).  Partial least squares can be thought of as a variant of principal-

component analysis.  Rather than maximizing the covariance matrix ,XX T  PLS 

maximizes YXXY TT or ,XYYX TT which maximizes the covariance between Y 

and X (Y being the forecast variable(s) and X being the predictor variables in this 

case).   Recursive forecasting is performed at a monthly frequency, with the PLS 

regression serving as the forecast regression. Several different Fama-French 

industry and size-value sorted portfolio returns are used as the predictor variables.  

An out-of-sample R-squared value is obtained by comparing the prediction to the 

historical mean, as in Campbell and Thompson (2008).  
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 The portfolio returns and PLS allows for significantly positive OOS-R-

squared values, outperforming various benchmarks.  Once it is established that the 

composite index of portfolio returns has predictive power, it can be seen as a state 

variable/risk factor.  Then the weights can be examined (which are proven to be 

stable, diffuse, and reliable while still being different from an equal-weighted 

approach) to see which type of portfolios contribute more to the state variable.  It 

is found that small-size portfolios and value (high book-to-market) portfolios 

carry a larger weight on average.  The risk factor interpretation is then that low 

returns on small/value stocks means market returns will be low in the next month 

as well.  This requires a positive premium for investors to invest in these stocks.  

 Finally, two applications of the newly formed composite portfolio index 

are performed, which provide a further test of the portfolio weights and predictive 

information of the forecasts.  The first is simply investing in the PLS composite 

portfolio index, which involves investing using the portfolio weights from each 

month’s forecast.  It is found that the portfolio’s Sharpe ratio is greater than the 

market portfolio and an equal-weighted approach.  There is much literature 

(DeMiguel, Garlappi, and Uppal, 2013 for example) that finds an equal-weighted 

or 1/N strategy outperforms most mean-variance techniques and asset pricing 

models in terms of out-of-sample Sharpe ratios.  This paper provides an 

endogenous explanation for this phenomenon: the equal-weighted portfolio places 

more weight on small-size and value stocks compared to the value-weighted 

portfolio.  These stocks carry a different risk premium than the market, which in 
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this case happens to be higher.  Going one step further, the PLS composite index 

places even more weight on small and value stocks, which provides a better 

Sharpe ratio than the 1/N strategy. 

 The purpose of the third essay is to examine if imposing the implications 

of the arbitrage pricing theory (APT) model has out-of-sample benefits.  The 

essay imposes APT pricing restrictions on principal component analysis (PCA).  

This amounts to forming factors that perfectly explain mean returns (perfect 

second pass fit) while simultaneously maximizing the covariance of the test assets 

(maximizing first pass fit subject to the constraint of zero mispricing/alphas).  

While others have imposed APT restrictions in some way (MacKinlay and Pástor, 

2000 and Nardari and Scruggs, 2007), this essay focus on the out-of-sample 

performance of imposing these restrictions.  The essay also differs by using PCA-

type factors (termed C-PCA, for constrained PCA), which allows for portfolio 

weights to be found and applied in real time. 

 To help evaluate the new approach, a breakdown of mean squared error 

(MSE) is examined: MSE can be broken down into a variance term and a bias 

squared term.  Obviously, imposing zero mispricing (although the approach 

allows for a pre-specified allowable percentage of mispricing) will result in a bias 

of zero in sample.  The essay examines the benefits of having an unbiased model, 

which may be preferable depending on time horizon and investor loss function 
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(asymmetric loss functions should not use MSE as a target).  However, the focus 

is on out-of-sample performance. 

 Industry portfolios are used as test assets, as they have a weak factor 

structure, avoiding the Lewellen, Nagel, and Shanken (2010) critique that using 

portfolios sorted on one or two criteria allows for factors to more easily explain 

the portfolio returns.  While PCA and C-PCA both easily beat the traditional asset 

pricing models (CAPM, Fama-French three-factor model, and the Carhart model), 

PCA has the lowest MSE of all models in-sample.  The essay shows that this is 

due to the fact that PCA has an alternative derivation in which the objective is to 

minimize the total MSE of the panel (in both time and cross-sectional 

dimensions).  C-PCA obviously has the lowest bias in-sample, as that is imposed 

a priori.  However, C-PCA sacrifices only a bit of MSE/variance in order to 

achieve zero bias.   

To judge the out-of-sample performance (ability to estimate expected 

returns), a hedging approach is implemented.  The weights are found from the in-

sample estimation window, and are then applied to the next month’s realized 

portfolio returns.  This translates to using the factor realizations, and the in-

sample betas are then applied to these factor realizations to hedge.  If the model 

held perfectly, then all risk could be eliminated.  With an expanding window and 

an initial window of 50 years, C-PCA again has the lowest bias of all models.  C-

PCA reduces the bias of PCA by roughly one-third while having only a slightly 
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higher variance and MSE.  When the initial window is changed to only 60 

months, again bias is reduced by roughly one-third, but the MSE of C-PCA is 

slightly lower than PCA.  A rolling 60-month window is also implemented, but in 

that case C-PCA does not provide a bias reduction (although it does have the 

lowest MSE).  This is consistent with previous literature (MacKinlay and Pástor, 

2000 for example): a longer sample is needed for unbiased estimators to become 

beneficial. 

The main contribution of this dissertation is to show that returns are 

indeed predictable in some form.  It is also shown that this predictability allows 

for profitable or beneficial applications to be performed.  The first essay shows 

that investor sentiment can be measured in a way that captures only irrationality 

or overreaction.  This applies to the market as a whole, so that market timing 

provides abnormal positive returns, both statistically and economically 

significant.  The success is due to temporary mispricing resulting from sentiment, 

followed by market correction in the following month.  The second essay shows 

that a composite index formed by size and book-to-market sorted portfolios can 

provide significant forecast power.  Thus, the index is interpreted as an ICAPM 

state variable.  This offers a potential explanation of the size and value premiums: 

they reflect future investment opportunities and are therefore riskier.  The third 

paper shows that imposing zero mispricing on asset pricing factors allows for bias 

to be greatly reduced out of sample.  The benefits of doing so are examined, and a 

potential application of the model and factors is shown.  The other contribution of 
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the third essay is to derive this new approach and provide new asset pricing 

factors for which the APT holds perfectly. 

The rest of the dissertation proceeds as follows.  Chapter Two contains the 

first essay (“Forecasting Returns with Fundamentals-Removed Investor 

Sentiment”), Chapter Three contains the second essay (“Equity Premium 

Predictions and Optimal Hedging with Many Predictors Using Partial Least 

Squares”), and Chapter Four contains the third and final essay (“Arbitrage Pricing 

Restrictions and the Predictability of Stock Returns by Statistical Factor 

Analysis”).  Chapter Five concludes. 
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2.1 Introduction 

A common goal in studying investor sentiment is to find whether sentiment 

can explain returns. Or, do irrational investors cause mispricing that 

predictably reverses itself in the next period? The key to confirming this 

hypothesis is finding the right measure of irrational behavior, or investor 

sentiment. There are many different measures of investor sentiment in the 

literature, the most popular recently being Baker and Wurgler’s (2006) index. 

As Baker and Wurgler state, mispricing can occur when there are sufficient 

limits to arbitrage, and uninformed demand shocks occur. Therefore, the ideal 

sentiment measure would consist entirely of irrational (non-fundamental) 

investor behavior. Then, this pure measure of investor sentiment should have 

significant predictive power for future returns. This paper argues that the 

existing proxies of sentiment fall short in this regard. 

The sentiment index used in Baker and Wurgler (2006) may be the most 

complete measure in the current literature. They create a composite measure of 

investor sentiment using principal-components analysis. They use six 

components: closed-end fund discount (from Lee, Shleifer, and Thaler, 1991, 

http://creativecommons.org/licenses/by/4.0/
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but following the methodology of Neal and Wheatley, 1998), market turnover, 

number of IPOs (Lowry, 2003), average first-day return of IPOs (Derrien, 

2005), gross equity share, and a dividend premium measure. However, if one 

wants a purer measure of sentiment that better captures mispricing, then their 

sentiment index should be altered. They create a principal-components index 

based on existing sentiment proxies in the literature, but there are likely to be 

some rational or fundamental components involved. In order to arrive at a 

better sentiment measure, the non-fundamental component should be 

separated from the fundamental components of the Baker and Wurgler index 

(BW hereafter). However, properly removing as much of the fundamental 

component as possible is tricky. Baker and Wurgler do attempt to do this by 

removing what they call business cycle variation from their sentiment 

measure. They regress each individual component against a dummy variable 

for NBER recessions, industrial production index growth, and growth in 

consumer durables, nondurables, and services, and then run principal-

components on these six residuals. The sentiment index is still likely to 

contain rational reactions to fundamentals that do not move with the business 

cycle. This paper provides empirical confirmation that indeed the BW 

procedure may not fully remove fundamentals. 

A measure of investor sentiment that fully removes fundamentals should do 

a superior job of forecasting returns due to the following: prices move away 

from fundamentals when noise trading is correlated and arbitrage is limited, 

and then deviations are eventually reversed. The basic hypothesis is that 

mispricing due to sentiment shows up in the aggregate so that market returns 
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are predictable by a pure irrational sentiment measure.1 This assumes that 

sentiment drives predictability of returns more than fundamentals, which 

admittedly may not have a strong prior. However, the evidence in this paper 

supports the idea of return predictability being due to sentiment and not 

fundamentals. If sentiment predicts returns only because it captures 

fundamental factors, then the new sentiment index created in this paper should 

perform worse in forecasting. However, the opposite is true. Thus, evidence in 

contrast with some of the literature in this area is provided. It should be noted, 

though, that Campbell and Kyle (1993) find that mispricing can affect 

aggregate returns, and Lemmon and Portniaguina (2006) mention that rational 

and behavioral hypotheses are not mutually exclusive. 

It is also important here to note the difference between in-sample explanatory 

power and out-of-sample predictability. It is common for a model to perform 

well in sample but poor out of sample. As shown in Section 2.4, the BW index 

is more significant in sample than the Baker and Wurgler (2006) index that 

removes business cycle variation. When moving out of sample, though, the 

BW index performs poorly. The new sentiment index is not intended to fully 

explain market returns. Rather, the intent is to capture deviations in expected 

return which are due to irrational mispricing (sentiment). An index that 

successfully does this should work better out of sample but not necessarily in 

sample. 

This paper removes fundamentals from BW in a way similar to Lemmon 

and Portniaguina (2006). Lemmon and Portniaguina use a set of fundamentals 

                                                           
1 This effect is also found in small-size stocks, which is investigated in Section 2.4.4. 
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that is sufficiently different (and arguably more complete) from Baker and 

Wurgler’s (2006) business cycle variables. Lemmon and Portniaguina separate 

the fundamental and non-fundamental components of consumer confidence 

(CC hereafter). They use the non-fundamental component as a proxy for 

investor sentiment. This paper follows their methodology, but applies it to the 

Baker and Wurgler index by first regressing CC on a set of fundamentals, then 

regressing BW on the fitted (fundamental/rational) value from this initial 

regression, and finally using the residuals from this regression as a proxy for 

pure sentiment. 

Basically, the Lemmon and Portniaguina (2006) measure of fundamental 

consumer confidence is removed from the Baker and Wurgler (2006) index. 

Thus, a composite index of fundamentals based on consumer confidence is 

removed from Baker and Wurgler’s composite index of sentiment. This 

composite index of fundamentals should limit any measurement errors or 

over-fitting of fundamentals when removing them from BW.2 Also, Lemmon 

and Portniaguina’s set of fundamentals (which this paper uses with some 

minor changes) is a more complete measure of overall fundamentals compared 

to Baker and Wurgler’s business cycle variables. This paper shows that, 

empirically, following this methodology allows investor sentiment to forecast 

market returns better. 

Instead of directly following Lemmon and Portniaguina (2006), this paper 

uses BW for forecasting instead of CC, as it is a market measure of investor 

                                                           
2 The large number of fundamental variables and their lags may result in over-fitting, which is why 

the principal-components method is commonly used with a large number of variables. PC is 

also used to forecast, with inferior results shown in the Appendix. 
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sentiment. 3 Market measures of sentiment are composed of real actions by 

investors directly involved in the market. For surveys (especially consumer 

confidence surveys), a participant may feel overly optimistic but may not 

actually act on this optimism. Surveys are also open to problems such as 

dishonesty, bias, and incomplete responses. A market measure of sentiment 

(such as BW) will match investors’ actions as it relates to their overall feeling 

of the stock market. Thus, this paper proposes that a market measure of 

investor sentiment will forecast market returns better than a survey-based 

measure. Empirical evidence is presented in support of this hypothesis, as the 

new index performs better in forecasting market returns than both Baker and 

Wurgler’s (2006) index and their alternative sentiment index that removes 

business cycle variations (BWA hereafter). 

To measure the predictive power of the new index, a linear forecasting 

model is used to forecast one-month-ahead market returns. The sample runs 

from July 1978, when the University of Michigan consumer sentiment survey 

became available in a monthly frequency, to December 2010. A simple 

investment strategy is used: if the one-month-ahead predicted excess market 

return is higher than the historical average of all previous months in the 

sample at the time of forecasting, then the investor will invest in the market. 

Otherwise, she invests in a risk-free asset (T-bills). Essentially, the goal is to 

time the market. This differs from both Baker and Wurgler (2006) and 

Lemmon and Portniaguina (2006), where no market timing is involved. 

                                                           
3 It is also shown in this paper that Lemmon and Portniaguina’s (2006) measure of sentiment 

does not predict returns as well as the new, modified BW index. 
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Market timing is considered here for two reasons. First, it is a practical 

application of investor sentiment, in that it is usable by practitioners. Since a 

common goal in the sentiment literature is predicting returns, market timing is 

a natural extension. The second reason for using a market timing approach is 

that it provides economic significance (via realized returns) in addition to 

statistical significance. Following the investment strategy (essentially 

switching between stocks and bonds), the forecast model that removes the 

fundamental component of CC from BW provides average realized excess 

returns of around 10.6% annually compared to around 5.3% annually for BW 

and 8.0% annually for BWA. This new sentiment index also has significant 

market timing ability, as will be shown later. The excess market return average 

over the forecasting sample is around 6.7% annually (the return from a buy-

and-hold strategy), so a forecast model utilizing only BW would not beat the 

market on average. This new index performs significantly better than both CC 

and Lemmon and Portniaguina’s sentiment component of CC (by itself) as 

well. Since sentiment is typically thought to affect small, young, and volatile 

stocks the most, forecasting is also performed on a small-size portfolio. Again, 

removing the fundamental component increases the realized returns an 

investor could obtain. The evidence supports the hypothesis that investor 

sentiment should have no fundamental (rational) component, and that the 

existing measures of sentiment do not properly remove fundamentals. It 

should be noted that predictability in returns may be driven somewhat by  

time-varying risk and risk aversion, and not entirely by sentiment. However, 
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this paper provides evidence that creating a better measure of irrationality 

increases predictability in returns. 

The paper proceeds as follows: Section 2.2 reviews the existing literature 

on investor sentiment and consumer confidence as a proxy for sentiment; 

Section 2.3 discusses the data and methodology used; Section 2.4 discusses 

the results; and Section 2.5 concludes the paper. 

2.2. Literature Review 

DeLong et al., (1990) show that returns of assets mostly held by noise 

traders can be predictable as mispricing caused by correlated sentiment (with 

limited arbitrage) will eventually correct itself. 4 Most studies (Baker and 

Wurgler, 2006, Lemmon and Portniaguina (2006), etc.) show that small and 

young firms (and closed-end funds, discussed shortly) are predominantly held 

by noise traders and thus are more susceptible to sentiment. However, 

Campbell and Kyle (1993) show that overreaction can impact aggregate stock 

values as well. Hence sentiment may also be able to predict market returns. 

Lee, Shleifer, and Thaler (1991) show that closed-end fund discounts may 

be due to investor sentiment. In their study, the returns of ten size-ranked 

portfolios are regressed against market returns and the change in a value-

weighted closed-end fund discount variable. They find that the smallest  

size-ranked portfolio moves closely with closed-end funds, while the largest 

size-ranked portfolio moves in the opposite direction of closed-end funds. 

                                                           
4 For a survey of behavioral finance, see Hirshleifer (2001). 
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The papers that follow Lee, Shleifer, and Thaler (1991) are at the core of 

the field of investor sentiment. Barberis, Shleifer, and Vishny (1998) present a 

model of investor sentiment that supports the findings that stock prices 

underreact to earnings announcements and overreact to successive good or bad 

news. Elton, Gruber, and Busse (1998) show that changes in closed-end fund 

discounts do not explain common stock returns when including a value-

weighted industry return index. They also find that investor sentiment is not a 

priced factor in common stocks as well as closed-end funds. Neal and 

Wheatley (1998) find that closed-end fund discounts can predict the size 

premium, but nothing else. 

Other authors have considered proxies or measures of investor sentiment 

outside of closed-end fund discounts. Lee, Jiang, and Indro (2002) use a 

GARCH-mean model and the Investor’s Intelligence survey as their sentiment 

proxy to show that sentiment is a priced systematic risk. Lowry (2003) shows 

that investor sentiment may impact IPO volume. Cai et al. (2013), find that 

sentiment affects variation in straight debt IPO volume, and Derrien (2005) 

shows that sentiment may play a role in the initial return of IPOs. Baker and 

Stein (2004) create a model in which high market liquidity indicates that the 

market is dominated by irrational investors, creating a role for sentiment. 

There is a wide range of literature in which consumer confidence indices 

are used to proxy for investor sentiment. Fisher and Statman (2003) find that 

consumer confidence impacts individual investors’ sentiment, but not 

institutional investors’ sentiment. They also find that consumer confidence will 

rise significantly when stock returns (using many different indices) are high, 
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and that consumer confidence may have some predictive power for returns. 

Schmeling (2009) uses consumer confidence to try to predict returns for 18 

different countries. He finds that consumer confidence has predictive power 

up to 6 months, but dies out after that. Also, some countries’ consumer 

confidence measure has no predictive power whatsoever. 

Lemmon and Portniaguina (2006) use consumer confidence as a proxy for 

investor sentiment. As mentioned earlier, Lemmon and Portniaguina (2006) 

create a sentiment proxy from consumer confidence by removing nine 

quarterly fundamentals and their lags. They point out that the rational 

hypothesis and sentiment hypothesis are not mutually exclusive. Therefore, by 

removing fundamentals they create a sentiment index similar to what this 

paper creates: an index where mispricing could only be due to sentiment, so 

that prices will reverse and be predictable. They use a quarterly index of the 

University of Michigan Consumer Sentiment Index (CC). They mention that 

from 1978–2002 their sentiment component and the Baker and Wurgler (2006) 

index have a very small correlation and that their index does not support Baker 

and Wurgler’s findings mentioned below. They do not attempt to predict 

market returns as this paper does. The other key difference in this paper is that 

here their fundamental component of CC (using monthly data) is then 

removed from BW (a more direct market measure) to be used in market 

timing. 

As discussed in the previous section, Baker and Wurgler (2006) create a 

composite investor sentiment index using principal-component analysis. They 

use their index to run a predictive regression on various long-short portfolios. 
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Their main findings are that small, young, and volatile firms have low returns 

for the following year when current sentiment is high. Baker and Wurgler 

(2007) create a first-differenced series of their 2006 sentiment indices, 

whereby they first-difference the individual components and then run 

principal-components analysis. They use the change index to test for return co-

movement with sentiment, while using their 2006 levels index to forecast 

returns. Their findings are that speculative, difficult-to-arbitrage stocks and 

stocks with high volatility are impacted greatly by sentiment. They also find 

that high sentiment leads to lower future market returns (overreaction). This 

paper builds on this finding, and attempts to forecast market returns. 

2.3. Data and Methodology 

The sample period used in this paper runs from July 1978 (when the 

Michigan Survey began to consistently use monthly frequencies) to December 

2010, using monthly data. Market return is the value-weighted CRSP measure 

that includes dividends. 5 The risk-free rate used is the rate on 3-month 

Treasury bills, obtained from the St. Louis Federal Reserve (FRED) website.6 

Excess market return is the difference between these two. The University of 

Michigan Consumer Sentiment Index (CC, or consumer confidence) is also 

obtained from the FRED website. The Baker and Wurgler (2006) index and its 

alternative that removes business cycle variation, along with the individual 

                                                           
5 Other market indices were examined as well with qualitatively similar results. The S&P 500 

index was used, as well as the value-weighted NYSE/AMEX measure that excludes REITs, 

closed-end funds, and ADRs from Statman, Thorley, and Vorkink (2006). 
6 Available online: https://research.stlouisfed.org/ 
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components, are obtained from Jeffrey Wurgler’s website.7 Table 2.1 shows 

the descriptive statistics for these variables. Figure 2.1 provides time-series 

graphs of the excess market return, CC, BW, and BWA over the sample for 

comparison purposes. 

[Table 2.1 goes here] 

As can be seen from Table 2.1, the average market return for the sample 

used here is about 12.3% annually (1.027% monthly). The average excess 

market return is slightly less than 7% annually. CC uses 1966 as its base year, 

with CC = 100. BW is from a standardized principal-component analysis, so 

that the series (although not necessarily in the sample used here) has a unit 

variance and a mean of zero. As described in the literature review, BW is 

comprised of six individual sentiment components and employs both leads and 

lags. 

While CC is definitively non-stationary, BW’s stationarity is ambiguous 

using Dickey-Fuller, Dickey-Fuller GLS, and Phillips-Perron tests. For BW, 

the Dickey-Fuller GLS test shows that it is non-stationary, but the other tests 

are inconclusive. It appears that BW may be non-stationary due to the non-

stationarity of just one component, the turnover component. Further, CC and 

BW may be cointegrated, using the Johansen integration test. The results are 

not definitive, as would be expected since BW may or may not be non-

stationary. 

[Figure 2.1 goes here] 

                                                           
7 Available online: http://people.stern.nyu.edu/jwurgler/ 
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Initially, Lemmon and Portniaguina’s (2006) methodology is implemented, 

with some minor changes. Primarily, Lemmon and Portniaguina use quarterly 

data and this paper uses monthly data. Lemmon and Portniaguina use the 

following nine fundamentals: default spread (DEF), as measured by the 

difference between the yields to maturity on Moody’s Baa-rated bonds and 

Aaa-rated bonds; yield on 3-month Treasury bills (RF); dividend yield (DIV), 

following Fama and French (1988); real GDP growth (GDP); growth in 

personal consumption expenditures (CONS); labor income growth (LABOR), 

as measured by the per capita growth in total personal income minus dividend 

income, deflated by the PCE deflator; the Bureau of Labor Statistics 

unemployment rate (URATE), seasonally adjusted; inflation rate (INF), 

measured by the change in the consumer price index; and the consumption-to-

wealth ratio (CAY) from Lettau and Ludvigson (2001). The dividend yield 

measure can be obtained from the difference between CRSP’s value-weighted 

return index and its value-weighted return index excluding dividends. The 

CAY measure is obtained from Martin Lettau’s website.8 The seven other 

fundamental variables can be obtained from FRED’s website. 

This paper makes two changes to Lemmon and Portniaguina’s (2006) 

choice of fundamentals: instead of using the unemployment rate the prime rate 

on bank loans (PRIME) is used, and CAY and GDP are interpolated to 

monthly data. PRIME is obtained from FRED. The prime rate is essentially a 

benchmark for other loan rates, so it should broadly capture fundamental 

economic activity. Also, the unemployment rate is a survey measure, while the 

                                                           
8 Available online: http://faculty.haas.berkeley.edu/lettau/data.html 
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other fundamentals (and the prime rate) are directly observable. 9 The prime 

rate is more quickly accessible to investors than is the unemployment rate as 

well. Following Lemmon and Portniaguina, CC is regressed against these 9 

fundamentals and their lags using monthly data. Since Lemmon and 

Portniaguina use quarterly indices with one lead and one lag (giving six 

months of data), the lead on each fundamental along with 5 monthly lags is 

used. Since CAY and GDP are converted to monthly, only a lead and one 3-

month lag can be used for these two variables to avoid multicollinearity. This 

gives the following: 

 
5

0

0

*[ ]t i t i t t t

i

CC X v CCfit v



        (2.1) 

0  is a constant, [ ]i  is a vector of coefficients: 

]',,,,,,,,[][ GDPCAYPRIMELABORINFCONSDIVRFDEFX  , tCCfit  is the 

fitted value of the regression, and tv  is the error term (noting that CAY and 

GDP only have one lag at t - 3). 

The fitted value from the above equation is obtained by multiplying the 

coefficient by the respective value for that variable (from i = 0 to 5) and 

summing them together with the intercept for each particular month. This 

produces the “fundamental” or “rational” component of CC, whereas the 

residual is the sentiment component as in Lemmon and Portniaguina (2006). 

