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Abstract

The subject of this work is a theoretical analysis of the Pearcey function. In optics,

thin lens theory supposes that all rays focus at a unique point where the field con-

verges. For a real lens, the focal point is replaced by a cusp, which is the end point of

a caustic curve dividing the bright field region from the dark. My particular interest is

the pattern of nodal points within the cusp. By investigating the stationary points for

the cusp catastrophe, asymptotic approximations are found for the Pearcey function.

This in turn leads to the development of finding the positions of nodal points inside,

and outside a caustic. Also values for |P | on a small circle surrounding a node are

examined and show reasonable accuracy of order 10−8.
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Chapter 1

Introduction

In 1946 Pearcey [2] published the first detailed calculation of the EM field structure

near the focus of a spherical lens located at x→ −∞. This result is now known as the

Pearcey function. This function takes the form of the second catastrophe known as

the cusp in Thom’s catastrophe theory. Physically the Pearcey function describes a

brightly lit region of light bounded by a caustic, separated from a dark region outside.

The cusp is useful for describing equilibrium positions and stability of dynamic sys-

tems such as boats or oil-rigs [3]. The Pearcey function has been used to predict elastic

scattering or atomic collision [4], [5]. The propagation of electromagnetic waves in the

ionosphere [6] has seen its use. Also in the novel study of Pearcey beams, which show

interesting behaviour such as form-invariance on propagation and self-healing [7].

As light propagates through a medium it tends to focus not at a single focal point

but rather across multiple foci. As a family of rays concentrates into a region of space,

the boundary is known as a caustic. One of the initial problems in analysing caustics

is that in the domain of geometrical optics, as you approach the caustic the intensity

is non-physical and approaches infinity, due to the rays having no finite size. The

other is that caustics were thought to be perturbed focal points due to aberrations in

the medium. However they have been found to fit in a family of mathematical objects

known as catastrophes.

Catastrophe theory was developed by Rene Thom in the 1960’s. He classified seven

elementary types of catastrophe patterns. Catastrophe theory is used to describe dis-

continuities and when applied to physical problems, it can describe the properties of

a discontinuity without invoking specific details of the underlying mechanism. Each

catastrophe corresponds to a different diffraction pattern with its own characteristic

function. These functions can be related to polynomials within an integral. Set in

some coordinate system, short-wave asymptotic solutions can be developed to satisfy

the wave equation. In general one writes,

1
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ψ(a) =

∫ ∞
−∞

eiV (a,t)dt

where a is a set of parameters and t is a variable of integration. The catastrophe of

interest to me is known as the cusp. It can be described by the function, P (x, y),

known as Pearcey’s function. I will outline the work of Kaminsky and Paris who

found a method to locate the nodal points in a systematic way, with accuracy of ±1%

or better.

Chapter two is devoted to a brief overview of catastrophe theory. The basics of

catastrophe theory and the link to geometrical optics are explained.

Next, chapter three compares the various asymptotic approximations to the Pearcey

integral by exploring the work of Stamnes and Spjelkavik [1], Kaminsky and Paris [8],

and investigates the accuracy of such asymptotic analyses.
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Chapter 2

Catastrophe Theory

René Thom developed his ideas in the 1960’s and published “Stabilité Structurelle

et Morphogenèse” [9] in 1972. Since then, the subject of catastrophe theory has

developed considerably. Catastrophe theory is a topological model of a dynamical

system, which stresses the importance of structural stability, where a system can be

perturbed by a small amount while its behaviour remains locally unchanged. However,

repeatedly disturbing the system by small perturbations may eventually cause the

system to undergo a discontinuity. Thom devised a system whereby knowing the

number of control variables, one may know the configuration of the discontinuity. If

there are no more than four control variables, there are only seven distinct types of

catastrophes. One of the catastrophes describes a caustic as an envelope of rays on a

two-dimensional surface. The Airy function describes the intensity of a point caustic

and the phase has the form of the fold catastrophe,

Ai(a) =
1

2π

∫ ∞
0

ei(ax+x3/3)dx. (2.1)

The Airy function is a well studied function which is related to a classical turning point

of a quantum particle. An oscillating wave in one dimension approaches a caustic from

−∞ < a < 0 and decays exponentially once it passes the caustic, positioned at a = 0,

along the real a-axis. It is at a caustic where the wave goes from a having a bright

intensity to a quickly decaying, dark region. The Pearcey function is a generalised

version of the Airy function, but instead of it being in one dimension, a, the Pearcey

function is in two, x and y. The seven elementary catastrophes are presented below.

The first potential function in catastrophe theory is the fold which is assigned the

standard form,

V1 = x3 + ax. (2.2)

The second is the cusp catastrophe,

V2 = x4 + ax2 + bx. (2.3)

3
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The third is called the swallowtail catastrophe

V3 = x5 + ax3 + bx2 + cx. (2.4)

Following this, the butterfly,

V4 = x6 + ax4 + bx3 + cx2 + dx. (2.5)

then the hyperbolic umbilic catastrophe

V5 = x3 + y3 + axy + bx+ cy. (2.6)

The elliptic umbilic catastrophe,

V6 =
x3

3
− xy2 + a(x2 + y2) + bx+ cy, (2.7)

and finally the parabolic umbilic catastrophe,

V7 = x2y + y4 + ax2 + by2 + cx+ dy. (2.8)

In all of these, x, y are variables of integration; a, b, c, d are control parameters. This

chapter will outline the development and basic principles of Thom’s theory concerning

the cusp catastrophe.

The cusp catastrophe corresponds to the optical phenomenon known as a caustic.

These can form in many scenarios, one being rays striking a cylindrical reflector. The

intensity of the brightly lit region is large but knowing the shape and position of the

pattern is sufficient for some analysis. In Fig 2.1 one can see rays travelling to the

right impinging upon the cylindrical surface. The incident ray strikes the surface at

θi and is reflected with an equal value of θ, measured from the normal between the

incident ray and surface. These reflected rays do not converge toward one focal point

but rather create a pattern of overlapping rays. The equation for a reflected ray, from

Poston and Stewart [10], is given as

(y − sin θ) cos(2θ) = (x− cos θ) sin 2θ. (2.9)

To find the equation for the cusp pattern produced by the mirror, differentiate Eq (2.9)

with respect to θ and solve for x and y.

x = cos θ − 1

2
cos θ cos 2θ

y = sin θ − 1

2
cos θ sin 2θ (2.10)

4
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Figure 2.1: Cusp Pattern via a reflective mirror.

2.1 Zeeman Catastrophe Machine

A mechanical example of catastrophe is provided by Zeeman’s machine. Invented

in 1969 by E.C.Zeeman [11] the simple apparatus makes use of two rubber bands,

some pins and a wheel put together in such a way that at certain points P (α, β)

the machine will seek out minima via a discontinuous change in position. It should

be noted that the parameters are changed smoothly as possible so as to represent a

continuous change.

The above illustration depicts the Zeeman machine. A wheel is placed flat against

a board and centred by a pin O, around which it can rotate. RQ and QP represent

the two rubber bands, at Q both rubber bands are attached and fixed onto the edge

of the wheel. RQ is fixed by another pin at point R, which is in line with OA, and

QP is free at point P . To operate this device the free end of QP , P , is manipulated

by a user in the plane of the device.

When P is outside of the cusp region (A,B,C), there is only one minimum for the

potential, as P moves smoothly, the equilibrium of potential also changes smoothly.

But inside the cusp there are two potential minima. As P enters the cusp, travels

5
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smoothly across the symmetry line of AB and exits the cusp on the other side, the

system undergoes an abrupt change where the orientation of the wheel jumps to a

new position with a negative θ (which is the angle ROQ) all due to a smooth change

of variables. This abrupt discontinuity of position is known as a catastrophe.

The potential energy of this system is a function of angle θ. According to Hooke’s

Law the potential energy of a stretched rubber band is proportional to the square of

the stretch (l − l0)2. Setting l0 = 1, we can write

Vα,β(θ) =
µ

2
[(l1 − 1)2 + (l2 − 1)2] (2.11)

where µ is the modulus of elasticity, l1 is the length RQ and l2 is the length QP . The

lengths are defined in terms of θ and l2 moves in (α, β) ,

l1 =

√
(2− 1

2
cos θ)2 + (

1

2
sin θ)2

l2 =

√
(d+

1

2
cos θ − α)2 + (

1

2
sin θ + β)2

where d is the length OB and θ is the angle ROQ.

