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ABSTRACT

Ton implantation is investigated as a technique to fabricate
solar cells on monocrystalline silicon. The electrical properties
of the implanted layer, as determined using the Hall Effect, and solar
cell performance have been studied for varying implant species
(As and P), implanted dopant concentration (1018 - 109! cm'3),
implanted substrate temperature (55° to 300°K) and annealing
temperature (700° to 900°C). Some progress has been made toward

the optimization of the various parameters.
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INTRODUCTION

In this day of energy crises and fuel embargoes, it is
becoming increasingly important to find an alternate energy source
for the future. Photovoltaic cells, semiconductor devices which
convert sunlight directly to electrical power, either alone or in
conjunction with thermal ;onversion units, may be such a viable
energy alternative. There are also several other applications
for photovoltaics, such as isolate or orbital power supplies
requiring long lives under a variety of environmental conditions.

It is unlikely that a single type of solar cell would fill the
widely varying requirements of these diverse applications. It is
therefore necessary to investigate the advantages and disadvantages
of different designs and fabrication techniques.

There are several different types-of solar cells being
presently studied. Shallow single crystal p-n junctions seem to
be the mainstay of the photovoltaics field with the best efficiencies
(i.e. best power area ratio) and longest 1ife. Competing structures
include the thin film heterojunction which promises better power:
cost and power: weight ratios and the newer MOS(devices. The purpose
of this project is to investigate the use of ion implantation as
the doping mechanism in single crystal cells. Conventional cells
rely on diffusicn from either a gas source or a spin-on emulsion to

turn over the type of the surface layer; thereby forming the p-n



junction, but variations in doping profile, junction depth, and
dopant gradient near the junction afe all limited by the diffusion
process. Greater control over junction formation is possible using
implantation and hence better solar cell performance may be possible
provided no less obvious disadvantages appear.

Much work has been done in the use of implantation doping
in the fabrication of devices and integrated circuits. However,
Tittle has been done to investigate its potential in the production

of solar ce11s(1’2).

Several advantages of the use of jon implantation
are apparent. There is greater control of the dopant distribution than
with conventional diffusion techniques. In particular, very shallow
Junctions are possible, allowing the formation of the "blue-shifted"
ce11(3), which shows an enhanced response to the short wavelength

end of the spectrum. If this is not at the cost of some red response,
this should result in increased efficiency, in particular for AMO
(orbital) applications although it is hoped that terrestrial applications
should also benefit. Also, the Tateral geometry control available

with the impTantation technique facilitates the fabrication of

(4)

grating cells which also show an enhanced blue response due to
the increased effective diffusion length as a result of bringing the
higher carrier Tifetime of bulk material to the surface, and should
also show cdrrespondingly increased efficiency.

The aim of this project, then, is to isolate the character-
istics of implantation doping that are of particular concern in the

manufacture of solar cells. To achieve this, several simple planar

geometry solar cells, similar in design to the conventional diffused



cells, were prepared by implanting p-type silicon wafers with
n-type dopants (Arsenic or Phosphorus) at energies from 20keV
to 120keV, with the substrate -temperature held fixed at from 40°K
to 300°K during the implant. The samples were vacuum annealed to
remove the bombardment damage, aluminum ohmic contacts were evaporated
on and the resultingsolar cell characteristics were determined using
a solar simulator and automated I-V plotter (See Figure 1 and 2).

To help identifyﬂthe implantation parameters having the
most effect on cell behaviour, several key implantations, as chosen
according to cell performance, were duplicated in a geometry suitable
for Hall measurements (see Figure II-1) and these were electrically

characterized.



EXPERIMENTAL: SOLAR CELLS

A Sample Preparation

The substrates used for this work were commercial p-type
(B doped) silicon wafers,{111}orientation, with resistivities in
the range 0.1 to 10 ohm ¢m. It was possible that there were variations
in quality, but judging from the results these were not significant.
Before use the samples were scribed and cleaved into 1 c¢cm by 1.5 cm
sections, which were then subjected to a standard cleaning procedure
as follows:
15 minutes in boiling HZSO4 + H,0, (2:1)
Cool 5 minutes
Rinse thoroughly with de-ionized water
2 minutes in HF + H,0 (1:10)
Rinse
15 minutes in boiling H,0 + HC1 + H,0, (4:]:1)
Rinse and blow dry with N2 gas.
Throughout this procedure the samples were kept submerged
in a quartz beaker, to avoid oxidation or contamination by contact
with the air. The HC1 etch stabilizes the surface after the HF etch
and reduces the adsorption of atmospheric contaminants.

Energies and doses for the implants were calculated to
give a uniformly doped surface layer using the data from Gibbons et a1(5).

The Towest energy ion beam that was easily stabilized was found

4



to be 20 keV. As can be seen from Figure 4 this Teaves a very low
dopant concentration near the surface, making good ohmic contact

to the device difficult. Two possible solutions were found.

After the implant a thin surface layer could be removed by growing
an oxide 3003 thick and stripping it in 10% HF, or a "through-the-
oxide" implant could be used to obtain an appreciable impurity
concentration at the silicon surface. By comparing the stopping
powers of silicon and silicon dioxide, it was found that an oxide
thickness of 1303 would be adequate. This thin oxide could be
removed after the annealing procedure. Both methods were tried

and were found equivalent, but as the oxidation rate of implanted
silicon varies depending on the implant, it was decided that the
through-the-oxide implant was preferable. The next step in pre-
paration was therefore to grow an oxide 1303 thick on the sample.
This was done, imnediately after cleaning, in a quartz tube three
element furnace at 800°C in a steam atmosphere. The oxidation time
was 19 minutes 10 seconds, which gives an oxide 1302 thick according

(6)

to the graph given in Sze'”’, page 81. Sample oxides were measured
by ellipsometry and had thicknesses of 140 £ 10A.

After oxide growth the samples were moved to the implantation
faciiity, while being handled as Tittle as possible. As sample
preparation and implantation were done in different buildings, there
is some concern that the time interval and exposure between final

oxidation and evacuation in the implantation target chamber may lead

to some surface contamination of the sample. It is hoped that the



]303 oxide is sufficient protection for the silicon surface,
particularly since this layer is removed in the final processing
and contacting, but the possibility of recoil implantation of any
adsorbed contaminants cannot be dismissed. It is recommended,
therefore, that an evacuable desicator be used for sample

shuttling in any future work.

