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Abstract

A mixture model approach for clustering longitudinal data is introduced. The ap-

proach, which is based on mixtures of multivariate power exponential distributions,

allows for varying tail-weight and peakedness in data. In the longitudinal setting,

this corresponds to more or less concentration around the most central time course in

a component. The models utilize a modified Cholesky decomposition of the compo-

nent scale matrices. The associated maximum likelihood estimators are derived via a

generalized expectation-maximization algorithm.
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Chapter 1

Introduction

Longitudinal data arise from a set of measurements taken repeatedly over time. Mea-

surements taken on each subject are correlated, so careful consideration needs to be

taken when modeling the correlation structures. Longitudinal studies enable one to

observe changes and patterns at an individual level over time. These observed changes

and patterns in the data may naturally form groups or clusters that give more insight

into the data. When groups are formed in a way where subjects are a lot more similar

within a group than between groups and true memberships are unknown, then this

is known as cluster analysis.

Herein, model-based clustering is used, which is a technique where data is clustered

by utilizing finite mixture models. The general form of the finite mixture density is

defined as

f(x|Θ) =
G∑
g=1

πgφ(x|Θg), (1.1)

where φ(x|Θg) are the component densities, Θg is a vector of the parameters, G is the

total number of groups and πg is the probability of belonging to group g, where πg ∈
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(0, 1] and
∑G

g=1 πg = 1. For clustering purposes, the component densities are usually

taken to be of the same type. Each unimodal component of the mixture models

represents a group or cluster (McNicholas, 2016a). It is crucial for the component

to be unimodal because if it is not, then probably the wrong mixture distribution is

being fit or not enough components are being used (McNicholas, 2016b).

There has been an increasing interest in model-based clustering. Multivariate

Gaussian mixture models have been commonly used for model-based clustering. Ex-

amples of papers that use multivariate Gaussian mixture models for clustering are:

Bouveyron et al. (2007), Browne and McNicholas (2014a), Browne and McNicholas

(2014b), Celeux and Govaert (1995), Fraley and Raftery (2002), McLachlan and Peel

(2000), and McNicholas and Murphy (2008). Due to the mathematical tractability

of the multivariate Gaussian distribution it is commonly used, but it is not robust

to tail weight and peakedness. McLachlan and Peel (1998) and Peel and McLachlan

(2000) proposed the multivariate t-distribution as an alternative to the multivari-

ate Gaussian distribution because it has a heavier tails compared to the Gaussian

distribution. Examples of other papers that use multivariate t mixture models for

clustering are: Andrews and McNicholas (2011), Andrews et al. (2011), Andrews and

McNicholas (2012), and Lin et al. (2014). The option of constraining the degrees of

freedom across all clusters was explored by Andrews and McNicholas (2011), to see

if it leads to an improved classification performance. The multivariate t-distribution

works well for clustering data with a heavier tail weight, but cannot handle data with

a lighter tail weight than the Gaussian distribution. Dang et al. (2015) proposed the

multivariate power exponential (MPE) distribution as an alternative to the multi-

variate Gaussian and t-distributions because of its robustness to tail weight (light or

2
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heavy) and peakedness (thinner or flatter).

The majority of the literature focuses on classical model-based clustering rather

than model-based clustering for longitudinal data. McNicholas and Murphy (2010)

introduces a family of Gaussian mixture models with covariance structures that are

specifically designed to be used for clustering longitudinal data. For longitudinal data,

a covariance structure that takes into account the relationship between measurements

at different time points is crucial. This is done by utilizing the modified Cholesky

decomposition for the covariance matrix Σ. This decomposition uses the fact that

the covariance matrix, Σ, can be decomposed using the relation TΣT′ = D, where

T is a unique lower unit triangular matrix and D is a unique diagonal matrix with

strictly positive entries (Pourahmadi, 1999, 2000). The relation, TΣT′ = D, can also

be written as

Σ−1 = T′D−1T, (1.2)

which provides convenience for when this decomposition is used for mixture models.

The matrices T and D are interpreted as generalized autoregressive parameters and

innovation variances, respectively (Pourahmadi, 1999). Therefore, the linear least

squares predicator of Yt, based on Yt−1, ..., Y1, can be written as

Ŷt = µt +
t−1∑
s=1

(−φts) (Ys − µs) +
√
dtεt, (1.3)

where εt ∼ N (0, 1), φts are the sub-diagonal elements of T and dt are the diagonal

elements of D (McNicholas and Murphy, 2010). Imposing constraints on the com-

ponent densities allows for a family of mixture models to be created. Let Tg and

Dg be the autoregressive parameters and innovation variances for a specific group

3
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g, respectively. McNicholas and Murphy (2010) imposed various constraints on the

covariance structure, specifically the matrices Tg and Dg. There was an option of

constraining either Tg or Dg, or both to be equal across all groups. In other words,

there is an option to restrict the autoregressive structure or the noise or the entire

covariance structure to be the same for all groups. Constraining Tg to be equal across

all groups, i.e. Tg = T, means that the correlation structures are the same for all

the groups. Constraining Dg to be equal across all the groups, i.e. Dg = D, means

that the variability at each time point is the same for each group. There is also

an option to impose the isotropic constraint, Dg = δgIp (cf. Tipping and Bishop,

1999), which means the variability is the same at all time points in component g.

McNicholas and Murphy (2010) used the above constraints that resulted in a family

of eight mixture models, which is shown in Table 1.1. McNicholas and Subedi (2012)

explored the idea of clustering longitudinal data using the multivariate t-distribution.

The modified Cholesky decomposed covariance structure is also used and the same

constraints are possible with the Gaussian mixture models. As mentioned above, the

idea of constraining the degrees of freedom has been explored, but McNicholas and

Table 1.1: The nomenclature, covariance structures and number of covariance param-
eters for Gaussian and t mixture models

Model Tg Dg Dg Number of Covariance Parameters
EEA Equal Equal Anisotropic p(p− 1)/2 + p
VVA Variable Variable Anisotropic Gp(p− 1)/2 +Gp
VEA Variable Equal Anisotropic Gp(p− 1)/2 + p
EVA Equal Variable Anisotropic p(p− 1)/2 +Gp
VVI Variable Variable Isotropic Gp(p− 1)/2 +G
VEI Variable Equal Isotropic Gp(p− 1)/2 + 1
EVI Equal Variable Isotropic p(p− 1)/2 +G
EEI Equal Equal Isotropic p(p− 1)/2 + 1

4
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Subedi (2012) does not impose this constraint. Therefore, the family of t mixture

models consists of eight models and are the same as the models in Table 1.1. This

paper aims to utilize the MPE distribution for clustering longitudinal data.

