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Abstract
Taxon composition and biodiversity analyses are known powerful parameters for envi-
ronmental site status and environment diagnosis. Many ecological studies assess taxon
composition through traditional species identification and use bioindicator species to
evaluate environmental conditions. The recent breakthrough in bulk sample sequencing
combined with DNA barcoding has created a new era for environmental monitoring.
Metabarcoding approaches are more robust in studying alpha, and beta diversity com-
pare to the DNA barcoding and the conventional method of species identification, partic-
ularly for rare and cryptic species. Here we built upon ecological studies of bioindicator
species and transferred the traditionally named taxa to DNA-based approaches. We
developed a small customized DNA database for biodiversity assessment and taxonomic
identification of environmental DNA samples using high-throughput amplicon sequences.
It contains macroinvertebrate species that are known as indicators of specific environ-
mental conditions. By implementing this small database into the KRAKEN algorithm
for the first time, we were able to assess environmental biodiversity compared to other
popular methods of taxonomic classification, especially in polluted environments where
the taxonomic composition globally change by the presence of anthropogenic drivers.
Our method is incredibly faster, and it requires significantly less computational power
in contrast to common homology-based techniques. To evaluate our approach, we have
also studied the importance of database’s size and the depth of sequencing in taxonomic
classification of high-throughput DNA sequences.
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Chapter 1

Introduction

1.1 Biodiversity analyses

Human activities as a result of economic, cultural and intellectual goals are making signif-
icant global environment changes. A list of mechanisms includes; elevated CO2 and other
greenhouse gasses, increased nutrient loading and excessive water consumption, different
types of intense land usage and finally human-facilitated species invasions are all caus-
ing global biodiversity changes in our environment. Biodiversity alteration can lead to
natural species invasion and cause massive shifts in the ecosystem. Changes in ecosys-
tem services mediated by altered species traits, biodiversity and ecosystem processes
influence the services that benefit humanity (Chapin III et al., 2000) (Fig. 1.1). Biodi-
versity as a measure that quickly respond to the global environment change (Fig. 1.1),
has essential components that are helpful to study the global environment change mecha-
nisms. These components include; species richness (number of species), species evenness
(relative abundance), species composition (particular species), non-additive effects (in-
teraction among species), and the temporal and spatial variation.

Species richness can not reflect the changes in ecosystem functioning as a global pat-
tern. For example, increased microbial richness elevates the decomposition of organic
matter (Salonius, 1981), while there seems to be no relationship between plant species
richness and the decomposition rate(Wardle, Bonner, and Nicholson, 1997). In contrast
to species richness, species evenness requires more attention as it does respond to hu-
man activities very quickly (Chapin III et al., 2000). Particular species in an ecosystem
(species composition) actively regulate the ecosystem process by moderating energy and
material fluxes or by adjusting abiotic condition (Tilman et al., 1997). For example,
earthworms and termites, soil invertebrates, have an effect on the species composition
of the aboveground vegetation and wildlife by modifying the turnover of organic matter
and nutrition supply (Lavelle et al., 1997). Species interactions comprise; competi-
tion, trophic and mutualism can also impact the ecosystem processes through direct
and indirect modification. It can directly alter pathways of energy and material flow
(Ruiter, Neutel, and Moore, 1995) or indirectly refine the abundances of bioindicator
species.(Power et al., 1996). Also, based on the global-diversity hypothesis, diversity
can minimize the chance of global ecosystem alteration caused by environment shifts
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Figure 1.1: The role of biodiversity in global environment change from
Chapin III et al. (2000)

(McNaughton, 1977). Diversity makes an ecosystem resilient to change as the probabil-
ity of maintaining the current properties will increase by the presence of larger number of
functionally similar species (Chapin III and Shaver, 1985). For instance, Microbial com-
munities with higher species richness are less responsive to ecosystem processes (Naeem
and Li, 1997).

1.2 Macroinvertebrates as indicators of environments

A bioindicator can be defined as “a species or group of species that readily reflects the
abiotic or biotic state of an environment, represents the impact of environmental change
on a habitat, community, or ecosystem, or is indicative of the diversity of a subset of
taxa, or of the wholesale diversity, within an area” (McGEOCH, 1998). Macroinverte-
brates are potential bioindicators for assessing environments because they have: abun-
dant medium-sized bodies, medium growth rate, moderate population turnover (not as
high as microorganisms and not as low as higher plants or animals), active and passive
dispersal mechanism indicative of changes in ecosystem function(Hodkinson and Jack-
son, 2005). Changes in these organisms can indicate: a changing physical environment, a
changed chemical environment, specifically with different sort of pollution, the compara-
ble quality or conservation value of habitat, which refers to the importance of ecological
communities and shifts in the ecological status of the habitat with respect to time and
place (Hodkinson and Jackson, 2005).

2
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Thus far, the role of many invertebrates as potential bioindicators has been well-
documented through ecological studies (Paoletti, 2012). Although the indication role
of invertebrates in terrestrial habitats is less developed than is their usage in aquatic
environments (Bonada et al., 2006), terrestrial macro-invertebrates possess the same
bioindication characteristics as marine invertebrates (Rosenberg, Danks, and Lehmkuhl,
1986). For example, benthic macroinvertebrate taxa can tolerate pollution differently,
and their different responses were used for water assessment. Some of them, like larvae
in the orders Plecoptera and Ephemeroptera, were shown to be pollution intolerant.
While other species such as tubificid worms and chironomid midges survived under
deoxygenated conditions related to anoxia (Rosenberg, Resh, et al., 1993). Invertebrate
bioindicators demonstrate three levels of responses including individual animal level,
species population-level, and community-level responses (Hodkinson and Jackson, 2005).
Choosing a suitable level of responses based on the purpose of a study is an important
aspect that needs to be adequately addressed. Individual animals can illustrate single
environmental pollutants while the whole invertebrate community can highlight more
general values like conservation or continuing forest degradation (McGEOCH, 1998).

Individual animal-level responses focus more on the physiology and behavior of a
single animal to environmental stress, which are known as short-term bioindicators. For
instance, the presence of pollutions like fertilizers and heavy metals have caused fluc-
tuating asymmetry in some groups of invertebrates (Clarke, 1993; Tessier et al., 2000).
Fluctuating asymmetry (FA) is a morphological phenomenon that causes higher levels
of asymmetry in body shape and size (Parsons, 1992). The population responses at
the species-level are the simplest way to interpret the role of invertebrates as bioindi-
cators because this level of responses does not contain a diverse population of species
(community-level) or variable factors that cause physiological reactions in an individual
(individual animal level). For example, the mortality of soil invertebrates specifically
Lumbricus spp., collembola, snails and isopod species can be affected by the presence
of soil contamination including heavy metals and pH (Cortet et al., 1999; Van Straalen,
1998). Similarly, marine macroinvertebrates such as amphipods (Duan et al., 2000), cad-
disflies, and mayflies (Benton and Guttman, 1990) exhibit significant species population
level responses to heavy metal exposures.

The community-level responses are more complicated than the other levels, however
they provide a valuable approach for biological monitoring as they integrate multiple
species to evaluate multi-source environmental effects. The community level utilizes
species richness, evenness, and taxonomic composition to assess environmental changes
in a particular site. Although this level of responses provides realistic ecological re-
sponses, it suffers from poor accuracy in traditional taxonomic identification. For ex-
ample, a group of benthic macroinvertebrates includes Ephemeroptera, Plecoptera, and
Trichoptera is known as indicators of river pollutions and their richness evaluated as a
valuable index for running water ecosystems (Rosenberg, Resh, et al., 1993). But, this
subset of taxa does not include Oligochaete worms and chironomid midges, pollution-
sensitive groups, due to their challenging taxonomic identification.(Hodkinson and Jack-
son, 2005)

3
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Macroinvertebrate

Barcoding
-Standard COI
-Species richness
-Species evenness

Traditional
-physiology

Metbarcoding
-Richness
-Evenness
-Composition
-Desired resolution

Species population
-Single pollution factor
-Easy interpretation

Individual
-Short-term
-Physiology
-Behavior

Community
-long-term
-Multi pollution factor
-Environment changes

Figure 1.2: The three primary methods of assessing environmental eu-
karyotes and the level of ecological responses that they can produce using
macroinvertebrate bioindicators. The solid lines represent the best level
of response that a method generates and the dash lines are potential other

usages of a method.

There are two main challenges with traditional environment monitoring. Taxonomic
identification, the level of species responses, and the complexity of integrated responses
of multiple species population in the community-level analysis. Using conventional mon-
itoring methods requires a high degree of expertise and keys for species identification,
as only a few of them are well-characterized. Identification errors are more frequent
at the species-level rather than the family-level and some morphologically immature
species, or cryptic species are impossible to identify based on standard keys. As a result,
a higher level of taxonomy has been used for monitoring programs in the past (Jones,
2008; Sweeney et al., 2011). Although a higher taxonomic level might be useful for broad
scale impacts in an environment, the minor or small effects, which are essential in many

4
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studies will be ignored (Hewlett, 2000). As different species or genera might have vari-
able responses within a family, site diagnostics for impacting factors are more complex
in higher level identification (Pettigrove and Hoffmann, 2005). Biodiversity assessments
at the community-level using conventional methods are extremely labor-intensive and
suffer regarding accuracy. Taxonomists use a subset of easy sampling bioindicators or
their own specialist group due to the significant number of taxa involved at this level of
study. Consequently, other taxonomically challenging groups of bioindicators that rep-
resent environment’s effects are excluded from their analysis (Rosenberg, Resh, et al.,
1993).

With the proposal of DNA barcoding (Hebert, Cywinska, Ball, et al., 2003) and
the introduction of environmental barcoding (metabarcoding) (Hajibabaei et al., 2011),
it’s possible to choose different levels of study and many invertebrates responses to
evaluate the environmental changes (Fig. 1.2). It’s important to fully understand the
limitation and strength of each method and choose the appropriate approach based on the
ecological purposes of a project. Figure 1.2 Illustrate the three methods of environmental
monitoring using macroinvertebrates and different level of responses that each method
can potentially produce. The traditional way of assessing macroinvertebrates is suitable
for studying individual responses, especially for physiological and behavior reactions of
an individual to ecological effects (Merritt and Cummins, 1996). Although some authors
used conventional monitoring approaches for population density evaluation at species-
level (Hodkinson and Bird, 1998; Frati, Fanciulli, and Posthuma, 1992), this method
suffers regarding accuracy and is extremely labour-intensive.

DNA barcoding (1.3) provides a reliable and fast approach for assessing the species
population-level responses, but it’s costly and sometimes not feasible to use this method
for community level analysis. This method uses richness and evenness attributes to
evaluate environmental condition at species-level. Metabarcoding (1.4) employs high-
throughput sequences (HTS) to analyze bulk environmental eukaryotes samples. Metabar-
coding utilizes richness, evenness, and composition at the different taxonomic level to
predict long-term and multi-factor environmental changes at the community level. Also,
it’s practical to make use of this approach at species-population level using enormous
available databases and proper markers. Taberlet et al. (2012) reviewed the benefits of
DNA-based methods for selecting a different level of responses based on choosing the
right marker and methodology.

1.3 DNA Barcoding

Since 2003 (Hebert, Ratnasingham, and Waard, 2003), a campaign was started to over-
come the limitation of traditional taxonomic identification. Researchers used gene vari-
ants, mainly mitochondrial genes, to assign a barcode for each species. The main ad-
vancement was a gradual increase in including a broad range of organisms and developing
barcodes for different organisms (Hebert and Gregory, 2005). Although some groups of
organisms are still waiting to be added to the campaign, the taxonomic method of inquiry

5
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for a wide range of organisms was a significant advancement(Hajibabaei et al., 2007).
The standardized DNA sequencing approach in taxonomic studies leads to a standard
routine protocol for different organizations and agencies in environmental monitoring.
The originally proposed DNA barcode, a 650bp fragment of mitochondrial cytochrome
c oxidase one gene (COl), was shown to be successful for over 90 percent of species
due to the presence of unique COl barcode sequences (Hajibabaei et al., 2007). Frag-
ment sequences of two genes (rbcl and matK) have been chosen as the main plant DNA
barcode (Hollingsworth et al., 2009). Internal transcribed spacers (ITS) and 18SrDNA
have been designated as fungi and protist barcodes (Schoch et al., 2012). After assem-
bling a reference DNA barcode library from well-characterised species, identification of
newly obtained or preserved species by comparison to a reference database is a routine
procedure.(Hajibabaei et al., 2007)

1.4 Metagenomics and metabarcoding

New advancements in high-throughput sequencing (HTS) increased the speed and vol-
ume of sample sequencing while simultaneously decreasing the cost of sequencing(Mardis,
2008; Margulies et al., 2005). Previously, traditional methods in studying taxonomic
composition and environmental monitoring only focused on single specimens. With
the advent of new technologies, it’s possible to explore the taxonomic composition and
phylogenetic relationships of bioindicator communities in the environment through com-
parative analysis of mixtures of DNA (Handelsman et al., 1998). The HTS applications
accelerated the process of sample preparation, taxon identification and environmental
monitoring.