B Implantation

(7)

The implantations were done with the 150keV ion accelerator
in the Tandem Accelerator Lab at McMaster. The ion beam, from a
Danfysik 911A Universal Ion source, is accelerated, focussed through
a 2 mm aperture, then electrostatically swept across a second 2 mm
aperture to ensure a uniform implant, and the two apertures were
sufficiently off axis to avoid the implantation of neutrals, which
would not be swept and hence cause a hot spot. The current on
target was 10 to 200 nanoamps swept over an oval of 1 cm2 area
(see Figure 3). Dosimetry was by means of a current digitizer and
scalar connected to integrate the target current. In a preliminary
study: the calculated dosimetry was checked using the in situ
back;caftering facility and good agreement was found.

To calculate implanted impurity depth profiles, the dis-
tributions were approximated by gaussians, with moments as prepared
by Gibbons et 31(5) using LSS theory. Each sample was aligned in

a "random" direction to avoid channeling, and implanted with several

different energies, at doses calculated to give uniform concentrations



from the silicon surface to the peak of the deepest implanted layer.
The junction depth was taken as the intersection of the approximated
implant distribution with the background dopant level. An

example plot is given in Figure 4. Table 1 Tists calculated average

concentrations and junction depths for various implant conditions.

C Final Processing

The samples require annealing and deposition of aluminum
contacts before the solar cells are complete. Annealing was done
in a quartz tube three element vacuum furnace at a pressure of 'IO'6
torr, at temperatures ranging from 700°C to 900°C. Ten minute
isochronal anneals were chosen as sufficient to reach the first
annealing plateau commonly observed in silicon annealing(s)u

After the anneal, the 1303 oxide window was etched off
in 10% HF and aluminum contact pads were evaporated on the top and
bottom in a vacuum evaporator, through a brass mask in the desired
design (see Figure 3). Finally, the contacts were sintered for
10 minutes at 400°C under vacuum in the annealing furnace. Contacts
made £0 an unimplanted sample were tested and showed an ohmic
characteristic. Tests made on.the Hall samples (next section) con-

firmed -that all contacts made to both implanted and substrate sides

of the cell were ohmic.



D Testing

The cell efficiencies were determined by measuring the
illuminated I-V characteristics. Contact was made to the aluminum
contact pads by an indium block below and a copper wire probe held
in a micromanipulator on top. ITlumination was provided by an Air
Mass 2 solar simulator consisting of four 300 watt tungsten-iodine
lamps with dichroic filters. The output spectrum is shown in
Figure 1. Input power to the cell at AM2 is 75mW/cm2. The I-V
characteristic was measured on a system based on a Hewlett-Packard
HP 9820 computer and including a digital voltmeter, programmable
power supply, and xy plotter. Figure 2 shows a block diagram of
the system and a typical output plot is given in Figure 5.

Significant values are the open circuit voltage (V the short-

oc)s

circuit current (ISC), and the maximum output power (Omp)‘ The fill
factor Cc., defined as Omp/VocIsc is a useful quantity, and the

efficiency, Om divided by total incident power, is the parameter

p
being maximized in this study. The cells were illuminated only
in the area of the contact grid (see Figure 3) to avoid edge effects
and to define the input power.

Dark I-V characteristics were also measured, to give an

indication of the quality of the p-n junctions formed.



EXPERIMENTAL: HALL SAMPLES

A Sample Preparation

The same substrate material was used for the Hall samples
as for the solar cells, and the same standard cleaning procedure.
Sample size was changed to 7mm x 10mm. In order to measure the
Hall coefficient and resistivity a bar shaped implanted region was
required (Figure 6). The implanted region was defined by protecting
the area not to be implanted with a thick oxide during implantatiom.
Immediately after cleaning the samples were placed in the oxidatiom
furnace at 900°C in a steam atmosphere for 105 minutes, growing an
oxide 40003 thick according to Sze(s) page 81. A film of Shipley
AZ 1350 photoresist wés then spun onto the samples at 4000 RPM and
pre-baked 5 minutes at 100°C. The photoresist was then exposed through an
image of the implant pattern, developed, and baked for 1 hour at 100°C.
The sample was etched for 4 minutes in 50% HF solution to etch the
1mp1ant window, the remaining photoresist removed with acetone, and

the sample rinsed in de-ionized water. Finally a thin oxide was

grown, as for the solar cells, in 800°C steam for 19 minutes 10 seconds.

B Implantation

The Hall samples were implanted on the same equipment and in

the same manner as the solar cells.
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C Final Processing

The annealing and contact deposition procedures were identical
with those used for the solar cells, except that a different brass mask
was used for the contact evaporation (see Figure 6). Note that
the oxide etch prior to contact deposition removed only the thin
oxide over the Hall bar, Teaving the thick oxide over the unimplanted
region as an insulator over the substrate. This considerably
reduced the alignment requirements for the contacts,

A back contact to the substrate was also added at this
point. As the assumption that the implanted bar-shaped region is

(9)

isolated from the substrate is necessary to the evaluation of
the raw Hall data, the I~V characteristics of the bar-to-substrate
interface were checked to ensure that it was a good diode. Also,
as a check on the applicability of the Hall tests to the previously
done solar cell measurements, the photovoltaic characteristics of these
samples were also determined, and found to be comparable to the
earlier work.

Following the 400°C sintering step, gold wires were bonded

to the contact pads with an’ ultrasonic wirebonder to facilitate

Hall testing.
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D Testing

The resistivities and Hall coefficients of the samples
were measured at room temperature on a computerized system described
in detail by Shewchun et a1(10). The system, controlled by a
computer sequencer, switched the sample current and the magnetic
field through positive and negative values while measuring the Hall
voltage. It also measured the conductivity voltage in each direction,
the current, the magnetic field, and fhe sample temperature.
Readings can be made automatically at fixed intervals of up to 20
minutes. The data is typed or punched on paper tape as it is
measured, and later analysed on a CDC 6400 computer to give
calculated values of the Hall coefficient, Hall mobility, carrier
concentration, and resistivity. The calculations and program
are described in more detail in Appendix I and the apparatus is

discussed in Appendix II.



RESULTS

Several %mp]antation parameters were varied, and the
dependence of the cell performance was studied. Results are given
here primarily with cell efficiency as the dependent variable,
but Ises Vocs and CFF arg included to help clarify the physical
mechanism responsible for the observed behaviour, The standard
cells in the following studies, determined in a preliminary exam-
ination to have "reasonable" photovoltaic characteristics, are 10 ohm-cm,
arsenic implanted at room termperature to maximum energy of

20 39 and

80 keV, have an average implanted concentration of 10 cm”
were annealed at 800°C. In each case, all the above parameters

were constant except the observed variable.