As discussed in the introduction, the idea is to weight the fundamentals on the 

                                                           
9 In addition to possible survey errors and biases, the debate over how an unemployment 

statistic should be constructed leads to potential problems in its use. 
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non-market survey measure of consumer confidence before removing it from 

BW. The aim is to remove the rational, fundamental component of BW, 

leaving only irrational investor sentiment (which produces market 

mispricing).10 

Each regression is rolled forward one month, while anchoring the starting 

point. This is done so that only information from time 1 to t is utilized in 

forecasting at month t + 1. Therefore, the coefficients will change as the 

regression updates forward each month in a stepwise fashion. The fitted values 

of Equation (2.1) are saved each time so that a series is created to be used in 

forecasting. That is, Equation (2.1) is run from time 1 to time t, with t fitted 

values created. This series can be used to then forecast at t + 1, as will be 

explained later. To forecast the next month (t + 2), Equation (2.1) is then run 

from time 1 to t + 1, creating t + 1 values in each series. Thus, Equation (2.1) 

is updated each month as forecasting moves from the halfway point to the last 

period in the sample. When running Equation (2.1) for the entire sample, the 

adjusted R-squared value is 0.78, which is very close to the value that 

Lemmon and Portniaguina (2006) obtain. 

The fitted (fundamental) CC values are then used to properly remove 

fundamentals from BW. Again, BW is used to forecast as it is a market-based 

measure and should forecast market returns better. Lemmon and 

Portniaguina’s methodology has been used up to this point in order to get a 

                                                           
10 Removing the fundamental component of BW from CC does not work well when 

forecasting. This means switching CC and BW in Equations (2.1) and (2.2). Results are 

available upon request. 
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proper measure of fundamentals. Now, after obtaining the series of fitted 

values from Equation (2.1), the following is run: 

*t t tBW a b CCfit e    (2.1) 

t te FRS  (2.1) 

CCfit is the fitted value of CC from Equation (2.1). The procedure in Equation 

(2.2) is the same as in Equation (2.1). The residual from Equation (2.2), 
te , is 

hereafter referred to as FRS (fundamental-removed sentiment). Note that using 

only CCfit eliminates any endogeneity issues that would arise from using CC 

in Equation (2.2). The reason is that since CC also has a sentiment component, 

it would be correlated with the residual from Equation (2.2), or FRS. 11 CCfit 

is used as a composite index of fundamentals which should help prevent 

potential over-fitting or measurement errors when removing fundamentals 

from sentiment. Table 2.2 shows the descriptive statistics for FRS, when 

forecasting starts at the one-third mark of the sample as will be done later. 

Note that this is the series of only time t residual from Equation (2.2), where 

time t is used to forecast excess market return at time t + 1. Since FRS 

contains residuals from different regressions, it is not necessarily expected that 

its mean be zero (as opposed to a series of residuals from one regression). It 

should also be noted that FRS is unambiguously stationary when BW is 

modified using this methodology. As discussed at the beginning of this 

section, BW is found to be non-stationary using some statistical tests. 

                                                           
11 One other possible benefit from using CCfit as a composite index of fundamentals is that 

directly removing fundamentals instead may remove both a rational and irrational component 

from BW (the irrational part being an overreaction to a fundamental shock). 
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[Table 2.2 goes here] 

The regression in Equation (2.2) is run in a stepwise fashion with an 

anchored starting point, with the end point starting from the halfway point 

(October 1994) updating each time to include the next month. Equation (2.2) 

can be thought of as running simultaneously with Equation (2.1). The 

residuals from Equation (2.2) are then used in forecasting excess market 

returns, with each month in which forecasting is done having its own unique 

series of the residuals from Equation (2.2) that does not include any future 

information. The R-squared value from Equation (2.2) is 8% for the full 

sample, although it ranges from 3%–8% over the sample. 

The following forecasting models are employed: 

tR̂  is the predicted excess market return and i

tsent 1  is the appropriate 

sentiment measure, lagged one month, for model i. For Model I (i = 1) BW is 

used for “sent”, for Model II (i = 2) BWA is used, and for  

Model III (i = 3) FRS is used. BWA is included for comparison purposes; this 

also shows that BW removes some fundamentals but ultimately falls short. 

Forecasting is done from October 1994 to December 2010 and also from May 

1989 to December 2010. Therefore, out-of-sample forecasts for the second 

half of the sample are obtained, and also for the last two-thirds of the sample 

for comparison and robustness. So when forecasting starts at the halfway point 

of the sample, the forecasting equations above start by running from July 1978–

Model i: 1
ˆ * i

t t t t tR sent      i = 1,2,3 (2.2) 
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September 1994, and finish by running from July 1978–November 2010. 

Ordinary least squares is used in the forecasting equations, and one-month-

ahead forecasts of the excess market returns, tR̂ , are obtained using the 

residuals of the forecasting equations. 

2.4. Results 

2.4.1 Forecast Results 

Table 2.3 shows the results from the forecasting regressions for each of the 

three models (for the first case when forecasting starts at the halfway point of 

the sample). The coefficients, t-statistics (reported in parentheses), and R-

squared values in the table are averages from the 195 individual forecasting 

regressions for each model, with each regression adding one additional data 

point. T-statistics are obtained by following the Fama-MacBeth (1973) 

methodology, using the distribution of the 195 coefficients. Note that these t-

statistics should not be biased since the standard two-pass approach with 

generated regressors is not used here. Excess market returns are the dependent 

variables in each model and its respective regressions. Coefficients for each 

variable are small, but the coefficients are difficult to interpret in terms of size 

due to how CC and BW are created, as well as the fact that residuals from 

Equation (2.2) are used as independent variables. 

In-sample R-squared values are low for each model, as is common in return 

forecasting. Campbell and Thompson (2008) provide a way to examine 

whether a model provides sufficient explanatory power. Using out-of-sample 



Ph.D. Thesis – Adam Stivers; McMaster University – Business (Finance) 

30 
 

(OOS) R-squared values based on the historical mean, the OOS R-squared 

value can be compared to the squared Sharpe ratio (here of the excess market 

return) over the forecasting sample. When the time interval is small (monthly 

is small enough) then a mean-variance investor can use Model III (FRS) to 

increase her monthly expected portfolio return by a proportional factor of 2R /

2SR  (out-of-sample R-squared over the squared Sharpe ratio for the 

forecasting sample). Here, Model III gives 1.3/1.6 = 82% proportional 

increase in expected return from observing FRS. 

Model III, when removing CCfit from BW and using this residual to 

forecast excess market returns (FRS), is the most significant, with the most 

negative coefficient. FRS is a measure of uninformed demand shocks, which 

cause mispricing and subsequent reversal. A one standard deviation increase 

in FRS for this particular subsample implies a 0.25% decrease in next month’s 

excess market return.  Thus, sentiment and excess market returns have a 

negative relationship. This can be interpreted as overreaction on the part of 

investors. 

[Table 2.3 goes here] 

Table 2.4 shows the forecast results. To measure forecast (market timing) 

accuracy, a simple investment strategy is implemented. The one-month-ahead 

forecast of excess market return is compared to the historical average of the 

excess market return. So if the predicted value of the excess market return ( R̂ ) 

is calculated at time t + 1, the relevant historical average of the excess market 

return is calculated from time 1 to t. If 1
ˆ
tR  is higher than the average obtained 
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from existing data at that point (at time t), then the investor will invest only in 

the market in the following month (t + 1), obtaining the actual market return in 

that period. However, if 1
ˆ
tR  is less than the historical average, then the 

investor will invest only in the risk-free asset in the following month, 

obtaining the actual risk-free return. This produces a time series of realized 

investment returns for each forecasting model. That is what this paper is 

concerned with; it produces a measure of the ability of each model to time the 

market. This is also the return an investor could conceivably have earned 

when using the respective model to forecast based on the investment rule, 

since out-of-sample forecasting is done. Panel A of Table 2.4 provides for 

each model the realized investment excess return, standard deviation, and  

risk-corrected average realized investment returns. Note that realized 

investment returns are either market returns or risk-free returns (minus the 

risk-free rate). Returns reported in Table 2.4 are annualized monthly returns. 

[Table 2.4 goes here] 

From the table it can be seen that using the Baker-Wurgler (2006) index to 

forecast (Model I) provides average realized investment excess returns of 

about 5.3% annually (8.6% prior to subtracting the risk-free rate), and a 

realized standard deviation of about 3.5% (annualized Sharpe ratio of 0.44). 

The alternative Baker and Wurgler index that removes business cycle variation 

(Model II) provides average excess returns of 8.0% (11.3%) and a standard 

deviation of 3.2% (annualized SR = 0.72). However, one can do even better 

when removing the fundamental component of CC from BW (Model III, using 

FRS), with an average annual excess return of about 10.6% (13.9%) and a 
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standard deviation of 3.8% (SR = 0.81). Model I does not beat the average 

market excess return for the forecasting sample period, which is around 6.7% 

annually. Note that this 6.7% would be the realized excess return from a buy-

and-hold the market strategy, and the strategy would have a standard deviation 

of 4.8% (SR = 0.40). Model II beats a buy-and-hold strategy by 1.3%, and 

Model III beats a buy-and-hold by 3.9% for this sample.  As mentioned 

previously, it is possible that returns are predictable in part due to time-

varying risk and risk aversion and not solely due to investor sentiment, though 

performance increases as more fundamentals are removed. The results are 

even more divergent when using the median rather than the mean of realized 

returns, which is shown in the second row of Panel A. Models I and II drop to 

a 1.8% realized return, while Model III has a median of 9.4%. Models I and II 

produce realized returns that are skewed (more negative returns compared to 

Model III). In order to check if the positive results of Model III are due to a 

few outstanding months’ returns, the top 1% is dropped and the average of the 

remaining 99% is reported in the third row of Panel A. While the returns in 

row 3 drop across the board (as to be expected), they still remain significantly 

positive at 1% for Model III. 

Pesaran and Timmermann (1994) raise the issue that a market timing 

portfolio that switches between stocks and bonds may have a lower standard 

deviation simply due to including bonds with low standard deviation. To 

address this, they construct a portfolio that randomly switches between stocks 

and bonds at the same proportion as their switching portfolio. The expected 

excess return of this portfolio with the CRSP market data and T-bills used in 
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this paper would be 5.2% with a standard deviation of about 5.0%. Note that 

Model III provides a superior mean-variance tradeoff. 

Also, BW does even worse in comparison after correcting for market risk, 

with an average annual return of about 1.7%. FRS gives market-risk-corrected 

returns of about 6.4% annually. BWA gives market-risk-corrected returns of 

about 5.0%, again falling below Model III but well above Model I (BW). The 

results stand after correcting for Fama and French’s (1996) HML and SMB 

factors, and Carhart’s (1997) momentum factor as well. The size factor has 

been suggested as possibly explaining abnormal returns from a sentiment-

based trading strategy, but these results show otherwise. Model III (FRS) still 

provides an average annual return of 5.8% after correcting for market, size, 

and value. Momentum also does not fully explain the performance of FRS. 

The last two columns of the table show the difference in returns between 

Model III and the other two models (or the improvement of FRS over BW and 

BWA). Significance levels are also shown, which are obtained from a 

bootstrapping procedure with 10,000 simulations. FRS offers an improved 

return at a 5% significance level over BW and at a 10% significance level over 

BWA. This is the case for both average returns and returns with the top 1% 

removed. For median returns, FRS offers an improvement at a 1% significance 

level over both BW and BWA. FRS offers a significant improvement over 

BW when using risk-adjusted returns. While the risk-adjusted returns of FRS 

are not a significant improvement over BWA using the bootstrapping 

procedure, there are two important points to consider. The first is that these 

returns are less volatile with a smaller range for all three models. Therefore, 
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significance is more difficult to achieve. The second point is that the 

difference in risk-corrected returns between Models III and II are still 

economically substantial, with the difference in being between 1.2% and 1.4% 

per annum (note that this is essentially the alpha obtained).  

2.4.2. Market Timing Tests 

Looking at the realized returns that each model would provide for an 

investor provides a test of economic significance, but the market timing 

literature provides additional statistical tests for market timing ability. Three 

such tests are performed here for Model III over the October 1994–December 

2010 forecasting sample, and the results can be seen in Panel B of Table 2.4. 

The first is the Treynor and Mazuy (1966) test (TM hereafter), where a 

quadratic specification is implemented. The TM test for market timing ability 

is testing the null hypothesis that the coefficient on the squared excess market 

return is not positive, when the realized excess returns are regressed on a 

constant, the excess market return, and the squared excess market return. From 

Panel B it can be seen that Model III (FRS) has a large positive coefficient on 

the squared excess market return, and it is significant at 10% based on Newey-

West (1987) standard errors. Thus, there is significant market timing ability 

based on the TM test. 12 

Henriksson and Merton (1981) argue that market timers have different 

target betas depending on whether they predict an up or down market, 

                                                           
12 For all three market timing tests, the market timing ability coefficients are all significant at 

1% when the Newey-West (1987) correction is not performed. 
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therefore their test (the HM test) replaces the squared excess market return 

variable of the TM test with the following dummy variable: 

rf is the return on 3-month U.S. Treasury bills, and R is the excess market 

return. Panel B shows that the coefficient (timing ability) on this dummy 

variable is positive and significant at 5%. While the intercept in this 

specification can be interpreted as selection ability, Goetzman, Ingersoll, and 

Ivković (2000) note that the selection ability coefficients and market timing 

ability coefficients are typically of the opposite sign. 

The Cumby and Modest (1987) test (CM), but following Breen, Glosten, 

and Jagannathan (1989) is also performed. They do not assume a CAPM 

structure and directly test whether the expected realized return is different 

when an up market is predicted compared to when a down market is predicted. 

The dummy variable for this test (the variable I in Panel B of Table 2.4) is 

equal to one if the predicted return of Model III is higher than average, and 

equal to zero if it is less than average. Here, the excess market return is the 

dependent variable. Again, the market timing ability coefficient is positive and 

significant at 1%, providing positive evidence of timing ability. Breen, 

Glosten, and Jagannathan (1989) also note that a negative intercept is 

equivalent to the expected return of the timing portfolio being higher than the 

return on the market (buy-and-hold strategy). Panel B shows a negative 

intercept that is significant at 10%. 

)](,0max[ ttt RrfD   (2.3) 
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In order to truly examine the potential profitability of the model, transaction 

costs must be taken into account. However, the emergence of ETFs has 

allowed for low transaction costs when switching between a market proxy 

portfolio (ETF) and a bond (possibly an ETF as well). For example, Vanguard 

advertises a 0.15% average ETF expense ratio, although it notes that the 

industry average according to Lipper, Inc. is 0.58% as of December 31, 2012. 

Vanguard’s CRSP total stock market index has an expense ratio of only 

0.05%, but other mutual funds may be as high as 0.89%.13 Table 2.5 shows the 

realized returns of each model after accounting for transaction costs. The high 

and medium numbers come from Pesaran and Timmermann (1994). They use 

a cost of 1% and 0.5% for the high and medium, respectively, transaction costs 

of stocks. These are close to the industry average of 0.58% and the upper end 

of mutual funds of 0.89%. Also, a low cost of 0.15% is given (Vanguard’s 

cost). A cost of 0.1% is used for bonds in all cases, as in Pesaran and 

Timmermann. The costs are applied to stocks and bonds for each month in 

which the investor would hold the market (stocks) or the risk-free asset 

(bonds). From examining Table 2.4 it can be seen that the realized returns are 

not significantly lowered after accounting for transaction costs. 14 

[Table 2.5 goes here] 

                                                           
13 Obtained from Vanguard’s website. Available online: https://investor.vanguard.com/home/ 
14 Note that these are average returns and not cumulative. Transaction costs would have a 

larger effect when examining cumulative returns, as the lower returns are then reinvested each 

month. See Pesaran and Timmermann (1994) for more details. 
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Several other forecast models are examined to provide a comparison. The 

results can be found in the Appendix. 15 None of the models examined come 

close to the performance of FRS. Interestingly, directly removing the 

fundamentals in Equation (2.1) from BW does poorly as well. Thus it appears 

that the CC index properly weights these fundamentals, which when removed 

from BW provide a better irrational measure of sentiment that also forecasts 

better.16 

2.4.3. Statistical Significance 

In order to obtain a general idea of how well the investment strategies 

perform, the results from Model III are compared to random strategies that 

pick between the market and the risk-free asset randomly each month. A 

simulation is conducted where the market is picked about 80% of the time, as 

is the case with Model III. 17 Under the null hypothesis that excess market 

returns are not predictable (efficient market hypothesis), this would give an 

accurate distribution. Thus, our null hypothesis is the rational efficient market 

hypothesis, and our alternative hypothesis is the behavioral hypothesis 

(mispricing caused by noise trading). This analysis can also be seen as 

comparing the appropriate forecasting model to a random walk model. When 

performing the random draws 20,000 times, the percentage of times that the 

                                                           
15 One of the other variables tested in the Appendix is the Lemmon and Portniaguina (2006) 

sentiment measure, which gives inferior results. 

16 Forecasting was also performed with both the Lemmon and Portniaguina (2006) measure of 

sentiment (the residual v from Equation (2.1)) and FRS in the forecast regression. The result is 

a similar, albeit slightly lower, realized return than when using FRS alone (Model III). 

17 Note that the expected return of a portfolio in this simulation is the same as that from 

Pesaran and Timmermann’s (1994) methodology, described in the previous subsection. 
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realized investment return beats Model III is indistinguishable from zero. In 

fact, only 14 out of 20,000 simulations beat Model III. This could be 

interpreted as a p-value of zero under the null hypothesis. Hence, the realized 

return of Model III would be significant at 1%, as shown in Table 2.4. For this 

model, the 1% cutoff is 9.0% average annual excess return, and for the 5% 

level it is 7.9% (compared to Model III’s performance of 10.6%). Following 

the same methodology (while changing the probability that the market is 

selected to match the appropriate model being used for comparison), Model II 

is beaten 2.8% of the time (significant at 5%) and Model I is beaten 24% of 

the time (insignificant). The same is done for risk-corrected returns, and those 

significance levels are denoted in Table 2.4 as well. 

2.4.4. Robustness 

Forecasting is also performed starting at the one-third mark of the sample 

(May 1989). This provides 260 months of forecasting one-month-ahead excess 

market returns, instead of the 195 produced earlier. Table 2.6 shows that the 

overall forecast results for the full forecasting sample (which is now two-

thirds of the entire sample) are qualitatively the same as in Table 2.4. Again, 

removing the fundamental component of CC from BW provides the highest 

realized excess returns (Model III is again superior). In this longer sample 

period, the performance of BW/Model I can be completely explained by the 

known risk factors, while the performance of FRS is still significantly positive 

after risk correction. This is further support that Model III provides superior 

forecasting performance and realized investment returns. A buy-and-hold the 
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market strategy would have provided a realized excess return of about 6.5% 

(standard deviation of 3.2%), so again Model I does not beat the market, while 

Model II is on par with the market. Model III again clearly outperforms the 

market. Model III again is clearly superior to the other two models when 

examining the median of realized returns rather than the mean. Also, the 

results are not due to a few positive outliers, as can be seen from the third row 

of the table, which drops the top 1% of realized returns and then takes the 

mean. 

[Table 2.6 goes here] 

Also, the same significance check from Section 2.4.3 is performed for this 

sample and is reported in Table 2.5. Model I is outperformed by random 

strategies (with the same probability of being in the market) 29% of the time, 

Model II 9.25% of the time, and Model III approximately 0% of the time (only 

5 out of 20,000 simulations were superior). The significance levels for Models 

I and III are unchanged with this longer forecasting sample, and now Model II 

is only significant at 10%. So out-of-sample market timing for this larger 

window is again clearly superior when removing fundamentals from BW. 

Further, it is clear when examining the results that forecasting (market timing) 

improves as time goes on, perhaps due to increased data to be used in 

forecasting out of sample. For example, from 1989–1994 Model III provided 

about the same return as the market. From 1995–1999, Model III slightly 

underperformed the market, and from 2000–2005 Model III beat the market by 

4.5% annually. However, from 2006–2010 Model III beat the market by 9.3% 

annually. For this time period, Model III also provides a market-risk-corrected 
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return of about 10.5% annually. The last few years are not the sole driving 

force for full sample performance, however. From 1994–2002 Model III still 

beats the market by 2.3% annually, while Model II (BWA) underperforms the 

market by about 0.7% annually in this subsample. Again, the last two columns 

show Model III’s (FRS) improvement over BW and BWA. While most of the 

differences are qualitatively the same as Table 2.4, FRS is now comparatively 

stronger than BWA. FRS now offers average returns that are higher than 

BWA at a 5% (rather than 10% as before) significance level. Also, the Fama-

French (1996) 3-factor risk-corrected returns of FRS are now significantly 

higher than BWA. 

One possible explanation for the increasing return may be that the time-

varying systematic risk is increasing as well. While it is true that the standard 

deviation of the market increases for each subsample, the Sharpe ratios from 

the investment strategy based on Model III increase relative to the market over 

time. For the 1989–1994 subsample, the investor would have obtained about 

the same Sharpe ratio as the market. The subsample with the highest SR is 

1995–1999 (1.32) but it is slightly below the market SR of 1.41. For 2000–

2005 the investor would have obtained a realized SR of 0.29 compared to the 

market’s negative SR, and for 2006–2010 the SR is 0.89 compared to the 

market SR of 0.17.  The 2006–2010 subsample survives market risk correction 

as well, as mentioned in the previous paragraph. Based on the Sharpe ratios, it 

looks like the 2000–2005 subsample performs just as well as the 2006–2010 

subsample compared to the market (or a buy-and-hold strategy). Also, the 

1995–1999 subsample provides a slightly higher standard deviation to the 
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investor than the 2006–2010 subsample, but the former does not beat the 

market while the latter beats the market by over 9% annually. So it would 

seem that time-varying systematic risk is not the driving factor in the 

increasing performance. 

The t-statistics, coefficients, and R-squared values from the forecasting 

regression all increase in absolute value over time as well. Figure 2.2 shows a 

12-month moving average of the R-squared for the forecasting regression of 

Model III, starting at the halfway point of the sample. Here, the forecasting 

regression is done with a rolling, fixed-window regression without an 

anchored starting point, so that 195 months of data are used to show the R-

squared value of the regression ending at the appropriate month in the figure. 

Figure 2.2 shows an upward trend in the R-squared values, which shows that 

the FRS model does better the later in the sample forecasting is performed. 

This is an interesting point to examine in further research. What are the 

reasons for the increasing performance? One possibility is that sentiment 

(specifically, the arguably purer measure of sentiment, FRS) is playing a 

larger role in the market. Also, it will be interesting to see how this model 

performs in the future, if it can keep up the escalating performance. 

[Figure 2.2 goes here] 

A further robustness check is performed by forecasting a small-size 

portfolio. Since noise traders (sentiment) tend to hold mostly small, young, 

and volatile firms, the new sentiment index should also predict small-cap 

stocks well. The same out-of-sample analysis is performed as was done for 

market returns: the three models are used to forecast a small-stock portfolio. 
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Based on the forecast (above or below the trailing historical average), either 

the small-size portfolio or risk-free asset (respectively) is chosen for the 

upcoming month. Then the series of realized returns can be analyzed. The 

smallest size decile from Kenneth French’s size-sorted portfolios is used as a 

proxy for small-cap stocks.18 The sample is the same as for the market 

analysis: estimation starts in July 1978 and forecasting is performed from 

October 1994 to December 2010. One-month-ahead recursive forecasting with 

an anchored starting point is performed again. 

The results can be seen in Table 2.7. Model III (FRS) again outperforms 

BW and BWA. From examining the average annualized excess returns, Model 

III outperforms a buy-and-hold the market strategy and a buy-and-hold the 

size portfolio strategy (which would earn an investor a 10.8% annualized 

excess return on average). FRS performs better than BW and BWA after 

correcting for risk as well. The returns for Model III are higher and more 

significant than Model I and II across the board. The significance levels are 

again obtained by simulating realized returns with the same average 

investment proportion. It should be noted that Model III does take on a bit 

more risk than the other models, and Model III’s return becomes closer to 

Model II’s return as more and more risk factors are taken into account. 

[Table 2.7 goes here] 

 

 

                                                           
18 Data obtained from Ken French’s website. Available online: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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2.5. Conclusions 

Removing fundamentals from the Baker and Wurgler (2006) investor 

sentiment index by first weighting them on the University of Michigan 

Consumer Sentiment Index (regressing CC on the fundamentals and taking the 

fitted value) provides better forecasting and higher realized investment returns 

based on a strategy that utilizes the forecasts. Also, a forecast model that uses 

the newly constructed sentiment index shows significant market timing ability. 

