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Abstract

We consider the problem of designing probing signals for a Multi-Input Multi-Output

(MIMO) radar. The goal is to design a signal vector having a desired covariance while

ensuring the sidelobes of the ambiguity functions are small. We will also consider cases

in which a bandwidth constraint is placed on the signal. Since covariance matrices

are structurally constrained, they form a manifold in the signal space. Hence, we

argue that the difference between these matrices should not be measured in terms of

the conventional Euclidean distance (ED), rather, the distance should be measured

along the surface of the manifold, i.e., in terms of a Riemannian distance (RD).

An optimization problem for the design of the probing signal is formulated for each

distance metric, with the waveform being represented as a linear combination of a

set of orthonormal signals. In both cases, the optimization problem is quartic in the

coefficients. An efficient algorithm based on iterative convex quadratic optimization

is developed and is effective in producing good solutions. In addition, we show that by

optimizing over the manifold, the number of iterations can be significantly reduced in

comparison to optimizing in the Euclidean space. Several orthonormal signal sets are

used in our design examples, including the Walsh functions, the cosine functions and

a set of functions designed for optimal time-frequency concentration. When the time-

frequency constraints are tight, the selection of the orthonormal set plays a significant
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role in the design, with the functions with optimal time-frequency concentration.
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Notation and Abbreviations

Notations

A Matrices

a Vectors

(·)T Matrix transpose

(·)∗ Matrix complex conjugate

(·)H Matrix hermitian

IM M ×M identity matrix

R Field of real numbers

C Field of complex numbers

d(· ·) Distance between two points

dE(· ·) Euclidean distance between two points

dR(· ·) Riemannian distance between two points

d̂(· ·) Distance between a point and an approximation of another one

tr(·) Trace of matrices

[A]ij The entry in the ith row and jth column

M Manifold

H Euclidean space of complex matrixes
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UH Euclidean subspace space

TM Tangent space in M

δkl Kronecker delta: 1, if k = l; otherwise 0

‖ · ‖F Frobenious norm of a vector or a matrix

| · | Norm of a constant

A(n) The matrix of nth interation

Ă An intermediate solution for a convex quadratic problem

F [·] Fourier transform

D[·] Time limiting operater

L 2 The space of all square integrable functions in (−∞,∞)

H(1 : M, :) First M rows of matrix H

Abbreviations

CA Cyclic Algorithms

ED Euclidean Distance

DPSS Discrete prolate spheroidal sequence

MI Mutual information

MIMO Multiple-Input Multiple-Output

PAR Low peak-to-average-power ratio

PSD Positive Semidefinite

PSW Prolate Spheroidal Wave

RD Riemannian Distance

SIMO Single-Input Multiple-Ouput
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SISO Single-In Single-Out

SNR Signal to Noise Ratio
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Chapter 1

Introduction and Problem

Statement

1.1 A Radar System

The word radar is derived from the phrase “radio detection and ranging”. A radar

system sends out radio (electromagnetic) waves from a transmitter and collects re-

flected measureable radio energy from the objects to be seen by a receiver which is

typically located at the same site as the transmitter for convenience [3]. The targets

of interested to the radar may be aircraft, ships, vehicles, people, meteorological phe-

nomena, or geographical features, and the parameters include locations, directions

and velocities of movements [5]. A simple model of an active radar system is shown

in Figure 1.1. The transmitted electromagnetic wave is sent from the transmitter and

propages through a particular medium. If a target is present, the transmitted signal

is reflected and the properties of the reflection are due to the characteristics of the

target, such as shape and motion. Ideally, the only distortion is an additive Gaussian
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receiver noise. However, in more general cases there is other interferrence, such as

reflections from other targets, or layers in the atmosphere [2].

Figure 1.1: Model of an active radar system space[2]

In pulse radar, the transmitter sends out a pulse, and then the receiver is activated.

The echoes are reflected back from the targets and are received at different times due

to the different propagation delays. When sufficient time has elapsed so that the

echoes from the most distant target has returned, the system sends out another pulse

and the cycle repeats [3]. Figure 1.2 illustrates the principle of a simple pulse radar.

2
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Figure 1.2: The principle of pulse radar. (a) Pulse has just been emitted from radar.

(b) Pulse reaches target. (c) Scattered energy returns from target; transmitted pulse

carried on. (d) Echo pulse reaches radar [3]
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1.2 Importance of MIMO Radar System

Radar systems have been developing rapidly in the past decades and have gone

through generations from Single-Input Single-Output (SISO) systems to Multiple

Input Multiple Output (MIMO) systems. The example model in previous section is

a SISO system which consists of only one tranmitter antenna at the source and one

receiver antenna at the destination. Although the system has the advantage of sim-

plicity, the lack of diversity in the single transmitted signal leaves the system exposed

to scattering and multipath propagation, resulting fading, losses and attenuation. By

increasing the number of receiving antennas, Single-Input Multiple-Output (SIMO)

systems can combat the effects of ionospheric fading and interference. Phased ar-

ray radar is an example of a SIMO system; it transmits scaled versions of a single

waveform from each antenna, and have the outputs form each antenna are perfectly

correlated [5]. Different from SIMO systems, MIMO radar systems transmit different

signals from multiple spatially diverse antennas. The system transmits signals from

multiple antennas at source and the returned signals can be extracted by a set of

matched filter receivers. The transmitted signals from the anntennas at source are

orthogonal (or incoherent) so that it provides transmission diversity. Accordingly,

compared to SISO systems, MIMO systems can achieve a greatly increased virtual

aperture and leading to significant advantages, such as better detection performance,

improved parameter identifiability, refined resolution, and direct applicability of adap-

tive array techniques [6].

The spatial diversity can be increased by the system with widely separated trans-

mitter and receiver antennas. By this system, targets can be seen in different aspects,

hence the information extracted by each matched filter only weakly correlated. As

4
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a result, a better performance can be obtained [7]. In MIMO radar with colocated

antennas, the transmission and reception arrays are closely spaced, therefore targets

are relatively far away from the transmitter and receiver. In this case, the components

extracted by matched filters contain the information of transmitting path from one

of the transmitter antenna elements to one of the receiver antennas. Better spatial

resolution can be achieved by using all the information of transmission paths [8].

Figure 1.3: (a) MIMO radar system vs. (b) SIMO (phased array) radar system [4]
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1.3 Signal Design in MIMO Radar

Following the introduction of MIMO radar a considerable effort has been dedicated

to the design of the transmission signal and the synthesis of the waveform. Some

approaches are carried out by maximizing the mutual information (MI) between the

target impulse response and the reflected radar waveforms [9, 10]. Different meth-

ods [11, 12] aiming at matching given transmission beam patterns as well as mini-

mizing the cross-correlation of reflected signals have been proposed. In particular, an

algorithm to design a unimodulus signal set matching beam pattern specifications and

suppressing sidelobes of both cross- and auto-correlations has been developed [13].

Instead of the beam pattern matching design [11, 12], [14], [6] present algorithms to

synthesize waveform directly such that its covariance is close to a desired matrix R,

having good cross- and auto-correlation properties. Using different forms of weighting,

the design problem was formulated as different mathematical expressions optimized

under a constraint of low peak-to-average power ratio (PAR). Several computational

efficient Cyclic Algorithms (CA) were presented to design unimodular MIMO wave-

forms minimizing the distance between the covariance matrix and a desired matrix.

Ambiguity function is a two dimensional function with time-delay and Doppler shift

and it describes the interferrence due to receiver matched filter returned signals. As

ambiguity function of transmitted waveform exploring the range and Doppler reso-

lution, considering the joint estimation of time delay and Doppler shift in a SISO

radar system, [15] optimum waveform is designed by minimizing estimation error. To

obtain the optimum waveform,the efficient method approxiamate the convex design

region by a polygon. In MIMO radar system, [16] proposes an algorithm to reduces

the sidelobes of ambiguity function of transmitted waveform and makes the energy

6
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of ambiguity function spread evenly in the range and angular dimensions.