A Implant Temperature

Earlier published resu?ts(j]) have suggested that better
electrical activity is obtained in silicon by total amorphization
of thg surface Tayer during implantation followed by epitaxial
regrowth of the damaged region in the anneal stage. It was therefore
expected that by holding the aibstrate at Tow temperatures during
the implant, allowing 1ittle or no annealing, a greater amount of
damage would accummulate and a more completely amorphous layer
would result, improving the subsequent epitaxial regrowth during

the anneal. This effect was not observed, however, as shown in

12



13

Figure 7, where it can be seen that the best efficiencies were
obtained with the room temperature implant.

The dominant effect in this case was the variation of
ISC from 20 ma/cm2 for the room temperature sample. Relatively
constant VOC and Cep indicate that the barrier formation and sheet
resistivity of the surface layer were not greatly affected by the
Tower implant temperature, but that the carrier generation rate
or 1ifetime has degraded: This could be due to increased surface
contamination from condensation on the sample at these Tow
temperatures (e.g. mercury from the mercury vapour pump) possibly
resulting in contaminants in the implanted region due to a recoil

mechanism.

B Anneal Temperature

The temperature at which the damaged layer of the sample
is regrown in the anneal step should be critical to cell performance.

As reported in the 11terature(8’]2)

both the electrically active
fraction of the implanted ijons and the carrier mobility are strong
functfbns of anneal temperature. Several standard cells were
evaluated after anneals at temperatures ranging from 700°C to 900°C.
As shown in Figure 8, from 700°C to 800°C cell performance improves
with increasing anneal temperature, but over 800°C, Voc drops off

accompanied by a less rapid drop in CFF’ resulting in a dramatic

decrease in efficiency.
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A deéradation of carrier lTifetimes and diffusion length
was at first expected to occur at higher anneal temperatures,
but this would result in a decrease in Iecs which was not observed,
The drop in VOC suggests a decrease in junction barrier height,
perhaps attributable to an enhahced diffusion resulting in a less
abrupt junction, or a decrease in dopant concentration.

Hall measurements on duplicate samples determined that
the Tatter was the functional mechanism. As shown in Figure 9,
the carrier concentration versus anneal temperature behaves similar.
to the solar cell efficiency Eurve, while the mobility peaks at
750°C and degrades very slightly for higher anneal temperatures
(Figure 10). Also, the resistivity of the implanted material
increases for the higher temperatures, accounting for the lower
Crp-

The reason for the lower dopant concentrations with the

hot anneals is not immediately obvious. It has been suggested
that compensation occurs. That is, the electrically active fraction
of arsenic atoms continues to 'increase9 consistent with the work
of BéIFo et al(g), but that athigher températures, some inactive
p-type dopants go substitutional, dropping the net n-dopant con-
centration. Another possibility is that diffusion does becomé
significant, and the implanted impurities diffuse deeper into the
substrate resulting in a thicker but less concentrated surface

n-Tlayer.
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The photovoltaic response of the Hall samples was tested
under the solar simulator and was found to behave similar to the

solar cell samples (Figure 11).

C Implanted and Substrate Dopant Concentration

The effect of both the implanted and the background impurity
concentrations on cell'ef$iciency was examined using arsenic
implanted cells to a maximum energy of 80 keV at room temperature
and annealed at 800°C. The results are shown in Figure 12. It
was expected that for greater dopant concentrations on both sides
of the junction, the increased barrier height would result in a
greater Voc‘ It is clearly seen in Figure 12, however, that the
efficiency drops off dramatically when the substrate resistivity is
‘reduced to O;T ohm cm. This is probably due to a reduction in
carrier lifetimes as was indicated by a decrease in Isc“

In a shallow junction cell, the majority of the minority
carriers are generated in the bulk material, and so the bulk life-
times and the surface layer resistivity should be the dominant factors
in ceiﬁ behaviour. The best results would therefore be expected
for a cell with a high substrate resistivity, giving long 1ifetimes,
and a high implanted surface concentration to give a low sheet
resistance. This is found to be true for diffused ce115(13) and,
as shown in Figure 12, also for implanted cells. There may be
some depth dependence hidden in these results (see Table 1), but

the magnitude of this effect over the range of depths here (600A
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to 1000A) should be negligible. Hall tests on the duplicates of these
samples showed, as should be expected, a Tower carrier concentration
and higher mobility in samples which have not been as heaViTy

jmplanted (Figures 13, 14).

D Junction Depth

Junction depth is a very critical parameter in the design
of solar cells. The first and most obvious criterion is to
maximize the number of carriers generafed within a diffusion Tength
of the junction. If o is the absorption coefficient then:

¢(x} = pgexp(-ax)
fs the photon fTﬁx at a depth x. 'For simplicity, assume one
absorbed photon generates one carrier. The problem is then to

maximize

) bs = ¢(dj + LP) - ‘b(dJ = Ln)

= ¢pexp(d;)lexp(L,) - exp(-L )]

a

where dj is junction depth and L_ and Ln are minority carrier

p
diffusion Tengths in the p-type substrate and the implanted n-layer,
respectiye]y.

For the implanted layer however, L_ is very short, leading

n
to impossibly shallow junctions at which point the series collection
resistance due to the thin n-layer causes 12R losses, observed as a
decreased CFF and ISC‘ Also, with very shallow junctions, effects

such as surface recombination andinhomogeneities in junction depth
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and concentration become significant.

Implantation to energies of.120 keV restricts us to
shallow junctions (15003 with As) compared to conventional
diffused cells with junction depths of 5000 to 10,0003 typically,
and the latter arguments above seem to be the more significant.
This behaviour is observed in Figure 15, where monotonic increase
in efficiency with depth is observed. The improved performance
of the deeper junctions was due primarily to an increase 1in CFF
indicating that the sheet resistance of the surface layer was
the dominant effect. This was also discussed in the previous
section.

The behaviour of the arsenic implanted cells lead to
the use of phosphorus to obtain a deeper junction. Arsenic had
originally been chosen because of its covalent radius match to
silicon, which would allow a greater dopant concentration without
too much crystal strain or reduced diffusion lengths. Phosphorus,
however, with its smaller radius, seems to give a better cell, even
at the same calculated junction depth, and even higher efficiencies
are possible with the deeper junctions (Figure 15). It is under-
standable that the carrier lifetime of the implanted layer should
not Have a great effect on efficiency, but the improved efficiency
at the same depth is difficult to explain.

