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ABSTRACT 

A multip l e t emporal-mode transformation is applied to 
the finite diffe ence form of the space-dependent reactor 
kinetics equatio ns with the aim of reducing the truncation 
error. The tran s formation method is incorporated into an 
existing alterna ing-direction explicit code and is tested 
on ihree homogen eous problems in one and two dimerisions·.· 

as well as on a one-dimensional space-dependent CANDU-type 
problem. The nu merical results have confirmed some character
istics of this s olution formalism with respect to accuracy 
and stability. n addition, this study has identified some 
areas for improv ement to the multiple temporal-mode trans-· 
formation technique. 
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose 'Of 'The Study 

Nuclear reactor transient analysis forms an integral part of 
safety studies rela t ed to fa_st or short term effects in a nuclear 
reactor. Fast tran sients may result from temperature changes, prescribed 
reactivity changes i ntroduced by control rod motion, or accidental 
changes such as those induced by a loss of coolant. Safety analyses 
of large nuclear reactors require the accurate prediction of the 
neutron flux as a function of position and time. In past years, 
much effort has gone into developing solution techniques for solving 
the time-dependent multigroup reactor kinetics equations in one or 
more spatial dimensions. The so-called indirect methods, which 
include space-time synthesis(l, 2) and quasistatic methods(3), have 

been applied successfully to several types of reactor problems and 
can have small computing time requirements. However, these indirect . 
methods suffer from a lack of a definite error estimator. The direct 
finite differencemethods( 4,S, 6) can be applied in a simple manner to 

obtain an accurate solution of the space-time kinetics equations and 
have fairly defini t e error bounds. These methods generally require 
large amounts of c mputer time for multidimensional calculations. 
Recently, it has been demonstrated by Ferguson(G) that one class of 
finite difference methods, the alternating-direction explicit method, 
is capable of solv "ng some types of three-dimensional calculations at 
reasonable cost. An exponential transformation of the flux is 
employed in this method to reduce the truncation error and this allows 
the use of larger t ime steps to advance the solution. 

An alternati ve fonn of frequency transformation, the multiple 
temporal-mode transformation, has been applied by Garland et a1(7) 
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to a two-group two- imensional analysis of a CANDU-BLW nuclear reactor 
cell, and by Harms et al(B) to a two-group three-dimensional analysis 
of a bare cylindric 1 reactor, in both cases, using the alternating
direction implicit method. The purpose of this project is to 
investigate the app l icability of the multiple temporal-mode transfonmation 
with an alternating -direction explicit method to transient flux 
calculations of some CANDU type problems in one and two spatial 
dimensions. A comparison of the results with those obtained by an 

. existing code at CRNL, ADEP(g), will also be 9~ven. 

1.2 The Space-Dependent Reactor Kinetics Equations 

We consider the following reactor kinetics equations written 
in multigroup diffus ion approximatjon form( 4): 

1 a (- ) ·varct>g ,t 
g 

G 
= v·o (r,t)vcp (r,t) + I: E , (r,t)¢ ,{r,t) 

9 9 . 9'=1 99 g 
T . 

+ t f . c. ( r, t > (, s:g~G > 
i=l g1 1 (1.1) 

a (-at ci r,t) 
G 

= -A.c.(r,t) +2: P· ,(r,t}cp ,(r,t) 
1 1 9'=1 19 9 

Parameters appearing in the above equations have the following meanings: 

g = index number of the energy group 
i = index number of the delayed neutron precursor group 
G = total number of energy groups 
I = total number of delayed neutron precursor groups 

¢g =scalar neutron flux [n/(cm 2 -sec)] in ene.r9y group g 

c. = concentration (cm- 3 ) of i th precursor 
1 

D = diffusio n coefficient (em) for neutrons in ene.rgy group. g 
9 



v
9 

= speed (em/sec) of the neutrons in energy group g 

Egg' = intergroup macroscopic transfer cross section (cm-1
) from 

group g' to group g with the following structure: 

Egg= xg(l-B)vgrfg-rag-g~grg~' 
Xg = fission spectrum yield in group g 

vg = average number of neutrons per fission in group g 

rfg =macroscopic fission cross section (cm- 1
) in group g 

i:ag = macroscopic absorption cross section (cm- 1 ) in group g 

E9~, = macroscopic scattering cross section from group g to group g • 

e = total fractional yield of delayed neutrons per fission 

.Egg' = Xg(l-S)vg.Efg'+Eg'~ 

fgi = A;Xgi =probability (sec- 1 ) that the ith precursor will 

yield a neutron in group g where A.. is the decay constant 
1 . 

and Xg; the fraction of decays in delayed group i which 

yields neutrons in group g 

(cm- 1 ) for the ,.th P;g• = S;vg,Efg' =production factor precursor 

having fractional yield ei by fissions in group g' 

Boundary conditions for Equations (1.1) will be of the ho~ogeneous 
Neumann or Dirichlet type. At internal interfaces, continuity of the ·~ 

flux and the nonnal component of the neutron current, n~tOVq,, will be 
required. The initial flux and precursor distributions in space and 
energy must be specified. 

For convenience, the G+I equations, Equations (1.1 ), can be 
represented in the following matrix form: 

(1. 2) 

l ~. 

., 



.. 

where 

and 

ct>1(r,t) 
cp 2(r,t) 

cpG(r,t) 
e(r,t) = c1(r, t) {1 .3) 

CI(r,'·t) . 

Vl{V•DlV+l:ll) Vll:l2 

v2E21 v2(V·D2V+t:22) 

-------- ----~----------~----------------~---,--·--~-~-------~-

0 

0 

. • _-AI 

( 1. 4) 

~·. . . 

. . ' ~ 

: . ~~-;~.# ... , -~. ~-"':...·.·'[':1 

_·· :··,. .. 

·. ; ..-.' ., ~· . ~· 

Writing varia s equations in matrix form will simplify the discussions 
in later chapters. The matrix ~(r,t) will be referred to in Section 2.2, 
which contains the analytical development of the multiple temporal-mode 
transformation technique. 

. _ ..... __ "'·=-;' _:· 

< ' 

-. . . ... ... ~ 

' ... ·. ·.. . . .. 
. . ....... .. . 

' .' " ~. .' . 

. . . . ~ · .. 
.. ~· .-:: ~. . ... . . 



CHAPTER 2 

BASIS OF SOLUTION FORMALISM 

2.1 Multiple -Temporal-Mode Solution Repres~ntation 

The use of th multiple temporal-mode transformation in the 
solution representa t ion of the reactor kinetics equations is motivated 
by the following observations. First, for many transients the behaviour 
of the f ·lux fs bas-i cally exponential in nature. Second, the- neutron· 
groups and delayed eutron precursors are coupled, as shown in 
Equations (1.1 ), im lying that a transfonnation which retains this 
coupling explicitly is desirable. Thus the following Ansatz is chosen. 

where 

I 

et(r,t) = t~Jt(r,t)~ s
22

, (r)exp[a
2

• (r)t] 
21 =1 

L 
= Z: t~J~ o. (r, t)exp[ao 1 (r)t] · (l~uL) 
~I =1 .ll,;t, t .II, 

· (2.2) 

L=G+I = total number of energy groups and precursor groups 

eo(r,t) =lgrtohup g neutron flux ~g(r,t) fo~ i=g, (l~g~G) 
.~~, i precursor concentration C.(r,t) for 1=1, 

. 1 
(1-'i-'I) 

~2(r,t) = correction function of the energy group pr 
precursor group 

at• {r) =the i'th frequency 
s

22
.(r) =the corresponding i'th ,spatial moment of the :ith 

roup 

Equation (2.1) shows that the solution of the neutron flux or 
precursor concentration is represented by a sum of exponentia:l tenns 
weighted by a time·dependent correction function ~1 (r,t). The 
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multi-mode Ansatz, when viewed in ·historical perspective, does 
resemble the Ansatz previously used by Reed et a1< 4>, Wight et al(S) 
and Denning( 9), . 

~9 (r,t) = wg(r,t)exp[ag(r,t)J 

and that used by Ferguson<6>, 

~9 (~,t) : $g(~,t)exp[a(~)t] 

(2.3) 

(2.4) 

The difference in these three solution models is found primarily with 
the influence given to the time dependence. of the various groups. 

2.2 Analytical De elopment 

Consider an arbitrary time interval, ilt, for which the system 
parameters, Dg(r}, Egg• (r) and P;g•(~), are assumed to be given as a 
function of positio only. Performing the transformation by 
substituting Equati n (2.1) into Equations (1.1) gives at time t 

! 
9 

t=l f39R, ~ ( Y:)exp[aR, r ( r )t] [aR, 1 (Y: )1jJ9 (Y:, t) + ~t 1jJ 9 ( r' t)] 

. L 
= ~. sg~· (r)exp[a~· (r)t] [v·og(r)Vtv9(r, t)J 

~·· =1 

(1 ~g~G) 

(2.5a) 
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L 
R-~1 (3G+i. R.' ( r )exp[aR., (r)t] hI ( r )WG+i ( r. t) + ~t *G+i (r. t) J 

L 
= -~= 1 sG+i,R. ' (r)exp[aR.,(r)tJ A1wG+i(r,t) . 

L G 
+ L: ex p [a i I ( r ) t] L p . I ( r ) f3 I X, I ( r ) l/J I ( r ' t ) 
i'=l g 1 =l 19 g .· g 

(l~i~I) 

{2.5b) 

Equation (2.5a) and Equation (2.5b) are valid at all times within-· ·· · 
the interval under consideration. 

Writing the t ransformed equations in this form identifies the 
common multiplier containing the i'th order frequency, exp[ai.(r)t], 
in each but the second term on the right hand side of Equation (2.5a) . . 

If a normalization of the following type is imposed upon the spatial 
moments, 

L 
E s ii. < r) = 1 for all r and i, l~i~L, 
2 1 =1 

then at t=o, the fol lowing is obtained 
L 

1JJ
9
(r, t)v-o9 (r)~2:sgi' (r}exp[ai. {r)t] 

i'=l 
= 1JJ9(r,o)v·o

9
{r)v(l) 

= 0 

The initial condition is given by 

ei(r,o) = ~i(r,o) 

= L: w2(r,o)a22• (r) 
i ' =l 

t=o 

(2.6) 

(2.7) 

(2.8) 

Hence, by defining the initial time t=o as the beginni.ng of each time 
inte.rval under consideration~ the second term on the right hand side 

· of Equation (2.5a) is eliminated. Furthermore, at the beginning of 

.;f., 1 

: .. . ~ .. - ~:- ·. 

. :·, -, 

: ' -, ~ ·-
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each time interval, the initial condition, Equation (2.8), is obtained, 
equating the neutron flux, tj)

9
(r,o), or precursor concentration, Ci (r,o), ~ 

to the correspondin correction function at t=o. 

Since the temporal transformation has extracted the dominant 
time dependence of the neutron flux or the precursor concentration, 
the correction function, ~i(r,t),is now slowly varying in time • . Thus, 
within an arbitrary time interval ~t, the following condition is 
·assumed: ·-·· _, ·- - · -~ ; ..... - :. .. -· . - ... . . . . :'- -: :-:···· .. - .· . .- - ~·-- ... -·--- . . ._ . .;_ :- -

. - ~ .. . . . . . . . 

(2_. 9) 

Using the nonnalization condition, Equation (2.6}, and the above 
assumption, Equation (2.9), at t=o, the beginning of the time interval, 
Equation (2.5a) and Equation (2.5b} can be written as follows: 

L 
~ g ~ .. ~~1 flgR_ l ( r )ct_t I <r>w9 cr ,0) 

. L :G 
= V·ll

9
(r)i71)1

9
(r,o) \~1 f=

1
L

99
, (r)s

9 
• .t' (r)w

9
, (r,o) 

(2.10a) 
.. .-· .. . ~ . . . 

' - ·I 

. .. ~ . . . ' - - . •: ' 

(2. lOb) 

In Equation (2.10a) and Equation (2.10b), all expressions except the 
first one on the right hand side of Equation (2.10a} contain a 
summation of terms over £', l~t·~L. 



Because of the initial condition, Equation (2.8), the term 
V·D (r)Vw (r,o) is imply given by the neutron leakage at the 

9 g . 
beginning of the time interval. Thus, with the following definition 

. E g ( r , o ) = [ v. o ( r ) Vt!J ( r , o ) J 1 l/1 ( r, o ) . . g . g g 

= [v·o9 (r)v~9 (r,o)J!~9 (r,o) 
. . L . . 

= [V· o
9 

(r )vcp
9 
(r, o) ]/ [L: 1Pg (r ,o )Sg.Q,t ( r)] 

1'=1 . . 

(l~g~G) (2.11) 

and by equating the 1
1

th terms in each summation in Equation (2.10a} 

and Equation (2.10b), the following equations are derived: 

G 
; = Eg(r~o)liJ9 (r,o)s92 ,{r) +L: E

99
.(r)1J1

9
,(r,o)s

9
•
2
.(r) 

g'=l . . . . . 
. . . 

(l~g~G, 1~1' ~L) 

(2.12a.} · 

. (2 .12b) 



Equation (2.12a) ad Equation (2.12b) can be combined into the 
following matrix form: 

where · 

.. 
w2£'(r,o) 

I 

~i• (~,o) = llJG£' (~,o) = 

wG+ 1 , .Q} ( r , o ) 

and 

. w1 ( ~ , o > a1 R,. ( r ) 

w2(~,o)B2R.'{r) 

w6(~,o)s6£' (r) 

~G+l(~,o)BG+l,i'(r) 

~1 ElG I vlfll 

v2E2G I v2f21 

I 
I 

{2. 13) 

(2.14) 

vlfl I 

v2f2I 

!1' ( r, o) = 
I ~ G ~G 1 v G l:G2 v G ( EG +EGG) v G f Gl v G f G I 

-------------- --------~---------------------1-------------------· 
I -A. 

' 1 

I 

I o 

I 

0 

' . 

(2.15) 

10 
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Here ~·(~,o) differs from ~(~,0) of Eq. (1.4) in that the group g rieutron 
leakage, ~·Dg(~)~¢g{~,t), is evaluated specifically at the beginning of 
t he time interval (i.e. t=o). The group g neutron flux, ¢g(f,o), is known . 
at the beginning oft e time interval, because either the initial flux 
distribution is specified or it has been calculated from the previ-ous 
t ime interval. Thus the term Eg(~,o) can be calculated easily at t=o 
accordi.ng to Eq. (2.1 1). The elements of the coefficient matrix ~·(~,o) 
i n Eq. (2.15) are als all known at the beginning of the time interval. 
Eq. (2.13) is in fact an eigenvalue equation. There are only certain 
values of a

1
, (~)for which non-trivial solutions in §1 .(f,o) exist. 

