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'ABSTRACT

The solution formalism of the closed-form analysis for nuclear
reactor transients is investigated in this study. This method of
analysis is applied to two one-dimensional test problems, namely, (1) a
homogeneous slab and (2) a space dependent problem of the CANDU type.
The numerical results have identified some of the characteristics as
well as the numerical difficulties associated with the closed-form
analysis. Some possible areas for imporovements and modifications to

the method are suggested.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of This Project

In large nuclear reactors, localized changes in material com-
positions cause changes in neutron flux whicﬁ contribute to changes in
" power density. The effects of a change in reactivity depend on the size,
shape and Tocation of the core region where the reactivity is introduced,
as well as on the magnitude of the change. Hence, multidimensional and
space dependent reactor kinetics analyses are required to fully describe
the effects of a reactivity change.

Various methods of analysis for space dependent reactor kinetics
have been published in the literature in past years. One of these is
the closed-form analysis, Thodgh not without its limitations, it is
particularly simple to apply. The method has been applied by Garland
and Harms(]) to obtain solutions for the space and time dependent temp-
erature distribution in a cylindrical réactor fuel pin using one neutron
group. The purpose of this project is to investigate the feasibility
of applying this zlosed-form analysis to transient flux calculations

for a general multiregion reactor.

1.2 Reactor Dynanmics

The study of reactor dynamics is concerned with the various

~ aspects of the time dependent behaviour of the core. It includes all



the considerations of coolant flow, heat transfer, fuel behaviour,
transients and stability and control. During its course of operation,
a reactor's properties may change with time, resulting in a change in
the neutron multiplication factor and hence the neutron population. 1In
terms of reactivity, it means that the reactor is disturbed from its
critical state. S5ince a change in neutron population has immediate
effects on the power density, the reactor transient behaviour must be
accurately determined in order to adequately control the power level.
Changes in reactor properties can occur in many ways. Slow
transients or lonj term effects afe associated with such parameters as
fuel burnup and Xanon effects. These phenomena, while operationally
important, do not present serious safety problems. Fast transients or
short term effects may result from temperature changes, prescribed
reactivity changes introduced by control rod motion, or accidental
changes such as those induced by a loss of coolant. If the reactivity
change exceeds a certain level, then the reactor becomes prompt critical,
making it very difficult to control and resulting in dangérous opera-
tion. It is to these fast transients that reactor dynamics and safety
studies are intimately related. With the present generation of power
reactors getting increasingly larger, multidimensional space dependent
kinetics analyses are necessary to account for the spatially decoupling

effects.

1.3 The Space Dependent Reactor Kinetics Equations

A rigorous treatment of nuclear reactor kinetics would invoke



 energy dependent rieutron transport theory. However, a detailed descrip-
tion of the time and spatial behaviour of the neutron population is
almost impossfb]e because of the large number of spatially distinct
regions and with neutrons travelling in all directions at speeds which
span about eight orders of magnitude. Furtherhore, the continuously
changing core properties have to be taken into consideration simultane-
ously with neutron effects. However, it has been found by experience
that the group diffusion approximation suffices to describe the neutron
~ population in a large number of reactor types.

The time cdependent group diffusion equations describe the aver-
age reaction rate of neutrons over an interval of energy referred to as
a group according to neutron diffusion theory. The space dependent
reactor kinetics equations can be written in the following multigroup

diffusion approximation form:

' ~ G
%;—%;—¢g(r,t) = ﬁiDg(F,t)$$g(F,t) + g.g]zgg'(F’t)¢g(F’t)

Z f9101(r t) » (I<g<@) | (1.1)
Boc(Fot) = - aC,(Rot) + zp g (Fatdo (Ft) (1 s ¢1) (1.2)

Parameters appearing in the above equations have the following meanings:

g = index number of the energy group

i = index number of the delayed neutron precursor group



G = total number of energy groups

I = total number of delayed neutron precursor groups

¢_ = scalar neutron flux [n/(cmz-sec)] in energy group g
IC. = concertration (cm"3) of ith precursor

D_ = diffusion coefficient (cm) for neutrons in energy group g

g
vg = speed (cm/sec) of neutrons in energy group g
zgg‘ = intergroup macroscopic transfer cross section (cm']) from

group g* to group g with the following structure:

L. (= xg(l- B)vngg -z

a9 g‘;gzgeg‘

X, = fission spectrum yield in group g

'v_ = average number of neutrons per fission in group g

ng = macroscopic fission cross section (cm']) in group g

I. = macroscopic absorption cross section (cm"]) in group g

I_ . = macroscopic scattering cross section from group g to group g'

B = total fractional yield of delayed neutrons per fission

Zggt = Xg(1-3)vgiZpg * Zgu g

fgi =vlixgi = probability (sec_])‘that the ith precursor will yield
a neutron in group g where A is the decay constant and Xg1
the fraction of decays in delayed group i which yie1d
neutrons in group g

Pig' = Bi“g'zfg‘ = production factor (cm']) for the ith precursor

havinjy fractional yield B; by fissions in group g'.