Previously, metagenomics was known as a culture or clone independent approach for
studying only prokaryote communities. The 16S ribosomal gene region has been utilized
extensively for microbial diversity assessments (Lee et al., 2012), the prokaryote commu-
nities associated with human body (Caporaso et al., 2011), the evaluation of prokaryotic
biodiversity in freshwater (Luo et al., 2012) and soil (Lauber et al., 2009). More recently,
researchers used this approach for environmental and community biodiversity analysis of
eukaryotes in bulk samples (Drummond et al., 2015; Gibson et al., 2014). DNA metabar-
coding consists of high-throughput amplicon sequences of cytochrome oxidase subunit
one were shown to be successful in biodiversity assessments of environmental samples
that contain mixtures of eukaryotes DNA (Hajibabaei et al., 2011). The availability
of a standard DNA library depends on the type of marker; for example, Cytochrome
c oxidase 1 has a massive standard DNA library, which can be used for species-level
identification of samples (Taberlet et al., 2012).

The amplicon metabarcoding primarily used 454 sequencing platform. The 454 se-
quencing (pyrosequencing) produces a long read length, however, has some disadvantages
including fewer sequences compared to other platforms, a higher number of sequencing
errors and, increased cost of reagents compared to other methods (Luo et al., 2012).
Currently, the sequencing platform that researchers mostly use for amplicon-based HTS

6
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is Illumina MISEQ or HISEQ. Because the COI barcode region is too long for Illumina
platforms, authors have developed modified primers covering a shorter region of COI
barcode (Leray et al., 2013; Hajibabaei et al., 2011). There are two other sequencing
techniques that don’t use fragment amplification (PCR) to characterize species com-
munities. These methods include shotgun sequencing (Simon and Daniel, 2011) and
gene enrichment techniques (Dowle et al., 2015). But, both methods are currently too
expensive for rapid identification of bulk environmental samples.

1.5 DNA-based biomonitoring

Traditional biomonitoring approaches focus on periodic local-scale sampling followed by
an extended period of data processing, which often ends with unverified data in terms of
taxonomic precision. Typical output from these type of studies is a binary result, which
can only report impacted or not impacted environments (Baird and Hajibabaei, 2012).
In monitoring studies, the roles and functions of species providing species level informa-
tion should be considered, specifically in making conservation decisions. More recently,
the advent of new tools in DNA sequencing and DNA-based approaches in taxon identi-
fication carved a new path towards assessment of complex multi-stressor scenarios and
represented the future diagnosis for a given environmental condition (Hajibabaei et al.,
2011; Carew et al., 2013). High-throughput data generated by amplicon sequencing of
bulk samples linked to DNA barcode libraries create a better understanding of environ-
ment biodiversity. This new technique is promising to extract precious biodiversity data
from bulk samples. Moreover, the data generated in such studies contain OTUs, which
create new opportunities for data analysis and taxonomic assignments. “Biomonitor-
ing 2.0” (Baird and Hajibabaei, 2012) has been proposed as an alternative scheme for
ecosystem monitoring , especially in a multi-stressor environment. Although much work
needs to be done to overcome the current challenges in this approach, it seems to have
a potential for biomonitoring studies in future.

1.5.1 Challenges

While shifting from individual sampling to DNA-mixture sampling was an important
step forward, it requires careful consideration of data interpretation specifically in terms
of reliability and repeatability of taxonomic assignment. One possible problem to deal
with is DNA that can persist beyond the lifespan of an individual (Dejean et al., 2011).
Another challenge is to address mixed data sources comprising known, named taxa and
OTUs in the development of diagnostic indices. Also, the establishment of a standard
approach to collect, preserve and subsequently analyse field samples in a manner that
would be compatible with current and future DNA analysis methods. Finally, there has
been a move toward generating information on the relative abundance of the organism
in biomonitoring samples, but it may cause some false results due to PCR amplification
bias (Polz and Cavanaugh, 1998; Baird and Hajibabaei, 2012).
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1.6 Taxonomic classification algorithms

There are three main supervised learning approaches (methods that compare query se-
quence to databases for taxon assignment): similarity search (use homology or alignment
based methods; e.g., BLAST (Altschul et al., 1997)), composition methods (use k-mer
counts or frequencies; e.g., LMAT (Ames et al., 2013), KRAKEN (Wood and Salzberg,
2014), RDP (Wang et al., 2007)) and phylogenetic methods (use evolutionary models and
homology-based methods; e.g., FastTree (Price, Dehal, and Arkin, 2009), EPA (Berger,
Krompass, and Stamatakis, 2011)) (Bazinet and Cummings, 2012).

Almost all taxonomic assignments in current metabarcoding studies employ a similar-
ity search. They use a combination of BLAST (most commonly BLASTn) and different
versions of the lowest common ancestor (LCA) algorithm, e.g., MEGAN (Huson et al.,
2007). Although this approach has substantial accuracy even for short query sequences,
it searches each query sequence against a gigantic database (mostly non-related organ-
ism) which can take a long time. Given the expansion of the GenBank database, each
BLAST job will take more and more time in the future (Fig. 1.3). Furthermore, it suf-
fers from poor assignment accuracy when a match for the query sequence is not in the
database, specifically compared to other classification methods.

Figure 1.3: The GenBank nucleotide database is growing exponentially.
This figure represents the growth of GenBank sequences (1985 - 2015)

(NCBI, 2016)

The phylogenetic approach for taxonomic classification employs evolutionary models
utilizing maximum likelihood, neighbor-joining, or Bayesian methods to calculate the
suitable place of a query sequence on a phylogenetic tree (Bazinet and Cummings, 2012).
These programs use the simple observation to find where an inserted branch divergent
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from a node that represents a species or higher rank. This approach requires enormous
computational power as it contains multiple alignments, fixed topology (e.g., NCBI
taxonomy), and the insertion of a query sequence into the reference alignment (e.g.,
GreenGenes database; DeSantis et al. (2006)).

The other popular approach is a compositional model. There are three types of algo-
rithms in compositional models (Bazinet and Cummings, 2012) including the Naive
Bayesian classifiers (Porter et al., 2014), interpolated Markov models (IMMs), and
kmer/k-nearest-neighbor algorithms (Ames et al., 2013). The main advantage of this
approach is faster query sequence classification compared to alignment-based methods.
As an example, KRAKEN developers compared the speed of different classification algo-
rithms and reported their program as 150 to 240 times faster than the closest competi-
tor (Megablast)(Wood and Salzberg, 2014). KRAKEN processes data at a rate of over
1.5 million reads per minute (rpm) while Megablast classified at 7,143rpm for a Hiseq
metagenome (an Illumina sequencing system designed for production-scale genome with
maximum 1500 GB output). KRAKEN analyzed data over 1.3 million rpm however
Megablast had a speed of 2,830 rpm for a Miseq metagenome (an Illumina sequencing
machine designed to target small genome and amplicon with maximum 15 GB output)
(Wood and Salzberg, 2014). But, the biggest problem with this approach is the compu-
tational power, as the pre-computed databases of these programs need to be downloaded
locally before analyzing a particular dataset. This issue may be the case for users with
limited computer disc space.

Figure 1.4: The KRAKEN sequence classification algorithm (Wood and
Salzberg, 2014)
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A sequence model of database for each group of target organisms in kmer-based
method needs to be computed separately. For example, LMAT and KRAKEN create
different sizes of standard databases for 16S ribosomal RNA sequences.They both have
a database that contains k-mers and the LCA of all organisms that contain that k-mer.
Query sequences will be classified by searching the database for each k-mer in a query
sequence. Then, using the result of LCA taxa in the pre-computed database, they assign
an appropriate label for the sequence. Sequences that have no kmers in the database
are left unclassified (Fig. 1.4). LMAT uses a 17-20 value for “k” and each k-mer is
mapped to the individual source genomes minus a non-redundant search of taxonomic
identifiers associated with the k-mers, unlike alignment-based methods (Ames et al.,
2013). KRAKEN builds the database with k = 31 by default, but users can change this
value. KRAKEN’s authors also performed a speed comparison against LMAT using one
of the samples discussed in the LMAT published results. KRAKEN was 38.82 faster
than LMAT and 7.55 times faster than a version of LMAT using a smaller database.

There is a trade-off between precision and sensitivity in taxonomic classification. The
accuracy of an assignment can increase with some cost to sensitivity. For instance, NBC
(Rosen et al., 2008) and PhymmBL (Brady and Salzberg, 2009) algorithms label all
the reads as accurately as possible. Because there is not adequate information to label
some of the reads, the algorithms that label all the reads cause higher false positive in
classification. While KRAKEN (Wood and Salzberg, 2014) leaves a sequence unclassified
if not enough evidence exists. Wood and Salzberg (2014) compared the performance of
KRAKEN and three other traditional classification algorithms; NBC, PhymmBL and
Megablast for identical query sequences and they reported that KRAKEN yields a higher
precision at the cost of lower sensitivity. But, a user can customize the accuracy value in
KRAKEN that helps to increase the efficiency of classification based on the objective of
a study. KRAKEN’s authors also concluded that their program classified the reads very
similar to Megablast. These two programs were 97.5 % similar in terms of sensitivity
and KRAKEN was slightly more accurate compared to Megablast (Wood and Salzberg,
2014).

1.7 Project purpose statement

The fundamental goal of this thesis is to introduce a new approach for DNA-based
biomonitoring (1.5) of a polluted environment. This project evaluates the role of databases
in the biodiversity assessment (1.1) of high-throughput amplicon sequences (HTS) (1.4)
utilizing a small customize database. This study provides a remarkably faster approach
for biodiversity estimation of eukaryotic communities (1.2) to address one of the main
challenges (1.5.1) in DNA-based biomonitoring. We have aimed to accomplish three
goals. First, transfer the past ecological knowledge of bioindicator species (1.2) to DNA-
based approach by collecting and assembling a small library of unique species as the
environmental indicators and compare the performance of such a small database with
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the currently popular methods for biodiversity evaluation. Second, increase the effi-
ciency and accuracy of DNA-based biomonitoring method for individuals with limited
resources in terms of time and computational power. We have employed a highly fast
k-mer based algorithm (KRAKEN Wood and Salzberg (2014)) as a k-mer based method
for taxonomic classification (1.6) of eukaryotic communities for the first time. And
third, investigate the importance of read numbers (depth of sequencing) and the size of
a database in calculating alpha diversity indices.

1.7.1 Applicability

“Biomonitoring 2.0” (Baird and Hajibabaei (2012); Fig. 1.5) uses bulk sequenced biolog-
ical samples to run against a standard taxon library (which includes all known species)
to assemble taxon composition. Afterward, all the other factors including taxon stressor-
response library and water chemistry should be analyzed. Expectedly, the output is a
complex multi-dimensional result which requires deep consideration and analysis to have
a robust diagnosis for an environment. Probably there will be lots of non-related organ-
isms in bulk samples, which are not beneficial for biomonitoring purposes, and including
these taxa in the site composition only add noise to the data analysis. For instance, Gib-
son et al. (2015) identified all their sequences utilizing MegaBlast algorithm contain a
database of all available COI sequences, then they retrieved only benthic metazoan phyla
(i.e., Chordata, Mollusca, Arthropoda, Annelida) from their classified sequences. After
that, they generated a subset of the matrix including representatives of Ephemeroptera,
Trichoptera, and Odonata to calculate all their biodiversity metrics.

Figure 1.5: Biomonitoring 2.0 schema for environment monitoring
(Baird and Hajibabaei, 2012)
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To avoid redundant analyses and increase the efficiency of Biomomitoring 2.0, we
propose a real-time monitoring program. This method builds on a fully targeted taxon
database of invertebrate bioindicator species. We are building upon past knowledge of
indicator taxa that have been studied and characterized as indicators of different stressor
responses through many years of ecological research. In this model, some post-analysis of
bulk samples will be avoided. Furthermore, by choosing a robust assignment algorithm,
the efficiency of our approach will be higher than the time-consuming methods like basic
local alignment search tool (BLASTn)(Fig. 1.3).

1.7.2 Research questions

1. What is the relationship between the read numbers (depth of sequencing) and
alpha diversity indices in a polluted environment?

2. How small can a database be, but still provide sufficient indication of environmental
condition?

3. What are the most well-known aquatic and terrestrial macroinvertebrate bioindi-
cators that ecological researchers confirmed their community responses to environ-
ment changes?

4. How does KRAKEN algorithm classify the HTS reads compared to other common
taxonomic classification program utilizing a small custom database?

5. Is a small database of macroinvertebrate sequences able to distinguish polluted and
non-polluted environments regarding taxonomic composition and alpha diversity
indices?

6. Is a small library of macroinvertebrate sequences capable of estimating taxonomic
composition and other biodiversity metrics in a contaminated environment com-
pare to the gigantic database used by BLAST?
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1.7.3 Hypothesis and predictions

1. There is a point in the taxonomic classification of HTS amplicons, where alpha
diversity will not increase even by using a higher number of the reads. Presumably,
there is a saturation level for taxonomic identification in amplicon-based HTS.

2. In polluted environments due to the low species diversity of environmental sam-
ples the size of a required database for taxonomic classification of HTS amplicons
significantly decrease.

3. A small database of targeted macroinvertebrate bioindicators can sufficiently es-
timate biodiversity of a polluted environment compared to the other enormous
eukaryotic databases.