The MPE distribution is also known as the multivariate generalized Gaussian

distribution. The shape parameter, β, controls the distribution’s tail weight and

peakedness, so two different kinds of distributions can be obtained. A leptokurtic

distribution is associated with a thinner peak and heavy tails compared to the Gaus-

sian distribution, which is obtained when 0 < β < 1. A platykurtic distribution is

associated with flatter peak and thin tails compared to the Gaussian distribution,

which is obtained when β > 1. Due to the shape parameter, the MPE distribution

is very flexible and can produce common distributions from the exponential family.

When β = 0.5 and β = 1, the MPE distribution is equivalent to the Laplace distri-

bution and the Gaussian distribution, respectively. The MPE distribution converges

to the multivariate uniform distribution when β → ∞. Figure 1.1 displays density

plots for different β values and it shows the flexibility of the MPE distribution.

In Chapter 2, we look into mixtures of the MPE model for longitudinal data and

the relevant statistical inferences. In Chapter 3, longitudinal clustering is applied to

real datasets and compared to the performances of the mixtures of the multivariate

Gaussian and mixtures of the multivariate t-distributions. This chapter also looks

at the option of constraining the sub-diagonals of Tg and this is investigated by

applying it to a real dataset. In Chapter 4, model-based classification is introduced

and applied to a real dataset. In Chapter 5, the results are summarized and future

works are discussed.
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Figure 1.1: Density plots of bivariate MPE distribution for different β values.
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Chapter 2

Methodology

2.1 The Model

For a p-dimensional random vector X, the MPE distribution’s density has the form

of

g(x|µ,Σ, r, s) = cp |Σ|−
1
2 exp

{
− r

2s
δ(x)s

}
, (2.1)

where

cp =
sΓ
(
p
2

)
(2π)p/2Γ

(
p
2s

)rp/(2s),
δ(x) := δ(x|µ,Σ) = (x−µ)′Σ−1(x−µ), µ is the location parameter, Σ is a positive-

definite scale matrix, r, s > 0 and x is a random vector (Landsman and Valdez, 2003).

This form of the density was not used by Dang et al. (2015) because of identifiability

issues with Σ and r, so a reparametrized form of the density was used, which was

given by Gómez et al. (1998a). The reparametrization of (2.1) is done by taking

r = 2β−1 and s = β, where β is a shape parameter that determines the kurtosis. Take

X to be a random vector with p dimensions that follows the MPE distribution and

7
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the density has the form

f(x|µ,Σ, β) = k |Σ|−
1
2 exp

{
−1

2
δ(x)β

}
, (2.2)

where

k =
pΓ
(
p
2

)
(πp/2)Γ

(
1 + p

2β

)
21+ p

2β

,

and the rest of the parameters are the same as in (2.1). When the parameterized

MPE density (2.2) is replaced in the mixture model density (1.1) it gives the density

for mixtures of MPE, which is defined as

h(x|Θ) =
G∑
g=1

πgf(x|µg,Σg, βg), (2.3)

where f(x|µg,Σg, βg) is the gth group’s density with its respective parameters. The

modified Cholesky decomposition is used for the covariance structure, in order to

correctly model longitudinal data. The mixtures of MPE model’s density (2.3) with

the modified Cholesky decomposed covariance structure for a specific group is

f(xi|µg,Tg,Dg, βg) = kg |Dg|−
1
2 exp

{
−1

2

[
(xi − µg)

′T′gD
−1
g Tg(xi − µg)

]βg}
, (2.4)

where T′gD
−1
g Tg = Σ−1g , Tg and Dg are p× p matrices and

kg =
pΓ
(
p
2

)
(πp/2)Γ

(
1 + p

2βg

)
2
1+ p

2βg

.

Like the families of Gaussian and t mixture models, the MPE distribution also has

the option of constraining T, D or Σ, which would lead to the same family of eight

mixture models from Table 1.1. However, the MPE distribution has an additional

8
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Table 2.1: MPE mixture model family with its respective nomenclature and number
of covariance parameters

Model Tg Dg Dg βg Number of Covariance Parameters
EEAE Equal Equal Anisotropic Equal p(p− 1)/2 + p
VVAE Variable Variable Anisotropic Equal Gp(p− 1)/2 +Gp
VEAE Variable Equal Anisotropic Equal Gp(p− 1)/2 + p
EVAE Equal Variable Anisotropic Equal p(p− 1)/2 +Gp
VVIE Variable Variable Isotropic Equal Gp(p− 1)/2 +G
VEIE Variable Equal Isotropic Equal Gp(p− 1)/2 + 1
EVIE Equal Variable Isotropic Equal p(p− 1)/2 +G
EEIE Equal Equal Isotropic Equal p(p− 1)/2 + 1
EEAV Equal Equal Anisotropic Variable p(p− 1)/2 + p
VVAV Variable Variable Anisotropic Variable Gp(p− 1)/2 +Gp
VEAV Variable Equal Anisotropic Variable Gp(p− 1)/2 + p
EVAV Equal Variable Anisotropic Variable p(p− 1)/2 +Gp
VVIV Variable Variable Isotropic Variable Gp(p− 1)/2 +G
VEIV Variable Equal Isotropic Variable Gp(p− 1)/2 + 1
EVIV Equal Variable Isotropic Variable p(p− 1)/2 +G
EEIV Equal Equal Isotropic Variable p(p− 1)/2 + 1

shape parameter, β, so there is an option of constraining βg to be equal across all the

groups, i.e. βg = β (Dang et al., 2015). Combining all of the above constraints there

are a total of 16 MPE mixture models. The nomenclature and number of covariance

parameters of the 16 models are given in Table 2.1. From this family of mixture

models the fully unconstrained model is the VVAV and the fully constrained model

is the EEIE.