The evidence in this paper provides support that the fitted value of CC 

(regressed on fundamentals) is a proper composite index of fundamentals, and 

would prevent over-fitting and/or measurement errors when removing 

fundamentals from sentiment. Support for the behavioral hypothesis of 

DeLong et al., (1990) is presented in this paper. It appears that removing 

fundamentals from BW creates a better measure of non-fundamental demand 

shocks. Under the behavioral hypothesis, these uninformed demand shocks 

cause market mispricing followed by reversal, allowing for better market 

timing. Particularly, it better captures correlated noise amongst investors that 

is not related to any macroeconomic condition (or rational response to these 

conditions). This provides evidence that sentiment may be a better predictor of 

returns than fundamentals. The new index also has the added benefit of being 

conclusively stationary, which cannot be said about the original Baker-

Wurgler (2006) index. The new measure predicts a small-cap portfolio better 

than the two Baker and Wurgler measures as well. The evidence presented in 

this paper supports the view that the two variants of the widely used Baker and 

Wurgler sentiment index do not properly remove fundamentals. A fully 
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irrational (non-fundamental) measure of investor behavior is needed to 

properly test the behavioral hypothesis of sentiment causing mispricing and 

predictable returns, and this paper attempts to create such a measure. This 

paper presents evidence in favor of irrationality in the stock market (investor 

sentiment), and evidence against market efficiency. This paper also extends 

the work of Lemmon and Portniaguina (2006), by implementing their 

methodology on the market sentiment measure of Baker and Wurgler (2006), 

and forecasting monthly returns. 
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Table 2.1. Descriptive Statistics. 

Statistic RF MKTRET CC BW BWA 

Mean 0.004560 0.010268 86.18487 0.260882 0.245618 

Median 0.004242 0.014399 90.2 0.1135 0.054 

Maximum 0.013583 0.12967 112 2.321 2.497 

Minimum 0.000025 −0.219503 51.7 −1.333 −1.273 

Std. Dev. 0.002836 0.044035 13.18374 0.677739 0.68605 

CV 0.621882 4.288566 0.152970 2.597876 2.793166 

Skewness 0.666981 −0.778491 −0.436221 0.765964 0.861307 

Kurtosis 0.465557 5.695326 2.408766 3.624503 3.405068 

Sample: July 1978–December 2010, monthly intervals, giving 390 observations 

of each variable. CV is the coefficient of variation, which allows for comparison 

of CC and BW; RF is the risk-free rate in decimal form, as measured by the 3-

month T-Bill, obtained from the FRED; MKTRET is the CRSP value-weighted 

portfolio; CC is the University of Michigan Consumer Sentiment Index; BW is 

the Baker-Wurgler investor sentiment index, from Baker and Wurgler (2006), 

obtained from Jeffrey Wurgler’s website; BWA is the Baker-Wurgler 

alternative index, which removes business cycle variation, from Baker and 

Wurgler (2006). 
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Table 2.2. FRS Descriptive Statistics. 

Statistic FRS 

Mean −0.319224 

Median −0.398 

Maximum 1.815 

Minimum −1.254 

Std. Dev. 0.53787 

Skewness 1.452870 

Kurtosis 6.435207 

Sample is from April 1989 to November 2010. Thus, when forecasting is 

performed starting at the one-third mark of the full sample, excess market return 

is forecasted starting at May 1989 up until December 2010, at one-month 

intervals. FRS (fundamental-removed sentiment0 is the series of residuals from 

Equation (2.2), where only the final residual of each recursive regression is 

saved. This produces the time t residual, e, which is used in forecasting the 

market  

at t + 1. 
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Table 2.3. Forecast Regression Results. 

EMR: Model I Model II Model III 

BW 
   

Coefficient −0.0036 
  

T-stat (−1.91) * 
  

BWA 
   

Coefficient 
 

−0.0037 
 

T-stat 
 

(−1.73) * 
 

FRS 
   

Coefficient 
  

−0.0040 

T-stat 
  

(−2.00) * 

R-Squared 0.0041 0.0046 0.0044 

* denotes significance at the 10% level. The table shows the average of 

coefficients from forecasting equations for various forecast models, with 

monthly market returns as the dependent variable. T-statistics are created using 

the Fama-MacBeth (1973) methodology. Forecasting starts at the halfway point 

of the sample (October 1994), rolling forward each month, creating 195 

forecasting equations. Note that constants are not reported here. Model I uses 

the Baker-Wurgler index to forecast excess market returns, Model II uses the 

orthogonal Baker-Wurgler index that removes business-cycle variation to 

forecast, and Model III uses the new FRS (fundamental-removed sentiment) 

index from Equations (2.1)–(2.3). Sample: July 1978–December 2010, monthly 

intervals. 
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Table 2.4. Forecasting results. 

Panel A: Realized Returns 

Time Series Statistic Model I Model II Model III 
Model III - 

Model I 

Model III - 

Model II 

Realized investment excess returns (average) 5.297% 7.978% ** 10.643% *** 5.376% ** 2.665% * 

Realized investment excess returns (median) 1.807% 1.876% 9.394% *** 7.587% *** 7.518% *** 

Realized returns after removing top 1% 

(average) 
4.137% 6.846% ** 9.539% *** 5.402% ** 2.693% * 

Standard deviation of realized returns 3.536% 3.216% 3.805%   

Realized returns after market risk correction 1.718% 4.967% *** 6.400% *** 4.682% ** 1.433% 

Realized returns after FF3 correction 2.283% 4.418% ** 5.846% *** 3.563% * 1.428% 

Realized returns after FF3 and momentum 

correction 
1.571% 4.091% ** 5.371% *** 3.800% * 1.280% 
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Table 2.4 continued 

Panel B: Market Timing Ability Tests for Model III 

Independent Variable TM HM CM   

α 0.0002 (0.002) −0.0043 (0.003) −0.0172 (0.009) *   

R 0.7104 (0.087) *** 0.9244 (0.095) *** 
 

  

R2 2.0954 (1.010) * 
  

  

D 
 

0.4676 (0.221) ** 
 

  

I 
  

0.0283 (0.009) ***   

Panel A shows the average annualized realized returns for the various models. Excess market returns use value-weighted CRSP market returns and 3-month T-bill rates for 

the risk-free rate. Realized investment returns are based off an investment strategy of investing in the market if predicted returns are higher than a stepwise average of excess 

market returns for all previous months or investing in the risk-free asset if predicted returns are lower than this average. Realized returns are from October 1994–December 

2010. The third row shows the average returns when removing the top 1% of realized returns obtained. The realized returns are corrected for risk using a simple beta 

formulation, Fama and French (1996) 3-factor model, and Carhart (1997) 4-factor model. In columns 2-4, * represents significance at ten percent, ** at 5%, and *** at 1% 

using 20,000 simulations where the market and risk-free asset are randomly picked each month using the same ex-post weight of the corresponding model. See Section 2.4.3 

for more details. Columns 5 and 6 in Panel A show the difference in returns between Models III and I, and Models III and II, respectively. The significance levels here are 

obtained from a bootstrapping procedure, using the sample of 195 return observations and 10,000 simulations. The null hypothesis is that the two series have a difference of 

zero. Panel B shows the market timing test results for Model III over the same sample period as Panel A. TM is the Treynor and Mazuy (1966) test, HM is the Henriksson 

and Merton (1981) test, and CM is the Cumby and Modest (1987) test. α is the intercept, R is the CRSP value-weighted excess market return, D is the dummy variable from 

Henriksson and Merton (1981): D = max[0, rf - r] (where rf is the return on 3-month U.S. Treasury bills), r is the excess market return, and I is the Cumby and Modest 

(1987) dummy variable: I = 1 if the model predicts a return higher than average and I = 0 otherwise. The Cumby and Modest (1987) test uses the excess market returns as the 

dependent variable. Coefficients for each variable are provided, along with the Newey-West (1987) standard errors in parentheses, with 2 lags based on Akaike Information 

criterion. * represents significance at the 10% level, ** significance at the 5% level, and *** significance at the 1% level. 
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Table 2.5. Realized returns after transaction costs. 

Transaction Costs High Medium Low 

Model I 5.243% 5.268% 5.286% 

Model II 7.901% 7.937% 7.963% 

Model III 10.529% 10.585% 10.624% 

This table shows the average realized excess returns for each forecast model. Model I 

uses the Baker-Wurgler (2006) index (BW), Model II uses the alternate Baker-Wurgler 

index that removes business cycle variation (BWA), and Model III uses fundamental-

removed sentiment (FRS) to forecast. High transaction costs are 1% for stocks and 0.1% 

for bonds; medium costs are 0.5% for stocks and 0.1% for bonds; low costs are 0.15% 

for stocks and 0.1% for bonds. Transaction costs are subtracted from monthly returns 

depending on whether stocks (market) or bonds (risk-free asset/T-bills) are chosen for that 

particular month. For example, if stocks are chosen in month t, then the transaction-cost-

adjusted return for t is r(t) x (1-c), where r is the return and c is the appropriate cost for 

stocks. Similar analysis is done for bonds, then an average of the full sample (October 

1994–December 2010) adjusted returns is reported. 

 

 

  



Ph.D. Thesis – Adam Stivers; McMaster University – Business (Finance) 

54 
 

Table 2.6. Forecasting results for larger sample. 

May 1989–December 2010 Forecasting Sample 

Time Series Statistic Model I Model II Model III 
Model III - 

Model I 

Model III - 

Model II 

Realized investment excess returns 5.192% 6.571% * 9.505% *** 4.313% ** 2.934% ** 

Realized investment excess returns (median) 1.429% 2.039% 9.310% *** 7.881% *** 7.271% *** 

Realized returns after removing top 1% 

(average) 
3.860% 5.255% * 8.223% ** 4.363% ** 2.968% ** 

Standard deviation of realized returns 3.513% 3.182% 3.745%   

Realized returns after risk correction 1.279% 3.320% ** 4.978% *** 3.699% ** 1.658% 

Realized returns after FF3 correction 0.117% 2.415% * 4.549% *** 4.432% *** 2.134% * 

Realized returns after FF3 and momentum 

correction 
−0.012% 2.083% 3.938% *** 3.950% ** 1.855% 

The above returns are annualized monthly returns. Excess market returns use the CRSP value-weighted average for market returns and the 3-

month T-bill rate for the risk-free rate. Realized investment returns are based off investment strategy of investing in the market if predicted 

returns are higher than a stepwise average of excess market returns for all previous months or investing in the risk-free asset if predicted 

returns are lower than this average. Realized returns are from May 1989–December 2010. These realized returns are corrected for risk using a 

simple beta formulation, Fama and French (1996) 3-factor model, and Carhart (1997) 4-factor model. Model I uses the Baker-Wurgler (2006) 

index to forecast excess market returns, Model II uses the orthogonal Baker-Wurgler index that removes business-cycle variation to forecast, 

and Model III uses the new fundamental-removed sentiment (FRS) index from Equations (2.1)–(2.3). In Columns 2–4, * represents significance 

at ten percent, ** at 5%, and *** at 1% using 20,000 simulations where the market and risk-free asset are randomly picked each month using 

the same ex-post weight of the corresponding model. Again, the null hypothesis is that returns are not predictable. See Sections 2.4.3 and 

2.4.4 for more details. Columns 5 and 6 show the difference in returns between Models III and I, and Models III and II, respectively. The 

significance levels here are obtained from a bootstrapping procedure, using the sample of 260 return observations and 10,000 simulations. 
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Table 2.7. Forecasting results for size portfolio. 

Time Series Statistic Model I Model II Model III 

Realized investment excess returns 8.588% 10.577% * 13.315% ** 

Standard deviation of realized returns 5.308% 4.247% 5.599% 

Realized returns after market risk correction 3.600% 7.361% * 8.778% ** 

Realized returns after FF3 correction 0.280% 4.506% 5.888% ** 

Realized returns after FF3 and momentum 

correction 
0.649% 5.224% * 5.430% * 

This table shows the average annualized excess realized returns for the various models 

when forecasting the small-size portfolio. Ken French’s size-sorted portfolios are used, 

with the smallest decile used as the size portfolio to be forecasted. Realized investment 

returns are based off an investment strategy of investing in the small-size portfolio if 

predicted returns are higher than the stepwise average for all previous months or 

investing in the risk-free asset if predicted returns are lower than this average. 3-month 

US T-Bills are used for the risk-free asset. Realized returns are averages from October 

1994–December 2010. The estimation window starts in July 1978. The realized returns 

are corrected for risk using a simple beta formulation, Fama and French (1996) 3-factor 

model, and Carhart (1997) 4-factor model. * represents significance at ten percent, ** at 

5%, and *** at 1% using 20,000 simulations where the size portfolio and risk-free asset 

are randomly picked each month using the same ex-post weight of the corresponding 

model. See Section 2.4.3 for more details. 
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Figure 2.1: This figure shows time-series graphs of the paper’s modified BW index 

(FRS), BW, BWA, and CC. FRS is fundamental-removed-sentiment, BW is Baker and 

Wurgler’s (2006) sentiment index, BWA is Baker and Wurgler’s sentiment index that 

removes business cycle variation, and CC is the University of Michigan Consumer 

Sentiment Index. The sample is from July 1978–December 2010. 
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Figure 1.2 This figure shows the 12-month moving average R-squared values of 

the forecasting regression over the forecasting period. Here, forecasting is done with 

a rolling, 195-month regression in order to forecast the next month’s return. The 

figure shows the R-squared values increasing over the forecasting period, which 

may explain the increasing performance of the market timing investment strategy. 
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Appendix 2.A 

Table 2.A.1. Additional models’ forecasting results. 

Forecast Model Realized Excess Investment Return 

BW-fundamentals 3.725% 

FRS and fit 1.770% 

CC 2.172% 

LPS 4.992% 

BW-CC 5.255% 

AR(1) 4.635% 

AR(6) 2.276% 

AR(12) 1.183% 

PC 5.967% 

This table presents the realized excess investment return that is obtained from the 

forecasting model using the appropriate variable. Excess market return is forecasted 

using the appropriate variable above. BW-fundamentals is the residual after removing 

the fundamentals used in this paper directly from the Baker and Wurgler (2006) 

index (BW), FRS and fit uses both fitted and residual components of Equation (2.2) 

in order to use both sentiment (FRS) and fundamentals (fitted value) in forecasting, 

CC is the University of Michigan Consumer Sentiment Index, LPS is the Lemmon 

and Portniaguina (2006) sentiment index (constructed by using the methodology in 

this paper: removing fundamentals from CC), BW-CC is the residual after removing 

the full CC index from BW, AR(p) is autoregressive model of order p, and PC is the 

residual after removing the first principal-component index of the fundamentals 

from BW. 
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Chapter Three: Equity Premium Predictions and Optimal Hedging with Many 

Predictors Using Partial Least Squares 

 

3.1 Introduction 

 Two of the more persistent features in asset pricing are the size premium 

and value premium.  The literature on these premiums provides either a rational or 

behavioral explanation.  This paper offers a potential rational explanation for 

these premiums: they offer risk premiums due to the fact that small-size 

stocks/portfolios and value stocks/portfolios signal a change in future investment 

opportunities.  A composite index of size and book-to-market sorted portfolio 

returns has significant forecasting power out of sample for the equity premium.  

The composite index places higher weights on small-size and high book-to-

market ratio portfolios in the composite index.  Therefore, small-size and value 

portfolios matter more in explaining future market returns.  This signals a change 

in future investment opportunities: low returns on these portfolios mean future 

market returns will be low as well on average.  Hence, these portfolios/stocks 

require a risk premium.   

This paper argues that the composite index is an ICAPM state variable, 

since it reflects changes in future investment opportunities.  Also, since the index 

places more weight on small-size and value portfolios compared to the market and 

a 1/N (equal-weighted) portfolio, it can be thought of as an economical proxy for 

the size and value factors of the Fama and French (1993) three-factor model.  

There is much literature that links forecasting future market returns and ICAPM 
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state variables (and also showing that the Fama-French three-factor model can be 

considered an ICAPM).  Campbell (1993) constructs an ICAPM which relates 

mean returns to their covariances with current and future market returns.  In doing 

so, Campbell shows that any cross-sectional factors can only be included if they 

forecast future market returns (or labor income as human capital is included in 

this model).  Thus, the composite index can be considered a Campbell (1993) 

factor.  Campbell also mentions that the Fama-French three-factor model may be 

considered as an ICAPM in this setting.  Cochrane (2005, p. 150) states that any 

variable (factor in this case) that has significant forecast power for the market 

return is inherently an ICAPM state variable.  Liew and Vassalou (2000) show 

that the SMB (size) and HML (book-to-market) factors can predict future GDP 

growth in a cross-section of ten countries.  They point out that this finding 

supports the hypothesis that the Fama-French three-factor model can be 

considered as an ICAPM, with the size and value premiums reflecting true risk 

factors.  This is consistent with other literature on the premiums, such as Zhang 

(2005) and Petkova and Zhang (2005) in regards to the value premium, and Fama 

and French (2006) on the size and value premiums. 

This paper contributes to the literature by providing a direct mechanism 

through which the size and book-to-market factors of the Fama-French three-

factor model reflect future investment opportunities.  These small-size and value 

stocks/portfolios are a leading market indicator (i.e., they predict the equity 

premium), hence the direct relationship to future investment opportunities.  While 
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Liew and Vassalou (2000) show that the size and book-to-market factors can 

predict future GDP growth, this paper provides a more direct and market-based 

mechanism.  Since this paper provides further evidence that the Fama-French 

three-factor model can be thought of as an ICAPM model, it also posits a 

potential explanation for the size and value premiums: they are ICAPM risk 

premiums as they reflect future investment opportunities. 

The composite index used in forecasting is formed by employing a 

shrinkage estimator known as partial least squares (PLS), which was recently 

introduced to the Finance and Economics field by Kelly and Pruitt (2013).  PLS is 

a priori a strong candidate as a forecast method because it estimates jointly those 

factors and factor sensitivities that in-sample provide the highest covariance with 

the forecast variable.  The forecasting literature has found that shrinkage 

estimators work much better than OLS when using multiple predictors.   OLS 

becomes noisy and does not typically work well when using multiple predictors, 

as the weights put on the predictors become extreme due to over-fitting.  

Shrinkage estimators avoid this problem by putting more conservative weights on 

the predictors.  Using a shrinkage estimator also allows for stable forecasts and 

forecast weights.  This allows for proper examination of the weights and may 

potentially work well in applications. 

Two out-of-sample (OOS) applications employing the portfolio weights 

are performed: applying the weights in real-time to invest in the factor portfolio, 
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and using the weights to hedge against market risk.  The factor is formed by 

applying the weights (on an out-of-sample basis) that are obtained from each 

month’s forecasting regression.  The PLS factor outperforms a naïve equal-

weighted approach and the market portfolio in terms of the OOS-Sharpe ratio.  

There is a strand of literature which finds that a naïve 1/N diversification strategy 

typically dominates all mean-variance and asset pricing techniques in terms of 

out-of-sample Sharpe ratios.  DeMiguel et al. (2009) and Tu and Zhou (2011) are 

among those who find that this is indeed the case.  The analysis in this paper 

explains why equal-weighted portfolios perform well out of sample: they load 

more heavily on size and value stocks compared to a value-weighted market 

measure, and these size and value stocks reflect future investment opportunities 

and hence ICAPM state variable risk. 

In the second application of the weights, a risk-hedging approach is found 

to reduce overall risk and improve Sharpe ratios compared to the market portfolio.  

The mean-variance investor in this scenario would invest in the market, the risk-

free asset (T-Bills), and the PLS factor as a zero-investment hedge.  The weights 

of each are chosen out of sample by means of an optimization/risk minimization 

approach.  This gives credit to the hypothesis that the PLS factor signals a change 

in future investment opportunities as it hedges well against future market risk. 

 The encouraging performance of the out-of-sample applications is to a 

large degree due to the fact that PLS provides both a more accurate and more 
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stable forecast compared to OLS.  This is particularly useful in the risk-hedging 

application.  While the market is extremely volatile, the PLS weights are stable 

and forecast the market well enough, which allows an investor to hedge month-to-

month without significant rebalancing.  It is shown in this paper that OLS 

coefficients are more volatile over time, and the OOS performance of OLS is 

inferior to both the historical mean and PLS.  If an investor were to use the OLS 

weights to construct a portfolio or hedge against market risk, this would require 

constant rebalancing and short-selling.  In contrast, PLS produces positive, 

closely clustered, and stable weights that would be more useful in practice (in 

addition to producing superior forecasts).  This paper examines the weights on the 

size- and value-sorted portfolios as well as on various industry portfolios that 

constitute the forecast factor. 

This paper forecasts the equity premium rather than raw market returns, 

following many others in the forecasting literature.  For example, Li et al. (2013) 

create an implied cost of capital measure to forecast the equity premium and 

Pettenuzzo et al. (2014) impose economic constraints to improve univariate 

forecasts of the equity premium.  This paper borrows some of the out-of-sample 

tests from Li et al.  A utility gain measure is implemented, which is equivalent to 

the certainty equivalent that an investor would pay to receive the forecast 

information.   
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 The methodology implemented in this paper is closely related to that of 

Kelly and Pruitt (2013) and Kelly and Pruitt (2015).  While this paper uses PLS to 

forecast, Kelly and Pruitt (2013) use a three-pass regression filter (3PRF).  PLS 

and 3PRF are similar, but the differences (discussed below) do result in improved 

forecasting.  As will be shown, PLS is more robust than 3PRF.  However, it is 

important to note that the differences are small and the goal of this study is not to 

simply outperform 3PRF but instead to extend this methodology to another 

application and gain new insights. The methodology in this paper also differs 

from Kelly and Pruitt (2013) in terms of the predictors used.   This paper uses 

portfolio returns, while Kelly and Pruitt use book-to-market ratios.  Forecasting 

with returns rather than book-to-market ratios allows for the portfolio weights to 

be directly useful for practical applications.  The PLS portfolio factors can be 

formed directly from the portfolio weights. 

 In addition to using size and book-to-market sorted portfolios as the base 

assets in forecasting the market, various industry portfolios are considered as 

well.  This analysis allows for examination of which industries matter for future 

returns.  Although this paper looks at several different Fama-French industry 

classifications, a clear pattern develops as to which industries have a large weight 

and which have a low weight.  For example, the energy industry (mining, coal, oil 

and gas) and the telecommunications industry tend to have low weight when 

forecasting excess market returns.  At the other end of the spectrum, the 
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entertainment industry and finance industry have larger weights than other 

industries. 

The sample period in this study is January 1930 – December 2010, with 

forecasting starting January 1980.  Excess log returns are used, the CRSP value-

weighted index is used for market returns, and the yield on 3-month Treasury bills 

is used for the risk-free rate.  This paper looks at the 6, 25, and 100 size-value 

portfolios, as well as various Fama-French industry portfolios. 

 The paper proceeds as follows. Section 3.2 reviews the relevant literature.  

Section 3.3 introduces the partial least squares regression approach.  Section 3.4 

reviews the methodology and data.  Section 3.5 provides the forecast results, 

examines the portfolio weights, looks at two applications of the weights, and 

conducts robustness checks. Section 3.6 concludes the paper. 

3.2. Literature Review 

Kelly and Pruitt (2015) create a three-pass regression filter (3PRF), which 

can be used to forecast.  They note that it is basically a special case of partial least 

squares.  Kelly and Pruitt (2013) is the first to apply PLS to finance.  PLS is 

essentially a shrinkage estimator.  Since this paper’s methodology closely follows 

Kelly and Pruitt (2015), their methodology will be explored here in more depth.  

The first pass of the 3PRF of Kelly and Pruitt is a time series regression where 

each predictor variable is the dependent variable and the proxies (or the variables 

to be forecasted themselves) are the regressors.  The first pass coefficients are 
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stored and become the regressors in the second pass cross-sectional regression 

where the predictors are again the dependent variable.  The second pass 

coefficients are then used as predictors in a third pass predictive regression.  The 

three passes can be summarized as follows: 

1. tiititi zx ,

'

,0,    

2. tititti Fx ,

'

,0,
ˆ    

3. 1

'

1
ˆ

  ttot Fy   

where x are the predictors, z is a proxy to be selected by the forecaster, and y is 

the variable to be forecasted.  The first pass estimates how the predictors relate to 

the latent factors, and the second pass estimates the factors themselves.  Kelly and 

Pruitt (2015) find that this approach is especially useful when using a large set of 

predictors.  The 3PRF is shown to be the solution to a constrained least squares 

problem.  They forecast macroeconomic variables and conduct Monte Carlo 

simulations to show that their method is superior to OLS and several variants of 

principal-components analysis. 

 Kelly and Pruitt (2013) apply the 3PRF to forecast market returns and cash 

flow growth on both a monthly and annual basis using portfolio book-to-market 

ratios.  They do so using the 6, 25, and 100 size and book-to-market sorted Fama-

French portfolios.  They also do not use a proxy for market returns in the first 

pass; instead, they use market returns as the regressor in the first pass (y in place 

of z in 1 above).  They obtain significantly positive in-sample and out-of-sample 
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R-squared values (OOS calculated based on the historical mean).  The results hold 

for various robustness tests, and for both US and international data. 