4. The KRAKEN program, a kmer-based classifier, improves the DNA-based envi-
ronmental monitoring by reducing the time and required computational power for
the analysis of amplicon-based HTS.
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Chapter 2

Essential factors in HTS
taxonomic classification

2.1 introduction

High-throughput sequencing (HTS) has revolutionised biodiversity analysis of environ-
mental communities. We have gained an in-depth knowledge of community dynamics, in
particular for some morphologically cryptic organism such as viruses, bacteria, fungi and,
macroinvertebrates (Angly et al., 2006; Buee et al., 2009; Shokralla et al., 2012). Nev-
ertheless, the data generated by HTS machines are sensitive to the technical procedures
used to produce the sequence reads. It is important to understand the structure and type
of the generated output by each sequencing method or platform. With this understand-
ing, time and money resources can be better allocated. For example, there are concerns
about using HTS counts as an absolute abundance in ecological assessments due to the
polymerase chain reactions (PCR) and sequencing biases (Amend, Seifert, and Bruns,
2010). However, bioinformatics tools such as UCLUST (or UPRASE) (Edgar, 2010)
addressed this issue by introducing a technique to represent the clustered operational
taxonomic unit (OTU) that are much closer to the number of species sampled.

In another study, Smith and Peay (2014) tested the correlation between PCR repli-
cate and calculated indices in α and β diversity. They found no significant relationship
between increased number of PCR replicates and the diversity measures. But, pseudo-
β-diversity decreased with higher sampling depth. They also reported that the Illumina
platform significantly recovered greater richness compared to the 454 sequencing plat-
form. One other critical factor in HTS taxonomic classification is a database of known
DNA sequences to label the unknown query DNA sequences correctly. The cytochrome
oxidase one (COI) gene is a standard mitochondrial gene marker for the animal identifi-
cation (Hebert, Ratnasingham, and Waard, 2003). There are relatively large libraries of
this gene sequence available both on NCBI (Geer et al., 2009) and BOLD (Ratnasingham
and Hebert, 2007) systems.
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Although these databases (NCBI & BOLD) are not large enough yet to classify all
the unknown sequences accurately, the main current challenge is how to utilize these
gigantic databases as efficiently as possible. Given the expansion of these databases
(Fig. 1.3) adequate identification of a query DNA sequence from HTS requires allocation
of substantial time and computer power sources. One way to address this problem is to
assemble a customized smaller library of a targeted group of organisms from these data
sources. This is a primary goal of our project.

2.1.1 Objective

In this chapter, we evaluate the importance of read numbers (depth of sequencing) as an
essential element in taxonomic classification of high-throughput sequences. We expect
to observe a saturation level by increasing read numbers where diversity measures will
not be affected even by higher read numbers. Also, building a custom database of
invertebrate bioindicator species is one of the primary purposes of my master project.
We hypothesise that a small database containing around 2000 bioindicator species can
predict α diversity in environments contaminated with anthropogenic pollutants. To
evaluate the performance of such a small database, we have decided to construct different
size databases with three different taxonomic classification algorithms: KRAKEN (Wood
and Salzberg, 2014), LMAT (Ames et al., 2013) and BLASTn (Altschul et al., 1997). To
test the performance of these three algorithms independent of their default databases,
the exact same genomic libraries were constructed for all of them.

We precede the analysis by retrieving the dataset from Gibbons et al. (2014), a
spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six
sites along 134 km of river sampled in both spring and fall for two years. All the samples
were collected from the polluted sites with significant anthropogenic drivers including
increased pathogenicity, antibiotic metabolism markers, and metabolic signature of coal
and coalbed methane. We expect that in such a polluted environment the α diversity
will not increase even with a higher number of reads. Also, in polluted environments
due to the low species diversity of environmental samples the size of a required database
for taxonomic classification of HTS amplicons significantly decreases.

2.1.2 Diversity indices

The diversity index is a quantitative method to measure the taxonomic diversity in a
community and takes into account how evenly the taxa are distributed in an ecosystem
(Hill, 1973; Jost, 2006). Traditionally the taxonomic diversity refers to the species di-
versity, but other categorize such as genera, family, haplotype, or operational taxonomic
unit (OTU) can be used to calculate the diversity index. The two main indices for
biodiversity measurements are The Shannon and Simpson index. The Shannon-Weaver
or Shannon index (Shannon, 1949) assumes all the species are represented in a sample,
and it gives the same weight to all the species. However, the Simpson index (Simpson,
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1949) gives more weight to dominant species. Consequently, few rare species with few
representative will not affect the diversity. For example, in a community containing 6
Chironomus atrella, 5 Boyeria grafiana, 1 Hydropsyche tenuis, 3 Caenis youngi, and 12
Ablabesmyia monilis. The Shannon index (H) is 1.37 and the Simpson index (D) is equal
to 0.70. In the formulas below pi is the proportion of individuals i, and S is the number
of individuals (

∑S
i=1 pi = 1), and b is the base of the logarithm. It is most common to

use natural logarithms, but b = 2 has theoretical justification. (Oksanen et al., 2007).

H = −
S∑

i=1
pi logb pi (Shannon) (2.1)

D = 1 −
S∑

i=1
p2

i (Simpson) (2.2)

2.2 The importance of read numbers

2.2.1 Methods

Gibbons et al. (2014) sampled six locations in Tongue River (Fig. 2.1) each fall and spring
over two years. The sites B, E, and S are all downstream of a small town (Ranchester,
Birney, and Ashland respectively). All the locations, except site B, are downstream
of Decker coal mine and Reservoir Dam. The C and BG sites are close to methane
extraction wells. The site B is near Decker coal mine and downstream from irrigated
farmland. The W site is also downstream of irrigated farmland. Except for sites BG
and B, all duplicate samples in each six sampling sites and the four time points were
used for amplicon sequencing. For all 44 samples, the V4 region of 16S rRNA gene was
sequenced using the Illumina MiSeq platform.

The sequencing adapters were trimmed and their low quality reads were removed by
Gibson et al. (2014) on the online available dataset, which is compatible with the fastqc
(Andrews et al., 2010) results. Initially, we classified all the reads in 44 samples using
local mega BLASTn (Altschul et al., 1997), which is the most popular homology-based
algorithm, then the top hit reads were identified to both genus-level and species-level
using MEGAN 5.3 (Huson et al., 2007). Afterward, we used two k-mer based algorithms
to classify the taxonomic composition of samples, KRAKEN (Wood and Salzberg, 2014)
and LMAT (Ames et al., 2013), at the genus-level and species-level.

One approach to comparing the performance of these three algorithms with different
read numbers was to make various subsets of a sample and then re-classify all the subsets
with these three algorithms. However, we decided to simulate the performance of these
three algorithms for different size subsets of a sample because the first approach is time-
consuming, it takes up a lot of disk space, and the result would be as same as the
re-classification approach. All these taxonomic classification algorithms assign a taxon
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Figure 2.1: The location of Tongue River sampling site (Gibbons et al.,
2014). Small towns are indicated with red points. The Decker coal mine
and the Tongue River Reservoir Dam are illustrated with the blue square
and the orange triangle respectively. The direction of river flow is south

to north.

to each read, one read to one taxon. So, at a selected level of taxonomy, the number
of identified taxa is equal to the read numbers. We have randomly sampled the log10
number of reads (identified taxa at each level) with substitution and the α diversity
indices calculated for different subsets of whole real numbers. We have simulated the
Simpson, and Shannon indices of different size read numbers in a sample at both genus-
level and species-level using the vegan package in R (Oksanen et al., 2007). The result
of all three programs was compared at different size subsets using the ggplot2 package
in R (Wickham, 2009).

2.2.2 Result

To have a better evaluation of the three algorithms (KRAKEN, LMAT, and BLASTn),
we have decided to focus on the same taxonomic level and same diversity index for all the
subsets and programs. We chose genus-level as the main taxonomic level and Shannon
index as the information statistic index. Although some authors have chosen the suitable
α diversity index based on their popularity (Gibson et al., 2015), the desired diversity
index should be selected based on available data and the purposes of a project. Here as
we are randomly sub-sampling the read numbers and calculating the α diversity for that
particular number of sequences, we have focused on the Shannon index that assumes all
the species represented in a sample and give the same weight to all the taxa.

We have used the Shannon index to compare the α diversity of various polluted sites
from Gibson et al. (2014). Also, we compared the performance of different methods of
classification in generating the Shannon index from these locations. Figure 2.2 illustrates
how different programs (KRAKEN, LMAT, and BLASTn) calculated the Shannon index
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of six distinct sites with log10 sub-sampling of read numbers. The x-axes in Figure 2.2
show the read numbers and the y-axes is the Shannon index for each location. Each box
in Figures 2.2a, 2.2b, 2.2c demonstrate the performance of different algorithms for the
same range of read numbers. For a better demonstration of Shannon values at various
sites, we have separated different range of read numbers. Figure 2.2a demonstrate the
log10 sizes of read numbers, Figure 2.2b is the read numbers less than 10 percent of total
reads and Figure 2.2c represents the read numbers less than 1 percent of full reads. We
also compared the mean of Shannon values for all 44 samples together at different read
numbers utilising three methods of taxonomic classification (Fig. 2.3). Again Figures
2.3a, 2.3b, and 2.3c illustrate various range of read numbers for better clarification.

Figure 2.2a illustrates that there is no change in Shannon index as read numbers are
increased when read numbers are larger than 20,000. This result is consistent at different
sites with various types of pollution. Figure 2.2a shows that there is a saturation level
at around 20,000 read numbers where the Shannon values of all sites calculated by
different algorithms plateau even with increasing read numbers. However Figures 2.2b
and 2.2c demonstrate a linear relation between numbers of the reads and Shannon values
at various sites. Figure 2.2b shows that by reducing the reads from around 8000 to 1000
the Shannon index at various sites calculated by three different methods significantly
decreased. The relation between Shannon and depth of sequencing intensified from
around 800 reads to 100 number of sequencing reads with a steeper slope (Fig. 2.3) in
different sites calculated by various programs.

Figure 2.2 illustrates notably different Shannon values at different sites containing
samples with the same read numbers. This difference highlights that community struc-
ture has been altered by anthropogenic drivers at each location, which is compatible
with results from Gibbons et al. (2014). Various classification algorithms produce sub-
stantially different biodiversity assessments, Figure 2.3 demonstrates the performance
of the three algorithms for all the samples as a function of different read numbers. The
primary cause of this difference can be the structure of these algorithms or the size of
their database. We have used the smallest database and all the default setting of these
three programs that have been suggested by their authors for regular usage, but these
databases were constructed differently and contained various number of taxa.

Figure 2.3a is comparing the mean of the Shannon index for all samples calculated
by three classification methods (KRAKEN, LMAT, and BLASTn) at sub-sampling of
read numbers. Our result indicates that there is no change in the Shannon index as
read numbers are increased for subsets containing over 20,000 of read numbers. While
an increasing relation between read numbers and α diversity for samples containing less
than 8000 reads (Fig. 2.3b, 2.3c) is evident in all methods of classification.
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Figure 2.2: The relation between read numbers and Shannon index at
various sites. The x-axis is the read numbers and the y-axis displays
the Shannon index. Sites are colored differently and each dot here rep-
resents the mean of the Shannon index for all samples at a site. Figure
2.2a illustrate all sizes of sequence read numbers. Figures 2.2b and 2.2c

demonstrate less than 10 % and 1 % of read numbers
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Figure 2.3: The relation between read numbers and the Shannon in-
dex compared with various classification methods. The x-axis is the read
numbers and the y-axis displays the Shannon index. Algorithms are col-
ored differently and each dot here represents the mean of the Shannon
index for all samples. Figure 2.2a illustrate all sizes of sequence read
numbers. Figures 2.2b and 2.2c demonstrate less than 10 % and 1 % of

read numbers
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2.2.3 Discussion

The cost of HTS sequencing is rapidly decreasing by the introduction of new technolo-
gies. However, they have usually been considered highly expensive methods for large-
scale biomonitoring (Sims et al., 2014). One possible approach to overcome the high
cost of HTS is to increase the number of samples multiplexed (tagged) in an HTS run so
that the efficiency of one sequencing run with fixed read number would be maximized.
Simultaneously, increasing the number of samples multiplexed in a run will generate
fewer read numbers for each sample. The purpose of DNA-based environmental moni-
toring is the taxonomic identification of bulk environmental samples and using diversity
measurements (α and β diversity) to estimate the environmental conditions of an ecosys-
tem. We investigated the required read numbers, the depth of sequencing, for taxonomic
identification, and in calculating α diversity utilizing amplicon HTS method.

We have demonstrated the importance of sequence read numbers in DNA-based di-
versity measurements. Our result suggest that at around 20,000 sequences the alpha
diversity index will plateau even with increasing the sequence reads. In other words,
there is a saturation level for taxonomic identification in amplicon HTS sequencing at
around 20,000 sequences (Fig. 2.2a). This result can be used to design future DNA-based
monitoring projects in order to reduce the cost of sequencing.

The other challenge in environmental metabarcoding is the availability of sequencing
platforms independent of the cost. Normally, there is only one sequencing platform
available in one laboratory, and various labs have their preference of sequencing machine.
These different platforms generate various outputs depending on their technologies and
methods, but most of them are capable of producing more than 20,000 sequences per run
(Reuter, Spacek, and Snyder, 2015). As we illustrated in our result (Fig. 2.3a), the low
required numbers of sequences in taxonomic classification of amplicons HTS can be used
for standardization of DNA-based environmental monitoring in various labs regardless
of their sequencing platforms.