1.4 Contribution of this thesis

In the methods mentioned in Section 1.3 above, the designs are carried out by mini-

mizing the difference between the desired and the actual covariance matrices in terms

of the commonly used Euclidean distance (ED), which in matrix computations, is

also often known as the Frobenius distance (FD). Being positive semi-definite (PSD)

and Hermitian symmetric, the PSD matrices are structurally constrained and thus

form a manifold M in the complex linear vector space H of all M ×M matrices [17].

Therefore, the commonly used ED may not be appropriate for measuring the distance

between two PSD matrices; rather, we should measure the distance along the surface

of the manifold. This concept is akin to finding the distance between two cities on

earth: The ED between two cities is neither informative nor accurate. By the same

reasoning, we suggest that the discrepancy between two of these matrices is more

accurately measured along the surface of the PSD manifold. Thus in this thesis, we

formulate the problem of designing the radar transmission signal having a covariance

matrix close to a desired matrix, the distance between the two matrices being mea-

sured in terms of a metric suitable for measuring on a manifold – the Riemannian

distance (RD).

In addition, we also aim to suppress the sidelobes of ambiguity functions where

ambiguity function is a two dimensional function with parameters time delay and

Doppler shift describing the interference caused by receiver matched filter returned

signals [16]. Each waveform is described as a linear combination of a set of orthonor-

mal functions. We minimimize the distance between the covariance of transmitted

7
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signals and a desired covariance and constraint on sidelobes of ambiguity functions.

In our design, we also consider the constraint on the bandwidth of the signal. In

this thesis, we develop an algorithm to approximate the original non-convex quar-

tic problem by a convex quadratic problem and solve it iteratively. The optimization

using RD as the measure shows much faster convergence compared to the correspond-

ing problem measured in ED. It also yields signal designs having better accuracy in

estimating the location and velocity of the targets.

As WLJ basis is an orthonormal set with optimum time-bandwidth product, WLJ

functions have a narrow essential bandwidth. In our design, we found that the use of

WLJ basis [1] will yield signals with best time-frequency requirement.

1.5 Outline of the Thesis

In this thesis, we propose an algorithm to design transmitted signals by minimizing

the distance between covariance of signal vectors and desired covariance while keeping

sidelobes of ambiguity functions to be small using both ED and RD metrics. In

Chapter 1, we have introduced MIMO radar systems and presented a brief review of

some existing researches on the topic of MIMO radar signal design. In Chapter 2,

we argue that the error between covaraince of signal vectors and desired covariance

should be measured on the manifold of Hermitian-sysmmetric positive semi-definite

matrices and formulate the optimization using the Riemannian distance metric. Next,

according to the difficulty of solving a non-convex optimization, Jia Xu developped

an effective iterative algorithm based on successive approximation of the non-convex

quartic problem by a convex quadratic problem [18]. That algorithm was developed in

the context of a different MIMO radar signal design problem, and in this thesis we will

8
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adapt that algorithm to the problem. Furthermore we will show how the parameters

of the algorithm can be chosen and we will provide an explanation for the good

convergence behavior un the RD case. Considering interference in frequency domain,

in Chapter 4, we complete the MIMO radar signal design by adding a frequency

bandwidth constraint. Numerical experiments are shown in Chapter 5. Finally, the

conclusion of the thesis and our future work are presented in Chapter 6.

9



Chapter 2

Signal Design in MIMO Radar

using Euclidean and Riemannian

Distances

Several techniques for MIMO radar waveform design are based on minimizing the

distance between covariance matrix and a desired covariance matrix (which is usually

a scaled identity matrix) [14, 6]. In these papers, they measure the distance between

the matrices using the Frobenius distance/Euclidean distance (ED), which is the

length of the shortest path between two matrices in the ambient space. In this

chapter, we synthesize transmitted signals to match a desired covariance matrix while

controling the sidelobes of the ambiguity function to be small. Different from the

existing literature, we minimize the distance between the covariance matrix of the

synthesized signal and the desired covariance matrix using a Riemannian distance

(RD) on the manifold of symmetrical positive semi-definite matrices.

10
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2.1 MIMO Signal Model

We consider a MIMO radar system equipped with M transmitter antennas and M

receiver antennas. The signal to be transmitted from mth antenna xm(t) is a linear

combination of K ≥M orthogonal unit-energy functions sk(t) such that

xm(t) =
K∑
k=1

αmksk(t)

= αTm · s(t),

(2.1)

where K denotes the number of orthonormal functions {sk(t)}Kk=1. The real coefficient

vector associated with the mth transmission is

αm =



αm1

αm2

...

αmK


. (2.2)

The orthonormal functions can be represented in a vector by

s(t) =



s1(t)

s2(t)

...

sK(t)


(2.3)

11
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The transmitted signal can be then expressed as x(t) be

x(t) =



x1(t)

x2(t)

...

xM(t)


. (2.4)

Let matrix A denote the matrix

A =

[
α1 α2 . . . αK

]T
∈ CM×K . (2.5)

The transmitted signals can be written as

x(t) = As(t). (2.6)

In this thesis, we consider joint estimation of both the location and the velocity of

the target. The distance of target away from the antenna array can be estimated by

the time delay of the returned signal. The target velocity can be analyzed using the

Doppler shift. If a target has a constant radial velocity vt, the shift in the carrier

frequency is called the Doppler shift ν [2]

ν , fc

(
2vt
c

)
, (2.7)

where fc is carrier frequency and c is the speed of light. The value of the ambiguity

function for a particular pair (τ, ν)is the time response of a filter matched to a given

finite energy signal when the signal is received with a time delay τ and a Doppler

12
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shift ν. The ambiguity function of any arbitrary pair of transmitted signals is

fm1m2(τ, ν) =

∫
xm1(t)x

∗
m2

(t+ τ)ej2πνtdt. (2.8)

Since

xm1(t) =
K∑
k=1

αm1ksk(t), with 1 ≤ k ≤ K, (2.9a)

xm2(t+ τ) =
K∑
k=1

αm2ksk(t+ τ), with 1 ≤ k ≤ K, (2.9b)

we have

fm1m2(τ, ν) =

∫
xm1(t)x

∗
m2

(t+ τ)ej2πνtdt

=
K∑
i=1

K∑
j=1

∫
αm1isi(t)α

∗
m2j

s∗j(t+ τ)ej2πνtdt

=
K∑
i=1

K∑
j=1

αm1iα
∗
m2j

∫
si(t)s

∗
j(t+ τ)ej2πνtdt.

(2.10)

If we let φij(τ, ν) denote the ambiguity function for si(t) and sj(t)

φij(τ, ν) =

∫
si(t)s

∗
j(t+ τ)ej2πνtdt, (2.11)

and if we define the ambiguity matrix for s(t) as the matrix Φ(τ, ν) where the (i, j)th

element is φij(τ, ν), then the complex ambiguity matrix for x(t) can be written as

F (τ, ν) = AΦ(τ, ν)AH . (2.12)

13
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For further reference, we observe that since the signals in s(t) are orthonormal,

Φ(0, 0) = I, and hence F (0, 0) = AAH .

2.2 Introduction to Euclidean and Riemannian Dis-

tances

The objective of proposed design is to minimize the error between the covariance

matrix of the designed signals and a desired covariance. In other words, we want the

distance between the achieved covariance and the specified covariance to be small.