Equations (1.1) and (1.2) are coupled partial and ordinary

differential equations respectively in which the coefficients are time



dependent. Because of the time dependence of the cross sections, the
system actually raepresents a non-linear set of partial differential
equations. Howevar, changes in material properties due to fission
heating are so much slower than changes in neutron flux that the coe-
fficients can be considered time independent within the small time
interval considerad. Of course, changes in cross sections effected by
control rod motion or other reactor control actions must be taken into
consideration. The space dependent reactor kinetics equations must be
solved subject to boundary conditions of the homogeneous Neumann or
Dirichlet type. The Neumann boundary condition requires that the neu-
tron current be continuous at internal interfaces r of the reactor at

all times,
Dy (Fy )7 (Fyt) = Dg(F )Ty (Fut) (1.3)

The Dirichlet boundary conditions specify that the neutron flux vanishes
at the extrapolated reactor boundary R and be continuous everywhere

within the reactor at all times,
¢ (R,t) =0 , (1.4)
4g(ryst) = o (r_st) . (1.5)

The initial flux and precursor distributions in space and energy must
be specified.

Various sclution techniques have been used to approximate the



spatial derivative and/or time derivative of the flux and precursor
concentrations to reduce Equations (1.1) and (1.2) to coupled ordinary
differential equations or inhomogeneous algebraic equations in the
unknowns ¢g and Ci' The following section presents a review of the

methods for reactor transient analyses.

1.4 A Review of Solution Techniques

The solution techniques for solving the space dependent multi-
group reactor kinetics equations can be divided into two broad categories
known as direct methods and indirect methods. The direct methods solve
the neutron diffus-on equations by finite differencing the equations in
space and time. The indirect methods involve some assumption about the
shape of the solution over several subregions or the entire reactor and
proceed to solve the equations by expanding the solution as a linear
combination of some sef of functions. Some of these methods are
briefly described here. ‘

1.4.1 Finite Difference Methods (2»3+4556)

To obtain the finite.difference épproximations, the reactor
model‘is partitioned into a finite number of elemental regions or mesh
cells, with each cell enclosing a mesh point. The space dependent
reactor kinetics equations are then discretized in the spatial variable
by integrating the equations over the volume of the reactor, using the
box integration technique and replacing the spatial derivative with a

finite difference approximation. Likewise, the time derivative is also



replaced by a finite difference to reduce the equations to a set of
inhomogeneous algebraic equations, the solutions of which are the
neutron flux ¢g(F,t) and precursor concentration Ci(F,t) at each mesh
point. Within the framework of finite difference methods, different
techniques have been employed to reduce computation time or to overcome
numerical instability problems, with varying degrees of success. These
techniques include the alternating direction implicit methods,(3) ADI,
and alternating direction explicit methods, 'ADE.(4) In finite differ-
ence methods, it has been found that applying a group-dependent freq-
(3)

uency transformation or a characteristic frequency transformation to
all groups(4) would speed up the convergence rate of the solution. Harms
et al. have also demonstrated that the multiple temporal-mode transforma-
tion technique is capable of generating very accurate so]utions.(s)
A1l finite difference methods have the advantage that definite
error bounds on the final approximation can be established. However, to
adequately describe the spatial details of a reactor, a large number of
mesh points are required. Thus, these methods are as yet considered too

expensive for routine production calculations.

1.4.2 Point Kinetics(’>8)

In the most common application of the point kinetics approximation,
a fixed spatial distribution is assumed. The neutron flux is represented
as a product of a time-independent shape function wg(F) and an amplitude

function Ng(t),



4Frt) —— 4o F(1) (1.6)

If it is assumed that the amplitude function has an exponential time

t, then the transient neutron flux is fixed in shape but is

dependence e
varying in amplitude. Space-time effects can be incorporated into the
point kinetics model by quasistatic methods or adiabatic methods, which
recompute the point kinetics parameters periodically to account for
spatial flux tilts. The point kinetics model is a simple method for

obtaining only the total power or neutron flux level in the reactor.

1.4.3 Modal Expansion Approximations(7)

One type of modal expansion approximations is the time-synthesis
method. In this mathod, the neutron flux is expanded in known functions

wgn(F) with unknown expansion coefficients agn(t):
v Y " 1.7
¢g(r,t) qz]"’gn(”)agn(t) ‘ (1.7)

The above approximation is substituted into Equations (1.1) and (1.2).
The spatial derivative in Equations (1.15 and (1.2) is eliminated when
these equations are premultiplied by some weighting functions and inte-
grated over the entire spatial domain. Thus, the neutron and precursor
balance equations are satisfied, not at each spatial point, but in a
weighted integral sense over the spatial domain for N different weighting
functions.

Another type of modal expansion approximations is the space-time

synthesis method which expands the flux in the following form:



_ N
6g(Fat) = 1 4gy(ravdagy (2,t) (1.8)

The same “substitute, weight and integrate" procedure is followed to
obtain a set of ordinary differential equations in the time variable,
but the weighting functions and the integratibn involve only two of the
spatial variables while the expansion coefficients are functions of the
remaining spatial variable as well as of time.

In applying the modal expansion approximations, the choice of
expansion functicns and weighting functions is of extreme importance
for accurate rest1ts. One method of choosing the expansion functionsr
is to use eigenfunctions of the Helmhloltz equation which for regular
geometries are aralytical functions.