The results also indicate that HTS is necessarily for biodiversity community anal-
yses of bulk environmental samples. As we have illustrated in Figures 2.2b, and 2.2c
there is a relation between read numbers and alpha diversity. The Shannon index is
reduced by lower number of sequences. This result suggests that using single read se-
quencing of samples (DNA barcoding) is not capable of generating α diversity as same
as metabarcoding approach. This issue has been highlighted previously by other authors
(Hajibabaei et al., 2011).

Figure 2.3 highlights the difference between these three methods of classifying HTS
sequences. We have used all the default settings intentionally to focus more on the
differences between various programs in normal usage. The main causes of variation
in the Shannon index calculated by the three methods (Fig. 2.3a) are the algorithm
structure and the default size of their databases. This issue shows on the importance of
a standard pipeline for DNA-based environmental monitoring analyses. To generate a
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reproducible result in biomonitoring, researchers should accelerate their efforts in finding
and utilizing the best post-sequencing pipeline.

In contrast to gene functional analyses, there is a saturation level in taxonomic iden-
tification using HTS methods. We would expect to see this saturation level at around
20,000 read numbers, but it can be different depend on the library preparation and se-
quencing methods. Unfortunately, Gibbons et al., 2014 did not list measurements of the
level of contamination in their sampling locations, and their sampling did not contain
clean locations. So we could not test the relation between sequence read numbers and
the level of pollution.

22

http://www.mcmaster.ca/


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

2.3 The size of a database

Building a custom database of invertebrate bioindicator species is one of the primary
purposes of my master project. I have constructed a small database containing 1927
bioindicator species. To evaluate the performance of such a small database, we decided
to construct different size databases for three different taxonomic classification algo-
rithms: KRAKEN (Wood and Salzberg, 2014), LMAT (Ames et al., 2013) and BLASTn
(Altschul et al., 1997). To test the execution of these three algorithms independent of
their database, the exact same genomic libraries were constructed for all three methods.

2.3.1 Methods

We continued the analysis with the same dataset from Gibbons et al. (2014), which
is 16srRNA amplicons sequencing (see section 2.2.1). The bacterial reference genome
from NCBI was used to construct different size databases for taxonomic classification
of all samples (Pruitt, Tatusova, and Maglott, 2007). The available bacterial reference
genomes contain 2786 unique taxa retrieved from NCBI (for each species there are a
various number of accessions available in NCBI, but the total number of unique bacterial
reference sequence at the date of downloading this data was 2786 species). Different size
libraries assembled by random sampling of the bacterial reference genomes (RefSeq)
using a custom python code. We constructed different size databases contain a different
number of species to test the importance of database in calculating diversity indices.
The log10 number of species randomly chose to assemble the databases. Table 2.1 shows
the number of unique species in each database. The exact same libraries as shown in
table 2.1 were used to build databases for three HTS classification algorithms.

Genome libraries Number of species
DB1 2786
DB2 2500
DB3 2000
DB4 1000
DB5 100
DB6 10

Table 2.1: Constructed libraries of bacterial reference genome

We followed the KRAKEN manual to construct the custom databases. The NCBI
taxonomy contains the GenInfo Identifier (GI number) as well as taxonomic information
downloaded (Federhen, 2012). The previously constructed libraries of bacterial reference
genomes were used to build the databases for KRAKEN algorithm (Tab. 2.1). Subse-
quently, the taxonomic information assigned to each genome using –add-to-library
option in kraken-build package for all the six databases (Wood and Salzberg, 2014).
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We have utilized the -build switch from the kraken-build package to construct the
databases. To create all the databases, we used K=31 and M=31 in the kraken-build
program. Here K is the fixed number of bases for each k-mer in a query sequence, in
other words the k-mers are 31-mers (see section 1.6). M is the length of minimizer in base
per (bp). Minimizer serves to keep the k-mers that are adjacent in a query sequence
close to each other, which helps KRAKEN to use central processing unit (CPU) more
efficiently. Any changes in M value can significantly affect the speed of the KRAKEN.

We identified the taxonomic composition of all the 44 samples utilizing six different
KRAKEN databases. Unfortunately, we were not able to build a custom database for
LMAT. We contacted the LMAT’s authors to help with the problem, but they were
not responsive. All the six libraries (Tab. 2.1) have been employed to create BLASTn
databases, utilizing the makeblastdb application from BLAST tools (Altschul et al.,
1997). All the 44 samples from Gibson et al. (2014) have been run against these databases
separately, using the local megaBLASTn (Altschul et al., 1997) algorithm. Subsequently,
the top hit reads with lowest common ancestor (LCA) were identified to genus level
employing MEGAN 5.3 (Huson et al., 2007). The Shannon index at genus-level for both
algorithms calculated for each sample utilizing the vegan package in R (Oksanen et al.,
2007). We also used a custom code in R to bootstrap the Shannon values for 1000
replication in each site and calculated the mean of Shannon index for individual sites.

2.3.2 Result

We have used two different classification algorithms to calculate the Shannon index at
the genus-level for all the samples from Gibson et al. (2014). We utilised six different size
databases (Tab. 2.1) for both KRAKEN and BLASTn program to test the importance
of the database in the ecosystems with significant anthropogenic pollutants (see section
2.2.1). Figure 2.4 illustrates the correlation between the size of a database and Shannon
index for various sampling locations. Here the y-axis is the same Shannon scale for two
programs; BLASTn in the first row and KRAKEN in the second row. The x-axis is five
different size databases with 100, 1000, 2000, 2500, and 2786 number of species that
constructed in the same manner for both programs. Each site is shown with different
colours and the Shannon value for each sample within a site is calculated with two
programs. Each point in figure 2.4 is the Shannon value for the single sample.

The comparison of the sites in figure 2.4 suggest that there are various community
structure at different sampling locations, which is again compatible with the result of
Gibbons et al. (2014). When the number of taxa in a database are reduced, the Shannon
values change dependent on the composition of samples. The α diversity in all the sites
classified by both programs shows a significant correlation between the size of database
and Shannon index for databases containing less than 1000 number of species (Fig. 2.4).
The Shannon values were reduced when the number of taxa in the databases was less
than 1000.

24

http://www.mcmaster.ca/


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

The relationship between the size of databases containing more than 1000 species,
and the Shannon index is not the same for samples in various sites or even within a
site. The result calculated by KRAKEN in sites BG and W illustrate mostly lower
Shannon values with fewer numbers of species in the database. However, the α diversity
calculated by KRAKEN in sampling locations B, S, E and calculated by BLASTn in
sites E, C, BG, W, S in most samples for databases containing more than 1000 taxa
were not significantly changed by smaller size databases (Fig. 2.4). Figure 2.4 also shows
that the Shannon index for some samples calculated by BLASTn in site E, S, C, B and
calculated by KRAKEN in site C increased in databases contain more that 1000 number
of species.
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Figure 2.4: Correlation between the size of a database and α diver-
sity (Shannon index) for individual samples from polluted sites (B - W).
The x-axis is the number of species in a database (Tab. 2.1). The y-axis
is Shannon index. Each dot is representing one sample and sites are
separated with different colors. The result of KRAKEN and BLASTn

algorithms compared for each sites.
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Figure 2.5 compares the correlation between the size of the database and the Shannon
index for the BLASTn algorithm in various sites with anthropogenic pollutants. Here the
y-axis is the Shannon index, and the x-axis is five different sizes of database constructed
for the BLASTn classification program (Fig. 2.5). Distinct colours separate sites, and
each dot shows the bootstrapped mean of Shannon values for all samples within a site
(Fig. 2.5). The mean for each Shannon index was calculated by bootstrapping with 1000
replications. Sites B and BG contained six samples and the other sites included eight
samples.
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Figure 2.5: Correlation between Shannon index and the size of database
in BLASTn program. The x-axis is different size databases and y-axis is
Shannon index. Each site is shown with different colors. The points are

dodged to prevent overlapping the error bars

Figure 2.5 shows that by reducing the number of taxa in the BLASTn program from
1000 species to 100 species the Shannon index significantly decreased. However, figure
2.5 illustrates that Shannon index is not much dependent to the size of the databases in
BLASTn program for databases include more than 1000 taxa. There were not significant
changes in Shannon for most of the sites when we reduced the database from 2500 to
1000 taxa. Also, figure 2.5 shows that by reducing the number of taxa in the database
from 2000 to 1000 in site B and by decreasing the size from 2500 to 2000 in site BG
the Shannon index even increased, which was presumably caused by changes in samples’
evenness. Even with the major reduction of the database from 2786 to 1000 species, the
Shannon changes are smaller than error bars in most of the sites.
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Figure 2.6: Correlation between Shannon index and the size of database
in KRAKEN program. The x-axis is different size databases, and the y-
axis is Shannon index. The points are dodged to prevent overlapping the

error bars

We have also compared the relation between the Shannon and number of taxa in a
database for the KRAKEN program at various sites that contain anthropogenic drivers.
In the figure 2.6 the y-axis is the Shannon index, and the x-axis is five different size
database constructed for BLASTn classification program. Distinct colours separate sites,
and each dot shows the bootstrapped mean of Shannon values for all samples within a
site (Fig. 2.5). The mean for each Shannon index was calculated by bootstrapping with
1000 replications.

Figure 2.6 displays that by reducing the number of taxa in the KRAKEN program
from 1000 species to 100 species the Shannon index significantly decreased. However, this
result illustrates that there is no significant relation between the size of the databases
and the Shannon index in KRAKEN program for databases include more than 1000
taxa. There were not significant reduction in Shannon when we reduced the database
substantially from 2000 to 1000 taxa. Also, figure 2.6 shows that by reducing the number
of taxa in the database from 2000 to 1000 in site C the Shannon index significantly
increased, which presumably caused by changes in samples’ evenness. Although the
KRAKEN program is more sensitive (lower minimum support, and lower accuracy) in
taxonomic classification compared to the BLASTn algorithm, the Shannon changes are
smaller than error bars in most of the sites when we reduced the size of a database from
2000 to 1000 taxa or from 2750 to 2500 species (Fig. 2.6).
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Figure 2.7: A comparison of KRAKEN and BLASTn algorithm in cal-
culating alpha diversity with different size databases (Tab. 2.1).

Also, we focused on the performance of KRAKEN and BLASTn algorithms inde-
pendent of the sites. Figure 2.7 demonstrates the correlation of two different taxonomic
classifiers to the size of the database. Again the x-axis in figure 2.7 displays the same five
databases for both algorithms. The databases include 100, 1000, 2000, 2500, and 2786
unique species randomly chosen from bacterial reference genomes available at NCBI.
Here each dot shows the bootstrapped mean of Shannon values for all samples from
Gibson et al. (2014) and based on 1000 replications.

In both classifiers, the Shannon index was significantly reduced by decreasing the
number of taxa from 1000 to 100 in a database. Figure 2.7 illustrates the difference
between taxonomic identifiers even with the same database implemented in both of them.
When we reduced the number of species from 2786 to 2000 in a database, the BLASTN
program did not change significantly. However, the KRAKEN algorithm significantly
reduced for the same reduction of species in a database. Although the Shannon index
of both programs was reduced when we substantially decreased the number of taxa in
a database from 2000 to 1000, the Shannon index reduction is not comparable to the
database reduction. It seems that the KRAKEN classifier as a more sensitive program,
based on default settings, is more correlated to the size of the database compared to the
BLASTN which is a more accurate program by default setting. The small error bars
in figures 2.5, 2.6, and 2.7 indicates that the changes in Shannon values with a reduced
number of taxa in the database are not because of the limited numbers of samples.
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2.3.3 Discussion

Comparing the Shannon values of individual samples between and within sampling loca-
tions (Fig. 2.6) suggests that community structure is different among sampling locations.
However, these variances between sites are not statistically significant. Figures 2.5 and
2.6 demonstrate different means of Shannon index among sites but these differences are
smaller than the error bars in most of the points. Gibbons et al. (2014) discussed that
the core taxonomic composition of sites is pretty similar, but the presence of distinct
taxa vary with sites and anthropogenic drivers. This argument is reflected in our α
diversity analysis, because the Shannon values are pretty similar between sites (Fig. 2.5,
2.6) while these values are different within a site (e.g. Sites S and B).

It seems that the number of taxa is not as crucial as the importance of taxa in a
database for biodiversity analyses in polluted environments. In such ecosystems, iden-
tification of the core taxonomic composition is more critical than classifying all the
present species for biodiversity measurements. When we reduced the number of taxa
in a database from 2000 species to 1000 species, the Shannon index did not change
significantly in both programs. This argument was also supported by Gibbons et al.
(2014), as the core taxonomic composition is constant between the sites and changes in
the composition of the other variable taxa do not affect the evenness and consequently
the α diversity.

Exploring the performance of KRAKEN and BLASTn programs in calculating diver-
sity indices suggest that they both reduced by decreasing the number of species from
1000 to any number lower. However, the relationship between the number of taxa and
the α diversity is not consistent when we reduced the number of taxa in a database
from 2786 to 1000. The BLASTn (Fig. 2.5)is less dependent on the number of taxa in a
database compared to the KRAKEN algorithm (Fig. 2.6). When we reduce the number
of species from 2786 to 1000, the Shannon values in BLASTn less changed compared to
the KRAKEN. This dependency is due to the higher sensitivity of KRAKEN in taxo-
nomic classification of samples with default settings compared to the megablast options
used for BLASTn approach. It was possible to decrease the differences between these
two programs by modifying the level of accuracy and minimum support number. But,
we left the settings at their default to examine the execution of these algorithms for
regular usage.

