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ABSTRACT

The saturation behaviour of various gain models for
the COZ-HE T.E.A. laser was investigated. The corresponding
laser pulse shapes for an oscillating cavity were generated
by computer and compared to experimentally observed output
pulses. Good agreement is obtained for low gain using a
simple two-level model but at high gain, vibrational coupling

between levels must be included.
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1.0 INTRODUCTION

The objective of this paper is to investigate the satu-
ration behaviour of two different gain models for the CO,-He
T.E.A. laser. The laser rate equations are solved numerically
to obtain the time dependent buildup of the photon density within
the cavity. The photon pulse shape so obtained can then be
compared with actual photographs of experimentally generated
T.E.A. laser pulses.

The work done in this paper draws upon the recent studies
by Garside et al (1,2) of the unsaturated gain buildup and by
Lyon et al (3) on the dynamic pulse buildup in T.E.A. lasers.
The approach taken in our investigation of gain saturation is
to begin in section 2.0 with a simple gain model. This consists
of the 00°1 and 10°0 vibrational levels which contain the J = 19,
and J = 20 rotational laser levels respectively for the 10.6 u
CO2 transition. With this model, which incorporates rotational
coupling but neglects vibrational coupling, we obtain an under-
standing of when and how the pulse solutions deviate from the
experimental laser pulses. In section 3.0 a "thermal" gain
model is developed to account for certain vibrational effects
which become important at high laser intensities. Lastly, the
important conclusions obtained from studying these gain models

under dynamic situations are given in section 4.0.



2.0 THE TWO LEVEL GAIN MODEL

The number of vibrational transitions to the laser levels
of the 10.6 u co, emission is large. To write differential equa-
tions for all paths would be hopelessly complex and little "feel"
fo; the interplay of coupling processes could be obtained.

The unsaturated gain bujldup in T.E.A. laser systems has
been studied by'Garside et al (1,2). Their results indicate that
the shape of the gain curve can be reasonably well approximated
by a two level mcdel with each level decaying exponentially as a
result of collisional relaxation processes. Such a system is
shown in Fig. 1 using standard rotational and vibrational nota-

tion (Ref. 4).

LEVEL 2 o J=19 .
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LEVEL 1 100 J=20 "
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Fig. 1 Simple Two Level Gain Model



The unsaturated gain may be represented by the expres-
sion:

-t/ -/t
(1) g(t) = g (e ® - e 1,

Here 9 represents the maximum attainable gain and is achieved
only when T, = 0. This form for the time-dependent gain is
appropriate for the situation in which the upper and lower laser
levels are equally excited at t = 0. Using experimental data
the relaxation times T, and T, were found to be about 12 usec
and 1.2 pysec respectively for a 3% COZ' 97% He, atmospheric
pressure gas mix (Ref. 5). The fact that the model fits the low
signal gain so well tends to imply that the numerous rotational-
rotational and vibrational-vibrational couplings achieve amongst
themselves a set of quasi-equilibrium distribution states.

The low signal photon density pulse buildup can be des-
cribed by a single rate equation in conjunction with equation (1)
provided that the stimulated emission rate does not produce gain
saturation. Just how high a photon density is allowed in the
cavity depends on the magnitude of the Einstein coefficient for
stimulated emission B, in relation to the relaxation times T, and
Ty» In other words, the value of photon density that results
in sufficient stimulated emission to perturb the exponential decay
of the levels defines the point at which saturation effects en-

ter in. Beyond this point the nature of the internal couplings

to other rotational and vibrational levels becomes important.



By solving for the pulse buildup at higher and higher laser in-
tensities the deviations from experimental pulses should reveal

the effects of this internal structure.

2.1 RATE EQUATIONS

The following rate equations describe the dynamic behaviour

'in the simple two level gain-medium model:

9 - wino-n)p - &
(a) ge = Wingmple - -
dn2 n,
(2) (b) x - " W(nz-nl)p - ?;
dn n
1_ ” -1
The symbols denote:
P The density of photons
n, The density of co, molecules in the 00°1

vibrational level

n, The density of CO2 molecules in the 10°0
vibrational level |

T, The effective relaxation time for the 00°1,
J=19 rotational level

Tl The effective relaxation time for the 10°0,
J=20 rotational level

Loss The loss per pass of the cavity

L The cavity length

d The active discharge length



Ty ™ ?KE%EETV The cavity relaxation.timé for photon
loss |

Yr The ratio of molecules‘in the ro;ational
laser level to those in the vibrational
level

B The basic integrated rotational Einstein
coefficient for stimulated emission

Béff=YRB The effective vibrational Einstein coef-
ficient for stimulated emission

W=B.eff d/L The Einstein coefficient with the appro-

priate filling factor for the cavity.

It must be noted that for the development of equations
in this paper the assumption is made that spatially homogeneous
inversion exists throughout the cavity. To incorporate the ro-
tational coupling in equations (2) we assume that the coupling
rate is so fast that a population density distribution is main-
tained at the background translational gas temperature. This
allows the population densities in the rotationai laser levels,
for the 10.6 yu transition, to be written as a fixed fraction YR
of the vibrational level population densities to which they be-
long. This can only be achieved if the stimulated.emission rate
remains below the rotational coupling rate. Also the background
gas temperature is assumed to be constant during the laser pulse
buildup. Actually this will not be entirely correct, depending

upon how close the photon pulée is to the discharge current pulse.



However calculations given in Appendix A indicate that the ef-

fect on Yg a@nd thus on B F is relatively minor for "reasonable"

EF
- translational temperature variations.

The effect of vibrational coupling on the B coefficient
and thus on saturation behaviour is much more difficult to in-
corporate into a two level system. Even when we assume that the
vibrational coupling is fast enough to maintain Boltzmann tem-
peratures for the upper and lower system of levels we cannot sim-

ply modify B by another population factor. The reason for this

eff
is that the temperature is dynamic and thus varies with time as
levels are depopulated by collisions and stimulated emission.

The vibrational coupling can be incorporated by adding more le-

vels to the model, thereby increasing the number of population

rate equations. This is considered in more detail in section 3.0.

2.2 NORMALIZED RATE EQUATIONS

For convenience in showing explicit parameter dependence

of the rate equations, the following normalized variables were

used.
(3) (a) T = % - Scale length or time for one pass
of the cavity
(b) Pe - Photon density used as starting
value for the numerical integration
(Ref. 5)
(c) nTh=W%— ~ The C.W. threshold inversion defined

c by the loss per pass

(d) %' = % - Normalized time



(e) p' = EE - Normalized photon density
f .
v M : , :
(£) n, = — - Normalized population density for
Th the upper vibrational laser level
¢ N
(g) n, = Hl— - Normalized population density for
Th the lower vibrational laser level
n,-n,
(h) n'=( N ) = Normalized inversion or gain to
Th loss ratio.

The following are the normalized rate equations:

(4) (a) %%; = Loss(n'-1)p"'
]
dn p. WL
2 _ _ £ tnt L t

(b) atc’ ( c Je'n (crz)n2

dn! p. WL

1 _ £ tm o L t
(c) at’ = ( c 1p'n (CTl)nl
. 1 1
(d) n' = n, - n; .
Typical parameters used:
Loss = .020 (Ref. 5)
0. = 5x10%1 em™3
f
et -9 3 -1

Beff ~ 4x10 cm”sec

L = 160 cm

d = 80 cm

T, ® 1.2 ﬁsec

T, = 12 ysec.



2.3 SOLUTIONS AND COMPARISONS

‘Equations (4) were solved numérically using the Hamming's
predictor-modifier-corrector integration procedure (Ref. 6 &
Appendix B). The integration was effectively started at a fi-
nite photon density Per which was chosen small enough so as
not to seriously perturb the vibrational level populations via
stimulated emission. This allowed computation of the initial

population density values using the simple relationships:

1 t —td/Tz
(5) (a) n, =ng e
' 1 —E /T
— a’ "1
(b) n; =n,e
1 go
(c) nO ~ Toss

Here n; and ni are the normalized population densities
of the upper and lower levels respectively and né is the nor-
malized inversion corresponding to the maximum attainable gain
9y The experimental variable td (Ref. 1), which measures the
time to reach a photon density of Pgr Was used as the starting
time for the numerical solution.