2.2 Model Fitting

McNicholas and Murphy (2010) and McNicholas and Subedi (2012) used the expectation-

maximization (EM) algorithm to fit the models, but the MPE mixture models re-

quire the use of the generalized EM (GEM; Dempster et al., 1977) algorithm as

9



M.Sc. Thesis - Nidhi Patel McMaster - Statistics

seen in Dang et al. (2015). The EM algorithm is an iterative method based on the

complete-data likelihood, where at each iteration the expected value of the complete-

data log-likelihood is maximized and this results in parameter updates (Dempster

et al., 1977). There also is an expectation-conditional-maximization (ECM) algo-

rithm, which is like the EM algorithm, but the maximization (M) step is replaced

with several conditional maximization (CM) steps (Meng and Rubin, 1993). For the

ECM, the expected complete-data log-likelihood is maximized at each iteration like

the EM algorithm, but if it only increases at each iteration instead of maximizing,

then it is known as the GEM algorithm.

The likelihood for p-dimensional x1, . . . ,xN from a MPE mixture model with a

modified Cholesky decomposed covariance structure is

L0(Θ) =
N∏
i=1

G∑
g=1

πgkg|Dg|−
1
2 exp

{
−1

2

(
m′igT

′
gD
−1
g Tgmig

)βg}
, (2.5)

where mig = xi − µg and N is the number of observations. Now zi = (zi1, . . . , ziG)

is the group’s label vector such that zig = 1 if xi belongs in group g and zig = 0 if

it does not belong. The complete-data combines the known data, x = (x1, . . . ,xn),

with the missing data, z = (z1, . . . , zn). The complete-data log-likelihood for the

MPE mixture model is

Lc(Θ) =
N∑
i=1

G∑
g=1

zig log

[
πgkg|Dg|−

1
2 exp

{
−1

2

(
m′igT

′
gD
−1
g Tgmig

)βg}]
. (2.6)

The expectation (E) step for the GEM algorithm requires the expected complete-data

10
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log-likelihood to be calculated. The expected complete-data log-likelihood is given by

Q(Θ) =
N∑
i=1

G∑
g=1

ẑig
2

[
log |Dg|−1 −

(
m′igT

′
gD
−1
g Tgmig

)βg]
, (2.7)

where the expected values, ẑig, are given by

ẑig =
π̂gf

(
xi|µ̂g, D̂g, T̂g, β̂g

)
∑G

h=1 π̂hf
(
xi|µ̂h, D̂h, T̂h, β̂h

) , (2.8)

for i = 1, . . . , N and g = 1, . . . , G.

GEM’s M-step consists of several CM steps, where the expected value of the

complete-data log-likelihood with respect to its parameters, Θ, is maximized. π̂g is

the probability of belonging to group g. This is the only update that has a closed

form solution, which is

π̂g =
ng
N
, (2.9)

where ng =
∑N

i=1 ẑig.

The updates for µ̂g, β̂g, D̂g and T̂g are not possible in closed form, so other

methods need to be utilized. For updating µ̂g the Newton-Raphson method had to

be implemented. The update is

µ̂new
g = µ̂old

g −
∂Q/∂µg

∂2Q/∂µg∂µ
′
g

, (2.10)

where µ̂old
g is the update for µg from the last iteration and µ̂new

g is the µg update

11
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from the current iteration. The partial derivatives are defined as

∂Q

∂µg

= β̂g

N∑
i=1

ẑigδig(xi)
β̂g−1Σ̂

−1
g mig, (2.11)

∂2Q

∂µg∂µ
′
g

= β̂g

N∑
i=1

ẑig

[
−δig(xi)β̂g−1Σ̂

−1
g + (β̂g − 1)δig(xi)

β̂g−2Σ̂
−1
g mig(−2Σ̂

−1
g mig)

′
]
,

(2.12)

where

δig(xi) := (xi − µ̂g)
′Σ̂
−1
g (xi − µ̂g)

and Σ̂
−1
g = T̂′gD̂

−1
g T̂g. The Newton-Raphson method is also used to update β̂g, but

this update depends on whether β̂g is constrained or unconstrained across all groups.

The update is

β̂new
g = β̂old

g −
∂Q/∂βg
∂2Q/∂β2

g

, (2.13)

where β̂old
g is the update for βg from the last iteration and β̂new

g is the βg update from

the current iteration.

If β̂g is unconstrained in the model then use,

∂Q

∂βg
=
png

2β̂2
g

ψ

(
1 +

p

2β̂g

)
+
png log 2

2β̂2
g

−
N∑
i=1

ẑig
2
δig(xi)

β̂g log δig(xi) (2.14)

∂2Q

∂β2
g

=
−png
β̂3
g

ψ

(
1 +

p

2β̂g

)
− p2ng

4β̂4
g

ψ1

(
1 +

p

2β̂g

)
− png log 2

β̂3
g

−
N∑
i=1

ẑig
2
δig(xi)

β̂g [log δig(xi)]
2 ,

(2.15)

where ψ(·) is the digamma function and ψ1(·) is the trigamma function. The digamma

function is defined as the logarithmic derivative of the gamma function, which is

12
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defined as

ψ(z) =
d

dz
log Γ(z)

(Sibuya, 1979). The trigamma function is the derivative of the digamma function,

which is defined as

ψ1(z) =
d

dz
ψ(z) =

d2

dz2
log Γ(z)

(Sibuya, 1979). If β̂g is constrained in the model then use,

∂Q

∂β
=
pN

2β̂2
ψ

(
1 +

p

2β̂

)
+
pN log 2

2β̂2
−

G∑
g=1

N∑
i=1

ẑig
2
δig(xi)

β̂ log δig(xi) (2.16)

∂2Q

∂β2
=
−pN
β̂3

ψ

(
1 +

p

2β̂

)
− p2N

4β̂4
ψ1

(
1 +

p

2β̂

)
− pN log 2

β̂3

−
G∑
g=1

N∑
i=1

ẑig
2
δig(xi)

β̂ [log δig(xi)]
2 .

(2.17)

The updates for D̂g and T̂g are also impossible to obtain in closed form, so other

methods need to be implemented. The update for D̂g relies on the convexity proper-

ties for maximization, so the minorization-maximization (MM) algorithm is utilized

for the M-step. A particular MM algorithm allows for the expected complete-data

log-likelihood to increase at each iteration instead of maximizing (Hunter and Lange,

2000). The MM algorithm is constructed by using the convexity of the objective

function, which is a surrogate minorizing function (Browne and McNicholas, 2014b).