As mentioned earlier, the evenness is one of the main components of the biodiversity
that quickly reflects the changes in environments, and it is being used as a tool to study
human effects on environments 1.1. Unfortunately, we were not able to investigate the
relationship between evenness (α diversity) and the level of anthropogenic pollutants
in various sites. Because Gibbons et al. (2014) did not categorize their sampling loca-
tions based on the intensity of anthropogenic pollutants, they have calculated various β
diversity measurements based on the correlation of particular variables comprising the
distance between sites, temperature, salinity, and pH. They have found a remarkable
association between community structure and the sites nearest in space.
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Our result highlighted that changes in evenness caused significant alteration in the α
diversity analysis. As previously mentioned, even by decreasing the size of the database
the Shannon index increased in two particular sites. By reducing the number of taxa from
2000 to 1000 using the BLASTn algorithm in site E and with the KRAKEN program in
site C, the Shannon values increased. This variation in α diversity can be explained only
by changes in evenness because the sample’s richness will be reduced by the presence
of fewer taxa in the database and the only other factor that can influence the Shannon
index is the evenness.

This result shows that the core taxonomic composition of samples has a profound
effect on calculating the α diversity, particularly in polluted environments. Considering
that there are not significant differences between sites in calculating alpha diversity
using two programs(Fig. 2.5, 2.6). Also, figure 2.7 demonstrates that with reducing
the taxonomic richness, decreasing the number of species from 2000 to 1000, the alpha
diversity was not significantly reduced. In polluted environments the core taxonomic
composition contains resilient species. Assembling these resilient taxa and construct
a database that could identify these bioindicator species will produce reasonably the α
diversity estimation similar to the result from enormous database of all known organism.

Although Gibbons et al. (2014) indicated that the community structure has been
altered by anthropogenic drivers, we can not confirm this argument as they did not
include samples from clean sites in their analyses. It is not clear if the differences in
community structures between the sites are due to the presence of the anthropogenic
drivers or because of the natural composition of the sampling locations. Also, we could
not investigate the relationship between the level of pollutants and the required number
of taxa in a database because Gibson et al. (2014) did not categorize their sampling
locations based on the intensity of anthropogenic pollutants.

Human activities in the ecosystems could lead to lower taxonomic diversity and sur-
vival of the resilient species in the environments. The composition of these resistant
species would be stable under a various level of pollutants and by identifying these flex-
ible species in such contaminated environments the chance of accurate diversity mea-
surements will increase. If these resilient taxa would be the target of identification using
a database contains these species the chance of accurate biodiversity estimation would
be as same as including all the known species into the database. Also, the accuracy and
sensitivity of the classification algorithm are crucial for avoiding false identification that
may cause inaccurate diversity measurements.
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Chapter 3

A small customized DNA
database

3.1 introduction

The main challenges with the current biomonitoring (metabarcoding) studies are the
efficiency of a sequence classification in terms of time and computational power, the
presence of a sufficiently targeted database for environmental monitoring in eukaryotes
communities, and the standard approach to address mixed data sources (Dejean et al.,
2011; Baird and Hajibabaei, 2012). Almost all of the biomonitoring studies use the
homology-based algorithms (e.g. BLAST; Altschul et al., 1997) for taxonomic identi-
fication, which is a time-consuming method because all the query sequences should be
compared to a gigantic eukaryotic database one by one. The homology-based method
requires another algorithm (e.g. MEGAN; Huson et al., 2007) to trim the final matches
with the database and find the lowest common ancestor for each match. Consequently,
each query sequence that is compared to the whole database generates an output that
takes substantial disk space.

These two issues, the time of HTS classification and the disk space requirement, have
helped to prevent a standard approach for biomonitoring of eukaryotic communities.
Different environmental agencies and research groups have their preferential pipelines
to address these challenges given their available monetary and non-monetary resources.
The different pipelines are based on each project’s purposes and lead to incompatibility
in HTS taxonomic identification. For the environmental agencies, the rapid identification
and interpretation of an ecosystem is a fundamental element as they should diagnose
and anticipate the environmental issues as quickly as possible. For the research groups
the monetary issues, such as the cost of sequencing, and the computational power are
the most significant difficulties.

The purpose of this project is to introduce an approach to overcome these challenges
and facilitate the establishment of a standard method for biomonitoring using environ-
mental DNA and eukaryotic communities. We show that a small customized database
of bioindicators helps to reduce the time of classification and evaluation of the diversity
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of an ecosystem. This type of database would be sufficiently accurate for biodiversity
assessments in polluted environments, which are the environments of interest for most
of the environmental studies to investigate human impacts on the ecosystems.

We have also explored the performance of a k-mer based algorithm for taxonomic
classification of eukaryotic communities for the first time. we hypothesize that k-mer
based algorithms enormously reduce the time of classification for HTS reads, simulta-
neously it has high identification accuracy, and it takes much less computational disk
space compared to homology-based algorithms. We have combined a small customized
database of bioindicators and a suitable HTS classification algorithm to introduce a
new pipeline for biodiversity assessments of polluted environments and compared the
performance of our method to current popular biomonitoring post-sequencing pipelines.

3.1.1 Objectives

We explained the possibility of reducing the cost of sequencing, as one of the main
challenges with rapid DNA-based biomonitoring, with generating less sequence read
numbers in taxonomic identification and biodiversity assessments of amplicon HTS in
chapter 2 of this thesis. We also concluded that the number of taxa in a database is
not as important as the role of those taxa in constructing the community composition
of a contaminated environment. These two conclusions from chapter 2 are compatible
with our hypotheses for this chapter. A small database of targeted bioindicators can
sufficiently estimate biodiversity of a polluted environment compared to the other enor-
mous eukaryotic databases. The KRAKEN program, a k-mer based classifier, improves
the DNA-based biomonitoring by reducing the time, cost, and required computational
power for the analysis of amplicon-based HTS.

3.2 Library of macroinvertebrate bioindicators

There are criteria for the selection of bioindicator invertebrates based on conventional
taxonomic identification. But, the major challenge is to select bioindicator species for en-
vironmental monitoring purposes and transfer this knowledge to DNA-based approaches.
Bioindicator invertebrates based on conventional taxonomic identification are well-known
and stable species that are easily identified and are known to respond to stress factors or
changes in habitat, they are generally abundant organisms suitable as whole-community
representatives (Hilty and Merenlender, 2000). Hodkinson and Jackson (2005) reviewed
and critically evaluated the suitability of different terrestrial and aquatic invertebrates
as a management tool for the monitoring of changes in an ecosystem. They classified
a range of factors in environments and presented potential studies as three categories
of bioindicators. The first category includes the range of chemical factors in aquatic
and terrestrial environments that are potential for being monitored by invertebrates (ta-
ble. 3.1). The Second group consists of indicator invertebrates in evaluating habitats for
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biodiversity, condition, and structure (table. 3.2). The third category contains indicators
of habitat management, degradation, restoration and improvement (table. 3.3).

Some of the terrestrial and aquatic macroinvertebrates are potential bioindicators
for a range of chemical changes in environments. These bioindicators are responsive
to a single chemical parameter or a combination of chemical effects. These chemical
parameters include pH, many plant nutrients such as nitrogen and phosphorus, or the
presence of heavy metal compounds like cadmium (Brodersen and Anderson, 2002). For
instance, Hexagenia limbata, a mayfly native to North America, has been used as the
indicator of lethal anoxic conditions caused by eutrophication (Krieger et al., 1996), (for
more examples see table 3.1).

Some groups of invertebrates can also indicate the habitat quality and conservation
qualities of an environment. The bioindicators in this category are often ecologically
important taxa that might be affected by human developments (Hodkinson and Jackson,
2005). The presence of particular taxa can be used to indicate long-term stability within
a habitat over time (Nordén and Appelqvist, 2001). For example, land snails and certain
beetles related to persistent forest fungi have been highlighted as indicators of long-term
stability within woodland (Nordén and Appelqvist, 2001; Sverdrup-Thygeson, 2001),
(for more examples see table 3.2).

Table 3.1: The range of chemical factors in aquatic and terrestrial envi-
ronments that have a potential for being biomonitoried by invertebrates

from Hodkinson and Jackson (2005).
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Table 3.2: The suggested use of bioindicators for evaluating habitats
for biodiversity, condition, and structure from Hodkinson and Jackson

(2005).

Bioindicator invertebrates are also suggested to indicate habitat change, degradation,
and recovery. These indicators are being usually used as a part of biomonitoring pro-
grams to illustrate habitat degradation and the reduced biodiversity caused by negative
human impacts such as agricultural practices, land use modification, and pollutant in-
puts. These biomonitor species sensitively respond to the change in the environment.
Simultanesly, they are resilient enough that they will not be extinct from the environ-
ment. For example, as pollution increases, the macroinvertebrate community dominated
by caddisflies, stoneflies, and mayflies shifts to a community dominated by chironomid
and tubificid worms. When the stress is removed, the previous community composition
will be restored again (Hodkinson and Jackson, 2005), (for more examples see table 3.3).

We have used the references in Hodkinson and Jackson (2005) to find potential
bioindicators for each stressor-response. Although many of these studies failed to present
species-level information for their indicator taxa, we used a combination of Genbank and
The International Barcode of Life project (iBOL) to retrieve species level information.
In some cases, we were not able to find any data for bioindicators in publicly available
databases. In some studies, they couldn’t identify a taxon to species-level, and, in some
other cases, their identifications were not accurate. Furthermore, a bioindicator taxon
may be merely the number of rare, local, or endangered species (Rosenberg, Danks, and
Lehmkuhl, 1986), which explains why there are not any DNA records available from
them.
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Table 3.3: The suggested use of bioindicators for habitat management,
restoration, and improvement from Hodkinson and Jackson (2005).

We identified 1927 unique bioindicator species utilizing Hodkinson and Jackson (2005)
references and criteria. For individual species, we searched for Cytochrome c oxidase
subunit I (COI) and Cytochrome b (Cytb) markers in the GenBank nucleotide database
(Benson et al., 2013) using the graphical interface. These two markers were shown to be
successful for taxonomic identification of invertebrates specifically using bulk eukaryotic
samples (Carew et al., 2013). The COI marker was used in preference to Cytb to
download the sequences. We did not retrieve the Cytb sequences if we had the COI
marker sequences of one species. We extracted the top 10 -15 accessions of each species
depending on the total number of available accessions in the GenBank database. The
list of bioindicator species and the library of sequences can be found at the GitHub page
(https://github.com/shekas3/Bioindicators).

35

http://www.mcmaster.ca/
https://github.com/shekas3/Bioindicators
https://github.com/shekas3/Bioindicators


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

3.3 Implementation of the databases

Although some researchers use the whole library of COI markers, available at NCBI,
for taxonomic classification of their amplicon HTS, we believe that this approach only
adds enormous numbers of irrelevant taxa to the database. Consequently, the identi-
fication process takes a long time, and it requires massive disk space. For a library of
bioindicators, we have constructed another local library of all available invertebrates in
the GenBank as a reference sequence library to investigate the accuracy and efficiency
of a bioindicator database. This library contains all the available sequences of the COI
and Cytb markers with some manual specification within the Protostomia lineage in the
nucleotide database of the GenBank (Benson et al., 2013).

We assembled the reference library of invertebrates utilizing a custom R program
which loads ape, and rentrez packages (Paradis, Claude, and Strimmer, 2004). We
specified a minimum of 100 and a maximum of 1000 bp (100[SLEN]:1000[SLEN]) for the
COI and CYTB genes in the Protostomia lineage from the nucleotide (nuccore) database
in the Fasta format. Totally there are 1,147,778 sequences in the reference library of
invertebrates in the multi-Fasta format. To calculate the total number of unique species
available in our reference library, we developed a custom Python program to extract all
the accession numbers from the downloaded sequences and mapped those accessions to
a local taxonomy file. Totally there are 167,788 unique species available in our reference
library of invertebrates.

Earlier in chapter 2, we have explored the performance of the KRAKEN algorithm
for taxonomic classification of bacterial communities using the 16SrRNA marker. Our
results showed that the KRAKEN (Wood and Salzberg, 2014) program is adequately
efficient and accurate compared to the BLASTn (Altschul et al., 1997) algorithm for
taxonomic classification of amplicon HTS. To address the biomonitoring challenges, we
used the KRAKEN algorithm to construct a database of bioindicators and a reference
database of invertebrates. To test the performance of the KRAKEN algorithm for tax-
onomic identification of eukaryotic communities, for the first time, we have assembled
another database with the same reference invertebrates in the BLASTn algorithm.

After assembling the sequence library of bioindicators and the reference library of
invertebrates, we implemented them into the different algorithms and constructed three
databases for amplicon HTS classification.The ProK, ProM, and the SHAH were used
to build databases for the KRAKEN and the BLASTn, and the KRAKEN algorithm
respectively. For both approaches, ProK and ProM, we employed the reference library
of invertebrate, and for the SHAH the library of bioindicators was used to construct the
databases. Table 3.4 shows these three databases and compares the number of species,
sequences as well as the disk space requirement for each method.
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The SHAH database constructed using the KRAKEN algorithm, and the library of
bioindicator species. We used a custom python code to convert the GenBank file format
(gb) to a multi-Fasta format for the retrieved sequences of the bioindicators. The NCBI
taxonomy includes the GI number as well as taxonomic information downloaded from
the NCBI (Federhen, 2012). We have added all the sequences from the multi-Fasta file
of bioindicators to the KRAKEN program’s database employing the –add-to-library
option from the kraken-build package and a Unix shell script to automate the pro-
cess. We have utilized the -build switch from the kraken-build package to construct
the database and assigned the taxonomy information to each sequence. To create the
database, we used K=31 and M=31 in the kraken-build program.