By expanding cos θ, sin θ in powers of θ the energy Vα,β takes the truncated form

Vα,β(θ) ≈ µ

2

(
a0 + a1βθ + a2αθ

2 + a3βθ
3 + a4θ

4 +O(θ5)
)
. (2.12)

a0, . . . , a4 are constants. We can take units where µ
2
a4 = 1 to simplify the expansion,

also for simplification the O(θ5) term may be omitted. The potential can then be

written as,

V (θ) ≈ a0 + a1βθ + a2αθ
2 + a3βθ

3 + θ4

By shifting the origin of θ to t = θ + a3β/4a4, one can get rid of the cubic term

and rewrite the potential as

V (t) = at+
1

2
bt2 +

1

4
t4. (2.13)

with a = 9
5
α, b = 4

3
β.

Equation (2.13) is known as the standard form of the cusp catastrophe. In order to

get some useful information about the cusp catastrophe, the critical points (i.e. the

maxima and minima) of V must be analysed.

6
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2.2 Cusp Catastrophe

Here is the Pearcey function with the cusp in the phase as described in Eq. (2.13).

P (a, b) =

∫ ∞
−∞

ei(at+bt
2/2+t4/4)dt (2.14)

This section deals with the analysis of the critical points of the cusp catastrophe.

The critical points are given by taking the derivative of Eq.(2.13) with respect to

t. This makes V into an extremum as the points where V is insensitive to small

displacements is of interest. If you integrate along the real t-axis the integral oscillates

infinitely rapidly due to the eit
4

factor.

dV (t)

dt
= a+ bt+ t3 = 0, (2.15)

where a, b are real. This takes the form of a cubic and its characteristics are determined

by the determinant,

D = 8a3 + 27b2. (2.16)

• If D > 0, then there is one real root and a pair of complex conjugate roots.

• If D = 0, then all three roots are real but two coincide, i.e., if a = b = 0 then

all three real roots coincide, but if a 6= 0 or b 6= 0 then only two of the roots

coincide.

• If D < 0, then there are three real roots.

The nature of the roots depends entirely on the values of the parameters a, b, which

are known as the control parameters, relative to the caustic. The caustic is plotted

in Fig. 2.2. For chosen points the potential is plotted alongside them. The caustic is

defined here as

8a3 + 27b2 = 0 (2.17)

and using Eq. (2.17), it is shown that outside of the caustic there is one minimum

and inside the caustic there are two minima.

This explains the discontinuous jumping of the wheel, as inside there are two

positions for the wheel to be oriented and be in a local minimum, whereas outside

there is only one and therefore the wheel must orientate itself to satisfy that single

minimum. The curved lines are a cartoon of the potential energy of the Zeeman

machine.

7
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Figure 2.2: Caustic with potentials

Fig.2.2 is plotted in the a, b plane and the potentials are plotted as V (t) vs t, the

axes are left out, in order to view these potentials with greater ease. Going from

near the centre line at (−12, 0) inside the cusp there are two deep minima and as you

approach the edge of the cusp, one of the potential minima’s reduces in depth until

outside, at (−6, 12), it entirely disappears.

2.3 Mapping

An illustrative example of the discontinuity occurring over the caustic is shown when

plotted in three dimensions. For simplicity to plot in Maple the equation is now stated

as

V (x) =
1

3
xy − x2z + x4 (2.18)

Dividing Eq.(2.18) by x and change the sign so as to have the orientation of the

surface facing in a way that the overlapping feature is obviously present and finally

the last term, y, involves a scaling factor of a third.

V (x)

x
=

1

3
y − xz + x3 (2.19)

The caustic bifurcation set is also plotted on the y, z base plane.

8
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Figure 2.3: Equilibrium Surface and Control Space

The phase point lies on either the lower sheet or upper sheet in Fig. 2.3, since the

middle sheet corresponds to unstable equilibria. The system point is located on the

purple surface, and moves position as the control variables (z, y) are changed. Smooth

variations in z, y almost always produce smooth variation in x except at the points

highlighted by the caustic. The caustic 8x2 + 27y2 = 0 is the red line projected onto

the blue plane which represents the boundary of the folds. If the point system crosses

the path highlighted by the caustic it must undergo a sudden change in x, that is, it

jumps to the other sheet.

2.4 Structural stability and Codimension

An important aspect running in the background of catastrophe theory is the notion

of structural stability. This section summarises the topic from Saunders. [12]. Sup-

pose that f(x) is a function of an m-parameter family of functions. If the parameters

change continuously, then in this m-dimensional space the function may be repre-

sented as fa(x) for a point A. Another point, say B, is represented by a function of

the same form, fb(x); if it is close enough to point A then fa(x) is called structurally

stable. On the other hand, the set of all points A where these two functions are not

stable is the called the bifurcation set.

The concern of this project is to investigate a two parameter function P (x, y). In

this subsection the splitting lemma will be developed for a two variable potential and

9
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it will be shown that the number of essential variables can be reduced to one so as

to ease the investigation. Let f(x, y) be a smooth function in x and y with a critical

point at the origin. That is, both x and y derivatives vanish.

fx(0, 0) = fy(0, 0) = 0. (2.20)

Here fx(0, 0) and fy(0, 0) represent the partial derivatives with respect to x and y

respectively. Expanding via the Taylor series

f(x, y) ≈ 1

2

(
∂2f

∂x2
x2 + 2

∂2f

∂x∂y
xy +

∂2f

∂y2
y2

)
+ higher order terms (2.21)

The determinant,

∆ =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂x∂y

)2

(2.22)

determines the type of critical point of the function f(x, y),

∆ > 0,
∂2f

∂x2
< 0, maximum

∆ > 0,
∂2f

∂x2
> 0, minimum

∆ < 0, saddle. (2.23)

For functions with a large number of variables, these conditions can be expressed

in terms of a matrix. Let f(x1, x2, .., xn) be a function of n independent variables

with a critical point at the origin. Define a matrix, known as the Hessian,

H =


∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x1∂x3

.... ∂2f
∂x1xn

∂2f
∂x2∂x1

∂2f
∂x22

∂2f
∂x2∂x3

.... ∂2f
∂x2xn

.... .... .... .... ....
∂2f

∂xn∂x1

∂2f
∂xn∂x2

∂2f
∂xn∂x3

.... ∂2f
∂x2n

 . (2.24)

If detH 6= 0 then it is possible for a coordinate transformation to exist which lets one

express f as

f = e1x
2
1 + e2x

2
2 + ...+ enx

2
n + higher powers. (2.25)

where ei = ±1. This shows that the rank of the Hessian is n if the determinant does

not vanish. Now if the rank is dictated by a value of n− r, where r is a positive value

then by similar logic of transforming the coordinates, the function may be written as

f = er+1x
2
r+1 + er+2x

2
r+2 + ...+ enx

2
n + higher powers (2.26)

10



Master’s Thesis - D.A.MacBeath; McMaster University - Physics and Astronomy

This is structurally unstable but it is defined by x1, x2, ..xn variables, which means

that it can be studied by the r variables alone thereby reducing the number of variables

having to be considered. In other words, variables ranging from

xr+1, xr+2, ...xn

are inessential to the analysis and can be ignored and variables ranging over

x1, x2, ...xr

are essential and describe everything that is necessary. This is the Splitting Lemma.

The number of different types of catastrophes depends only on the number of essential

state variables r and not on the number of state variables n. r is known as the co-rank

of the Hessian.

2.5 Link to Geometrical Optics

A well-known link from geometrical optics to wave theory is shown by using the

eikonal equation. Fermat’s Principle is used, which states that a ray travels the

shortest distance between two points.∫ b

a

n(x, y, z) ds = min. (2.27)

ds is the line element for the ray between two points a,b. The line element undergoes

of change of variables, x′ = dx/dz and y′ = dy/dz so the integrand can be integrated

by dz,i.e.

ds =
√
dx2 + dy2 + dz2 =

√
1 + x′2 + y′2 dz.