Hall measurements of the depth study samples (Figures 16, 17)
show constant concentration at all depths for arsenic implants,

indicating good reproducability in the implant conditions. The
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phosphorus samples, however, show a concentration variation for
doses calculated to give constant concentration, indicating that
either the gaussian dopant profiles are not a good enough

approximation for phosphorus(]4’15)

or the electrically active
fraction of the implanted phosphorus is depth dependent. The
Hall mobilities of all samples were fairly constant at about

40 cm2/v.s.

E Spectral Response

The simple equation for the previous section can be
s1ightly improved by indicating explicitly that a is a function

of wavelength, A, of the incident photons. That is,

o(x) = [6AL3g00) explatnix)]
A
This implies that the spectral response o the cell will be

dependent on junction depth. Since for most materials, o is
larger for the smaller wavelength (blue) end of the visible

(16)

spectrum » most of these higher energy photons will be absorbed
very n;ar the silicon surface. Therefore, the closer the junction
is\to;the surface, the better the collection efficiency for
carriers generated by the blue 1ight will be. That is, shallow
junction cells should be "blue-shifted". This result was indeed

observed as shown in Figure 18.
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For purposes of demonstration, the spectral responses of
the four arsenic implanted cells of the depth study were determined
and are presented in Figure 18 normalized to coincide at
A= 7,0003. It should be noted that although the shallower junctions
showed a higher relative blue response, the overall performances
were as shown in Figure 15. That is, the deeper junctions had
higher collection efficiencies.

One possible way to achieve both the enhanced blue
response and still maintain the advantages of the deeper junction
is the grating structure solar cell (Figure 19) as discussed by
Lofersk1£4).f By implanting deep stripes. and leaving the surface
between stripes undamaged, the carriers generated near the surface
by the blue 1ight can still be collected efficiently as the
collecting junction is always within a diffusion length of the
generating site. In this way the longer bulk diffusion lengths
are used to best advantage. Preliminary work in this area has
shown that the resolution attainable ﬁsing conventional photoresist
techniques to make thick oxide implantation masks is sufficient
for grating cells in silicon, but may be difficult for other

materials with shorter diffusion lengths such as GaAs.



SUMMARY

The use of ion implantation as a solar cell fabrication

technique has been investigated. Most of the parameters which

could be adjusted were studied, and some progress was made toward

the optimization of cell efficiency. It was found that:

1.

Low temperature implants do not improve the electrical
characteristics of the cell.

Optimum annealing was found at 800°C. Below 800°C, incomplete
activiation occurs, and above 800°C compensation begins to
take place.

The best doping combination was found to be a high implanted
concentration (1020 cm'3) for low sheet resistivity, and a

Tow substrate impurity concentration ('1015 cm'3) for long
carrier lifetimes.

As junction depth is increased to BOOOR, cell efficiency increases,
but the enhanced blue response of the shallow junction cells
is Tlost.

Optimizing the above criteria as outlined allows the

fabrication of reproducable cells of 7% efficiency, without the use

of an anti-reflection coating or an improved bottom contact, which

is comparable to current commercial standards.

20
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TABLE 1
. Cg E ¢ Cave Dj

Species| (cn-3) | (keV) |"(ue-em2) | B | ¢ FE L ¢ JE 1 N3 | (R

As 1015 20 0.15 40 | 0.25 || 80 | 0.42 1018 | 870
As 1015 20 1.5 40 | 2.5 |80 { 4.2 1019 930
As 1015 20 | 15 4 |25 |80 |42 1020 | 1000
As 2x1016 20 0.15 40 | 0.25 || 80 | 0.42 1018 775
As 2x1016 20 1.5 40 [ 2.5 |80 | 4.2 1019 850 -
As 2x1016 20 15 40 | 25 80 |42 1020 910
As 5x1017 20 ° 0.15 40 | 0.25 || 80 | 0.42 1018 600
As 5x1017 20 1.5 40 | 2.5 {80 | 4.2 1019 740
As sxi0l7 || 20 15 80 | 25 80 | 42 1020 825
As 1015 20 15 1020 340
As 1015 20 15 20 | 25 [| 1020 570
As 1015 20 15 40 {25 80| a2 1029 | 1000
As 1015 20 15 40 |25 |80 ] a2 120 | 55 || 1020 {1400
p 101° 20 40 1020 700
P 1018 20 25 40 | 62 1020 11300
P 1015 20 25 40 | 28 60 | 88 1020|1800
P 1015 |1 20 [ 25 a0 |48 {80 | 115 1020|2400
P 1015 20 25 013 |leo]e62 [l100 |135 || 1020 {3000

Table 1: List of Implants
CB 14 substrate carrier concentration.
Cpyp 1s average implanted concentration,

Dj is junetion depth,
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80 keV arsenic in silicon. Implant temperature 20°C.
Anneal temperature 800°C.
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APPENDIX I

Hall Effect Calculations and Program

It is assumed that the user has aquainted himself with
the Hall Effect before attempting to use the automated system. If
(6)

not, a brief report can be found in Sze‘°’, and a more complete
discussion can be found in McKe]vey(17) or Smith(lg). As the
program is written using only the simplified theory, that is all
that is included here.

The basic sétup is shown in Figure I-1 where an electric
field is applied along the x-axis and a magnetic field along the
z-axis. If the majority carriers are positive (i.e. p-type matéri‘a'l)9
carrier motion due to the electric field will be in the -x direction.
The Lorentz force (qV% X ﬁé) will exert a net downward force where
the holes will collect until the charge separation on the y-axis
sets up a field, E;, such that the e1ectro$tatic force exactly
counters the Lorentz force. This is the Hall field given by:

| Ey = (Yy/w) =Ry J, B, | | I.1
where RH is the Hall coefficient given by:

2
= 1 P-b7n .
RH =r C[(p+bn ) 5 b

s T

/4
IOZ
<-|:2>/<T>2

1

where T 1is the mean free time between carrier collisions.

For simplicity, let r = 1.

41



From I.2, if n>>p,

= p(=k
Ry = r(qn
and is p>>n,
= p(tL
Ry=r gn

When conductivity information is also available, as with the

automated system, we also have, for n>>p:

-0 _
u = qn IRH ol
and for p>>n:
=9 =
) Up ap |R|.| o]

The Tast four equations are the basis of the program. Restating

these in terms of measurable quantities we have:
vt

RH =g % 108 3 VH in volts
t in cm
I in Amps
B in Gauss
Ry in cm3/Cb
nfor p) = |——] ; n{or p) in cm3
qRH
o= Vlﬁt 3 Z.w,t in cm
‘ c Vc in volts
' o in mho/cm
By = |RH ol 3wy in cmzyv.s

The following section contains a flowchart and parameter
Tist for the program and is included here for completeness. For

information regarding the use of the program see Appendix II.
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Figure I-1l: Basic setup to measure the Hall Effect




*Reference (19).