 This paper forecasts the equity premium while making some changes to 

Kelly and Pruitt’s (2013, 2015) methodology.  The literature on predictability of 

the equity premium is vast and diverse.  For a summary of approaches to 

forecasting the equity premium, see Welch and Goyal (2008) or Spiegel (2008).  

Pettenuzzo et al. (2014) find that implementing economic constraints improves 

the results when forecasting the equity premium.  Li et al. (2013) create their own 

implied cost of capital measure, which they find has significant out-of-sample 

forecast power for the equity premium.  Polk et al. (2006) use the cross-sectional 

price of risk to forecast the equity premium.  Ferreira and Santa-Clara (2011) use 

a sum-of-parts method that combines the three components of market returns 

(dividend-price ratio, earnings growth, and price-earnings ratio growth).  They 

find that this performs better than other variables as well as the three components 

individually.  Rapach et al. (2010) combine individual forecasts to better predict 

the equity premium.  Guo (2006) uses the consumption-to-wealth ratio (cay) of 

Lettau and Ludvigson (2001) to forecast market returns.  Guo finds that this 

measure has substantial out-of-sample predictive power.  This is in contrast to 

Bossaerts and Hillion (1999) and Goyal and Welch (2003), who find little out-of-

sample predictive power of traditional forecast variables such as dividend yield, 

term premium, default premium, etc. 
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While this paper forecasts the equity premium through some changes to 

Kelly and Pruitt’s (2013, 2015) methodology, the most important finding of this 

paper is a potential explanation for the size and value premiums.  Various 

explanations have been offered for the size and value premiums.  Zhang (2005) 

provides a model that can explain why value may be riskier than growth.  Petkova 

and Zhang (2005) find that a conditional CAPM with time-varying risk can 

partially explain the value premium.  They suggest APT or ICAPM-related risk 

factors to explain the value premium, which this paper explores.  This line of 

thinking is supported by the theory of Campbell (1993) and the empirical results 

of Liew and Vassalou (2000).  Fama and French (2006) find that the CAPM can 

explain the size and value premiums of 1928 to 1963, but not those of 1963 to 

2004.  Thus, current market risk cannot explain the size and value premiums.  

Israel and Moskowitz (2013) find that shorting does not explain a significant 

portion of the size and value premiums, and also that changes in transaction costs 

and markets over time do not affect the premiums.  Maio and Santa-Clara (2015) 

find that dividend variation is more related to expected dividend growth rather 

than expected returns for size and value stocks, contrary to the result found for all 

stocks. 

3.3. Partial least squares methodology 

 This paper finds that using PLS (specifically as applied via the SIMPLS 

algorithm) and portfolio returns as predictors delivers significant forecast 
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performance based on OOS-R-squared values.19  The de Jong SIMPLS algorithm 

for PLS is essentially as follows.20  The matrix of predictors and the vector (in this 

case) of the target variable are multiplied and squared.  Then eigenvalue 

decomposition is performed, where the first eigenvector is used to form the 

weights for the first factor.  The weights and factors are then normalized.  Note 

that the approach essentially amounts to finding the eigenvector/factor that 

maximizes the covariance between X and Y (predictors and target).  This also 

allows for an equivalent one-step estimator that finds the factors and weights, as 

well the regression coefficients for each factor.  The original squared matrix can 

be orthogonalized to the first factor so that the process can be repeated to find 

multiple factors if desired. 

In more technical terms, the algorithm is as follows: the matrix Y of the 

variables to be forecasted is demeaned, and the dominant eigenvector of 

XYYX TT  selected.  The eigenvector is post-multiplied by XYYX TT to give the 

X factor weights, which weight the X matrix to generate a linear combination of 

the X variables that produces the X factor, or X-score.  The X-score is normalized 

                                                           
19 This paper uses SIMPLS instead of the 3PRF of Kelly and Pruitt (2013).  However, Kelly and 

Pruitt (2013) note that their 3PRF reduces to PLS when using the forecast variable in the first pass 

instead of an alternative instrument, de-meaning and variance-standardizing the predictors prior to 

the first pass, and removing the constants from the first two passes.  One other advantage of PLS 

compared to the 3PRF is that PLS (SIMPLS specifically) allows for more than one factor to be 

created (although this is not done in this paper). In addition to the NIPALS algorithm that is 

frequently used, de Jong (1993) creates a SIMPLS algorithm. De Jong notes that this algorithm 

avoids the construction of deflated data matrices while also calculating the factors directly from 

the variables.  This allows for faster computation compared to NIPALS.  Nonetheless, the 

SIMPLS algorithm is shown to produce basically identical results compared to NIPALS when 

there is only one dependent variable (as is the case in this paper).  For these reasons, this paper 

follows the SIMPLS algorithm. For a summary of PLS, see Hoskuldsson (1988). 
20 For a full explanation and the detailed algorithm, see de Jong’s (1993) appendix. 
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to produce X loadings (X * X-score) and Y loadings (centered Y *X-score).  The 

Y matrix times its loading gives the Y-score.  The loadings are orthogonalized to 

all previous loadings and stored.  Current loadings are then removed from the 

XYYX TT matrix and the process is repeated for any additional factors.  The PLS 

regression coefficients can also be conveniently found by multiplying the X 

weights by the Y loadings.  PLS maximizes YXXY TT or, equivalently, 

,XYYX TT which maximizes the covariance between Y and X (Y being the 

forecast variable(s) and X being the predictor variables in this case).   

 An additional advantage of PLS is that it provides a stable forecast over 

time, with diffuse weights.21  OLS can give extreme weights due to over-fitting.  

Thus, when dealing with a large set of predictors, PLS should produce superior 

forecasts compared to OLS.   PLS further allows for better examination of 

portfolio weights compared to OLS.  The portfolio weights from PLS should be 

less volatile over the forecast period compared to OLS, as will be confirmed in 

Section 3.5.  Stable weights and weights that are not as extreme as OLS would 

allow for an investor to better implement the information from the PLS forecasts.  

Knowing which portfolios matter for the next month’s excess market return can 

allow the investor to hedge properly.  It also would allow for a simple check of a 

few portfolios to generate a quick guess as to which direction the market should 

be headed in the next month. 

                                                           
21 These are the properties of shrinkage estimators.  PLS can be represented as a type of shrinkage 

estimator, as shown by Frank and Friedman (1993) 
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3.4. Data and methodology 

 Log excess monthly returns are used for all returns.  This paper looks at 

the forecast power of the returns of Fama-French portfolios double-sorted on size 

(market capitalization) and book-to-market ratios.22  The 6, 25, and 100 size-value 

portfolios will be examined as predictors.  The CRSP value-weighted market 

average is used for the market portfolio, where excess market returns are the 

target measure (in excess of three-month T-bill rates).  The sample period starts in 

January 1930 and ends December 2010 (sample period ends in 2010 in order to 

allow for direct comparison to the results of Kelly and Pruitt, 2013).  Recursive 

forecasting starts in January 1980, to allow for at least a 50-year estimation 

window.  All data are obtained from Ken French’s website. 

 The de Jong SIMPLS algorithm (described in the previous section) is used 

to perform PLS for forecast purposes.  Only the first PLS factor is used to 

forecast.  The PLS regression is as follows: 

(3.1) ttttt BY   1X ,  

where B is a vector of PLS regression coefficients, X is a matrix of portfolio 

returns (which will be either T by 6, T by 25, or T by 100 depending on which set 

of portfolios used), Y is the vector of excess market returns, α is a constant, and ε 

is the error term. B*X gives the single X-factor (or X-score). 

                                                           
22 These will also be referred to as size-value portfolios for brevity in what follows. 
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Note that Equation (3.1) has time subscripts since this is run recursively 

up to month t, in order to forecast month t+1.  Then this in-sample estimation is 

performed up to month t+1 (with an anchored starting point of January 1930 and 

an expanding window) to then obtain a prediction for month t+2.  Equation (3.1) 

gives the regression coefficients, which can alternatively be found directly from 

the SIMPLS algorithm: 

(3.2) 
T

ttt QB R ,  

where R is the matrix of X weights, and Q is the vector of Y loadings.  Then the 

forecast for 1tY  is created as follows in order to implement the X information up 

to time t: 

(3.3) ttt BXY ˆˆ '

1  ,  

where X is a vector containing portfolio returns of only month t, and B̂ is the 

estimated vector of coefficients obtained either from Equation (3.1) or (3.2). 

Repeating this recursively produces a series of predicted market returns, 

Ŷ (or r̂ ), and a series of realized values of Y (or r).  The OOS- 2R  statistic based 

on the historical mean can be produced from here, as in Campbell and Thompson 

(2008).  The OOS-  is as follows: 

(3.4) 
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where T is the last month of the forecast sample, r  is the market return, r̂ is the 

forecast of the market, and r  is the current historical average (at time t).  Note 

that the OOS-
2R  statistic has a range of  1,  and provides a measure of how 

much better the forecast is compared to the historical mean. 

3.5. Forecast results and portfolio weights analysis 

3.5.1 Forecast results 

 First, the forecast results are examined to test whether the model and 

composite portfolio return factor has predictive power for the equity premium.  

Once it has been shown that there is indeed significant forecasting power then 

additional analysis can be performed.  Table 3.1 shows the in-sample and out-of-

sample R-squared values for each of the test assets when forecasting the equity 

premium.  The p-values for the OOS- 2R are constructed based on the mean 

squared performance error (MSPE) F-statistic of Clark and West (2007), as in Li 

et al. (2013).  As can be seen in Table 3.1, for all tests assets examined, the OOS-

2R is positive at a 1% significance level.  The methodology is robust for all test 

assets used.  Little to no explanatory power is lost when moving out of sample, as 

can be seen by comparing the in-sample and out-of-sample 2R statistics.  In a few 

cases, most likely due to chance, the OOS- 2R is actually higher than the IS- 2R

statistic.  Table 3.1 shows that the 100 portfolios provide the highest in-sample 

and out-of-sample 2R , although there is not a wide range between the three 
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different groups of test assets.  The same pattern holds in Kelly and Pruitt (2013), 

which is expected when using PLS: better forecast performance when using a 

larger set of predictors.   

[Table 3.1 goes here] 

 The OOS- 2R values are statistically significant, but Cochrane (2005) 

shows a way to measure economic significance for a mean-variance investor.  The 

Cochrane measure for an active investor’s Sharpe ratio,
2

22

0*

1 R

Rs
s




 , can be 

used along with the historical monthly Sharpe ratio of .108 from Campbell and 

Thompson (2008) to show the potential Sharpe ratio improvement for an investor 

using the forecast information presented here.  From the results in Table 3.1 this 

potential Sharpe ratio improvement ranges from 15.1% to 15.6% for the 6, 25, 

and 100 portfolio returns, comparable but slightly higher than those obtained by 

Kelly and Pruitt (2013). 

 Table 3.1 also shows the potential utility gain that a mean-variance 

investor could obtain by utilizing the information of the appropriate forecast 

model.  This could be seen as the certainty equivalent (financial gain) or the fee 

an investor would be willing to pay a fund manager.  This value is obtained by 

following the methodology of Li et al. (2013).  Based on forecasts of return and 

variance, a mean-variance investor will optimally choose the weight placed on 

stocks (the market) for time t+1 as follows: 
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Here, i represents the forecast model used (could also be the forecast based on the 

historical average for 1,
ˆ

tir ), and   represents the relative risk aversion level for 

the investor (assumed to be three as in Li et al.).   For all forecast models, 

including the historical average, the forecasted variance is calculated from a ten-

year rolling window. 

 These weights are applied out of sample, one-month ahead, and the mean 

return and variance can be found for the forecast sample. Then, utility for the 

particular model (indicated by subscript i) is 

(3.6) 2

2

1
iiiU   . 

The utility level for the forecast using the 6, 25, or 100 portfolio returns are then 

compared to the utility level of the forecast utilizing only the historical mean 

return.  The difference of the PLS forecast utility level over the historical mean 

forecast utility level is reported as the utility gain in Table 3.1.  Note that this is 

annualized and reported in percentage form.  The forecast using size-value 

portfolio returns and PLS provides a utility gain over the historical mean forecast 

of around 3.1% to 3.4%.  This can be thought of as the annual portfolio 

management fee that a mean-variance investor would pay for this forecast. 
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 Two alternative methodologies are also used to forecast: OLS and a 1/N 

approach.  The 1/N approach puts a weight of 1/N on each portfolio to give the 

next month’s predicted excess market return.  The same test assets are used, and 

the results are shown in Table 3.2.  Both approaches give a large negative OOS-

2R (as expected from Campbell and Thompson, 2007).  The results show that 

there is predictive value provided by the PLS approach.  Panel A shows that OLS 

does work well on an in-sample basis, but has no out-of-sample power compared 

to the historical average, while also providing a negative utility gain/certainty 

equivalent.  Panel B shows that the 1/N approach forecasts poorly out of sample 

and gives a lower in-sample fit compared to PLS.  However, the utility gain is 

actually higher compared to the PLS forecasts.  This shows a potential downside 

to the Li et al. (2013) approach: it is possible to choose the weights an investor 

will put on stocks and bonds well without actually forecasting the market well, as 

is explained below.  The 1/N portfolio is less accurate than the historical average 

as a forecast (according to the OOS- 2R ), but the 1/N forecast puts a more optimal 

weight on stocks compared to the historical mean (under the constraints applied to 

the weights).  

[Table 3.2 goes here] 

 However, Table 3.3 shows that the 1/N forecast actually gets the direction 

of the equity premium right less often than the PLS forecast, for all three groups 

of test assets.  Table 3.3 also shows that removing the restrictions on the weights 
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applied to the market (which in Tables 3.1 and 3.2 force the weight to be between 

0 and 1.5, inclusive) produces extremely large utility losses for the 1/N forecast.  

This applies for each constraint applied individually as well (no short selling and 

a 50% leverage limit).  Conversely, the utility gain for the PLS forecast usually 

only slightly decreases or in some instances actually increases when removing 

one or both constraints.  Finally, Table 3.3 also shows the percentage of time that 

one of the constraints is binding (which applies to the results in Tables 3.1 and 

3.2).  The 1/N forecast must have the constraint imposed on the weights around 

91% of the time, compared to between 22% and 25% for the PLS forecast.  

Therefore, it appears that the greater utility gains for the 1/N forecast found in 

Table 3.2 are only due to imposing constraints on the weights.  The poor OOS- 2R

and utility gains without constraints shows that there is little predictive value in 

the 1/N portfolio.  However, it does get the direction right more than 50% of the 

time (but less often than the PLS forecast), and this combined with the constraints 

previously imposed on the weights can create a large positive utility gain.  These 

results suggest that the times where the forecast suggests a large weight in the 

wrong direction are reduced by the constraints, while the times where it gets the 

direction right still have a relatively higher weight compared to the PLS forecast 

(but still less extreme due to the constraints). 

[Table 3.3 goes here] 
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3.5.2 Raw portfolio weight analysis 

 For reasons discussed earlier, PLS gives portfolio weights that should 

provide superior information to OLS weights.  The other benefit is that the 

forecast performance is better.  With more explanatory power, the portfolio 

weights will be more useful.  PLS weights are mostly uniform (as is the case with 

shrinkage estimators) and generally positive (no short selling required).  Table 3.4 

also shows that PLS weights are much less volatile over the forecast sample 

compared to OLS weights.  Since a new estimation and forecast is conducted for 

each month, the set of betas/weights can be stored for each month to produce a 

panel of weights.  The table shows the standard deviation of the weights for each 

of the test assets in the time series dimension, for both PLS and OLS.  The 

standard deviation reported is an average of the 6, 25, or 100 standard deviations 

for each of the individual weights.  The time series standard deviation for the OLS 

weights range from 1.4% to 4.4%, while the PLS standard deviation is always 

close to zero, the highest being 0.1%.   

[Table 3.4 goes here] 

With the PLS weights being much more stable, this would help an investor 

intending to utilize the information.  If the investor wanted to re-estimate the 

weights each month for either rebalancing or creating a new forecast, then there 

would be little cost to doing so.  If an average bid-ask spread of 10 basis points is 

assumed (which is the low end that Pesaran and Timmermann, 1994 use), then the 
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average transaction cost of using the OLS and PLS weights can be examined.  For 

all three groups of test assets, implementing the PLS weights would give an 

average transaction cost of less than 1 basis point annually.  For the OLS case, 

implementing the weights would give an average transaction cost of 18 basis 

points annually for the 6 portfolios, 30 basis points for the 25 portfolios, and 2.9% 

for the 100 portfolios.  While the transaction costs for the first two groups of test 

assets are reasonable, investing in the 100 portfolios using OLS weights would 

mean a high transaction cost.  However, the PLS weights consistently give a very 

low transaction cost that is near zero.  Also, since the weights change little over 

time (the results in Table 3.4 are over the forecast sample of 30 years), the 

investor or practitioner could simply estimate the weights once and continue to 

use them (perhaps re-estimating every 1-2 years). 

Since the portfolio weights from PLS should be more reliable and/or 

stable than those from OLS, it allows for examination of which portfolios explain 

future market returns well.  Table 3.5 shows the ratio of the PLS weight to an 

equal-weighted portfolio for small size, large size, high book-to-market, and low 

book-to-market portfolios for the most extreme sorts and for sorts above and 

below the median sort.  Providing the weight relative to an equal-weighted 

strategy allows for comparison across multiple sorts and portfolios.  For example, 

the six portfolios have two size quantiles but three book-to-market quantiles.  This 

analysis allows for a check of whether small- or large-size portfolios (and growth 
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or value portfolios) matter more for explaining future excess market returns.23  

The second column in each panel shows where the portfolios rank on average.  

All portfolios in the group of test assets are sorted based on weight, the portfolio 

with the highest weight ranked first.  Then the average rank for each characteristic 

is found, so that higher average weight means a smaller rank number.  The table 

shows the results for the 6, 25, and 100 size-value sorted portfolios. 

Examination of the results in Table 3.5 shows that small-size portfolios 

carry a greater weight than large-size portfolios, and value (high book-to-market) 

portfolios carry a greater weight than growth (low book-to-market) portfolios.  

Although the ratios may not look significantly different, it is important to 

remember that weights are closely clustered in PLS; the difference between the 

highest-weighted portfolio and the lowest-weighted portfolio is roughly 5%, 

2.5%, and 2% for the 6, 25, and 100 portfolios respectively.  Thus, it can be seen 

that the smallest size portfolio has a markedly higher weight than the largest size 

portfolio in explaining future excess market returns for each group of test assets 

(in addition to having a higher weight than an equal-weighted portfolio).  The 

same pattern holds for the intermediate size portfolios, as portfolios with size 

below the median have a higher weight than portfolios with size above the median 

(and also a ratio above 1 compared to equal weights).  The closer link between 

small firm returns and future market returns may offer an explanation for why 

                                                           
23 The weights in this case were calculated based on full-sample estimation (i.e., the last forecast 

estimation run), but since weights are stable over time, the results obtained by averaging the 

weights from each monthly forecast are not materially different. 
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small-firm stocks have higher returns. They are riskier because they signal a 

change in investment opportunities: low returns on small stocks are followed by 

low returns in the wider market.  This also means that when forming the 

composite PLS factor portfolio that will be used shortly, more weight is put on 

small stocks. 

For the set of six portfolios, the highest book-to-market portfolios (value) 

have a higher weight compared to the lowest book-to-market portfolios (growth).  

The value portfolios here also have a weight much higher than an equal-weighted 

portfolio.  The gap closes for the set of 25 portfolios, though, and reverses for the 

set of 100 portfolios for the lowest and highest book-to-market sorted portfolios, 

while both have weights below an equal-weighted portfolio.  However, when 

looking at book-to-market portfolios above and below the median sort, it is clear 

that a higher book-to-market ratio results in a higher weight for all groups of test 

assets.  The portfolios with a book-to-market ratio above the median also have a 

higher weight compared to an equal-weighted portfolio.  Thus, again the higher 

returns of value stocks may be explained in part by their higher risk in that low 

returns on value stocks are followed by low market returns.  Also, the PLS factor 

will place a higher weight on the value portfolios than other portfolios. 

[Table 3.5 goes here] 
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3.5.3 Principal component weight analysis 

 An additional test is performed to investigate whether the results presented 

so far are spurious.  This will help avoid the brunt of the criticism of Novy-Marx 

(2014).  Novy-Marx finds that returns can be spuriously predicted by random 

variables such as weather, presidential elections, etc.  The forecast may be doing 

well here by simply putting random weights on the predictors rather than 

providing any actual predictive information.  To test against this alternative 

hypothesis, the following is performed.  Rather than running PLS on the raw 

portfolio returns, PCA is performed first.  From there, the methodology for 

forecasting is the same as above.  For example, with the 25 size-value portfolios, 

PCA is performed, repackaging the original 25 portfolios, so that now there are 25 

factors instead of the 25 raw portfolios.  Note that these factors are simply linear 

combinations of the original returns, representing jointly the same information.  

Therefore, using these factors to forecast with PLS will not change the 

explanatory power (R-squared values do not change).  However, now the weights 

should not be closely clustered if there is indeed some predictive information 

contained in the test assets.  The first few factors from PCA should contain most 

of the information from the portfolio returns.  Other factors should have relatively 

little weight. 

 From Figure 3.1, it can be seen that this is indeed the case.  The figure 

shows the absolute value of the PLS weights, where the test assets are the PCA 
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factors.  Figure 3.1 shows the case for the 25 PCA factors obtained from the 25 

size-value portfolios. The same pattern holds for all other test assets, therefore the 

figures are omitted.  If the results were indeed spurious, then the weights on the 

factors would be random.  However, this is not the case here.  The first factor 

seems to capture all the relevant information, as it is the only factor with 

substantial weight.  For the 25 factors in Figure 3.1, the first factor has a relative 

weight of around 57% whereas of all other factors, no other factor has a relative 

weight above 7%.24 

[Figure 3.1 goes here] 

3.5.4 PLS factor out-of-sample performance 

 Thus far, evidence has been presented which shows that PLS weights are 

stable with no negative weights in addition to having significant forecast power.  

One simple way to see how the weights would work in a practical way is to 

examine the PLS factor portfolio out of sample.  The PLS weights from Equations 

(3.1) or (3.2) can be applied out of sample to essentially invest in the PLS factor 

portfolio on a real-time basis.  At each month, PLS estimation is performed and 

PLS weights are stored.  These weights can be used by an investor to invest in the 

                                                           
24 Other test assets place a relative weight on the first factor of up to 86%.  The number of test 

assets/factors is crucial to this weight; the more factors there are, the more the total weight is 

spread out.  A similar test is performed where the weights on each raw portfolio are randomly 

selected, with the weights constrained to be positive and summing to one. The OOS-
2R values are 

always significantly negative for all of the test assets when the forecast weights are randomly 

chosen with 5,000 simulations performed. Note that this can be seen as an alternative placebo test 

compared to the PCA analysis in this section. These results are available upon request.  PLS also 

allows for examination of which portfolios capture future market risk and therefore do well in 

forecasting (see previous subsection). 
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6, 25, or 100 size-value sorted portfolios.  Table 3.6 shows the average annualized 

excess return and standard deviation of this out-of-sample factor portfolio, along 

with the annualized Sharpe ratio.  The six size-value portfolios provide the 

highest realized return and Sharpe ratio.  The 100 portfolios provide the second-

highest Sharpe ratio of about 0.42 compared to 0.43 for the six portfolios and 0.41 

for the 25.  For comparison, the market portfolio (or a buy-and-hold the market 

strategy) provides an average annualized excess return of 5.5% and a Sharpe ratio 

of 0.34.  Note that transaction costs are ignored here, but as previously mentioned 

the PLS weights would give very low transaction costs so the adjustment is safely 

ignored here.  In addition, all weights are positive so there would be no short 

selling required (in contrast to using OLS weights).25 

 In addition to out-performing the market, these PLS factor portfolios also 

beat a naïve 1/N diversification strategy (or equal-weighted portfolio) out of 

sample.  There is much literature that finds that an equal-weighted strategy 

provides a higher OOS-Sharpe ratio than most mean-variance strategies or asset-

pricing models.  See DeMiguel et al. (2009), Tu and Zhou (2011), and others for 

more.  It can be seen from comparing the two panels in Table 3.6 that this PLS 

factor would provide an investor with a higher out-of-sample Sharpe ratio than a 

naïve equal-weighted approach.  Based on the results of DeMiguel et al., the PLS 

factor will likely also outperform a variety of mean-variance approaches out of 

                                                           
25 The OLS weights produce factors with much lower Sharpe ratios (unreported).  Using OLS 

weights would also require much more rebalancing due to their higher variance (see Table 3.4). 
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sample.  However, simply beating the equal-weighted portfolio out of sample is 

an accomplishment. While the PLS factor of the 25 size-value portfolios only 

improves on the 1/N Sharpe ratio by 1.7%, the factor of the 100 portfolios 

improves on the 1/N Sharpe ratio by 9.1% and the factor of six portfolios offers a 

5.9% improvement.  Although the PLS factor may not substantially outperform 

the 1/N portfolio in some cases, it should be pointed out that the 1/N performs 

well because it places relatively more weight on the small-size and value 

portfolios compared to the market.  This was derived endogenously by the PLS 

analysis, where the performance is boosted somewhat by putting even more 

weight on the small-size and value portfolios compared to the equal-weighted 

approach. 