Figures 2 and 3 show the pulse solutions for low and
high gain along with the appropriate experimental pulse shapes
(Ref. 5). As was expected the low gain pulse is matched very
well to experiment but significant deviations show up with
high gain. It was stated previously that at high gain (i.e.

high intensity) the effects of vibrational coupling on gain

saturation behaviour and thus on pulse shape should become



important. - Just how significant is revealed by the long

fall time of the computer generated pulse compared to its ex-
perimental counterpart. This is an indication that the upper
laser level and its coupled partners are being depleted more
than the present simple model indicates. The problem is that
as the stimulated emission rate becomesAlarge compared to
nl/r1 then the two laser levels in this model become almost
isolated. Thus every molecule which returns to the lower laser
level due to stimulated emission effectively reduces the popu-
lation inversion by two molecules. If just prior to the
rising edge of the pulse we assume N molecules reside in the
upper laser level and neglect the number in the lower laser
level, then at the pulse peak approximately N/2 molecules will
lie in both levels. This means that a sizeable inversion

can re-establish itself as the lower level decays rapidly with
the result that stimulated emission keeps the pulse tail from

falling fast enough.
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—— THEORY
------- EXPERIMENT

~

5 ASEC/DIV

Fig. 2 Low gain pulses (= 7.5% per pass) generated from the
simple two level model and from experiment. The
agreement is good for both rise and fall regions of
the pulse.

—— THEORY
-\ - EXPERIMENT

2 4SEC/DIV.

Fig. 3 High gain pulses (= 28% per pass) generated from the
' simple two level gain model and from experiment. While
the initial rising shape of the pulses match,the peak
and tail regions show significant deviations.



1.1

3.0 THE "THERMAL" GAIN MODEL

The simplest two level gain model has served a pur-
pose in showing the importance of vibrational coupling in
determining the gain saturation behaviour. The problem now
is to develop a model which incorporates these vibrational
effects. Following Lyon et al (3) we have combined the Fermi
coupled symmetric-stretch (vl) and bending (vz) modes of CO,
into one mode with appropriate degeneracies for the levels.
Harmonic spacing approximations of 960°K and 3365°K were used
for the combined symmetric-bend mode and the separate asymme-
tric stretch (v3) mode respectively. This simplified structure
given in Fig. 4 allows for only three levels in each system.
The reason for this, as will become evident later, is to
allow solving explicitly for the temperature as a function of
energy and population densities.

The key to understanding the operation of this model
is the concept of a Boltzmann distribution of molecules in
excited states. The intramode vibration-vibration (V-V)
processes within both the lower and upper systems tend to
drive their population densities to Boltzmann distributions
which would exist if these systems were isolated with the ap-
propriate molecular numbers and vibrational energy. This

defines a sort of quasi-equilibrium vibrational temperature
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which is a convenient variable in tracing the dynamic beha-
viour of these levels.

We assume that the upper and lower energy level systems
decay with characteristic times T and Trp
The Tra depends mainly on the intermode vibration-vibration

respectively.

(V-V) processes from the upper system via mixed modes to the

lower system (Ref. 7). The T involves relaxation via vibra-

TB
tional-translational (V-T) processes between the lower system
and the ambient gas (ground séate). The ambient gas tempera-
ture defines a Boltzmann distribution towards which the lower
system and ground state are driven with a decay time of about
1l pysec. The equilibrium populations for the upper system at
this temperature are negligibly small compared to those after
discharge excitation and can be neglected.

An important assumption of the model is that the
driving rates to quasi-equilibrium in the V-V and V-T proces-
ses are taken to be proportional to the deviation from the

equilibrium population values based on energy and number in

the system at a particular instant of time.

3.1 RATE EQUATIONS

The following equations describe the behaviour of the

"thermal" gain model.

(6) (@ % =win, - He -



(b)

te)

(d)

(e)

(£)

(9)

Qo
2|8

g
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2 ; (nz—VEz) : (n,-TE S 2)p
dt B Toes 4 4
dn3 (n3—VE3) _ (n3—TE3)
dt TVB TTB
dn (n4—VE4) A n, I 23)0
dt Tva Tra 4 4
dn (ns—VES) K ng
dt TVA TTA
dn (n6—VE6) ) ng
i Tyva Tra

The symbol meanings are as follows:

W

o
By elly ey
NgeNgeNg

VE4’VE5’VE6

TE, ,TE, ,TE

2’

- The effective stimulated emission coefficient
(includes rotational population factor yr and

filling factor 4/L)
The photon density

The vibrational population densities for
levels in the lower system

The vibrational population densities for
the levels in the upper system

The vibrational quasi-equilibrium population
densities calculated from total energy and
number in the lower (B) system.

The same as above but for the upper (A) system.
The calculation assumes a Boltzmann distri-
bution in both cases.

The wvibrational quasi-equilibrium population
densities in the (B) system and ground state
assuming a Boltzmann distribution and a trans-
lational temperature of 400°K.
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- The relaxation times for the intramode V-V

Toym @ T
VA VB collisional processes in the (A) and (B)
systems respectively.
T - The relaxation time for the (A) system via
TA . .
intermode V-V collisional processes.
Trg - The relaxation time for the (B) system via

V-T collisional processes.

To numerically integrate these equations the quasi-
equilibrium population density variables'VEiand TE, must be
known at each instant of time. To do this the temperature as
a function of total energy and number must be known. The fol-
lowing expressions are appropriate to the "thermal" model (see
Appendix C).

For the upper system (A):

T
T = &
-Zn[fT%:ET[c—2+//—3c2+12c—8]]
- °
T, = 3365°K
_— Total energy in (A) system

(Energy spacing) (Total number in (A) system)

The variable c is computed from occupation number den-
sities obtained from the step by step numerical integration of
equations (6).

For the lower system (B):
T

T = A B

~in[giggyl (c-2)+vZ +/ 4c-2.5-c%1]
TB = 960°K
c (Total energy in (B) system)

(Energy spacing) (Total number in (B) system)
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3.2 SOLUTIONS AND COMPARISONS

The major difficulty in relating the pulse shapes
generated by computer to experimental pulses is the initial
conditions. We must know what appropriate starting values to
use for the vibrational and translational temperatures. Of
importance to both is the time separation between the current
discharge and laser pulses. .The following temperatures were

chosen for a 3% CO 97% He mixture:

2'

T (Upper system) = 5000°K (Ref. 3)
T (Lower system) = 1000°K

T (Translational) = 400°K.

The relaxation times were taken to be:

Tpa = 12 us (Ref. 5)
TTB = 1.2 us
/ TVB = TVA = 50 nsec.

The procedure for obtaining the initial population den-
sities for the levels is to choose equal numbers in both
upper and lower laser levels and use the vibrational tempera-
tures to define the rest. This approach is experimentally
justified by the fact that at high gain there appears to be
no initial instantaneous gain in CO,-He T.E.A. lasers. Knowing
these initial occupation numbers and the time td to reach

a photon density vadlue of Pe completes the initial conditions

necessary to begin the numerical integration.
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A computer generated high gain pulse is shown in Fig.
5 along with the experimental oscilloscope pulse trace. The
falling portions match much better than for the case of the
simple two level éain model. However the fact that the devia-
tion is still sizeable indicates that either more levels are
vibrationally coupled or that a better choice of initial vibra-
tional temperatures is required. - An experimental determination
of these temperatures for high gains would help clear up this

uncertainty.

------ EXPERIMENT

L L T

52 /'/ssé/ DIV

Fig. 5 High gain pulses (28%/pass) generated from the "thermal"
gain model and from experiment. The fall rate of the
computer solution is closer to reality than was ob-
tained from the simple two level model.

The effect of including vibrational coupling in the
lower system is_tb help drain the lower laser level during

the photon pulse buildup. In the upper system the coupled levels
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act as reservoirs to feed the upper laser level. Conseqguent-
ly a greater peak photon density is achieved while at the same
time leaving less potential inversion in the upper laser

level. At high gains and high pulse intensities this allows

the laser pulse to die with a relaxation time which is close to

the cavity ringing time Ta®

4,0 CONCLUSIONS

The unsaturated gain behaviour in a COZ—He T.E.A. laser
has been investigated through the use of computer and experi-
mentally generated photon pulses. It was found that a simple
two level gain model with rotational coupling incorporated was
sufficient to fit pulses for low gain conditions. However at
higher gains and intensities the fall times of the computer
solutions were found to be much longer than experimentally
observed. A more complicated "thermal' model accounting for
vibrational coupling between levels was developed. This involved
driving 6 vibrational levels towards dynamic Boltzmann distri-
butions with a perturbation type driving force. The photon
pulses for this gain model were of higher peak power and had
fall times closer to experimental reality.