Now Eq.(2.27) can be written as,∫ b

a

L(x, y, x′, y′) dz = min, (2.28)

where the Lagrangian is L(x, y, x′, y′) = n(x, y, z)
√

1 + x′2 + y′2. Eq (2.28) is min-

imised by solving the Euler-Lagrangian equations,

d

dz

∂L

∂x′
− ∂L

∂x
= 0 (2.29)

d

dz

∂L

∂y′
− ∂L

∂y
= 0. (2.30)

Substituting the Lagrangian into the above equations Eqs. (2.29) and Eq(2.30), one

obtains

11
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d

dz

nx′√
1 + x′2 + y′2

=
√

1 + x′2 + y′2
∂n

∂x
(2.31)

d

dz

ny′√
1 + x′2 + y′2

=
√

1 + x′2 + y′2
∂n

∂y
. (2.32)

Tidying these equations up by using the previous expression for ds(
d

ds

[
n
dx

ds

]
,
d

ds

[
n
dy

ds

])
=

(
∂n

∂x
,
∂n

∂y

)
. (2.33)

This is approximately the eikonal equation for a ray vector

d

ds

(
n(~r, ω)

d~r

ds

)
= ∇n(~r, ω). (2.34)

2.6 Lens

This section will explain how to trace rays through a symmetric spherical lens and

shows a geometric optics interpretation of a catastrophe. To start of with, consider

an spherical lens with thickness 2t. The lens is in the z, y plane and has symmetry

about the z-axis. Each face of the lens is an arc centred at z = ±R ∓ t, where R is

the radius of a circle. Imagine a family of incident rays running parallel to the z-axis

approaching the lens from left hand side, passing through the lens at different heights

relative to the surface. These rays impinge on the surface and travel through the lens

cause multiple focal points to build up and therefore will create bright regions, ending

in a cusp.

A ray at height h impinges on the lens at point za and the angle of the ray from

the normal to the lens is sin(θ0) = h/R. At point za,

h2 + (za −R + t)2 = R2

h2 + (za + t)2 − 2R(za + t) = 0

(za + t) = R−
√
R2 − h2 ≈ h2

2R
(2.35)

After the ray passes through the first surface at an angle of θ0 to the normal it

will enter at an angle of θ1, specifically sin θ1 = 1
n

sin θ0, until it meets the second

surface of the lens. The ray will meet the second surface of the lens at point zb at

a height denoted by hb above the z-axis. The angle between the normal and ray is

θ1 + φ, where sinφ = hb/R. The normal of the ray at the second surface is centred

at z = −R + t. Now the issue is to find relations for hb and zb so a projection of the

rays propagating through the lens can be plotted. Similarly,

12
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Figure 2.4: Six rays are shown for various heights of h for only upper half of the lens; the lens is

symmetric about the z-axis. Refractive index of n = 1.5 and thickness t = 1.5. Each surface has a

radius of R = 9 units.

h2
b + (zb +R− t)2 = R2

h2
b + (zb − t)2 + 2R(zb − t) = 0

(zb − t) = −R +
√
R2 − h2

b ≈ −
h2
b

2R
(2.36)

Another relation for is needed in terms of zb and hb in order to produce useful results.

If the ray would not pass through the second surface then the ray refracted only by

the first surface, at za, would cross the axis at point S, where tan θ1 = h/(S − za). It

is equivalent to say then that tan θ1 = hb/(S − zb) also. From here it follows that,

S = za +
h

tan θ1

= zb +
hb

tan θ1

.

Rearranging one obtains,

hb = (S − zb) tan θ1

h2
b = (S2 − 2zbS + z2

b ) tan2 θ1. (2.37)

13
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Substituting Eq. (2.36) into the previous equation yields a quadratic equation for

zb
(zb − S)2 tan2 θ1 + (zb +R− t)2 −R2 = 0,

or

Az2
b + 2Bzb + C = 0,

where, A = sec2 θ1, B = R− t− S tan2 θ1, and C = S2 tan2 θ1 + t2 − 2Rt. Solving for

zb yields,

zb = cos2 θ1

(
−B +

√
B2 − AC

)
. (2.38)

Knowing expressions for zb and hb a value for φ can be found, as sinφ = hb/R, and

therefore the angle of incidence impinging onto the second surface θ1 + φ. By Snell’s

law the angle of the ray leaving the second surface of the lens is

sin(θ2) = n sin(θ1 − φ).

From point zb the ray is inclined by φ, relative to the horizontal, so then the exit

rays angle will be θ2 − φ. The ray will cross the z-axis at point,

zf = zb +
hb

tan(θ2 − φ)
.

Rays are plotted for several values of h in Fig. 2.4. One can see the rays crossing

paths, it is at these points where the interference can lead to a maximum or minimum

intensity. Along the caustic adjacent rays are tangential and interfere constructively.

There are many points inside the caustic where three rays interfere to give zero in-

tensity. The overall behaviour is known as a diffraction catastrophe.

14



Chapter 3

Analysis of the Pearcey function

T.Pearcey was the first to do serious calculations of the field amplitude of a spherical

lens in the neighbourhood of the cusp, now called the Pearcey function P (x, y). He

used the Cambridge “differential analyser”, an electro-mechanical machine built by

the Metropolitan-Vickers Engineering for Dr Hartree. He first computed P (x, 0) along

the real axis using the Watson-Hardy result in terms of Bessel functions of order ±1/4.

Then he solved for P (x, y) at y, by solving a differential equation involving ∂P/∂y.

Results were reported graphically as contour plots of modulus and phase for P (x, y).

Pearcey’s integral, P (x, y), has numerous nodes and can be analysed via various

numerical methods. Authors Stamnes and Spjelkavik [1] Kaminsky and Paris [8]

investigated asymptotic approximations of the Pearcey integral in different regions

inside the caustic and obtained a high degree of accuracy in finding nodal positions.

In this section I will outline the various approximations and their regions of use, but

more specifically using this knowledge the region close to the caustic and the lowest

order approximation are discussed more closely.

3.1 Approximate solutions to the Pearcey function

T. Pearcey investigated a two parameter integral of a cylindrical electromagnetic wave

in 1946 [2], which is now known as the Pearcey integral. Using this integral the field

structure near the cusp was numerically studied. Since then the Pearcey integral

has been used to study cusps and develop asymptotic approximations of the field

structure.

Pearcey’s integral takes the form,

P (x, y) =

∫ ∞
−∞

ei(t
4+t2x+ty)dt, (3.1)

where the phase function represents the cusp catastrophe. The phase is denoted by

h(t) = t4 + t2x+ ty (3.2)
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and if

h′(t) = 4t3 + 2tx+ y > 0 (3.3)

then the real root is given by

t1 = u+ v (3.4)

where

u3 = −y
2
−
√
y2

4
+
x3

27
(3.5)

and

v3 = −y
2

+

√
y2

4
+
x3

27
(3.6)

The two complex roots are complex conjugates and are given by multiplying the root

given by Eq. (3.4) by (−1
2
± i

√
3

2
), i.e.,

t2,3 = (u+ v)(−1

2
± i
√

3

2
) (3.7)

If derivative of the phase is negative,

h′(t) = 4t3 + 2tx+ y < 0 (3.8)

then Eq. (3.4) has three real roots

t1 = 2(−1

6
x)1/2 cos(

1

3
φ) (3.9)

and

t± = −2(−1

6
x)1/2 cos(1/3(φ± π)) (3.10)

t2 = t+, t3 = t−

where

cos(θ) =
1

8
y(−1

6
x)−3/2 (3.11)

From the discussion associated with Eq. (2.16) one can see when h′(t) < 0 that as

x and y approach zero from the negative side, i.e., θ → 0, that t2 and t3 real roots

will coalesce. Also if h′(t) > 0 and θ → 0 from the positive x side of the caustic then

the two imaginary stationary points will coalesce into one real stationary point. This

means that inside the caustic defined by

8x3 + 27y2 = 0 (3.12)

there are three stationary points, on the caustic itself there are two distinct stationary

points and outside only one real stationary point.
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3.2 Taylor Series method for small values of R

To compute values for of the Pearcey function for small values of x2 + y2 ≡ R2 < 16

one can use the Taylor series. To begin,

P (x, y) =

∫ ∞
−∞

ei(t
4+xt2) cos(yt) dt. (3.13)

The power series is obtained by expanding the integrand in powers of x, y and keep-

ing the eit
4

term as is. (Odd powers y vanish after integrating over t as P (x, y) is

symmetric about the y-axis), everything depends upon interpreting the integrals as

gamma functions:

Γ(z + 1) =

∫ ∞
0

tze−tdt (3.14)

We start with:

P (x, y) =
∞∑
n=0

∞∑
m=0

(iy2)n(ix)min

(2n)!m!
×
∫ ∞
−∞

t2(n+m)eit
4

dt. (3.15)

The factors involving t cancel each other and using i8n = i8m = i4 = 1 where n,m are

integers. After considerable work one arrives at,

P (x, y) =
1

2

∞∑
n=0

∞∑
m=0

y2nxmi(6m+10n+1)/4

(2n)!m!
Γ

[
1

4
(2m+ 2n+ 1)

]
(3.16)

When x = 0 the index n is sufficient and using even and odd values of n, i.e., n =

2k, (2k + 1), the equation above becomes,

P (0, y) =
1

2

[∑
k

y4ki(20k+1)/4

(4k!)
Γ(k + 1/4) +

∑
k

y4k+2i(20k+11)/4

(4k + 2)!
Γ(k + 3/4)

]
. (3.17)

This can be simplified as i1/4 = eiπ/8 and i11/4 = −ie−iπ/8

2P (0, y) = eiπ/8
∑
k

y4kik

(4k)!
Γ(k + 1/4)− ie−iπ/8

∑
k

y4k+2ik

(4k + 2)!
Γ(k + 3/4). (3.18)

Write 2P (0, y) =
∑

k so as to make clear of the expansion over k. The k = 0 term,

S0 = eiπ/8Γ

(
1

4

)
− ie−iπ/8y

2

2!
Γ

(
3

4

)
. (3.19)

The real and imaginary parts of P (0, y) can be combined to give the amplitude and

phase. This can be written in a more general form,
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2P (0, y) = eiπ/8 [S0r + iS1i] + e−iπ/8 [S3i − iS2r] (3.20)

where,

S0r = Γ

(
1

4

)
− y8

8!
Γ

(
9

4

)
+
y16

16!
Γ

(
17

4

)
− . . .

S2r =
y2

2!
Γ

(
3

4

)
− y10

10!
Γ

(
11

4

)
+
y18

18!
Γ

(
19

4

)
− . . .

S1i =
y4

4!
Γ

(
5

4

)
− y12

12!
Γ

(
13

4

)
+
y20

20!
Γ

(
21

4

)
− . . .

S3i =
y6

6!
Γ

(
7

4

)
− y14

14!
Γ

(
15

4

)
+
y22

22!
Γ

(
23

4

)
− . . .

(3.21)

The above sums combine to give,

2<P = cos(π/8) [S0r + S3i]− sin(π/8) [S1i + S2r]

2=P = sin(π/8) [S0r − S3i]− cos(π/8) [S1i − S2r] (3.22)

Only S0r is non-zero at the origin, so at P (0, 0) the phase is equal to π/8, with a

magnitude of 1
2
Γ
(

1
4

)
. A similar operation is done along the x-axis with y = 0 but

instead of summing over k, one sums only with index m. Separating into even values

and odd values of m, m = 2j, (2j + 1) yields,

2P (x, 0) =
∑
j

x2j i
(12j+1)/4

(2j)!
Γ

(
j +

1

4

)
+
∑
j

x2j+1 i
(12j+7)/4

(2j + 1)!
Γ

(
j +

3

4

)
. (3.23)

Using i4 = 1, i1/4 = eiπ/8 and i7/4 = i2e−iπ/8, one can write

2P (x, 0) = eiπ/8
∑
j

x2j (−i)j

(2j)!
Γ

[
j +

1

4

]
− e−iπ/8

∑
j

x2j+1 (−i)j

(2j + 1)!
Γ

[
j +

3

4

]
= eiπ/8 [Ser − iSei]− e−iπ/8 [Sor − iSoi] . (3.24)

Here the e, o subscripts denote the powers of x to be either odd or even. Assuming x

is positive,
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Ser = Γ

(
1

4

)
− x4

4!
Γ

(
9

4

)
+
x8

8!
Γ

(
17

4

)
− . . .

Sor =
x

1!
Γ

(
3

4

)
− x5

5!
Γ

(
11

4

)
+
x9

9!
Γ

(
19

4

)
. . .

Sei =
x2

2!
Γ

(
5

4

)
− x6

6!
Γ

(
13

4

)
+
x10

10!
Γ

(
21

4

)
. . .

Soi =
x3

3!
Γ

(
7

4

)
− x7

7!
Γ

(
15

4

)
+
x11

11!
Γ

(
23

4

)
. . . (3.25)

Combining these sums yields,

2<P = cos
(π

8

)
[Ser − Sor] + sin

(π
8

)
[Sei + Soi]

2=P = sin
(π

8

)
[Ser + Sor]− cos

(π
8

)
[Sei − Soi] . (3.26)

When x → −x, the amplitudes Ser and Sei stay the same but Sor and Soi change

sign. This makes the −x landscape very different from the positive landscape. For

the opposite sign of x one has,

2<P = cos
(π

8

)
[Ser + Sor] + sin

(π
8

)
[Sei − Soi]

2=P = sin
(π

8

)
[Ser − Sor]− cos

(π
8

)
[Sei + Soi] . (3.27)

According to Stamnes [1] these equations for the values of the Pearcey function give

good results up to x ≈ 4 with y = 0, after which requires it too many terms to achieve

convergence. We did not succeed in getting reasonable results.

3.3 Method of stationary phase

In order to deduce values for the asymptotic behaviour of P (x, y), at large x one can

use the method of stationary phase. The Pearcey function in the negative x axis is,

P (−x, y) =

∫ ∞
−∞

ei(t
4−xt2+yt)dt. (3.28)

Let t =
√
xu,

P (−x, y) =
√
x

∫ ∞
−∞

eix
2(u4−u2+yx−3/2u)du

=
√
x

∫ ∞
−∞

eix
2ψ(u)du (3.29)
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In general to calculate along paths of steepest descent one considers the integral in

the form

I(λ) =

∫
C

g(z)eλw(z)dz. (3.30)

The contour of integration is chosen so that the real part of w(z) approaches minus

infinity at both limits and the integrand vanishes. If λ is a large positive number the

value of the integrand is large when real w(z) is large and small when real w(z) is

small or negative. The main contribution of the integrand will come from the region

where the real part of w(z) has a maximum value. Away from positive maximum the

integrand will become negligible. Writing,

w(z) = u(x, y) + iv(x, y). (3.31)

Separating into real and imaginary parts, the integral is then,

I(λ) =

∫
C

g(z)eλu(x,y)eiλv(x,y)dz. (3.32)

It is important that the maximum value of u(x, y) is maximum only along a con-

tour. In the finite plane neither the real nor imaginary parts can possess an absolute

maximum value as u and v both satisfy Laplace’s equation,

∂2u

∂x2
+
∂2u

∂y2
= 0

∂2v

∂x2
+
∂2v

∂y2
= 0. (3.33)

If u or v curve downwards along x, then they want to curve up along y and vice versa.

The contour must be chosen so that u(x, y) has a maximum at the saddle point and

the contour must pass through the saddle in such a way that the imaginary part

v(x, y) is constant along the path. One can then say,

I(λ) ≈ eiλv0
∫
C

g(z)eλu(x,y)dz. (3.34)
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Figure 3.1: Path of steepest descent

Curves corresponding to u = constant and v = constant form an orthogonal sys-

tem, in other words, a curve v = ci is everywhere tangential to ∇u. Therefore the

curve v = constant is the curve that gives the line of steepest descents from the saddle

point. Fig. 3.1 comes from Arfken. [13] page 430. One can see the function has a

maximum along the direction of steepest descent. If the contour is deformed in such

a way that it passes through the saddle point in the direction of steepest descent, the

large values of λ ensure that essential contributions for the integrand come from a

small region near the saddle point as the exponent quickly decreases. The detailed

shape of the curve of steepest descent far from the saddle point is unimportant. To

evaluate the Pearcey function one makes one makes the following substitutions in

Eq. (3.30),

z = u

λ = x2

iψ(u) = w(z)
√
x = g(z) = const. (3.35)

Setting γ = yx−3/2 for simplicity of notation the phase w(z) becomes,

w(z) = i(z4 − z2 + γz). (3.36)