· .Therefore, it can be- seen that the Ansatz in Eq. {2.1) is consistent~ . .-· 
with the solution expanded in the eigenfunctions of Eq. (2.15), together 
with their correspond "ng exponentials to account for the dominant time
dependence. It is then possible to evaluate the -frequencies, a1 • (~), and 
the spatial moments, s

11
, (~), for all ~ at each interval based on the 

most recent values of Eg{~,o), l:gg'(~) and Pig(r) by solving for the 
eigenvalues and the corresponding eigenvectors of Eq. {2.13). The 
computed eigenvalues are the frequencies, but to obtain the spatial 
moments, the eigenvec ors must be properly normalized, subject to the 
normalization condition in Eq. (2.6). This procedure is described in 

detail in Appendix B. The values of Eg(~,o), Egg' (r) and pig'(~) are 
updated at the beginn i ng of each iteration. 

It should be poi nted out that the spatial moments and frequencies 
are calculated at the beginning of each time interval from Eq. {2. 13) 
which is derived from Eq. (2.5a) and Eq. {2.5b) . by setting t=o and by 
utilizing the assumption, Eq. (2.9). Once they are calculated, they 
can be substituted ba k into the time-dependent transformed equations, . 
Eq. (2.5a) and Eq. (2.5b), leavi_ng equations in the correction functions, 
~1 (~,t) as follows: 

L 

·~ L flgR.' (Y.)exp[o.R., (Y.)t] ;t wgCf.t) 
. g 1';:1 . 

·- '•: 

.. , 



L 

= fi • D g ( r ) VlP g ( r, t) 2: s g 9,' ( r ) eX p [a~ r ( r ) t J 
£'=1 

G ·L 

+2: z:
99

,(r)lP
9
.(r,t)2: s

9
,
2

,(r)exp[a
2
,(r)t] 

. g'=l £'=1 
I L 

+ l:f 9 ;wG+i (r, t) L sG+i ,£' (r)exp[a£. (r)t] 
i £'=1 

L , 

- -
1 w

9
(Y., t) 2: i3g9.' (Y.)a.Q., (Y.)exp[a.Q., (Y.)t] 

vg £' =1 
(2. 16a) 

L 

2: sG+i,£' (r )exp[a£,{r)t] ~t lPG+i(r,t} 
£'=1 

L 

= -A;WG+i(r,t)L sG+i,£' (r)exp[a£,(r)t] 
£'=1 

G L 

+ 2: P;g• (r)lPg • (r,t) 2: s9• £' (r)exp[a£' (r)t] . 
g'=l 2'=1 

L 
_ lPG+i(r,t) 2: SG+i,£' {r)a2 , (r)exp[a£, (r)t] (l~i~I} (2.16b) 

£'= 

The correction func t ions, lP 2(r,t), can then be solved by standard 
numerical technique such as finite difference methods. 

2.3 Finite Difference Analysis 

The equations presented in the previous sections are continuous 

12 



in both spatial and temporal variables. rn-order to discretize the 
spatial variable, a spatial mesh is superimposed upon the reactor 
of interest. The semi-discrete form of the reactor kinetics equations, 
shown in Appendix A.2, are obtained when Equations (1.1) are 
integrated over the volume of each mesh cell using the finite 
difference approximation for the spatial derivative operator. 

The semi-discrete equations derived in Appendix A.2 for the 
t f 1 ~ d th · th t t · c-group g neu ron x, ~g' an e 1 precursor concen ra 1on~ 1~ 

at all mesh points are written as 

G I 

- ~t ct>g = ~Zt>g +L: Igg•4>g-' +~iei 
g'=l i=:=l 

G 

= -A-C. + ~ P. ,¢ I 
-1 1 L...J -lg g 

g'=l 

(2. 17) 

(l~i~I) 

When the neutron flux and the precursor concentration are 
arranged in a sequential manner, group by group and, within a group, 
mesh point by mesh -point, Equations (2.17) can be combined into 
the matrix form 

d - -
dt ¢ = A ¢ 

where ~ is a column vector of length (JxK)x(G+I) 

(2. 18} 

13 



<I> = 

~1 

~2 

and A is a square matrix of order (JxK)x(G+I) 

Q, + .!,, !.12 I1G .t,1 

121 Qz+T22 T2G f.21 

~1 ~2 . . . ~+~G I~, 

I, I 

F -2! 

. . . ~I 
A = ----------------------------------------------

.. r..,, -12 t]G 
I_A 0 . -1 
I 
I 

f.r 1 -12 . ErG 0 -A 
I 

. -:-:-! 

where (JxK) is the t ota 1 number of mesh points. 

(2.19) 

(2.20) 

Here lgg• is Q diagonal matrix containing terms representing 
intergroup transfer processes. P. , is a diagonal matrix representing -lg 
the production of delayed precursor i due to fissions in group g'. 

l4 



F . is a diagonal matrix representing the transfer of delayed -gl 
neutron into group g due to decays in precursor group i. ~is a 
stripe matrix containing terms which represent the averaged 
diffusion coefficients. In one- and· two-spatial dimensions, D is -g 
a three- and five-stripe matrix respectively. 

For any period of time, ~t, during which all terms in A are 
constant, the solution to Equation (2. 18) is given by · 

{2.21) . 

In practice, it is time consuming to calculate ~(~t) from Equation 
(2.21). Nevertheless, Equation (2.21) is significant and will be 
referred to later in Section 3.2 to establish an error estimator 
for the finite difference method. 

The transformation, Equation (2.1), can be written as 

where 
L 

nt(r,t) = ~ stt'(r)exp[at,{r)t] 
t'=l 

With the following definitions 
L 

. n t, j ' k = '2: S tt • , j , k ex P [at' ,j , k. t] 
t'=l . 

( 2. 22) 

(2.23) 

(2 .. 24a) 

(2.24b) 

15 



the semi-discrete form of the transformed equations for the _ 
correction functions at all points for group g, ~ , and for the 
.th m b "tt . h g . A d" A 3 1 precursor grou p, ~G+" can e wr1 en, as s own 1n ppen 1x • , · 

1 , 
as follows 

G 

st !L ;;, = D Q ;;, +'"" T Q . ;;, . 
-g dt '~'g -g-gYg .L.J --gg I~ l'i'g l 

g• =1 

. I 

+ "F .g._+.~G+" · - n ~ L-1-gl-u 1 1 -g g (2.25a) 
i 

G 

- ~+iijjG+i (l~i~I) (2. 25b) 

where n~ is the time derivative of g~, l~~~L. 

Thus when the correction functions for energy groups and 
precursors at all mesh points are arranged in ·a ·sequential manner~· 

the transformation 

(2.26) 

leads to the following compact representation of the transformed 
equations 

· (2.27a) 

16 



or 

(2.27b) 

where ~ is a column vector of length (JxK)x(G+I) containing the 
correction functions 

~ = ~G 

~G+l 

and n is a diagonal matrix of order (JxK)x(G+I) containing 
the effective exponential terms at all mesh points 

n = diag[n~,J 

{2.28) 

(2.29) 

gi has previously be n defined in Equation ('-2-.24b.). : A is the same 
as defined previously in Equation (2.20). 

Equation (2.27a or Equation (2.27b) is further discretized 
in the time variable by approximating the time derivative with a 
finite ·difference expression. This will result in a system of 
algebraic equations which can be solved to obtain the correction 
functions as will be shown in Chapter 3. 

l7 
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CHAPTER 3 

ALTERNATING-DIRECTION EXPLICIT ·METHOD 

The solution to the kinetics equations given by Eq. 

(2.21) involves evaluating eA~t. However, since A is not 

diagonal, it is time consuming to calculate eA~t directly. 

Both the alternating-direction explicit meihods (ADE)( 6 , 9) 

and the alternating-direction implicit methods (ADI)( 5), 

using a simple frequency transformation, can generate a 

good approximation of eA~t and thus can avoid the - above 

difficulty. In the ADE and ADI methods, the time deriva

tive in Eq. (2.18) is approximated by a finite difference. 

The time interval under consideration, called a ti~e step, 

is divided into two equal half-steps. Within each hal .f

step, the A matrix is split into two composite parts. 

T h us t he res u 1 t i n g a p p r o xi mat i on to .e A~ t i n v o 1 v e s i n v e r t i n g 

only part of the A matrix over each half-step. 

The A matrix is real, square and irreducible with 

non-negati ·ve off iagonal elements and n~gative di~gonal 

elements. These elements span 6 to 8 orders of magni-

t u d e • F r o m a m a t h e m a t i c a 1 p o i n t o f v i e ~" , E q . ( 2 . 1 8 ) 

represents a stiff system of equations in which the 

eigenvalues of the A matrix also span 6 to 8 orders 

of magnitude. 



Using a fin i te difference to replace the time 

derivative in Eq. (2 . 18) will necessarily introduce · 

truncation error difficulties and for transients with 

rapidly varying spatial changes sufficiently small time 

steps must be taken to obtain an accurate solution and 

to ma i ntain numerical stability. It has been found 

that the use of a ;imple frequency ~ransformation(S, 6 ,g) 
wi th the ADE or ADI methods permits larger time steps 

to be taken because of the smaller truncation error in 

the subsequent application of the finite difference 

approximation to the time derivative of the correction 

function ~. The urpose of this study is to assess the 

multiple temporal - mode transformation as applied to the 

ADE method as an a lternative method of reducing the 

truncation error. 

3.l Method Of Eva luating The Multiple Temporal-Mode 
Transformati on · 

It was decid ed at the beginning of the project that 

a. general kinetic computer program would not need to 

be developed for t his study . Instead, two subroutines 

have been written which calculate the spatial moments 

and frequencies a d these have been incorporated into 
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the existing CRNL code ADEP. ADEP, which is an alternati~g

direction explicit code, has been · modified to utilize 

. . . . 

.. : ... 



the two subroutines at the beginning of each time step 

to calculate the effective exponential terms and the 

diagonal element of the n matrix, which are based on 

the spatial mome ts and frequencies. We have used the 

multiple temporal-mode transformation technique with 
I 

an alternating-direction explicit method in this study, 

how~ver it could equally well be appl .ied to an implicit 

method. 

It is noted that in ADEP the delayed neutron source 

20 

is approximated by the precursor concentrations at the 

previous time level to avoid the added complexity of 

solving a larger number of equations simultaneously. 

Although the multi-mode temporal transformation, Eq. (2.1), 

has been assumed for all energy groups and precursors 

in order to set up the equations for eigenvalues and 

eigenvectors at t he beginning of the time step, it is 

not applied to th precursor groups during the time step. 

In effect, Eq . (2.26) and Eq. (2.27a) have been 

modified in the f ollowing manner: 

"i =-= QlJ; 

n d ~ $- = ( A rH1- l ) g tJ; 

where the vector llJ has been redefined as 

( 3. 1 ) 

(3.2) 



1Jll 
ij)2 

. 
lJJG 

'til :::: cl (3.3) 

with 1Jlg the correction function of energy group g and 

Ci the concentration of precursor group i . . Likewise, 

the n and n matri ces have been redefined as follows: 

0 {3.4) 

n = 
I 

0 

I 

' . 
0 

n = (3.5) 
0 

0 
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where ng is a di agonal matrix containing the effective 

exponential terms of energy group _ g at all mesh points 
. 

and ng is the time derivative of ng. 

For each half-step, the precursor concentrations 

are calculated i itially according to the following 

equation: 

ci(t2 ) - ci(t 1 ) 
-0.5AiCi (t2) 0.5AiCi(t 1 ) + == -

l\t 
G 
L: f.;g•<Pg.(tl) ( 1~ i~ I) 

. g '=1 

where tl and t2 are the times at the beginning and 

(3.6) 

the 

end respectively of the half-step under consideration. 

Here Ci and ~g represent the concentrations of precursor 

~roup i and group g neutron fluxes respectively at all 

mesh points. i\. is a diagonal matrix which has as its 
-1 

diagonal elements the deciy constants of precursor 

group i at all mesh points. Likewise, P
1 
•• is a diagona1 

- . g 

matrix whose elements represent the production of delayed 

precursor i due to fissions in group g•. 

The precursor concentrations at the end of the half

step, t = t 2 , are obtained from the following equation: 
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C;(t2 ) = [l+ li~ · Airl J[l- li~Ai]C;(t 1 ) + 

lit± f.;g•~g.(tl)f(l~i~I) (3.7) 
g I =1 . 

. 6t -1 . . The matrix inver 1on, [l +--A;] , 1s eas1ly performed 

since I and A. a e diagonal matrices. The precursor 
- -1 

concentrations o tained are then utilized in Eq. (l.t} 

to calculate the neutron fluxes which are given as a 

product of the correction functions, ~' and the amplitude 

functions, n. The calculation of the neutron fluxes will 

be described in the following section. 

3.2 The Advancement Matrix And Temporal Truncation Error 

As mentioned previously, in ADE and ADI methods, 

the A matrix is split into two composite parts within 
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each half-step. In this study, a time step is represented 

by 2At. In . general, the splitting of the A matrix can 

be represented as follOws: 

A = A1 + A2 Co~ t~ At) 
(3.8) 

A = A3 + ~ ( 6 t~ t~ 26t) 

The ADEP method of splitting the A matrix is employed 

in this study. The components of the matrices A1 , A2 , 

A3 and ~ are not described here but they can be 

obtai~ed by refe rring to the ADEP manua1( 9). 



For each half-step, the time derivative in Eq. (3.2) 

is approximated by a simple forward difference. There 

are various ways of approximating the other terms in 

Eq. (3.2) which do not involve space or time derivatives, 

but a central av e rage of the fluxes in time has been 

shown by Denning(g) to . give the smallest truncation 

error. Thus Eq. (3.2) is written in the discretized 

form as follows: 

n(t) ¢"(lltlt iji(o) = [A2 o.sg(t)n-1 (t)J n(t)lJ!(Llt) 

+ [A1 - o.s£(t)g- 1 (t)J n(t)lJ!(o) 

(3.9a) 
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n ( t ) ijJ ( 2Ll t l t- ijJ ( "' t ) = [A 4 
+ [ A3 -

o.sQ(t)g- 1(tl] n(t)1J!(2Llt) 

o.5g(t)n- 1 (tl] n(t)lJ!(Llt) 

( ~ ts_ t~ 2 ~ t ) ( 3 . 9 b ) . 
Here the time de pendence of the matrices n(t) and n(t) 

are explicitly i ndicated. Their values depend upon the · 

specific point i time within each half-step at which 

they are to be calculated. 

During the course of this project, three different 

ways of advancing the solution in time have evolved. 

In all three cases, the spatial moments and frequencies 

are computed once for each time step and are assumed 
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constant within that time step. For convenience, the 

three numerical algorithms considered are labelled MTTl, 

MTT2 and MTT3. · The following sections describe each 

numerical algorithm. In addition, the temporal truncation 

error estimator for each case is also given. 