1.4.4 Nodal Approximation(7)

In applying the nodal approximation, the reactor model is
divided into a swall number of regions. Associated with each region
is a node. The neutron flux within each node Rj is written as the

product of a shape function ¢gj(F) and an amplitude function Ngj(t):

_¢g(r,t) = ¥g (FNg5(t) . eR, (1.9)
The above relation is substituted into Equations (1.1) and (1.2) which
are then multipliad by appropriate weighting functions and integrated
over the volume of region j. Whereas the modal expansion approximations
are capable of pradicting the transient neutron flux at each point, the

nodal approximation is oriented towards obtaining the average flux 1in



each region of the reactor.
In the fcllowing chapter, the method of closed-form analysis

is described.
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CHAPTER 2

A CLOSED-FORM ANALYSIS

The previous sections have reviewed some of the commonly used
techniques for niclear reactor transient analyses. As mentioned in the
introduction, an alternative solution technique, the closed-form method,
has been applied by Garland and Harms(]) to time dependent temperature
distribution cal:zulation in a cylindrical fuel pin. The objective of
this project is to investigate the possible extension of this method
to transient flux calculations. The formalism of this solution tech-

nique is presentzd in the following section.

2.1 Solution Formalism

The starting point for this analysis is the space'dependent
reactor kinetics equations, Eq. (1.1) and (1.2), which are rewritten

here for the sake of clarity,

G
13, 124y 25 (5 +Y5s (3 Sy (R
T bg(rst) = V.0, (F,t)7e (F,t) + g.Z]Egg'(r’t)¢g(r’t)

I
+ 1§]fgiC1(F’t) » (l<gx@) (2.1)

G
9 - = - - .
:ﬁ-C.(r,-;) = = AiCi(r,t) + gl__z_]Pig.(r,tMgt(r,t). {1¢1gI)(2.2)

11
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The symbols in these equations have previously been defined in Section

1.3. For convenience in later discussion, Equations (2.1) and (2.2)

are combined in the following compact matrix form:

g
ot

a(r,t) = M(r,t)s(r,t)

(2.3)

Here, & is a vector of length N representing the neutron flux or pre-

cursor concentration at a point r,

where N is the total number of neutron and delayed precursor groups.

o(r,t) =

[ 4, (F.t) |

YolRt)

¢g(rst)
C, (F,t) .

.
L

¢;(F.t)

o, (Fot)

' (Ft)

@G(F,t)
¢G+](F,t)

Ld
.

Sy(Ft)

M (r,t) is an operator matrix of order N:

s

(2.4)
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g " - N ]
v](v.D]v + Z]]) ViZyo ViZ1g v]f]] - v]f]I
Vol vz(v.Dzv + 222) e VoIpe Vofpy oo Vofor
M(r,t) = Vel Velgp - - vG(EiDgV'+ Igg) Vefor - Vefar
P11 Mg+ P16 S R
0
| Fr1 Pr2 Plg M

In an attempt to combine space dependent with space independent

solutions, the general solution representation is written as

N w.t

o (r,t) = Hoy(r,t) + jZ]EnJe ooy Dgne

where Hn and Enj are group dependent coefficients to be determined.

The choice of a summation of N terms for the space independent soTution
will become clear later on. In both the time-synthesis method and
point kinetics analysis, separation of the flux in space and time is
assumed. Here, scparation of variables is also assumed for the space

dependent solution y(r,t),

§(Fst) —> REFIT(E) — X(ryY(rp)Z(rg)T(t)

(2.5)

(2.6)

(2.7)
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where rys oo and rs represent the spatial variables involved in a
three-dimensional case. In Eq. (2.6), the addition of the space in-
dependent part is intended to remove the limitations imposed by the
separation of space and time procedure on the magnitude of the trans-
ient to be examined. »
Substituting Eq. (2.6) into Equations (2.1) and (2.2), the
resulting equations can be separated into space dependent and space

independent parts, and are written as:

Space dependent part:

G
1 B e S e b " 3
v Hy 5 v(rst) = HG7.D  (F)Tug (7st) + g(zlzgg‘(r,t)Hg.¢(r,t)

I .
+ -Z]fgiHG'*"iw(F’t) % (.I £ 9= G) (2.8)
1=

9 e . 0
Hopq ot 0(rst) = -AgHg,  u(r,t) + Z Pigt (MotMgu(rst)

(1sis1I) (2.9)
Space independent part:
1 g wjt 7 F.t) ] wst
i E .8 = b3 P t E
Vg j=1 933 19
I N U)jt
B iZ]fg1JZ]EG+i,je » (1sg56) (2.10)
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N w.t N wjt

J=-v-'. s 1@
j§1EG+i,jmj e 'Aljg]EG+]’Je

G N
+ lzlpig((F,t)_Z]Eg.je L Oeiel) - 227
g'= 2.