Program Flow Chart*

Read Title

Length Thickness

Read Width

ICHK

|

Read Material

Parameter

Read Data

Check Format

and
Signs

Calculate Average

Temperature

at each Temperature

Calculate r

Calculate Average
Conductivity voltage
and Hall voltage

Subroutine
supplied

Calculate Hall Coefficient

Ry =

(avg. V) x 108
I xB

calculate resistivity

p=

average Vc~x geom

|

!




|

calculate conductivity
1

p

calculate Hall mobility
LT IRHIXU

calculate conductivity

mobi11ity
YH
He &%

Check Magnetic field

if high flagged
by * in table

Calculate Carrier Concentration

= |1
n = 'RHe|

Write Title

Write out data with

with more than 10% variation
in conductivity voltages

Write out data with
ambiguity in sign of
Hall voltages

Set data with
incorrect formats
to zero

|
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1

Write téb]e of

Ta T3 ]’ VC’ B, VH’ RH, r
Ps Ty uc, UH, conc,

Write either
EA’ NDS NA’ NA -ND
EDa NA: ND’ ND "NA

T

and concentration

. Plot
uHs uC’ RH’ P

End

46



AAA
AJIM
ALHI
ALLO
ALNLEE
ALNN

~ALNX

ANMOBCN

AMOBCP

- . AN

AP

L3

APETER
APNT

AP
AP3
AT
AVC
AVH
B
BBE(I)
BBB(2)
COMPEN
CONC

37
PROGRAMME PARAMETER DEFINITIONS

array used in LESQ programme

used in degeneracy checg

data point near RECLEE

data point near RECLEE

natural log of absolute value of compensation

natural log of absolute value of carrier
concentration -

In ['D A]

conductivity mob111ty of electrons in mixed
conduction S

‘ conductIVIty mob111ty of ho?es in mlxed conductaon

e?ectron concentration in mixed conduct1on )

" hole concentration in mixed conduction

In of normalized concentration

same as ALNN
- parameters defined in Lee's paper

“average temperature
average conductivity voltage
average hall voltage |

magnetic field

© e

parameter of LESQ fit for ionization energy

" compensated impurity density

concentration



a8

CONCN . same as AN
COoNCP . , same as AP
COND | - conductivity
DELTA range in 1/T where ionization energy is'determiﬁed
. ‘ ‘ m * . . .

EFMASN | ﬁ§—4densjty‘of states effective mass
A 0 % .
EFMASP - o ﬁg- density of states effectiye mas;
EGO | . Ego '
ENERGY ;'; '-1oni;aiion energy in electron volts
ERLE - - '”: used in check on magnetic field
FLIM . ratio of two conductivity voltages
'GAMMA. '_ ~constant in intrinsic concentration
GE0M~1' ) (width x length)+(thickness)
) " current N
IEXP o current expressed as exponential
IVEX same as VEX in integer form
LENGTH ~conductivity Tength
MASS ~ either ;—@: or ::—hi

v . . o . 0.
MOBC . cﬁnductivity mobiTitQ-
MOBH © Hall mobility |
MOBRAT pH/uc
M8 mobility
NP - numbe} of data points used ih.LESQ for ionization

energy



ovS

R
RECHI

RECIP .

RECLEE
RECLO
RECMAX

RECMIN
~ RH

RHO
RHOMAX
RMAX

RRECIP
SLOPE

SS
T
THICK
TLEE -

- TMAX
TMIN
TRANS

TUK(])‘
TUK(2)

49

number of data points used in LESQ for determining
Ego . ' .

scattering parameter (r)

data point ﬁear RECLEE
YT |
(1/TLEE)

data point near RECLEE

temperature range over which EA or ED is
determined ‘

Hall coefficient

resistivity

‘resistivity which corresponds to Rnax

maximum resistance that the Hall system can
handle . :

same as RECIP

slope of ALNN with respect to RECIP

see section on mixed conduction

temperature before averaging
thickness of sample

temperatrue where LESQ straight line has a value
ALNX ‘ , :

1/RECMAX
temperature that corresponds to RMAX

array used for LESQ for Ego

parameters of LESQ fit for Ego



ve
VEX
VGE.
vH

WIDTH

 conductivity voltage

vo]tage'read proportional to sample current

germanium thermometer voltage

Hall voltage

width‘of sample

50
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Information Necessary for Calculations

Card #1 Title [Format (13A6)]
Card #2 Width Length Thickness ICHK*
[Format (3F 10.3, 50A1)]

Card #3 EFMASP, EFMASN, MOBRAT, RMAX, DELTA
[Format (5E 10.3)]

Card #4 Name and Account [for plot heading]
DATA is entered in nonstandard format from the tape.

* ICHK if plots are desired write PLOT

if punched cards are desired write PUNCH

A subroutine exists to calculate the scattering parameter (r) at
all temperatures. At present this subroutine assigns the value 1
to r at:all temperatures. If a more complex dependence is required,

a new subroutine must be written by the user.



ELECTRICAL PROPERTIES OF VARIOUS SEMICONDUCTORS

Dielectric Refractive

Semi-  Energy gap, Mobi]ity,af Mobility Effective mass
con- ev ‘3“‘2/\’01t sec variation Band m/m_ constant index
ductor (T=300°K) paTl™ strycture® . _ ° eleg .
300°K  0°K Electrons Holes  Electrons  Holes ~ Electrons Holes

Ge® 0.67 0.75 3,950 3,400 1.66 2.33 - A m1=1.6 0.3, 0.4° 16 4.0
(3,900)¢  (1,900)¢ ' m,=0.082 .

5i¢ 1.106 1,153 1,900 425 2.5 S 27 8 m=0.97 0.5, 0.16° 12 3.42
(1,350)¢ (480)¢ e m=0.19 - . | |

InSb  0.16 0.26 78,000 750 1.6 2.1 c 0.013 0.6 17 3.96

InAs - 0.33 0.46 33,000 460 1.2 23 ¢ 0.02 0.41 14.5 3.42

InP 1.29 1.34 4,600 150 2.0 2.4 c 0.07 0.4 14 3.26

GaSb '  0.67 0.80 . 4,000 1,400 2.0 0.9 c 0.047 0.5 15 3.74

Gals 1.39 1.58 8,500 400 1.0 2.1 C 0,072 0.5 12,5 3.30

GaP " 2.24  2.40 110 75 1.5 1.5 B e e 10 - 2.91

A1Sb 1,63 1.75 200 420 ver 1.8 Not C veees 08 0 N 3.18

b 2 e e g | Not C ' |

s e e CRCN )

®The values of mobility are those obtained

in the purest and most perfect material aVailab]e to date. In most

circumstances the actual mobilities are less than the value listed.