3. 2a "MTTl 

According t o the formulation of the multiple .tem

poral-mode tran s formation technique . as describe~ ·;n 

Chapter 2, the t ime consuming evaluations of the exponen

tials in D ·. k have to be performed once for each half-
g ,J' . 

step. To minim "ze computer time, · the matrix n(t) and 

- ~(t) for both ha lf-steps are evaluated at t=~t and the 

solution formal · sm is modified with the following as

sumptions for the second half-step: 

•lli(£\t) = ~( £\ t) (3.10a} 

¥(2~t) = ~ ~t)0(2~t) (3.10b} 

Thus Eq. (3.9a) and Eq! (3.9b) can be combined to eliminate 

~(£\t) and the f ollowing equation is obtained: 

g~(2ilt) = ( !-L1t<~4 -o.s~~- 1 )J - 1 r!+iltC~ 3 -o.5~g-:r)Jg 
. [ ! -Ll t ( ~ 2 - 0 • 5 ~ g-:. ~ ) ] -1 . [ ! + ~ t ( ~ 1. - 0 • 5 ~~- 1 ) ] g~ { 0 ) 

(3.11) 



. . 
where 0(6t) and Q(6t) are simply re~resented by n and n 

respectively. Since 

~(o) = ~(o) 

and with the assumption in Eq. (3~10b), 

- ~(26t) = g(6t)~(26t) 

Eq. (3.11) can be written as 

~(26t) = ~ 1 ~(o) (3.12a) 

where 

~1 = [!-~t(~4-0.5~~- 1 )]-l [!+6t(~3-0.5gg- 1 )]~ 
. [!-~t(~2-0.5~~- 1 )]-l [!+6t(~,-0.5g~- 1 )]~ 

(3.12b} 

The matrix ~l t en is an operator which advances the 

solution over a time step. It may be called the ad

vancement matri for MTTl. 

In order t o establish an estimate of the error bound 

for the numeric al algorithm, the matrix ~l · is first ex

panded in a Tay or series · as follows: 

(3.13a) 

where C is a di agonal matrix given by 
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eilt~ = ~(ilt) (3.13b) 

As mentioned previously in Section 2.3, if all elements 

in the A matrix are constant over a time step, 2ilt, the 

solution to the kinetics equations, Eq. (2.18), is given 

by 
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The operator e 2 ilt~ can also be expanded in a Taylor series 

to yield 

(3.14) 

By defining the t emporal truncation error over one time 

step as 

T.E. (3.15) 

it is found that the temporal truncation error for MTTl 

is proportional to ilt. 

. -1 2 
T.E~ 1 = 2ilt(g~ - ~)+ O(~t ) (3.16) 

It is assumed that the terms proportional to ilt are 

the dominant source of truncation error. 

3.2b MTT2 

After some i itial test runs using the MTTl algorithm, 

it was observed t at calculations of the spatial moments 
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and frequencies equired more computer time than the 

evaluations of t e exponentials in n9,j,k· So the MTT2 

algorithm based on the basic solution formalism as described . 

in Ch~pter 2 is ttempted; In this case, the matrices n(t) 

and ~(t) are eva l uated once for each half step, resulting in 

a slight increas e in computer time as compared with MTTl. 

Thus Eq. (3.9a) and Eq. (3.9b) can be combined to eliminate 

. ~(~t) and the fo l lowing equation is obtained: 

n{2~t)~{2~t ) = . [!-~t(~4 -o.s~ .(2~t)g- 1 (2~t))J- 1 

. [!+~t(~ 3 -o.sg(2At)Q-l(2At))]~{2At)~-l{At) 
• [!-At(~ 2 -0.5~(At)~-l(At))]-l 
. [!+At(~ 1 -0.5~{At)~-l(At))]~(~t)~(o) 

(3.17) 

where the diagon a l matrices ~(At) and ~(2At) are -evaluated 

at t=At and t=2A t respectively. Likewise, their time . . 
derivatives g{At ) and ~(2At) are also evaluated at t=At 

and t=2At respec t ively. It should be pointed out that 

in MTT2f in cont r ast to MTTl, no further assumptions are 

invoked other th n the ones previously mentioned in 

Chapter 2. Sinc e 

~(2At) = g( 2 6t)~(2At) 

and 

~(o) = ~(o) 
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Eq. (3.17) can be written as 

( 3. 18a) 

where the advancement matrix, ~ 2 , for MTT2 is given by 

~ 2 = [!-~t(~4 -o.s~(2~t)~- 1 {2~t))]-l [!+~t(~ 3 -o.s~{2~t)~- 1 (2at))J 
g(2~t)g- 1 (~t)[!-~t(~2-0.5~{~t)~-l(~t})]-l 

[!+~t(~l-0.5~(~t)~-l(~t))]~{~t) {3.18b) 

The advancement matrix for MTT2 can also be expanded in 

a Taylor series t o yield 

(3.19) 

where 

~, = ~(~t)~ - l(~t) 

~2 = ~(2~t)~- 1 {2~t) 
· ate 

e -1 = ~(~t) (3.20) 

and 

Comparing Eq. (3.19) with Eq. (3.14), it can be seen that 

the temporal truncation error for MTT2 is also propor

tional to flt. 

(3.21) 

. "·· . 

-· .. ..... ' 

. . . ~ 
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3. 2 c ~1TT 3 

The previou s two cases, MTTl and MTT2, have been 

shown to have te mporal truncation errors over one time 

step proportiona l to ~t. The numerical results of some 

test problems, t o be presented . in Chapter 4, indicated 

that their perfo r mance, as regards stability, was 

different from that of the ADEP methods, with or without 

the simple frequ ency transformation. The temporal trun

cation error in he standard ADEP method has been shown 

by Denning{g) to be proportional to ~t 2 . Similarly, 

the ADEP method with the simple frequency transformation 

option also has an truncation error proportional to ~t 2 • 

In the MTT3 algorithm an attempt is made to minimize 

the temporal orde of the truncation error wit~ the fol- . 

lowing assumption s : 

~(26t)~-l(~t ) = ~(~t)~- 1 (o) 
= e~t~ 

where the matrix W is defined as 

w = ~(~t)~- l (6t) 

= ~(26t)g - 1 (26t) 

. 

(3.22a) 

{3 .. 22b) 
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Here the diagonal elements of ~(At) and ~(At) are evaluated 

at t=At, but thei values are used for both half-steps. Thus 

it is assumed tha t the effective frequencies, W, are the 
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same for both hal f -steps. Based on these assumptions, 

Eq. (3.9a) and Eq. (3.9b) are combined to yield 

~(26t)~(2At) = [l-At(~4 -0.5~]-l [!+6t(~ 3 -0.5~)]eAt~ 
[!-6t(~ 2 -o.5~]-l [!+At(~ 1 -o.5~)]e~t~~{o) 

(3.23) 

Eq. (3.23) can be represented as · 

~(26t) = ~ 3 ~(o) ·(3.24a} 

where the advancement matrix, ~ 3 ,for MTT3 is defined as 

~ 3 = [!-6t( A4 -0.5~)]-l [!+At(~3 -0.5~)]eAt~ 
. [!-~t( ~2 -0.5~)]-l [I+At(~ 1 -0.5~)]e 6t~ 

{3.24b) 

This advancement matrix can be expanded in a Taylor series 

to yield 

(3.25) 

- : ~~~ 
Thus the temporal error for MTT3 is proportional to At . 

(3.26) 

It should be pointed out that the assumptions, 

Eq. (3.22a) and Eq. (3.22b), are somewhat arbitrary and 

have modified the basic formalism of the multi-mode 
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temporal transformation technique. The numerical algorithm 

MTT3 is mainly intended to provide more information on the 

relation between the temporal truncation error and numerical 

stability. 

Though it has been mentioned that the multiple 

temporal-mode transformation technique is applied in this 

study with an ADE method, the temporal truncation error 

analyses just described for MTTl and MTT2 are also 

applicable to an ADI method. As can be ~een from Eq. (3.16) 

and Eq. (3.21), the expressions involvi~g 6t are independent 

of the splitting f the A matrix and hence the equations 

hold for both ADE and ADI methods. 

To summarize then, for all three algorithms, the 

pointwise spatial moments and frequencies a·re computed at 

the beginning of each time step as described in Appendix B. 

These are assumed constant within the time step. The 

correction functions are assumed to be updated at the end 

of each half-step according to the finite differencing 

scheme, Eqs. (3.9a) and {3.9b}, though they are not directly 

calculated in the code ADEP. Thus the solution at time 

t+6t can be found, based on the known flux and precursor 

concentration distributions at time t. The three a~gorithms 

differ in the way the amplitude function is represented. 



CHAPTER 4 

NUMERICAL RESULTS 

As stated in the introduction, the purpose of this 

study is to assess the applicability of the multiple 

temporal-mode transformation method to the analysis of 

transient behavior in CANDU-type reactors. It was found 

· in the early stages of this project that the method was 

numerically stable only at time steps considerably smaller 

than those requi r ed for accurate solutions with the exist

i~g ADEP code which uses a simple exponential transformation. 

Much effort has been devoted to improving the numerical 

methods in an at empt to avoid the problem of instability 

at larger time s t eps, with limited success. This chapter 

presents the numerical results obtained with the method 

for four test ca es. The ADEP code was used to . generate 

solutions for comparison purposes. For convenience in 

later discussion s , the standard method in ADEP with no 

frequency transformation is referred to hereafter as 

Standard ADEP. ADEP-Exponential refers to the option in 

ADEP which uses a simple group-dependent frequency trans

formation. All .computer programs were run on the CDC 6600. 

The first three cases considered are homogeneous 

pro b 1 ems w i t h no spat i a l chang ·e i n the n e u t ron f 1 u x . They 
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served as simplified tests of the multiple temporal-mode 

transformation technique. The last test case ·is a space

dependent proble with properties based on a CANDU-type 

reactor. All fo r test cases are specified in Cartesian 

coordinates. Th e boundary condition for all test cases 

is of the homage eous Dirichlet type, with zero flux on 

the outer reacto boundary. It should also be noted that 

in the notation employed, one time step is represented by 

2L\t. 

At time ste ps for which the methods MTTl, MTT2 or 

MTT3 were unstab l e, the numerical difficulty occurred in 

one of the follo wing forms: 

a) The arg ment in the exponential exp(ailt) is too 

large f or the machine to handle. 

b) A singular matrix during normalization of the 

eigenvectors (see Appendix B). 

c) Very large positive or negative fluxes, followed 

by (b). 

4.1 · ·rest Case 1·; Ho~ogeneous Slab . 

Geometry and composition: Appendix C.l 

This test case represents a bare homogeneous slab 

reactor, 240 em in width, with two neutron _ groups and one 

precursor group. A 10 em uniform spatial mesh was used. 
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The initial core was supercritical by- 9.5 mk and no 

further perturbation was applied. 

The initial cosine flux distribution was normalized 
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to unity at the reactor centre. The exact solution to the 

semi-discrete equations of this problem was generated by 

an eigenvector expansion technique: = ~ sy finite differe~cing 

i n space, the ex act leakage was approximated by replacing 

V 2 ~ with -B 2¢ wh ere the buckling, B2 , is given by( 4) 

In the above exp ession, 6x is the mesh spacing and K is 

the number of me s h intervals in the x direction. 

F~gure 1 sh ows the time behavior of the centre point 

thermal flux. For this homogeneous problem with no spatial 

change, it also r epresents the relative increase in flux, 

~g(t)/~g(o), for both energy groups at each mesh point. 

It has been shown in Section 3.2 that the MTTl and 

MTT2 methods hav e temporal truncation errors proportional 

to 6t whereas wi t h MTT3 it is proportional to At 2 • The 

numerical result of this test case indicated that the per

formance of MTTl and MTT2 was clearly different from that 

of MTT3. 

.... =-'• "' l 
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Table 1.1 shows the centre point thermal flux ob

tained by MTTl and MTT2 at time steps for which they were · 

stable. At ~t = 5 ~sec and at ~t = lO . ~sec, the neutron 

fluxes obtained by MTT2 at all mesh points agreed with 

the · exact soluti ns to seven significant digits. Like

wise, at ~t = 5 sec, MTTl _ gave solutions with the same 

accuracy at all .mesh points. At ~t = 8 ~sec, the fast 

and thermal flux es obtained by MTTl at points near the 

boundary had la r ge errors at the start of the transient. 

At t = 0.4 msec, the fast flux at mesh point 24 differed .· 

from the referen ce by- 40% (see Table 1.2a and Table 1.2b). 

After 1000 time s teps, at 0.016 sec into the transient, 

the _ group fluxes approached the exact solution with less 

than 1.0% error a t all mesh points. 

Table 1.2a and Table 1.2b summarize the time-dependent 

behavior of the fast flux at mesh points 2 and 24 respec

tively. These points are symmetric about the reactor 

centre and should exhibit an identical transient response. 

For this test case, MTTl was unstable at ~t = 10 ~sec and 

MTT2 unstable at ~t = 20 ~sec. At these time steps, the 

transient could · be calculated accurately for a few steps, 

but after some 20 to 50 steps, large errors accumulated 

causing the runs to abort. The results obtained by MTTl 

at ~t = 8 ~sec became more symmetric after 1000 time 
-· · .. ~·. 
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Time 
(sec) 

0 
.004 

·• 008 
. 012 
. 016 
.020 
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Tab1 e l . 1 ·centre Point Thermal F1 ux 
• • ~~ • - ' . ·• ~ ;;< 

ilt ·(sec) 
Exact MTT1 MTT2 

5 X 1 o- 6 8 X 1 a- 6 5 X 1 o- s 

1 . 0 1 . 0 1 . 0 1 . 0 

1.047541 1.047541 1.054157 1.047541 
1.095943 1.095943 1.105021 1.095943 
1.145079 1.145079 1.154554 1.145079 
1.194961 1.194961 1.204600 1 . 194961 
1.245599 1.245599 -------- 1.245599 

1 x 1 o- s 

·1 . 0 

1.047541 
1.095943 
1.145079 
1.194961 . 
1.245599 

• ~ \ • ,..-.~ . - , r • :.~:;. • • 

·. . 
. •:. 