In order to find the angle that the path makes between the real axis and the path one

follows the recipe given in Bleistein and Handelman [14]. Take the second derivative
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with respect to z and set to z = u1, i.e the first stationary point,

d2w

dz2
= i(12z2 − 2) = 2i(6z2 − 1)

(
d2w

dz2
)z=u1 = 2i(6u2

1 − 1) = i2d2
1 = 2d2

1e
iπ/2. (3.37)

From Table 7.1 in Bleistein one obtains the angle of the path of steepest descents to

the real axis as

θp = −α
n

+ (2p+ 1)
π

n
, (3.38)

where p = 0, 1, 2..n− 1. For u1 n = 2 and α = π/2. In this case the angles θ0 = π/4,

θ1 = π + π/4, . . . for the slope going through the node u1. For the second node u2

the phase is written as

w(z) = i(z4 − z2 + γz) (3.39)

and the second derivatives lead to

d2w

dz2
= i(12z2 − 2) = −2i(1− 6z2)

(
d2w

dz2
)z=u2 = −2i(1− 6u2

2) = −i2d2
2 = 2d2

2e
−iπ/2. (3.40)

Eq. (3.38) gives angles θ0 = 3π/4, θ1 = 3π/4 + π . . . as n = 2 and α = −π/2. Root

u3 behaves the same as the first root u1.

According to Bleistein [14] the steepest descent paths are curves where the imagi-

nary part of the phase is constant. One writes,

w(z) = u(x, y) + iv(x, y),

u(x, y) = −4x3y + 4xy3 + 2xy − γy,
v(x, y) = x4 − 6x2y2 + y4 − x2 + y2 + γx. (3.41)

Therefore if we want to find the relation between x and y which contains the phase

then we must equate v(x, y) to the value at the stationary point. Then the imaginary

component is also equal to the form of the phase which contains information about

the roots,

x4 − 6x2y2 + y4 − x2 + y2 + γx = u4
i − u2

i + γui. (3.42)

This can be rearranged in the form of a quadratic in y2,
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y4 + (1 + 6x2)y2 + (x4 − x2 + γx− (u4
i − u2

i + γui)) = 0. (3.43)

whose solution is,

y2
i (x) =

1

2
(−1 + 6x2 ±

√
∆i)

∆i = (1− 6x2)2 − 4(x4 − x2 + γx− (u4
i − u2

i + γui)). (3.44)

When the discriminant ∆i is positive then one has two real values of y2. ∆i specifies

x, y on the path of stationary phase. Paths of constant phase are those which have

fewest cancellations between the plus and minus values, so better numerical accuracy

can be obtained. The next step is to investigate the paths via numerical integration

to see the variation of the root u(x, yi) along the contour.

P (x0, y0) =
√
x0

∑
ui

eix
2
0vi

∫ ∞
−∞

ex
2
0u(x,yi)ds (3.45)

where,

dsi =

√
1 + (

dy

dx
)2 eiξi dx

(
dy

dx
)i = −∂v/∂x

∂v/∂y
=
−4x3 + 12xy2

i + 2x− γ
−12x2yi + 4y3

i + 2yi

ξi = arctan(
dy

dx
)i + Λi .

(3.46)

We use
∫
dx =

∫ (
dx
ds

)
ds where ds is step size along the path. There is a problem in

that path Γ1 has a vertical section when x > u1 and path Γ3 similarly when x < u3.

On these sections one uses
∫
dy =

∫ (
dy
ds

)
ds instead. The Taylor expansion for y′(x)

is performed,

y′(x) ≈ 1 +
8ui

1− 6u2
i

(x− ui) + 2
(3 + 47u2

i )

(1− 6u2
i )

2
(x− u2

i )
2 (3.47)
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Figure 3.2: Paths of constant phase in complex u plane. Contours are inclined asymptotically at

an of angle π/8 relative to the real/imaginary axes. The three branches pass through the three

stationary points on the real axis. The contours pass through the stationary points u1 and u3 at an

angle of π/4, whilst u2 is traversed at an angle of −π/4.

Looking at the contour lines of |P | in Fig. A.1 in the Appendix, taken from [1], one

sees that the nodes appear mostly in vertical pairs. The lowest contour lines |P | = 0.2

are rather egg-shaped, long vertically and shorter horizontally. In plotting |P | on a

small circle surrounding the node, −x = 11.4774412231, y = 1.639203731, the values

at angle zero will be will be higher than the values at points vertical. Indeed that

is what is seen in Figs. 3.3 and 3.4. They show that the calculated values must be

accurate to order 10−8, or else the curves would be erratic, as in Fig. 3.5.
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Figure 3.3: |P (−x, y)| on a circle of radius 10−7 around a node with a cosine curve for comparison.

Figure 3.4: |P (−x, y)| on a circle of radius 10−8.
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Figure 3.5: |P (−x, y)| on a circle of radius 10−9.

Further, suppose that the nodal position is inaccurate. If the node were thought

to be a little to the right, the value of |P | would be too high at angle zero, and too

low at angle π. Rather than a cos θ curve one would see a cos(2θ) curve with a single

minimum at π. Since we do not see any such behaviour, we deduce that the nodal

point position is also accurate to order 10−8.

Fig. 3.6 is for another node around which we plot |P | on a square grid of points

spaced 5× 10−9 apart. The surface is reasonably smooth with the minimum value of

order 2× 10−8 located near point (5, 7). Contour lines of |P | drawn on the base plane

show elliptical shape.
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Figure 3.6: Values of |P | on a square grid around an approximate node. Contour lines are projected

onto the zero plane. One unit of x and y corresponds to 5× 10−9.

3.4 Systematic method to find the nodal points

Kaminsky and Paris [8] developed asymptotic approximations for finding nodal po-

sitions of the Pearcey function. The work involved using method of steepest descents

to evaluate the integral as long as the x2 term in the exponent is large enough to

justify this. The phase function is written in this form,

ψ(u) = u4 − u2 + yx−3/2u. (3.48)

The stationary points are located where the phase, ψ′(u) = 0, vanishes. This is a

cubic equation,

1

4
ψ′(u) = u3 − 1

2
u+

1

4
yx−3/2 (3.49)

1

4
ψ′(u) = (u− u1)(u− u2)(u− u3). (3.50)

Equation (3.50) is satisfied if
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∑
ui = 0∑

uiuj = −1

2
u1u2u3 = −yx−3/2/4. (3.51)

At a node of ψ′(u) Eqs. (3.48) and (3.49) can be combined to express.

ψ(ui) = −1

2
u2
i +

3

4
yx−3/2ui (3.52)

Next Kaminsky and Paris state that the the solutions the three roots of the cubic

Eq. (3.49) can be parametrised as such

u1 = −
√

2

3
sin(

π

3
+ θ)

u2 =

√
2

3
sin(θ)

u3 =

√
2

3
sin(

π

3
− θ)

where

sin(3θ) =
3
√

3

2
√

2

y

x3/2
. (3.53)

The caustic corresponds to the case when θ = π/6 which means that the roots

u2 and u3 coalesce. To find the values of the nodes inside the caustic the method of

steepest descents involves three path integrals. The path integrals must pass through

each stationary point and must be rotated from the lying on the real axis. The left

most contour Γ1 is rotated and starts at a point A =∞ei9π/8 and ends at B =∞ei5π/8
passing through u1. In order to pass through the stationary points the contours are

stretched. Contour Γ2 starts at B = ∞ei5π/8 and and ends at C = ∞e−i3π/8 passing

through u2. Contour Γ3 starts at C = ∞e−i3π/8 passes u3 ends at D = ∞eiπ/8. The

total contour is a sum of three branches Γj as shown in Fig. 3.2, with Γ1 = A → B,

Γ2 = B → C and Γ3 = C → D with each contour Γj passing through point uj. This

can be represented in the form,

P (−x, y) =
√
x

3∑
j=1

∫
Γj

eix
2ψ(u)du. (3.54)

To evaluate in Eq. (3.54) the function in the exponent, the simplest approximation

is to replace the exponent by a negative valued quadratic function of u along the path
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of integration. To do this the ix2 must go like −x2. Since ψ(u) ≈ ψ(uj) +d2
j(u−uj)2,

then (u−uj)2 ≈ i for the approximation to be carried out along the real axis. That is

(u− uj) =
√
ivj on the path of integration, close to uj. Since a polynomial of degree