[Table 3.6 goes here] 

 Note that the Sharpe ratios in Table 3.6 shows how investing in the PLS 

factor portfolio would perform in real time.  It should be expected that returns for 

this factor are higher than the market, as more weight is put on the small-size and 

value portfolios.  The PLS factor and the market factor capture different risks: the 

market captures current systematic risk while the PLS factor captures changes in 

future investment opportunities.  The weights on the factor are chosen according 

to which portfolios explain more of the future equity premium.  It is not clear 

from the ICAPM whether the market or this PLS factor should have a higher 

Sharpe ratio.  However, the evidence suggests that the PLS factor (and by 
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extension size and value factors) has a higher price of risk: more return is required 

per unit of risk for the PLS factor compared to the market factor.  Further, this 

adds evidence to the hypothesis that the size and value premiums are due to these 

stocks signaling a change in future investment opportunities.  The ICAPM state 

variable risk explanation is also in line with the findings of Zhang (2005), Petkova 

and Zhang (2005), and Fama and French (2006): the CAPM cannot explain the 

size and value premiums, and an APT or ICAPM may be necessary to properly 

explain the differences in mean return across assets. 

3.5.5 Hedging with PLS weights 

 As noted previously, the PLS weights are obtained from forecasting the 

equity premium.  Therefore, rather than using the weights to form the PLS factor 

and apply it out of sample, an investor could potentially use the PLS weights to 

hedge against market risk.  Since the PLS weights are stable and forecast the 

market well, they should work well as a hedge out of sample.  Since the PLS 

factor reflects future market risk, it should be able to hedge against this risk on a 

real-time basis.  To test this, the following hedging strategy is implemented.  Each 

month the market portfolio and the risk-free asset are combined based on weights 

from a risk minimization technique that also includes a zero-investment (by 

borrowing at the risk-free rate) PLS factor portfolio as a hedge.  This is done on 

an out-of-sample basis to see the real-time performance.  The goal of the 

optimization approach is to reduce variance while keeping return at a constant 
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level, which here is picked to be the market return.  Note that this optimization is 

essentially maximizing the Sharpe ratio as well.  The optimization approach is as 

follows: 

(3.7) 
x

Min  
2

,11,1 ))]()(())(1()([ ftfttftftttt rFrFxrrRRE     

s.t. RrFxrR ftftt   )()1( ,  

where R is the market return, λ is the weight given to the market portfolio, fr is 

the return on three-month T-Bills, x is the weight given to the zero-investment 

hedge, F is the PLS factor return, and  is a constant which is chosen here to be 

the average market return. 

The optimization is performed each month so that the weights can be 

found and applied one-month ahead on an out-of-sample basis. The constraint can 

be written as:  
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Then the optimization can be simplified to (dropping the risk-free asset from the 

variance and plugging in the constraint): 
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Solving the optimization gives: 
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, 2   .  Note that the x varies positively with the 

covariance between F and R (PLS factor and market).  This means that, as the two 

become more correlated, the PLS hedging portfolio will be shorted with a higher 

weight.  Conversely, as the market variance increases, less weight will be put on 

the hedging portfolio.  This is due to the fact that the market cannot be forecasted 

as well when it is more volatile, and the PLS hedging portfolio will not 

approximate the market as well.  Finally, when the PLS factor portfolio variance 

increases, less weight is put on the hedging portfolio itself.  If the variance 

increases and the covariance with the market does not increase by the same 

proportion, then the PLS factor will not be as reliable as a hedge.  Therefore, less 

weight will be put on the hedging portfolio as it becomes riskier.   

Now that x has been obtained, it can be found each month in a recursive 

manner to be applied to the next month, and λ=1+cx can also be found each 

month to be applied to the following month in real time.  Therefore, for each 

upcoming month the investor can invest λ in the market portfolio, 1-λ in T-Bills, 

and x in the zero-investment PLS factor portfolio (F- fr ).  From Equation (3.10), 

it can be seen that x will be negative if the covariance between the factor portfolio 

and the market is less than the constant c times the variance of the market.  If x is 

negative, then Equation (3.7) shows that the factor portfolio will be held with 
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positive weight (after borrowing x at the risk-free rate to ensure zero investment).  

If the covariance between the factor and market is greater than c times the 

variance of the market, then x will be positive and this portfolio will be shorted, 

or held in negative weight. 

The values of x and λ can be found empirically as well.  Using the full 

estimation window (or last forecasting regression) gives values of x = -0.62 and λ 

= 0.19 for the 100 portfolios, x = -0.71 and λ = 0.05 for the 25 portfolios, and x = 

-1.05 and λ = -0.71 for the 6 portfolios.  This means that the PLS factor is held 

with a fairly large positive weight, while the market factor has a relatively small 

weight with the rest put on the risk-free asset (for the six portfolios the market is 

actually shorted).  The average of each of these x and λ values from all months (as 

the minimization problem is repeated each month of the forecasting sample) are 

qualitatively similar to those from the full estimation window.  Examining each 

month’s x and λ values shows that x is typically negative but sometimes positive 

(although the average is similar to the values reported previously), while lambda 

can vary substantially over the sample. 

 Table 3.7 shows the results of this out-of-sample optimization 

technique/hedging strategy for each of the 6, 25, and 100 size-value portfolios.  

The average annualized excess return, standard deviation, and annualized Sharpe 

ratios are reported.  By looking at the Sharpe ratios, the six size-value portfolios 

work best, with a Sharpe ratio of about 0.4.  The 25 portfolios produce a Sharpe 
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ratio of about 0.35, and the 100 portfolios produce a Sharpe ratio of about 0.36.  

For comparison, the market portfolio is also included in the table.  The market 

portfolio has a Sharpe ratio over this sample of about 0.34.  Note that while the 

optimization sets mean return equal to the average market return, this is out-of-

sample analysis so the realizations will not necessarily produce the same average 

return as the market.  However, in all cases the risk (standard deviation) is 

reduced compared to the market.  The hedging strategy for the six portfolios 

comes close to eliminating half of the market risk, while improving the Sharpe 

ratio by almost 19% compared to the market.  While the 25 and 100 portfolios do 

not offer quite the same risk reduction, the hedging strategy would still improve 

Sharpe ratios compared to the market by about 4.5% and 6.3%, respectively.  

Thus, the PLS factor does reduce risk and hedge against future market risk, 

meaning it does reflect future investment opportunities, as hypothesized. 

[Table 3.7 goes here] 

3.5.6 Robustness tests 

 To see how robust the forecasting results are and to gain other insights, 

various Fama-French industry-sorted portfolio returns are used as well.  The 5, 

10, 12, 17, 30, and 49 industry portfolios are used to forecast the excess market 

return using PLS.  The results of this are shown in Table 3.8.  It can be seen that 

the OOS- 2R  values are again significant at 1% compared to the historical market 

return average.  In some cases, the OOS- 2R  values are even higher than those 
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obtained by using the size-value sorted portfolios.  The in-sample 2R  values are 

qualitatively similar to both the OOS- 2R  values here and to the IS- 2R  values 

from the size-value portfolios.  The utility gain/certainty equivalents that these 

forecasts would offer to an investor are slightly lower than those offered by the 

size-value portfolios, yet still positive.  It is clear from Table 3.8 that the forecast 

power of portfolio returns using PLS is robust to various portfolio sorts. 

[Table 3.8 goes here] 

The weights on the industry portfolios can be examined to see which 

industries matter in explaining the next month’s excess market return.  One issue 

is that the number of industries specified is crucial to the results.  However, a few 

general results can be gleaned from examining the weights for all the different 

industry portfolios.26  The energy industry (oil, mines, coal in some 

specifications) consistently has a low weight.  The energy industry typically has a 

high idiosyncratic variance, which may explain the low weight on future market 

returns.  Other industries that have a low weight across all specifications include 

telecommunications, food, soda, and clothing.  These industries typically have 

stable returns even if investment opportunities change, so there is no risk 

premium or predictive value in these industries.  The finance/money industry 

consistently has a high weight, perhaps suggesting a drawback to dropping these 

firms when collecting data.  Note also that the financial sector has a lot to gain 

                                                           
26 The industry weights are unreported, but available upon request. 
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from improving market conditions and thus it makes sense that the stock returns 

in this sector are useful leading indicators. In two of the seven specifications, the 

entertainment industry has the highest weights.  Durables, paper, high-tech 

industries, books, automobile, and insurance also have high weights. 

To generate a direct comparison to the results of Kelly and Pruitt (2013), 

raw market returns (non-excess) are also forecasted in the same manner as 

previously discussed for the equity premium.  Table 3.9 shows the results for both 

the three groups of size-value sorted test assets and the industry-sorted portfolios.  

The assets still show significant forecast power for all cases.  The values are also 

higher across the board compared to the results of Kelly and Pruitt (2013).  Kelly 

and Pruitt obtain an OOS- 2R of 0.65%, 0.77%, and 0.93% when using the book-

to-market ratios of the 6, 25, and 100 size-value portfolios, respectively.27  Kelly 

and Pruitt do not use an alternative instrument in the first pass, so the only 

differences between their methodology and PLS is normalization and constants in 

the first two passes.  By making these changes one at a time, it appears that 

dropping the constants is what results in improvement.  However, returns still 

work better than book-to-market ratios, so the improvement is not solely due to 

the difference in methodology.   

In comparing the results in this table to Tables 3.1 and 3.8, it can be seen 

that the OOS- 2R  values are a bit lower across the board when forecasting market 

                                                           
27 They do obtain much higher OOS-

2R values [than you? Explain] compared to their monthly 

results when forecasting with annual returns. These results are available upon request. 
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returns rather than the equity premium.  However, the PLS methodology is still 

more robust than 3PRF.  3PRF does not perform well when using returns, with 

negative OOS- 2R  values for all three groups of test assets used in Kelly and 

Pruitt (2013).  Also, using 3PRF and book-to-market ratios as in Kelly and Pruitt 

does not work well when forecasting the equity premium, with positive but 

insignificant OOS- 2R  values.28 

[Table 3.9 goes here] 

3.6. Conclusion 

 The main contribution of this paper is to offer a potential explanation for 

the size and value premiums: they offer risk premiums as these stocks are leading 

indicators of future market returns and thus investment opportunities.  A forecast 

factor is introduced, which is designed to explain future equity premiums.  This 

factor places higher weights on the small-size and value portfolios, as these 

explain more of the future equity premium than large-size and growth portfolios.  

Forecasting is performed by partial least squares (PLS), which is a shrinkage 

estimator that also allows a single composite factor to be formed.  This factor 

captures the variance of the predictor variables as well as the covariance with the 

market/equity premium.   

The Sharpe ratio of the PLS factor portfolio is significantly different 

(higher) than the market factor.  This is evidence that there are two different risk 

                                                           
28 These results are unreported, but available upon request. 
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factors captured by each of these factors: current systematic risk and risk due to 

changes in future investment opportunities.  Therefore, the PLS factor can be seen 

as capturing state variable risk as in Merton’s (1973) ICAPM.  Since the factor is 

constituted by more small-size and value portfolios than large-size and growth 

portfolios, then by extension small-size and value portfolios capture the risk due 

to changes in future investment opportunities.  This is also evidence that the size 

and value factors from the Fama-French three-factor model are indeed true risk 

factors if the three-factor model is viewed as an ICAPM model.  As has been 

suggested in previous literature, an additional risk factor over the market factor is 

necessary to explain these premiums.  However, this paper provides a direct and 

observable mechanism by which these risk factors reflect changes in future 

investment opportunities. 

This analysis is possible due to the PLS factor having significant forecast 

power for the equity premium.  The out-of-sample- 2R  values compared to the 

historical mean are significantly positive.  Also, it is shown that a potential 

investor would pay in excess of 3% of invested wealth annually in order to obtain 

the forecast information.  Therefore, the results are both statistically and 

economically significant.  These results are robust to using industry-sorted 

portfolios rather than size-value-sorted portfolios.  Several industries are found to 

be consistently important in explaining future market returns: finance, durables, 

paper, high-tech industries, books, automobile, and insurance.  Also, the 

methodology used in the paper offer weights that are more stable and less extreme 
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than OLS weights.  It is shown that this methodology works much better in 

forecasting compared to OLS when many predictors are used.  These benefits 

allow the weights to be properly examined and a factor portfolio formed which 

can be examined as well. 

 To examine the PLS factor portfolio properties more closely, two 

applications are performed.  The first application is to simply invest in the PLS 

factor out of sample.  This is done by applying the PLS weights obtained by 

forecasting the market portfolio one-month ahead.  While there is much research 

showing that a naïve equal-weighted diversification approach works better than 

most of the existing mean-variance approaches, this PLS factor outperforms the 

equal-weighted portfolio in terms of out-of-sample Sharpe ratio for all size-value 

sorted portfolios used in this paper.  The PLS factor also outperforms the market 

portfolio in this regard.  It is argued that both the PLS factor and the equal-

weighted portfolio perform well due to the fact that they load more heavily on 

small-size and value compared to the market portfolio.  The PLS factor performs 

somewhat better than the equal-weighted portfolio as it places a higher weight on 

small and value portfolios compared to the equal-weighted portfolio.  These 

results give a possible explanation for why the equal-weighted approach typically 

works well: it loads more heavily on the ICAPM state variable risk of size and 

value.   
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The second application of the PLS weights is to conduct a risk-

minimization/optimization approach in order to hedge against market risk.  This is 

done by using the PLS factor (formed by borrowing at the risk-free rate) as a 

zero-investment hedge, and choosing optimal weights on both the market and the 

risk-free asset.  Since the weights are obtained by forecasting and there is 

significant forecast power, these weights act as a natural hedge to the market.  For 

all three of the size-value sorts, overall risk is reduced and the Sharpe ratio is 

improved on an out-of-sample basis.  These two applications add to the evidence 

that the factor indeed captures a risk different from that of the market: a change in 

future investment opportunities. 

Another contribution of the paper is to address a concern raised by Novy-

Marx (2014): is the predictive power due to beneficial information or is it simply 

due to chance?  By using PCA factors as predictors, it is found that most of the 

PLS weight is placed on the first factor.  If the results were random, then random 

(most likely diffuse) weights would be placed on all factors.  Further, with only 

the first factor having significant weight, it is argued that the only risk that matters 

is a combination of market risk and the risk of changes in investment 

opportunities. 
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Table 3.1: Excess market return forecast results 

 

6 SV 25 SV 100 SV 

OOS R-squared 1.10% 1.17% 1.24% 

OOS p-value < 0.01 < 0.01 < 0.01 

IS R-squared 1.18% 1.12% 1.34% 

Utility gain 3.42% 3.09% 3.19% 

    This table shows the R-squared values from forecasting. Out-of-sample (OOS) R-squared is based 

on the historical mean of the market return. OOS p-value is the p-value obtained by regressing the 

Clark and West (2007) adjusted-MSPE statistic on a constant, as in Li et al. (2013). IS R-squared 

is the percent variance of Y (excess market returns) explained by the first X-component. Utility 

gain is the annualized average return that a mean-variance investor with a risk aversion level of 

three would gain (or be willing to pay; certainty equivalent) based on utilizing the forecasts 

compared to the historical mean.SV are Fama-French size-value sorted portfolio returns. Monthly 

data is used. Data is obtained from Ken French's website. Recursive forecasting is performed with 

the estimation sample starting at January 1930 (anchored starting point) to December 1979. 

Forecast sample starts at January 1980 and runs to December 2010. PLS regression estimates 

obtained from SIMPLS algorithm of de Jong (1993) are used to forecast. Excess log returns are 

used, the CRSP value-weighted market index is used for market returns, and 3-month US Treasury 

bills are used for the risk-free rate.  
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Table 3.2: Additional Equity Premium Forecast Results 

 

Panel A: OLS 

 

6 SV 25 SV 100 SV 

OOS R-squared -3.17% -17.68% -28.82% 

IS R-squared 1.67% 6.80% 11.75% 

Utility gain -0.22% -0.49% -2.53% 

 

Panel B: 1/N 

 

6 SV 25 SV 100 SV 

OOS R-squared -105.52% -92.79% -94.73% 

IS R-squared 0.68% 0.55% 0.55% 

Utility gain 4.88% 4.39% 4.72% 

    This table shows the R-squared values from forecasting. Panel A uses OLS to forecast and Panel B 

uses the equal-weighted (1/N) portfolio to forecast. Out-of-sample (OOS) R-squared is based on 

the historical mean of the market return.  Note from Equation (3.4) that this statistic can range to –

infinity.  IS R-squared is the adjusted R-squared value of the in-sample regression (equity 

premium on lagged portfolios). Utility gain is the annualized average return that a mean-variance 

investor with a risk aversion level of three would gain (or be willing to pay; certainty equivalent) 

based on utilizing the forecasts compared to the historical mean.SV are Fama-French size-value 

sorted portfolio returns. Monthly data is used. Data is obtained from Ken French's website. 

Recursive forecasting is performed with the estimation sample starting at January 1930 (anchored 

starting point) to December 1979. Forecast sample starts at January 1980 and runs to December 

2010. Excess log returns are used, the CRSP value-weighted market index is used for market 

returns, and 3-month US Treasury bills are used for the risk-free rate.  
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Table 3.3: Utility Gain Without Constraints 

 

Panel A: PLS 

 

6 SV 25 SV 100 SV 

No short selling 2.44% 3.10% 3.31% 

No 50% leverage limit 3.22% 3.06% 2.95% 

Neither constraint 2.24% 3.07% 3.20% 

Frequency of constraints binding 0.22 0.22 0.25 

Directional accuracy of prediction 0.570 0.565 0.557 

 

Panel B: 1/N 

 

6 SV 25 SV 100 SV 

No short selling -126.88% -56.50% -57.32% 

No 50% leverage limit -359.81% -323.56% -336.10% 

Neither constraint -490.16% -383.08% -396.71% 

Frequency of constraints binding 0.92 0.91 0.91 

Directional accuracy of prediction 0.535 0.548 0.546 

    This table shows the utility gain of implementing the forecast over using the historical mean as a 

forecast. See Equations (3.5) and (3.6) for details. Panel A shows the results when the PLS factor 

portfolio is used as the predictor, while Panel B shows the results when using the equal-weighted 

average of the test assets as the predictor. SV refers to the various size-value sorted Fama-French 

portfolios.  The first two rows in each panel show the utility gain when relaxing the constraints of 

no short selling the market and a 50% leverage limit, respectively, individually.  The third row 

shows the utility gain when relaxing both constraints. Utility gains are annualized.  The fourth row 

shows the fraction of months when one of the constraints is binding.  The last row shows the 

fraction of months when the prediction of excess market return is in the right direction of the 

actual excess market return. 
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Table 3.4: Comparison of OLS and PLS coefficient volatility 

 

Time series variance of coefficients 

 
6 SV 25 SV 100 SV 

OLS std dev 4.42% 2.53% 1.71% 

PLS std dev 0.06% 0.02% 0.01% 

This table compares, for each of the test assets, the average time series standard deviation of each 

of the OLS coefficients and PLS coefficients over the forecast sample period. Each time the 

recursive forecast regression is run, the coefficients for each portfolio are stored. Then for every 

portfolio's coefficients, the standard deviation is calculated. Reported in the table is the average 

standard deviation of the respective group of test assets. SV stands for size-value sorted portfolios 

(Fama-French portfolios). Recursive forecasting is performed with the estimation sample starting 

at January 1930 (anchored starting point) to December 1979. Forecast sample starts at January 

1980 and runs to December 2010. PLS regression estimates obtained from SIMPLS algorithm of 

de Jong (1993) are used to forecast. Excess log returns are used, the CRSP value-weighted market 

index is used for market returns, and 3-month US Treasury bills are used for the risk-free rate. 
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Table 3.5: Summary of size and value weights 

 

6 size-value sorted portfolios 

 

25 size-value sorted 

portfolios 

 

100 size-value sorted 

portfolios 

 

Weight/EW 

ratio 

average 

rank   

Weight/EW 

ratio 

average 

rank   

Weight/EW 

ratio 

average 

rank 

small size 1.02 3.3 

 

1.07 10.2 

 

1.06 47.1 

large size 0.98 3.7 

 

0.89 17.4 

 

0.71 65.6 

size below 

median    
1.07  

 
1.05 

 

size above 

median    
0.90  

 
0.95 

 

high BTM 1.12 1.5 

 

0.99 13.6 

 

0.85 64.7 

low BTM 0.91 5.0   0.98 13.4   0.74 64.7 

BTM above 

median    
1.05 

  
1.04 

 

BTM below 

median    
0.94 

  
0.96 

 

This table gives a summary of weights on various size and value portfolios, obtained from PLS regressions that forecast the market return. 

Weight/EW ratio is the ratio of the normalized (to sum to 1) weight of the portfolio(s) to its weight in an equal-weighted strategy.  For 

example, small size for the 6 portfolios gives the ratio of the total weight put on the three small size to 0.5 (done for 6, 25, and 100 Fama-

French size and book-to-market sorted portfolios, obtained from Ken French's website). Average rank shows where the average size or value 

sorted portfolio ranks in terms of weight compared to all the other portfolios. Recursive forecasting is performed with the estimation sample 

starting at January 1930 (anchored starting point) to December 1979. Forecast sample starts at January 1980 and runs to December 2010. PLS 

regression estimates obtained from SIMPLS algorithm of de Jong (1993) are used to forecast. Excess log returns are used, the CRSP value-

weighted market index is used for market returns, and 3-month US Treasury bills are used for the risk-free rate. 
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Table 3.6: Out-of-sample performance of factor portfolio and equal-weighted portfolio 

 
PLS factor portfolio 

 
Equal-weighted portfolio 

 

Mean excess 

return 

Standard 

deviation 

Sharpe 

ratio 
 

Mean excess 

return 

Standard 

deviation 

Sharpe 

ratio 

6 SV 8.04% 5.36% 0.432 
 

7.68% 5.41% 0.408 

25 SV 7.20% 5.14% 0.401 
 

6.96% 5.13% 0.394 

100 SV 7.44% 5.13% 0.419   6.96% 5.19% 0.384 

        This table shows the mean excess return and the standard deviation for two different portfolios for each of the test assets. The first is the PLS 

factor portfolio, which is a portfolio constructed based on the portfolio weights obtained from the PLS regression. This is done out of sample. 

The second is the out-of-sample performance of a 1/n or equal-weighted approach. SV are Fama-French size-value sorted portfolio returns. 

Monthly data is used. Recursive forecasting is performed with the estimation sample starting at January 1930 (anchored starting point) to 

December 1979. Forecast sample starts at January 1980 and runs to December 2010. PLS regression estimates obtained from SIMPLS 

algorithm of de Jong (1993) are used to forecast. Excess log returns are used, the CRSP value-weighted market index is used for market 

returns, and 3-month US Treasury bills are used for the risk-free rate.  Returns below are monthly, annualized excess returns. 
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Table 3.7: Out-of-sample risk hedging 

 

Mean excess return Standard deviation Sharpe ratio 

6 SV 3.84% 2.82% 0.399 

25 SV 4.80% 3.93% 0.351 

100 SV 5.16% 4.18% 0.357 

Market 5.52% 4.70% 0.336 

    This table shows the out-of-sample results of the risk minimization approach for each of the 6, 25, 

and 100 size-value (SV) sorted Fama-French portfolios, along with the market portfolio for 

comparison. See Equations (3.6)-(3.9) for the optimization approach. For each of the test assets, 

the corresponding PLS factor is used as a hedge. The market portfolio is combined with the risk-

free asset (T-Bills) and the zero-investment PLS factor portfolio as a hedge. The mean excess 

returns reported are annualized, and the Sharpe ratios are annualized as well. The estimation 

window is from January 1930 - December 1979, and the out-of-sample tests start in January 1980 

and extend to December 2010. Thus, the above statistics are calculated from January 1980 to 

December 2010. 
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Table 3.8: Forecast results for industry portfolios 

 
5 ind 10 ind 12 ind 17 ind 30 ind 49 ind 

OOS R-squared 1.35% 1.25% 1.32% 1.11% 1.09% 1.12% 

OOS p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

IS R-squared 1.27% 1.29% 1.32% 1.18% 1.27% 1.31% 

Utility gain 2.98% 2.58% 2.79% 2.25% 2.20% 2.46% 

       This table shows the R-squared values from forecasting. Out-of-sample (OOS) R-squared is based 

on the historical mean of the market return. OOS p-value is the p-value obtained by regressing the 

Clark and West (2007) adjusted-MSPE statistic on a constant, as in Li et al. (2013). IS R-squared 

is the percent variance of Y (excess market returns) explained by the first X-component. Utility 

gain is the annualized average return that a mean-variance investor with a risk aversion level of 

three would gain (or be willing to pay; certainty equivalent) based on utilizing the forecasts 

compared to the historical mean. Ind are Fama-French industry-sorted portfolio returns. Monthly 

data is used. Data is obtained from Ken French's website. Recursive forecasting is performed with 

the estimation sample starting at January 1930 (anchored starting point) to December 1979. 