. . . . . . ~ 

~- ' 
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Table 1.2a Fast Flux (x 1 0) at Mesh Point 2 

Jjt {sec} 
Time Exact MTT2 "MTTl MTT3 
(sec) 2 x 1 o- 5 8 X 1 o- 6 1 X 1 o- 5 2 x 1 o- 4 

.7374471 .7374471 .7374471 .7374471 .7374471 
.0004 .7478335 .7478335 .7478205 .7477986 .7424215 
.0008 .7513417 .7513417 .7513350 (a) .7468733 
.0012 .7548552 .7548546 .7548566 . . 7508999 
.0016 .7583739 .7581164 .7583912 .7546847 · 
.002 .7618980 .6233239 .7619445 . 7584131 
.006 .7974313 (a) .7992457 . . 7957506 
. 01 .8335033 .8379445 (a) 
.016 .8886397 .8950558 

Table 1.2b Fast Flux (x 10) at Mesh Point 24 

Time 
(sec) 

Exact 
Jjt {sec) 

MTT2 MTTl MTT3 
2 X 10- 5 8 X 10- 6 1 X 10- 5 2 X 10- 4 

0 .7374471 .7374471 .7374471 .7374471 .7374471 . 
. 0004 .7478335 
.0008 .7513417 

.7478335 .4352222 1.689272 

.0012 

.0016 

.002 

.006 

. 01 0 

. 016 

o7513417 .8972262 (a) 

.7548552 . . 7548552 

.7583739 .7583727 

.7618980 .7616590 

.7974313 (a) 

.8335033 

.8886397 

.8485059 

.8259797 

.8141915 

.8130789 

.8426998 

.8961805 

.7442919 

.7493673 

.7532372 

.7565637 
. . 7599961 

.7992400 
(a) 

(a) Program abo r ted because of numerical difficulty. 

~ ...... . .. 
· . 
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steps but still errors of - 1% were present. 

Tables 1.3a, 1.3b and 1.3c show the centre point 

thermal flux obtained by MTT3, ADEP-Exponential and 

Standard ADEP. MTT3 was stable at ~t. ~ 0.1 msec with 

less than 0.1% error at 0.1 sec into the tr~nsient. 

Standard AOEP gave solutions with the same accuracy but 

at a smaller time step, ~t = 10 psec. ·The ·performance 

of ADEP-Exponential was superior tri both methods. At 

.. ~ 

~t = 0.2 msec, ADEP-Exponential gave solutions comparable 

in accuracy to those of MTT3 at ~t = 0.1 msec. The in

crease in computer CPU time was - 10% when the frequency 

transformation was used in ADEP whereas application of 

the multiple tem poral-mode transformation required 

considerably mor time (see Table 1.5). 

Figure 2 pl ots the percentage error in the centre 

point thermal fl ux as a function of time step size for 

the MTT3, Standa r d ADEP and ADEP-Exponential methods 

at 0.02 sec and 0.1 sec into the transient. The plots 

show that for an identical time step size, Standard ADEP 

has ~he largest error when compared to MTT3 and ADEP

Exponential. In addition, the plots for Standard ADEP 

have a slope of - 2. This clearly indicates that the rate 

of convergence i proportional to ~t 2 • The slopes of the 

plots for MTT3 and ADEP-Exponential cannot be so well 

defined. It is believed that the frequency transformation 

• , ·· • I 



Table 1.3a Centre Point Thermal Flux by MTT3 

~t (sec) 
Time Exact 2 x 10- 5 4 x 10- 5 5 x 10- 5 1 x 10-~ 
'{sec} 

0 1.0 1.0 
.01 · 1.12042 1.12040 

1 . 0 

1.12036 
.02 1.24560 1.24558 1.24552 
.04 1.51058 1.51054 1.51046 
. 06 1. 79637 1. 79631 
.08 . 2.10466 2.10459 
.10 2.43731 2.43722 

1. 79621 
2.10447 
2.43708 

1 • 0 

1 . 1 2032 
1 • 0 

1.12007 
1.24547 1.24517 
1.51040 1.51003 
1.79614 1.79571 
2.10439 2.10389 
2.43699 2.43642 
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Table 1.3b Cent e Point Thermal Flux by ADEP-Exponentia1 

~t . (sec) 
Time Exact 5 X 10- 5 1 X 10-~ 2 X 10- 4 5 X 10- 4 1 X 10-~ 
(sec 

0 1.0 1.0 
. 01 1.12042 1.12038 

1 • 0 . 

1.12028 
1 . 0 

1.11961 . 
.02 1.24560 1.24554 1.24542 1.24472 
~04 1.51058 1.51048 1.51032 1.50957 

1 • 0 

1. 23251 
1.49860 

1 • 0 

1.08734 
1.19058 
1.42647 

.06 1.79637 1.79622 1.79603 1.79523 1.78476 1.69702 

.08 2.10466 2.10 448 2.10424 2.10340 2.09330 1.99911 

.10 2.43731 2.43 709 2.43681 2.43590 2.42613 2.33092 
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Table 1.3c Centre Point Thermal Flux by Standard ADEP 

6t (sec) 
Time Exact 1 x 10- 5 2 x 10- 5 . 5 x 10- 5 1 x 10-~ 2 x 10- 4 

{sec 

0 1.0 1.0 
. 01 1 . 1 2 04 2 1 . 1 2 0 3 6 
.02 1.24560 1.24549 
.04 1.51058 1.51035 
.06 1.79637 
. 08 2.10466 

1.79 00 

2. 1 0414 . 

.10 2.43731 2.43661 

1 • 0 

1.12020 
1.24517 
1.50966 
1. 79490 
2.10257 

1 . 0 

1.11907 
1.24292 
1.50493 
1. 78731 
2.09170 

1 . 0 

1 . 11 530 
1.23533 

. 1 . 48885 -

1.76148 
2.05472 . 

1 • 0 

1.10348 
1.21043 
1. 43501 
1.67471 
1.93057 

2.43449 2.41988 2.37018 2.20375 

. "' , .. 
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has complicated the accumulation of the truncation error{ 6 )~ 
Both MTTl and MTT2 were very accurate with stable time step 

sizes and hence t he percentage error has not been plotted. 

A small increase in time step size. from stable values has 

caused the MTTl and MTT2 methods to b~come unstable. 

One ·reason· for numerical instability is the so-called . 

feedback effect f the frequencies( 6). · Recall that the 

spatial moments and frequencies are computed at the begin- . 

ning of each time step by solving for the eigenvectors and 

eigenvalues of the coefficient matrix M' {~,o) · in Eq. {2.13). 

The diagonal elements of the matrix ~·(~,0) are of the 

form 

v (E + E ) 
. g . . g gg 

where Eg~g is the group g neutron leak~ge at the beginning 

of the time step. For a one-dimensional problem, ~g at a 

mesh point j is defined as 

<Pg,j - cf>g,j-1)/"" . 
- Dg,J· ~ J. 

fix j · ·-9 ' 

where ~xJ. and D J" etc. are the appropriate mesh· spacings 
. g' 

and diffusion coefficients associated with the mesh 

. point j. Thus, the percentage errors in the computed ~g,j 
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can be large, depending on the magnitudes and distribution 

of the errors in the neutron fluxes. Table 1.4 compa.res 

the exact values of Eg with the cross sections Egg 

It can be seen t at because Eg and Egg are comparable, 

large errors in can introduce large errors in the _g 

diagonal element , Eg + ~gg: This may lead to inaccurately 

computed frequen cies which in turn affect the accuracy of 

the solutions at the end of the · time step . . This point is 

demonstrated by t he following observations. By replacing 

the · terms Eg,j w· th their exact values, -Dg.B2 , the time 

step size required for stable and accurate solutions could 

be increased from 5 psec to 0.5 msec for MTTl and from 

10 psec to 0.01 sec for MTT2. Only at small enough time 

steps will the frequency feedback effect be insignificant. 

Table 1.4 Removal Cross Sections and Exact Eg Terms 

Group ·tgg . Exact .Eg 
·' 

1 - ·. 81 54 E-2 ·. -.2241 E-3 
.2 . 7.344 E-3 -. 1488 E-3 

Table 1.5 shows t e computer CPU time for this test case. 

The times quoted were based on runs of 1000 time steps 

on the CDC 6600. The computer time requirements fo.r the 

. ~ .. :. 
'T • -~ ~ • . • 

~~ .. 
~ .: : 

,,;.·: 
·-

-· ~.; 
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different methods will be discussed in detail in Section 4.6. -

Tab 1 e 1 .. 5 CPU Time for 1 0 0 0 Time Steps 

Standard ADEP- MTTl MTT2 MTT3 
CPU Ti.me AD p · Ex~onent i a 1 

( s·e·c) · 22 . 2 24.9 241.9 252.4 246.8 

..• -····-. - .. . .... ~ · ~- .. -· ··- . 

· 4.2 Test Case 2 , .Homogeneous Slab 

Geometry an d composition: Appendix C.2 

The multipl e temporal-mode transformation technique 

has previosly be en applied by Garland et al,(]) Harms 

et al,(S) and H rding(lO) with an implicit method to 

problems involvi g two energy groups and no -delayed 

neutrons. In th e ir works, small time step~ in the ra~ge 

of microseconds were used. This test case is intended 

primarily to demonstrate that the instability problem 

encountered in test case 1 is not peculiar to the reactor 

model used in test case 1, which included one delayed 

precursor group. 

The geometry of this test case is identical to that of 

test ' case 1 . I t d i f fer s on 1 y i n that no precursor , group 

is considered. The remaining lattice parameters are the 

same as in case 1. Only MTTl, MTT3 and ADEP-Exponential 

.. 
:··-

- .. . ·~ .... ·· 

• . .· --

. " • "• . 

. :; .- ...;~ 
.• .· 



were tested on this problem. The exact solution to the 

semi-discrete equations was also obtained by an eigen-

vector expansion technique as in case 1. 

The numerica l results with respect to accuracy and 

stability indica t ed that the performance of each method 

·was simi 1 a r to ·that in tes·t case 1. . It is expected . that 

MTT2 and Standard ADEP will exhibit the same character-

istics as they d1d in case 1. 

The centre oint thermal flux is summarized in 

Table 2.1. Tabl s 2.2a and 2.2b give the fast flux at 

two points symmetric about the reactor centre. At 0.1 

sec into the transient, the solutions obtained by MTT3 o~ 

ADEP-Exponential at the symmetric points were identical 

and differed from the exact solution by less than 0.05%. 

At the same step size, ADEP-Exponential results were more 

· accurate than the MTT3 results. This agreed with the 

observation in te t case 1. MTTl at ~t = 8 ~sec ~gain 

. gave poor results . Though the fast fluxes at points near 

the boundary conv erged, they showed a l.O% _error at 0.016 

sec into the tran s ient. The centre point thermal flux · 

at this time also showed a 1.0% error. 

At ~t = 5 ps ec, all three methods · gave solutions 

which agreed with the exact solution to seven s~gnificant 

J• ! 
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Time Exact 
· csec) 

0. l.O 
.004 1.04831 
.008 1. 09911 
.016 .1. 20821 
.02 1.26676 
.10 3.26371 

Table 2. 1 . Centre Point Thermal Flux 
. . . ~ . . . 

. .... . · _llt(sec} 

"MTT1 MTf3 . . . . . . . · · ~EP~EXeonenti a 1 
· a ·1r;.t a- s : .- , .x =-,a-s · 1 . ~.TO~ ... ···.: s··· :x · '-~ l o-s : ·,-·x · i0~ 4 · .· 

1. 0 1. 0 1. 0 1. 0 1.0 
1.05513 1.04830 1. 04798 1.04830 1.04821 
1.10876 1 . 09910 1. 09871 1.09910 1.09901 
1.21914 1.20820 1.20783 1.20820 1.20810· 
------- 1.26675 1.26636 1.26674 1.26664 
-------- -------- 3.26267 3.26367 3.26340 
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Table 2. 2a Fast Flux (x 10) at Mesh Point 2 

· · ~t {sec) · 

Time Exact ·Mrrl . . .. . MTT3 . ' ADEP~ExQdnentia1 . 

(sec) 8 ·x · o-6 · ., .,<. .10- 5 · 1 X .,0-lt s ·x 10-s · · 1 · x·1o~tt 

0. .737447 .737447 .737447 . 737447 . .737447 .737447 
.004 .780398 .781 008 . 780392 .779753 . 780270 . . . 779784 
.008 .818214 .821 687 .818208 .817775 .818154 .817924 
.016 .899433 .906762 .899424 .899112 .899413 .899308 
.02 . . 943017 ---- -- . 943007 . 942702 .943002 . 942910 .. ' ·.6> \-•· 

.10 2.42961 ------- ------- 2.42884 2.42959 2.42938 

Table 2.2b Fast Flux (x 10) at Mesh Point 24 

L\t {sec~ 

Time Exact MTTl MTT3 ADED-EXQOnential 
{sec} · -8 ·x ... ,0- 6 . , .·>tlo-s · ., ·.x .·lo- 4 · · 5 · x ·· to-s ·· 1 · x · 1o~ 4 

. 0. .737447 .737447 .737447 .737447 .737447 .737447 
.004 .780398 .805834 .780374 .780609 .780506 .780792 
.008 .818214 .830293 .818201 .820910 .818254 .818344 
.016 .899433 .908064 .899422 .897728 .899431 .899385 
.02 .943017 ------- .943007 .942843 .943010 .942944 
. 10 2.42961 ----- - ------- 2.42884 2.42959 2.42938 



digits. MTTl was unstable for a ~t > 10 ~sec and MTT3 

unstable for ~t > 0.2 msec. 

Table 2.3 shows the computer time for this test 

case, based on runs of 1000 time steps on the CDC 6600. 

Numerically, this test case was adapted from case 1 by 

simply setting the delayed neutron fraction, B, to zero. 

For ADEP-Exponential, the same amount of computational 

effort was invol ed in both cases and therefore the 

computer time required was the same (see Table 1.5 and 

Table 2.3). In contrast, the computer time required for 

MTTl or MTT3 in his case was greatly reduced from that 

in case 1. 

Appendix B describes the procedure for determining 

the eigenvalues nd eigenvectors of the coefficient 

matrix at a mesh point. In a system with no delayed 

neutrons, the nu ber of spatial moments and frequencies 

are reduced. The order of the coeffi~ient matrix is then 

G instead of G + I, G and I being the number of energy 

groups and precursor groups respectively. likewise, · 

fewer equations are involved in normalizing the eigen

vectors. For MTTl or MTT3, there is a large difference 

in computer time between test cases 1 and 2. This 

indicates that th calculation of the spatial moments 
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and frequencies accounts for a significant part of the 

computer time. 

Table· 2. 3 CPU Time for 1000 Time Steps 

ADEP- MTT1 MTT3 
CPU Ti me - Expoh~titi. al 

(sec ) 24.9 130.4 131.3 

4.3 Test Case 3, .Homogeneous Square 

Geometry and composition: Appendix C.3 

Perturbation: Step change ~ ~ 2 = -.369 x 10-a. cm- 1 

This test case represents a bare homogeneous square 

reactor, 200 em n a side, with two neutron _ groups and 

one precursor group. A uniform mesh spacing of 20 em 

resulted in an 11 x 11 spatial mesh. The test case was 

adapted from a three-dimensional test case used by · 

Ferguson< 6>, with the buckling o
9

B2 added to the absorp- · 

tion cross sections to account for neutron leakage in 

the z-direction. The initial configuration was made 

critical by dividing the production cross sections by · 

the critical keff. The perturbation was introduced by 

a step decrease in the thermal group absorption cross 

section. It had a reactivity worth of - 5 mk. 
·, . 