Due to the behaviour of the MPE distribution, the D̂g update has to be done in

two parts, which depends on the value of β̂g. The sub-diagonal elements of T̂g are

updated by a built-in optimizer in R through the optim function. The L-BFGS-B

method was used for the optim function, where the lower and upper bounds on the

13
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variables was −100 and 100, respectively. The objective function used for the optim

function is
N∑
i=1

ẑig
2

log |Dg|−1 −
ẑig
2

tr
{(

m′igT
′
gD
−1
g Tgmig

)βg}
. (2.18)

The pseudo-code for the parameter estimations is:

1. Initialize ẑig, β̂g, µ̂g and Σ̂g.

2. Compute π̂g using (2.9).

3. Update β̂g using (2.14) and (2.17) or (2.16) and (2.17), depending on whether

β̂g is unconstrained or constrained.

4. CM step: Update µ̂g using (2.11) and (2.12).

5. CM step: Update D̂g, depending on the scale structure.

6. CM step: Update T̂g, using (2.18) and the optim function in R.

7. Update ẑig by using (2.8).

8. Update π̂g using (2.9).

9. Check for convergence. If not converged, then go back to step 3.

2.3 D̂g update for the VVAV model

As mentioned in Section 2.2, the update for D̂g depends on β̂g, which results in two

different updates for D̂g. The first update is for when β̂g ∈ (0, 1) and the second

update is for when β̂g ∈ [1,∞).
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The D̂g update for when β̂g ∈ (0, 1):

Q(Σg) =
N∑
i=1

G∑
g=1

ẑig
2

log |Σg|−1 −
ẑig
2

(
(xi − µg)

′Σ−1g (xi − µg)
)βg

=
N∑
i=1

G∑
g=1

ẑig
2

log |Dg|−1 −
ẑig
2

tr
(
(xi − µg)

′T′gD
−1
g Tg(xi − µg)

)βg
=

N∑
i=1

G∑
g=1

ẑig
2

log |Dg|−1 −
ẑig
2

tr
(
v′igD

−1
g vig

)βg
=

N∑
i=1

G∑
g=1

− ẑig
2

log |Dg| −
ẑig
2

tr
(
D−1g Vig

)βg
=

N∑
i=1

G∑
g=1

− ẑig
2

log |Λ−1g | −
ẑig
2

tr (ΛgVig)
βg ,

where vig = Tg(xi − µg), Vig = vigv
′
ig and Λg = D−1g

Let xβg be equal to tr (ΛgVig)
βg . By using the supporting hyperplane inequality for

a concave function:

xβg ≤ x
βg
0 + βgx

βg−1
0 (x− x0),

i.e., tr (ΛgVig)
βg ≤ tr

(
Λ(0)
g Vig

)βg
+ βg tr

(
Λ(0)
g Vig

)βg−1 [
tr (ΛgVig)− tr

(
Λ(0)
g Vig

)]

Constructing a minorizer,

− tr (ΛgVig)
βg ≥ − tr

(
Λ(0)
g Vig

)βg
−βg tr

(
Λ(0)
g Vig

)βg−1 [
tr (ΛgVig)− tr

(
Λ(0)
g Vig

)]

Q(Σg) ≥
N∑
i=1

G∑
g=1

ẑig
2

log |Λg| −
ẑig
2

tr
(
Λ(0)
g Vig

)
− ẑig

2
βg tr

(
Λ(0)
g Vig

)βg−1
tr (ΛgVig)

+
ẑig
2
βg tr

(
Λ(0)
g Vig

)βg−1
tr
(
Λ(0)
g Vig

)
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Taking the derivative of Q(Σg) with respect to Λg,

∂Q

∂Λg

=
N∑
i=1

ẑig
2

(
Λ′g
)−1 − ẑig

2
βg tr

(
Λ(0)
g Vig

)βg−1
V′ig (2.19)

Setting (2.19) to 0 gives,

0 =
Λ̂
−1
g

2

N∑
i=1

ẑig −
βg
2

N∑
i=1

ẑig tr
(
Λ(0)
g Vig

)βg−1
Vig

−
Λ̂
−1
g

2
ng = −βg

2

N∑
i=1

ẑig tr
(
Λ(0)
g Vig

)βg−1
Vig

Λ̂
−1
g =

βg
ng

N∑
i=1

ẑig tr
(
Λ(0)
g Vig

)βg−1
Vig

Replace Λ̂
−1
g with D̂g to get the update for D̂g,

D̂g =
βg
ng

N∑
i=1

ẑig tr
(
D−1(0)g Vig

)βg−1
Vig

The D̂g update for when β̂g ∈ [1,∞):

Let Dg = Λ−1/βgg , so the modified Cholesky decomposed Σ−1g = TgΛ
1/βg
g T′g.

From the first part,

Q(Σg) =
N∑
i=1

G∑
g=1

− ẑig
2

log |Λ−1/βgg | − ẑig
2

tr
(

(xi − µg)
′TgΛ

1/βg
g T′g(xi − µg)

)
=

N∑
i=1

G∑
g=1

− ẑig
2

log |Λ−1/βgg | − ẑig
2

tr
(
Λ1/βg
g vigv

′
ig

)

For i = 1, . . . , N ,

f(λg) = tr
(
v′igΛ

1/βg
g vig

)βg
=

(
p∑

k=1

λ
1/βg
kg v2kg

)βg

,
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where Λg = diag(λg1, . . . , λgp). This function is concave with respect to the eigenval-

ues λ = {λg1, . . . , λgp}.

∇f(λg) = βg

(
p∑

k=1

λ
1/βg
kg v2kg

)βg−1((
v21g
βg
λ
1/βg−1
1g

)
, . . . ,

(
v2kg
βg
λ
1/βg−1
kg

))′

A surrogate function is constructed using,

f(λg) ≤ f(λ(0)
g ) + (∇f(λ(0)

g ))′(λ− λ(0))

≤ tr
(
Λ(0)1/βg
g Vig

)βg
+ tr

(
v′igΛ

(0)1/2βg
g Λ(0)1/2βg

g vig

)βg−1
×
((
v21gλ

(0)1/βg−1
1g

)
, . . . ,

(
v2kgλ

(0)1/βg−1
kg

))′
×
((
λ1g − λ(0)1g

)
, . . . ,

(
λkg − λ(0)kg

))′
≤ tr

(
Λ(0)1/βg
g Vig

)βg
+ tr

(
v′igΛ

(0)1/2βg
g Λ(0)1/2βg

g vig

)βg−1
×

(
p∑

k=1

v2kgλkgλ
(0)1/βg−1
kg −

p∑
k=1

v2kgλ
(0)1/βg
kg

)

≤ tr
(
Λ(0)1/βg
g Vig

)βg
+ tr

(
v′igΛ

(0)1/2βg
g Λ(0)1/2βg

g vig

)βg−1
× tr

(
v′igΛ

(0)1/2βg−1/2
g ΛgΛ

(0)1/2βg−1/2
g vig − v′igΛ

(0)1/2βg
g Λ(0)1/2βg

g vig

)
≤ tr

(
Λ(0)1/βg
g Vig

)βg
+ tr

(
w′igwig

)βg−1 (
tr
(
w′igΛ

(0)−1/2
g ΛgΛ

(0)−1/2wig

)
− tr

(
w′igwig

))
≤ tr

(
Λ(0)1/βg
g Vig

)βg
+ tr

(
ΛgΛ

(0)−1/2
g W

βg
ig Λ(0)−1/2

g

)
− tr

(
W

βg
ig

)
,

where wig = v′igΛ
(0)1/2βg
g and W

βg
ig = wigw

′
ig(w

′
igwig)

βg−1.