Equations (2.8) and (2.9) for the space dependent solutions can be

written in the following form:
g W(F. 0 = M(F.t) w(F L (2.12)

where H is a vector of length N containing the coefficients Hy»

1gnmg N,

H= . . (2.13)

[

and M(r,t) is the system operator matrix previously defined in Eq. (2.5).
- For a homogeneous region, the cross sections and the diffusion
coefficients can be considered space independent within that region.
Assuming separation of variables, Eq. (2.7), and assuming that the
spatial dependence of y(r,t) is governed by the solution to the Helm-

holtz equation,

vR(F) = - BR(F) , | (2.14)



then Eq. (2.1

2) can be written as

16

R(F) d1-(—)-}H = R(F)T(t)AH (2.15)
where A is a system coefficient matrix of order N,
[y (-D B + 3 ) V.Z Vi Vi Fin e Ve T 1
1* ¥ 1 1%12 1*16 11177111
2
VaZoy Vp(-DpB™ + Ipp) .. VaZog VolayesYaloy
- 2
A = Vel Valao G(-D B + ZGG) vofar Vefer (2.16)
P
8
. « 8
P . [Pr2 Pre Ay
The matrix A differs from the matrix M in that the spatial derivative
operator in Eq. (2.8) is now replaced by the buckling Bz.
Equation (2.15) can be written as follows:
1 _dT(¢) 7. A
T(X) ~dt H = Al (2.17)
If it is further assumed that the time dependence is of the exponential
form est, then Eq. (2.17) can be written as
(A-sDF=0 (2.18)
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Equation (2.18) actually represents a system of eigenfunction equations.
The &'s are given by the eigenvalues and the coefficients Hn are given
by the eignevectors. For a system with a total of N energy and delayed
precursor groups, there are N eigenvalues and_N eigenvectors. Thus

the space dependent solution in Eq. (2.6) can be represented as

Hnw(F,t) —_— R(B,F)jg]HnjeGjt s, (1 gngN) (2.19)
where R(B,r) can be considered as the shape function and is given as a
solution to the Helmholtz equation, Eq. (2.14). Hence, the shape
function R(B,r) is dependent on the buckling Bz. It should be pointed
out that the eigenvectors Hnj obtained from Eq. (2.18) are not normalized.
They can be normalized by considering the boundary conditions at t = 0.
The application of these boundary conditions leads to transcendental
equations which can be solved by matrix analysis, as will be shown 1in
Section 2.3. |

As can be seen from Eq. (2.18), all the elements of the system
coefficient matrix A must be known before the eigenvalues 8 and the
eigenvectors Hnj can be determined. The reactor material constants
are of course assumed known, but the buckling 82 has yet to be specified.
In this analysis, the steady-state pseudo-bucklings are assumed through-
out the transient. The determination of the steady-state pseudo-
bucklings will be described in Section 2.2.

So far only the space dependent solution has been considered.
The treathént of the space independenf solution is described in what

follows. It can be seen that the space independent solution is obtained
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in a manner similar to that for the space dependent solution.
A11 expressions in Equations (2.10) and (2.11) for the space

independent part contain a summation of terms over j, 1 < j < N. Thus,

taking the jth term in each expression, the resulting equations can be
written as
) t
'I th G NJ
—E .0.e = FE _L{PENE s
Vg gJ J g'=1 a9 g
I mjt
+ i;fgiEGﬂ. 3¢ , (1sgx0) (2,'20)
w.t wst
A J
"eri 3 T T e, gf
w:t
+ ZP.(rthJ o 0 xi@ ) (2.21)
w.t

Equations (2.20) and (2.21), after dividing by e Y , can be combined

into the following matrix form,

"- —‘-= Ll ) . .22
A'(F,t)E5 = o, (2.22)

Here, A' is a coefficient matrix of order N. It differs from the A

matrix in Eq. (2.16) in that there are no leakage terms, - D 82

g
the diagonal. E& is a vector of length N containing the jth term of

, along

each energy and delayed precursor group. Equation (2.22), 1ike Eq. (2.18),

also represents a system of eigenfunction equations. Thus it can be seen
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that the space independent solution representation in Eq. (2.6) is
consistent. Since all the elements of the matrix A" are known, the

ws ‘s are given by the eigenvalues and the coefficients E by the eigen-
vectors. The coefficients E,; can be normalized by con51dering the
initial conditions @n(F,o) at t = 0. Again, these conditions lead to

transcendental equations.

2.2 The Steady-State Case

The steady-state neutron diffusion equations are written as

follows:

0 = 7.0, (F)Tbg (F) = 2,4 (s (F)

(r )¢ (r) 5(1 < g 56G) (2.23)

Py L Mg (F) 4 ) g
-, B & 4 5 i
Ci(r) -i; .z]vzfg‘(r)¢g'(r) Y edxI) | (2.24)

The symbols in Equations (2.23) and (2.24) have previously been defined
in Section 1.3. In the steady-state case, the time dependence in the
solution representation is suppressed. Thus, the group g flux may be

written as

¢g(F)'= Z] al (2.25)
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Substituting Eq. (2.25) into Eq. (2.23), the resulting equations can
be separated into space dependent and space independent parts. With
the assumption that the space dependence is governed by the Helmholtz
equation, Eq. (2.14), the space dependent part for group g within a

homogeneous region is written as

G
= - 2 r - r r
0 DgB ng(r) zagng(r) + g g.gluzfg'Hg‘¢(r)

+ glggzg.ﬂHg(w(r) . (15s956) (2-26)

The G equations for G energy groups can be combined in the following

matrix form,
=0 , (2.27)

where F is a matrix of order G,

. ..
Lo DB Byg v 7 Eg
F = ) ) i : (2.28)
5 3 DB+
‘61 gy - » Dg GG

and H is redefined as
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=S
Il

The requirement for non-zero solutions H_1is that the determinant of F

g
vanishes. The vanishing determinant gives rise to a polynomial or

characteristic equation of degree G in BZ. Thus the pseudo-bucklings
are given by the G roots of this characteristic equation. The unknowns