The model differs from that developed by Lyon et al (3)
in the number of levels used. Twelve levels in total were
used to describe the gain and pulse behaviour; four of which were
symmetric=bend levels used to absorb energy from the asym-

metric stretch mode. Since the time constant for decay via this
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process is relatively long ( 10-20 useé) and most high inten-
sity pulses peak at a few microseconds after the discharge
pulse, then the process is not expected to affect the lower
system g:eatly. Its effect may be significant in describing
the unsaturated gain behaviour.

The work presented in this paper has indicated that both
rotational and vibrational coupling are important for under-
standing the dynamic behaviour of the Coz-He T.E.A. laser. More
experimental studies are needed to determine the magnitudes
of vibrational and translational temperatures and how they
behave after initiation of the discharge pulse. In addition
we require accurate data on the vibrational coupling rates and
cavity loss as well as the parametric behaviour of the gain.

The parametersused in both gain models were the same
and no attempt was made to make accurate fits due to lack
of knowledge about the above parameters. Further work would

involve a more accurate measurement of experimental parameters.
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APPENDIX A

COMPILATION OF PARAMETERS PERTINENT TO
THE COZ-He T.E.A. LASER
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(1) SPONTANEOUS TRANSITION PROBABILITY (AZIL

Robinson (8) gives the following formulae to compute the

spentaneous transition probability.

: 2
san? IRypl 7S F;

A.. ® 5
3hA 92
O

21

2 . . ' . o an
|R12| - vibrational contribution to the transition moment
S7 - rotational contribution to the transition moment

FJ - interaction factor between vibration and rotation.

For the 00°1 (J=19) to 10°0 (J=20) transition we have the follo-

wing data.

R, = (3.77 & .03) x 10720 esu
12
FJ =1 4+ .0022J for P branch
SJ =J
g, = 23" + 1
J' = 19 = upper rotational laser level
J = 20 = lower rotational laser level

The computed value for A21 of .200 sec—1 gives a spontaneous

relaxation time T = .1 of about 5 sec. This compares
21 Ayq

favourably with the experimentally determined value of 4.7+.5 sec

obtained by Gerry (9)
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(2) FREQUENCY WIDTH FOR THE LINESHAPE FUNCTION (Av_)

For pressure broadening Robinson gives for the half width
at half maximum (HWHM) or AVL the following expression.

n/2 P

_ 22.79(3.585-.0299J) (300) He
B¥p, = - (0+1) /2 [Pcoz * T.69!
n=0 foraT t/? dependence
n=1 foraT? dependence. "

For our particular transition and mixture (2.8% COZ’ 97.2% He) we

have:
PCO = 21.28 torr
2
PHe = 738.72 torr
T = 400°K
J = 20
This gives: Av. = [1.56,1.35] GHz.

L
The greatest uncertainty in AvL comes from not knowing
the temperature dependence accurately enough. From this estimate
of AvL comes the Lorentz lineshape function weighting factor at

Ao = 10.6 u.

_ 1
g(\)o) - nAvL

Thus

10

g(v) = [2.4 x 10719, 2.0 x 10717] see.
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(3) EINSTEIN COEFFICIENT FOR STIMULATED EMISSION (B)

For the 10.6 p transition we have the following relations:

(27'+1)B (Ref, 7)

(2J+1)B12 21

39 B

41 By, 21

A reasonable approximation is to make B12 = B21. Also

%3
(B at A ) = z—a—
21 o) 8ﬂhT21
. 15
- - By = 1.43 x 107" cm/gm

To obtain the integrated Einstein coefficient for stimu-

lated emission at line centre we use the formula:

2
g(vo))\O c

B =hv B, ,g(v) =
o 21 o) 8ﬂ121

=~ [6.3,5.5] x 102 . men -

(4) ROTATIONAL POPULATION FACTOR (YDL

The distribution function for population densities amongst
rotational levels within a vibration lewvel is given approximately

by the expression (Ref. 4):

_ N3 _ 2hcB(20+1) _-BJ(J+1)hc/KT
YRE= N, T T kT

For the 00°1 vibrational level: = 19

J

B = .3871404 cm T (Ref. 10)
For the 10°0 vibrational level: J = 20
B 1 (Ref. 10)

= ,390188 cm



25

N N
5 19 . 0715,
00°1 10

(a) At T = 300°K:

= ,0699

Thus YR = .070 can be taken as an average value for these two

ratios.

Nig

Nooe1

(b) At T = 400°K: = .0640 , =~ ,0638

R

Thus YR .064 can be taken as the average.

From the above computations we see that YR is not Very sensitive

to "reasonable" temperature variations.

(5) EFFECTIVE EINSTEIN COEFFICIENT FOR STIMULATED EMISSION (B )

B E—

The integrated Einstein coefficient B, previously developed,
was based on the assumption that the J' = 19 and J = 20 rotational
laser levels were isolated. 1In reality they are coupled to other
rotational levels within the particular vibrational level to which
they belong (i.e. 00°1 or 10°0). Since rotational-rotational and
rotational-translational transfer mechanisms are expected to be
much faster than V-V, V-T and stimulated emission rates at at-
mospheric pressure then it is reasonable to assume rotational and
translational temperature equality. Thus assuming that this tem-
perature remains relatively constant during the laser pulse then
YR becomes constant. The stimulated rate term appearing in the
rate equations can now be written in terms of vibrational popu-

lation densities providing B is replaced by Bogs = B. Looking

YR
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at equations (4) (b),(c) in section 2.2 of this paper one can
see that since Bogg << B then the ability to perturb the unsatu-

rated gain behaviour at a given photon density p is reduced.

9

At T = 400°K B .. = [4.5x10"2, 3.5x10 Jem>.sec t

eff

(6) PEAK INVERSION

The iﬁternal power has been measured (Ref. 5) for high gain
conditions of 30 kv applied voltage and a .01l uF capdcitor. This
yields a peak unsaturated gain of about 30% per pass (Ref. 1).

The maximum internal power measured lies in the range [5,.5] M watts.

An approximate estimate of the peak inversion can now be made.

Let - lO6 watts (peak power)
n
. _max " y
Poase = 3 (reasonable at high gains)

A= .33 cm2 (cross sectional area of TEMOO mode) .

As a first approximation we may say:

n o 2pmaxL
max c A hvod

~ 2><1016 cm-3.

Here L - is the maximum inversion, Prase is the maximum pulse
power, c is the speed of light, A is the cross sectional area of

" the cavity mode, h is Planck's constant and Vo is the laser transi-
tion frequency. The factor L/d is the ratio of cavity length to
active discharge length.

As a comparison we can use the estimated peak gain to get

a second value for peak inversion.
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_ c
Nnax = (Beffd)gmax
- . -9 3 -1 .
d = 80 cm, Bogg = 4x10 cm” sec 7, g . % .3
Thus
n = 3><1016 cm-3.

max

(7) DENSITY OF CO, MOLECULES (NTL

2

We assume that the discharge excites the gas mixture
at constant volume so that a éemperature correction factor is
not needed in the following calculation.
For a 2.8% COZ, 97.2% He mixture at atmospheric pressure
and 400°K the density of co, molecules is:
. (Avogadro's number)(CO2 molecular fraction)

T | (2.24x10% cm?)

7.5><1017 CO2 molecules/cm3.

1’



APPENDIX B

MODIFICATIONS TO THE I.B.M.

SUBROUTINE "HPCG"

SlS.P
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Due to the large magnitude ranges cf the population and
photon densities it was concluded that a weighted relative error
criterion for changing step size was needed. The stability of
the Hamming's predictor-modifier-corrector method (Ref. 6) was
desired but unfortunately the S.S.P. HPCG subroutine uses a
weighted absolute truncation error criterion.

The following modifications were made to HPCG:

lé DELT DELT+AUX (15,I)*ABS (1.-AUX(4,I)/Y(I)) HPCG 1690

209 DELT

DELT+AUX (15,I)*ABS (AUX(16,I)/Y(I)) HPCG 2930

The input variable PRMT (4) now becomes the upper relative
error bound. It should be noted that it is the user's responsibili-

ty to make sure that Y(I) does not become exactly zerc.
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Consider the upper system (A) consisting of three asym-

metric stretch levels as shown in Fig. 6.

(1)
(1)
(1) -

| o = .29 BV
(Energy Reference)

Fig. 6
.- Etot } (n4 = 2n5 + 3n6)
AENtot (n4 + ng + n6)
-T_/T -2T /T
_1+2 & 43 A
_ —2T_/A °
1+ e TA/T + e B

Solving the quadratic yields:

A

—ln[z—(%s-[c-ZM/ ~3c%+12¢c-8]]

= o
TA 3365°K

The lower system (B) consists of the lowest bending and
symmetric stretching levels. Degeneracy factors account for

levels with small energy separations (Fig. 7).