Let c = tr
(
Λ(0)1/βg
g Vig

)βg
− tr

(
W

βg
ig

)
, which are constants. Then, Q is maximized,

Q(Σg) =
N∑
i=1

G∑
g=1

− ẑig
2βg

log |Λg|+
ẑig
2

(
c+ tr

(
ΛgΛ

(0)−1/2
g W

βg
ig Λ(0)−1/2

g

))
∂Q

∂Λg

=
N∑
i=1

− ẑig
2βg

Λ−1g +
N∑
i=1

ẑig
2

Λ(0)−1/2
g W

βg
ig Λ(0)−1/2

g
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Λ̂
−1
g

2βg

N∑
i=1

ẑig =
1

2

N∑
i=1

ẑigΛ
(0)−1/2
g W

βg
ig Λ(0)−1/2

g

Λ̂
−1
g =

βg
ng

N∑
i=1

ẑigΛ
(0)−1/2
g W

βg
ig Λ(0)−1/2

g

D̂βg
g =

βg
ng

N∑
i=1

ẑigD
(0)βg/2
g W

βg
ig D(0)βg/2

g

Therefore, the update for D̂g is

D̂g =

(
βg
ng

N∑
i=1

ẑigD
(0)βg/2
g W

βg
ig D(0)βg/2

g

)1/βg

.

2.4 Convergence Criterion

The Aitken acceleration is utilized as the stopping criterion to determine the conver-

gence of the EM algorithm, by providing an asymptotic estimate of the log-likelihood

at each iteration. The Aitken acceleration at iteration m is given by

a(m) =
l(m+1) − l(m)

l(m) − l(m−1)
, (2.20)

where l(m+1), l(m) and l(m−1) are the log-likelihood values from the iterations m + 1,

m, and m−1, respectively. The asymptotic estimate of the log-likelihood at iteration

m+ 1 is

l(m+1)
∞ = l(m) +

1

1− a(m)

(
l(m+1) − l(m)

)
(2.21)

(Böhning et al., 1994). The EM algorithm has converged if

l(m+1)
∞ − l(m) < ε
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(McNicholas et al., 2010), where ε was taken to be 0.005 in the analysis herein.

2.5 Model Selection

Model selection is crucial for model-based clustering because multiple models are fit

for a range of G values. The Bayesian information criterion (BIC; Schwarz, 1978) is

used to select the best model. The BIC is written as

BIC = 2l(x, θ̂)− ρ logN, (2.22)

where l(x, θ̂) is the maximized log-likelihood, θ̂ is the maximum likelihood estimate

of θ, ρ is the number of free parameters in the model and N is the number of obser-

vations.

2.6 Performance Assessment

For the purposes of this paper, cluster analysis was only done on datasets that had

known clusters, so the performance can be assessed and compared to other methods.

The adjusted Rand Index (ARI; Rand, 1971; Hubert and Arabie, 1985) is used to

assess the clustering performance, by comparing the true cluster memberships to the

estimated ones given by the best chosen model. The expected value of the ARI under

random classification is zero and the value of the ARI under perfect agreement is one.
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Chapter 3

Illustrations

3.1 Growth Curves Data

This dataset consists of 20 pre-adolescent girls whose heights were measured yearly

from ages six to ten. The girls were categorized based on their mother’s height, where

the categories were: short, medium and tall. There were six girls in the short group,

seven girls in the medium group and seven girls in the tall group. This dataset was

published in Verbeke and Lesaffre (1997). This paper did not mention what the exact

height ranges were for the categories of the mother’s height. The measurements taken

of the girls’ heights over time can be seen on the time series plot in Figure 3.1. From

this plot, it seems that there is a relationship between the mother’s height and the

daughter’s height, but the groups are close together overlapping. For the purpose of

performing cluster analysis, the mothers’ heights are treated as the true memberships

for the girls, which are taken to be unknown a priori.

The family of the MPE mixtures models from Table 2.1 are fit to this data, which

results in 16 different models. Each model is fit with 10 different random starting
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Figure 3.1: These time series plots show each girls’ height between age 6 and 10. The
top left plot shows the true group memberships which is grouped by mothers’ height,
where short is the black solid lines, medium is red dashed lines and tall is green
dotted lines. The top right plot shows the estimated group memberships obtained
from the PE mixture models. The bottom left plot shows the estimated memberships
obtained from the Gaussian mixture models and the bottom right shows the estimated
memberships from the t mixture models.
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Table 3.1: True clusters cross-tabulated against estimated classifications for the
growth curves data, using PE, Gaussian, and t-mixtures, respectively.

PE Gaussian t
1 2 3 1 2 1 2

short 4 2 0 4 2 4 2
medium 0 7 0 3 4 3 4
tall 0 4 3 1 6 1 6

values for ẑig, for G = 1, . . . , 5. The best model chosen based on BIC is the EEAV

model with G = 3. The number of clusters selected are the same as the true number

of clusters, but there are some miss-classifications, which can be seen in Table 3.1.

From this table it can be seen that the seven girls with a medium mother were all

classified correctly, which tells us that medium height mothers have medium height

daughters. Four girls with a short mother were correctly classified, but two girls

from this group were incorrectly classified into the medium mothers group. This

suggests that short height mothers usually have short height daughters, but there is

a chance of them having a medium height daughter. Three girls with a tall mother

were correctly classified, but four girls from this group were incorrectly classified into

the medium mothers group. This suggests that tall height mothers can have tall or

medium height daughters. The ARI associated to Table 3.1 is 0.24, which indicates

that the classification between the true and estimated classifications is better than

what would be expected under random classification. The estimated classifications

can be seen on the times series plot in Figure 3.1. The EEAV model suggests that

the autoregressive structure is the same for all three groups and the fact that the

isotropic constraint was not imposed, suggests that the innovation variances differ

among time points for a particular group. This model also suggests that the shape

parameter is different for all three groups. β̂ = (2.01, 2.31, 2.17)′, which suggests
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a lighter-tailed distribution than the Gaussian, so the data might not be correctly

modeled by a multivariate Gaussian distribution.