The distance between two positive semi-definite (PSD) symmetric matrices d(P1,P2)

can be measured in various ways. The most commonly used is the Euclidean distance

(ED)

dE(P1,P2) = ‖P1 − P2‖F

=
√

tr
(
(P1 − P2)(P1 − P2)H

) (2.13)

The Euclidean distance implicitly treats P1 and P2 as elements of the ambient space

(of complex M×M matrices) and it measures the length of the shortest path from P2

to P1 in that space — a path that may include matrices that are not PSD. We argue

that it is inappropriate to model the mismatch by ED as a covariance matrix is not

free-structured, but positive semi-definite (PSD) and symmetric. An alternative is to

recognize that the set of PSD matrices forms a Riemannian manifold in the ambient

space. It can be argued that it is more appropriate to measure the distance between

P1 and P2 on that manifoldM. According to the special structure, the matrices form

a hyper-surface called a manifold in signal space. Therefore the distance between two

14
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matrices should be the length of the path which along the surface of the manifold

between two matrices. The length of the path between two points on the manifold

M is given by [19, 20]

`(P ) =

∫ θ2

θ1

g
1/2
P (Ṗ , Ṗ )dθ (2.14)

where Ṗ = P
dθ

and g
1/2
P (Ṗ , Ṗ ) is an inner product metrics, called a Riemannian

metric, at P on the manifold M, which can be define in various ways. The curve

of minimum length on the manifold linking two PSD matrices P1 and P2 is called

a geodesic and the length of the geodesic is called the Riemannian distance (RD)

between the two points, i.e.,

dR(P1,P2) , min
P :[θ1,θ2]→M

{`(P )} (2.15)

It is difficult to evaluate the RD directly from (2.15. Therefore we use the following

concept [17] to determine RD. Let H denote the Euclidean space of matrices. Here

we set up a mapping π: M→ H such that P = P̃ P̃H where P̃ ∈ H, P ∈ M. By

choosing the mapping π, we can find a Euclidean subspace UH at P̃ of H which is

isometric with TM(P ), the tangent space at P in the manifold M, i.e., the geodesic

between P1,P2 ∈M can be lifted to P̃1, P̃2 ∈ UH. Therefore, the RD on the manifold

can be expressed directly in Euclidean space UH in which ED is the measure distance.

If we consider the mapping P̃ P̃H = P , i.e., P̃ = P 1/2U , where P̃ ∈ H, P ∈ M,

and U is a unitary matrix. The RD between P1 and P2 is given by

dR1(P1,P2) =

√
trP1 + trP2 − 2tr

(
P

1/2
1 P1P

1/2
2

)
=

√
trP1 + trP2 − 2tr

(
P1P2

)1/2
(2.16)
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If we use the mapping P̃ 1/2P̃ 1/2 = P by choosing the unitary matrix to be identity,

then the RD between P1 and P2 can be written as

dR2(P1,P2) =

√
trP1 + trP2 − 2tr

(
P

1/2
1 P

1/2
2

)
=

√
tr
(
(P

1/2
1 − P 1/2

2 )(P
1/2
1 − P 1/2

2 )H
)

=
∥∥∥P 1/2

1 − P 1/2
2

∥∥∥2

F

(2.17)

2.3 Optimization Formulation in ED and RD

In single antenna radar, typically we seek to design a waveform that results in side-

lobes are small with respect to the power of the waveform; i.e., |f1,1(τ, ν)| � f1,1(0, 0)

for all τ and ν that are not close to zero [2, 15]. The principles of MIMO radar signal

design are similar, although since x(t) is now a vector, there is an additional degree of

design freedom namely the spatial covariance matrix F (0, 0). In isotropic applications

the desired covariance matrix would typically be a scaled identity matrix, but there

are other applications in which other spatial covariances would be appropriate. We

will denote the desired covariance byRd. To exert control over the sidelobes, we could

consider imposing element-wise constraints of the form |fm1,m2(τ, ν)| ≤ εm1,m2(τ, ν)

for each pair of (m1,m2) with m1 ≥ m2 and suitably sampled values for τ and

ν. An alternative that significantly reduces the computational cost at the price

of somewhat more coarse control over the sidelobes is to impose norm constraints

of the form ‖F (τ, ν)‖2
F ≤ ε(τ, ν), again for suitably sampled values for τ and ν.

With those sidelobe constraints, a desired covariance Rd and an energy constraint

tr
(
AAH

)
≤ tr(Rd), the design problem can be formulated as

16
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minimize
A

d2
(
AAH ,Rd

)
subject to

∥∥AΦ(τ`1 , ν`2)A
H
∥∥2

F
≤ ε(τ`1 , v`2), `1, `2 = 1, 2, . . . , L

tr(AAH) ≤ tr(Rd),

(2.18)

where we have chosen L pairs (τ`, ν`) at which to impose the sidelobe constraints, and

d(· , ·) is either

dE(AAH ,Rd) =
∥∥AAH −Rd

∥∥
F

(2.19)

or

dR2(AA
H ,Rd) =

∥∥∥(AAH
)1/2 −R1/2

d

∥∥∥
F

(2.20)

In general, dR1 6= dR2 , as the expressions are not equal. They are equal only when

the last terms in each expression are equal; i.e.,

tr
((
P1P2

)1/2
)

= tr
(
P

1/2
1 P

1/2
2

)
. (2.21)

If we choose Rd to be the identity matrix, then dR1(AA
H ,Rd) = dR2(AA

H ,Rd).

Therefore, in the rest of this thesis, we use dR2 to represent the Riemannian distance

measurement, because of its simplicity [21]. Note, the first arguement in (2.18) can

be written in both ED and RD as d(E/R)

(
AΦ(τ`1 , ν`2)A

H(AΦ
(
τ`1 , ν`2)A

H
)H

,0
)
≤

ε(τ`1 , v`2), `1, `2 = 1, 2, . . . , L.

Becaues the expressions in ED and RD are the same, we formulate the first argument

17
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in ED. Optimization using the Euclidean distance method can be written as

minimize
A

∥∥AAH −Rd

∥∥2

F

subject to
∥∥AΦ(τ`1 , ν`2)A

H
∥∥2

F
≤ ε(τ`1 , v`2), `1, `2 = 1, 2, . . . , L

tr(AAH) ≤ tr(Rd)

(2.22)

If A = UΣV H denotes the singular value decomposition of A, then we can write

(
AAH

)1/2
= AV UH . (2.23)

The proof of (2.23) is as follows:

Proof. Perform a compact singular value decomposition on A

A = UΣV H (2.24)

where U and V are left and right singular vectors of A. We can write

(
AAH

)1/2
=
(
UΣV HV ΣHUH

)1/2

=
(
UΣIMΣHUH

)1/2

= U
(
ΣΣH

)1/2
UH

= UΣUH .

(2.25)

Multiplying (2.24) by V on both sides, we have

AV = UΣV HV = UΣ (2.26)

18
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Subsitituting (2.26) into (2.25), we have
(
AAH

)1/2
= AV UH [21].

According to (2.23), the optimization problem using the Riemannian distance

method can be rewritten as

minimize
A

∥∥∥AV UH −
(
Rd

)1/2
∥∥∥2

F

subject to
∥∥AΦ(τ`1 , ν`2)A

H
∥∥2

F
≤ ε(τ`1 , v`2), `1, `2 = 1, 2, . . . , L

tr(AAH) ≤ tr(Rd).

(2.27)

2.4 An Iterative Algorithm

The problem in (2.18) is not convex, due to the quartic structure of the sidelobe

constraints and the nature of the objective. While that makes it difficult to find a

globally optimal solution, we will develope an effective iterative algorithm based on

successive approximation of the problem by a convex quadratic optimzation problem.