01 

··:.-: .... ·· 

. , : .• ·-~.· . ~~~. •. 

~ ~. . - -. . 
- ,Jo •• :.:_ 

~ . '."... :: . . .. ·.,.:_:~: 

.... -~_:·>::-:··.· ;s:_;:, 

\·: 
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Only a short transient was simulated in this test 

case. Since numerical results for such a short transi~nt 

were not given by Ferguson, a ~omparison of results be

tween the multi- mode temporal transformation method and 

the 3DKIN method( 6) was not attempted. It should be noted 

that the initial reactor power was normalized to a different 

value in this te t case. The solutions obtained by ADEP-

Exponential at a very small time step, At = 1 psec, were 

used as reference solutions. The Standard ADEP method 

was not tested i n this case. 

Tables 3.la to 3.lc summarize the centre point 

thermal flux obt ined by the different methods. MTTl was 

found to be unst ble at At = 8 ~sec in this case and MTT2 

was unstable at At= 15 psec. As can be seen from Table 

3.la, the results for MTTl and MTT2 were very accurate 

at stable time steps. MTT3 was found to be unstable at 

At= 0.2 msec. At At = 0.1 msec, both ADEP-Exponential 

and MTT3 were accurate, with less than 0.1% error in the 

centre point ther al flux at 0.04 sec into the transient. 

The results produ c ed by MTT3 were slightly more accurate 

in this case. 

At time step for which MTTl, MTT2 or MTT3 were 

unstable, the num erical results showed an o.stillation 



Table 3.1a Centre Point Thermal Flux 

Time Refe ence (*) NTTl MTT2 
.. 

(sec) il.t ::: 5 X 10 .. 6 ~t = 1 · X 1 0 5 
. . . . . 

0 . . 66 00856 . .6600856 .6600856 

• 002 . . .670 6579 .6706579 .6706579 

~004 .6811847 .6811848 .6811848 

.006 .6916669 .6916671 . 6916671 

.008 .70 21047 .7021049 .7021049 

. 01 ~71 2 4983 .7124986 .7124986 

· (*) Refere nce .Solution obtained by ADEP-Exponential 
at flt = ll-lsec 

Table 3 .lb Centre Point Thermal Flux · 

MTT3,~t (sec} 
Time 
(sec) 1 X 10- 5 1 X 10- 4 

0 . .6600856 .6600856 

.002 .6706574 .6706592 

.004 .6811838 . 6811 .812 

.006 .6916655 . . 6916590 

. 0 08 ·- .7021029 .7020924 

. 01 .7124961 .7124818 
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Table 3.lc Centre Point Thermal Flux 

Time 
(sec) 

0. 

.002 

.004 

.006 

.008 

. 01 

.6600856 

.6706572 

.6811836 

.6916654 

.7021027 

.7124959 

1 x 1 o-- 4 

.6600856 

.6704483 

.6809919 

.6914786 

.7019144 

.7123071 

.6600856 

.6697463 

.6799072 

.6902214 

.7006170 

.7110284 

54 
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Table 3.2 Fast Flux Distribution Along Horizontal Mesh Line 
. {**) 

k=6 f or MTT2 at ~t = 2 x 10- 5 sec · 

. ' . . . . . .. . .. 

X - t ·= ~ooo2 set · · · · t · = - ~0004 sec -t -::: · ~ 0006 · sec · 

(em) - · · .. Ref.(~} · MTT2 - . R-f (~} . e . . - 'MTT2 - · · Ref~- (~) · . 'MTT2 
0 0. 0. 0. 0. . . 0. 0. 

20 .55803 • 55803 .55891 .55886 - .55980 .54813 
40 1. 0614 1. 0614 1. 0631 T.0631 1. 0648 1. 0971 
60 1.4609 1.4609 1.4633 1.4634 1. 4656 1.4067 
80 . 1.7174 1.7174 1. 7202 1.7200 1. 7229 1.7881 

100 1. 8058 1.8058 1.8087 1. 8089 1. 8116 1.7605 
120 1.7174 1.7174 1. 7202 1. 7201 1. 7229 1.7290 
140 1 . 4609 1. 4609 1. 4633 1. 4631 1.4656 1. 4782 
160 1. 0614 1. 0614 1. 0631 1.0633 1.0648 1.0392 
180 . . 55803 .55803 .55891 .55884 .55980 .57137 
200 0. 0. 0. 0. 0. 0. 

(**) MTT2 Unstable at ~t = 2 x 10- 5 sec. 
· (*) Reference Solutio obtained by ADEP-Exponentia1 at ~t = 1 x 10- 6 sec. 



about the reference solutions from mesh point to mesh . 

point. Mesh points close to the reactor boundary were 

the first to show signs of instabilities. The errors 

at these points then propagated towards the inner mesh 

points. After s me 20 to 50 steps, numerical difficulty 

was enco~ntered nd caused the run to abort. To demon-

strate this poin the fast flux distribution obtained 
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by MTT2 at ~t = 20 ~sec is shown in Table 3.2. This run 

aborted after- 5 time steps. It can be seen that just 

before the run terminated, the magnitude of the oscillation 

in the neutron f ux was still small~ The error at each 

mesh point was less than 5%, but such errors were large 

enough to cause umerical difficulty in the next few time 

steps. In this example, a singularity in the matrix 

occurred at t = 0.00064 sec. 

Table 3.3 lists the computer times required in this 

test casa for runs of 500 time steps on the CDC ·6600. 

Table 3.3 CPU Time for 500 Tjme Steps 

ADEP- MTTl . MTT2 MTT3 
CPU Time · xQorieritial 

(sec) 43.8 424.7 441.3 424.2 



4.4 Test Case 4, 1-D Space-Dependent Pioblem 

Geometry and composition: Appendix C.4 

Perturbation: Regions 2 and 3 

This test case ·is a one-dimensional space-dependent 

problem, with two energy groups and two precursor groups. . . 

The problem represents an idealized configuration of a 

CANDU-type re~ctor. Non~uniform mesh spacings of 15 and 

30 em form a 33 point spatial mesh (see Appendix c·.4). 

Regions 2, 3, 4 nd 5 represent the core and regions 1 

and 6 the ·reflector (see Fig. 3). 

The test case was a~~pted from a two-dimensional 

CANDU benchmark problem. The 2-D benchmark problem 

57 

simulates voiding in one half of the core, regions 2 and 

3, for 0.6 sec, followed by subsequent shut off rod in

sertion in the central part of the core, regions 3 and · 4~ 

from 0.6 to 1.5 sec. Because of the large amount ~f 

computer time required by .the multiple temporal-mode 

transformat~on technique to follow the complete transient, 

only the initial part of the transient was calculated in 

this test case. 
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The initial reactor configuration was made critical 

by· dividing the reduction cross sections by the critical 

keff" The initi a l flux distribution is shown in Fig. 3. 

The perturbation was introduced by a ramp decrease in the 

thermal group ab sorption cross section in regions 2 and 3. 

The transient wa s followed for 0.04 sec. 

Tables 4.la and 4.lb show the thermal flux · at the 

interface betwee n region 2 and region 3. At ~t = 5 ~sec, 

all four methods gave solutions which agreed to six signifi

cant digits. Th e results obtained at this time step can be 

regarded as the r eference solutions. ADEP-Exponential 

performed well f or this problem. For a ~t = 0.001 sec, 

the peak thermal flux obtained by ADEP-Exponential had an 

error of less than 0.1% at 0.04 sec into the transient. 

For ~t = 10 ~sec, MTT3 had an error of - 0.01% in the 

peak thermal flux. In contrast, at ~t = 10 ~sec, MTTl 

and MTT2 had errors of - 0.3% at t = 0.04 sec. At this 

time step, ~t = 10 ~sec, all three methods, MTTl, MTT2 

and MTT3 had larg e percentage errors in the neutron flux 

at points in the r eflector, region 1. As an example, 

Table 4.2 shows t e fast flux distribution at 0.04 sec 

obtained by MTTl, MTT2 and MTT3. The percentage error . 

in the fast flux at mesh point 2 was - 7%. The thermal 

flux, not shown here, had a smaller percentage error of 
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Table 4.1 Thermal Flux at x = 210 em 

Time ADEP-ExQonential, t\t {sec) 
(sec) 5 X 10- 6 1 X 10- 5 1 X 10- 4 2 X 10- 4 1 X 10- 3 

0. .392043 .392043 .392043 .392043 .392043 
. . 01 . . 39·2598 .392599 .392608 .392618 . ·. 392685 
.02 .394144 .394145 .394161 .394179 .394286 
.03 .396533 .396534 . 396556 · .396580 .396715 
.04 .399659 .399660 .399687 .399716 .399873 

Table 4.lb 
.. 

Thermal Flux at x = 210 em 

Time MTTl , . t\ t {sec} MTT2, £\t (sec) MTT3 
(sec) 5 X 10- 6 1 X 10- 5 5 X 10- 6 1 X 10- 5 1 X o-s 1 . 

0. .392643 .392043 .392643 .392043 .392043 
.01 .39259.8 .392623 .392598 . . 392654 .392598 
.02 .394144 .394551 .394144 .394632 .394055 
.03 .396533 .397402 .396533 .397496 .396312 
.04 .399659 .400942 .399659 .401043 .399317 

. . · ·~ :..-.. ... • . .. 
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Table 4.2 Fast Flux Distribution at t = .04 sec 

Mesh Point j 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
1 1 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

· (~t = 1 x 10- 5 sec for MTTl, MTT2 and 
t4TT 3) 

Refere nce ( *) 

0. 

.531 4-3E-3 

.479 06E-2 

.195 22E-1 

.68487E-l 

.126 76 

. 15682 

. 17 788 

.19434 

.216 11 

.22258 

.221 30 

.22015 

.21915 

.21826 

.21745 

.21670 

.21616 

.21601 

.21621 

.21674 

.21756 

.21864 

.21219 

MTT1 

0. 

.56920E-3 

.46904E-2 

.21238E-l 

.68266E-l 

.12905 

.15756 

. 17967 

.19517 

.21709 

.22329 

.22182 

.22053 

.21942 

.21845 

.21758 

.21678 

.21622 

.21605 

.21624 

.21675 

.21757 

.21864 

.21219 

MTT2 

0. 

.57183E-3 

.47121E-2 

.21337E-1 

.68582E-1 

. 12831 

.15815 

.17922 . 

.19556 

.21_711 

.22336 

.22187 

.22057 

.21944 

.21847 

.21759 

.21679 

.21623 

.21605 

.21624 

.21675 

.21757 

.21864 

.21219 

MTT3 

0. 

.55934£-3 

.46091E-2 

.20870E-1 

.67083E-l 

.12711 

.15615 

.17776 

. 19393 

.21586 

.22239 

.22116 

.22006 

.21908 

.21821 

.21742 

.21668 . 

.21615 

.21600 

.21621 

.21674 

.21756 

.21863 

.21219 

(*) Reference Solution obtained by all three methods at 
~t = 5 x 10- 6 sec. 
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- 1 %. The runs for MTTl, MTT2 and MTT3 were followed for 

2000 time steps a t ~t = 10 ~sec and were stable. 

In this tes t case, all the methods using the multiple 

temporal-mode tr ansformation technique were found to be 

numerically unst ble at ~t ~ 15 ~sec. For such time steps~ 

MTTl, MTT2 and MTT3 followed the transient well immediately 

after initiation of the perturbation. However, after some 

80 time steps, t e mesh points in the right reflector, 

region 6, showed large percentage errors and eventually 

caused the runs to abort. 

This test case differed in configuration from the 

previous cases in that reflector regions were included. 

The numerical results indicate that the reflector region 

is more susceptible to the instability problem~ The fast 

flux gradients are large in the reflector region and 

hence the terms E1 ,j,k' defined previously, and the ab

sorption cross sections E1 ,j,k at mesh points (j,k} in 

the reflector region are comparable in magnitude. Thus, 

errors in the terms E1 ,j,k could have significant effects 

on the frequencies computed. 

Table 4.3 co pares the computer time required by the 

different methods to traverse· 2000 time steps on the 

CDC 6600. 



Table 4.3 CPU Time for 2000 Time Steps 

CPU Time 
(sec) 

ADEP
Exponential 

MTTl MTT2 MTT3 

73.5 1017.7 1038.0 1020.1 

4.5 Computer ·storage 
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As previous l y mentioned, the spatial moments and 

frequencies at e ch mesh point for all groups are computed 

at the beginning of each time step. In this study, the 

multiple temporal-mode transformation was applied only to 

the neutron groups and not to the precursor groups. Hence, 

the spatial moments for the energy groups, as well as all 

the frequencies, were stored. For a problem with G 

energy groups, I precursor groups and N mesh points, the 

frequencies require (G + I) x N Storage locations and the 

spatial moments (G + I) x G x N Storage locatioris. Com

puter memory must also be allocated for the matr1x elements 

used in computing the eigenvalues and eigenvectors and in 

normalizing the eigenvectors (see Appendix B). The matrix 

[' in Eq. (8.11) equires (G + I) 2 • [2(G + I) - _1] storage 

locations. Thus, for the numerical algorithms in this 

study, the minimu m additional computer storage required 

was 



(G + I) x (G + 1) x N + (G + 1) 2 x [2{G + I) - 1] 

A realistic three-dimensional reactor kinetics problem 

may include two energy groups and six precursor groups. A . 

spatial mesh of 33 x 33 x 24 points may be required for a 

detailed represe tation of the reactor configuration and 

composition. Th e additional computer storage ·for such a 

problem will the be 628224 locations. The approach used 

in this study is obviously inadequate for a realistic 

problem. Howeve , it is believed that with some pro-

. gramming effort, the storage requirement for the spatial 

moments and freq encies can be eliminated. Only the 

effective expone ntial terms, the effective frequencies 

and the elements of the coefficient matrices would then 

need be stored. The storage for the exponential terms and 

the effective frequencies is normally required in a kin- · 

etics code which employs a simple frequency transformation. 

Thus the additional computer storage required for the 

multi-mode temporal transformation method would be _ given 

by the size of the matrices used in computing the eigen

values - and eigenvectors and in normalizing the eigenvectors. 

For the realistic kinetics problem previously mentioned, 

this will amount to - 1000 locations. Hence, it can be 

conc l uded that the computer storage requirement is not a 

limiting factor in applying the multiple temporal-mode 



transformation technique. 

4.6 Computer Time 

The computer time required for each method for the 

four test cases is summarized in Table 5. The MTTl, 

MTT2 and MTT3 methods require approximately the same 

computer time. As previously mentioned ·in Section 4.1, 

with ADEP the incr~ase in computer CPU time is - 10% 

when the simple frequency transformation is applied. 