Forecast sample starts at January 1980 and runs to December 2010. PLS regression estimates 

obtained from SIMPLS algorithm of de Jong (1993) are used to forecast. Excess log returns are 

used, the CRSP value-weighted market index is used for market returns, and 3-month US Treasury 

bills are used for the risk-free rate.  
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Table 3.9: Market return forecast results 

 

6 SV 25 SV 100 SV 5 ind 10 ind 12 ind 17 ind 30 ind 49 ind 

OOS R-squared 1.01% 1.10% 1.17% 1.32% 1.21% 1.27% 1.04% 1.04% 1.07% 

OOS p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

IS R-squared 1.12% 1.07% 1.30% 1.22% 1.23% 1.26% 1.12% 1.21% 1.26% 

Utility gain 3.62% 3.45% 3.72% 2.84% 2.76% 2.82% 2.43% 2.35% 2.55% 

This table shows the R-squared values from forecasting the market return. SV are the size-value sorted Fama-French 

portfolios.  Ind are the various Fama-French industry-sorted portfolios. Out-of-sample (OOS) R-squared is based on the 

historical mean of the market return. OOS p-value is the p-value obtained by regressing the Clark and West (2007) adjusted-

MSPE statistic on a constant, as in Li et al. (2013). IS R-squared is the percent variance of Y (market returns) explained by the 

first X-component. Utility gain is the SV are Fama-French size-value sorted portfolio returns. Ind are the various Fama-French 

industry portfolio returns. Monthly data is used. Data is obtained from Ken French's website. Recursive forecasting is 

performed with the estimation sample starting at January 1930 (anchored starting point) to December 1979. Forecast sample 

starts at January 1980 and runs to December 2010. PLS regression estimates obtained from SIMPLS algorithm of de Jong 

(1993) are used to forecast. Excess log returns are used, the CRSP value-weighted market index is used for market returns, and 

3-month US Treasury bills are used for the risk-free rate. Utility gain is the annualized average return that a mean-variance 

investor with a risk aversion level of three would gain (or be willing to pay; certainty equivalent) based on utilizing the 

forecasts compared to the historical mean. 
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This figure shows the PLS weights when PCA factors are used as the predictor variables when forecasting.  Here, 25 PCA factors (PC above) 

are formed from the 25 size-value Fama-French portfolios. The weights are obtained from the PLS forecast regression results where excess 

market returns are the dependent variable. Recursive forecasting is performed with the estimation sample starting at January 1930 (anchored 

starting point) to December 1979. Forecast sample starts at January 1980 and runs to December 2010. PLS regression estimates obtained from 

the SIMPLS algorithm of de Jong (1993) are used to forecast. Excess log returns are used, the CRSP value-weighted market index is used for 

market returns, and 3-month US Treasury bills are used for the risk-free rate. 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10PC11PC12PC13PC14PC15PC16PC17PC18PC19PC20PC21PC22PC23PC24PC25

Figure 3.1:

PLS weights on PC factors formed from 25 size-value portfolios
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Chapter Four: Arbitrage Pricing Restrictions and the Predictability of Stock 

Returns by Statistical Factor Analysis 

 

4.1. Introduction 

The Arbitrage Pricing Theory (APT) of Ross (1976) provides the crucial insight 

that any set of factors covering the systematic risk of a particular group of assets 

should also explain the mean returns of these assets.  Empirical implementation 

may be subdivided into three approaches. First, the macroeconomic sources 

approach as employed by Chen, Roll, and Ross (1986) in which a set of macro 

variables, thought on a priori theoretical grounds to contain all systematic risks, is 

used as the factors to explain asset returns. Second, the mimicking factors 

approach, as prominently employed by Fama and French (1993) and Fama and 

French (1996), for instance, in which a predetermined number of well-diversified 

portfolios of the assets to be evaluated are used as the risk factors.29 The idea is 

that, as long as the factor portfolios are well diversified, sufficiently diverse, and 

equal in number to the true number of underlying factors, they will be linear 

combinations of the underlying factors and hence capture all systematic risk.   

 The third approach, the factor analysis approach by which factors are 

obtained statistically as linear combinations of the assets to be evaluated, is the 

focus of our paper.30 We adapt the factor analytical approach here by including 

                                                           
29 See also Hugerman, Kandel, and Stambaugh (1987) and Grinblatt and Titman (1987) for more 

on the mimicking portfolio approach. 
30 While there have been limited empirical evaluations of the APT recently, Lehmann and Modest 

(1988) provide a good overview of the empirical issues and estimation techniques of the APT.  
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the theoretical APT restrictions on mean returns to improve estimation and 

forecast performance under the maintained hypothesis that the APT is 

(approximately) correct. Roll and Ross (1980) and others utilize factor analysis 

(FA) or principal components analysis (PCA) to identify the portfolios that best 

explain the variation in realized returns of all assets under consideration. The 

number of such portfolios that have significant explanatory power for return 

covariances may be determined statistically from Bai and Ng (2002). Having 

established the factors that best explain covariances, subsequently the implication 

of the APT that exposures to this set of factors fully explain the differences in 

mean returns across assets may be tested.  

 Whereas FA focuses on finding the factors that explain systematic 

covariances and PCA focuses on finding the factors that explain total return 

covariances, Chamberlain and Rothschild (1983) show that asymptotically either 

approach will correctly identify the systematic risk factors because as the number 

of assets goes to infinity the systematic risk dominates any non-pervasive 

idiosyncratic risk.  PCA allows the idiosyncratic risk matrix not to be diagonal so 

that returns may be correlated after correction for systematic risk as long as the 

idiosyncratic risk is not pervasive.  PCA is also easy to implement and so we 

focus on (adapting) this approach. 

                                                                                                                                                               
Grinblatt and Titman (1987) introduce the idea of local efficiency and show that the APT implies 

that the factors are locally efficient.  This also helps the APT avoid the Roll (1977) critique. 
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 Based on the third approach, principal component factors are used as 

systematic asset pricing factors to test the APT and can then be applied in practice 

if the APT is not rejected. However, for purposes of obtaining factors that are 

useful for generating improved decisions in practical applications, dealing e.g. 

with costs of capital31, hedging strategies, forecasting asset returns, evaluation of 

portfolio managers, and event studies, it is advantageous to impose the APT 

restrictions in advance as part of the factor estimation so that the resulting factor 

weights are more reliably estimated. 

 The objective in this paper is to provide a new method for obtaining 

statistical asset pricing factors that imposes a condition limiting the pricing errors 

for mean returns jointly with maximizing the variance in returns explained by the 

factors.  In the language of the standard two-pass asset pricing approach, it 

maximizes the first-pass fit averaged across all test assets subject to a guaranteed 

minimum fraction of second-pass mean pricing errors.  A related work is that of 

Nardari and Scruggs (2007), who impose the APT pricing restriction (that of 

mean returns being linear combinations of systematic factors) into a latent factor 

model with a multivariate stochastic volatility (MSV) process under a Bayesian 

                                                           
31 For examples of asset pricing models used for cost of capital estimates, see Pratt and Grabowski 

(2008), Myers and Turnbull (1977), Goldenberg and Robin (1991), Bartholdy and Peare (2005), 

Fuller and Kerr (1981), and Cummins and Phillips (2005).  Bruner et al. (1998), among others, 

provide survey evidence that practitioners typically use the CAPM in cost of capital estimation.  
Koedijk and van Dijk (2004) examine cost of capital from a global perspective with the CAPM, 

finding that the domestic market factor is sufficient for a firm to estimate cost of capital and that 

the CAPM and international CAPM provide little difference.  Aside from estimates implied by 

asset pricing theory, previous research has used implied cost of capital measures (Li, Ng, and 

Swaminathan, 2013; Lee, Ng, and Swaminathan, 2011; Pástor, Sinha, and Swaminathan, 2008; 

Hou, Van Dijk, and Zhang, 2012; Easton, 2004) and accounting measures (Easton and Monahan, 

2005) to estimate cost of capital. 
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methodology.  They find their best model in terms of its Bayes factor is the model 

with three latent factors with MSV and the APT restrictions.  Nardari and Scruggs 

use a Bayesian methodology, whereas we use an approach similar to PCA (PCA 

while imposing APT restrictions).  They assign a unit weight to certain test assets 

(based on correlation with a preliminary first principal component) to form their 

three factors while we use linear combinations of all test assets to form optimal 

APT factors.  This allows for an investor/practitioner to find the portfolio weights 

and form our factors in real time.  We argue that our approach provides true APT 

factors (rather than selecting one portfolio to serve as a factor): a linear 

combination of all assets that is designed to capture covariance risk while 

perfectly explaining mean returns.  Another difference is that we look out of 

sample whereas Nardari and Scruggs only look at in-sample posterior 

distributions and cross-sectional averages.  Other differences include the 

following: Nardari and Scruggs allow for mean errors to be nonzero, whereas our 

main focus is on restricting mean errors to be zero; we do not make any 

assumptions on volatility; we use industry portfolios with no strong factor 

structure while they use ten size-sorted portfolios. 

Another related work is MacKinlay and Pástor (2000), which assumes that 

a factor is missing from a linear factor model.  They show that, under the strong 

assumptions of homoscedastic errors and uncorrelated errors, accounting for an 

unobserved factor amounts to the alpha showing up in the covariance matrix.  

Linking means and covariances allows for improved estimation of expected 
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returns/means and higher Sharpe ratios in out-of-sample portfolio 

selection/optimization.  They point out that they essentially are combining two 

factor approaches: FA/PCA, which focuses on covariance only, and factor 

mimicking portfolios (Fama-French three-factor model), which focuses on means 

only.32  Our approach does the same: we link means and covariances by 

explaining mean returns up to an allowable error while maximizing covariance 

simultaneously.  The benefits of our approach are as follows: we do not make any 

strong assumptions on the error terms as does MacKinlay and Pástor, and their 

approach requires conditioning on the Sharpe ratio of the missing factor (which 

must be pre-specified by the practitioner/econometrician).  Since we impose that 

the number of specified factors perfectly price all assets, the latter issue is avoided 

by our approach.  We also compare to the traditional asset pricing models (means 

only and covariances only as mentioned previously), which MacKinlay and Pástor 

do not.  Finally, while MacKinlay and Pástor examine maximum possible Sharpe 

ratios out-of-sample, we implement an out-of-sample hedging approach. 

While we perform forecasting of a hedged position rather than the raw 

portfolio returns with our derived factors, Simin (2008) examines the out-of-

sample forecast performance of the CAPM and Fama-French three-factor model, 

finding that they perform poorly in predicting future asset returns compared to 

historical averages or constants.  Simin further points out that statistical APT 

                                                           
32 Pukthuanthong and Roll (2014) provide a way of identifying whether a factor is related to mean 

returns or risks (or both).  
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factors and macroeconomic factors perform worse than either of these two 

models.  This differs starkly from our results, where the APT factors perform 

better than the CAPM and Fama-French three-factor model.  One reason may be 

that Simin uses a rolling 60-month estimation window, while we find that a larger 

estimation window allows PCA factors to become more reliable (at least in terms 

of bias).  Simin also uses the 25 size and book-to-market portfolios as the test 

assets, while we use industry portfolios.  The Fama-French three-factor model can 

explain size and book-to-market portfolios well, but not industry portfolios. 

 One simple approach to performing PCA and also imposing zero pricing 

errors would be to restrict time series constants, “alphas”, to equal zero. However, 

in this case there is no requirement that mean pricing errors are zero so that an 

unknown level of pricing errors is allowed.  Our approach, however, allows 

imposing in advance any desired mean return errors as a fraction of the squared 

sum of mean returns, including setting the fraction equal to zero. 

 An alternative way to view our method, if zero mean return errors are 

enforced (a 100% cross-sectional R-squared), is as an approach that generates a 

tangency portfolio as a portfolio of the factors and subject to this constraint finds 

the factors that also explain as much as possible of the variation in the time series 

of returns of all assets.  Our approach differs from the Markowitz optimization 

approach, which has had limited success in out-of-sample application.  For 

example, DeMiguel, Garlappi, and Uppal (2009) find that a naïve equal-weighted 
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approach performs better out of sample in terms of its Sharpe ratio, turnover, and 

certainty equivalent return compared to the tangency portfolio.  For an 

examination of investing in the tangency portfolio out of sample see also Best and 

Grauer (1991) and Michaud (1989).  Kan and Zhou (2007) show the pitfalls of 

using sample estimates rather than population mean and covariance when 

performing out-of-sample mean-variance optimization, while also finding that a 

sample tangency portfolio and riskless asset can be beaten by adding the sample 

minimum-variance portfolio.  This shows that using a larger sample/estimation 

window (as close to population as possible) may work better.  Thus, we look at a 

large expanding estimation window (as well as a rolling window which does not 

perform as well perhaps due to this reason) when performing our out-of-sample 

analysis.  Kan and Smith (2008) show that sample minimum-variance frontiers 

can be highly biased.   Kan, Wang, and Zhou (2016) show that accounting for 

estimation error allows for portfolios that outperform the equal-weighted 

approach of DeMiguel, Garlappi, and Uppal (2009). 

 A fundamental issue in this paper is that an asset pricing model generates 

return forecasts. To evaluate the performance of these forecasts, we may simply 

calculate the mean square errors (MSE) generated from realized returns relative to 

the forecast. As we confirm below, PCA identifies factors that minimize these 

mean square errors, at least in sample. And this is true, irrespective of whether the 

APT holds.  However, a typical decision maker employing the asset pricing model 

may distinguish between components of the errors that are systematic and caused 



Ph.D. Thesis – Adam Stivers; McMaster University – Business (Finance) 

117 
 

by a mean bias in the asset pricing model, and errors that are simply part of return 

risk.  From this perspective, it is important to consider separately the bias and the 

noise in the pricing model, as does Simin (2008).  Simin (2008) and Leitch and 

Tanner (1991) both point out that investors/practitioners may have asymmetric 

loss functions, which requires a need to examine both bias and variance.  Others 

that examine the limitations of symmetric loss functions/MSE and the 

implications of asymmetric loss functions include Patton and Timmermann 

(2007), Basu and Markov (2004), Clatworthy, Peel, and Pope (2012), and Elliot, 

Komunjer, and Timmermann (2008).  Although they do not examine the 

breakdown of MSE, MacKinlay and Pástor (2000) do report both bias and MSE 

separately.  Giacomini and White (2006) and Diebold and Mariano (2002) 

examine the issue of separating bias and variance (and the need for examining 

more than just MSE) from a forecasting perspective. 

 To provide an indication of the usefulness of imposing APT restrictions 

we apply our approach to a set of test assets and compare the results both in-

sample and out-of-sample against those for other basic models. In particular, we 

consider the Fama-French 3-factor model as representative of a model typically 

applied and we consider a factor model obtained from conventional PCA.  The 

test assets we consider are the 30 Industry portfolios obtained from Fama and 

French (available from Kenneth French’s website).  These assets constitute a good 

target as they do not have a strong factor structure and their mean returns have 
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traditionally been difficult to explain (see Lewellen, Nagel, and Shanken, 2010; 

Fama and French, 1997; Chou, Ho, and Ko, 2012).  

 Imposing the APT restrictions perfectly will obviously result in a zero 

alpha/bias in sample, and PCA by design will have the lowest possible MSE in 

sample.33  We do indeed find that the MSE when imposing the APT restrictions 

(“constrained” PCA or C-PCA) is only slightly higher while completely 

eliminating bias.  To judge the out-of-sample performance we consider a hedging 

approach where the in-sample portfolio weights and betas are used to hedge each 

portfolio over the next month.  While this is not a true forecasting approach in that 

factor realizations are used, it is nevertheless an approach that is applicable in real 

time.  The out-of-sample results show that again the MSEs are not significantly 

different between PCA and C-PCA.  However, C-PCA reduces the bias out of 

sample by around 30% compared to PCA.   

We argue that any investor or practitioner who has a long-term investment 

horizon in mind would prefer C-PCA due to the reduced bias, regardless of loss 

function.34  In our out-of-sample application we re-estimate and change the 

hedged position each month, and then evaluate performance over the full out-of-

sample window.   While it is possible that an investor would still prefer reduced 

                                                           
33 Comparing the in-sample cross-sectional R-squared of the models does not provide much 

insight either; Kan, Robotti, and Shanken (2013) investigate the significance of differences 

between cross-sectional R-squared values, rather than a simple comparison of the values, and they 

find that most models are not significantly different. 
34 Investment horizon also has a clear monotonic relationship with bias, whereas various loss 

functions may have contrasting implications.  Also, asymmetric loss functions may place more 

weight on bias or variance depending on the specification/investor or analyst. 
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bias over this large sample period/window, it is also conceivable that the investor 

would implement a longer forecast horizon and avoid monthly re-estimation and 

rebalancing.  As the forecast horizon lengthens, the target return will approach the 

mean return, so C-PCA should perform better regardless of loss function (its MSE 

should improve relative to all other models).  This is also consistent with the 

findings of MacKinlay and Pástor (2000): as the sample size gets larger (240 

and/or 360 months) the unbiased/unrestricted estimator they use performs better 

than their restricted estimator that links means and covariances but is biased.  We 

also provide a theoretical and empirical discussion of the relationship between 

investment horizon and bias: lower bias at a smaller horizon is preferable as the 

horizon grows.  Thus, lower bias will mean as the horizon is increased, the 

particular model will perform better in terms of MSE compared to a model with a 

higher bias. 

Higher MSE due to higher variance is akin to higher month-to-month 

fluctuations around the target (albeit only slightly higher MSE/variance for C-

PCA), while lower bias means being closer to the target on average.  For example, 

for a long-term project, a firm would want a cost of capital estimate that is as 

accurate as possible, while the firm may not care much about short-term 

variations.   If the application emphasizes bias (average accuracy) even slightly in 

comparison to variance, then this particular practitioner prefers C-PCA.  C-PCA 

also has a better second pass fit both in sample and out.  We additionally find that 
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PCA and C-PCA are both significantly better than the traditional asset pricing 

models for these industry portfolios.   

While the application of the derived C-PCA pricing factors that we focus 

on is out-of-sample hedging, there are many potential applications of these 

factors.  There has been extensive research applying APT/PCA factors to various 

settings.35  Kozak, Nagel, and Santosh (2014) find that a stochastic discount factor 

based on PCA can explain away many anomalies out-of-sample.  They also show 

it may not be possible to distinguish whether these factors are sentiment-based or 

risk-based.  Bussière, Hoerova, and Klaus (2015) apply PCA to hedge fund 

returns in order to construct the main factor for a set of hedge fund assets and 

examine changes in the hedge funds’ sensitivity to the factor over time.  

Herskovic et al. (2016) develop a common idiosyncratic volatility (CIV) factor, 

which they note can be seen as an APT factor.  They find this factor to be priced 

and to help explain various pricing anomalies.  One of the models used to find 

CIV (residual variance) is the first five principal components.  Ludvigson and Ng 

(2009) conduct factor analysis on a panel of macroeconomic variables to 

construct macro factors which are used to forecast bond returns, and examine 

bond risk premia.  Goyal, Pérignon, and Villa (2008) find that there are two 

common APT factors in both the NASDAQ and NYSE, but each one has another 

separate risk factor that does not extend to the other market.  Chen, Hsieh, and 

                                                           
35 Many implementations of PCA, especially those for forecasting purposes, follow either the 

methodology of Stock and Watson (2002) or Forni et al. (2000).  Stock and Watson use static 

principal components while Forni et al. use dynamic principal components, although both use 

dynamic factor models to forecast. 
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Jordan (1997) applies the APT to the real estate market, by examining both 

macroeconomic risk factors and derived factors as they relate to REIT returns.  

They find that for some time periods the macro factors explain REIT returns 

better, while in other periods the two models perform equally.  An example of an 

application of macroeconomic factors is Kavussanos, Marcoulis, and Arkoulis 

(2002), which applies macroeconomic factors to international industry returns and 

examine the investment implications of their findings. 

 In the following we first review in Section 4.2 the basic theory regarding 

the PCA approach and its optimality properties.  In Section 4.3 we present the 

derivation of an approach that optimally imposes the APT pricing restrictions 

when extracting factors from a group of assets based on applying the Ky Fan 

maximum principle for Rayleigh quotient pencils. Section 4.4 applies the 

approach to explain the returns of the thirty Fama-French industry portfolios in 

and out of sample and contrasts the performance with alternative approaches.  

Section 4.5 concludes. 

4.2. Basic Properties of Statistical Factor Analysis  

4.2.1 Returns Specification with Factor Structure 

Consider the returns of a group of assets as given by 

 (4.1)  erQBαr  , 
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where eαr ,,  are n x 1 vectors indicating, respectively, the set of returns, the mean 

pricing errors, and the non-systematic pricing errors for each of n risky assets. 

The matrix Q is an n x k matrix of full column rank that represents for each of the 

k factors the weights put on the n assets.  Thus, rQrk
  represents the k x 1 

vector of factor returns. The factor loadings (betas) for all assets are given by the 

n x k matrix B .  We define the n x n covariance matrix of returns as 

])μμ)(rE[(rΣ  .  The distribution of returns is constant over time, and, by 

extension, μ  and Σ  are time invariant. Note that any set of returns may be 

represented by equation (4.1) without loss of generality such that 0)( eE  and 

such that 0erk )'(E . 

 Taking expectation in equation (4.1), the mean returns of all assets are 

given as 

 (4.2) μQBαμ  .        

4.2.2 Factors Chosen to Minimize Errors and PCA 

We show first that selecting factors to minimize the sum of squared non-

systematic pricing errors is equivalent to adopting the principal components as 

factors. While this result was noted previously (Jong and Kotz, 1999), it is not 

well known in the finance literature. We emphasize that PCA does not simply 

select the linear combinations of assets that best captures the communalities in 
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returns, but that adopting these components as factors provides the lowest 

attainable quadratic variation in the return errors: 

   )( ee
QB,

E
Min

 . 

Since )]([)( eeee  ETrE , where Tr represents the trace of the matrix, minimizing 

the sum of squared errors from equations (4.1) and (4.2) amounts to: 

 (4.3)  )()( BQIΣQBI
QB,

Tr
Min

.       

First, for given factor weights, choose the factor loadings B that minimize the 

squared errors. Matrix differentiation in equation (4.3) and finding the stationary 

point implies 0)'(  ΣQQBΣQ  so that 

 (4.4) 1)'(  ΣQQΣQB ,        

the standard formula for obtaining multivariate betas. Plug equation (4.4) into 

equation (4.3) to find the concentrated objective: 

 (4.5)  ΣQΣQQΣQΣ
Q

 1)(Tr
Min

.      

Since Tr (Σ ) is constant and using the property that Tr ( AB ) = Tr ( BA ) 

equation (4.5) becomes 

 (4.6)  12 ))((  ΣQQQΣQ
Q

Tr
Max

.      
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Taking the “square root” of the positive definite Σ  and defining QΣQ
½*   we 

obtain  

 (4.7)  1****

*
)')('( 

QQQΣQ
Q

Tr
Max

.      

The trace in equation (4.7) is known as the Rayleigh Quotient which by the Ky 

Fan maximum principle (Fan, 1949. See also for instance Bhatia, 2013, p. 35, and 

Li, 2015) is maximized when the n x k matrix 
*

Q  is orthonormal and consists of 

the k eigenvectors associated with the k largest eigenvalues of matrix Σ  (and is 

minimized if 
*

Q  contains the k eigenvectors corresponding to the k smallest 

eigenvalues of Σ ).  Thus, we know that  

 (4.8) kΔQQΣ **  , as well as 
kΔQQΣ       

where 
kΔ is the k x k diagonal matrix containing the k largest eigenvalues of Σ . 

Pre-multiplying both sides of equation (4.8) by '*
Q  (or the second equation by 

'Q ) shows that the maximum trace of the Rayleigh Quotient in equation (4.7) is 

equal to Tr (
kΔ ) which is the sum of the k largest eigenvalues.  Also, we find that 

112 ))(())((   QQΣQQΣQQQΣQ TrTr . It follows that either the eigenvectors 

*
Q  or Q  may be used to generate the k factors rQr '** k or rQr 'k

that 

minimize the unexplained variation. Note that equation (4.8) satisfies the first-

order conditions for a stationary point in 
*

Q or Q  subject to a normalization 
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constraint kIΣQQ ' : if we define the Lagrangian 

)]()[( 2

kkTrMaxL IΣQQQΣQ   it generates equation (4.8).  The second-

order conditions do not hold, however, which is the reason that we need to appeal 

to the properties of Rayleigh Quotients to generate the result.  We can view the 

fraction of return variation explained by the k factors as Tr (
kΔ ) / Tr (Σ ), the 

sum of the k largest eigenvalues divided by the sum of all eigenvalues. The 
*

Q or 

Q  matrix obtained via equation (4.8) consists of the first k principal components 

and, by Ky Fan’s theorem, the optimal realized objective of equation (4.6) equals 

the sum of the k largest eigenvalues of the Σ  matrix.  