N remains as such, near uj the function in the exponent can be written

ψ(u) = ψ(uj) +
1

2
ψ′′(uj)(u− uj)2 +

1

3!
ψ′′′(uj)(u− uj)3 +

1

4!
ψ′′′′(uj)(u− uj)4 (3.55)

ψ(u) = ψ(uj) + [6u2
j − 1](u− uj)2 + 4(u− uj)3 + (u− uj)4 (3.56)

which reduces when we keep only the quadratic bit, to

ψ(u) ≈ ψ(uj) + (−)j+1d2
jv

2, (3.57)

where,

v = (u− uj)[1 +
4uj(u− uj)

d2
j

+
(u− uj)2

d2
j

]1/2 (3.58)

(d1)2 = 6u2
1 − 1 = 1 + 2 cos 2ε (3.59)

(d2)2 = 1− 6u2
2 = 2 cos 2θ − 1 (3.60)

(d3)2 = 6u2
3 − 1 = 1 + 2 cos 2θ, (3.61)

where ε = π/6−θ and (u−uj) is a complex value. There terms in the square brackets

for v is only needed for going beyond the lowest order of steepest descents, which will

not be done here. Instead v will be set as v2 = ±i(u − uj)2. If one were wanting to

go beyond the leading order expansion the Eq. (3.58) can be rearranged to yield an

expression for u− uj in powers of v such as,

u− uj = v +
∑
k=2

bk,jv
k. (3.62)

Now each contour integral is given by

∫
Γj

eix
2ψ(u)du =

e(ix2ψ(uj)−iπ/4(−)j)

xdj
×
∑
k=0

(2k + 1)b2k+1,j
Γ(k + 1/2(−)j+1ik

x2kd2k
j

, (3.63)

which defines a2r,j. This simplifies to

P (−x, y) ≈
√
π

x

3∑
j=1

e(ix2ψ(uj)−iπ/4(−)j)

dj
×
∑
r=0

ira2r,j

x2r
. (3.64)
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So then by this approximation each stationary point contributes an asymptotic

estimate proportional to

Pj(−x, y) =

√
π

x

eix
2ψ(uj)

dj

[
1 +

∑
r=1

ira2r,j

x2r

]
≡
√
π

x

eiAj

Dj

(3.65)

where Aj = x2ψ(uj) + σj and Dj = dj/(1 + sj)

σj ≡ arg

[
1 +

∑
r=1

ira2r,j

x2r

]
≈ a2,j

x2
+O(x−4) (3.66)

1 + sj ≡ mod

∣∣∣∣∣1 +
∑
r=1

ira2r,j

x2r

∣∣∣∣∣
(3.67)

and the leading coefficient is

a2,j =
1

4d4
j

[
7 +

10

(−)j+1d2
j

]
. (3.68)

Kaminsky and Paris initially ignored these higher order corrections, eventually they

included 1/x2 corrections. However, in this thesis we do not consider this embellish-

ment.

3.5 Zeroth Order

For zeroth order the σj term is ignored and Dj = dj from Eq. (3.65). So then the

approximation of the Pearcey function is rewritten as

P (−x, y) ≈
√
π

x

[
eiA2+iπ/4

d1

+
eiA2−iπ/4

d2

+
eiA3+iπ/4

d3

]
, (3.69)

Setting Eq. (3.69) to zero and separating into real and imaginary components leads

to two equations

cosA1

d1

+
sinA2

d2

+
cosA3

d3

= 0 (3.70)

sinA1

d1

− cosA2

d2

+
sinA3

d3

= 0. (3.71)

Using Eqs. (3.71) and (3.70) one can modify these equations by taking the middle term

from each equation and moving them to the right hand side, squaring the equations

and adding them together, to yield
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1

d1

− 1

d2

+
1

d3

=
2

d1d3

cos(A1 − A3). (3.72)

The result of the left hand side vanishes according to Kaminsky and Paris as if one

were to view the equation in terms of uj, the function is a symmetric function of the

uj. Therefore it is possible to evaluate the left side of the equation in terms of the

coefficients ψ′(u) = 0. Allowing one to write a simpler result,

0 = cos(A1 − A3). (3.73)

It follows that A3−A1 = (k+ 1/2)π, for some integer values of k. Going back to the

result in Eq. (3.52)

A3 − A1 = x2 [ψ(u3)− ψ(u1)]

= x2

[
−1

2

(
u2

3 − u2
1

)
+

3

4
yx−3/2 (u3 − u1)

]
= x2(u3 − u1)

[
−1

2
(u3 + u1) +

3

4
yx−3/2

]
= x2(u3 − u1)

[
1

2
u2 +

3

4
yx−3/2

]
≥ 0. (3.74)

Now as each factor is positive one can say

A3 = A1 + (k +
1

2
)π (3.75)

where k is a positive integer, k = 1, 2, .... This implies that cosA1 = (−)k sinA3 and

sinA1 = −(−)k cosA3 so then Eqs. (3.70) and (3.71) can be restated as

(−)k sinA3

d1

+
cosA3

d3

= −sinA2

d2

(−)k cosA3

d1

− sinA3

d3

= −cosA2

d2

(3.76)

To simplify the above, consider a right angled triangle with sides d1, d3,
√
d2

1 + d2
3.

This defines an angle α such that,

tanα = d1/d3, sinα =
d1√
d2

1 + d2
3

, cosα
d3√
d2

1 + d2
3

Then Eqs. (3.70) and (3.71) can be rewritten as
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(−)k sinA3 cosα + cosA3 sinα = sin(A2 + π)

(−)k cosA3 cosα− sinA3 sinα = cos(A2 + π). (3.77)

When k is even

sin(A3 + α) = sin(A2 + π)

cos(A3 + α) = cos(A2 + π) (3.78)

from which it follows that

A2 − A3 = α + (2j + 1)π (3.79)

for some integer value of j. When k is odd,

sin(A3 − α) = sinA2

cos(A3 − α) = cosA2, (3.80)

from which it follows

A3 − A2 = 2π − α + (2j)π. (3.81)

The difference of (A2 − A3) when j is even is (2j + 1)π + α, or j is odd state is

(2j + 1)π + (π − α), where j = 1, 2, 3....

Eq. (3.53) sets λ = sin(3θ) which covers all locations inside the caustic where the

nodes might be, for 0 < θ < π/6. So then the next step is to relate this zeroth order

approximation to θ and generate values for nodal positions. With

A2 − A3 = x2(ψ(u2)− ψ(u3))

=
2x2

√
3

sin2
(
θ − π

6

)
cos
(

2θ +
π

6

)
= 2jπ +

{ π + α, k even

2π − α, k odd
(3.82)

Eq. (3.82) allows one to write x2 in terms of θ, j, α. In a similar way, the difference

between A3 − A1 in terms of θ can be written as

A3 − A1 = x2(ψ(u3)− ψ(u1))

=
2x2

√
3

sin 2θ cos2 θ (3.83)
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which can be rewritten as,

x2 =

√
3(k + 1

2
)π

2 sin 2θ cos2 θ
. (3.84)

Equating the two values we just obtained for x2 from Eq. (3.84) and Eq. (3.82) leads

to Eq. (3.85) where only θ, j, k remain,

(k +
1

2
)π

sin2(θ − π/6) cos(2θ + π/6)

2 sin 2θ cos2 θ
= 2jπ +

{ π + α, k even

2π − α, k odd
(3.85)

The trigonometric function in Eq. (3.85) can be conveniently be rewritten as,

S(θ) =
sin3(ε) cos(ε)

sin(θ) cos3(θ)
, (3.86)

where we define ε ≡ π/6− θ. A numerical solution for θ can be found by solving for

θ,

S(θ) =
2j + 3/2− (−)kβ

k + 1/2
(3.87)

where k, j are chosen integers and β is the angle to the extreme right of Eq. (3.85).

By solving Eq. (3.87) one finds values for θ for given input of the labels k and j.

The routine bisection was used from pages 1184-1185 of [15]. Values for θ are found

within 0 < θ < π/6. Once a value for θ is produced one can obtain approximate

positions for the nodes. x, y are generated via Eq. (3.88) and the image below shows

the nodal positions inside the caustic with corresponding k, j labels.

x =

√√
3(k + 1/2)π

2 sin 2θ cos2 θ

y =

(
2

3
x

)3/2

sin 3θ (3.88)
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Figure 3.7: Location of the nodes inside the caustic are presented here with (k, j) indexing labels.