We implemented the library of the reference invertebrates into the KRAKEN al-
gorithm to assemble the ProK database. Again all the sequences available in the li-
brary were added to the database of the algorithm using –add-to-library and the
taxonomy information was added to each sequence utilizing the -build switch from the
kraken-build package. We also used the K=31 and M=31 in the kraken-build package
to construct the ProK. The ProM database created using the reference library of inver-
tebrates and the makeblastdb application from the BLAST tools (Altschul et al., 1997).
The makeblastdb program requires Fasta file format and the taxonomy identifier file to
build the database.

Parameter SHAH ProK ProM
Number of species 1927 167,788 167,788
Number of sequences 20,235 1,147,778 1,147,778
Algorithm KRAKEN KRAKEN BlastN
Method K-mer based k-mer based Homology based
Database Size 8G 30G 405M

Table 3.4: Custom HTS classification databases for eukaryotes.

37

http://www.mcmaster.ca/


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

3.4 Samples

3.4.1 The Humber River watershed

The Humber River watershed was designated a Canadian Heritage River for its remark-
able human heritage and recreational values in 1999 (CHRS, 2011). This river runs
through a series of progressively more urbanized zones ranging from non-urbanized, nat-
ural landscapes to landscapes experiencing intense agricultural activity, to suburban
towns to an urban metropolis. The presence of various conditions in the Humber River
provides information regarding the individual and cumulative effect of urbanization and
agricultural development on the river ecosystem. This river is maintained by the Toronto
and Region Conservation Authority (TRCA). Sampling was conducted by Spall (2014)
at the same locations that were sampled by TRCA in order to compare their results with
the TRCA biomonitoring program. They used the same sampling method with some
modifications to the TRCA sampling protocols.

Figure 3.1: The location of Humber River in Toronto Ontario (CHRS,
2011).

The sampling conducted by the Hajibabaei lab contains 16 samples collected from 13
sites along the length of the river. Sampling was performed from August to September
2011. All the 16 samples were obtained in precisely the same manner. Benthic sam-
ples were obtained using standard D-frame kick-nets across ten transects of the river;
with each transect placed at 10 m intervals. The contents were pooled into a sterilized
container from which live sorting was performed in the field (Hajibabaei et al., 2011).
Individual organisms were sampled using sterile forceps and placed into sterile sampling
jars filled with 96 % ethanol as bulk samples (Spall, 2014).
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Figure 3.2: The location of Humber River sampling sites in Toronto
Ontario (TRCA, 2011). The circled dots are those sites that were sam-
pled by the Hajibabaei lab. The red, orange, green, and black dots are
highly polluted, intermediate, non-polluted, and unknown ecosystems re-

spectively.

Figure 3.2 shows all the 34 sites being monitored by TRCA annually. The sites are
labeled with four distinct colors to indicate the site’s condition. TRCA (2011) and Spall
(2014) assigned these conditions using The Southern Ontario Land Resource Information
System (SOLRIS). Those sites that were sampled by Spall (2014) are circled in black.
The red points are those locations labeled as highly polluted sites. The orange points
represent intermediate levels of pollution, and green dots are those from non-polluted
ecosystems. The sites with unknown conditions are shown with the black points. Table
A.1 illustrates the total number of samples and related sites from this study. The
SOLRIS system provided the type of land cover and the other information that is found
at each of the 34 locations. SOLRIS is a landscape-level inventory designed by The
Ontario Ministry of Natural Resources to support planning and development projects in
southern Ontario (for more information about the ecological data provided by SOLRIS
see section A.1).
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3.4.2 The Wood Buffalo Natinal Park

Gibson et al. (2015) studied the Peace-Athabasca delta to create baseline data to in-
vestigate the nature and importance of the biodiversity for early detection of potential
anthropogenic effects from the nearby Alberta Oil Sands. A UNESCO World Heritage
Site (designated 1982), the Peace-Athabasca delta is the largest inland freshwater delta
complex in the world and is located in the Wood Buffalo National Park. The sampling
in this study was conducted by Environment Canada and Parks Canada. These samples
were collected in June 2012 from two adjacent deltas, the Peace and Athabasca deltas
each containing four riverine wetland sampling locations. Three replicate samples of
aquatic invertebrates, each located approximately 50 meters apart, were collected from
each sampling sites. A standard Canadian Aquatic Biomonitoring Network (CABIN)
pond net with a sterile 400 µM mesh, was used for collecting the samples (Gibson et al.,
2015).

Figure 3.3: The location of the Peace and Athabasca River sites in the
Wood Buffalo National Park from Gibson et al. (2015).
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3.5 Methods

3.5.1 The Humber River samples

Library preparation

Figure 3.4 illustrates the library preparation and sequencing processes that were com-
pleted by the Hajibabaei lab at the University of Guelph (Spall, 2014). They homoge-
nized the bulk samples in 95 % ethanol. Total DNA was extracted from the individual
samples and the COI amplicon amplified using two primer pairs. The library of DNA
templates were amplified from a single copy to tens of millions of copies and immobi-
lized on beads using emulsion PCR (emPCR). Then the DNA template was sequenced
utilizing the 454 Roche platform. All reagents, enzymes and primers required for the
emPCR, as well as the remainder of the sequencing process are provided by Roche in
the form of a sequencing kit (Spall, 2014).

Figure 3.4: library preparation and sequencing procedures (Spall, 2014).

Quality control and trimming

The Hajibabaei lab (Spall, 2014) provided us the raw sequencing output of 16 samples
from the Humber River watershed. The 454 platform generates two files for each se-
quencing output; a FASTA file (.fna) that contains the DNA sequences and a quality
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control file (.qual) which quantifies the quality of each base in the DNA sequence. For
each sample, the .fna and .qual files were combined and converted to the FASTQ for-
mat using a custom python code. The 454 machine removes the sequencing adapters by
default before conversion of the .sff file to FASTA format in the final output. Low-
quality sequences and those that were too short were removed from the dataset using
the Qtrim software (Shrestha et al., 2014). Any of the sequences shorter than 120 base-
pairs were trimmed as they are often of lower quality than the rest of the sequences.
The reads with a mean quality score (Phred) of less than 20 (indicating a 99% accuracy
per base) were also trimmed from the reads. The ambiguous bases (NS) were removed
from the middle, 3′, and 5′ end of the sequences. Those reads that satisfy all the above
specifications were then converted to the FASTA format and labeled as "the clean data".
Figure 3.5 shows all the post-sequencing procedures.

Raw Data

Quality
Control

Clean Data

OTU
Cluster

MEGA-
BLAST

MEGAN
(ProM)

Alpha
Indices

Taxonomic
Composition

Rarefaction
Curve

KRAKEN
(ProK)

Rarefaction
Curve

Taxonomic
Composition

Alpha
Indices

KRAKEN
(SHAH)

Alpha
Indices

Taxonomic
Composition

Rarefaction
Curve

Correlation
Table

Figure 3.5: Schematic illustration of the steps of post-sequencing
pipeline.
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After filtering and trimming the low-quality reads, the UCLUST algorithm was used
to dereplicate, sort, and cluster at 99 % sequencing similarity cutoff (Edgar, 2010). The
-derepfulllength parameter was used to find exactly the same sequences and discard
any exact duplicates. The reads were sorted by size employing the -sortbysize com-
mand in the UCLUST package. Chimera filtering was performed utilizing USEARCH
with the de novo UCHIME (Edgar et al., 2011) algorithm. Amplicon sequencing may
cause chimeric sequences that are formed by two or more biological sequences joined to-
gether. As the chimeric sequences may lead to false sequences, it’s important to remove
them in the analysis. The -sortbylength command in the USEARCH tool package was
used to sort the reads by length, then the sequences clustered at 99 % similarity and
the singletons retained using -cluster-smallmem command in the USEARCH program.
All the filtered, dereplicated, sorted, non-chimeric, and clustered reads were recorded as
OTUs.

Sequence classification

As shown in figure 3.5, we have employed three methods of classification with the pre-
viously constructed databases (Tab. 3.4) to identify the taxonomic composition of all
the samples. First, we have used the MEGA-BLAST (Morgulis et al., 2008) algorithm
against the local ProM database for the identification of samples. The ProM database is
the custom database contains the COI gene of invertebrates that was constructed earlier.
The MEGA-BLAST searches conducted with splitting the BLAST searches into small
jobs and ran in parallel using the GNU Parallel (Tange et al., 2011). The BLAST hits
less than or equal to the 1e-10 evalue retained, and the others discarded. The expected
value (evalue) describes the number of expected hits by chance in a database of the
particular size. The top hit matches with the lower common ancestor extracted using
the MEGAN program (Huson et al., 2007).

When we uploaded the MEGA-BLAST output into MEGAN, we optimized the
MEGAN parameters to the metagenomic setting as follows. A minimum support of
1 which refers to the minimum number of reads associated with a taxa told MEGAN
that a species name only needed to appear one time in the top hits to be included in
the analysis (The minimum support is set to 50 by default). The minimum score, the
minimum required BLAST scores assigned to a taxa, was set to 100 (by default the
minimum score in MEGAN is equal to 50). Finally, the top percent parameter was
set to 10, meaning only the first 10 % of the hits were included when determining the
higher-level taxonomy. The MEGAN algorithm assigned a taxonomy to each OTU using
the GenBank information and these customized settings. All the identified taxa at the
different levels of taxonomy were retained from the MEGAN results.
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Second, we employed the KRAKEN algorithm (Wood and Salzberg, 2014) with the
ProK database for the classification and identification of the Humber River samples.
The ProK database is the custom database of invertebrates retrieved from GenBank
earlier, and it has the same sequence content as the ProM database (Tab. 3.4). We have
developed a shell script that includes kraken, kraken-report, and kraken-mpa-report
commands from the KRAKEN tools package to classify and assign taxonomy to the
OTUs. The kraken commands classified all the reads and assigned taxonomic IDs to each
read. The kraken-report and kraken-mpa-report provide the taxonomic information
and assign the number of reads to each taxa. The final output contains the number of
reads covered by the clade, the number of reads directly assigned to taxa, a rank code,
NCBI taxonomy, and the scientific name that will be used for the biodiversity analysis.

The last classification method as shown in figure 3.5 was to use the KRAKEN al-
gorithm against the SHAH database. The SHAH database is the customized database
of bioindicator invertebrates that was assembled earlier (see section 3.2). We have em-
ployed a shell script that contains the kraken, kraken-report, kraken-mpa-report,
and kraken-filter commands from the KRKAEN package to classify and count the
number of reads associated to each taxa. As mentioned earlier, the first three commands
classify and assign taxonomic information to each read. The kraken-filter command
provides a simple scoring scheme for the KRAKEN results. We have increased the ac-
curacy of the KRAKEN algorithm in this method by setting the –threshold option to
0.10 in the kraken-filter command. The final output contains the number of reads
covered by the clade, the number of reads directly assigned to taxa, a rank code, the
NCBI taxonomy, and the scientific name that will be used for the biodiversity analysis.

The SHAH database is a very small database compared to the other databases that
are typically used for taxonomic identification. The small size of the SHAH database
may cause false identification of taxonomic composition. To prevent this possibility, we
have increased the accuracy of the identification by defining a high confidence score. The
kraken-filter command specifies a threshold to accept only reads with higher accuracy.
If a taxa did not have a score exceeding the threshold, it will be labeled ‘unclassified’.
A sequence label score in this algorithm is the fraction of C/Q where C is the number
of k-mers mapped to lowest common ancestor (LCA) value in the clade rooted at the
label, and Q is the number of k-mers in the sequence that lack an ambiguous nucleotide
(Wood and Salzberg, 2014). It’s important to note that there is a trade-off between
accuracy and sensitivity, by increasing the accuracy of classification, the sensitivity of
identification will be decreased (see section 1.6 in the chapter one).

44

http://www.mcmaster.ca/


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

Biodiversity analysis

All the results from three different methods of classification contain four levels of taxon-
omy used to calculate diversity metrics. We have explored the taxonomic composition of
samples from different conditions. Also, we investigated the performance of the SHAH
database in estimating the composition of samples at species, genus, family, and order
level of taxonomy. We have compared the rarefaction curves of the ProK and the SHAH
database to test the importance of database in estimating taxonomic richness. The
diversity indices, the Shannon and the Simpson index, were used to inspect the sites
condition (polluted and non-polluted). The Pearson’s product-moment correlation test
with bootstrapping was used to determine the relationship between the SHAH database
and the other databases in calculating alpha diversity (Shannon and Simpson diversity
indices). For all the biodiversity analyses and exploration we used the vegan package
(Oksanen et al., 2007) in R version 3.3.1 (Team et al., 2013).