A: germanium-like; conduction band minimum in <111> direction; valence band maximum at <000>.

B: silicon-like: conduction band minimum in <100> direction; valence band maximum at <000>.
C: Galhs-1ike: conduction band minimum at <000>; valence band maximum at <000>.

There are significant variations among
classification. ' .
E. M. Conwell, Properties of Silicon and Germanium, Proc, IRE, vol.

the various semiconductors in details of the band structure beyond our A, B, c

7C

46, no. 6, June, 1958, has a fairly comprehensive

- . e———




Calculated and experimental mobilities for III-V
compounds at room temperature

o : Polar  Observed
" Compound Carrier m*/m0 . egle m1X10]3 61 - mobility mobility
: (sec™?) . (°K)  (cm2/V sec) (cm2/Y sec)
Insb  Electron 0.013 0.13 = 3.5 _ 260 200,000 78,000
~ Hole ' 0.6 R | 600 750
trAs  Electron 0.02  0.22 4.4 340~ 40,000 33,000
Hole . 0.41 | o 500 460
InP Electron 0.07 0.24 6.3 - 480 6,800 4,600
 Hole 0.4- © 500 150
Gasb  Electron 0.047 0.11 4.4 340 . 43,000 4,000
" Hole 0.5 - . 1,200 1,400
GeAs . Electron 0.072 0.17  5.35 410 11,000 8,500
~ Hole 0.5 . 600 . 400
A1Sb  Hole ~ 0.4 0.9 6.3 480 800 . 420

" . Scattering Mechanisms -

~ Mechanism p o= (m*)XTY v «E2 - ' RH_= -r/ne
X Yy z r
Acoustic -5/2 -~ -3/2 V72 31/8
Polar T < 07 -3/2 Exponential Independent  1.00 to 1.14
Ionized impurity =-1/2 3/2 ~3/2 - 315x/512
Neutral impurity 1 Independent  Independent | 1

Electron-hole -1/2 3/2 -t3/2 - 3157/512

i

-

C. Hilsum and A. C. Rose-Innes, "Semiconducting III-V Compounds" Pergamon
Press, New York



APPENDIX I1I

The Automated Hall Effect Apparatus

The electrical characterizations done in this report were
carried out using the automated Hall system 1in SSC 137. It has

1(10) regarding the nature

been fully reported on by-Shewchun et a
of the system, but as yet, no "operator's manual” exists to aid
beginners in the use of the machine. The purpose of this appendix
is to provide enough information to act as a guide for anyone
wishing to learn how to use the system.

First of all it should be noted that there exists a large
green 3-ring binder containing detailed information on the construction
of the controller and the dewar assembly which should be used as a
reference in case of difficulty. Included there is a program listing,
a brief photographic inventory, Togic diagrams for the controller
sequencer, and manufacturers leaflets and manuals for the various
components including the vacuum system and the low temperature dewar.
Also, hata output is through the HP Coupler to a teletype which
wi]lwprobably have to be Tocated and returned if the system has been
down for any length of time. For assistance in this matter see the
departmental technician (Mr. G. Leinweber) in BSB/B101.

The system is presently set up to accept samples in a

slightly modified version of the standard six point Hall test bar

configuration (Figure II-1). The double Hall voltage contacts on

54
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one side allow the user to remove the unwanted condwtivity voltage
contribution (due to misalignment of the contacts or film inhomo-
geneities) that tend to swamp the low Hall voltage of high carrier
concentration samples. There are several sample preparation methods.
An ultrasonic cutting head is available for cutting Hall bars from
commercially available wafers, but the modified version is not yet
available. In implanted sgmp1es, the junction formed by implanting
into a substrate of opposite type is enough to isolate the bar. The
author has also had experience with thin films and has found that
evaporating through a suitable brass mask onto an insu]ating substrate
is also quite acceptable. Sample size is variable, but the mounting
area on the sample holder allows a maximum overall size of about

1 em x 2 cm,

Using heat sink compound, and an insulator if necessary, the
sample is mounted on the copper block at the end of a 1 meter rod
that is inserted into the top of the dewar. Electrical connection
to the metallized contacts on the sample is through the six pins and
one extra wire found on the mounting block as in Figure II-2. The
author has found that gold wire silver painted at both ends to pin
and sample contact pad is quite sufficient provided the silver paint
is allowed to dry thoroughly before evacuating the sample chamber.

When the sample is mounted, replace the copper and teflon
shield over the sample and insert the assembly into the dewar making

sure the 0-ring at the top end of the assembly is securely in position
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in the dewar mouth. Reconnect the thermocouple jack to the small
box at the right side of the equipment rack and submerge the
reference thermocouple in liquid nitrogen. The sample chamber is
evacuated by closing the bleed valve located on the rear wall behind
the magnet power supply and switching on the rotary pump (#2 in
Figure II-3). When the cable is reattached to the connector at the
top of the mounting assemhly, measurements can begin. The following
is a step by step account of how to run the system. Thanks to

Ara Kazandzian for his aid in compiling this.
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10.

11.
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Using The System To Measure Hall Effect At Room Temperature

Turn the water supply on for the magnet.

Start the magnet by pressing on "Norm" switch. Red "on" light
along with "Norm" amber 1ight will come on.

Adjust the current using "current adjust" knobs to desired
current e.g. 10 amp. énd turn on switch for the GAUSSMETER on
the panel.

Turn DVM to MAN/EXT mode.

Set the interval to a desired time e.g. 4 minutes.

Turn the main power on "on the panel".

Turn the teletype to (external) teft hand side "push on" tele-
type is ready, Note: 1let the tape punch on "Here is" for about
5 feet.

Switch to "auto" mode.

Push "start" button, by doing this. 26 sequential steps will

be executed by the control unit.

Now the control unit takes over and it will automatically measure

the VC],VH], TC], TG, I.

If the four Hall voltages appear to have a high condutivity
component as in Figure i—4a, return to manual mode and cycle
through to step 13. Set DVM to INT mode and zero the measured
Hall voltage by use of the two potentiometers at the top of the

mount assembly. Return DVM to MAN/EXT mode, and the controller



12.

13.
14.
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to semi-auto. The four Hall voltage should appear as in
Figure I-4b. Goto step 8 and repeat.

At the end of the run switch teletype to "internal mode" push
"here is" button and punch tape for 5 feet.