Hg are the eigenvactors of Eq. (2.27) and are given by any non-zero

column of the adjoint of F to within arbitrary constants.(g) Therefore,

in a system with G energy groups, there are a total of G pseudo-bucklings,

2
Bg(,
the Helmholtz equation,

1 < g' < G. For each ng, there are two independent solutions to

zpgl("') = agx]w] (Bglr) T aglzwz(.Bglr) s (1 < 9' < G) (2-29)

where w](Bg.F) and wz(Bg.F) are the independent solutions associated
with the g'th eigenmode and ag‘]’ ag.2 are coefficients yet to be determined.
Thus the space dependent solution for group g can be expanded in the

following manner,

G .
; 9121[ang1 (Bg.r) - aglzwz(Bg.r)]Hgg. . (2.30)

ng(F)
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The coefficients ag.] and ag.z'are most conveniently found by considering
boundary conditions. It should be pointed out that Eq. (2730) gives only
the flux shape. As previously mentioned, the coefficents Hgg' are deter-
mined to within arbitrary constants. However, they can be normalized
against the power level within the homogeneous region under consideration.
The space independent part can be treated in a simi]ar manner.
After substituting Eq. (2.25) into Eq. (2.23) and equating the jth term,

the G equations for the space independent part can be put into the follow-

ing matrix form,

F'E.=0 , (2.31)
Sl |
where

E]j

I
. = 5 2.32
E, (2.32)

EGj

and E} differs from F in Eq. (2.28) in that the diagonal elements do not
contain the leakage terms. Again, for non-zero Egj’ it is required that
the determinant of F' vanishes. However, because of the condition already

imposed on the space dependent part, i.e.,

det F=0 |, (2.33)
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the requirement for the space independent part is not satisfied. Thus,
all the coefficients Egj are equal to zero. Therefore, in the steady-
state case, the space independent part in Eq. (2.25) is not included in
the final solution representation. However, it may be included in the
analysis for the transient case, as will be shown in the following sec-

tion.

2.3 The Time Dependent Case

Now that the steady-state pseudo-bucklings have been determined,
they can be used to approximate the spatial derivative in Eq. (2.8).

Thus, for each value of ng, Eq. (2.18) becomes

(Ag. - sg.;)ﬁ 0 . (2.34)

g' -

Here, the N by N matrix Ag. is derived from the matrix A in Eq. (2.16),

with the term 82 replaced by B ?. Similarly, Sg._and Hg

g
values and eigenvectors associated with the glth eigenmode. Therefore,

: are the eigen-

the solution in the time dependent case can be written as

G . 3
o, (r,t) = IZ]{[agl]W](Bg.r) + ag.ZWZ(Bg.r)]-
g'= |
N ., - N wst
j;Hng‘je 933+ jE]EnJ.e Aol sn g N (2.35)

Here, ¢n(F,t) represents the group flux for 1 < n < G, or the delayed
neutron precursor concentration for G+1 < n < N. N is the total number

of energy and delayed precursor groups. The space dependent solution is
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summed over all the eigenmodes, each denoted by the subscript g',
1<£9° %6

In Eq. (2.35), the coefficients agK] and 3gtps @S well as the
shape functions w](BgiF) and WZ(Bg‘F)’ are obtained from the steady-state
solutions. The ag.j‘s and wj's are given by the eigenvalues of Eq. (2.34)

and Eq. (2.22) respectively. Similarly, the coefficients H and Enj

ng'J
are given by the éigenvectors of Eq. (2.34) and Eq. (2.22) respectively
and they are determined to within arbitrary cbnstants. These coeffici-
ents can be normalized by considering boundary conditions or by equating
to initial conditions.

In the multiple temporal-mode transformation analysis by Harms
et al., which does not include the space independent solution, the coe-
fficients are normalized to the initial values.(ﬁ) Thus, along this vein, »
for the g‘th eigenmode solution at the initial time t = 0 of each time
interval, we can write
ng*J

" N
[agl]w'l (Bglr) * aglzwz(Bglr)] jZ]H

= bn1w1(Bg.F) +'b52w2(3g.F) i (2.36)

where bnl and bn2 are the known coefficients determined from the previous
time interval. Equation (2.36) provides a normalization condition for the

coefficients Hng if no space independent part is considered.

-
However, if the space independent solution is also included, a

different normalization procedure is called for. The approach used in this

analysis is described here. First, the coefficients Enj for the space

independent part in each region are normlized against the intial conditions
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at one boundary of the region at the initial time t = 0,

jg]Enj = @n(F],O) . (2.37)
where F] specifies the position at the region boundary considered. Thus,
all the coefficients Enj are now determined. The normalizing conditions

for the coefficients Hng‘j in the space dependent solution are derived

by equating Eq. (2.35) to the initial conditions at the region boundaries.
However, because of the condition already imposed on the space independ-

ent part, Eq. (2.37), the equation obtained for group n at the region

boundary F] is reduced to

Z [a (2.38)

gt1t (ByiFy) + 3ol (By iy )] Z Hng y =

Equation (2.38) implies that the coefficients H are linearly dependent

ng'j
since the expressions

[ag']w](Bg'Fl) + a o (B )] 5

are not all equal to zero. Therefore, the conditions of continuity of
flux and current at time t at region interfaces must also be utilized to
normalize the coefficients Hng‘j' Thus, in theory, all the unknowns in
the solution representation, Eq. (2.35), are determined. In Chapter 3,

the numerical results of two test problems will be discussed.