In particular, at the nth iteration of the algorithm we will replace one of A(n) in the

objective and in each constraint with A(n−1) and we will solve the resulting convex

quadratic problem for an intermediate solution Ă(n). Then we generate the nth iterate

A(n) using A(n) = Ă(n) + γ(n)
(
A(n−1) − Ă(n)

)
, where γ(n) controls the step size of

the algorithm [18]. At a particular point, the convex approximation may not be the

best suitable. As a result, the intermediate solution may be dragged far away from

the optimum. Therefore, we update A(n) based on the previous A(n−1). The problem
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to be solved at each iteration takes the form

minimize
Ă(n)

d2
(
Ă(n)A(n−1)H ,Rd

)
subject to

∥∥∥Ă(n)Φ(τ`1 , ν`2)A
(n−1)H

∥∥∥2

2
≤ ε(τ`1 , ν`2), `1, `2 = 1, 2, . . . , L

tr
(
Ă(n)A(n−1)H

)
≤ tr(Rd)

(2.28)

In the case of the Euclidean distance, the objective function in (2.28) can be written

as

d2
E

(
Ă(n)A(n−1)H ,Rd

)
=
∥∥∥Ă(n)A(n−1)H −Rd

∥∥∥2

F
. (2.29)

In the case of the Riemannian distance, if A(n−1) = U (n−1)Σ(n−1)V (n−1)H denotes the

compact SVD of A(n−1), the objective can be written as

d2
R2

(
Ă(n)A(n−1)H ,Rd

)
=
∥∥∥Ă(n)V (n−1)U (n−1)H −R1/2

d

∥∥∥2

F
. (2.30)

Since both d2
E

(
Ă(n)A(n−1)H ,Rd

)
and d2

R2

(
Ă(n)A(n−1)H ,Rd

)
are convex quadratic

functions of Ă(n) and the constraints in (2.28) are also convex quadratic and linear

in Ă(n), repectively, the problem in (2.28) is convex and can be efficiently solved [21].

Thus we obtain the iterative algorithm in Table 2.1. The optimization in each itera-

tion can be solved by the standard optimization tools such as CVX [22].
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Table 2.1: Iterative Algorithm [21]

Step 0 Select an initial matrix A(0). Select a. Set γ(0) = 1, n = 0.

Step 1 Update iteration index n← n+ 1

Step 2 In RD case only, perform an SVD of A(n−1) to obtain U (n−1) and V (n−1)

Step 3 Given A(n−1), and
(
U (n−1) and V (n−1)

)
solve the convex quadratic

program in (2.28) to obtain Ă(n)

Step 4 Compute the step size γ(n) = γ(n−1)(1− aγ(n−1))

Step 5 Update A(n) using A(n) = Ă(n) + γ(n)
(
A(n−1) − Ă(n)

)
Step 6 Test for convergence and if the test fails return to Step 1

2.5 Objective Functions in RD and ED Methods

As we want to minimize the interferrence between any two transmitted signals, we

set Rd = I. The objective functions of the ED and RD optimization problems (2.29),

(2.30) can be written as,

minimize
Ă(n)

∥∥∥Ă(n)U (n−1)Σ(n−1)V (n−1)H − I
∥∥∥2

F
, (2.31)

minimize
Ă(n)

∥∥∥Ă(n)V (n−1)IU (n−1)H − I
∥∥∥2

F
. (2.32)

It can be seen that
(
U (n−1)Σ(n−1)V (n−1)H

)
in Eq. (2.31) is a general matrix that is

not necessarily unitary, whereas
(
V (n−1)IU (n−1)H

)
in Eq. (2.32) is always unitary.

As it is desired to minimize the difference between the design covariance matrix and

I, then the matrix Ă(n) should be close to unitary. Hence in the search of Ă(n) under

RD, the search space will be constrained to a relevant space that is smaller than the
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more general space in the case of searching under ED.

If we replace the Σ in (2.31) by an identity matrix,

minimize
Ă(n)

∥∥∥Ă(n)U (n−1)I(n−1)V (n−1)H − I
∥∥∥2

F
, (2.33)

the optimization problem has similar convergence rate by using (2.32) and (2.33).

Therefore, the scaling of the singular value matrix has dominant effect on convergence

rate.
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Chapter 3

Bandwidth Consideration in

Design

If the orthonormal functions have finite time duration, the design of the signal xm(t)

in previous section has finite time duration but has no specific bandwidth limitation.

In practice, we may require to design signals which is finite in both time duration and

in essential bandwidth. Here, we take into consideration the bandwidth constraint

and other issues.

3.1 Bandwidth Constraint

In order to avoid interference in frequency domain, we aim to synthesize a transmitted

signal that has a small essential bandwidth. Hence we add a bandwidth constraint to

previous optimization. We impose the constraint that the magnitude of the Fourier

transform of xm(t), which is |Xm(f)|, has to be small if f < f0. According to the
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linerarity property of Fourier transform that

F [ax(t) + by(t)] = aF [x(t)] + bF [y(t)] (3.1)

the Fourier transform of xm(t) is

Xm(f) =
K∑
k=1

αmkSk(f) (3.2)

where Sk(f) is the Fourier transform of sk(t). Therefore, the problem can be written

as

minimize
Ă(n)

d2
(
Ă(n)A(n−1)H ,Rd

)
subject to

∥∥∥Ă(n)Φ(τ`1 , ν`2)A
(n−1)H

∥∥∥2

F
≤ ε(τ`1 , ν`2), `1, `2 = 1, 2, . . . , L∣∣∣∣∣

K∑
k=1

[Ă(n)]mkSk(f)

∣∣∣∣∣
2

≤ ∆f , 1 ≤ m ≤M, f > f0

tr
(
Ă(n)A(n−1)H

)
≤ tr(Rd)

(3.3)

where f0 is the constraint essential bandwidth and sample f suitably.

3.2 Seeking Minimum Bandwidth

In some practical situations, the signal bandwidth may be the most emphasized factor

in the design. Under such circumstances, we may seek a signal that has the minimum

bandwidth while keeping the covariance matrix error and the sidelobes low. Thus,
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we may consider an alternate formulation

minimize
Ă(n)

f0

subject to d̂2
(
Ă(n)A(n−1)H ,Rd

)
≤ ε∥∥∥Ă(n)Φ(τ`1 , ν`2)A

(n−1)H
∥∥∥2

F
≤ ε(τ`1 , ν`2), `1, `2 = 1, 2, . . . , L∣∣∣∣∣

K∑
k=1

[Ă(n)]mkSk(f)

∣∣∣∣∣
2

≤ ∆f , 1 ≤ m ≤M, f > f0

tr
(
Ă(n)A(n−1)H

)
≤ tr(Rd)

(3.4)

We use bisection search to find the minimum bandwidth f0 which satisfy all the

constraints.
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Chapter 4

Selected Orthonormal Sets

Functions in an orthonormal set are mutually orthogonal and each function has unit

energy. We examine the use of three real orthnormal basis functions {sk(t)} for

the synthesis of the transmission signals: (i) Walsh functions, (ii) Cosine functions,

and (iii) WLJ functions [1], a set of functions designed for optimal time-frequency

concentration. In this chapter, we briefly review on three orthonormal sets.

4.1 Walsh Functions

The set of Walsh functions is a set of piecewise-constant functions that take on only

two values, 1 and -1. For the time duration [0, 1], the Walsh functions are defined by

[23, 24, 25]

w0(t) = 1; 0 ≤ t ≤ 1; (4.1a)

w1(t) =

 1 ; 0 ≤ t ≤ 1/2

−1 ; 1/2 ≤ t ≤ 1
(4.1b)
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w2(1)(t) =

 1 ; 0 ≤ t ≤ 1/4, 3/4 ≤ t ≤ 1

−1 ; 1/4 ≤ t ≤ 3/4
(4.1c)

w2(2)(t) =

 1 ; 0 ≤ t ≤ 1/4, 1/2 ≤ t ≤ 3/4

−1 ; 1/4 ≤ t ≤ 1/2, 3/4 ≤ t ≤ 1
(4.1d)

wk+1(2r−1)
(t) =

 wk(r)(2t) ; 0 ≤ t ≤ 1/2

(−1)r+1wk(r)(2t− 1) ; 1/2 ≤ t ≤ 1
(4.1e)

wk+1(2r)(t) =

 wk(r)(2t) ; 0 ≤ t ≤ 1/2

(−1)rwk(r)(2t− 1) ; 1/2 ≤ t ≤ 1
(4.1f)

for k = 1, 2, 3, . . . and r = 1, 2, 3, . . . , 2m−1. Usually, the function wk(1) is used, i.e.,

sWalsh
k (t) = wk(1)(t) (4.2)

This set has considerable practical advantage due to the piecewise constant nature

of the functions which takes only two values. In addition, it is easy to generate with

digital logic circuity. However, according to the “square-wave” structure, a Walsh

function has a broad essential bandwidth.