When j is fixed and k varies, one generates nodes which are parallel to the caustic.

If k is fixed and j varies, nodes are generated which are roughly parallel to the x-axis.

The axes have been modified to present the caustic as a straight line. The x-axis

is changed to x3/2 and y-axis is y/(2/3)3/2. Nodes occur in sets of p = 1, 2, 3 . . . at

x = xp. The p label corresponds to the number of nodes in a family. For example

the single node of k = 0, j = 0 corresponds to p = 1. The pair of nodes further left

(1, 0) and (2, 0) corresponds to the p = 2 family and p = 3 corresponds to (0, 1),(3, 0)

and (4, 0) etc. It should also be noted here that the caustic is in the −x region but

for convenience the minus sign has been omitted. One can also notice that within a

p-family, the sum of k+4j is a constant, or a constant minus one. For example p = 5,

k + 4j = 7 or 8
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3.6 Line of nodes outside the caustic

Outside of the caustic there is a line of nodes running more or less parallel to the

caustic. The nodes outside have one real root u1 and two complex conjugate roots

u2, u3 = u∗2, which have coalesced when θ = π/6. The stationary points outside are

parametrised as,

u1 = − 2√
6

cosh(θ)

u2 =
1√
6

cosh(θ) +
i√
2

sinh(θ) = u∗3. (3.89)

This is consistent with KP’s equations for the stationary points inside the caustic.

Define θ = π/6− ε.

u1 = − 2√
6

cos(ε)

u2 =
2√
6

sin(
π

6
− ε)

u3 =
2√
6

sin(
π

6
+ ε). (3.90)

On the caustic ε = 0 which means that u2 and u3 in Eq. (3.90) coalesce. Outside of

the caustic the method of steepest descents now involves only two path integrals. One

through the complex point u2 and the other going through the real stationary point

u1. The two paths must be able to cancel each other’s contributions i.e., the must

have the same magnitude but opposite signs. According to Kaminsky and Paris [8],

from Eq .(3.65) the lowest order approximation for summing over two saddle point

contributions gives the condition

eix
2ψ(u1)√

6u2
1 − 1

+
eix

2ψ(u2)√
6u2

2 − 1
= 0. (3.91)

Defining d1 =
√

6u2
1 − 1 and d2e

iγ =
√

6u2
2 − 1, where the phase γ is the angle of√

u2
2 − 1 from the real axis. In addition, one can write.

ψ(u2) = −1

2
u2

2 +
3

4

y

x3/2
u2 = ψr + iψi. (3.92)

Restating Eq. (3.91) in terms of real and imaginary parts of ψ, one obtains

eix
2ψ(u1)

d1

+
eix

2ψr−x2ψi

d2eiγ
= 0. (3.93)
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This equation can be split up into two separate pieces by looking at the modulus and

phase of each term,

x2ψi = log(
d1

d2

)

eix
2ψ(u1) + eix

2ψr−iγ = 0 (3.94)

with the second piece yielding,

x2(ψr − ψ(u1)) = (2j + 1)π + γ (3.95)

where j = 0, 1, 2... is a non-negative integer as |ψ(x, y)| > ψ(u1) at all points outside

of the caustic. Taking the ratio of the two equations for x2 yields,

log(
d1

d2

)(ψr − ψ(u1)) = ((2j + 1)π + γ)ψi. (3.96)

The stationary points u1 and u2 can be restated as (ε→ iθ),

u1 = −
√

2

3
cosh θ

u2 =
1√
6

cosh θ +
i√
2

sinh θ = u∗3

6u2
2 = cosh2 θ − 3 sinh2 θ + i

√
3 sinh 2θ, (3.97)

which can be further manipulated in order to obtain a useful factorised expression,

6u2
1 = d2

1 = 4 cosh2 θ − 1

= 3 cosh2 θ + sinh2 θ ≡ R2 (3.98)

6u2
2 − 1 = −2 sinh2 θ + i

√
3 sinh 2θ

= 2i sinh θ(
√

3 cosh θ + i sinh θ)

= 2i sinh θRe2iγ = d2
2e

2iγ. (3.99)

A new term was introduced, R in Eq. (3.98), which is

R2 = 3 cosh2 θ + sinh2 θ =
sinh 3θ

sinh θ
= (1 + 2 cosh 2θ) ≥ 3

tan 2α =
sinh θ√
3 cosh θ

(3.100)

where γ = α + π
4
. In the first line of Eq. (3.99) the real component is negative and

the imaginary component is a positive value, so the value is in the second quadrant.

The square root will be in the first quadrant,
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d2
2 = 2R sinh θ

= 2
√

sinh θ sinh 3θ ≈
√

12θ. (3.101)

Now that the d2 parameter has been related to values for θ one can now deduce the

locations of the nodes outside the caustic. So the next thing to do is to find an

expression which can yield values for θ given an input for p. To start with note that

zp = (2p+ 1.25)π.

Since Eq. (3.91) gives two expressions for x

x2
a =

2
√

3 log(d1/d2)

(cosh(3θ)− cosh(θ)) sinh θ

x2
b =

2(zj + α)

(cosh(3θ) + cosh θ) cosh θ − 0.5
. (3.102)

For consistency they should be the same, i.e. x2
a/x

2
b = 1. Therefore by taking the

ratio of x2
a/x

2
b yields,

x2
a

x2
b

=

√
3 log(d1/d2)

(zp + α)

(cosh(3θ) + cosh θ) cosh θ − 0.5

(cosh(3θ)− cosh θ) sinh(θ)
= 1, (3.103)

which can be manipulated to produce

zp + α =
√

3 log(d1/d2)
cosh 2θ cosh2 θ − 1/4

sinh 2θ sinh2 θ
, (3.104)

where

d1

d2

=

√
R

2 sinh θ

R2 = 1 + 2 cosh 2θ. (3.105)

Table 3.1 shows the first 10 positions and corresponding θ values for p = 0, 1, 2..10.
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p θ x y

0 0.460790 1.630894 2.400803

1 0.347758 2.984883 4.478403

2 0.302007 3.976072 6.211462

3 0.274735 4.796047 7.771618

4 0.255831 5.510953 9.220012

5 0.241609 6.152894 10.587300

6 0.230340 6.740457 11.891950

7 0.221083 7.285446 13.145970

8 0.213281 7.795825 14.357520

9 0.206568 8.277532 15.533120

10 0.200702 8.734851 16.677360

Table 3.1: Approximate locations of nodes

Fig. 3.8 shows the nodes from Table 3.1 with nodes inside and outside the caustic

plotted. Label p = 0, 1, 2 . . . shows the family that the outside node belongs to. p = 0

has no node inside the cusp, p = 1 belongs to the family of one node k = 0, j = 0.

p = 2 belongs to the family of two nodes k = 1, j = 0 and k = 2, j = 0 etc. Note how

the further the nodes are from the origin the more bunched up the x and y values

appear to be located.
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Figure 3.8: Location of 10 nodes outside the caustic.

Eq. (3.104) is of order 1/θ3at small angles. Since the function is only needed over

a small range of θ values, the Taylor series of the function can be used to deduce

reasonable values for θ, T (θ) = zp + α, p = 0, 1, 2, . . . , and the nodal positions.

T (θ) =
√

3 log(
d1

d2

)
1
4

cosh 4θ + 1
2

cosh 2θ
1
4

sinh 4θ − 1
2

sinh 2θ
. (3.106)

Eq. (3.106) has large cancellations in the denominator and might lead to problems.