For comparison purposes the family of Gaussian mixture models and t mixture

models, which were mentioned in Chapter 1, are fit to this data. Both families con-

sist of eight models each, which are shown in Table 1.1. Each model is fit with 10

different random starting values for ẑig for G = 1, . . . , 5. Longitudinal clustering

via multivariate Gaussian and multivariate t-distribution was performed using the

function longclustEM from the package longclust (McNicholas et al., 2015) in R.

The best model selected from both the Gaussian and t mixture models was the EVA

model with G = 2. The cross-tabulation between the true and estimated classifica-

tions for both families can be seen in Table 3.1. Both families have the exact same

estimated classifications, which seems reasonable because the estimated degrees of

freedom ν̂ = (86.29, 86.15) for t mixture models, which reflect the fact that both

clusters are Gaussian. The ARI associated with Table 3.1 for the Gaussian and t

mixture models is 0.05, which suggests the agreement between the true and esti-

mated classifications are no better than random. The estimated classifications for

both mixture models can be seen on the time series plot in Figure 3.1.

3.2 Growth of Sitka Spruce Trees Data

This dataset consists of 79 Sitka spruce trees where the growth was monitored for 674

days. This dataset was sourced from the nlme package (Pinheiro et al., 2016) in R

and was originally published in Diggle et al. (1994). The study objective that Diggle

et al. (1994) had was to assess the effect of ozone pollution on the tree growth. This

was done by measuring trees in plots with ozone exposure at 70 ppb or were under
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control conditions. There were two ozone exposure plots with 27 trees in each and

two control plots with 12 in one and 13 in the other. In the dataset these plots are

referred to as plots 1,2,3, and 4, respectively. The tree’s size was measured by taking

the product of the tree’s height and diameter squared. Diggle et al. (1994) used the

logarithm of size for the analysis. The size of the trees was measured on 152, 174,

201, 227, 258, 469, 496, 528, 556, 579, 613, 639, and 674 days after the experiment

began, which results in 13 time points. Due to the lack of time, only five time points

were used for this analysis because this would shorten the computation time. The

five time points used were, 152, 227, 496, 579, and 674 days after the experiment

began. These measurements can be seen on the time series plot in Figure 3.2. From

this plot it can be seen that the four groups are overlapped and might be a hard

cluster analysis problem. For the purpose of performing cluster analysis, the four

plots of land are treated as the true memberships for the trees, which are taken to be

unknown a priori.

All 16 models from the family of the MPE mixture models in Table 2.1 are fit.

Each model is fit with 10 different random starting values of ẑig for G = 1, . . . , 6. The

best model selected based on BIC is the EVIE model with G = 3. The number of

clusters selected did not match up with the true number of clusters. The details of the

differences between plots were not given other than if they were ozone exposed or not,

so there might be extraneous variables in play that may show there is no distinctive

differences between all four plots of land. The cross-tabulation between the true and

estimated group memberships can be seen in Table 3.2. From this table it can be

seen that most of the trees from plot 1 and 2 were clustered together as group 1, but

this group also includes eight trees from plot 3. The estimated groups 2 and 3 consist
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Figure 3.2: These time series plots show each trees’ growth between 152 and 674
days. The top left plot shows the true group memberships which is grouped by land
plots, where the black solid lines is the ozone exposed plot 1, red dashed lines is ozone
exposed plot 2, green dotted lines is control conditions plot 1, and blue dashed/dots
line is the control conditions plot 2. The top right plot shows the estimated group
memberships obtained from the PE mixture models. The bottom left plot shows the
estimated memberships obtained from the Gaussian mixture models and the bottom
right shows the estimated memberships from the t mixture models.
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Table 3.2: True clusters cross-tabulated against estimated classifications for the Sitka
spruce tree data, using PE, Gaussian, and t-mixtures, respectively.

PE Gaussian t
1 2 3 1 2 3 4 5 1 2 3 4 5

plot 1 23 1 3 6 3 6 9 3 6 7 6 5 3
plot 2 22 3 2 3 6 5 13 0 10 3 7 5 2
plot 3 8 3 1 0 3 1 5 3 3 3 2 3 1
plot 4 0 12 1 6 0 2 5 0 3 4 3 2 1

of trees from all four plots. The ARI associated to Table 3.2 is 0.21, which indicates

that the classification between the true and estimated classifications is better than

what would be expected under random classification. The estimated classifications

can be seen on a time series plot in Figure 3.2. The EVIE model suggests that the

autoregressive structure is the same for all three groups and the innovation variances

are different for all three groups; however, because the isotropic constraint has been

imposed the innovation variances are the same across all time points for a particular

group. This model also suggests the shape parameter is the same for all three groups,

i.e., β̂g = β̂ = 1.42, where the magnitude suggests it may be similarly modeled by a

multivariate Gaussian distribution.

For comparison purposes the family of Gaussian mixture models and t mixture

models are also fit to this data, as in Section 3.1. Each model is fit with 10 different

random starting values of ẑig for G = 1, . . . , 6. The best model selected from the

Gaussian mixture models is the EVA model with G = 5 and from the t mixture

models is the EEA model with G = 5. The cross-tabulations between the true and

estimated classifications for both can be seen in Table 3.2. Based on this table the

classification seems random because most of the estimated clusters consist of trees

from each plot. The ARI values associated to this table for the Gaussian and t
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mixture models are 0.01 and −0.02, respectively. The ARI values suggest that the

classification is random. The estimated classifications for both Gaussian and tmixture

models can be seen on the time series plots in Figure 3.2. The degrees of freedom

ν̂ = (96.91, 82.30, 80.13, 108.11, 67.63) for the t mixture models, which reflect the fact

that the clusters are Gaussian. However, both families of mixture models did not

select the same model and the estimated classifications were not exactly the same, as

in Section 3.1.