3.5.2 The Wood Buffalo National Park

A dataset from the Wood Buffalo National Park (Gibson et al., 2015) was also retrieved
to test the performance of the three methods of classification that we constructed ear-
lier (Tab. 3.4). Although Gibson et al. (2015) did not conduct the sampling in polluted
environments, it can be useful given there are two deltas with different biodiversity (for
more information about the samples see section 3.4.2). Gibson et al. (2015) homoge-
nized the benthic samples in 95 % ethanol, the total DNA was extracted, and the two
fragments (F230, and BE) within the COI gene were amplified. The F230 fragment is
230bp in length and is found at the 5′ end of the standard barcode region. The BE
fragment is 314bp and is found at 3′ end of the standard barcode region. The purified
amplicons from the first PCR were used as a template for the pre-sequencing PCR using
the Illumina-tailed primers. All the generated amplicons sequenced using the Illumina
Miseq platform. Gibson et al. (2015) merged the forwards and reverse raw reads for all
the 24 samples with a minimum 25 bp overlap. The PRINSEQ software (Schmieder and
Edwards, 2011) was used to filter the paired-end reads with the minimum Phred score
of 20 and minimum length of 100bp. The remaining reads dereplicated and clustered
at 99 % sequence similarity using the USEARCH (Edgar, 2010) with the UCLUST al-
gorithm. Also, Gibson et al. (2015) used the UCHIME algorithm (Edgar et al., 2011)
for chimera filtering the sequence reads. We have retrieved all the filtered, derepli-
cated, non-chimeric and clustered reads for all the 24 samples of this study and followed
our post-sequencing pipeline as figure 3.5 illustrates. All the reads were classified and
identified using the three methods of classifications (Tab. 3.4). We have employed the
MEGA-BLAST algorithm (Morgulis et al., 2008) against the ProM database and then
imported the output into the MEGAN program (Huson et al., 2007) to find the top
hits with the lowest common ancestor. The KRAKEN algorithm Wood and Salzberg,
2014 with the ProK database was used to classify and identify the reads. Finally, we
have utilized the SHAH database to classify all the sequences as well. We have used
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the classification results for the biodiversity analysis and compared the performance of
various methods of classification in estimating the α diversity. We have used the same
parameters and algorithms to classify the WBNP as the Humber River samples (for
more details see sequence classification in section 3.5.1).

3.6 Results

3.6.1 The performance of programs

The two main challenges in biomonitoring of eukaryotic communities are the time re-
quired and computational power for HTS analyses. To tackle these problems, we have
constructed a small database of bioindicators using the KRAKEN algorithm for the first
time in studying eukaryotic communities. The performance of our bioindicator database
and the KRAKEN algorithm was investigated using three methods of classification to
identify taxonomic composition and biodiversity analyses of two datasets (see section
3.4). Table 3.5 highlights the differences between three methods of taxonomic identi-
fication in classifying the same dataset. The comparison of the ProK with the ProM
database is useful to investigate the performance of the KRAKEN algorithm. The ProK
and the ProM are both using the same database, and the BLASTN method is known
as a reference approach for HTS classification. Also, comparing the SHAH with the
ProK database is helpful to explore the employment of a small database of bioindicator
sequences in the environmental monitoring programs. The SHAH and the ProK both
utilize the KRAKEN algorithm.

As shown in table 3.5 the SHAH approach contains 1,927 species and 20,235 se-
quences. For each species we extracted around ten accessions. For the species with un-
available COI gene records in the NCBI, we have retrieved the Cytb genes from NCBI.
The ProM and the ProK include substantially larger databases compared to the SHAH
with 1,147,778 sequences and 167,788 species. The SHAH and the ProK classified and
identified the HTS dataset in 0.5 and 4.5 hours respectively. However, the ProM method
classified the HTS reads in 32 hours using a cluster machine with 48 cores in parallel. The
ProM method required 405 megabytes for the database and 1,296 gigabytes of disk space
for the output files. The ProK needed 30 gigabytes and 713 megabytes of disk space for
the database and output files respectively. And the SHAH generated a database of 8
gigabytes and 700 megabytes of the output file. All three approaches are very sensitive
identifiers as we used a minimum support of close to one to assign the taxonomy. They
are all fairly accurate methods with 98.25, 95.43, and 100 scores for the SHAH, ProK,
and ProM respectively. These scores are not calculated consistently for the KRAKEN
and the MEGA-BLAST algorithms, but they were suggested by the KRAKEN authors
Wood and Salzberg (2014) as the thresholds levels. An Illumina amplicon dataset from
The Wood Buffalo National Park (WBNP) with 24 samples that each contained 88,000
reads and 295 bp lengths in average was used to generate table 3.5.
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Parameter SHAH ProK ProM
Number of species 1927 167,788 167,788
Number of sequences 20,235 1,147,778 1,147,778
Algorithm KRAKEN KRAKEN BlastN
Method K-mer based k-mer based Homology based
Speed 0.5h 4.5h 32h
Database Size 8G 30G 405M
Output Size 700M 713M 1,296G
Min score 98.25 95.43 100
Min support 1read 1read 1read

Table 3.5: The performance of the three customized HTS taxonomic
classification and identification approaches.

3.6.2 Taxonomic composition

The taxonomic composition of the Humber River samples was explored using the three
different databases (Tab. 3.4). A summary of the taxonomic composition is given in fig-
ures 3.6 and 3.7 employing the ProK method that contains a custom reference database
of invertebrates. The Humber River samples were separated and labeled into different
columns according to their ecological conditions (for more information about the sam-
pling sites and their conditions see section 3.4). The top abundant taxa were colored and
labeled in figure 3.6, and the remaining low abundant taxa are shown in gray. Figure
3.6 illustrates that the diversity and the composition of samples are not particularly
different in various sampling locations with diverse level of pollution. However, figure
3.7 shows that the species diversity is higher in non-polluted environments compared
to polluted environments. The species diversity decreased with the increase of envi-
ronmental pollutants. Comparing the composition of samples at the different levels of
taxonomy indicates that a higher level of taxonomy is less responsive to environmental
conditions (see figures A.1 and A.2 for other levels of taxonomy). Also, the comparison
of the unknown environment condition with other ecological conditions in the Humber
River samples, suggests that the composition of unknown samples are very similar to
samples labeled as polluted. This result is also consistent at various level of taxonomy
(Figs. 3.6, 3.7, A.1, A.2).
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Figure 3.6: Taxonomic composition of the Humber River samples using
the ProK method at the order-level.
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Figure 3.7: Taxonomic composition of the Humber River samples using
the ProK method at the species-level.
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We have compared the SHAH with the Prok classification approach in estimating
the taxonomic composition of the Humber River samples. The SHAH employs a small
database contains 1927 species while the ProK includes 167,788 species and 1,147,778
sequences. Figures 3.8 and 3.9 show a summary of the most abundant taxa at the order
and family-level respectively. The performance of the SHAH and the ProK is compared
at different ecological conditions. Each row in figures 3.8 and 3.9 compares the samples
with the same ecological condition. The top abundant taxa were colored and labeled
in figures 3.8 and 3.9, the remaining low abundant taxa are shown in gray. The x-axis
shows all the samples from the Humber River that were identified using the ProK (on the
left column) and the SHAH database (on the right). The y-axis illustrates the number of
reads that assigned to a taxa (Figs. 3.8, 3.9). We have also compared these two classifier
in estimating the taxonomic composition at the genus and species level (Figs. A.3, A.4).

Investigating the performance of the SHAH database compared to the ProK suggests
that the SHAH identifier was able to estimate the compositions of the samples in polluted
and unknown ecosystems. The SHAH database identified the most abundant taxa in
sites 8D, 8J from polluted locations and sites 4J, 5J from unknown sampling locations
accurately. This result is consistent at all four levels of taxonomy (Figs. 3.8, 3.9, A.3,
A.4). However, the SHAH database was not able to estimate the taxonomic composition
in non-polluted sampling sites. The composition of the most abundant taxa in sites 10J,
12D, 12J, 22J, 25J, 26J from non-polluted ecological condition is different between the
ProK and the SHAH database. This difference is consistent among four level of taxonomy
(Figs. 3.8, 3.9, A.3, A.4). The comparison of the SHAH and the ProK for the sites with
intermediate level of pollution indicates that the SHAH result is not consistent with
all the samples and taxonomic levels. The SHAH identified the most abundant taxa in
the 27d site at the order, family, and genus levels while the composition of the 7J and
9J were not estimated accurately at various level of taxonomy. Also, we observed false
taxonomic identification in sites 7J and 9J at family, genus and species levels using the
SHAH approach.

3.6.3 Rarefaction curve

Rarefaction is an ecological technique to test if the difference in sample size causes the
difference in richness. Obviously, species richness increases with sample size, but this
increase should not affect the ecological interpretations. The rarefaction curve examines
species numbers as a function of sample size. This technique calculates the expected
number of species in a small collection of n individuals by randomly sampling from the
large pool of N samples. The curves with steep slope illustrate that a large number of
species diversity remains to be identified. However, the flatter curves suggest that an
enough number of individuals or samples have been collected from the environment.
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Figure 3.8: A comparison between the SHAH and the Prok approaches
in estimating composition of the samples at the order-level. Each row

compares the samples with the same ecological condition.
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Figure 3.10 compares the rarefaction analyses constructed for the SHAH (Fig. 3.10b)
and the ProK (Fig. 3.10a) databases. Each curve shows one site and curves are col-
ored based on the ecological conditions of sampling sites. The non-polluted, polluted,
intermediate, and unknown sampling sites are shown in green, red, orange, and black
respectively. The x-axis shows the sample size (or the number of sequence reads), and
the y-axis is the number of species (or OTUs that assigned to species). The vertical
thresholds in figures 3.10a and 3.10b that cut the curves are the minimum sample count
achieved over all the samples.

The comparison of the SHAH (Fig. 3.10b) and ProK (Fig. 3.10a) indicates that the
SHAH approach requires smaller sample sizes compared to the ProK to estimate the
taxonomic richness. As shown in figure 3.10 the rarefaction curves calculated for all the
sites with the SHAH database plateau at around 140 number of sequences. However, the
rarefaction curves constructed with the ProK method shows steeper slopes compared to
the SHAH in various sampling locations. Also, this result suggests that the polluted
sites (red curves) require smaller sample sizes to reach the saturation level compared
to the non-polluted ecosystems (green cures) calculated by both methods. Although
there are different expected numbers of species at the various sites for the same sample
size, all the sampling locations plateau at around same number of sequences. The same
saturation level for all the sites in one classification method indicates that the differences
between the sites are not due to the size of the samples (Fig. 3.10).

3.6.4 Alpha diversity

TRCA (2011) and Spall (2014) labeled the Humber River sampling locations based
on the environmental information provided by The Southern Ontario Land Resource
Information System (for more information see sections 3.4 and A.1). We have calculated
the biodiversity indices using three methods of identification (Tab. 3.5) and compared the
results at various ecological conditions. Figure 3.11 shows the comparison of the SHAH,
ProK, and ProM databases in calculating the Simpson index for various environmental
conditions at the genus-level. The performance of different identification methods is
separated in different boxes and various conditions are shown in distinct colors. For all
the samples collected from the same condition and identified with the same method a
box-plot is constructed (Fig. 3.11). Both Simpson and Shannon indicies are calculated
at the four levels of taxonomy (Figs. 3.11, A.5, A.6, A.7, A.8).

Unfortunately, the number of samples collected from various environmental condi-
tions in the Humber River sites are not equal. To tackle this problem we added type
category to the collected samples based on the sampling locations and the ecological
conditions. The samples collected from polluted, intermediate, unknown conditions are
contaminated with anthropogenic drivers to a different extent. Those sites with pol-
luted, intermediate, and unknown conditions were labeled as contaminated sites. As we
mentioned earlier, the taxonomic composition of the Humber River sites showed that
the composition of samples collected from the unknown conditions are pretty similar
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Figure 3.11: Comparison of the SHAH, Prok, and ProM in calculating
the Simpson index for various environmental conditions at genus-level.
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Figure 3.12: Comparison of the SHAH, Prok, and ProM in calculat-
ing the Simpson index for various environmental conditions and types at

genus-level.
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to polluted ecological conditions. Figure 3.12 illustrates the comparison of the SHAH,
ProK, and ProM in estimating α diversity in various types of environments. The con-
taminated sites that include polluted, intermediate, and unknown conditions are shown
in the left column and the non-polluted sites are located in the right column (Figs. 3.12).
The performance of different methods are compared for various types and conditions
and separated in the three rows in figure 3.12. Both Simpson and Shannon indicies are
calculated to investigate the performance of multiple identification programs in various
types of ecosystems at four level of taxonomy (Figs. 3.12, A.9, A.10).

Our results show that the SHAH was able to estimate the biodiversity accurately
in the polluted environments compared to the ProK and ProM. Figure 3.11 indicates
that the mean of Simpson calculated using the SHAH’s result in polluted sites (the blue
boxplots) is similar to the ProK and ProM that uses an enormous reference database.
The similarity between the SHAH and other methods in polluted ecosystems are shown
at different levels of taxonomy (Figs. 3.11, A.5, A.6, A.7, A.8). However, we were not
able to identify a significant correlation between the SHAH and other methods in non-
polluted environments. Unfortunately, the sampling in the Humber River sites was
not conducted in the same fashion in various conditions. The absence of the same
experimental design for all the sampling locations makes it difficult to interpret the
correlation between conditions and the α diversity using multiple HTS classification
methods. When we explored the performance of our programs within the type category
the relations between the SHAH and other methods were more evident. As shown in
figure 3.12 the SHAH estimated the biodiversity patterns in various conditions within the
contaminated samples correctly. The similarity between the SHAH and other methods
for the polluted, intermediate, and unknown sites are shown in contaminated section
(left column) in figures 3.12, A.9, A.10. We used the Pearson-moment correlation by
bootstrapping with 1000 replication to quantify the correlation between the identification
methods in contaminated and non-polluted environments (Tab. 3.6).