CHAPTER 3

NUMERICAL ANALYSIS

In this study, the closed-form analysis is tested on two
numerical problems. The first‘case is a homogeneous slab and the second
a one-dimensional space dependent problem of the CANDU type. Some of

the numerical results are presented in the following sections.

3.1 Bare Homogeneous Slab

Geometry and Composition: Appendix A.1

This test case represents a bare homogeneous slab reactor, 200
cm in width with one energy group and one delayed neutron precursor group. .
The boundary condition is zero flux on the reactor boundary.

The shape function is given by the solution to the Helmholtz

equation, Eq. (2.14), and is a cosine distribution,

¥(x) = ascos(Bx) ,‘ (- Hgx < H) (3.1)

where 82 is the buckling and H is the half-width of the reactor. Only

the fundamental mode is considered since for this one-group one-region

system, there is no change in flux shape. Thus, the buckling is easily
obtained by considering the zero flux boundary condition,

8% = (F)° . (3.2)

26
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The criticality factor for this system is given by(s)

\)Zf i ( )
k — Je— N 3.3
eff Ey + DB2

In this test problem, the initial conf{gufation was made critical
by dividing the fission cross section by the initial critical keff'
The initial cosine flux distribution was normalized to unity at the reactor
centre plane. The initial delayed neutron precursor concentrations were
in equilibrium with the critical flux distribution.

Positive reactivity was introduced to the system by a step de-
-crease in the absorption cross section. Because of the zero flux boundary
condition, the space independent solution as mentioned in Eq. (2.6) was
not considered. The closed-form analysis used was then similar to the
eigenvector expansion technique. The time behaviour of the neutron flux
at the reactor midplane for various values of reactivity is shown in
Table 1 and Fig. 1. A1l reactivity values listed here were less than
the prompt critical value. Since there is no change in flux shape,
Fig. 1 also represents the relative increase in reactor power. The
assumption of a constant buckling for this problem was considered sat-

isfactory because of the constant flux shape.

3.2 One-Dimensional Space Dependent Problem

Geometry and Composition: Appendix A.2
This test case is a one-dimensional space dependent problem, with
two energy groups and two delayed neutron precursor groups. The proper-

ties of the model are based on a CANDU type reactor. The reactor model
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104+
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0 b 1 .6 's 1
TIME(SEC)

Fig. 1: Neutron flux at slab midplane versus time for four values of

reactivity.
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Table 1: Flux at slab midplane versus time for four values of reactivity

Time Flux
(sec)
p = 3.2 mk p=4.25mk  p=6.0mk p = 6.8 mk
0 1.0 1.0 1.0 1.0 |
ad 1.93 2.70 5.79 9.18
o 1.97 2.89 8.73 2.05 E]
o3 1.99 2.95 1.07 EI 3.65 EI1
4 2.00 3.00 1.23 El 5.99 E1
D 2.02 3.04 1.36 EIl 9.43 EI
.6 2.03 3.09 1.49 EI 1.45 E2
" 2.05 3:13 1.62 El 2.22 E2
.8 2.07 3.18 1.75 El 3.36 E2
.9 2.08 3.23 1.89 EI é.os E2
1.0 2.10 3.27 2.04 E1 5.75 E2
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consists of six regions. Regions 2,3,4 and 5 represent the core and
regions 1 and 6 are the reflectors (see Fig. 2).

The initial reactor configuration was made critical by dividing
the production cross sections by thelinitia1 critical keff’ which had
been obtained by a finite difference code, ADEP.(Q) The steady-state
flux distribution was obtained by following the procedure outlined in
Section 2.2. Figure 2 shows the steady-state fast and thermal flux dis-
tributions. These were in close agreement with the ADEP solutions. For
this two-group problem, there are two pseudo-bucklings in each region and
these are Tisted in Table 2. The initial precursor concentrations were
in equilibrium with the critical flux distribution. The initial reactor
power was normalized to unity. The perturbation was introduced by a ramp
decrease in the thermal group absorption cross sections in regions 2 and
3 to simulate voiding in one half of the core. The time interval of
interest was divided into small steps At. The cross sections were con-
sidered constant within the time step At and were updated at the end of
the time step.

In the first attempt to obtain the transient flux solution, the
space independent part in Eq. (2.6) was included for consideration. How-
ever; for this test problem, the approach outlined in Section 2.3 resulted
in numerical difficulties. The normalization conditions for the coeffici-

ents H resulted in a singularity matrix. This was due to the fact

ng'j .
"that one of the eigenvalues obtained using the second pseudo-buckling was
algebraically much larger than the other eigenvalues. This large eigen-
value was ~ .6 X 705. Referring to Table 2, it can be seen that, in

regions 2,3,4, and 5, the pseudo-buckling for the second eigenmode was
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Fig. 2: Initial flux distribution



Table 2:

Steady-state pseudo-bucklings
Regions B]2 822‘
1,6 - .7794 E-2 - .2685 E-3
2,5 .7795 E-4 - .1069 E-1
3,4 - .1129 E-5 - .1068 E-1