4.3. Incorporating Arbitrage Pricing Restriction 

4.3.1 Adding APT Constraint 

 If the factor returns explain most of the variance in returns so that the 

remaining variance is non-pervasive and may be diversified (Chamberlain and 

Rothschild, 1983), then the APT of Ross (1976) implies that the α ’s are 

(approximately) zero.  To optimally generate the statistical set of factors 

characterized by Q  and obtain factor returns rQr k  we now consider the 

following optimization problem:  

 (4.9)  )()(
,

μμααee
QB,

 


E
Min

,      
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where 10    represents the target level for the sum of squared alphas relative 

to the sum of squared mean returns. Thus,   represents the targeted fraction of 

mean return errors allowed, i.e., the sum of squared mean pricing errors compared 

to the sum of squared means. Most often we will consider 0  as the target 

which means that all mean pricing errors, the “alphas”, are constrained to be zero.  

 Using equations (4.1) and (4.2), the properties of traces, and taking 

expectations we may replace equation (4.9) by 

(4.10)   μμBQIVQBI
QB,

 


)()()(
,

Tr
Min

, 

μμΣV  )( .   

Analogously to the unconstrained case, we have  

 (4.11)  1])('[)(  QVQQVB  ,        

and in addition the constraint implies that μμαα   .  Note that the objective in 

equation (4.9) requires that the optimally estimated betas, B , are not the standard 

OLS betas of equation (4.4). The relevant association between asset return and 

factors here also involves consideration of the mean returns.  The concentrated 

objective becomes after eliminating B : 

 (4.12)  12 ])(][)([  QVQQVQ
Q

Tr
Max

 ,     
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where λ is set to force μμαα   . Similar to the unrestricted case the 

eigenvectors are found from 

 (4.13)  
kΔQQμμΣQV  )()(  .      

Pre-multiplying by 'Q  and subsequently pre- and post-multiplying both sides by 

Qμ  and its transpose, respectively, and using the normalization that kIQQ   

implies for the optimal choice of Q  that  2)()( μQQμμΣQQΔμ  kkk . To 

impose μμαα    eliminate α  from equation (4.2). Equations (4.11) and (4.13) 

imply μμμQQμ  )1(  . Thus, imposing μμαα    for optimal Q  into 

2)()( μQQμμΣQQΔμ  kkk  produces 

 (4.14) 22 )()1/()( μμμΣQQΔμ   kkk .     

Solving equations (4.13) and (4.14) jointly generates both the optimal Q and λ. 

Accordingly, the k factor returns are rQr 'k
 which guarantee the lowest non-

systematic errors subject to the mean pricing errors corresponding to a target 

fraction 0/  μμαα .   

 The Appendix provides a Matlab program for solving equations (4.13) and 

(4.14) simultaneously. The Lagrangian multiplier λ must be determined so that 

the optimization weight on reducing the alphas is sufficient to deviate enough 

from minimizing overall pricing errors to meet the alpha target.  The resulting 

optimal Q must generate a mean square error in-sample that is higher than in the 
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standard PCA case, but produces a larger cross-sectional R-squared that would 

rise to 100% for 0 . The approach comes down to calculating the eigenvalues 

and eigenvectors of matrix μμΣV  )( and using the eigenvectors of the k 

largest eigenvalues as follows from the Ky Fan maximum principle. As in 

standard PCA the factor loadings may be obtained from QB  so that for the case 

of 0  (zero alphas) from equation (4.1) the predicted returns equal 

kQrrQQr ˆ . 

4.3.2 Imposing OLS Betas  

The standard approach for determining the unexplained component of 

asset returns implied by a particular asset pricing model is to calculate alphas 

from “first-pass” time series regressions of the asset returns on the factor returns.  

In this approach the factor sensitivity estimates are usually obtained as OLS betas: 

The empirical results for the (non-optimal) case of OLS betas, 1)'(  ΣQQΣQB  , 

when the factors are specified as )(' μrQ   are available upon request from the 

authors.  While this does not provide the minimum MSE it is a reasonable case to 

consider as it corresponds to imposing a constraint on alphas as typically 

calculated. For reasons of tractability we focus here on the weighted alphas which 

relate to the difference in maximum squared Sharpe ratios of the assets compared 

to the factors as discussed by Gibbons, Ross, and Shanken (1989): 

μQ'ΣQ)(Q'Qμ'μΣμ'αΣα'
111   . We set the weighted alphas equal to a 

target fraction of the weighted mean returns: )( μΣμ'αΣα'
11    .  As before, if 
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we set 0  then this implies the constraint 0α  (for all assets).   The Appendix 

derives that for the case of 

 (4.15)  )()(
,

μΣμγαΣαee
11

Q

  


E
Min

 ,     

subject to equations (4.1) and (4.2) and 1)'(  ΣQQΣQB , that the factors are 

found first from 

 (4.16) kΔQQΣμμΣΣQV 2
1

2
1




)()(  .     

using the normalization that kIQQ   and, second defining μQ'μk  , from 

 (4.17) 212 )()1/()( μΣμμΣQQΔμ
  kkk .     

Then, subject to a target fit in the second pass, the factors maximize the first-pass 

fit.   

4.3.3 Sub-Optimal Direct Restriction on the Alphas  

An alternative way of reducing the mean pricing errors, as mentioned 

previously, is to omit the constant in estimating B  and Q .  Thus, in equation 

(4.1) we set α=0.  Then )( eeE  is given as  )()()( BQIrrQBI  ETr . Since 

μμΣrr )(E , the estimation problem becomes similar to both the restricted 

and unrestricted cases but with 1  instead of the constrained on the mean 

pricing errors.  Due to the omission of the constant, 0)( eE so that mean pricing 

errors are not avoided, as is the case in Nardari and Scruggs (2007). In fact, the 
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fraction of squared mean pricing errors may be obtained from the constrained 

PCA case by searching for the particular target fraction of mean pricing errors, 

, that implies 1 . 

4.3.4 Correlation Matrix instead of Covariance Matrix 

PCA analysis is often based on a correlation matrix rather than a 

covariance matrix. See, for instance, Jolliffe (2002). While working with returns 

implies there is no serious need for further normalization, there may still be cases 

in which a correlation matrix is preferable.  

 In effect, we now examine normalized returns for which rSr 1*  , where 

S is an n x n diagonal matrix containing the standard deviations of the returns on 

the diagonal such that ΣS2  .  The covariance matrix of *
r  is then the 

correlation matrix of r . The only difference compared to the covariance analysis 

case is in the interpretation of the results. In particular, maximizing explained 

covariance (first-pass) now becomes maximizing explained correlation, which is 

in turn equivalent to maximizing the squared correlation.  The latter amounts to 

maximizing the equal-weighted average of the R-squares for the n first-pass 

regressions (subject to a restriction on the squared mean pricing errors for the 

normalized returns). 
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4.4. Application to Industry Portfolios 

4.4.1 Number of Factors and MSE Breakdown 

 The in-sample and out-of-sample performances of PCA and C-PCA will 

be compared, along with the traditional asset pricing models (CAPM, Fama-

French three-factor model (FF3), and Carhart, from Carhart, 1997), using the 

thirty Fama-French industry-sorted monthly portfolios.  The industry portfolios 

are chosen due to their weak factor structure.  The sample starts in January 1927, 

when the momentum factor is first available.  The sample ends in December 

2015.  Excess returns are used (with three-month T-bill used as the risk-free rate), 

so that each portfolio can be considered as a zero-investment portfolio.   

 First, we investigate the optimal number of factors to implement.  While 

there have been many that investigate the appropriate number of factors in 

PCA/FA (see Connor and Korajczyk, 1993), a widely used test is that of Bai and 

Ng (2002).36  Bai and Ng develop a test for factor models with large panels.  The 

loss functions they implement penalize in both the time and cross-sectional 

dimension.  They propose three variations of a panel information criterion (IC), 

which do not depend on the specified maximum number of factors, and three 

variations of a panel pC 37 criterion (PC) which implement the Mallows (1973) 

pC criterion in a panel setting.  Table 4.1 shows that five of the six criteria 

                                                           
36 See also Harvey, Liu, and Zhu (2015) for an examination of the statistical hurdle that a new 

factor must clear in order to be accepted. 
37 The pC criterion stands for the Mallows (1973) information criterion for a model with P 

regressors. 
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suggest k=4 factors for the set of industry portfolios, with the last PC criterion 

suggesting k=5 factors.  Therefore, we will use four factors as our base model 

(with PCA and C-PCA both having four factors unless otherwise specified). 

 

[Table 4.1 goes here] 

 

 Before examining the results, the breakdown of MSE should be discussed 

further.  MSE in this context can be broken down into two parts: the variance of 

the error term and the bias squared (average error squared).  The simple 

summation of the two gives MSE; this implies putting an equal weight on each, 

however.  We argue there are situations such as those related to cost of capital, 

hedging, long-term investments/projects, etc. where an investor would care more 

about bias.  This equates to caring more about on average how far from the target 

(bias) an investor/practitioner/firm is rather than about the short-term fluctuations 

from the target (variance).  In finance and forecasting especially, most researchers 

report MSE but do not consider the two components separately.  The breakdown 

is as follows (using the definition of variance): 

 (4.18)   2

2

11

2 )ˆ(
1

)ˆ(
1









 



T

t

tt

T

t

tt rr
T

rr
T

MSE  ,    

where r is the realized return, r̂ is the predicted return, and 2

 is the variance of 

the error term )ˆ( rr  .  The first term on the right-hand side in (18) is the bias 

squared, and the last term is the variance term.  We will mostly focus on the 
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absolute level of the bias, the square root of the bias squared (in order to give an 

economic interpretation), and the MSE. 

4.4.2 Expanding Window 

 Panel A of Table 4.2 shows the in-sample results of PCA, C-PCA, the 

CAPM, the FF3 model, and the Carhart model.  Reported are the MSE (multiplied 

by 10,000) and absolute value of the bias multiplied by 100 to be in percent form 

(bias is the mean of the thirty portfolios is given for each test statistic), as well as 

the second pass adjusted R-squared (using mean returns).  Note that this 

implementation of C-PCA does not use OLS alphas; therefore, the 2nd pass fit will 

not be 100%.  We know two things will be true of the in-sample results: first, 

PCA will have the lowest possible MSE.  Second, C-PCA with 0 will have 

zero bias (with a much better second pass fit).38  Kan, Robotti, and Shanken 

(2013) argue that simple comparisons of second-pass R-squared values are not 

sufficient or may induce misleading conclusions.39  The MSEs of C-PCA and 

PCA are not significantly different, however.  The interpretation is that an 

investor would only have to sacrifice a bit of MSE (due to variance) in order to 

achieve zero bias.  Also, the panel shows that the traditional asset pricing models 

perform much worse in all areas. 

                                                           
38 As discussed in Section 4.3.2, the alphas and betas we use in our main approach differ from the 

traditional OLS betas and alphas. Therefore, these C-PCA factors will not achieve a perfect 

second-pass fit, as they are designed to achieve zero error when applying the weights and betas 

(which are the same) directly from the approach, rather than using the weights as regressors in a 

second-pass regression. An alternative C-PCA methodology achieves zero OLS alphas and a 

perfect second-pass fit. The empirical results of this alternative approach are available from the 

authors upon request. 
39 Kan, Robotti, and Shanken (2013) examine R-squared differences when the models have beta 

misspecification.  However, C-PCA would not apply here as a perfect fit is imposed. 
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[Table 4.2 goes here] 

 

 Since we know that PCA will have the lowest MSE and variance while C-

PCA will have zero bias by construction, we now turn to the out-of-sample results 

for a more meaningful comparison.  Panel B shows the results when out-of-

sample estimation begins in January 1977, with an anchored starting point for the 

estimation window of January 1927 so that the estimation window begins at 50 

years.  Recursive monthly estimation is performed, with an expanding estimation 

window.  The out-of-sample analysis here can be thought of as a hedging 

approach.  The portfolio weights and betas (for PCA and C-PCA, the weights and 

betas are the same) are applied one month ahead to the portfolio realizations.  

Thus, the portfolio betas are applied to the factor realizations to provide a 

predicted return for each portfolio.  While realizations are used (rather than a pure 

forecasting approach), this strategy is still implementable by an investor in real 

time.  The portfolio weights can be found prior to the upcoming month via the in-

sample estimation.  The investor would then hold the portfolios with the given 

weights in order to form the factors for the next month.  Then, the in-sample betas 

are used as factor weights.  If the model holds perfectly out-of-sample, then each 

portfolio would be hedged against systematic risk perfectly out-of-sample. 

 Panel B shows the MSE and the absolute value of the bias for each model 

out of sample.  Again, PCA has a slightly lower MSE compared to C-PCA, while 

the other models perform much worse.  Whereas C-PCA obviously no longer has 
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a zero bias, it is still much lower than PCA, with a roughly 30% reduction in bias.  

This translates to an average error of 1.8% for PCA annually, versus 1.3% for C-

PCA.  If an investor wished to eliminate the systematic risk of these industry 

portfolios for any given application, she would have a slightly higher MSE (and 

variance) with C-PCA.  This would mean the predicted return has more 

fluctuation around the realized return for a given month compared to PCA.  

However, in the long run (from 1977 to 2015), the investor’s average error is 

roughly 0.5% lower annually (which equates to 19% over the sample).  We argue 

that for certain applications and for those more concerned with the long-run 

performance rather than month-to-month fluctuations, bias would be of more 

importance.  In other words, imposing the APT restrictions allows an investor to 

be closer to the target on average.  Those more concerned with less error on 

average rather than short-term fluctuations would prefer C-PCA to PCA. 

 Panel B of Table 4.2 also reports a second pass fit and an error ratio.  In 

this instance, the second pass fit is the adjusted R-squared of a regression of mean 

returns on mean predicted returns for the thirty portfolios.  This gives an idea how 

well the predicted returns explain returns on average.  The C-PCA model again is 

superior to the competing models.  The error ratio is the ratio of the sum of the 

squared errors (mean returns less mean predicted returns, squared) to squared 

mean returns.40  Hence, a lower ratio means lower errors on average, and C-PCA 

has a ratio much lower than the other models. 

                                                           
40 Note that this is similar to, but not exactly the same as, 1 – second pass fit.  
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 Panel C shows the results when only an initial estimation window of 60 

months is used, so that hedging starts in January 1932.  This not only provides a 

larger sample, but also allows for comparison to the results that follow where a 

rolling 60-month window is used.  Again, imposing the APT restrictions reduces 

bias greatly (around 33% on average).  C-PCA provides a better fit and also now a 

slightly lower MSE compared to PCA.  However, the overall fit based on second 

pass fit and error ratio compared to Panel B in this case is worse.  Again, the 

competing models perform much worse compared to PCA and C-PCA. 

4.4.3 Bias and Random Error 

 The MSE may be written as 

 (4.19) 
22 )]ˆ()[()ˆ( tttttt rErEMSE   ,    

where 

 (4.20) ),0(~, 2

 IIDr tttt  .     

 (4.21) ),(~,ˆ 2

 bIIDtttt  .      

The bias is given by b.  Since t  is uncorrelated with anything we can write 

equation (1) as 

 (4.22) 222 bMSE    .        

 The PCA estimation of t̂  provides the lowest possible MSE based on the 

perspective of the observation frequency.  I.e., it effectively minimizes the MSE 

for the one-period ahead forecast since the observation frequency is (by 

definition) one period, a month for our data. We may, however, be interested in a 
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T-period forecast horizon. In that case, given the IID assumptions, the MSE 

becomes: 

 (4.23) 222 )()()( TbTTMSE    .      

Thus, if we define the fraction of MSE due to bias as )/( 222

   b , then the 

MSE per unit of the forecast horizon is: 

 (4.24) )1)((/)( 22 TTTMSE    .      

It is constant if the forecast is not biased and otherwise, whether the bias is 

positive or negative, increases linearly with the forecast horizon T.   

 Thus, if we compare two forecasts, based on PCA and C-PCA, such that:  

)1()1( PCACPCA MSEMSE   and PCACPCA    (both conditions should hold in our 

set-up), then there is a critical T=T* such that for all T<T* we have

)()( TMSETMSE PCACPCA  and for all T>T* we have )()( TMSETMSE PCACPCA  . 

4.4.4 Varying time horizon 

 While it is possible to have an asymmetric loss function that does not use 

MSE as the loss function and therefore prefer less bias to variance, the time 

horizon of the investment or forecast matters as well.  Specifically, we argue (and 

show empirically) that as the out-of-sample time horizon increases, bias matters 

proportionately more compared to the variance term.  This section performs the 

same out-of-sample risk hedging of the previous sections, but varies the out-of-
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sample time horizon.  The results from a one-month horizon are shown again for 

comparison purposes, but now 3, 12, and 48-month horizons are added.  The out-

of-sample estimation starts after 60 months, so that an initial estimation window 

of 60 months is implemented, expanding to add the most recent month.  Again, 

the sample is January 1927 to December 2015, with the out-of-sample window 

starting in January 1932 and ending in December 2015.  Monthly returns are still 

used to find the loadings for risk hedging purposes.  Table 4.3 shows the results 

for the C-PCA and PCA methods.    

Table 4.3 provides the MSE, root MSE (RMSE), bias, bias squared, and 

variance and standard deviation of the error term.  Bias, standard deviation, and 

RMSE are multiplied by 100 and reported in percent form.  MSE, bias squared, 

and variance are multiplied by 10,000 to be consistent.  The RMSE and standard 

deviation are provided in order to give units in percentage terms.  Also, the 

proportion of bias to RMSE is provided as well in order to give an economic 

magnitude of how much bias contributes to the investor’s loss (RMSE).41  The 

first thing that can be seen is that extending the horizon for hedging purposes 

results in C-PCA performing relatively better compared to PCA in terms of MSE.  

At a one-month horizon, PCA has a MSE that is 0.51% higher than C-PCA.  At 

three months this proportionate increase rises to 1.14%, and it is 3.01% higher at 

                                                           
41 It should be noted that bias over RMSE and standard deviation over RMSE do not sum to one.  

The reason is that there are covariance terms that are ignored.  However, the ratio of bias to RMSE 

does provide a better economic interpretation than bias squared over MSE, since the units (percent 

returns) are unchanged.  It should also be pointed that while Equations 4.17 – 4.24 assume that the 

covariance terms are zero this is not the case empirically, as the covariance terms are noticeable. 
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twelve months.  However, it does drop to 0.76% at 48 months, perhaps due to lost 

forecast power.  Nonetheless, the less biased C-PCA factors perform relatively 

better than PCA as the time horizon increases, even when using MSE as the loss 

function. 

[Table 4.3 goes here] 

The results in Table 4.3 also show that the bias increase for both models is 

relatively linear and proportionate to the horizon. Going from one month to three 

months results in a bias that is very close to three times larger (and twelve times 

larger for twelve months).  The variance terms are also close to linear increases as 

the horizon increases, albeit with slightly larger increases compared to bias.  

However, bias squared is what matters for MSE, so the increase from one month 

to three months is actually times nine, and times 144 for twelve months (assuming 

exactly linear increases, which breaks down a bit as the horizon approaches 12 

and 48 months).  Therefore, bias has a larger impact empirically as the horizon 

increases.   

In order to relate to Equation 4.24, we can also examine MSE/T.  For C-

PCA the MSE/T is 11.2, 12.5, 16, and 29.4 at 1, 3, 12, and 48 months, 

respectively.  For PCA it is 11.3, 12.7, 16.5, and 29.7.  The pattern is clear in 

going from one to three to twelve months: MSE/T is getting progressively larger 

for PCA compared to C-PCA.  Thus, it would seem that PCACPCA   , as 

expected from Equations 4.19 to 4.24.  At the longest horizon of 48 months, we 
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can infer (roughly) the lambdas.  For C-PCA the lambda is roughly 1.9% and for 

PCA it is roughly 3.4%.  The difference in lambdas between the two models is 

approximately the same for the other horizons as well, and the lambdas are what 

should be expected based on the bias for each model.  We know that the larger 

lambda for PCA will make it perform worse as the horizon grows. 

Note that this effect would be amplified further if the investor’s loss 

function was asymmetrically shifted towards bias.  Table 4.3 shows how a slightly 

higher weight on bias squared can make a large difference.  This can be seen by 

comparing the magnitudes of the bias squared and variance terms (which together 

compose MSE).  Bias squared is of an extremely small magnitude compared to 

variance, so placing a weight even slightly above an equal weight would 

dramatically change the resulting loss.  The ratio of bias to RMSE can be 

examined to obtain the economic magnitude of how much more bias matters with 

a longer horizon.  At one month, bias only makes up around 2.4% to 3.6% of 

RMSE depending on the model (and ignoring covariance terms in RMSE).  

However, this increases to 4.1%-5.8% at three months and 8%-10.9% at twelve 

months.  At the longer-term horizon of 48 months, bias makes up as much as 

18.5% of RMSE.  It is expected that this would increase further as the horizon 

grows beyond four years (which we find in unreported results). 
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4.4.5 Rolling Window 

 The same out-of-sample analysis is performed, but with a rolling 60-

month window rather than an expanding window with an anchored starting point.  

This is done both for robustness and because many researchers use a rolling 60-

month window.  Table 4.4 shows that while both PCA and C-PCA easily beat the 

traditional asset pricing models, C-PCA has the lowest MSE.  However, it is only 

slightly lower and PCA has a slightly lower bias.  In comparing Table 4.4 to Panel 

C (so that the sample period is the same), it can be seen that using a rolling 

window results in lower MSE for all models.  However, for C-PCA the bias is 

now slightly higher.  It appears that a smaller, rolling window allows the model to 

capture the local variation, resulting in less variance and lower MSE.  However, if 

one would rather have a lower bias, then a larger, expanding window would be 

the proper choice.  Also, the benefits of imposing the APT restrictions are greater 

when using a larger estimation window.  In both Panels B and C of Table 4.2, C-

PCA is able to drastically reduce bias (while having either a slightly higher or 

lower MSE, depending on the sample).  However, with the rolling window the 

bias is not reduced (although MSE is still slightly lower).  Therefore, if an 

investor/practitioner is interested in obtaining a lower bias (perhaps due to their 

asymmetric loss function or time horizon), then she should use an expanding 

window. 

 

[Table 4.4 goes here] 
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4.4.6 Using in-sample betas 

 Another test is performed to see how well the factors of each model 

explain future returns.  Here the portfolio weights are applied to the next month’s 

realized portfolio returns (so that the factor realization is stored each month based 

on information up to the previous month).  Where the methodology differs is that 

now instead of applying the previously estimated betas, a full-sample regression 

(similar to following the Black, Jensen, and Scholes, 1972 approach) is run of 

portfolio returns on factor returns.42  The sample here is the previous out-of-

sample estimation period (1977 – 2015 for the expanding window).  While this is 

not a true out-of-sample test in that it cannot be applied in real-time by a potential 

investor, it still gives an idea of how well these portfolio weights (and 

consequently factors) explain future returns.  Additionally, the betas are now 

allowed to be constructed optimally based on the realized returns. 

Table 4.5 shows the regression results for the 1977 – 2015 sample, where 

the expanding window is used.  The results with and without a constant (alpha) 

are shown for both PCA and C-PCA.  Note that these are averages of the thirty 

time series regressions.  Now that we allow each portfolio to optimize its betas 

based on the factor realizations, the C-PCA appears to better explain returns.  The 

R-squared values are higher than those for PCA factors, and the MSE is lower.  

Further, when allowing for a non-zero alpha, the C-PCA approach produces an 

                                                           
42 We also perform the traditional Fama and MacBeth (1973) test on all models, but the results did 

not vary much across models and are therefore omitted, but available upon request. 
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alpha that is 4 basis points lower per month.  It can also be seen that only the first 

factor for each model is priced, although all four help explain covariance risk. 

 

[Table 4.5 goes here] 

 

The same analysis is repeated with the rolling window, where now the 

sample period is 1932 – 2015.  Table 4.6 shows that while the MSE is slightly 

higher and the R-squared is slightly lower for C-PCA, it does produce an average 

alpha that is 10 basis points lower per month.  Again, it appears that when 

imposing the APT restrictions, it is better to use a larger window.  PCA is slightly 

better when implementing a rolling 60-month window, consistent with the 

findings in Table 4.4.  The short estimation window may not allow for sufficient 

information in generating the weights, which should hold one-month-ahead out of 

sample if expected returns are efficiently estimated. 