After the run is over the magnet will shut itself off.

Turn off water cooling supply.
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Using The System to Measure Hall Effect at LN2 Temperatures

Initial condition, sample is inside the sample chamber

1.

Turn pump #2 on (located on the floor) make sure valve #6

(vent valve) is open and valve #5 closed. Fill cold trap for
pump #2 with LN2.
Turn mechanical pump #1 (located on the shelf) then open valve

#3 and #12 to evacuate the vacuum chamber (make sure the air

release valve for pump #1 is closed).
Turn on power switch located on thermocouple gauge panel..

Open vavle #1 to evacuate sampler chamber and also He vent,

read TC3 gauge on panel, pressure indicator will approach 1 micron,

Put LN2 in the LN2 i1l of the Cryostat, wait for at least one

hour to stabilize the temperature before starting the run.

Proceed as for Room Temperature measurement.

3
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_UsingﬁThe System To Measure Hall Effect At Liquid He Temperatures

10.
11.

12.

13.
14.

Cool down the Cryostat with LN2 for at least one day following
steps #1-4 on page #2.
Make sure valves #7, #13, #5, #4, #8, #14 are closed.
Open valves #1, #2, #3, until G1 gauge reads -30 psi.
Close valve #1, #2, #3.
Shut down mechanical pump #2.
Open He gas tank (next to the door) adjust pressure to 5 psi.
Open valve #4 then open valves #3, #2, #1 until G1 gauge reads
+5 psi (this is an indication that He gas is filled).
Close He gas tank. l

Transfer of 1liquid He
Contact technician in SSC/B141 regarding LHe dewar and He return.
Open valves #8, #2, #3 and flush to transfer tube with He gas.
Connect the outlet of valve #14 to liquid He transfer tube
(a U shape tube with a valve) i.e. connect the valve to make sure
valve #3 is closed.
Insert the transfer tube, one end in the LHe fill located on the
Cyrostat, and other end in a liquid He tank which is obtained
from room B141 S.S.C. |
Note (ping pong ball will rise and fall down).
Wait until the ping pong ball falls down, then open valve #14,

pressurize until G2 gauge reads 20 psi.



15.

16.

17.
18.
19.
20.

21.

22.
23'

24,

25.
26.
27.
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When the ping pong ball rises and falls down for the second
time, the Cryostat will be full of 1iquid He, and the brass
tube will be frozen at this point.

Take out the transfer tube and insert a rubber stopper on the
He fi11.

Defreeze the brass tube with hot air gun.

Close valve #2. .

G1 gauge pressure shou]dvread about 5 psi.

Open throttle valve (c.c.w.) direction 70° - 80°. Tliquid.

He flows through the sample chamber, and the sample is cooled
down. The flowmeter will read (probably overscale). Wait
for 10-15 minutes or more ti11 -emperatures reaches 4.2°K.

To read the temperature, set DVM 1in (internal mode). DC

mode trigger rate fast. The temperature at 4.2°K is ~0.980mv
in order to double check, switch the GE switch on control

to upward position to read GE resistance 19.954 mv at 4.2K.
Close throttle valve.

Turn VVH dial to 380 (3.8 on heater).

Oben throttle valve to the 18th position relatively. The flow
rate should be about 75 on the flowmeter (heavy ball is the
reference point).

Wait for 10 minutes until temperature stabilizes.

Turn DVM to MAN/EXT mode.

Turn on the sample ‘heater.
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28. Set interval at 4 minutes for initial run, switch to 7 minutes
after 30 runs (depends on how stable the temperature is).

29. Turn the teletype to (external) left hand side, push on
button teletype will be read. Note: Tet the tapepunch
punch on "here is" for about 5 feet.

30. Switch to "auto" mode.

31. Turn main power on.

32. Push "start" button.

33. Now the control takes over and it will automatically measure

the VC1 VH-l TC, TG I.

1

34. At the end of the run, switch the teletype to "internal mode"
and push "here is" button.

35. Check whether there is bubbling in the oil bubbler indicating
the flow of He.

36. Check G1 gauge pressure,

37. Close valve #8. Note: insert last part of tape first and make
a mark on the front side at the beginning.

38. At the end of the run, switch teletype to "internal mode".
?hsh "here is" button and punch tape for 5 féet.

39. After the run is over, the magnet will shut itself off.

40. Let the magnet cool down, then turn off water cooling

supply.
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Note: TC wires are connected in such a way that it should read

positive at room temperature.

To Take the Sample Out When Cryostat is Cold

1. Close valve #8 (this valve should be closed when there is no
He bubble in the glass tube and no reading on G1 gauge.

Open He tank.

Open valves #4, #3, #2, and #1.

Release pressure by removing rubber stopper from He fill.
Take out the sample, put a rubber stopper in place,

. Take out TC wire.

N oy gl B W N

Close valve #4 then pump down again.
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Teletype
Coupler

Digital

Voltmeter

Computer

Sequencer
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Magnet

Power

Supply

Hall Sample

Magnet

Gaussmeter

Hall Measurement System

.
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1 Select sample current indicator

2 Record sample current

-3 Select sample thermometry

4 Record sample temperature

5 Select conductivity contacts

6 _ Record Vc (I+)

7 Reverse sample current

8 Record Vc (1)

9 Turn on magnet, select gaussmeter contacts

10 Record magnetic field (B")

11 Reverse sample current, select thermometry

12 Record sample temperature

13 Select Hall voltage contacts

14 Record v, (I7,B")

15 Reverse sample current (I”)

16 Record V, (17,89

17 Shut down magnet

18 Turn on magnet with reversed field, reverse sample current (I+)
19 Select Hall voltage contacts - '
20 Record Vi (I+,B')

21 Reverse sample current (I7)

22 Record Vh (1I7,B7)

23 Shut down magnet

24 Select thermometry

25 . Record sample temperature ,

26 Adjust sample current. Wait 0 to 20 minutes.

- Hall System Step Sequence
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Data Format

The printed output should appear as in Figure II-4, with

12 numbers (1 1ine of 5. 1 line of 7) in the format + XXXXXXP.

The voltages (VGE’VTC’VC’VH) are interpreted as XXXXXX * 10°P

volts, (e.g. +0002216 becomes +221 * 'IO'6 volts). The current

range, I, (second datum) is decoded as:

(XXX _* 106‘P)

16

10910 1= -9

where the quotient on the left side of the equation is truncated
to the nearest integer. For example, if the second datum is
+0377516, the current is I = 107° amp.

The magnetic field, B, (first datum of the second line) is
decoded as:

B =+ XXXk * 10%P Gauss.