32

n, (6)
n, (4)
ny (2) AE = .083 EV
| aE
Fig. 7
. - Etot _ nl + 2n2 + 3n3
AENtot nl + n2 + n3
-T_/T -2T_/T
1 4de P p8a °
- =25 7% *

1+ 2e-T}3/T + 3e
Solving the above for T gives:

Ty

-4n [—(§E3_c)[ (c=2)+7Y2" / 4c-2 .5—C2] ]
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ABSTRACT

Recent developménts in high power, high pressure gas lasers constitute
a major breakthrough in laser technology. The principal problem in preventing
the realization of their full potential is the lack of stability of such
discharges. It is imperative to understand why their internal structure causes
them to degenerate into arcs. We solve for the stationary internal structure of
such discharges and find that it is dominated by the electron flux obtainable

at the cathode surface and the form of the ionization coefficient.

Les progrés récents accomplis dans 1'étude des lasers a giz & haute
puissance et & haute pression constituent une solution soudaine a la techno-
logie des lasers. Le probléme principal qui emp@che ces lasers de se réaliser
pleinement réside dans le manque de stabilité de ces genres de décharges. 11
est absolument essentiel de comprendre les raisons pour lesquelles leur
structure interne cause la décharge a dégénérer en arc. En cherchant une
solution pour la structure interne stationaire de ces décharges, nous trouvons

que cette décharge est dominée par le flux d'électrons obtenus a la surface de

la cathode et aussi d la forme du coefficient d'ionization.
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1.0 INTRODUCTION

The objective of this paper is to study the internal structure
of high pressure gas discharges. The understanding of such structure is
basic to the control of arcing phenomena so characteristic of these laser
systems. To solve the arcing problem completely requires a full temporal
solution which is, needless to say, quite difficult. It was decided instead
to solve for the stationary homogeneous discharge in order to gain some
insight into the processes involved.

Previous work on discharges (Ref. 1) has dealt mainly with the
low pressure regime where diffusion and wall effects become important. At
atmospheric pressure,diffusion effects are reduced to the point where the
electrons and ions do not see the wall, For such discharges the equilibrating
mechanism is recombination (Ref. 2) in the main volume. It is important to
note that the recombination coefficient a is relatively insensitive to the
local electric field but the ionization coefficient Z is extremely dependent.
In the main body it is the balancing of the ionization and recombination rates
that allows equilibrum to establish.

The electrical characteristics of discharges are matched to the
electrodes through a sheath (Ref. 1). At these boundaries the electron and
ion fluxes readjust to form a region of high electric field. At the cathode
surface, secondary emission of electrons is assumed to occur through ion
bombardment or from externzl sources such as ultraviolet irradiation or electron
gun bombardment. Little data is available on how processes such as photon
bombardment from the main body or metastable bombardment effect the electron

emission at the surface. Summarizing, we have an internal structure which
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consists of the sheaths and a homogeneous discharge far from the electrodes
where recombination and avalanche mechanisms balance.

In section 2.0 of this paper the equations describing the electric
field and the ion and electron fluxes and densities are formulated and put in
dimensionless form. Section 3.0 deals with the solution of these equations
on a hybrid computer, the techniques used, and the problems encountered. In
section 4.0 a discussion of the physical behaviour based on results of thesc
solutions is presented.

2.0 FORMULATION OF EQUATIONS

The equations for the dischargé model to be developed in this secticn
are those proposed by T.S. Brown (2). The basic assumption for the mathematical
formulaticn of this problem is the validity of the magneto-hydro-dynamic equations
(M.H.D.). The discharge is treated as a miXture of an electron, ion and neutral
(background gas) fluid. This requires in particular that the mean free path
for electrons be much less than any characteristic gradient lengths such as those
associated with the temperature, electric field, fluxes etc. It must alssc be
much less than the physical dimensions of the enclosure for the gas. The
following equations also assume that the variables are time independeint and that
the discharge is one dimensional.

2.1 BASIC EQUATIONS

CONSERVATION OF PARTICLES

L) : )Pi = Zn_ —<ngn_+ 5
9 X
(2) P-i* = ni 'U’i_

McMASTER UNIVERSITY LIBRARY



CONSERVATION OF MOMENTUM

(3) Vs = My E

—

POISSON'S EQUATION

“ 2E = % (ny-n_)
X

o]

™

All quantities are scalars and the origin is assumed to be at the anode.

The subscripts * refer to ions and electrons respectively. The

other symbols denote:

E electric field

q electron's charge

€, dielectric constant

n particle density

a recombination coefficient
Z ionization rate

B particle's mobility

S external source

v drift velocity

Y Second Tewnsend coefficient.



CATHODE:

ANODE::

2.2 . BOUNDARY CONDITIONS

The electron flux I at the surface of the cathode comes from
secondary emission due to ion bombardment and,possibly,an

external source F—X'
.
g L= gl # IL,

The efficiency of electron emission (2ND Townsend coefficient) is
denoted by v.

At the anode there is no ion emission so that:

6 [ = o

4=

There is also another integral condition since the voltage between

anode and cathode is specified. However we assume that the typical sheath

thickness is so small compared to anode-cathode separation that the bulk of

the discharge is in equilibrium. This means that the two sheaths can be

solved separately subject to the condition that variables go to their asymptotic

values at infinity., Using these values the equations can be written in normalized

variables vhich tend to unity 'far away'. Knowing a typical electrode separation

X, and applied voltage Vo,then a field E0 can be defined for the

discharge.

This,then,defines the equilibrium recombination coefficient a
2 ) fo)

and ionization coefficient ZO. Possible scale lengths to be used include the

avalanche length L, = v, and the shielding length LS =€ Eo The importance

Zo 4 g

of the internal field distortion due to charge separation requires the use of L.



(7)

(8)

(9

(10)

(a)

(b)

(e)

(£)-

2.3 NORMALIZED SHEATH EQUATIONS

The normalized equations become (Ref. 2):

}....E.‘ = n+ == L.
Ix
' /

1 ! i
£ _a__r'+ :(Z'..Q_ >Zh_ *oéh+n/
I’o 83\' 0<th

= & -( Z, y_’n,' ~ o'nyn]
I, ox' ol R
1 / /
M, =n €

2,4 SYMBOLS AND TYPICAL VALUES

+

[a]

The symbolism and typical values are as follows (Ref. 1,2)

E0 EQUILIBRIUM ELECTRIC FIELD
Z =14 (E) IONIZATION RATE AT E
9} [ (¢}
a. =a (E) RECOMBINATION RATE AT E
0 o0 0
€ =y, IMMOBILITY FACTOR
v
n =12 EQUILIBRIUM PARTICLE DENSITY
© ap WITH NO VOLUME SOURCE
0
St =8 NORMALIZED VOLUME SOURCE
Z

10" "em”sec
1077

1015 cm~3
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il
(g) n, =n_ (i+ V1+4S ) EQUILIBRIUM PARTICLE DENSITY

E _
.S WITH SOURCE S
M I =ca DIMENSIONLESS RECOMBINATION 1074
(0] 0 O
o0 RATE
() Iy = e = X scALE LENGIH 107 cm
G IlE
G) 2zt =12/, NORMALIZED IONIZATION COEFFICIENT
(0]
)« =af NORMALIZED RECOMBINATION COEFFICIENT
(¢}
(1) n}=n, NORMALIZED PARTICLE DENSITY
™
(m) E'=E NORMALIZED ELECTRIC FIELD
E
(o}
m ry=r, NORMALIZED FLUX.
Fi‘
(¢]

2.5 NORMALIZED BOUNDARY CONDITIONS

The boundary conditions can be written in terms of these normalized

variables:
CATHODE::
[} ! !
(11)  (a) M o=ewl} + 1L,
1
(b) [-‘__x = P*x -_ P"X

IUT' e Fo rl"o

Furthermore, Equations (8) a,b express the continuity of current

throughout the discharge.

k)
L= el + L = 1+e



Equations (11) and (12) yield the constraint on the electron flux

at the cathode surface:

i

(13) s yliee) v I
(I+ X)

At the anode surface:

(14) [ /

2.6 TRANSFORMED NORMALIZED EQUATIONS

For convenience in finding asymptotic solutions and for analog
programming it was found useful to define new variables X, Y (Ref. 2) as:
. X/

(15) E = =«
() =

Using these variablés the following equations for the anode result:
-X Y
E_)S = 2 (‘—'—Q)(I‘fﬁ\

(17) 3
2- =1t
o I—X/z ! Y =X i ~Y
(18) - £ Y = — & 72 + ot (.0. -(H-t’-J 2 4 45 € &

The cathode equations are obtained by simply changing the sign of
the derivatives. Equations (17) and (18) constitute the description of the

internal structure of a stationary recombination controlled discharge.