4.2 Cosine Functions

For the time duartion t ∈ [−1,+1], the cosine functions {cos(2πkt); k = 0,±1,±2, . . .}

are orthogonal. We only need to normalize the functions to provide an orthonormal
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set. The cosine functions can be written as [25]

scos
k (t) =

1√
2

k∑
n=−k

αn cos(2πnt) (4.3)

with

αn =
1√
2

∫ 1

−1

sk(t) sin(2πnt)dt. (4.4)

The cosine set has a sinusoidal structure and it is relatively easy to generate.

Compare to Walsh function, cosine function has a narrower essential bandwidth.

4.3 WLJ Functions [1]

Given a continuous function s(t) having finite energy, such that

∫ ∞
−∞
|s(t)|2dt =

∫ ∞
−∞
|S(f)|2df <∞, (4.5)

let

ET (s) ,

∫ T/2
−T/2 |s(t)|

2dt∫∞
−∞ |s(t)|2dt

, (4.6a)

EF (S) ,

∫ F
−F |S(f)|2dt∫∞
−∞ |S(f)|2dt

, (4.6b)

where S(f) is Fourier transform version of s(t) and ET (s) and EF (S) are time

and frequency energy concentration coefficients. The two parameters explicate the

percentages of energy of the function s(t) in the time duration [−T/2, T/2] and

frequency bandwidth [−F, F ]. As
∫ T/2
−T/2 |s(t)|

2dt ≤
∫∞
−∞ |s(t)|

2dt, it is clear that

0 ≤ ET (s) ≤ 1. analogously, for the frequency energy concentration coefficient we
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have that 0 ≤ EF (S) ≤ 1. Ideally, we want the function s(t) to have energy fully con-

centrated in both time and frequency regions [−T/2, T/2] and [−F, F ], which means

we have ET (s) = 1 and EF (S) = 1. However, due to the Fourier transform property

[26] that a function can not be finite in both time domain and frequency domain

simultaneously, that is impossible. Hence we seek to have the product of time and

frequency energy concentration coefficients to be close to unity. Jin, Luo and Wong

[1] showed that a linear combination of prolate spheroidal wave (PSW) function and

its truncated version has maximum product of ET (s) and EF (S).

The PSW functions ψk(t), k = 1, 2, . . . are the set of eigenfunctions of (4.7), where

the eigenfunction ψk(t) is corresponing to kth largest eigenvalue λk of (4.7). Given

T > 0, F > 0 ∫ T/2

−T/2

sin 2πF (t− τ)

π(t− τ)
ψ(t)dt = λψ(t) (4.7)

Let D[·] be a time-limiting operator defined by

D[s(t)] =


s(t) t ∈ [−T/2, T/2]

0 otherwise.

(4.8)

The functions D[ψk(t)] are orthogonal to each other. The following function (4.10)

can achieve the maximum product of time and frequency energy concentration coef-

ficients [1],

sWLJ
k (t) = p1kψk(t) + q1kD[ψk(t)] (4.10)

The coefficients p1k and q1k in (4.10) can be calculated using

p1k =
(

2 + 2
√
λk

)−1/2

q1k =
(

2λk + 2λk
√
λk

)−1/2

. (4.11)
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The set of WLJ functions is an orthonormal set which has highy concentrated in both

time and frequency.

In the following numerical experiments, we generate discrete prolate spheroidal

sequences (DPSS). For each k = 0, 1, . . . , K − 1, the DPSS ϕk is defined as the real

solution of
K−1∑
m=0

sin 2πF (n−m)

π(n−m)
ϕk = µkϕk (4.12)

Given

ρmn =
sin 2πF (n−m)

π(n−m)
, m, n = 0, 1, . . . , K − 1 (4.13)

Then µk and ϕk are also eigenvalues and eigenvectors of the matrix ρ.

30



Chapter 5

Numerical Experiment

5.1 Optimization Results of Waveform Design us-

ing Walsh Functions, Cosine Functions and WLJ

Functions

5.1.1 Time delay only

We consider the MIMO radar system having M = 4 transmitter antennas for which

each transmission waveform is a linear combination of K = 32 Walsh functions as

Figure 5.1. Each Walsh function is 64ms in duration and is illustrates in Figure 5.1.

The ambiguity function has two parameters related to target which are time delay

and Doppler shift. Time delay is the delay of returned signal which is related to

distance between the target and the antenna array. The Doppler shift is a change

in frequency which is related to the velocity of the target. If we consider time delay

only, we fix ν = 0 and relax the constraint which is the first constraint in (2.28)
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by choosing ε(1, 0) = 0.34M and ε(τ, 0) = 0.05M where τ > 1. Here we suppress

the sidelobes of the ambiguity functions of the transmitted signals to minimize the

interference between a transmitted signal and its time or Doppler shifted version.
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Figure 5.1: First 32 Walsh functions

We observe in Figure 5.2 that the error between signal covariance and the identity

matrices converges to a low level by around 10 iterations for the design measured in

RD. On the other hand, using ED to measure the matrix discrepancy takes around

150 iterations to reach similar level. The blue and green plots use ED measure, but

compute the estimated error by RD and ED. The black and red lines use RD measure

(Table 2.1) but compute the estimated error in terms of RD and ED respectively.
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Figure 5.2: Error convergence using Walsh functions counting in iterations

It is observed that in each iteration, the design algorithm using RD as a measure

has to perform an extra singular value decomposition (SVD). However, the advantage

of fewer of iterations may outweight the additional cost per iteration, resulting in a

much lower CPU time. Therefore, we instead of counting number in iterations, Figure

5.3 shows the convergence time (in terms of CPU time) of the design using both ED

and RD as measures in the algorithm of Eqs. (2.28). The CPU time of each iteration

measures the elapsed time of computation and expression transformation by CVX

[22] in each iteration in unit of second. An Explanation of the faster convergence of
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using the RD measure has been given in Section 2.5.
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Figure 5.3: Error convergence using Walsh functions in length CPU time

Figure 5.4 illustrates the square norm of correlation with lag τ . The blue plot is the

relaxed correlation constraint ε(τ, 0). The red plot is the square norm of correlation

with lag τ using RD measure. The green plot is the square norm of correlation with

lag τ using ED measure.
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Figure 5.4: Correlation constraints, ε(1, 0) = 0.34M , ε(τ, 0) = 0.05M , M = 4

If we want the covaraince to be close to identity, the solution of the coefficient

matrix should be close to unitary. Therefore, we choose first M rows of normalized

Hadamard matrix as starting point,

A(0) = H(1 : M, :), (5.1)

where H is a K × K Hadamard matrix. At optimum the transmitted signals by

RD measure is shown in Figure 5.5. Transmitted signals by ED measure is shown in

35



M.A.Sc. Thesis - Yuheng Zhou McMaster - Electrical Engineering

Figure 5.6.
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Figure 5.5: Transmitted signals using RD measure, M = 4, starting from the

Hadamard matrix
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Figure 5.6: Transmitted signals using ED measure, M = 4, starting from the

Hadamard matrix

Consider the same scenario, but each signal is a linear combination of the cosine

functions that are shown in Figure 5.7.
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Figure 5.7: First 32 cosine functions

We observe in Figure 5.8 the error between signal covariance and the identity

matrices converges to a low level by around 10 iterations for the design measured in

RD. On the other hand, using ED to measure the matrix discrepancy takes around

170 iterations to reach a similar level.
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Figure 5.8: Error convergence using cosine functions counting in iterations

Figure 5.9 shows the convergence time (in terms of CPU time) of the design using

both ED and RD as measures in the algorithm of Eqs. (2.28). The black and red

lines use RD measure (Table 2.1) but compute the estimated error in terms of RD

and ED respectively. The blue and green plots use ED measure, but compute the

estimated error by RD and ED.
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Figure 5.9: Error convergence using cosine functions in length of CPU time

Figure 5.10 illustrates the square norm of correlation with lag τ . The blue plot

is the relaxed correlation constraint. The red plot is the square norm of correlation

with lag τ using RD measure. The green plot is the square norm of correlation with

lag τ using ED measure.
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Figure 5.10: Correlation constraints, ε(1, 0) = 0.34M , ε(τ, 0) = 0.05M , M = 4

For the case in which we choose a truncated normalized Hadamard matrix as

the starting point, the transmitted signals designed using RD measure are shown in

Figure 5.11. The transmitted signals designed using the ED measure are shown in

Figure 5.12.