Table 5 CPU sec per Time Step on the CDC 6600 
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Test Energy Precursor Mesh MTTl MTT2 MTT3 ADEP-
Case ·Group, G Group, I Point, N EXQ. 

1 
2 
3 
4 

2 1 25 .242 .252 .247 .0249 
2 0 25 .130 . 1 31 .0249 
2 1 1 21 .849 .883 .848 .0876 
2 2 33 .509 . 51 9 . 51 0 .;0368 

To provide more information on the efffciency of a 

numerical method, an empirical formula relating the com

puter CPU time to the number of variables in a problem 

is often useful. The variables here refer to the ·number 

of energy groups, G, precursor groups, I, and mesh points, 

N. From the data in Table 5, the following expressions 

were obtained. 



For ADEP-Exponential, 

CPU sec/step = 5.4 x 10- 4 x N' x (G + 0.05~1) . 

For MTTl, 

CPU sec/step= 1.94 x 10- 3 x N' x {G + 1) 1 " 54 

Here N' is the number of interior mesh points. Use of 

N' instead of N will give a better estimate of the com

puter time required for each step since the time consuming 

task of calculating the spatial moments and frequencies 

for each time step is done only for the interior mesh 

points. 

As in ADEP-Exponential, the time required by the 

multiple temporal-mode transformation technique depends 

on the total number of energy and precursor groups. 

Furthermore, the relation between computer time per step 

and {G +I) is not linear. This is a direct result of 

solving the eigenvectors and eigenvalues of a matrix in 

order to obtain the spatial moments and frequencies. 

Increasing the number of either energy groups or precursor 

groups will significantly increase the computer time 

required. 

Though the computer time requirements listed in 

Table 5 were based on one- or two-dimensional problems 
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with a small number of mesh points, the results can be 

used to give a r ough estimate of the compute~ time re

quired in problems of a larger size. For a realistic 

problem with two energy groups, six precursor _ groups .and 

20 x 20 x 12 interior mesh points, ADEP would require 

- 6 CPU sec/step while MTTl would require- 230 CPU 

sec/step. The n merical algorithm used in this study 

compares poorly ith the ADEP method with respect . to 

computer time fo r the types of transient investigated. 

4.7 Further Numerical Results 

In the four test cases just pre~ented, the mesh 

structure was held fixed while the effects on accuracy 

and stability of various time step sizes were examined. 

It was found that the errors in calculating the neutron 

leakage at each mesh point at the beginning of each 

time step resulted in instability problems if the step 

Size was increased beyond a certain. value. Since the 

term E J. k is inversely proportional to the square of 
. g ' , 

the mesh spacing, ~x 2 , the percentage errors in the 

diagonal elements (Eg + ~ ) would be reduced by using a . gg . 
larger mesh spaci_ng. The errors in the computed fre-

quencies would in turn be reduced and the frequency 

feedback effect could be minimized. To verify this 
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point, the mesh s tructure in test case 1 was modified. 

The uniform mesh spacing in test case 1 was in-

creased from 1 0 m to 20 em. Several time steps were 

tested using the MTT2 method and the results were compared 

with those of a previous run at ~ t = 10 llsec and 11x = 10 em, 

as shown in Tables 6a and 6b. Using a larger mesh spacing, 

~x = 20 em, MTT2 was found to be stable for ~t . < 0.1 msec. 

For the stable time steps, at ~x = 20 em, the results 

agreed with one another to at least six significant digits 

at all mesh poi nts. 

In a finit difference method, the number of mesh 

points used dic t ates the level of accuracy that can be 

attained in the solution to the semi-discrete reactor 

kinetics equati ons. The additional runs on test case 1 

again indicate t hat the multiple temporal-mode trans

formation metho d for stable time steps is very accurate, 

within the limi s of attainable accuracy with the larger 

mesh spacing. However, there stil ·l exists a threshold 

time step size eyond which ·the method becomes numerically 

unstable. 



* 

Table 6a Centre Point Thermal Flux (by MTT2) 

Time 
(sec) 

0 
. 01 
.02 

Table 6b 

Time 
{sec} 

0 
. 01 
.02 

~:J.x = 10 em* 

1 . 0 
1 . 1 2 041 9 
1.245599 

Fast Flux at x 

I:J.x = 10 em* 

.1462276 

.1652745 

. 1836346 

I:J.x = 20 em** 

1 . 0 
1.123985 
1.253298 

= 2o em (by MTT2) 

D.x = 20 em** 

. 1462053 

. 1658159 

.1847841 

Results obtained by MTT2 at I:J.t = 10 ~sec 

** Results obtained by MTT2 at ~t = 10 ~sec, 

20 ~sec and 0.1 msec. · 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Three different numerical algorithms have been ex

amined in this st dy to evaluate the merits of the multiple 

temporal-mode tra sformation technique. The following 

discussions summarize the experimental results of four 

test cases with respect to accuracy, . numerical stability 

and computer requirements. The results have also identified 

certain areas which could improve the performance of the 

technique. 

5.1 Accuracy 

The numerical algorithms, MTTl and MTT2, are very 

accurate for time step sizes which yield numerically 

stable results. The temporal truncation errors of MTTl 

and MTT2 have been shown theoretically to be of order 

~t. The order of the temporal truncation error could not 

be confirmed experimentally. The percentage errors 

at extremely small time step sizes cannot be determined 

accurately without carrying an unreasonably large number 

of digits in the computer output. The numerical results 

obtained by MTTl and MTT2 have indicated that the multiple 

t emporal-mode tranformation technique can be used to gen

erate very accurat e solutions to the semi-discrete 

reactor kinetics e uations, but small time steps have to 

be used in order t maintain numerical stability if a 
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reasonable spatial mesh size is used. 

The numerical algorithm MTT3 involves a somewhat 

arbitrary assumption related to the effective frequencies; 
. 2 

this results in a truncation error of order bt , the same 

as in ADEP. MTT3 and ADEP with the exponential option 

have comparable accuracies. The standard method in ADEP 

has relatively la r ge errors as compared with MTT3 and ADEP 

with the exponent i al option. Using the simple frequency 

transformation in ADEP greatly improves the accuracy 

with an increase · n computer time of ~10%. · In the first 

three test cases, for a bt = 0.2 msec, ADEP-Exponential 

gave solutions wi h less than 1% error. The MTT3 method 

was numerically unstable at this time step. In test case 

4, ADEP-Exponenti a l again performed much better than MTT3. 

The poor performa nce of MTT3 at larger time steps agreed 

with what was obs rved in MTTl and MTT2. The three 

algorithms displayed what appears to be a ·significant 

disadvantage of t he multiple temporal-mode transformation 

technique, that is the limit on the time step size to 

obtain numerically stable results. This will be discussed 

in detail in the following section. 

5 . l Numerical Stability 

The multiple temporal-mode transformation technique 
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is susceptible to numerical instability problems. Test 

case 1 has identi f ied one important factor which contributes 

to instability. This factor is related to the method of 

computing the spatial moments and frequencies at each 

mesh point at the beginning of each time step. This in

stability is caused by the so-called frequency feedback 

effect. 

Truncation errors are inherent in finite difference 

techniques. The first observable errors in the cases 

being investigated here usually showed up at points 

near the reactor. boundary. This is thought to be a 

characteristic of the explicit code, where the fluxes 

are solved point by point. (6 ) Thus, as the spatial mesh 

is swept in alternating directions from one boundary of 

t he mesh to the other boundary, the points near the boundary 

have accumulated proportionately larger errors than the 

i nner mesh points. The errors at points near the boundary 

then propagate at ucceeding time steps towards the centre 

of the plane becau e of the coupling in the finite 

difference approximations. Depending upon the magnitudes 

and distribution o such errors and upon the system para~ 

meters, the trunca t ion errors may be sufficiently large 

to cause errors in the · computed frequencies which . in turn 

give rise to error s in the computed neutron flux. 
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Eventually these e rrors will result in numerical difficulty 

and the computer un will abort. Stability will be m~in

tained only at sm a ll time steps when the frequency feed

back effect is minimal. Small time steps, in the range 

of microseconds, were also necessary in the previous works 

of Garland et al( l ,B) and Harding(lO) when using the 

multiple temporal - mode transformation technique with, in 

these cases, impl i cit codes. Hence it is felt that the 

instability probl em encountered here is not a direct 

result of the use of an explicit code, but rather it is 

~ result of the magnification of the truncation errors 

associated with t he finite difference approximations. 

The effect of tru cation errors is significant in the 

multiple temporal - mode tranformation technique because 

the errors which r esult from approximating the neutron 

leakage at a point V.DgV~g' with Eg¢g can be large. 

The problem of numerical instability is ·more severe in 

reflector regions where the fast flux gradients are 

large. For test case 4, large errors in the computed 

· frequencies appeared first in the reflector regions. 

A formal proof of the stability criteria has not 

been established in this study. A brief discussion on 

t he stability condition of the multiple temporal-mode 

t ransformation technique has been given by Garland et al. ( 7) 



It can be seen th a t the proof of convergence and stability 

depends on the as s umption that the correcti~n function 

is slowly varying in the time interval 2~t, such that 

This study has sh own that at small time steps, the tech

nique is numerica l ly stable. The maximum time step size 
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for stable and ac curate results, which is problem-dependent, 

has proven to be a severe restriction for the cases in

vestigated. 

5.3 Computer Re quirement 

The limitin g factor in applying the multiple temporal

mode transformati on technique is computer time. Because 

of the large amou nt of computer time required to calculate 

the spatial momen · s and frequencies, combined with the 

limit on time step size, the technique is not a suitable 

method for therma l reactor transient analyses. A typical 

space-dependent t r ansient considered for CANDU-type 

reactors may last two to three seconds. Since the com

puter time requir ed for each step is large, this technique 

is very expensive to apply to such a transient because 

of the small step size required for numerical stability. 
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5.4 Recommendat.i 6ns for Future Work 

The multipl e temporal-mode tranformation technique, 

though ex.pensive for the type of thermal reactor transients 

investigated here, may be used as a~ accurate method to 

predict the neutr on fluxes in a short time interval (i.e. 

t ~ 1 msec) immediately following the onset of a per-

turbat i on. However, experience at CRNL has indicated 

that transients of such a short duration are not of much · 

practical interest in linked reactor-physics-thermal

hydraulic safety calculation~ in thermal reactors.(ll) 

Previous work at CRNL with bench mark calculations 

has found that small time steps must be used with the 

ADEP code for fast reactor transient problems. This may 

well suggest a possible area of application. for the 

multiple temporal-mode transformation technique. It 

s hould be noted ho wever, that finite difference methods 

a re generally not considered to be the best method for 

f ast reactor trans i ent analyses where there is little 

spatial change in t he neutron flux. 

This study has identified several areas for possible 

future improvement to the multiple temporal-mode trans

formation techniqu e . They are listed as below: 

(a) An efficient method for solving the eigenvalues and 



eigenvectors of the system coefficient matrix. 

(b) A better me t hod of normalizing the eigenvectors to · 

obtain the s patial moments. 

(c) An improved method to minimize the errors in 

computing t he leakage term at a mesh point at the 

beginning of each time step. 

(d) A closer ex mination of the relationship between 

numerical stability and mesh spacing. Increasing 

the mesh spacing will minimize the contribution of 

errors in t e leakage terms which are inversely pro

portional t o the square of the mesh spacing. This, 

of course, increases the spatial truncation errors. 

An optimum mesh spacing is required so . that the 

time step size can be increased without causing 

numerical instability problems or sacrificing the 

desirable accuracy. This optimum condition is most 

likely problem-dependent. 

(3) Optimization of the computer} code to minimize com

puter time and storage. 
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APPENDIX A 

. A.l M~sh Str~tt re 

The space-t i me reactor kinetics equations are 

discretized in th e spatial variable by superimposing a 

mesh structure up on the reactor model. The spatial mesh 

is described here for x-y geometry only. It can easily 

be extended to in c lude other geometries in both two and 

three spatial dim ensions. The mesh structure described 

is that used in t he ADEP code. (g) 

The reactor core is divided into regions in which 

the nuclear prope r ties are homogeneous. A cell-edge or 

interstitial x-y mesh is used such that the mesh lines 

are parallel to t e two axes. The nodes, the points 

of intersection of the mesh lines, occur at the physica l 

boundaries of the medium and at region boundaries as 

well as at points interior to the regions. A rectangular 

area is associate d with each node. The sides of each 

recta.ngle are par llel to the mesh and occur halfway 

between nodes. The spatial mesh has a total of J 

columns and K row . Mesh points are numbered sequentially 

from left to righ t and by rows from top to bottom. The 

rectangular area ssociated with mesh point (j,k) may be 

called cell (j,k) . Nodes exterior to the reactor are 
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ignored. Zero fl ux boundary conditions are applied at 

all exterior boun daries. 

~u 

Figure (A.l ) shows a node (j,k) with its associated 

cell divided into four quadrants. 

k-1 
.. 

a i--- ·----1 b r--------
/2 i 1 2 I 

i 

(J~k) 
I 

' I k 
/2 I i 

I I 
I 4 3 I 

! ____ ---- ·------·J 
d c 

~ b.x . 
: ~ /).~j+ 1 ~I -J ~ 

2 
j-1 J j+l 

k+l 

FIGURE A.l: Cell (j,k) 

A.2 The Semi-Discrete Form of the Reactor Kinetics Equations 

The derivation of the semi-discrete form of the 

space-dependent kinetics equations is carried out here 

for x-y geometry only, in accordance with the mesh structure 

described ~n Section A.l. 

The discrete equations for mesh point (j,k) are 

obtained by integrating the basic kinetics equations, 

Eqs. (1.1), over t he volume V. k of cell (j,k). 
J ' 
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1--1 gt ~ cr t)dv = 4.o CY-)7¢ cr,t)dV v . "g . 9 . J .v 9 g . 
J , k vj , k · 

G . I · · . 

+ ~ J r
99

, ( Y.)$
9

,(Y.,t)dv+.?:f
9

i J Ci(r,t)dV 
g = 1 VJ. k · 1 =.1 V . k 

' . . J ' 
G . . . ( ~ .•. 1 ) . 

V J~t Ci(Y.,t) dV=-}.i jci(Y.,t)dV;'f,/ Pi9 ,(Y.,t)~g ,(Y.,t)dV 

· j,k · · vj,k . v . k (l<i<I) · · : 
J' - - . 

By Gauss! Theorem, the volume integral for the 

diffusion terms i s changed to a surface integral as fol .lows: 

where B. k. denote s the boundary of the cell (j,k) and n 
J ' . 

is a unit normal t o this boundary. 