Other relevent formulas relating the computed variables X and Y
ton ',and n_' the ion and electron densities respectively are:

(19) h, = L (l +e - QY’) Q-X/i
€

Y - X/a

(20) n, =

It should be noted that in formulating all the previous equations
the diffusion effects due to temperature and density gradients have been
neglected along with "overshoot'" effects (convective acceleration) due to
ﬂigh electric field gradients. Magnetic field and electron pressure terms have
also been dropped from the momentum equation. For a detailed discussion on
the justification for dropping these complicating terms see T.S. Brown Ref. (2).

2.7 PARAMETER DEPENDENCE ON ELECTRIC FIELD

In order to solve equations (17) and (18) for a given Eo and S' the
the functional dependence of o' and Z' is nceded.

RECOMBINATION COEFFICIENT (a')

The recombination coefficient has the form (Ref. 2)

" b
@y e €))7, b

The above form for o' has been deduced from extrapolated experimental

data on the N2+ion (Ref. 3) and is assumed to hold for T.E.A. laser mixes. For

15E'<10 then o' can be taken as unity for all practical purposes.
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TONIZATION COEFFICIENT (Z')

The form of the ionization coefficient Z' is known experimentally

5+ 5% N, 90% He

mixture a power law can be fitted accurately to the data (Ref. 2). For a

(Ref. 4) for a number of CO2 TEA laser mixes. For a 5% CO

pressure of 760 torr, and room temperature the range of validity for E is
4x1035E5104 v/cm which corresponds to a 3 orders of magnitude change in Z'.

The power law fit can be written as:
1 i
(22) 2'= (€')

Unfortunately Carmichael (4) gives no data for the ionization
coefficient behaviour for high E/P ratios. However numerous past experimental
studies (Ref. 5) on pure gases have shown that a curve of the form given in

FIG. 1 is representative.

O(-t A

P

\ / (2)

[ —
v

E/p

FIG. 1 Variation of 1st Townsend Coefficient with electric field.

' ¢} % . .
Here "t is the number of ion pairs created per cm travel per torr.

P
Von Engel (5) fits regions of data for o with the analytic expression:

(23) o -8°/e
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This accounts for region (1) but not for the drop in region (2).

A useful analytic form which allows for the latter region is:

-Bp/e
(24) Ay = Ae
F £
The proportionality factor between o and Z is the electron drift
— P
P

velocity v = pE.
Carmichael (4) chooses to fit equation (24) to his data yielding

for the ionization coefficient Z (ion pairs/sec.) the form:

; -8P/e

(25) L = Az

P

For a 5/5/90 mix A =1.29 x 10’ sec.” torr™, B = 53 v
cm-torr

The other extreme would be to neglect. the fall off in region (2) and use

Equation (23) to give the expression:

-8r/E
(26) Z = AE =2

P

In summary the three types of analytic approximations to Z'(E')

in normalized variables are:

27 (a) 72 = (&)

i

(b) | Z' 'E"EXP[BP(I—- ’\]:: ExP[

1]

(c) 7' exe[ 8°P (|~J-,§] = EXP[ 8P (| —_Q_X/l)]
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A1l three forms of Z' have their regions of applicability and
must be fitted to data pertinent to those regions. Our concern with the
dependence of Z' on the electric field will be understandable when we see
that it is of critical importance in determining the sheath structure.
MOBILITY:

The electron mobility u_and ion mobility M, have been assumed

independent of electric field.

2.8 ASYMPTOTIC SOLUTIONS

In the application of reverse integration (SECTION 3.6) for the
cathode case, the linearized or asymptotic solutions become important. The

linearized avalanche and recombination coefficients will have the forms:

£(x) .
(28) (a) 7T = o = J+tCX , C is a constant
g(x)
(®) o' = =1+ DX , Dis a constant.

It can be shown that the asymptotic forms of Equations (17) & (18),with

derivative signs reversed,yield a second order homogencous equation for X:

(29)  (a) 3 X 4+ AIIX +BX =0

b
(b) A:-—Ic(|— 4s'e )
(14 Vivae)?

a3
]

~2I(we)| 262t v (1-0)]

€ e
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-2
Where typically: I ~wo' ', €~10 , D70

The variable Y is related to X through the relation:

(30) Y= _& X
2(1+€) dx'

In the following development the origin for the asymptotic equations

is "far" from the cathode surface.

The general solution of Equation (29) (a) is:

k')(' " k)_X
(31) X = A 2 + A, e
The constants Al’kl’AZ’k? are determined by initial conditions

2 X , and Xo = X (x'=v0) . The decay constants are the roots of

dx''x=o
the auxiliary equatiom:

g —

(32) k= + Ak +B = ©

In order to constrain the solution to a simple exponential decay we must
satisfy the equation:

(33) RS = k, %

ax'ly'= ¢
X =0

The parameter kllis the negative root of Equation (32). Using Equation (33)

the required relationship linking the initial starting values Yo and Xo becomes:

() Xy = 2 (1+e) Y,
e k,



3.0 SOLUTION OF THE SHEATH EQUATIONS

Assuming the power law dependence for Z' (n=7) and no volume source
terms (S'=0), the following differential equations can be obtained from
Equations (17) and (18).

3.1 ANODE EQUATIONS

(35) 4. X = .ol &._x(“Q-Y‘)
2.00 dx'
X -X( Y)
(36) - i003Y = .012 + 2 |~-10l+&
ax'!

The boundary conditions become:
(37)  (a) Y. = Y(x'=0) = n (1+€) = In(1.0)~ .0}

) Y(x'=w)=X{x=w0)= 0

3.2 CATHODE EQUATIONS

If the origin is placed at the cathode then the signs of the

derivatives are changed in Equations (35) § (36). That is:

-X Y
(38) =3 3% = po1d |i=a )
2.00 gx'
3x - X Y
(39) oo Y = .ol + 2 “I-Oi‘l",ﬂ.)
ax'

The boundary conditions are:

40) (@ Y, = Y(x'=o) = ..Qm[LOIB’+P—'x ]
(1 +7)
(b) Y(x'-.;oO): X(X’:vO\: @)
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Here y is the secondary emission cocfficient for electrons due
to ion bombardment of the cathode and r_'x is the normalized externally

applied surface electron flux.

Other important relationships are:

, Y - X/2
(41) (a) h., = @
(b) h' = 1.0l- 2
o1 22
X
(C) EI = -Q/?_
@ =

3.3 PHASE PLANE SOLUTION

One approach to solving a non linear system such as this one is
to obtain the phase plane solution in rough form. While it does not give
the exact distance dependence of the variables it allows an estimate of the
initial value, Xo’ for satisfying the boundary conditions. Also the sensitivity
and behaviour of solutions other than the desirable physical solution can be
shown.

The phase diagram of the equations, (Ref. 2),relavent to both cathode
and anode is shown in FIG. 2. The dotted lines indicate possible anode and

cathode solutions satisfying the boundary condition X(«) =Y(x) = 0;
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CATHODE
SOLUTION

\\\%_- ANODE
SOLUTION

%
(3) R | (4)

FIG. 2 TPhase plane representation of Equations (17)§& (18).

The curve in quadrant (1) is the only physically meaningful solution for

the anode case since the quadrant (3) solution implies ion emission from

the surface. Quadrants (2) and (4) are both physically meaningful cathode

solutions. The former corresponds to an enhanced electric ficld or''positive

sheath'while the latter implies that the externally applied surface flux
I ' has caused a depressed electric field or'negative sheath! The solutions
obtained in this paper deal with only the positive sheath case.

The splaying of the phase plane curves about the desired curve near the origin

indicates that small errors in choosing the initial Xo will cause large deviations

from the desired solution.This is especially true of the cathode solution with
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no externally applied surface flux. Problems encountered with sensitivity

eventually led to the adoption of a reverse integration scheme.

3.4 ANODE SOLUTION BY HYBRID COMPUTER

The anode case was solved on an EAI 8845 hybrid computer with
the analog section performing the integration and the digital performing the
control, the sampling of the solution and its subsequent storage and plotting.