 

[Table 4.6 goes here] 

 

4.5. Conclusion 

 In this paper we derive an approach in which the APT result of zero 

pricing error is imposed on principal components analysis (PCA).  We also show 

that PCA can be represented as an approach that minimizes the sum of squared 

errors of a panel (or maximizing first pass time series fit).  Thus, our approach 

imposes a perfect second pass fit (or up to a specified fraction of mispricing) 

while simultaneously maximizing first-pass fit.  While PCA has the lowest 
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possible mean squared error (MSE), we examine the breakdown of MSE into 

variance and bias (squared) terms.  In sample, PCA will have the lowest MSE 

(and variance) of any model, while C-PCA (the model imposing APT restrictions) 

will have the lowest bias if mispricing is set to zero.  We argue that for most 

applications of asset pricing models (cost of capital, forecasting, hedging, etc.) the 

practitioner may prefer lower bias rather than variance/MSE.  Relatedly, any 

practitioner with a more long-term horizon would most likely prefer a model that 

is closer to the target on average (less bias), rather than being concerned with 

period-to-period fluctuations around the target (variance).  We also show both 

analytically and empirically that a model with a lower bias will perform relatively 

better in terms of MSE as the investment horizon grows. 

 Due to the in-sample properties of the two models, an out-of-sample test is 

needed in order to properly compare the two.  We implement a hedging approach 

based on portfolio realizations, where the weights and betas based on previous in-

sample estimation are applied to the realized portfolio returns in the following 

month.  We use the thirty Fama-French industry portfolios due to their weak 

factor structure in order to give a stronger test.  With in-sample estimation starting 

(and anchored) in 1927 and out-of-sample estimation starting in 1977 and ending 

in 2015, we show that bias is reduced by almost one-third when imposing the 

APT restrictions while MSE is only slightly higher (not significantly different).  

Both in sample and out of sample, an investor or practitioner could adopt our 

approach and greatly reduce bias while only sacrificing a bit of MSE.  We also 
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show that allowing betas to be optimized in-sample (with factor weights applied 

out-of-sample) results in C-PCA better explaining returns in terms of both bias 

and MSE.  For robustness purposes we also examine a rolling 60-month window.  

However, it appears that a larger sample is needed to properly estimate the 

factors.  We also show that PCA and C-PCA perform significantly better than the 

traditional asset pricing models (CAPM, Fama-French three-factor model, and 

Carhart model). 

 It is argued that in order to properly implement the APT model, the model 

restrictions should be imposed a priori.  Doing so results in lower bias out-of-

sample, which would be desirable in certain applications.  The methodology is 

derived herein, with possible extensions examined as well.  This allows for future 

research to implement our approach for various applications.  We implement the 

model to a portfolio hedged against systematic risk so that there is no need to 

estimate the risk premia, and show that bias is indeed reduced greatly.  Future 

research in this area should also consider the breakdown of MSE and whether bias 

or variance is more important in the appropriate context. 
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Table 4.1: Bai and Ng (2002) results 
Results are shown for the Bai and Ng (2002) criteria, using the 30 Fama-French 

industry portfolios with a sample of January 1927 - December 2015. The top 

panel shows the loss function results for each criterion and k factors from one to 

five. The bottom panel shows the optimum number of factors based on each 

criterion. The three different panel information criteria (IC) and panel pC  

criteria (PC) are shown, and k* gives the optimal number of factors which gives 

the lowest loss function. See Bai and Ng (2002) for details. 

k= IC1 IC2 IC3 PC1 PC2 PC3 

0 -5.2909 -5.2909 -5.2909 0.00504 0.00504 0.00504 

1 -6.2904 -6.2894 -6.2926 0.00176 0.00176 0.00176 

2 -6.3479 -6.346 -6.3524 0.00161 0.00161 0.00161 

3 -6.3713 -6.3685 -6.378 0.00154 0.00155 0.00154 

4 -6.3733 -6.3695 -6.3823 0.00152 0.00152 0.00151 

5 -6.3664 -6.3616 -6.3775 0.00152 0.00153 0.00151 

       

 

k* 

     IC1 4 

     IC2 4 

     IC3 4 

     PC1 4 

     PC2 4 

     PC3 5           
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TABLE 4.2: In-Sample and Out-Of-Sample Performance 
Panel A shows the full, in-sample results for the 30 Fama-French industry portfolios for the various models/approaches. The sample is January 

1927 - December 2015. Panel B shows the one-month-ahead out-of-sample results with an anchored starting point and initial 50-year 

estimation window. The sample is January 1927 - December 2015, with out-of-sample hedging starting in January 1977 and ending in 

December 2015. Panel C shows the same OOS results, but with an initial 60-month window, with hedging starting in January 1932, ending 

again in December 2015.  All panels show the mean squared error (MSE) and bias (absolute value of the average pricing error), averaged 

across all 30 portfolios. Bias is multiplied by 100 and reported in monthly percent form.  MSE is multiplied by 10,000 to be consistent. The 

error term comes from directly applying weights and betas calculated from the particular approach to give a predicted return for each month 

(error is difference between realized return and predicted return). Note that MSE and Bias is not calculated via regression. The 2nd pass fit in 

Panel A is the adjusted R-squared value of a regression of mean returns regressed on 1st pass coefficients. The 2nd pass fit in Panels B and C is 

the adjusted R-squared value of a regression of mean returns regressed on mean predicted returns. Error ratio is the sum of squared errors 

(mean returns less mean predicted returns, squared) over the sum of squared mean returns, multiplied by 100. PCA is principal components 

analysis, C-PCA is the constrained PCA introduced in this paper, CAPM is capital asset pricing model, FF3 is the Fama-French three-factor 

model, and Carhart adds the momentum factor to the FF3 model. Results are shown for the case with zero mispricing (γ=0) and k=4 (four 

factors). 

 

Panel A: In-Sample Results 

 

PCA C-PCA CAPM FF3 Carhart 

MSE 10.75 11.09 18.03 16.52 16.40 

Bias 0.11 0 0.14 0.18 0.15 

2nd pass fit -0.78 0.41 -1.51 -0.78 -0.42 

      

 

Panel B: Out-Of-Sample Results Starting in 1977 

 

PCA C-PCA CAPM FF3 Carhart 

MSE 11.35 11.45 18.30 17.72 17.72 

Bias 0.15 0.11 0.19 0.21 0.19 

2nd pass fit -0.09 0.44 -0.90 -1.14 -0.77 

error ratio 8.15 4.20 14.24 16.06 13.20 
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TABLE 4.2 continued 

 

Panel C: Out-Of-Sample Results Starting In 1932 

 

PCA C-PCA CAPM FF3 Carhart 

MSE 11.29 11.23 17.71 16.76 16.85 

Bias 0.12 0.08 0.15 0.17 0.14 

2nd pass fit -0.82 0.00 -2.07 -2.93 -1.66 

error ratio 3.27 1.79 5.74 7.07 4.87 
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Table 4.3: Varying Time Horizon Out of Sample 
This table shows the mean squared error (MSE), root mean squared error (RMSE), bias/absolute value of the average error, bias squared (bias 

sq), variance of the error (var), and standard deviation of the error (std dev) for the constrained principal components analysis (C-PCA) and 

principal components analysis (PCA) models with the 30 Fama/French industry portfolios as the test assets. Also shown is the proportion of 

bias to RMSE (multiplied by 100) in order to give an economic interpretation of how much bias contributes to the loss. The sample is January 

1927 - December 2015 (out-of-sample estimation ending at December 2015). Bias, standard deviation, and RMSE are multiplied by 100 and 

reported in percent form.  MSE, bias squared, and variance are multiplied by 10,000 to be consistent.  Bias is reported as monthly returns. The 

error term comes from directly applying weights and betas calculated from the particular approach to give a predicted return for each month 

(error is difference between realized return and predicted return). Note that MSE and Bias is not calculated via regression. Each panel shows 

the results when varying the forecast/hedging horizon from 1 month to 3, 12, and 48 months. The in-sample estimation window starts at 

January 1927, and out-of-sample estimation starts at January 1932 giving an initial estimation window of 60 months, which is expanding. 

Monthly returns are used to find the loadings in all cases. 

1-month returns 

Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 

C-PCA 11.23 3.35 0.08 0.01 11.22 3.35 2.39 

PCA 11.29 3.36 0.12 0.01 11.28 3.36 3.57 

        3-month returns 

Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 

C-PCA 37.59 6.13 0.25 0.06 37.53 6.13 4.08 

PCA 38.02 6.17 0.36 0.13 37.89 6.16 5.84 

        12-month returns 

Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 

C-PCA 192.18 13.86 1.11 1.23 190.95 13.82 8.01 

PCA 197.97 14.07 1.53 2.34 195.63 13.99 10.87 
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Table 4.3 continued 

48-month returns 

Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 

C-PCA 1413.42 37.60 5.20 27.04 1386.38 37.23 13.83 

PCA 1424.19 37.74 6.97 48.58 1375.61 37.09 18.47 
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 TABLE 4.4: Out-Of-Sample Performance with a Rolling Window 
This table shows the one-month-ahead out-of-sample results when using a rolling 60-month window for the 30 Fama-French industry 

portfolios for the various models/approaches. The sample is January 1927 - December 2015, with hedging starting in January 1932 and ending 

in December 2015. The above results show the mean squared error multiplied by 10,000 (MSE) and bias (absolute value of the average pricing 

error) multiplied by 100, averaged across all 30 portfolios. The error term comes from directly applying weights and betas calculated from the 

particular approach's in-sample estimation to give a one-month-ahead predicted return for each month (error is difference between realized 

return and predicted return). Note that MSE and Bias is not calculated via regression. 2nd pass fit is the adjusted R-squared value of a 

regression of mean returns regressed on mean predicted returns. Error ratio is the sum of squared errors (mean returns less mean predicted 

returns, squared) to the sum of squared mean returns (reported as multiplied by 100). PCA is principal components analysis, C-PCA is the 

constrained PCA introduced in this paper, CAPM is capital asset pricing model, FF3 is the Fama-French 3-factor model, and Carhart adds the 

momentum factor to the FF3 model. Results are shown for the case with zero mispricing (γ=0) and k=4 (four factors). 

 

PCA C-PCA CAPM FF3 Carhart 

MSE 10.12 10.05 17.04 15.90 16.15 

Bias 0.09 0.10 0.12 0.16 0.13 

2nd pass fit -0.01 -0.05 -0.89 -2.14 -1.30 

error ratio 1.82 1.91 4.02 5.75 4.19 
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Table 4.5: Out-Of-Sample Factor Weights with In-Sample Betas 
This table shows the results the regression results of returns on one-month-ahead factor returns. Reported are the mean for the 30 Fama-French 

industry portfolios. To form the one-month-ahead factor realizations, the factor weights are found in-sample and the one-month-ahead factor 

realization is stored based on those weights. The in-sample estimation period for the factor weights starts in January 1927, utilizing an 

expanding window with an anchored starting point. The regression sample is January 1977 to December 2015. F1 refers to the first factor, F2 

the second, etc. Reported are coefficients and t-stats in parentheses. Also reported are the adjusted R-squared values and mean-squared error of 

the regression, multiplied by 10,000 (mean of the 30 portfolios). Results are shown for the case with zero mispricing (γ=0) and k=4 (four 

factors). 

 
PCA C-PCA 

constant 

0.0018                 

(0.23) 

 

0.0014                   

(0.11) 

 

F1 

0.1810               

(27.27) 

0.1812               

(27.58) 

0.1817                 

(24.09) 

0.1818                    

(25.05) 

F2 

0.0092                  

(0.91) 

0.0095                  

(0.92) 

-0.0081                 

(0.32) 

-0.0070                        

(0.37) 

F3 

0.0052                  

(0.13) 

0.0055                      

(0.14) 

-0.0085                          

(-1.11) 

-0.0087                              

(-1.12) 

F4 

0.0099                  

(0.36) 

0.0103                       

(0.38) 

-0.0015                        

(-0.50) 

-0.0009                        

(-0.44) 

adj. R-squared 0.63 0.63 0.68 0.68 

MSE 14.12 14.18 11.89 11.86 
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Table 4.6: Out-Of-Sample Factor Weights with In-Sample Betas (Rolling Window) 

This table shows the results the regression results of returns on one-month-ahead factor returns. Reported are the mean for the 30 Fama-French 

industry portfolios. To form the one-month-ahead factor realizations, the factor weights are found in-sample and the one-month-ahead factor 

realization is stored based on those weights. The in-sample estimation period for the factor weights starts in January 1927, utilizing a rolling 

60-month window. The regression sample is January 1932 to December 2015. F1 refers to the first factor, F2 the second, etc. Reported are 

coefficients and t-stats in parentheses. Also reported are the adjusted R-squared values and mean-squared error of the regression, multiplied by 

10,000 (mean of the 30 portfolios). Results are shown for the case with zero mispricing (γ=0) and k=4 (four factors). 

 
PCA C-PCA 

constant 

0.0081                 

(4.01) 
 

0.0071                    

(3.50) 
 

F1 

-0.0536                           

(-8.03) 

-0.0532                         

(-7.91) 

0.0191                  

(1.81) 

0.0227                      

(2.11) 

F2 

0.0109                  

(0.50) 

0.0123                  

(0.56) 

-0.0452                         

(-2.77) 

-0.0422                          

(-2.55) 

F3 

-0.0286                          

(-0.86) 

-0.0362                          

(-1.11) 

-0.0699                          

(-2.54) 

-0.0729                          

(-2.70) 

F4 

-0.0851                          

(-2.33) 

-0.0923                          

(-2.53) 

-0.0348                          

(-0.98) 

-0.0376                          

(-1.06) 

adj. R-squared 0.07 0.05 0.06 0.04 

MSE 43.64 44.30 44.25 44.76 
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Appendix 4.A 

%=============================================================== 
MATLAB sample program designed to optimally choose k factors 

(portfolios chosen from among n zero-investment assets) to 

minimize the unexplained 'first-pass' errors subject to a 

targeted fraction of 'second pass' pricing errors (astar). Output 

provides Q as k vectors of portfolio weights normalized to square 

to one. Further a and s provide the fractions of pricing errors 

and unexplained variance, respectively, whereas a0 and s0 provide 

the benchmark, unrestricted fractions of these. 
=============================================================== 

  
clear all; clc; 

  
%User Inputs k and astar: 
k=2; %chosen number of factors; must be less than n 
astar=0.00;  %chosen fraction of pricing errors (sum of squared 

alphas relative to sum of squared mean returns).  
%astar should logically be between 0 and 1, but also less than 

a0, the implied a for lambda=0 for the optimization to make sense 

(otherwise the constraint is not binding). 

 
load FF25.txt;  
FF=FF25(:,2:26);  %Fama-French excess returns for 25 size and 

value sorted portfolios starting July 1963 ending June 2005 
[t,n]=size(FF); 

  
Sigma=cov(FF); %covariance matrix for the N asset returns 
mu=mean(FF)'; %vector of mean returns over the T periods of the N 

assets 
lambda=0; %lambda is the lagrangian multiplier constraint for the 

pricing errors constraint.  Initial value is zero. 
eps=0.0000000001; %tolerance level for deviations from the target 

fraction of squared pricing errors. 
diff=-5; %the experimental change in the lagrangian multiplier 
a=0.10; %initial level for the fraction of pricing errors  
its=0; %iterations counter 
CHECK=[]; %storing results for all iterations 

  
%Loop to converge to true lambda (and Q) contingent on choice of 

astar 
while (a-astar)^2>eps && its<1000; %continue revisions until 

pricing errors are within tolerance or the number of iterations 

becomes too large 
V=Sigma+lambda*mu*mu'; %V is the matrix for which eigenvectors 

are found 
[Q,Delta]=eigs(V,k); %'eigs' easier than 'eig' since it provides 

Qk 
abar=a; %abar accounts for the lagged iteration of a 
a=(mu'*mu - (mu'*Q*Q'*mu))/(mu'*mu); %defines fraction of pricing 

errors 
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s=1-trace(Q'*Sigma*Q)/trace(Sigma); %defines fraction of 

unexplained variance 
if (a-astar)*(a-abar)>0   %if a worsens reverse the change in 

lambda 
    diff=-diff/2; %reverse change in lambda but at half the pace 
end 
lambda=lambda+diff;  %update lambda in the direction that brings 

pricing errors closer to target 
its=its+1; 
CHECK=[CHECK;[lambda a s]]; 
end 

  
lambda=lambda-diff %corrected for the unnecessary change in 

lambda in the final iteration.  
%Note that lambda must be positive. If not, change the sign or 

lower the value of the initial 'diff' choice. 
lamcheck=trace((Delta-Q'*Sigma*Q)/((1-a)*mu'*mu))  %check that 

lambda is indeed the equilibrium value 

  
[Q0, Delta0]=eigs(Sigma,k); %find eigenvectors for unconstrained 

case 
a0=(mu'*mu - (mu'*Q0*Q0'*mu))/(mu'*mu); %provides fraction 

pricing errors in unconstrained case. 
s0=1-trace(Q0'*Sigma*Q0)/trace(Sigma); 
%Check to make sure that a0>astar 

  
Q,[a,a0;s, s0] %factor weights (Q) plus fractions of pricing 

errors and unexplained variance in optimized case (column 1) and 

benchmark case (column 2). 
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Appendix 4.B 

Consider the following optimization problem:  

 (4.B1)  )()(
,

μΣμγαΣαee
11

Q

  


E
Min

,     

where 10    represents the target level for the sum of squared alphas relative 

to the sum of squared mean returns. Using equations (4.1) and (4.2), the 

properties of traces, and taking expectations  

 (4.B2)  )()(
,

BQIQBI
Q

Tr
Min


  

     μμBQIQBI
11 )()(     

The B  are set exogenously equal to the standard OLS betas of equation (4.4): 

 (4.B3)  1 ΣQ][Q'ΣQB ,        

Using the definition of B  and the properties of traces in (4.B2), dropping 

constants and multiplying by -1 gives 

 (4.B4)  ][ 1
QΣQ)Q[Q(μμΣQ]QQ][ΣQ

12

Q
  Tr

Max
 ,   

and in addition λ is set to force μΣμγαΣα
11   .  Using Trace properties: 

 (4.B5)  1)([  ΣQ]QQ][μμΣQ
2

Q
Tr

Max
. 

This is equivalent to 



Ph.D. Thesis – Adam Stivers; McMaster University – Business (Finance) 

163 
 

 (4.B6)  )[ XXΔ(I)X]mm(ΣX
X

 Tr
Max

, 

where QΣX
2/1 , μΣm

1/2  and IΣQQXX    and Δ  is the multiplier 

enforcing this constraint. Then the first-order conditions are 

 (4.B7)  ΔX)Xmm(Σ   .      

 (4.B8) ΔXXΣμμΣΣXV 2

1

2

1




)()(   

Pre-multiplying (4.B7) by 'X  gives 

 (4.B9) XmmXΣXXΔ    

 and subsequently pre- and post-multiplying both sides by XmQμ k  and its 

transpose, respectively, and using the normalization that IXX   implies for the 

optimal choice of X  that  2)()( mXXmμΣXXΔμ  kk . To impose 

mmμΣμγαΣα
11     eliminate α  from equation (4.2).   This produces 

mmμΣμμQQμmXXm
1   )1()1(  . Then, mmmXXm  )1(   

and 2)()( mXXmμΣXXΔμ  kk  jointly imply 

 (4.B10)  212 )()1/()( μΣμμΣXXΔμ
  kk . 

Thus we use (4.B8) and (4.B10)  together with QΣX
2/1 , IΣQQXX  , and 

Qμk  to obtain the appropriate portfolios given OLS betas. 
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Chapter Five: Conclusion 

This dissertation provides evidence that returns are predictable, enough so to 

justify acting on the forecasts (which is consistent with more recent literature but 

is a relatively new development).  However, this is a relatively new development.  

The equity premium can be predicted so that market timing raises average returns.  

Individual portfolios can also be predicted out of sample with an appropriate asset 

pricing model.  Information can be gleaned from these forecasts.  For example, 

since size and book-to-market sorted portfolios can predict the equity premium 

(as shown in Chapter Three), size and value stocks may have higher returns 

because they reflect future investment opportunities.  New asset pricing factors, 

and the approach for deriving them, are introduced in this dissertation as well.  

These new factors allow for better out-of-sample estimation of industry portfolio 

returns. 

 The first essay shows that investor sentiment can drive market mispricing, 

which is followed by market correction.  This negative relationship with future 

excess market returns allows for investor sentiment to predict market returns.  A 

new measure of investor sentiment is introduced, which is designed to remove 

economic fundamentals/rationality from an existing market-based measure of 

sentiment.  The methodology removes a composite index of fundamentals to 

avoid over-fitting.43  The results show that as more fundamentals are removed, the 

                                                           
43 This is another over-arching theme of the dissertation: summarizing a large panel of 

variables/predictors avoids over-fitting and allows for better estimation.  The other benefit is that 

the single index can parsimoniously summarize a large set of data. 
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negative relationship with future returns becomes stronger.  This validates the 

noise trader hypothesis, while also being one of the few studies to show that 

sentiment can have a market-wide impact on returns.  Aside from introducing a 

new way to measure sentiment, this essay also contributes to the field of study by 

showing that sentiment has significant forecast power.  The forecasts could 

provide a potential investor with significantly positive abnormal returns, while 

also beating other benchmarks and competing models/sentiment measures. 

 The second essay’s main contribution is to provide a different specific 

mechanism to explain the size and value premiums.  The essay also shows that 

utilizing a Partial Least Squares approach applied to a large cross-section of 

portfolio returns can significantly predict the equity premium out of sample.  A 

composite index is formed from portfolio returns (where portfolios are formed 

based on size and book-to-market sorts), which can be viewed as a separate risk 

factor/ICAPM state variable.  Size and value portfolios can predict future excess 

market returns, so they reflect changes in future investment opportunities.  

Further, this new risk factor has potential applications which are explored.  The 

factor portfolio itself could be invested in, which is found to actually have a 

higher Sharpe ratio than the market.  Also, the factor can be used to hedge against 

future market risk, so a risk-hedging model is examined.  Risk is reduced and 

Sharpe ratios are improved based on an optimization approach applied out of 

sample.  Finally, the second essay offers a potential explanation for why an equal-

weighted diversification strategy typically outperforms other more advanced 
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approaches out of sample: the equal-weighted approach loads more heavily on 

size and value stocks, which are found to have a higher price of risk. 

 The third essay contributes to the field by providing a new approach to 

estimating asset pricing factors which perfectly explain mean returns in sample.  

The approach places a constraint on principal component analysis that forces zero 

alphas (mispricing).  This essentially forces that the arbitrage pricing theory holds 

perfectly, and then maximizes first pass fit subject to that constraint.  Thus, the 

approach is able to completely eliminate bias in-sample, while also maximizing 

the explained covariance among the test assets.  It is shown that only a bit of 

mean squared error is sacrificed when imposing this restriction.  The essay 

explores the potential benefits and applications of an unbiased model.  An 

important contribution of the essay, though, is the out-of-sample estimation with 

these new factors.  The factors (through their weights and the betas of individual 

portfolios) greatly reduce bias when used to hedge out of sample, compared to the 

traditional asset pricing models and the unconstrained principal component 

analysis.  Further, the mean squared error is either the lowest of all models or only 

slightly higher than principal components analysis. 

 Overall, this research emphasizes the importance of out-of-sample 

estimation and return predictability.  The traditional asset pricing models can 

explain cross-sectional or mean returns, but what matters in practice is having a 

good estimation of expected returns.  This dissertation explores different 

approaches to moving out of sample.  One way is to use the arbitrage pricing 
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theory, forming factors that perfectly explain mean returns as in the model.  This 

allows portfolio returns to be hedged out of sample with a reduced bias.  The first 

two essays estimate the equity premium out of sample.  The second essay shows 

that a composite index of portfolio returns can predict the equity premium, which 

allows for a bridge to an existing asset pricing model, the ICAPM.  The first essay 

shows that behavioral finance has a place in predicting market returns.  

Specifically, investor sentiment has a market-wide impact that presents a 

predictable pattern of market returns. 

 This research should be of interest not only to the academic community 

but to the investor/practitioner community as well.  In this light, potential 

applications are performed in each essay that could be implemented in real time.  

The results show that each essay’s approach allows for beneficial out-of-sample 

estimation.  In most cases the forecasts are both statistically and economically 

significant.  While return predictability has started to gain acceptance in the 

academic community, market timing still has a negative connotation.  This 

dissertation attempts to some arguments in support of market timing although it is 

never fully possible to distinguish unobserved risk premia and abnormal returns.  

Lastly, this dissertation attempts to bridge the gap from traditional asset pricing 

where cross-sectional or mean returns are explained to out-of-sample estimation 

and forecasting. 