41



M.A.Sc. Thesis - Yuheng Zhou McMaster - Electrical Engineering

10 20 30 40 50 60

4

3

2

1

Designed Transmitted Signal 1st to 4th by RD

Figure 5.11: Transmitted signals using RD measure, M = 4, starting from the

Hadamard matrix
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Figure 5.12: Transmitted signals using ED measure, M = 4, starting from the

Hadamard matrix

The Walsh function has a broad essential bandwidth due to its piecewised struc-

ture. The cosine function has relatively broader essential bandwidth compare with

the essential bandwidth of WLJ function as WLJ function designed to have the opti-

mal time-bandwidth product. The linear combination of WLJ functions yields signal

with narrowest essential bandwidth. Instead of cosine basis, apply WLJ functions.

Figure 5.13 illustrates WLJ functions

43



M.A.Sc. Thesis - Yuheng Zhou McMaster - Electrical Engineering

10 20 30 40 50 60

8

7

6

5

4

3

2

1

Orthonormal Basis from 1th to 8th

10 20 30 40 50 60

16

15

14

13

12

11

10

9

Orthonormal Basis from 9th to 16th

10 20 30 40 50 60

24

23

22

21

20

19

18

17

Orthonormal Basis from 17th to 24th

10 20 30 40 50 60

32

31

30

29

28

27

26

25

Orthonormal Basis from 25th to 32th

Figure 5.13: First 32 WLJ functions

We observe in Figure 5.14 that the error between signal covariance and the identity

matrices converges to a low level by around 20 iterations for the design measured in

RD. On the other hand, using ED to measure the matrix discrepancy takes around

140 iterations to reach a similar level. The black and red lines use RD measure (Table

2.1) but compute the estimated error in terms of RD and ED respectively. The blue

and green plots use ED measure, but compute the estimated error by RD and ED.
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Figure 5.14: Error convergence using WLJ functions counting in iterations

Figure 5.15 shows the convergence time (in terms of CPU time) of the design

using both ED and RD as measures in the algorithm of Eqs. (2.28).
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Figure 5.15: Error convergence using WLJ functions in length of CPU time

Figure 5.16 illustrates the square norm of correlation with lag τ . The blue plot

is the relaxed correlation constraint. The red plot is the square norm of correlation

with lag τ using RD measure. The green plot is the square norm of correlation with

lag τ using ED measure.
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Figure 5.16: Correlation constraints, ε(1, 0) = 0.34M , ε(τ, 0) = 0.05M , M = 4

For the case in which we choose a truncated normalized Hadamard matrix as

the starting point, the transmitted signals designed using RD measure are shown in

Figure 5.17. The transmitted signals designed using ED measure are shown in Figure

5.18.
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Figure 5.17: Transmitted signals using RD measure, M = 4, starting from the

Hadamard matrix
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Figure 5.18: Transmitted signals using ED measure, M = 4, starting from the

Hadamard matrix

5.1.2 Time delay and Doppler frequency shift

Previouly, we set the Doppler frequency shift ν = 0, then the ambiguity matrices

become just simply correlation matrices. Here consider both time delay and Doppler

frequency shift. Time delay is the delay of returned signal which is related to distance

between the target and the antenna array. The Doppler shift is a change in frequency

which is related to the velocity of the target. The MIMO radar system has M = 5
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transmitter antennas for which each transmission waveform is a linear combination

of K = 8 Walsh functions. Each Walsh function is 16ms in duration. We choose

ετ,ν = 0.4M where τ 6= 0 and ν 6= 0. We sample the τ and ν by choosing each sample

length as τs = 0.25µs and νs = 0.25fcHz, fc = 5000Hz. Figure 5.19 the convergence

time (in terms of CPU time) of the design using both ED and RD as measures in

the algorithm of Eqs. (2.28). The CPU time of each iteration measures the elapsed

time of computation and expression transformation by CVX [22] in each iteration in

unit of second. An Explanation of the faster convergence of using the RD measure

has been given in Section 2.5. The black and red lines use RD measure (Table 2.1)

but compute the estimated error in terms of RD and ED respectively. The blue and

green plots use ED measure, but compute the estimated error by RD and ED. An

explanation of the faster convergence of using the RD measure has been given in

Section 2.5.
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Figure 5.19: Error convergence using Walsh functions in length of CPU time

The function of the square norm of the ambiguity matrix is a two dimentional

function with τ and ν. Figure 5.20 illustrates vectorized version of the square norm

of the ambiguity matrix with lag τ and ν. The blue plot is the relaxed correlation

constraint. The red plot is the square norm of ambiguity matrix with lag τ and ν

using RD measure. The black plot is the square norm of ambiguity matrix with lag

τ and ν using ED measure.
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Figure 5.20: Sidelobe constraints, ε(τ 6= 0, ν 6= 0) = 0.4M , M = 5

For the case in which we choose a truncated normalized Hadamard matrix as

the starting point, the transmitted signals designed using RD measure are shown in

Figure 5.21. The transmitted signals designed using ED measure are shown in Figure

5.22.
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Figure 5.21: Transmitted signals using RD measure, M = 5, starting from the

Hadamard matrix
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Figure 5.22: Transmitted signals using ED measure, M = 5, starting from the

Hadamard matrix

Next, we apply the cosine set to the synthesize transmitted waveforms. Each

waveform is a linear combination of cosine functions. Figure 5.23 the convergence

time (in terms of CPU time) of the design using both ED and RD as measures in

the algorithm of Eqs. (2.28). The black and red lines use RD measure (Table 2.1)

but compute the estimated error in terms of RD and ED respectively. The blue and

green plots use ED measure, but compute the estimated error by RD and ED.
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Figure 5.23: Error convergence using cosine functions in length of CPU time

Figure 5.24 illustrates the square norm of ambiguity matrix with lag τ and ν. The

red plot is the square norm of ambiguity matrix with lag τ and ν using RD measure.

The black plot is the square norm of ambiguity matrix with lag τ and ν using ED

measure.
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Figure 5.24: Sidelobe constraints, ε(τ 6= 0, ν 6= 0) = 0.4M , M = 5

For the case in which we choose a truncated normalized Hadamard matrix as

the starting point, the transmitted signals designed using RD measure are shown in

Figure 5.25. The transmitted signals designed using ED measure are shown in Figure

5.26.
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Figure 5.25: Transmitted signals using RD measure, M = 5, starting from the

Hadamard matrix
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Figure 5.26: Transmitted signals using RD measure, M = 5, starting from the

Hadamard matrix

For the same scenario, instead of Walsh or cosine sets, we now apply the WLJ set

to the design. Each waveform is a linear combination of WLJ functions. Figure 5.27

illustrates the convergence time (in terms of CPU time) of the design using both ED

and RD as measures in the algorithm of Eqs. (2.28). The black and red lines use

RD measure (Table 2.1) but compute the estimated error in terms of RD and ED

respectively. The blue and green plots use ED measure, but compute the estimated

error by RD and ED.
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Figure 5.27: Error convergence using WLJ functions in length of CPU time

Figure 5.28 illustrates the square norm of ambiguity matrix with lag τ and ν. The

red plot is the square norm of ambiguity matrix with lag τ and ν using RD measure.