MAGNITUDE SCALING (Ref. 6):

In order to program differential equations on an analog computer
it is necessary to scale the variables so that the output of amplifiers involved
in the circuit never exceeds one machine unit or 100 volts. Also the full
dynamic range of the computer (1 part in 104) should be employed to reduce
loss of accuracy. This means that the maximum values of variables that could
occur during the integration should be normalized to one machine unit or less.

There is also one other magnitude scaling problem in our casec and
this involves the exponential function generator. Since an amplifier is used,
the maximum value becomes one machine unit and we are limited to producing
the curve e—lOu. The variable u is normally required to lie between 0 and 1
unless hard zero diode limiting is employed (Ref., 7). To generate a curve

of the form e6u we generate e—6(1~u)

6

and adjust the equation coefficients

to absorb a factor of e
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From the phase plane and asymptotic solution it was found that
the required Xo should be close to 1.5 (Ref. 2). The maximum value for Y
is .01 and occurs at the anode surface. From these maximum values the

computer variables U and V were defined to be:

(42) U= X
]

(43) Y = 50Y

Also in Equations (35)§ (36), the fact that Y is so small means
that eY can be expanded as 1+Y for all practical purposes. The contribution
of the next expansion term lies outside the accuracy range of analog
components. This linear expansion also hy-passes the situation of subtracting
two almost equal numbers in Equation (35).

Taking into account all the magnitude scaling and the linear

expansion of the exponential we obtain the equations actually programmed on

the analog computer.

(49 U = —2.00 4 WV
o x!
~6(1—=u) U
(45) dV¥ = =2.017 % - a005(1v“|).2,
ax!

The analog circuit for the anode equations is shown in FIG. 3 in
which standard analog compenent schematics (Ref. 6) are used. In the initial

set up stage and debugging of the circuit it was found useful to control the
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//UMNER =X
Z
] ~i0s 5 @
= \/ -1
Us .
v r[“”"“’*i
Af'/ ' r\ __lo| \
S S—— W 2 [
///V [;E;ffﬂ_ } -U
&
/LflV—i\ ﬁ 2017
N S — | \-~—-~-
1 1y yof 1
I (av-1) Rwavis
A/A \S l_m.
' ]
=Y
ol 0_1 o ,

+1 4

FIG. 3 Analog circuitry for solving the anode equations.

v=50Y
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repetitive generation of the solution through the hardware "REP-OP" timer
(Refs. 6,7). Remembering that time represents distance on the analog computer, it
was observed that using a 1 second integration time constant made it
necessary to integrate for 20 seconds in order to satisfy the boundary
conditions. Integration for such a long time introduces problems in linearity
for the integrator capacitors. The solution was speeded up by a factor of
100 by choosing a .01 second integration time constant which effectively
increased the input gain to the integrators. Now instead of requiring a
storage scope the sclution could be swept every 200 milli-seconds on a regular
scope.

The potentiometer representing Uo was varied until both U and V
were close to zero "far away" from the anode. The solution however was very

sensitive to this initial condition pot setting. Varying its value by 1 part
in 10,000 was sufficient to splay the solution considerably from the desired
one. Near the critical point the amplifier noise introduced at the start

of the integration caused repetitive cycles of the solution to lie within a
band.

This is shown in FIG. 4 with the desired solution represented by

the dotted line. A similar situation occurred for the V curve.

/'
{
Y
a1

FIG. 4 Splaying of anode solutiocns duc to noise.
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Because of this splaying on to non desired solutions many component
amplifiers were sent into saturation. To reduce amplifier recovery time it
was necessary to diode limit their outputs as shown in FIG. 3.

At this point a FORTRAN IV program was written using hybrid linkage
routines (Ref. 8) to enable digital control of the initial condition - operate
cycle as well as performing optimization and sampling. Since noise generated
all possible solutions in the splayed region it was then simply a matter of
sampling the solution and choosing the best. Within the digital computer,

U and V were converted to X and Y and using Equations (41) a,b,c the desired
normalized ion density (n+'), normalized electron density (n_') and normalized
electric field (E')were generated. These latter variables could then be
displayed on the X-Y plotter and storage scope (Ref. 9) or hard copied on line
printer or magnetic tape.

For high quality plotting the data was fed into an EAI 640 computer
program that produced a plotting tape for the EAI 430 incremental plotter.

In addition to plotting the curve the plotter has a printing head to type titles
and scale markings. Such plots of the analog generated anode variables are

shown in FIGS. 5,6, and 7 for a power law (n=7) Z' dependence on electric field.
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3.5 CATHODE SOLUTION - ITERATIVE FORWARD INTEGRATION

Initially an analog solution was attempted for the cathode case with
no externally applied surface flux (P_x'=0) and a 2nd Townsend coefficient of

0.1 . The boundary conditions were:

(46) Y (x=0) =Y, = i’m(_lj;_é_) :J?/n(l_@_l\~—2.4
ft L ! )
T

From phase plane and asymptotic solutions it was found (Ref. 2) that
VXO should be about 4.04. The fact that avalanching involves an exponential
dependence on X resulted in enormous gradient variations in the Y derivative.
As a result it was found that only 1 normalized distance unit of the solution
could be generated by the analog because of sensitivity and dynamic range problems,
Much of the dynamic range problem centered on generating the exponential X
dependence of the ionization coefficient in Equation (39). In order to generate
this term over the full sheath length the integration was stopped by putting
the computer into "HOLD". Then the computer variables and the ionization term
were rescaled and the solution continued from that point. However the sensitivity
to the noise introduced at the beginning of integration plus loss of significant
figures during the solution, plus errors introduced by stopping and "HOLDING",
hopelessly masked the solution behavicur beyond 1 distance unit.

At this point it was deemed necessary to resort to digital numerical
integration techniques on the Xerox SIGMA 7 and EAI 640 computers. A fourth
order double precision Runga Kutta method proposed by GILL (10) was employed.

The analog value for X, obtained previously and accurate to 4 decimal places
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was used as a starting value. The digital approach removed the dynamic range
problem but the extreme sensitivity to XO remained. One required a very
small step size in the independent variable x' to reduce truncation errors
and needed fine tuning in the 8th or 9th decimal place of Xo to get a "'good"
solution. This iterative approach to the correct solution was very tedious
and sensitive to initial conditions and step size.

3.6 CATHODE SOLUTION - NON-ITERATIVE REVERSE INTEGRATION

From the phase plane sketch in FIG. 2 one can see that all solutions
fend to funnel in on the desired physical cathode solution for large negative
values of Y (i.e. small electron flux values). When starting in this closely
packed branch region even very tiny fluctuations can cause large deviations
in the splaying region around X =Y = 0. It seemed logical that the equations
would behave in a more stable manner if integrated in the reverse direction
since any small errors made would tend to balance out and bring you back to
the physically meaningful curve. In addition, using the asymptotic solutions
to define the initial conditions, the need to iterate is removed.

Using the general expressions for the asymptotic equations developed
in section 2.8, (Equations (29) - (34)),withC = 3.5,D = 0, and S' = 0,we obtain

the relations:

47)  (a) 3% - .0l IX_ ~.0808X =0
ax’z ax'
(b) kl = .ol —}.3233 ~ .2749
2
(c) ¥, = 2o Ye

k
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The above constraints force the solution to be a simple exponential
decay , EXP(klx') ’ The value of Y0 and thus X0 must be chosen small
enough to ensure that these asymptotic solutions are describing the behaviour
in this region. To apply reverse integration the independent variable X' is
replaced by -x' in Equations (38) and (39). Note that although the new
equations become formally the same as the anode equations the behaviour is
different because Y is negative. The solutions obtained by reverse integration
were checked against the sensitive forward integration and found to be the same.
Also the solutions are relatively insensitive to pertubations in initial
conditions and truncation errors as predicted.

Another point to be considered with this integration procedure is
the fact that there is no obvious origin. Where one places the cathode electrode
depends on what the surface coefficient y is and what external electron flux
sources I'' are applied. The curves for the different variables can be
considcredxuniversal for a given recombination (a') and avalanching (Z')
dependence. For the purpose of referencing, an arbitrary origin was chosen
to be the point at which the asymptotic solution generated backwards produced
a doubling in E'. The resulting computer plots of the cathode variables appear
in FIGS. 8, 9, 10 and 11 for a power law, (n=7), 2! dependence on electric field.