The current normal to the boundary represented by 

ab (see Fig. A.l) for exampl~, may be · approximated by a . · 

finite difference expression as follows~ 

¢ . k. - cp . = g,J, g,J,k-1 
6Yk 

(A.3) 

With the following definitions, 

{A.4) 



--- ¢ = --· - - . ¢ (r,t)dV· (A.5) 1 d · 1 jl · a -
·v • k dt ,j, k V. k v at g 
g,J, J, v . g . . 

j 'k 

L , . k<t> •. k_· ., · J .t:.99 • <.r> .<P 9 , cr,t)dv {A.6) 
. gg , J' . g . 'J' - v 

j,k v. k . 
J ' . 

c .. k . l Jc. {r,t)dv (A.7) 
1 ,J, = -v- 1 

j 'k v 
. j,k 

P; 9', j, k <P 9', .L k = i-- J P; 9 , cr H 9 , < r , t > d v 
j,kv 

j 'k 

(A.8) 

. ADL . k(th . 1 k - r.- • k) + ADR ·. k(A- . 1 k - th . • ·k) . g,J, 'Yg,J-' Yg,J, g,J, 'Yg,J+' 'Yg,J, 

+ADU . k { <P • k. 1 ¢ . k) + .ADD . k ( <P • k , · g,J, g,J,- g,J, g,J, g,J, + 

· ~-v 1 J o < r ) v <P ( r , t ) . n ct s ·. (A • g ) 
. k g g 
J' B. k . . 

. J ' . . . 

where the terms ADLg,j,k' ADRg,j,k'ADUg,j,k and ADDg~j,k 

contain the appropriately weighted diffusion coefficients 

of energy group . g across the boundaries of cell (j,k), 

Eqs. (A.l) can the be written in the following semi-

discrete form: 

ddt <P . k = v . k {AD R . k ( <P • 1 . k. - <P . • k) g,J, g,J, g,J, g,J+' . g,J, 



G 
d 2: 
dt C i , j , k = --A i C . , j , k + g' = 1 pi 91, j , k <t> 9 •, j , k (.1 ~-i ~I) . 

The factor 6z has been left out of the volume term since 

it occurs in each term of the equations. The terms re

presenting the neutron speed, diffusion co~fficients and 

cross sections as sociated with the point (j,k) are · to be 

explained later. 

Furthermore , by defining the following NXN square · 

matrices· 

...,;_n_T _ g I = d i a g { v . k E 1 • k } 
- -~ g,J, gg,J, 

~g 1• = d i ag { v . k f . } g,J, . 91 

A. = A.. I . _, 1 -

~i g• = diag 

and D such that -g 

{ p·l· k} 
1 g 'J ' 

(A.ll) 

(A.12) 

(A.l3) 

(A.14) 

D_-g ~g = ¢ol v . k[ADR . k(<t> • l k - <t> • k) . g ,J' . g ,J' g ,J+ ' . g ,J' 
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+A DL g , j , k ( <t> g , j - 1, k - <t> g , j , k ) + AD D g , j , k ( <t> g , j , k + 1 - <t> g , j , k ) 

+ADUg,j,k(cp 9 ,j,k-l - <Pg,j,k)]} (A.l5) 

the semi-discrete form of the kinetics equations for all 

mesh points can be written as follows: 

-· 



d -
dt <t>g 

( 1 <.g <G} ... ~ 

(A.l6) 
G 

c. + I: E;g• _<~>g· 
1 g'=l 

In the ADEP program, flux calculations are performed 

for all mesh poin t s except those lying on the exterior 

boundary of the c re. Hence, we can consider three cases 

in the approximations of the terms involving reactor 

parameters, vg,j,k, Egd,j,k, Pi~,j,k, ADRg,j,k, ADLg,j,k· 

ADD . k and ADU . k. ·: g,J, g,J, 

(1) Mesh point (j,k) is a node within a region so that 

material properties of the four quadrants 1 ,2,3,4 

(Fig. A.l) are homogeneous. 

(2) Mesh point (j,k) lies on the interface of two · 

regions so that material properties in one region, 

represented by quadrants 1 and 4 say, are different 

from those of the other region, quadrants 2 and 3. 

(3) Mesh point (j,k) is a corner node with different 

material properties in adjacent regions. 

When a node intersects a region boundary, average 

parameters for the energy groups are obtained by area 

we i ghting the cross sections associated with the node. 

Diffusion coefficie ts are averaged by weighting with .the 
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mesh intervals in the adjacent regions. The previously 

mentioned parameters for each case can easily be identified 

in the ADEP program and hence are not listed here. 

A.3 ·rhe Se~i~Di . ~tf~t~ · Fof~ ·of th~ ·rfart~fdr~~d ·Eqoati·ons 

The semi-di screte form of the transformed equations 
-

can ·- be derived tn a si .mila~ manner ~s in Section A.2. · · 

Hence the details are not given. here and only the final 

equations are quoted below: 

where 

d -n dt ~g = n ~g -g -g -g 

- n ~ -g g 

G 
+ I: T ~g· ~g• 

9'=1 -gg• + 
I 
I: F .n6 -~G . 
i=l -gl- +1 +1 

(l~g~G) 

(A.l7) 

d - G 
~G+i dt WG+i =-~igG+i~G+i +g'~ ~ig•~g•~g• - gG+i ~G+i 

g£ = diag {9~,j,k} 
L 

~i,j ,k = 2: 8ii',j ,k 
~·=1 

(l~i~I) 

( 1 ~R.~L, L=G+I) 

exp [a1 , . kt] 
'J ' 

Here, 8ii~j,k and a 1~j,k are the i,th spatial moment and 

frequency for group~ at point (j,k). The diagonal matrix 

~t i s the time de r i vat i v e of ~ i . The vector $1 con t a i n s 

t he correction fun tions for group R.. The other matfices 

have previously be n defined in Section A.2. 

~' -· ' 

. • ' . . ' ..... . .. ~ 



APPENDIX B 

THE CALCULATION OF THE SPATIAL MOMENTS AND FREQUENCIES 

This sectio describes how the matrices are set up 

numerically to calculate the spatial moments and frequencies. 

As an example, a ne-dimensional system with two energy 

grou~s and one· pr ecursor -group is considered. In -Chapter 

2 it was noted th at the spatial moments and frequencies are 

obtained by solving for the eigenvalues and eigenvectors 

of the coefficien t matrix ~·(r,o) in Eq. (2.13)~ The · 

spatial variable, r, in this system of equations is dis-

cretized by the box integration method described in Appendix 

A. Hence, for th i s sample problem, the discretized form 

of Eq. (2.13) can be written for each mesh point as 

follows 

-). 

~=1 '2, 3 (B. 1 ) 

where the subscripts denoting the mesh point have been 

omi tted to simplify the equations. Here, E . <P • re-g,J g,J 
presents the group g neutron leakage at point j. The term 

E . is defined in one dimension as 
g , J 
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E . = ~ <P 9 , j + l - <P 9 , j ~ 0 . <P 9 ,j - · <P 9 • j-1 )0<P g , J· .... 
. g,J g, j +l 2 . g,J A . 2 

!J.xj+l uXj 

(B. 2.) 

where D ~ and !J.x . etc. are the appropriate diffusion 
g ,J J 

coefficients and mesh spacings associated with the mesh 

point j. 

It is under s tood that, at each mesh point, the spatial 

moments and frequ e nc i es are to be calculated for each time 

step. The spatia l moments at each mesh point j for each 

energy group or pr ecursor group are required to satisfy 

the following normalization condition, 

3. 
L S n n 1 • =1 

~ 1 =1 X!Xl 1,) 

for all ~, ~= 1 , 2 , 3. (8.3) 

By def i ning time zero as the beginning of each time step, 

the fo l lowing initial conditions are obtained, 

0 0 
g= 1 '2 . <Pg,j = lllg,j 

0 0 
cl . = ¢3 . ,J ,J 

where the superscript denotes time zero. 

(8.4) 

Here ¢
0 J. and 
g' 

C0

1 . are the group g neutron flux and the precursor con
,J 

centration respectively at the beginning of each time step. 

These are known quantities because they are either given 
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as the initial va l ues for a problem or they have been 

calculated in the previous time step. Thus E . can g,J 
easily be compute at the beginning of each time step 

from the followin equation: 

E .=fo . 1 . g .J \ g ,J+ 
D <1>0 • . - <Po • ,~Vtho g,j g,J g,J- ~g,j 

A · 2 . ux. 
J 

(8.5) 

In this study, Eq. (8.1) is then modified to the following 

form: <1>0 co 
v

1
(E

1
+L 11 ) V1Ll2_1_ v

1
f 11 _1 

. o <Po <P, 1 

<bo 
v2(E2+Z:22) 

co 
V2L21~ v2f21-1 

cpo 
¢~ 2 

<Po cpo 
t.. 

pll-1 p12__1_ -A 
co co 

1 1 

2= 1 '2 '3 (8.6) 

where the subscripts denoting a mesh point are again 

omitted. 

All elements of the coefficient matrix in Eq. (8.6) 

are known. An IMSL library subroutine, EIGRF(l 2 ) is used to 

compute the eigenvalues and eigenvectors _ of the coefficient 

matrix. The eigenvalues thus obtained are the frequencies 

at that mesh point, however, the eigenvectors computed are 



not normalized. In order to obtain the spatial moments, 

the eigenvectors re normalized subject to the condition 

set in Eq. (8.3). 

If the computed eigenvectors are denoted by Z and 

their elements by z, then for the sample problem, Z is a 

·3x3 matrix. t~tth the following definition, 

s11 s12 s13 

8 = 821 822 823 (8.7) . 

831 832 ~33 

it is clear that 

Z a: B (8.8) - -
F~om Eq. (8.3) a d the relation (8.8}, a set of algebraic 

equations for this sample problem can be written as follows: 

1"'1~1"'0 0 0 0 0 0 . 11 1 

z21"'-0"' 0~ - z1(o 0 0 0 0 
12 

0 

0""- z 22""-.o~o~ -z 1~o 0 0 0 
13 

0 

0 0 z23 0 ""'0 -z 13 0 0 0 0 

0 0 "'-.... 0 ""'- 1 1 ""' 1 " 0 0 0 
22 = 1 (8.9) 

""""""'~~ . 0 0 0 z31 0 0""' -z 21 0 "'-. 0 823 
0 

"' "'-.... ""' 0 0 0 0 z32 0 . 0~ -z 22 0 831 0 
,"'-.... , . 

0 0 0 0 0 z
33 

0 0 -z 23 832 0 

0 "-1 ~1 ""'1 0 0 0 0 0 s33 1 

! • •.. 

.. ,,. 

: 



This set of equations can be represented in matrix form 

as 

F X = C (B.lO) 

where F is the coefficient matrix, X the unknown vector -
containing the spatial moments at a mesh point and C the 

y vector in the r_ight hand side of Eq. (B.9). Hence, the 

spatial moments for all groups at a mesh point can be ob

tained by solving Eq. (B.9). 

For a general problem with G energy groups and I 

precursor groups, the order of the coefficient matrix F 

is (G+I) 2 . For G=2, 1=6, the number of elements in ~ 

is 4096. Since F is a band matrix, it can be stored in 

band storage mod e to save on computer memory as shown 

below: 

0 0 1 1 1 

0 2 21 0 0 -zll 

0 2 22 0 0 -z12 

0 2 23 0 0 -z13 
{8.11) 

F' = 0 1 1 1 0 

2 3l 0 0 -z21 0 

2 32 0 0 -z ,... 2c: 0 

2 33 
0 0 -z23 0 

1 1 1 0 0 

90 
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In general, the size of the coefficient matrix in the band 

storage mode is 

(G+I) 2 
X [{G+I-1) + (G+I-1) + 1] 

where (G+I-1) is he number of upper or l~wer codiagonals 

in the -ariginal matrix E· For G=2 and 1=6, the size of -the 

matrix E' is 960, significally reduced from 4096 in full 

storage mode. An IMSL library subroutine, LEQT1B(l 2 ), is used 

to solve the system of equations, Eq. (8.10), for the 

unknown spatial moments, with the coefficient matrix .f 

in band storage mode, E'· The elements of the matrix F' . 

contribute to the additional computer storage required 

to implement the multiple temporal-mode transformation 

technique. 

-

In a reactor model without delayed neutrons or in 

reflector regions where the precursor concentration is 

zero, Eq. (8.6) i set up for the energy groups only. 

Thus the terms in olving ~ 0/C? are not included and the g 1 

problem of division by zero can be avoided. The set of 

equations to norm a lize the eigenvectors, Eq. (8.9), are 

adjusted accordin ly. The coefficient matrix in Eq. (8.6) 

then has order G nd the matrix F in Eq. (8.10) has order 

G2. 
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APPENDIX C 

TEST PROBLEM DATA 

Four test c ses have been ihvestigated in this study. 

The reactor confi gurations and paramete~s are listed 

here. All symbol s have previously been defined in Section 

1 • 2 . An addition a l symbol, E , is used here. · E is the g g 

s urn of the a b so r p t ion cross sect i on , . La 
9 

, and scatter i n g 

cross section, Eg +g'· 

The boundary condition for all test cases is zero 

flux on the react or outer boundary. 

C.l Test Case 1 

Number of e ergy_ groups=2 

Number of pr ecursor groups=l 

Geometry: Bare homogeneous slab, 240 em in width. 

Mesh Structure: Uniform mesh spacing ~x=lO em 

Number of mesh points=25 

Precursor Constants: 
-1 A=O.OB sec , B=0.0065, x11 =1.0, x21 =o . . 

Material Properties: 

. v. (.c.m/s e.c) D.
9 

(em) vrf
9

(cm- 1 ) 
-1 . 1 . 

g .L.
9
. (.em . ) E.g·+·g+ 1.{ em- ) 9 . 

1.0x107 1.31 .o .008154 .007368 

3.0xl0 5 
.8695 .004779 • 004014 . 0 • 
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:.:.9. 

1.0 

o. 



Initial Conditions: 

Initial Spatial Shape: cosine 

Critical keff = 1 .0096154 

Initial precursor concentrations are in equilibrium 

with the initial neutron flux distribution. 

C.2 Test Case 2 

Number of energy_ groups=2 

Number of precursor groups=O 

This test case differs from case 1 in that no precursor 

group is considered. The geometry and the parameters 

pertaining to the energy _ groups are the same as in case 

1 . 

C.3 Test Case 

Number of energy groups=2 

Number of recursor_ groups=l 
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Geometry: Bare homogeneous square, 200 em on a side ~ 

Mesh Structure: Uniform mesh spacing ~x=~y=lOcm forms an 

11 x 11 grid. 

Precursor Consta ts: 

A=.08, S=. 0064, x11 =1.0, x21 =0. 

Material Propert i es: 

Gr.o up g ~ D . . v.L:.f . . }:; . . E. g"-+g"+ 1 . ·:a _g_ ~ _g_ 

1 3.0xlo 7 1. 3506 .00058322 .0040152 . . 002 3 . 1. 0 

2 2.·2x10 5 1.0808 .0098328 .0057536 0. 0. 