K ¥



33

larger in magnitude than that for the first by an order of 3 to 4.
Furthermore, using the second pseudofbuckling, the terms Dng along the
diagonal of the matrix Ag. in Eq. (2.34) were significantly larger than

4 to 10—3. Thus, the

the cross sections which were in the range of 10
resulting eigenvalues for the core were predominantly determined by
the pseudo-buckling for the second eigenmode. Since the normalization

conditions for the coefficients Hng'j invloved continuity of flux and

an-At :
J° were evaluated.

current at region interfaces at t = At, the terms e
These terms resulted in a singularity matrix which persisted even for
small at's in the range of microseconds.
In Tater attempts to obtéin the transient flux solutions, the

space independent part was not included in the solution representation
and a normalization procedure similar to that for the multib]e temporal-
mode transformation analysis was adopted. However, the relatively large
eigenvalues corresponding to the second eigenmode again resulted in num-
erical difficulties. In regioﬁs 2 and 3, unreasonably large fluxes as
well as negative fluxes were obtained. Thus, it can be concluded that
the procedure of assuming an exponential time dependence for the second
eigenmode was not satisfactory for this'test probfem.

| In the final analysis for this test problem, an exponential time
dependence was assumed for only the first eigenmode and no space independ-

ent solution was considered. Thus the solution representation used for

this problem was

- - - E 4 S]jAt
¢n(r, g) = [a]]w](B]r) + a12w2(B]r)] . jZ]Hn]je

- [az]w](BzF) + azzwz(BzF)]an - (1 <ngN) (3.4)
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The following normalization condition was used,

Z] nj =1 - (1 snsN) ) ‘(3.5)

In Table 3, the peak thermal flux obtained was-compared to the ADEP solu-
tion for a transient of 0.04 seconds.

Although the peak thermal flux was computed with accuracy com-
parable to that of ADEP, the transient flux solutions at other spatial
points (not shown here) had large errors compared with the ADEP solutions.
In regions 1,4,5 and 6 which had no perturbation, the neutron flux was
expected to rise because of increased neutron diffusion from the perturbed
regions 2 and 3. However, the closed-form analysis as outlined in Chapter
2 failed to account for this fact, thus resulting in inaccurate éolutions

in these regions as well as discontinuities along region interfaces.
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Table 3: Peak thermal flux at x = 210 cm versus time
Time At ADEP This Study
(sec) (sec) r
5x 10 .002 .001 .0005 .0001

0.0 .392043 .392043 .392043 .392043 .392043
.01 .392598 .392715 .392660 .392632 .392610
.02 .394144 .394435 .394330 .394277 .394234
.03 .396533 .397122 .396970 .396894 .396832
.04 .399659 .400710 .400514 .400416 .400327




CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

Two simple test problems have been examined to investigate the
possible extension of the closed-form analysis to transient flux calcula-
tions. This chapter summarizes the findings in this study.

The first test case, the homogeneous slab with one energy group,
has demonstrated that the space independent solution is not to be applied
to a homogeneous region with the zero flux boundary condition. With no
space independent solution, the closed-form analysis is then reduced to
the eigenvector expansion technique.

The second test case, the six-region space dependent problem of
the CANDU type, has identified some of the numerical difficulties ass-
ociated with the closed-form analysis. First, it has indicated that the
assumption of a separate exponential time dependence for each eigenmode
solution will Tead to a singularity matrix when the coefficients are
normalized. Second, it has indicated that the closed-form analysis as
presented in this study does not account for flux shape changes or
neutron leakage across region interfaces. Thus, it can be concluded
that the closed-form analysis as presented here is not satisfactory for
transient flux calculations for a general space dependent problem. How-
ever, it should be pointed out that the cause of these numerical difficul-
ties is mainly related to the procedure of using the region-dependent
steady-state pseudo-bucklings throughout the transient, and not to the.

inclusion of the space independent solution.

36
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The closed-form analysis must be modified and improved before it

can be applied to a general space dependent problem. Some areas for

modifications or improvements are suggested as follows:

(a)

(b)

(c)

The reactor kinetics equations should be multiplied by
appropriate weighting functions and then integrated over
the volume of the region considered. In this way, the
neutron leakage across region interfaces can be accounted
for. It should be noted however,‘that even such a proce-
dure may not sufficiently account for flux ti]ts.(7)

A closer examination of the relation between the time con-
stants of a reactor system and the eigenvalues obtained
for different eigenmodes is required. This will lead to
better approximations about the time dependence in the
solution representation.

Instead of assuming the steady-state pseudo-bucklings
throughout the transient, they may be updated periodically
during the transient. This will necessarily involve
recomputing the coefficients periodically. The feasibility

of such a procedure has yet to be examined.



APPENDIX A

TEST PROBLEM DATA

The reactor configurations and parameters of the two test problems

are lTisted here. Al1 symbols have previously been defined in Section 1.2.

The boundary condition for both problems is zero flux on the reactor

outer boundary.