The black plot is the square norm of ambiguity matrix with lag τ and ν using ED

measure.
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Figure 5.28: Sidelobe constraints, ε(τ 6= 0, ν 6= 0) = 0.4M , M = 5

For the case in which we choose a truncated normalized Hadamard matrix as

the starting point, the transmitted signals designed using RD measure are shown in

Figure 5.29. The transmitted signals designed using ED measure are shown in Figure

5.30.
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Figure 5.29: Transmitted signals using RD measure, M = 5, starting from the

Hadamard matrix
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Figure 5.30: Transmitted signals using ED measure, M = 5, starting from the

Hadamard matrix

The difference between the two transmission signals using RD and ED is very small

due to the rather loose constraint that ε(τ, ν) = 0.4M . If this constraint be made

tighter, the difference between the two signals designed with different distance mea-

sures may be more conspicuous.
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5.2 Detection and Estimation Results using Walsh

Functions, Cosine Functions and WLJ Func-

tions

5.2.1 Simulation Environment

Fix N targets at different locations with different velocities coming from 30◦ in direc-

tion. To test on designed signals, we do an experiment of detection and parameter

estimation on fixed targets using designed signals. If we have three targets coming

from 30◦ direction. Figure. 5.31 shows an example of locations of targets.

Figure 5.31: An example of locations of targets
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The transmitting steering vector is

a =

[
1 ej2π sin(θ) . . . ej2π(M−1) sin(θ)

]T
, (5.2)

where θ is the angle of arriving direction of targets. The receiving steering vector is

b =

[
1 ej2π sin(θs) . . . ej2π(M−1) sin(θs)

]T
, (5.3)

where θs is the estimated angle of arriving direction of targets. In this thesis, we

focus on the estimation of target distance and velocity, we set θ = θs as known.

At receiver array, we calculate the ambiguity,

FR(τs, νs) = aXRX
H
T (τs, νs)b

H , (5.4)

whereXR is a vector of the received signals, XH
T (τs, νs) is a vector of shifted version of

the transmitted signals, τs is the shifted time, and νs is the shifted Doppler frequency

[12].

5.2.2 Time delay only

Any local maximum of correlation FR(τ, 0) between received signals and time-shifted

transmission signal is greater than a threshold, it is considered as a target candidate.

Any target candidate that is recognized over 50% in time, it is confirmed as a detected

target. The threshold is determined by Neyman-Pearson criterion fixing the false

alarm percentage at a certain rate. Then the probability of false alarm error is fixed.

In this experiment we test on 10 scans and if the target candidate is recognized
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over 5 times, we confirm it as a detected target. The tolerance percentage 50% is

chosen by experiment. The N simulated targets are point targets which are located

at distances d1, d2, . . . , dN from the reference point of the radar antenna array. For

each set of transmitted signal estimating the distance of the N targets, we define an

mean square relative error of distance estimation as

ē2
d =

1

N

[(
ed1
d1

)2

+ . . .

(
edN
dN

)2
]

(5.5)

Tables 5.1, 5.2, 5.3 show the mean square relative errors of distance in estimation

using ED and RD algorithms using Walsh, cosine and WLJ functions. Note, the “M”

means target missed in the detection.

Table 5.1: ē2
d using Walsh functions

Shortest distance between 2 adj. targets 1500m 750m 157.5m 150m

Optimum RD (200 iterations) 9.34E-05% 1.48E-04% 3.88E-04% 2.83E-04%

Optimum RD (10 iterations) 9.34E-05% 1.48E-04% 3.88E-04% 2.60E-04%

Optimum ED (200 iterations) 9.34E-05% 1.48E-04% 4.81E-04% 4.87E-04%

Non-optimum ED (10 iterations) 9.34E-05% 1.48E-04% M M

Table 5.2: ē2
d using cosine functions

Shortest distance between 2 adj. targets 1500m 750m 157.5m 150m

Optimum RD (200 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.83E-04%

Optimum RD (10 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.60E-04%

Optimum ED (200 iterations) 9.34E-05% 1.48E-04% 2.66E-04% 4.66E-04%

Non-optimum ED (10 iterations) 9.34E-05% 1.48E-04% M M
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Table 5.3: ē2
d using WLJ functions

Shortest distance between 2 adj. targets 1500m 750m 157.5m 150m

Optimum RD (200 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.60E-04%

Optimum RD (10 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.60E-04%

Optimum ED (200 iterations) 9.34E-05% 1.48E-04% 2.66E-04% 2.83E-04%

Non-optimum ED (10 iterations) 9.34E-05% 1.48E-04% M M

Detection results

As we have explained the reason for the fast convergence of the iterative technique

that uses the RD measure in Section 2.5. After 10 iterations, the error between

estimated covariance matrix and identity using RD measure has converged and the

correlation between any arbitrary pair of antennas is close to zero. However, after 10

iterations of the technique that uses the ED measure, the technique has not converged

and the error is about 108 larger than the error using RD measure. Hence, there is

a relatively large interference between any two antennas using ED measure. For all

the three orthonormal function sets, when any adjacent targets are close, the system

transmitting waveforms using ED measure may have missing target detection.

Estimation results

It can be observed that for all the three orthonormal function sets, the use of RD as

the design measure of the covariance matrix offers higher accuracies in the estima-

tion of target distance than the use of ED especially in the cases when the targets

are close together. It can also be observed that in the cases of close targets, the op-

timum signal synthesized using the WLJ functions yields the most accurate estimates.
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5.2.3 Time delay and Doppler frequency shift

The joint estimation of target distance and target velocity utilizes the local maxima

on the ambiguity function with τ and ν. For velocity estimation we define the mean

square relative error similar to that of the distance estimation in (5.5) such that

ē2
v =

1

N

[(
ev1
v1

)2

+ . . .

(
evN
vN

)2
]

(5.6)

where vn is the velocity of target n with reference to the antenna array and evn is the

velocity estimation error with respect to target n, n = 1, 2, . . . , N , with N being the

number of detected targets. Tables 5.4, 5.5 and 5.6 show the mean square relative

errors in distance and velocity estimation using ED and RD measures synthesized

by Walsh, cosine and WLJ functions. Note, that the “M” means missing target in

detection.

Table 5.4: ē2
d + ē2

v using Walsh functions

Distances and Velocities of targets

(750m, 420m/s)

(1050m, 480m/s)

(1350m, 540m/s)

(1500m, 480m/s)

(1515m, 510m/s)

(1530m, 540m/s)

(1500m, 510m/s)

(1515m,525m/s)

(1530m,540m/s)

(1500m, 525m/s)

(1515m,532.5m/s)

(1530m,540m/s)

(1545m,543.6m/s)

Optimum RD (200 iterations) 0% 3.26E-04% 2.03E-03% 4.17E-03%

Optimum RD (10 iterations) 0% 3.26E-04% 2.03E-03% 4.17E-03%

Optimum ED (200 iterations) 0% 3.26E-04% 2.03E-03% 6.02E-03%

Non-optimum ED (10 iterations) 0% 3.15E-03% 5.71E-03% M
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Table 5.5: ē2
d + ē2

v using cosine functions

Distances and Velocities of targets

(750m, 420m/s)

(1050m, 480m/s)

(1350m, 540m/s)

(1500m, 480m/s)

(1515m, 510m/s)

(1530m, 540m/s)

(1500m, 510m/s)

(1515m,525m/s)

(1530m,540m/s)

(1500m, 525m/s)

(1515m,532.5m/s)

(1530m,540m/s)

(1545m,543.6m/s)