3.3 Weight Loss Data

This dataset consists of 34 individuals where weight and self-esteem were monitored

over three months. This dataset was sourced from the car package (Fox et al., 2007) in

R. Each individual was placed in one of three groups, control, diet, and diet+exercise.

There are 12 individuals in the control group, 12 in the diet group and 10 in the

diet+exercise group. Each individual’s amount of weight lost in pounds was restored

monthly for three months. Along with weight lost, the individual self-ranked their self

esteem each month. For the purpose of this analysis only the individual’s weight loss

measurements and the group they belong to are considered. These measurements can

be seen on the time series plot in Figure 3.3. From the plot it can be seen that there

does not seem to be a distinctive difference between the control and diet group. This

dataset has known group memberships a priori, but for the purpose of performing

cluster analysis the group memberships are taken to be unknown.

All 16 models from the family of the MPE mixture models in Table 2.1 are fit.

Each model is fit with 10 random starting values of ẑig for G = 1, . . . , 5. The best

model selected is the EVIE model with G = 2. The number of clusters selected did
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Figure 3.3: These time series plots show each individual’s weight loss over 3 months.
The top left plot shows the true group memberships, where the black solid lines is
the control group, red dashed lines is the diet group, and the green dotted line is
the diet+exercise group. The top right plot shows the estimated group memberships
obtained from the PE mixture models. The bottom left plot shows the estimated
memberships obtained from the Gaussian mixture models and the bottom right shows
the estimated memberships from the t mixture models.
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Table 3.3: True clusters cross-tabulated against estimated classifications for the
weight loss data, using PE, Gaussian, and t-mixtures, respectively.

PE Gaussian t
1 2 1 2 1 2

control 12 0 10 2 10 2
diet 12 0 6 6 6 6
diet+exercise 3 7 2 8 2 8

not match up with the true number of clusters, but from the plot in Figure 3.3 it

was seen that groups 1 and 2 seem to follow a similar pattern over the three months.

The cross-tabulation between the true and estimated group memberships can be seen

in Table 3.3. The ARI associated with Table 3.3 is 0.25, which indicates that the

classification between the true and estimated classifications is better than what would

be expected under random classification. This table shows that the control and diet

groups were combined into one group plus three individuals from the diet+exercise

group. The other seven individuals were correctly classified into their diet+exercise

group. The estimated classifications can be seen on a time series plot in Figure 3.3.

The EVIE model suggests that the autoregressive structure is the same for both

groups and the innovation variances are different for both groups, but because the

isotropic constraint has been imposed the innovation variances are the same at each

time point for a particular group. This model also suggests the shape parameter is

the same for both groups, i.e. β̂g = β̂ = 6.23 and the magnitude of β̂ suggests that

the data cannot be correctly modeled by a multivariate Gaussian distribution.

For comparison purposes the family of Gaussian mixture models and t mixture

models is fit to the weight loss data as well. Each of the models is fit with 10 random

starting values of ẑig, for G = 1, . . . , 5. The best model chosen from the Gaussian

and t mixture models is the EVI with G = 2. The cross-tabulation between the true
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and estimated classifications for both families can be seen in Table 3.3. Both families

have the exact same estimated classifications, which seem reasonable because the

estimated degrees of freedom ν̂ = (61.85, 53.88) for t mixture models, which reflect

the fact that both clusters are Gaussian. The ARI associated with Table 3.3 for the

Gaussian and t mixture models is 0.13, which suggests the agreement between the true

and estimated classifications are close to being random. The estimated classifications

for both mixture models can be seen on a time series plot in Figure 3.3. All three

family of mixture models selects the covariance structure to be EVI with G = 2, but

the MPE mixture model performs better.

3.4 Constraining Sub-diagonals of T̂g

3.4.1 Introduction

McNicholas and Murphy (2010) introduced the concept of constraining the sub-

diagonals of the T̂g matrix. This can be utilized when the T̂g matrix consists of

elements that are very small below a certain sub-diagonal, which may suggest au-

tocorrelation over large time lags exists and can be removed by constraining certain

sub-diagonals to be zero. Constraining T̂g to have zeros below the dth sub-diagonal

implies an order d autoregressive structure within the framework of Equation (1.3).

Let

T̂g =



1.00 0 0 0

−0.61 1.00 0 0

−0.05 0.75 1.00 0

0.01 −0.02 −0.58 1.00


.
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For this example, it can be seen that below the first sub-diagonal the elements are

very small, which indicates that some of the autoregressive parameters may not be

needed and replacing them with a zero would lead to a more parsimonious class of

models.

Consider the model VVAV and constrain the elements below the dth sub-diagonal

to be zero, then the notation used for this is VdVAV, where d = 1, . . . , p − 1. Note

that, when d = p− 1 this is equivalent to the full T̂g matrix.

3.4.2 Parameter Estimates

The sub-diagonal elements of T̂g are updated by a built-in optimizer in R through

the optim function. The objective function used for the optim function is

N∑
i=1

ẑig
2

log |Dg|−1 −
ẑig
2

tr
{(

m′igT
′
gD
−1
g Tgmig

)βg}
, (3.1)

where Tg is constrained to have zeros below the dth sub-diagonal.

3.4.3 Application to Growth Curves Data

The Growth Curves data is used for cluster analysis in Section 3.1 and is also an

example where a T̂g with constraints on the sub-diagonal would be chosen over the

full T̂g. In Section 3.1 the MPE mixture model chose EEAV with G = 3 to be the

best model. This dataset consists of five time points, so the EdEAV model is fit for

d = 1, . . . , 4, where E4EAV is the full model.

Table 3.4 shows the EdEAV models fit with its respective BIC values and ∆BIC

values. The difference between the dth sub-diagonal model’s BIC and the full model’s

31



M.Sc. Thesis - Nidhi Patel McMaster - Statistics

BIC is refereed to as ∆BIC. The best model chosen based on BIC is E2EAV model,

meaning all the elements below the second sub-diagonal are zero. The estimated

group memberships were similar to the full EEAV model and can be seen on the time

series plot in Figure 3.4. E2EAV model is the only one that has a positive ∆BIC

value, where ∆BIC is approximately two. There are no concrete guidelines for mea-

suring the strength of evidence against the model with the lower BIC value. However,

Kass and Raftery (1995) give guidelines for measuring the strength of evidence and is

summarized in Table 3.5. According to Table 3.5, E2EAV model has positive evidence

against the full model. The E2EAV model does not give very strong evidence against

the full model, but still gives similar estimated group memberships as the full model

and provides with a more parsimonious model. Therefore, the E2EAV model would

be a better option than the full model.