A.1

Homogeneous Slab

Number of energy groups = 1
Number of precursor groups = 1
Geometry: Bare homogeneous slab, 200 cm in width

Precursor Constants:

A=.08secT’,  §=.0085, g = 1.0.
Material Properties:

2.2 x 10° (cm/sec)

v:
D = .9338 cm
vIg = .00473 en”!
’ 5
z, = .0045 cm

Initial Conditions:

Initial Spatial Shape: cosine

Critical keff = .99991419

Initial precursor concentrations are in equilibrium with the

initial neutron flux distribution.
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Perturbation:

Az, = - 1.5 E-5, - 2. E-5, - 2.82 E-5, - 3.2 E-5

A.2 Six-Region Space Dependent Problem

Number of energy groups = 2
Number of precursor groups = 2
Geometry: One-dimensional, six-region reactor, 780 cm in width.

Precursor Constants:

A = -06297, 8y = .003213, xpq = 1.0, xpq = 0.

]

Ay = .6871, B, =,004556, X12 = 1.0, Xpo = 0.

Material Properties:

Region Group D Vip Iy 2152
1,6 1 1,310 0, .01021 .01018
2 .8695 0. .0002335 0.
2,5 1 1.264 .0002247 .008177 .007368
2 .9328 .004523 .004031 0.
3,4 1 1.264 .0002217 .008163 .007368
2 .9328 .004462 .004106 0.

Additional parameters for all regions are:

vy = 1.0 x 107 (cm/sec), Vo = 3.0 X 105 (cm/sec), %y = 1.0, Xo = 0.

Initial Conditions:

Critical keff = 1.0084550
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Initial configuration is made critical by dividing the production
cross sections by the critical keff' The initial precursor concentra-
tions are in equilibrium with the initial critical flux distribution.

Perturbation: Regions 2 and 3

8£a2
ot

= - 1.0 x 10* (cm“] sec™!),



APPENDIX B

USER DESCRIPTION

The computer program for the first test problem is sihp]e and
has ample comments. No further explanation is necessary. The organiza-
tion of the computer program for the second test problem is briefly
described here. The program is organized speéifica]ly for this two-group
problem and must be modified if a general multigroup problem is to be
considered. Nevertheless, variable dimensioning is used to facilitate
transfer of data. The code consists of the following program or sub-

programs:

B.1 Program CANDU

The main purpose of this program is to read in data which define
the geometry of the problem and to set up variable dimensions for the
arrays. It also reads in the initial critical keff which has already

been obtained by the finite difference code ADEP.

B.2 Subroutine MAIN

This subroutine is the core of the entire code. It first reads
in the material properties, and specifies the spatial points where the
transient fluxes are to be computed. Then it utilizes the subroutine
STEDY to obtain the steady-state flux and precursor distributions. The
trénsient is divided into small time steps. Within each step, the group

2 absorption cross sections in regions 2 and 3 are updated and the sub-

41
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routine COEMAT is utilized to compute the eigenva]ueé, eigenvectors and
to normalize the eigenvectors for each region except the reflectors. The
subroutine MAIN then updates the coefficients. The coefficients for the
reflector regions are found by considering continuity of flux and current.

The solutions are printed by the subroutine RITE.

B.3 Subroutine STEDY

This subroutine calculates the steady-state solutions at the
specified points.. Only one half of the core is actually considered
since the steady-state neutron and precursor distributions are symmetric

- about the midplane of the reactor.

B.4 Subroutine COEMAT

This subroutine sets up the coefficient matrices to compute the
eigenvalues and eigenvectors as well as to normalize the eigenvectors.
These eigenvectors are in fact the coefficients associated with the shape

functions and are returned to the subroutine MAIN.

B.5 Subroutine RITE

This subroutine prints and plots the steady-state and transient

solutions at specified time intervals.

B.6 Input Instructions

Card 1 Variables: NR, NG, ND, NPINT
Format: 10I5

NR
NG

Number of regions

Number»of energy groups
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ND

Number of delayed neutron precursor groups

I

NPINT = Number of interior spatial points at which
solutions are desired (points at region inter-
faces are not included).

Card 2 Variables: PFRAC, EFFK |

Format: 4E15.8

PFRAC = Constant to permit adjustment of initial
power level
EFFK =

Initial critical keff
Card 3 Variables: (AL(I),BET(I),I=1,ND)
Format: 4E15.8

AL = Decay constant for ith delayed precursor

BET = Delayed neutron fraction for ith delayed

precursor
Card 4 Variables: (V(I),I=1, NG)
Format: 4E15.8
V = Speed of the energy group i
Card 5 Variables: (D(I),I=1,NR*NG)
Format: 4E15.8 ‘
D = Diffusion coefficient for group i in a region
Card 6 Variables: (SIG(I),I=1,NR*NG)
Format: 4E15.8
SIG = Absorption cross section (za) of group 1 in
a region
Card 7 Variables: (SIGF(I),I=1,NR*NG)
Format: 4E15.8

SIGF = Production cross section (vZf) of group i in a region
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Card 8 Variables: (SIGR(I),I=1,NR)
Format: 4E15.8
SIGR = Scattering cross section (zg‘+g) from group
1 to group 2 in a region
Card 9 Variables: (NP(I),I=1,NR)
Format: 10I5
NP = Number of specifieq spatial points within a

region i such that } NP(I)=NPINT
I
Card 10 Variables: (DX(I),I=1,NR)
Format: 4E15.8

DX = Distance between spatial points in a region 1i.

Uniform spacing is assumed.



APPENDIX C

'PROGRAM LISTING
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