Therefore one looks at expansions in θ. Define the numerator and denominator by

functions N(θ) and D(θ),

N(θ) = 0.75 + 3(θ2 + θ4) +
∞∑
q=3

c2qθ
2q

D(θ) = 2(θ3 + θ5) +
∞∑
q=3

d2q+1θ
2q+1, (3.107)
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where c6 = 22/15, c8 = 43/105, c10 = 38/525, c12 = 4/5, c14 = 10924/14189175,· · · ,
and d7 = 4/5, 34/189, d11 = 124/4725, d13 = 4/1485, · · · . The odd powers sum

converges better than the even power. Taking the leading terms from Eq. (3.107)

yields a truncated expressions

Na(θ) ≈ 0.75 + 3(θ2 + φ4)

Da(θ) ≈ 2(θ3 + θ5)

Ta(θ) =
Na(θ)

Da(θ)

R2 ≈ 3 + 4(θ2 +
θ4

3
). (3.108)

Using this truncated power expansion form of the equation the table of nodal

positions can be reproduced to error in the fifth digit.

p θ x y

0 0.46079 1.63089 2.40009

1 0.34776 2.98489 4.47841

2 0.30201 3.97607 6.21146

3 0.27474 4.79606 7.77163

4 0.25583 5.51095 9.22002

5 0.24161 6.51291 10.58735

6 0.23034 6.74047 11.89199

7 0.22108 7.728545 13.14598

8 0.21328 7.79585 14.35759

9 0.20657 8.27756 15.53319

10 0.20070 8.73484 16.67746

3.7 Number and density of nodes below caustic

Kaminsky and Paris gave a rough estimate for the location of the nodes, this can in

turn be used to determine the accumulation of nodes as a function of x. One goes

back to the Pearcey function in the form,

P (−x, y) =

√
π

x
e−iπ/4

(
i
√

2e−x
2/4 cos(y

√
x

2
+ 1

)
. (3.109)

Separating into real and imaginary parts one obtains,

cos(x2/4) cos(y
√
x/2 = 0 [

sin(x2/4) cos(y
√
x/2) = −1/

√
2. (3.110)
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The first line in Eq. (3.110) holds true if

xp = 2

√
(p+

1

2
)π. (3.111)

In the trivial model each family of nodal points has p members at fixed position xp
and varying yp. The second line of Eq. (3.110) reduces to,

yp,l =
2l − 1

4
π

√
2

xp
. (3.112)

The cumulative number of nodes is,

N(p) =
p(p+ 1)

2
(3.113)

Using Eq. (3.111) in terms of p and putting into the equation for the cumulative sum

of nodes, one finds

2N(p) =

(
x2
p

4π
− 1

2

)2

+
x2
p

4π
− 1

2

N(p) =
x4
p

32π2
− 1

8
(3.114)

We will see later that the actual nodes differ in that xp is not constant but rather xp
decreases as yp increases. The trivial model is correct in that the nodes come in pairs.

However Eq. (3.114) underestimates the number of nodes. The main cause for this

is that it does not consider the clustering of nodes as xp is increased. The further you

go from the origin the more closely packed the bands of nodes are, this causes the

an additional number of nodes which is not predicted by this density function. An

empirical formula can set up as

N(x) = avx
4 + asx

3. (3.115)
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Figure 3.9: Approximately 400 nodes plotted vs R = x3/2 and ỹ = y(3/2)3/2.

Fig 3.9 shows the positions of approximately 400 nodes. The curved lines are

some guesses at circular or elliptical arcs that might better fit the curvature of the

p-families. This choice of coordinates make evident that nodes of family labelled p

occur roughly on circular arcs in R, ỹ plane. The family labelled by p = 26 occurs

at R = 78, which is given by Eq. (3.111). The area is then πR2/8 ≈ 2513. The

effective area is roughly 10% smaller as there is a gap between the nodes and caustic

line which is empty of nodes. Problems arise as one moves further away from the

origin. The family of p-nodes bends over, so much so in fact that the curvature is not

parallel with other p-node arcs. Also the number of nodes in an area increases from

the bending over of p-nodes families for larger xp values. The causes the density to be

slowly varying, the density measured for R = 20 is ≈ 0.064 and for R = 80 one finds

≈ 0.140, this is an increase of ≈ 100%. An illustrative attempt at lining up the arcs

of p-nodes as an ellipse was also tried but the bending over of the nodes nearer the

caustic varies too much for consistency. The trivial model predicts families of p-nodes

which are perpendicular to R and therefore the calculations for density are erroneous

as the curvature is not expected. The trivial model is sufficient for rough estimations

of small xp density calculations and does show that the nodes come in pairs, but for

a robust method for calculating the density for large xp it is not accurate enough.
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Figure 3.10: Approximately 1200 nodes plotted vs R = x3/2 and ỹ = y(3/2)3/2.

Seen above in Fig. 3.10 are approximately 1200 nodes plotted inside the caustic. The

coordinates R and ỹ have been chosen to show the caustic as a straight line running

45◦ to the R-axis. R = 120 corresponds to xp ≈ 24. One can use Eq. (3.111) to

find the number of members belonging to the family p = 46. Eq. (3.113) predicts the

number of nodes from the origin up to R = 120 to be N ≈ 1081. Fig. 3.10 has around

1297 nodes, this is an excess of 20%. Lines for a p-family are perpendicular at the

bottom but the curvature varies as y increases.
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Figure 3.11: Nodes inside the caustic with modified axes x̃ = x3/2 and ỹ = y(3/2)3/2

Fig. 3.11 shows only upper nodes from the pairs for clarity. Fig. 3.11 highlights an

alternative method of working out a way to find the density of nodes. The green nodes

are running parallel to the caustic at θ = 45◦ to the horizontal. What is wanted are

triangular sections with constant area inside the caustic to compute a uniform density

of nodes. The red lines drawn are at 40◦ to the horizontal for small x but as one moves

further to the left the angle decreases. This causes the area of the triangular sections

to slowly change. Another problem with finding a constant density is due to the

families of nodes not lying in straight lines. The bending over from the nodes closer

to the caustic causes the density in the right-hand side portion of the triangular area

to increase and the left-hand side to decrease.
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Chapter 4

Conclusion

In this thesis we looked at approximate methods to locating nodes inside and outside

of the caustic. Also the method of stationary phase was used to investigate |P | around

one of these points and its accuracy was examined. The method of stationary phase

is used to find numerical values for P (x, y) around a node. The equation for the curve

of the stationary phase paths is found and a numerical integration recipe is applied in

order to see the variation of the roots along the contour. One of the issues found was

that there exists vertical segments along the contours of stationary phase paths but

by using a Taylor series expansion in y′(x) the problem is circumvented. By using the

locations of nodes inside the caustic from calculations of the zeroth order approxima-

tion, the values of constant phase around a node are examined. Lines of constant |P |
are found to be slightly elliptical around a node which is expected from the |P | plot

the figure A.1 found in Stamnes and Spjelkavik. [1] . Accuracy for |P (x, y)| to 10−8

digits is found, beyond that |P | values fluctuate too much. Approximate locations

of the nodes outside the caustic are obtained from the lowest order approximation

Eq. (3.91) and plotted in Fig. 3.8. The nodes outside the cusp run parallel to the

caustic. They also differ from the ones inside the cusp as the they do not appear to

come in pairs. The density of nodes is found to be slowly varying. This is due to

the fact that the lowest order approximations expect the family of nodes be found

in vertical columns perpendicular to the x-axis. It is instead found from numerical

calculations that the family of nodes are slightly elliptical and have a varying curva-

ture. An empirical formula for the density of nodes is found but no exact forms for

the density of nodes is obtained.

An interesting topic which was untouched here is the investigation into the bright

spots inside a cusp. The bright spots are seen in Stamnes’ and Spjelkaviks’ paper

[1] in the plot of |P |, see appendix A. They are the hill-tops of |P |, whereas what

we have looked at are the nodes which correspond to the valleys of |P |. The hill-

tops of |P | corresponds to the unstable surface in Fig. 2.3. This project has focused
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on one topic in short-wavelength phenomena and reasonable accuracy of the nodes

inside the caustic has been found but improvements could be made. Higher order

approximations or analytical solutions of the Pearcey function would yield a more

accurate map of nodes.
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Appendix A

Plots of |P | and phase P from

Stamnes and Spjelkavik [1]

49



Master’s Thesis - D.A.MacBeath; McMaster University - Physics and Astronomy

Figure A.1: Contour lines of constant |P (x, y)| of the Pearcey function. The dashed curve is the

caustic. |P (x, y)| has a maximum value of 2.64 at x ≈ −2.2, y = 0. The contour lines are separated

by equal intervals of 0.2, and the dotted side of each contour line indicates the direction of descent.

Figure A.2: Contour lines of constant phase of the Pearcey function P (x, y). The dashed curve is

the caustic. The contours are labelled a = ±180◦ and from b = −150◦ to l = 150◦ in steps of 30◦.
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