For example, if the sixth datum is +0825195, then the field is
B = 8.25719 kG.

%

‘Sample Calculation

To clarify the principles and methods involved in handling
the system output, a sample calculation is given. The data set
of Figure II-4-b is used in this example. From the first data
set:

v (3979 + 3975 + 3979) x 107° = 3978y

1
TC 3



This corresponds to a temperature of about 300°K.

1 =109 = 1076 amp

-
1l

7 (v ) = v (17))

= % (.096119 + .096321) = .09622 volt

= 78653 x 1072 = 7865.3 Gauss
b= 1 (G (7BT) - (178 - v (1787) + v, (1787))
= 5 (123 - 96 - 127 + 110) x 107° = 2.5y
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It should be noted here that the sign of the Hall voltage

is the reverse of what it should be due to an idiosyncrasy of the

machine. This is indicated here by a positive Hall voltage for

an n-type (CdS) film.

Sample dimensions are:

2 =.5cm
w=.2cm
x t = .0014 cm

Therefore, using the equations of the previous Appendix:

Vv, t
" —%E-x 108

R cn’/Ch

_ (2.5 x 10‘5)( 0014) x 108 = 44 en®/ch
(10~ )(7 9 x 10 } =
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=1 -3
n= 3 RH cm

=1/ 01.602 x 10712 x 44] = 1.4 x 107 en™3
0'_.

I %
= —— x (=) mho/cm
Vc (wt

5

096 © (.2 ” _0014) = ,019 mho/cm

wy = [Ryol cmz/v.s

44 x 019 = .82 cngv.s

Data Evaluation Using CDC 6400

If the system output has been put on tape (with 5 ft. of
blank tape before and after data) the calculations of the previous

section can be done on the computer using two available fortran decks.

The first, called CONVT, is used to convert the data on
tape to cards. It also edits the data to a degree, but this feature
is more of an annoyance than a benefit, asit 1is very sensitive to
teletype errors and will simply reject a data set, not correct it.
To use this routine, the tape should be wound on a spool (as in
Figure II-5) available from the computing centre. The tape spool
and program, with control cards as in Figure 1I-6, are then submitted
together and result in an output as in Figure II-7 and a punched

data deck.
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When the first two Tabelling cards and the end-of-record
cards at the end of the data deck are removed, four data introduction
cards should be added to the front and two blank cards at the end
as indicated by CONVT. The data is now ready for the Hall evaluation
program.

There are two versions of the Hall program available.

HALLT, the lengthier version, includes coding to drive the Benson-
Lehner Piotting system fo; publishable output, but HALL2, which
produces a printer plot, is faster and more portable, particularly
in its binary form. To use the HALL program, simply attach the
data deck to the rear of the program between the last end-of-record

and the end-of-file cards. Typical output is shown in Figure II-8.

Conclusions

While the system in its present form greatly simplifies
the electrical evaluation of semiconductor materials, many improve-
ments can yet be made. As indicated in the previous Appendix the
calculations required in the data evaluation are elementary and
do not require the large computing facilities of the CDC 6400. A
more praética1 approach would be to use a small programmable calculator
on line to evaluate the data real time, thereby entirely bypassing
the teletype, tape, and program running time. This concept has
already been discussed with the departmental technician (Mr. G.

Leinweber) but work has not yet begun on this project.
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Fipure II=-1: Modified Hall Sample,



VH zeroihg potts

(coarse & fine)

Yy

MOUNT DETAIL

(Bracketted letters indicate
. top connector pins)

Fipure II-2: Hall sample mount
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- Top connector

— TC wire

<)

Stainless-steel

tubing

Sample heater

Sample mount
copper block

Copper & teflon
shield ‘
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OB IEYE +AR3TELE +33923F +#QTI5236 -3714A4L3A

FERZASHL +LUSIG206 +uB 12166 ~GA13116 FHRIG134 -AD1906A +OAA3GZTEA
+506 116 557686 +OLIGR 4L +5T149T4 -QT14236

+HBRZE6HES +UAJG206 +HN13196 -ER130RE +UAI9ATA -BB19116 +ANIGO26
+GEN1E95 +E557A06 +0U39226 +BT714726 ~68715996 :

+PBZ26995 +66391&ﬁ +5%13166 -28913186 +@A19126 ~AA19076 +BAIT1IRE

Figure II-l-a: System output showing high Vg
contribution to VH..

VGE I - VTC, Ve VC (I
X _ y 4
+00081116 1381846 *ﬂﬂ39796 +0961196 'ﬂ963216
+078653S5 +@B39756 +0001236 +00Q0966 +00Q1276 +AONI106 +QD39796
+DOP1AS96 +@3B1876 +BD39776 +B961936 -99&3966
+P78647S +0B39796 +00B1376 +P0B1086 +0ND1286 +QRA1116 +0AIFEBBE
+0001096 +9382016 +BB39806 +Q962736 -P964876
+@786215 +A@B39746 +@Wﬂl3lﬁ +W@W1|?6 +ﬂﬂ@l?56 *ﬂﬂﬂl?56 *901°7?A

B Vi, WEEh vy e WIB) Vg,

Figure II-l4-b: System output wilth V, component
of Vy reduced,

(NOTE: Different samples were used

for a, and b, )

Figure II-l: Data format




#,.. Have at least 6 ft, of leader on each end
of the tape.

#2e.. Place the tape on the spool as follows:

#3400 Lable the tape with:
a) START
b) Arrow indicating direction of
tape travel
c) Name

d) Reel number

=%

- < _ VANDER ( #3)

#Ai... TUse Request card (immediately after JOB card)

REQUEST (TAPEL, TR, RTLL) SPOOL/VANDER(03)

Fieure II-5 : Paper tape use
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DATA SCREEN!NG

R L LY

MOFE THAM 10 P.C, VARIATION IN COMOUCTIVITY VOLTAGE FOR FOLLOWING SETS OF DATA

SIGH AMBIGUITY IN HALL VOLTAGES

1 ~. 000384 + 000991 e 006uSET -.UUGHTD
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o =. 033522 2 000E 85 de?27 -«006730
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«82E+04
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«12E-01
W13E-01
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v1wZ=01
v142-01
WALE-D1
W15E-01
V156-01
e15£-01
W15€-01
W158-01
v15E-01
V16E-01
«16E-01

HALL
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+B3E+03
BSE+03
«39E+03

29LE+Q3

112404

v 125404,

«13E+04
+15E+0%
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«28E+DY4

o 32E ¢ 04"

«35E+04
W 37E+0y
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