Optimum RD (200 iterations) 0% 3.26E-04% 2.03E-03% 3.49E-03%

Optimum RD (10 iterations) 0% 3.26E-04% 2.03E-03% 3.49E-03%

Optimum ED (200 iterations) 0% 3.26E-04% 2.03E-03% 5.67E-03%

Non-optimum ED (10 iterations) 0% 3.14E-03% 5.71E-03% M

Table 5.6: ē2
d + ē2

v using WLJ functions

Distances and Velocities of targets

(750m, 420m/s)

(1050m, 480m/s)

(1350m, 540m/s)

(1500m, 480m/s)

(1515m, 510m/s)

(1530m, 540m/s)

(1500m, 510m/s)

(1515m,525m/s)

(1530m,540m/s)

(1500m, 525m/s)

(1515m,532.5m/s)

(1530m,540m/s)

(1545m,543.6m/s)

Optimum RD (200 iterations) 0% 3.26E-04% 2.03E-03% 3.23E-03%

Optimum RD (10 iterations) 0% 3.26E-04% 2.03E-03% 3.23E-03%

Optimum ED (200 iterations) 0% 3.26E-04% 2.03E-03% 5.09E-03%

Non-optimum ED (10 iterations) 0% 3.14E-03% 5.71E-03% M

The joint estimation performance of the transmission signals synthesized with the

three types of orthonormal functions are similar to those for the estimation of dis-

tance alone. That is, the use of ED as design measure with incomplete convergence

will have missing target detection and the use of RD as the design measure of the

covariance matrix offers higher accuracies in the joint estimation than the use of ED

especially when the targets are close. Also, in the cases of close adjacent targets, the

optimum signal synthesized using WLJ functions yields the most accurate estimates.

If we do the optimization off-line, then the fast rate of convergence may not be
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a great advantage for the technique using RD measure. However if we make the

sidelobe constraint tighter, for example, ε(1, 0) = 0.34M , ε(τ, 0) = 0.02M , Figure

5.32 illustrates the convergence time (in terms of CPU time) of the design using both

ED and RD as measures in the algorithm of Eqs. (2.28). The black and red lines

use RD measure (Table 2.1) but compute the estimated error in terms of RD and ED

respectively. The blue and green plots use ED measure, but compute the estimated

error by RD and ED.
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Figure 5.32: Error convergence using Walsh functions in length of CPU time

We observe that the technique using ED has a larger converged error compare to
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the technique using RD measure. It means the designed signals using ED measure

have larger interference between any arbitrary pair of antennas. The estimation will

be less accurate if the interferrence increases. Table 5.7 shows the mean square

relative errors of distance in estimation using ED and RD algorithms using Walsh

with a tighter constraint.

Table 5.7: ē2
d using Walsh functions

Shortest distance between 2 adj. targets 1500m 750m 157.5m 150m

Optimum RD (200 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.60E-04%

Optimum RD (10 iterations) 9.34E-05% 1.48E-04% 1.72E-04% 2.60E-04%

Optimum ED (200 iterations) 9.34E-05% 1.48E-04% 4.82E-04% 8.71E-04%

Non-optimum ED (10 iterations) 9.34E-05% 1.48E-04% M M

5.3 Bandwidth Optimization with the three func-

tion sets

As we mentioned in Chapter 3, the bandwidth constraint is nessesary in practical

situations. We require to design signals which is finite in both time duration and in

essential bandwidth.

5.3.1 Power spectrum density of tranmitted signal using dif-

ferent orthonormal sets

For example, using optimization (3.3), if we fix α = 0.1, ε(1, 0) = αM and ε(τ, 0) =

(α/2)M , and set the bandwidth at 1860Hz, 484Hz and 234Hz while applying Walsh,

cosine and WLJ sets respectively, then the errors will converge to around 10−9 using
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Walsh, cosine and WLJ sets. Figure 5.33 shows the power spectrum densities of four

transmitted signals with Walsh functions when f0 = 1860Hz
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Figure 5.33: The PSD of four transmitted signals constructed from Walsh functions,

f0=1860Hz

Figure 5.34 shows the power spectrum densities of four transmitted signals with

cosine functions when f0 = 484Hz
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Figure 5.34: The PSD of four transmitted signals constructed from cosine functions,

f0=484Hz

Figure 5.35 shows the power spectrum densities of four transmitted signals with

WLJ functions when f0 = 234Hz
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Figure 5.35: The PSD of four transmitted signals constructed from WLJ, f0=234Hz

In this experiment, we observe that the designed waveforms by applying WLJ

functions have the smallest essential bandwidth among three orthonormal bases.

5.3.2 Seeking minimum bandwidth using different orthonor-

mal sets

In previous section as we put essential bandwidth in the constraint in arguement, the

essential bandwidth is not minimum.

Now, we examine the case when given (i) the prescribed error between the signal

covariance and the identity matrices, (ii) the sidelobe constraints in the ambiguity,

and (iii) the sidelobe in the stop-band, we seek for the minimum bandwidth of the
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transmission signal synthesized using the three orthonormal bases. We want to com-

pare the minimum bandwidths in the use of the Walsh, cosine, and WLJ functions as

signal synthesizing sets for given constraints that ε = 10−2, ∆f = 10−2, ε(1, 0) = αM

and ε(τ, 0) = (α/2)M . We vary α from 0.1 to 0.4, and ε = 10−2. In this experiment

we measure the error between covariance and identity in RD. Figure 5.36. illustrates

the comparison of the respective minimum bandwidths for various values of ετ,0.
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Figure 5.36: Bandwidth constriants vs. sidelobe constriants using Walsh, cosine and

WLJ sets, ε = 10−2

If we change ε to 10−5 then we obtain Figure 5.37. This illustrates the comparison
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of the respective minimum bandwidths for various values of ε(τ, 0).
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Figure 5.37: Bandwidth constriants vs. sidelobe constriants using Walsh, cosine and

WLJ sets, ε = 10−5

It can be observed that the signal synthesized using WLJ functions achieves the

lowest bandwidth while satisfying all the constraints. Using sinusoids comes at a close

second. It is observed that the use of Walsh functions requires a bandwidth far greater

than either the use if the WLJ set or the cosine set. This can be easily understood

since Walsh functions are rectangular functions having a sinc shaped roll-off in the

frequency domain.
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Chapter 6

Conclusion and Future Work

We considered the design of transmission signal for MIMO radar systems focusing on

minimizing the distance between signal covariance matrix and a desired covaraince

matrix while suppressing sidelobes of ambiguity functions with any non-zero time

delay or Doppler frequency shift. We argue that since covariance matrices are not

freely structured but are positive semi-definite and Hermitian-symmetric, the true

distance should be formulated in terms of a Riemannian distance (RD) on the man-

ifold of positive semi-definite and symmetric matrices. The design based on the RD

measure was shown to yield a signal having higher estimation accuracies in both tar-

get location and target velocity. The optimum design using RD measure also offers

much faster convergence. Furthermore, if the WLJ orthonormal set is used as the

waveform-synthesizing basis, the transmission signal not only will satisfy the ambi-

guity requirements but it will also prossess very low bandwidth.

In numerical experiments, we have shown that the design based on the RD measure

has faster convergence and better estimation performance compare to the design based

on thenED measure. We have presented an explaination on fast convergence of the RD
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measure. The design based on the RD measure also has better estimation performance

as it has smaller cross correlation between any two antennas and also smaller elements

of the sidelobe ambiguity matrices. In the future work, to understand fully the value

of using RD metric, we need to carry out experiments to reveal the reason behind the

improved estimation performance of the design based on RD. Next, we can make the

sidelobe constraint more stringent in the optimization. In (2.28), we emphasize on the

good auto-correlation properties so that we minimize the distance between estimated

covariance of transmitted signals and the desired covariance in the objective and

constriant on the sidelobes. In the future work, we can try to minimize the sidelobes

of ambiguity functions and constraint on the distance between covariance estimation

and desired covariance in order to emphasize the good cross-correlation properties.

Furthermore, we can compare the ambiguity functions with and without sidelobe

constraints to find the effect of sidelobe constraint on the design.
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