Using equations (17) &(18) it is a simple matter to extend the
solution generation to include cases where volume sources (S§') and other forms
of ionization dependence Z'(E') become appropriate. The cathode solutions for

two cases of special interest to T.E.A. laser discharge research are given in
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Appendix A. These correspond to the electron gun assisted discharge system
and the "double-discharge' system which operate at E/p ratios of about 4 and
8 respectively. For these solutions, a Z' dependence defined by equation

(27) (b) , with A=1.29 x 107, B=53, was used.
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4.0 DISCUSSION

The most obvious conclusion that can be drawn from the computer
solutions is that the sheaths are much more violent in the region of the
cathode than for the anode. Near the cathode, ions tend to collect while
secondary electrons produced are swept out leaving a large positive space
charge layer and thus a large enhanced electric field. The key to sheath

formation near the cathode is the immobility factor e = Ky

H_
The anode curves generated are independent of the electrode material.

Here we assume that secondary electrons which are emitted by electron
bombardment do not seriously affect the sheath. The boundary condition is
dependent only on e which is a property of the gas and is usually close to
’.Ol .The solution has been generated by an analog iterative method but could
have been produced from asymptotic solutions using reverse integration.

The cathode solutions are universal for a given Z'(E'). That is
for a given gas mix the curves apply to all electrode materials and all applied
surface fluxes. Where one places the cathode boundary depends on the
2nd Townsend coefficient (y) and what externally applied surface flux (I ')
is used. An investigation into the effects of these two parameters on thé

cathode position relative to the curves was made. Rearranging the boundary

condition Equation (13) yields y as a function of the computer generated

1
r_ and chosen parameter I' ', The equation becomes:

X

/

/
(48) ¥y o= D= Ny
(+e)-T.
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FIG. 12 shows the behaviour of y =y (x',I'' ) and reveals some
interesting results. The curves have been generated ?or a range of y
between 0 and about 1 because most common laser materials have relatively
poor secondary emission coefficients. With no externally applied surface
flux a variation of y over the range shown yields little displacement along
the curves in FIGS. 8,9,10. That is the electric field varies little from
going from the peorest electron emitter to a 1 electron - 1 ion emitting
surface. Of course the electron flux at the surface, which follows vy closely,
varies greatly in magnitude.

When external surface flux is applied the ability to reduce the
electric field of the sheath depends on the closeness of T'_' to unity.The curves
in FIG. 12 not only translate along the x' axis but also th:ir slope decreases
making the surface y more important. In theory when T ! becomes.equal to
1-ye then sheath disappears and the whole discharge is ﬁomogeneous. For
larger values of surface flux the sheath will actually depress; that is the
electric field E' will drop below the main discharge value EO.

It must be stressed that the changing of the problem from the two
sided boundary condition (ANODE-CATHODE) to a simple initial value problem
(REVERSE INTEGRATION) requires that there exist a large equilibrium region
whose field is equal to the applied field E . If one cannot achieve a
reasonably depressed cathode surface flux corresponding to a given y and
I *'in a distance small compared to the electrode separation then the original

X
problem reasserts itself.
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The form of the ionization coefficient dependence on E'is of
critical importance in determining the sheath 1enéth. The best way to
see the effects is through a graphical qualitative presentation. We assume
that there is no volume ionization present (S'=0). Using equations
(17) & (18) it can be shown that the dominate derivative terms for most of

the sheath structure are:

(48) ?__E_i' ~ =1 L\ -~ P_, )
X' £’

o) 3l o~ 7~ e ()
8)(’ EI

The equations are written in terms of true distance x since units
of x' depend on Eo. We already know the expgrimental form for at(E‘) shown
in FIG, 1 and discussed in section 2.7. As mentioned before in this section,
three types of analytic expressions can be made to represent oy for certain
ranges of E. We wish to obtain a graphical "feel'" for what happens when Eo
is changed. FIGS. 13 § 14 give the qualitative dependence of o, and In(I' ')
as a function of E'. It is where you start on this curve (i.e. what
applied field EO is chosen) that determines how quickly you can achieve a
given surface flux from the asymptotic starting values. For most practical

laser discharges, EO lies within the power law approximation to Q. The



fact that oy varies over three orders of magnitude when Eo decreases by
a factor of 2.5 means that sheath lengths and peak electric fields are

critically sensitive to the operating field.
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FIG. 14 A sketch of the electron flux behaviour as a function of
electric field.
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One can divide up the a, curve into four regions as follows:
(1) Low field region
(2) Operating region
(3) Saturation region
(4) Fall off region
In region (1) the electrons have so little energy that those
ionizations that occur come f{rom electrons very far in the tail of the semi-
Maxwellian energy distribution curve. A stationary recombination -
controlled discharge operated in this region will be very weak and will
tend to have long, low field sheaths.
In region (2) with fields typically from 2 x 103 V/cm to
2 x 104 Vém we have high enough ionization rates to suitably excite T.E.A.
laser mixtures, Here the Z or o, curves can be fitted to a power law in E'.
If the sheath fields remain in this region then the computer curves in
FIGS 8,9,10,11 are representative. Operating at the upper end will result in
sheaths whose fields will enter region (3) and possibly (4). The sheaths
become very short and violent in this case.
Present lasers do not operate with EO in regions (3) and (4)

but if they did presumably long high field sheaths would result.

The effects of operating at a lower discharge voltage and using an

external ionization source can be seen by comparing the solutions in Appendix A



for E/p ratios of 4 and 8. The form of the ionization dependence was taken

to be that of equation (27)(b). Note that these curves are plotted against
normalized distance x' and not true distance x. One interesting point to note

is the shape of the ion density curve. Approaching the cathode from "far away"

we encounter an initial depression due to the electric field gradient. Eventually
ionization begins to dominate to such an extent that a peak in the ion density
occurs. Finally because the ions are now carrying almost all of the fixed total
current but the electric field continues to rise, we enter a fall off region,
Another useful observation is that the electron density tends to make a much
sharper transition as the applied voltage is increased.

The addition of volume sources into the discharge results in an
increase in the cathode sheath field. At least from a naive point of view one
would think that the concomitant increase in the excitation rate of the neutral
background gas would result in a faster "arcing time". However to compare the
effects of volume terms on a laser discharge system we should compare on the
basis of equal excitation rates. There will be a trade off between the decrease
in the time to arcing due to the increased sheath field and the decreasing in
the pumping time.

As a final point it should be noted that the solutions at an E/p
ratio of 8 have sufficiently large convective acceleration terms to warrant
questioning the validity of the model. This is especially true of the case

with volume excitation.
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5.0 CONCLUSIONS

The behaviour of a system of equations describing the internal
structure of a plasma in a T.E.A. laser discharge was investigated. In
addition to the use of conventional analog and digital computer techniques,

a reverse integration, non-iterative method, which is based on the properties
of an asymptotic solution was developed.

It was shown that the solution of the equations, which predict
the electron and ion densities and electric field strength in the region near
the cathode, could be expressed as universal curves. They apply for any
cathode secondary emission factor or enhanced surface flux at the cathode.

\

Results show the electric field solution to be insensitive to
the cathode secondary emission factor, but very sensitive to the erhanced
cathode surface flux when this term becomes comparable to the flux in the
equilibrium region of the discharge.

It was concluded that the internal structure or sheath depends
greatly upon the shape of the ionization coefficient and the magnitude of
the operating electric field in the main body of the discharge. The former
is influenced by the component gas ratios in the mixture while the latter
is defined by the applied voltage. Low applied voltages result in a weak
discharge with long, low field sheaths while high voltages produce short
violent sheaths. Very high voltages may result in a long, high field, sheath

structure.
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Stationary solutions corresponding to the electron gun assisted
discharge and ""double-discharge'" systems were investigated. The addition
of volume source excitation, while increasing the electric field in the
sheath, also reduced the pumping time for equivalent excitation. It follows
that an analysis of the stability of the stationary solutions is required
before the beneficial influence of the external source can be known. The
solutions developed in this paper provide a foundation for further investigation
to obtain an understanding of the dynamic arcing problem.

For some discharges, probably not those best suited for pumping
a T.E.A. laser, our model should be extended to include other physical effects
such as convective acceleration. A final description of sheath dynamics

would also have to account for three dimensional effects.
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APPENDIX A

Included in this appendix are the computer solutions for the
electron gun (E/P = 4) and "double-discharge" (E/P = 8) systems. Each
case 1s illustrated with and without volume source excitation. The
ionization dependence was taken to be of the form Z/p = AE exp(éBP/E)
with A=l.29x107, B=53. On each plot the equilibrium value is indicated

by a dotted line. The origin is defined to be the point at which E'=2

based on asymptotic solutions.