We have analyzed the performance of three identification methods at various sites
independently. Figures 3.13 and 3.14 compare the SHAH, ProM, ProK in calculating
the Shannon and the Simpson index for each location. The x-axis is different sampling
sites, and the y-axis is the Shannon index. The sites are separated based on their
ecological conditions. As shown in figure 3.13 the individual Shannon values calculated
by the SHAH is significantly correlated to the other methods in polluted, intermediate,
and unknown conditions. The relation between the SHAH and other approaches are
also shown in table 3.6. The Pearson-correlation table indicates that the Simpson and
Shannon indices calculated by the SHAH method are significantly (p<0.05) correlated
to the both ProK and ProM at four level of taxonomy in contaminated ecosystems.
Although there are positive correlations in some of analyses between the SHAH and
other methods in non-polluted environments, we were not able to identify a significant
correlation between them.
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Figure 3.13: Correlation between the classification methods using the
Shannon index at species-level. Each point show an individual site and

the programs are illustrated with distinct colors.
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Simpson Shannon
non-polluted Contaminated non-polluted Contaminated

Species

(SHAH)VS(ProK) 0.323 0.481 0.694 0.713
(SHAH)VS(ProM) -0.115 0.541 0.148 0.667

Genus

(SHAH)VS(ProK) 0.113 0.47 0.38 0.764
(SHAH)VS(ProM) -0.08 0.601 0.069 0.788

Family

(SHAH)VS(ProK) -0.114 0.517 0.25 0.817
(SHAH)VS(ProM) -0.174 0.392 0.038 0.742

Order

(SHAH)VS(ProK) 0.4 0.702 0.577 0.72
(SHAH)VS(ProM) -0.201 0.698 0.11 0.775

Table 3.6: Correlation between the SHAH and ProM or ProK in non-
polluted and contaminated environments. The bold values indicate a

positive significant (p<0.05) correlation.

Gibson et al. (2015) argued that the two deltas in the Wood Buffalo National Park
have different biodiversity (see section 3.4 for more information about the dataset). We
retrieved their raw data, analyzed with our post-sequencing pipeline (Fig. 3.5) and used
this baseline data to test the performance of our HTS classification methods in such
environments. Figures 3.15, 3.16 compare the biodiversity between the Athabasca and
Peace Delta using the the three classification approaches. The x-axis shows all the sites
within each delta and the y-axis illustrates the biodiversity index. Each point indicates
the mean index for three samples and various identification methods are shown with
different colors. The Shannon and the Simpson index were calculated for all the samples
at four levels of taxonomy (Fig. 3.15, 3.16, A.11, A.12).

Our result for the WBNP is consistent with Gibson et al. (2015) conclusions; there
are different biodiversities in the Athabasca River sites and the Peace River sites. All
our classification methods (Tab. 3.5) estimated similar biodiversity in the Peace delta,
for the sites 14, 33, 37, 38. As shown in figures 3.15, 3.16 the performance of the SHAH
correlated with the ProK or the ProM. However, in the Athabasca Delta the ProM,
ProK, and SHAH calculated different values for the same sites. The difference between
the identification approaches in computing the diversity index highlights the importance
of a standard approach in DNA-based environment monitoring. Our result illustrates
the importance of the accuracy and sensitivity of the classification approaches as various
methods may generate different estimations (Fig. 3.15).
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3.7 Discussion

The taxonomic composition of the Humber River samples using the ProK showed that
the taxonomic diversity decreases with increasing pollutants in the ecosystem (Figs. 3.7,
A.1, A.2. Nevertheless, the lower diversity in contaminated environments can not be
seen at high-levels of taxonomy (Fig. 3.6). Previously, a higher level of taxonomy was
used for monitoring programs because of the identification errors at lower levels (Jones,
2008; Sweeney et al., 2011). But, our result indicates that the biodiversity responses are
less clear in the higher level of organization. This issue has been highlighted earlier by
Hewlett (2000) and Pettigrove and Hoffmann (2005) in analyzing eukaryotic communi-
ties.

The SHAH, an HTS database that uses a small library of bioindicators sequences and
the KRAKEN algorithm, was able to estimate the summary of taxonomic composition
in the polluted ecosystems accurately (Figs. 3.8, 3.9). The capability of the SHAH
can be explained through the lower diversity in such environments and presence of a
targeted database at the core of the SHAH approach. The SHAH employs an extremely
small DNA sequence library (20,235 sequences) compared to the GenBank database or
even a custom reference database such as the ProM (1,147,778 sequences). The SHAH
library was built upon the past knowledge of bioindicators, where the environmental
ecologist predicted the presence of certain taxa in the particular type of ecosystems.
The tiny database of the SHAH was enough to identify the composition of the samples
derived from the polluted environment because the ecologist’s predictions regarding the
bioindicators were accurate.

As shown in figures (Figs. 3.8, 3.9), the SHAH was not able to estimate the compo-
sition of the samples in non-polluted environments because the SHAH did not contain
enough sequences to accurately identify the taxonomic composition in these environ-
ments. Although the incapability of the SHAH in such ecosystem was anticipated, the
false identification of the SHAH for the three samples (27D, 7J, 9J) with the intermedi-
ate level of pollution raised concerns about the accuracy of the SHAH (Figs. A.3, A.4).
The KRAKEN includes a threshold tool that can be customized to obtain the higher
level of accuracy. This tool should be used depending on the size of the database and the
target environment because it can massively affect the sensitivity and accuracy of the
identification using KRAKEN. The SHAH contains limited number of sequences, when
its being used for the identification of samples with high diversity it requires a higher
threshold value to avoid false identification in those cases where a direct match between
the database and query sequence is not found.

We used the two datasets (see section 3.4 for more information) to investigate the
performance of the three customized HST classification methods (Fig. 3.5). Unfortu-
nately, the sampling in the Humber River watershed was not conducted consistently
through various conditions and locations. The inconsistency of the sampling made our
interpretation difficult for the α diversity analysis. As we did not have the same number
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of samples for each condition, the samples were categorized into non-polluted and con-
taminated ecosystems. We could not find a significant relationship between the SHAH
and other methods in non-polluted samples because the SHAH was not able to iden-
tify the core composition of theses samples. It seems that the customized identification
methods such as the SHAH can not be used for the regular biodiversity assessment of
all environments. Customized databases should be constructed specifically for targeted
environments. However, our result illustrated that the SHAH was able to calculate the
biodiversity metrics at different levels of organization the same as ProK and ProM in
the environments contaminated with anthropogenic pollutants. As shown in table 3.6
there was a significant correlation between SHAH and ProK or ProM in calculating the
diversity indices. The relation between SHAH and ProK or ProM in the polluted ecosys-
tems is due to the accurate identification of SHAH and the nature of the diversity index.
As discussed in chapter two (see section 2.3.3) in α diversity analyses the size of the
database is not as important as the ability of a database to identify the core taxonomic
composition of the samples.

The capabilities of SHAH apply to any other datasets collected from the environment
with lower diversity and known taxonomic composition. For instance, the SHAH esti-
mated the biodiversity of the Peace Delta in the Wood Buffalo National Park the same
as ProM, which is a popular, but time-consuming approach of identification (Fig. 3.15).
But, the absence of a standard approach in taxonomic identification of the eukaryotic
communities made it difficult to compare the methods and to determine the accuracy of
each approach. The ProK and ProM with exactly the same database calculated different
values for the same sites in the Athabasca Delta (Fig. 3.15). The difference is caused by
the nature of their algorithms and the accuracy thresholds that we intentionally defined
for them. Based on our settings ProM is the more accurate and less sensitive program
compared to the ProK, and the SHAH stands between the ProK and the ProM regarding
accuracy. For the compatibility and repeatability of the identification the presence of
a standard classifier for the COI amplicons is necessary. For example, the Greengenes
(DeSantis et al., 2006) database is known as a standard method for HTS classification
of 16S rRNA amplicons.

We utilized the KRAKEN algorithm for the first time in classifying eukaryotic com-
munities using the large size and extremely small databases. KRAKEN is a potential
algorithm for simultaneous DNA-based monitoring of environments. This program can
overcome some of the current challenges in the metabarcoding with substantial time
and computer power reductions (Tab. 3.5). Researchers can simply classify and identify
their large HTS datasets using their laptop in a short period. The use of the customized
databases (e.g. the SHAH) can facilitate the process and the required disk space with
the same level of accuracy.
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The rarefaction analyses showed that the smaller size databases such as the SHAH
require smaller sample sizes to reach the saturation level for taxonomic richness specifi-
cally in the polluted ecosystems. In other words, the customized databases such as the
SHAH can help to reduce the cost of the biomonitoring programs as they require fewer
read numbers. This conclusion is compatible with our result from chapter 2 where we
showed the taxonomic identification of samples with anthropogenic pollutants requires
fewer numbers of sequencing reads. One possible approach to overcome the high cost
of HTS is to increase the number of samples multiplexed (tagged) in an HTS run so
that the efficiency of one sequencing run with fixed read number would be maximized.
Simultaneously, increasing the number of samples multiplexed in a run will generate
fewer read numbers for each sample.

There are some concerns regarding the reliability, and the accuracy of the HTS counts
as an absolute abundance in ecological assessments due to the polymerase chain reac-
tion (PCR) amplifications and sequencing biases (Amend, Seifert, and Bruns, 2010).
Although algorithms such as UCLUST finds the clustered operational taxonomic unit
(OTU) that are much closer to the number of species, we can not argue that the OTUs
are the absolute relative species abundance. There are other sequencing techniques such
as shotgun sequencing (Simon and Daniel, 2011) and gene enrichment techniques (Dowle
et al., 2015) that don’t use fragment amplification (PCR) to characterize species com-
munities. But, both methods are currently too expensive for rapid identification of bulk
environmental samples.

In future, efforts should be made towards the establishment of a standard approach
specifically for identification of the bulk eukaryotic communities. The optimum level
of accuracy and sensitivity should be identified using various programs. This standard
level can be used for the reliability and repeatability of DNA-based environmental mon-
itoring. The SHAH database can be improved by adding more bioindicator species that
depend on the target environment. The presence of various types of small customized
DNA databases based on the target environment may lead to a decreasing the cost of
biomonitoring programs and an increasing the efficiency. The KRAKEN algorithm is a
potential algorithm for the regular HTS identification instead of homology-based pro-
grams. Currently, the KRAKEN package contains only prokaryotes database with the
default settings, but the other databases for various groups of the organism should be
constructed to be available for common usage.
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Appendix A

Chapter 3 Supplements

A.1 Land Cover DATA

Sample Date Site Condition Type
1 June 2 non-polluted non-contaminated
10 June 22 non-polluted non-contaminatedd
11 June 25 non-polluted non-contaminated
12 June 26 non-polluted non-contaminated
13 Dec 3 non-polluted non-contaminated
15 Dec 12 non-polluted non-contaminated
2 June 3 non-polluted non-contaminated
8 June 10 non-polluted non-contaminated
9 June 12 non-polluted non-contaminated
14 Dec 8 polluted contaminated
6 June 8 polluted contaminated
3 June 4 unknown contaminated
4 June 5 unknown contaminated
7 June 9 intermediate contaminated
5 June 7 intermediate contaminated
16 Dec 27 intermediate contaminated

Table A.1: The available samples from the Humber River watershed.
All the samples collected in 2011 and sequenced in June and December

2012.
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A.2 Taxonomic composition
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Figure A.1: Taxonomic composition of the Humber River samples using
the ProK method at the family-level.
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Figure A.2: Taxonomic composition of the Humber River samples using
the ProK method at the genus-level.
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Figure A.3: A comparison between the SHAH and the Prok approaches
in estimating composition of the samples at the genus-level of taxonomy.

Each row compares the samples with the same ecological condition.
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Figure A.4: A comparison between the SHAH and the Prok approaches
in estimating composition of the samples at the species-level of taxonomy.

Each row compares the samples with the same ecological condition.
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Figure A.5: Comparison of the SHAH, Prok, and ProM in calculating
the Simpson index for various environmental conditions at family-level.
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Figure A.6: Comparison of the SHAH, Prok, and ProM in calculating
the Shannon index for various environmental conditions at order-level.

65

http://www.mcmaster.ca/


Master of Science– Shahrokh Shekarriz; McMaster University– Biological Sciences

ProK ProM SHAH

1

2

intermediatenon−polluted polluted unknown intermediatenon−polluted polluted unknown intermediatenon−polluted polluted unknown
Conditions

sh
an

no
n

Condition

intermediate

non−polluted

polluted

unknown

Family−level

Figure A.7: Comparison of the SHAH, Prok, and ProM in calculating
the Shannon index for various environmental conditions at family-level.
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Figure A.8: Comparison of the SHAH, Prok, and ProM in calculating
the Shannon index for various environmental conditions at genus-level.
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Figure A.9: Comparison of the SHAH, Prok, and ProM in calculating
the Simpson index for various environmental types at order-level.
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Figure A.10: Comparison of the SHAH, Prok, and ProM in calculating
the Simpson index for various environmental types at family-level.
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Figure A.11: Correlation between the classification methods using the
Shannon index at species-level. Each point show the mean of the Shannon

for each site and the programs are labeled with distinct colors.
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