Table 3.4: BIC values for the EdEAV models fitted to the Growth Curves data.

Model BIC ∆BIC
E1EAV -380.68 -5.69
E2EAV -373.05 1.94
E3EAV -378.46 -3.47
E4EAV -374.99 0

Table 3.5: Guidelines for the strength of evidence against the model with lower BIC
value.

∆BIC Evidence against lower BIC
0 to 2 Not worth more than a bare mention
2 to 6 Positive
6 to 10 Strong
>10 Very strong
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Figure 3.4: Estimated classifications for the chosen E2EAV model from the family
of MPE mixture models. Refer to Figure 3.1 for the time series plot with the true
classifications.
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Chapter 4

Model-based Classifications

4.1 Introduction

Model-based classification is when some of the group memberships are known in a

semi-supervised fashion a priori and they are used to predict the other observations’

group memberships. The parameters that result from the combination of observations

with known and unknown group memberships give the classifications for the observa-

tions with unknown group memberships, which is also known as partial classification

(Andrews et al., 2011). For N observations, let k observations have known group

memberships and N − k observations have unknown group memberships. Let xi be

an observation, where its group membership is known for i = 1, . . . , k and unknown

for i = k + 1, . . . , N . Following McNicholas (2010), order the data such that the first

k points are labeled without the loss of generality. Then, the likelihood is

L(Θ|x) =
k∏
i=1

G∏
g=1

[
πgf

(
xi|µg,Dg,Tg, βg

)]zig N∏
j=k+1

H∑
h=1

πgf (xj|µh,Dh,Th, βh) , (4.1)
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where H ≥ G and f(·) is Equation (2.4).

4.2 Application to Schizophrenia Data

This dataset consists of schizophrenic patients who are a part of a clinical trail to

test for the effectiveness of certain drugs. The original dataset presented in Hedeker

and Gibbons (1997) had three drugs being tested along with a placebo group, but it

was found that all three drug groups responded similarly, so for the purposes of their

analysis all three drug groups were combined. This led to only two groups, where

patients were either taking a drug or were in the placebo group. These patients

were observed for six weeks and measurements of the severity of their illness were

recorded on weeks 0, 1, 3, and 6. The severity of the illness was measured on a one

to seven scale, where one represents normal and seven is the most severe case of the

illness. A major problem for clinical studies is that patients either drop out part way

through or do not show up for a certain check up, leading to missing data. Hedeker

and Gibbons (1997) used this dataset with the missing data, but Weiss (2005) used

the dataset to compare the severity of the illness between patients who showed up

for all the checkups and did not drop out versus patients who had missing data.

For the purposes of this analysis, only patients with no missing data were included.

There were 387 patients, where 294 are in the drug group and 93 are in the placebo

group. The measurements taken on the patients’ can be seen on the time series plot

in Figure 4.1. For the purposes of performing classification, every third patient’s

group membership was taken to be unknown, which leads to approximately 33% of

unknown group memberships.

The family of the MPE mixture models from Table 2.1 are fit to this data and
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Figure 4.1: These time series plots show each patients’ severity of illness over 6 weeks.
The top time series plot shows the true memberships for patient, which are grouped
by either drug or placebo group, where the drug group is the black solid lines and
the placebo group is the red dashed lines. The bottom left time series plot shows the
estimated group memberships while performing classification and the bottom right
plot shows the estimated group memberships while performing clustering.
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each model is fit with 10 different random starting values for ẑig, for G = 1, . . . , 5.

The best model chosen based on BIC is the EVIE model with G = 2. The right

number of clusters is chosen, but with some misclassifications. The ARI for the

cross-tabulations between true and estimated classifications is 0.70, which means it

performed pretty well but not with a perfect agreement. The EVIE model suggests

that the autoregressive structure is the same for both groups and the innovation

variances are different for both groups; however, because the isotropic constraint has

been imposed the innovation variances are the same at each time point for a particular

group. This model also suggests the shape parameter is the same for both groups.

Classification can perform better than clustering because some of the labels are

known a priori. To show this is true, clustering is done by fitting all 16 models

from Table 2.1 for 10 random starting values for ẑig, for G = 1, . . . , 5. The best

model selected based was the EVIE with G = 2. Surprisingly, both classification and

clustering selected the same G and the same model. However, the ARI for estimated

clustering group memberships is 0.13, which suggests the agreement was only a bit

more than random. This shows classification performed much than clustering, even

though the same model and G was selected.
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Chapter 5

Conclusion

Model-based clustering for longitudinal data using a Cholesky decomposed covariance

structure has been previously explored with the use of Gaussian mixture models (Mc-

Nicholas and Murphy, 2010) and t mixtures models (McNicholas and Subedi, 2012).

This paper introduces a family of MPE mixture models for longitudinal clustering,

which was introduced in Dang et al. (2015) for cluster analysis. The MPE distribution

was chosen for its flexibility in dealing with different tail weights and peakedness. The

modified Cholesky decomposition was utilized for the covariance structure because

this decomposition accounts for the relationship between measurements at different

time points. Various constraints can be placed on the modified Cholesky decomposed

covariance structure and constraints can also be placed on the shape parameter, which

led to a family of 16 mixture models. Real datasets were used to show that the fam-

ily of MPE mixture models is a good alternative for non-Gaussian data, where the

families of mixtures of Gaussian and mixtures of t do not perform well. Constraining

the sub-diagonals of T̂g was further looked at and through the use of a real dataset

was shown that constraining certain sub-diagonals to zero may lead to a better model
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with a more parsimonious covariance structure. Model-based classification with the

use of the MPE mixture models was investigated by applying it to a real dataset.

The family of MPE mixture models presented in this paper only works in the

univariate context. Univariate longitudinal data is when each subject only has one

measurement taken at each time point. Anderlucci et al. (2015) introduced a family

of mixture models for clustering multivariate longitudinal data, which is when each

subject has multiple measurements taken at each time point. This was an extension of

the proposed family of multivariate Gaussian mixture models for clustering univariate

longitudinal data in McNicholas and Murphy (2010). Anderlucci et al. (2015) used the

matrix normal distribution for modeling the density required for their proposed model.

Future work will include formulating a family of MPE mixture models for multivariate

longitudinal data, which could use the matrix power exponential distribution (Gómez

et al., 1998b) for modeling the density. Model-based classification was looked at, so

future work will include considering fractionally supervised classification (Vrbik and

McNicholas, 2015).
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