12,0 T I I 1 | 1 I l i | I N — I I I 1 1 ]
f\’0.0 = il
- ELECTRIC FIELD — CATHODE REGION
a — -
w
— .
w 8.0’—

e ] —
b
P
(] 600_ -
w
-
|35} . o
(==}
M 4s0 "
o
= pes =
P
o
(]
= 240 — al
0.0 L 111 1 i L | TN T A | L L1
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14,0 1640 18.0 20,0

NORMALIZED DISTANCE &"

4%

FIG. 15 The variation of electric field in the cathode sheath for an E/D ratio of 4 with no volume
sources (S'=0). This corresponds to field conditions for the electron gun assisted discharge
system in which the gun is turned off.



ELECTRON DENSITY (n')

0.8 e -

006 = -
. -
(58]
0.4 -
P |
q .y
= -
o
O ——
Zz 0,2 -

0.0 ! I ] i l | | ] t i 1 1 | ] | ! H i |

" 0.0 2.0 4.0 640 8.0 10,0 12,0 14,0 16,0 18,0 20,0
NORMALIZED DISTANCE 0

FIG, 16 The variation of electron density in the cathode sheath for an E/p ratio of 4 with no volume

sources (S§'=0). This corresponds to field conditions for the electron gun assisted discharge
system in which the gun is turned off.

Sy



14,0 ! T T I 7 i . ‘ — I i j I i I T 1 I
12.0"— !
,, ION DENSITY — CATHODE REGION
-+
B
10,0 .
B
o=
s
=
wo8,0 -
o
- - -
o
6.0"" ] —
o
(58]
(] - o
o
z 4,0 -
-
(2 o
(=] - g
=
200 = .
0.0 I l | | | l i l l l I L L1 L | \
0.0 2.0 4.0 6,0 8.0 10.0 12.0 14,0 16.0 18,0 20.0

NORMALIZED DISTANCE &

FIG. 17 The variation of ion density in the cathode sheath for an E/D ratio of 4 with no volume sources
(S'=0). This corresponds to field conditions for the electron gun assisted discharge system
in which the gun is turned off.



) =

FLUX ()

ELECTRON )

NORMALIZED

IG.

— i i | | ! | ] i i | i i 1 1 1 i { 1 i gj
h ELECTRON FLUX — CATHODE REGION g
[o]
Q2 == =
- -
=]
o = =
3 T
-2
IC = :J
- :
frowss: E!
lE? ] i | ] ] ] ] i 1 ] ] j 1 1 | ! | ] | l
0.0 2.0 4,0 6.0 8,0 10,0 12,0 14,0 16 .0 18.0 20

NORMALIZED DISTANCE 0

18 The variation of electron flux in the cathode sheath for an E/p ratio of 4 with no volume

sources (S'=0). This corresponds to field conditions for the electron gun assisted discharge

system in which the gun is turned off.

Ly



40, 1 i | ! i I i ¥ 1 i ! !

e ELECTRIC FIELD — CATHODE REGION
o 30. —
-l
[E%)
i
= -
(&)
o
:; ZOQ— -
i
o |
w
o B -
w
~N
.
< 10, -
=
oc
o
=z
T Siins sl RSty il uSeoul seleheel Sedbiies Masiuts Rivebil Elesiol shibeni i
-15. —10. —5. 0. 50 100 150 20.

NORMALIZED DISTANCE "

FIG. 19 The variation of electric field in the cathode sheath for an E/D ratio of 4 with volume
sources (S'=10%) added. This corresponds to a typical electron-gun assisted discharge
system.

8



i ! i ] i i ! i i I i { i

1.2 - -
ELECTRON DENSITY — CATHODE REGION

g

{n

-
o
o

«
2
o

ELEGTRON DENSITY
o
S

o
a3
™~ 0.4
-
<
= — —
oz
o
= 0.2’-' g
0.0 I | ! i | i | | 1 { | |
=18 s =104 2 0s 5e 104 15, 20 o

NORMALIZED DISTANCE x0

FIG, 20 The variation of electron density in the cathode sheath for an E/, ratio of 4 with volume
sources (S'=103) added, This corresponds to a typical electron-gun assisted discharge
system.

67 .



ION DENSITY — CATHODE REGION

o mmm s emees G mewm @ mwm 6 w6 s 8 wmm B emws h mewm A mmwm 8 e 8 e 8 e e e 8 e

! ] ! i | ! l ] ] ] |

6.0 ]' "
s
5-0 -
—+ -
-
- 5,0
o
==
Wl
)
-
o |
o= |
(1%}
~N
>
<
P
(5 4
o
—
0.0 ' '
=18 =10 .

—S. O' 5. . io. 15.
NORMALIZED DISTANCE "

FIG. 21 The variation of ion density in the cathode sheath for an E/,, ratio of 4 with volume sources

(S'=103) added.

This corresponds to a typical electron-gun assisted discharge system,

08



= I | | 1 i I 1 | 1] i i i i =
E o
| —
~ -
1
F~ — o
= , ELECTRON FLUX — CATHODE REGION
> o
? HoF b U L R —
™ = =
- 3
- - =
o e -
2 <
- — —
(]
w -1
A L&) = =
[55] = —
™~ - P
o n _
=
= -2
= T -
— _
o | 1 ! ! s | I | | 1 ! l !
—150 ~—10« -5 e 0. 5e ) 10. 15 20 o
NORMALIZED DISTANCE &0
FIG. 22 The variation of electron flux in the cathode sheath for an E/, ratio of 4 with volume sources

(S'=103) added. This corresponds to a typical electron-gun assisted discharge system.

1S



140, T T T T I T I T 1 T I T |
1209 T —
N | ELECTRIC FIELD — CATHODE REGION
[an]
""100._' 7
175}
w » o
S 80, - -
o<
’—
o J = =
il
- |
i 60- i -
o - i
(88
™~
: 400 o= -
<
= .
(>4 T —
L
=
20, - -
SR IS SR S [ NSNS SUPDS S [P PSS PSS PSP PSP S 1
-120 =100 -80 ~60 —40 ~20 0.0 20

NORMALIZED DISTANCE &"

FIG. 23 The variation of electric field in the cathode sheath for an E/., ratio of 8 with no volume
sources (5'=0)., This corresponds to field conditions present in a "double-discharge" type
system with no volume excitation.



ELECTRON DENSITY (n )

NORMALIZED

9.0 | l ! i | ! ; ! ! z ! L |
—-120 -100 —80 —60 —40 —~20 0,0 20
NORMALIZED DISTANCE &"

%3]
FIG, 24 The variation of electron density in the cathode sheath for an E/, ratio of 8 with no volume o
sources (S'=0). This corresponds to field conditions present in a '"double-discharge'" type
system with no volume excitation.



2.5 -
- ION DENSITY — CATHODE REGION
'--+ o —
>
—
o
w
o
&=
o

[ o
(53]
~N
=
)
o
o
o
0.5_ -
0.0 ] | ] | | | ] ] | ] i ! i
=120 —100 -80 —60 —40 —20 0.0 20

NORMALIZED DISTANCE "

FIG, 25 The variation of ion density in the cathode sheath for an E/p ratio of 8 with no volume sources
(S*'=0). This corresponds to field conditions present in a 'double-discharge™ type system with
no volume excitation.

VS



NORMALIZED DISTANCE ")

FIG. 26 The variation of electron flux in the cathode sheath for an E/_ ratio of 8 with no volume

sources (S'=0). This corresponds to field conditions present in
system with no volume excitation.

a

"double-discharge' type

= i i ] i i i i { !
= i | 1 I ! E?
E -
s T i
S~ ELECTRON FLUX — CATHODE REGION ~
>< o}
= [HOR
-t - ema
. = =
- -
=z _ el
o - =
o
- - —
©
s -
wsl) 10 -
w T —
pee ——
— i
o - -
w o F J
~N -
i B i
: I
s lo P g‘
" -
: .
.-3 l
10 ] ! i ! 1 l | i i | ! 1 ]
= 1.20 =100 —80 -6 —40 -20 0.0 20

SS



400, I ] T l e i i I T T i
o ELECTRIC FIELD — CATHODE REGION
5300, ..
wad
d
-y
(&)
oz
6200, b -
(851
w=d
(V5]
o - -
wi
ol
%?000 T -
o<
o
b~
5. I L 1. I R I ] | L N
Z1000. -800. —600. ~400. —200. 0.0 200,

NORMALIZED DISTANCE &

FIG. 27 The variation of electric field in the cathode sheath for an E/, ratio of 8 with volume
sources (S§'=10°) added. This corresponds to a '"double-discharge" type system with volume
excitation.
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29 The variation of ion density in the cathode sheath for an E/. ratio of 8 with volume sources

(5§'=10) added. This corresponds to a "double-discharge' type system with volume excitation.
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