Initial Condition : 

Initial Spa t ial Shape: cosine 

Critical ke f f = 0.89450788 

Initial con f iguration is made critical by dividing 

the production cross sections by the critical keff. Initial 

precursor concent r ations are in equilibrium with the c~itical 

neutron flux dist ibution. 

C.4 Test Case 4 

Number of energy groups=2 

Number of p ecursor groups=2 

Geometry: ne dimensional, six-region reactor, 780 em 

in width. 

Region 

~efl~ctor 
2 3 4 5 

' ·-------+--------~-------------4~------------+---------+-~~~r---~ 
0 

1 

90 210 

Mesh Structure: 

5 1 1 

390 570 690 ' 780 .x(cm) 

Non-uniform mesh spacings of 15 and 30 em. 

Number of mesh points=33. 

1 7 23 29 33 

mesh point number, j---t 



Precursor Constant s : 

. A1=.06297, · 1=.003213, x11 =l.O, x2l=o. 

. A2=.6871, e2=.004556, x,2=1.o, x22=o. 

Material Propertie s : 
Reqion Group g .D .vEfg . E .. L.g.-+g"+ 1 _q _q 

1 , 6 1 1 . 31 0 0. .01021 . .01018 
.. 

2 . 8695 0. .0002335 0 . 

2,5 1 1 . 2 64 .0El02247 .008177 .007368 

2 .9328 .004523 . 004031 0. 

3,4 1 1 . 264 .0002217 .008163 .007368 

2 .9328 .004462 .004106 0. 

Additional parameters for all regions are: 

Initial Condition s : 

Critical keff = 1.0084550 

Initial co figuration is made critical by dividing the 

prod~ction cross ections by the critical keff. The initi~l 

precursor concentrations are in equilibrium with the 

initial critical f lux distribution. 



APPENDIX 0 

THE "MTT" COMPUTER SU BROUTINES AND MODIFICATIONS TO THE ADEP CODE . 

Two compute subroutines which calculate the spatial 

moments and freque cies have been written. A listing of 

t he two subroutines, SETMF and SPMF, is given in the following 

pages. In addition~ the update instructions for modifying 

t he ADEP code to utilize the above two subroutines ar~ 

also listed here. 
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S U ~ R. 0 ! J T I r\J F: S ~ T t·1 r:- ( PH I , C , AS r: , V , 0 , S I G , S I G ~ , t-1 , W 0 , F R E 0 , S PM t-1 T , I t-1 J K M , N 0 J I< 
1M,IMLTHN9LTH,JKMAX,IMLTH,IM1LTH,NW,NWO,IMAX,IMAXNO,JKL,JKLG~~ . 

. . . - ·- . . . ,... . .. . 

C 0 M M 0 N A L ( 6 > , t1 E T ( 6) , C t C 6) , C 2 ( 6) , 0 Y W ( 5 0) , J I ( 50 ) , J F C 50) , I ~J T Y C 21) , 0 ( 2 . 
1 0) , IN TX ( 41) , 9 M ( 1 0) , C 0 F ( 1 0 ) , C 0 C ( 1 0 ) , o·T N E" W ( 5) , 0 X P ( 4 0) , 0 Y P C 2 0) , F ( .1 0) , 
? I 0 F < 1 0) , I f) r:: ( 1 C , I P R ( 1 0) , I N ~! < 5 > , T AU C S > , F!) < 1 0 ) , I 0 T ( 1 0 ) , A l r= C , A AT , BET A 
3,88T,CP,CF,CC,QT,G,H~FF,I~XF,I~,INIT,IRST,ISS,1PRM,IMIM1,I~1,IT,IT 
4 P R , I P 1 , J I N 0 , J ~'1 1 , J P 1 , K P 1 , J< ~ l ~ L T H ~~ , ~ t--1 , N PC , N Q , N L X , N l Y , N F F , N C c:- , NC T 7 R , R 
5HOF,TP,T~AX,T, T R,VC,VF,YA,XC,X~t~XD,XF,NY,qETM1,XC2,LTH?,LTHIH1,A( 
(,-! 1 0 ) ' y ( 1 ') -- ~ • . . ~- - - -

DIMENSION PHICIMJKN),ASFCIMLTHN>,VC!MLTHJ,~CIMLTH),S!GCIMLTH5,SIG~ 
1(!~1LTH),WCNW>,WO(NWO>,CCNOJ~M> -

D I M EN S I 0 N r R ':: 0 C J I( L ) , S P r1 M T ( J K l G ) _ .. 
DIMF"JSION A\11( ) ,AS1(4l,AOL1(4) ,ADR1C4) ,ADU1C4l,A001(4) ,ASR1NC4) ,A . 

1SR?NC~l · 
I t~ T f G F ~ !J I ~ , !J I 

r S~TMF n~FIN~S AV,tS,nOL,AOR,ADU,AO~,ASR1 ANO ASR1 FOR A M~SH POINT 
C AS IN F09CI( ~~!'J f:ALLS S0 r·1F TO SET !-.JP THE ~1AT~ICES FnR EIGENVALUES 
C AND fiGENV~CTO~S 

00 5 !=1,4 
AOL1Cil=G. 
AOR1Cil=O. 
AOU:1. <I>=O. 
A001CI>=O. 
AS~1N <I> =0. 

5 ASR2N(I)=O. 

C S c T UP I NT f R I 0 R r ~ F. S H P 0 I t\ T S 
0!4=1 
0!3=1 
LL1=1+L TH 
L=O. 
DO 51) 0 I 1 = 1 , \] l Y 
00 500 1~=1 ,~JLX 
L=l ~1 
LO=O 
f) 0 6 5 I = 1 , I t1 A X 
L1=LO+L 
I4=0I4 
nOL1Cil=OCL1)~WOCI4) 

I4=T4+1 
A 0~ 1 (I> =A OL 1 ( _ ) 
IF (JIND.E0.0 GO TD 50 
Af11J1 C I} =l)<l1) )} 1.40 <I4> 
AOf11Cil=AOU1C I > 
I4=I4~1 

50 AV1<I>=VCL1) 
A S 1 C I > = S I G ( L-1 } · 
IF <I-?> 65,60,55 

55 AS R 2 ~~ <I > =SIr;~ < L 1 -L T ~ 2) 
60 ASRiNCI>=SIG~<L1-LTH) 

• 



65 LO=Lu+LTH 
IJI4=I4 
K1=INTY(I1l+1 
K2=INTYCI1+1)-1 
J1-=INTX <I2l +t 
J?=INTX<I?.~1)-1 

I L 0 = P< 1-2 > ~ J I ~I') 
00 ?00 V.::::Kt,l(? 

-ILO=ILO+.JINO 
DO 200 J=J1.,J2 
Il=ILO•J 

98 

• -... ,. _ . ....;.... - - -· 

CALL SPMF<PHI,C,ASF,AV1,AS1,ASR1N,AS~~N,AOL1,ADR1,ADU1,aOo1,FR~O,S 
1.Pf1MT, I~·1JK~1, t\D Ki1 ,I"1l THN,L TH ,JKMAX, IML T~,It11l TH, IMAX,It1A XNO, JKL;J~L -
2G,IL,L> 

?.DO CONTINU[ 

C St:T UP ~Ir;HT GCUt'n~RY POINTS 
IF<I2.EG.~JLX) r;o TO 300 
LG=G 
n 0 ? 2 0 I = 1 , I t1 l\ Y 
I3=r:I3 
L1=l 1J+L 
L2=L1+i 
!4=0!4 
ADL1CI)=!J(l1l .11- Hn CI4> 
AOR1Cil=~CL2> • WQCI4+1i 
I4=I4-t-? 
IF (.JINe.~'J.O> GOTO 205 
AOU1CI>=WD<I4J 4 0CL1>~WOCI4+~)~0CL2> 

AOD1CI1=ADU1(I) 
I4=t!t+? 

205 XD=1.-t.1(I3J 
AV1<I>=1./(WCI3)/VCL1)+XOIV(L2)) 
AS1<I>=WCI3> 4 SIGCL1)+X0 4 S!GCL2> 
IF<I-2> 220,215,210 

210 ASR2N<I>=W<I3l 4 SIG~CL1-LT~2)+XO~SIGRCL2-LTH2l 
215 ASR1NCI)=W(I3)~SIGPCL1-LTH>+XO~SIGR(L?-LTH) 

?.20 LO=LIJ+LTH 
OIL+=I!.t 
OI3-=I3+1. 
00 ?9!1 K:=I(1,K2 
IL=C<-1>~JINQ~J2~1 

.,. -_.. ' . . . . 

CALL SP~~(PHI,C,ASF,nV1,~S1,USq1N,ASR2N,AOL1,ADR1,AOU1,~0D1,FPFO,S 

1 PM~~ T , I ~1 J !( K , i\ 0 J I( t--1 , I M L T Y N , l T 1-l , J K t~ A X , I '~ L T H , I ~11 l T H , I M A X , I M A X N D , · J K l , J K l 
2G,tl,Ll1) 

2'30 CONTI!\U~ 

LL1=LL1+1 

C SET UP 9QT10M qQUNO~RY POINTS 
3 0 0 I F ( I 1 • E tl • ~-ll ) G 0 T 0 5 0 0 

:· .. 
·-~ .. ~.. -··:· .. ...... . ·-· ,. 



L ·J=C 
0 0 1 ~ 'J I -= 1 , I '·1 ~ X 
L1=L+t_n 
L ~ = l 1 +- i·! t X 

I4=!JI4 
I\=ni1 
~ 0 t t { I ) = n ( l 1) ~ ~·! P ( I!~ ) + IJ ( L 2 ) ~- '·I ~ ( : :.._ + 1 l 
~CF?1 CI} ='lOLt(I} 

-.!4= I4 +-2 
I~=" CJI~~r: .!:0.~) r:o TIJ ~,3 

l\ I) ! J 1 C I l = n ( L t > .lf. ~·! r: ( I !.;. l 
AO::l~ <I>=fJ(L?)~IMJ(I4+1) 

· I~=I!t+? 

3 0 ? X 0 = 1 • -t-1 { I 1 ) 
A V 1 C I)= 1 .. I ( 1.4 (I~) IV ( L 1) +X J IV ~L?) > 
!\ S t ( I l = v: ( I -~ ) ~ C: T r; ( L 1 l + X r . ..,. S I r: { L ?. ) 
IF <I-?l .,.,=1,31S.,11 =l 

' 11J .!1 S 2 ? \ l ( I l = ~~ ( I ~ ) .lf. S I C: r:' ( L :!. - L T Y :) ) ~ v r ~ ·s 1 G :? ( L ., - t T i-1 ~ ) 

.-z 1 :~ A S ~ j '~ ( I > = ~ ... 1 ( t: 1 ) :::. S !: r; ::- f L l - L T Y ) + ' t ': ~ S T G ;-: ( l ~ -l T 1-l l 
~20 Lfl=l. ·l+LTl-1 

!l I :+= I ·, 
IJI1=I"3+-1 
IL G ::!.( 2~ J ·pJn 
;") 0 ~ ) 1 J :: J t ' .J / 
Il= Il n +.J 

. ... •·._ . .. ........ ·. 

r, A l L S fl : < ~ { 0 ~I ., r. " l\ 5 F ., ·~ V 1 .. i~ S 1 , :: S =: 1 ' .J , ~ ~ ? ~ t-.• , ~ n t 1 , D.. r R t , fl 0 U t , 1\ !) n 1 , ;:- R ;:- !'J , S 
1. o '1 ~ 1 T , I '·! J '-': ~ " t-' 'l J v r" ., I ~ : !_ T ~ N , L T Y , .l v ~ 1 :. v " T. '.il T t...: ., I r 11 L T 4 , I ~ ~ ;., X , I '1 A Y ~ J r· , J :< l , J I( l 

~G,:rL,LL1> 

~ g ~ G 0 r-~ T I ~~ U c 

LL1=LL1-4--1 

C S : T t I r> r. 0 \.? ~ .t \: r( c 0 I N T S 
4 0 G IF (I Z. f f") • ~~;_X ) G () T 0 5 G 0 

LO=!J 
i) o L. 3 a r-= 1 , I '1 A x 
l1=l+l[) 
L2=l...t4-1 
LS=L 1 + t· IL X 
L6=l1+N!_V+1. 
T.~=OT1 
I4=0I:.;. 
~7=I)+1 

TP,=I'+? 
IC.:=T1+-1 

... 

~ V 1 ( I ) = 1 " I ( ;,; ( I < ) I V ( L 1 ) + \.1 { I 7 ) I V ( ~ 2 } + '4 { I ,~ > I \1 ( l 5 > + '···l C I 9 l I \1 C I_ 6 ) l 
4 S 1 < I ) :: i-1 ( I 1 > "f S I G C I_ 1 ) + l..t ( I 7 > ~ ~ I G { l ? > + 1·f < I -3 l ~ S I G ( L 5 ) + t.J ( I g 1 :~~- S I G ( L 6 ) 
I F r I - ? > 4 ?. •"J., 4.1 ~- , 4 1 ~ . 

~10 ~sR~ N Cil=WCTl}•~!~ 0 (L1-LT~?l~wci?l:t~-~I~~cL~-LTH?·)+~(I8):t~-SI~~(L5-LTW 
1 2 ) .. 1·1 ( I .:3 ) ~ s T r, ~ ( L 6 - L T u ~ ) 

4 1 5 ~ S Q 1 ~ J { I l = \-1 C T 1 ) 11- S 1 r; =' ( L ·1 - l T 1-4 ) + 'tl C I 7 > ·'~- ~ f. S C! ( I_?- L T Y } · + t-1 < I ~ ) :~~- S I r, q C l S-L T H l '" 



1 t<l ( I g l '1- S I G ;~ { I_ ;) -l T Y > 
420 AOL1(Il=WOCr4>~0{lt)+W0(!4+1)~nCL5J 

4 IJ D ~ ( I ) = '.-1 Q ( I 4 +? ) ~ fJ ( L ? ) + \) :) ( I ~ .J. 3) ~ f) ( l t) ) . 

ILt=T4._t.. 
I~ fJI ~~r· .:::'J.::J) r:o T0 41~ 

.A 0 U : ( I ) = 1 ·1 0 C I 4 l ~ r:· ( L 1 ) + ~~ 0 < I ... + ! ) ~ !J C L ? ) 
t. 0 0 1 C I ) = '·1 0 ( T 4 ~ ? l ~ 'J { t __ :5 l + !,-1 0 ( T ~ ~ l ) :..~ !J ( I_ S ) · 
I4=I4J-4 

4 ) !) - I_ 0 = L .; ~. L I ··~ 

li~=ru. 

fJI3=I1 

IUU 

I L = I( ~ ¥- J I '.J 0 + j ?. 1 
G A L t S o I'' F ( P ~I .. r. • :l SF , ~ V 1 , D. S ~ , 4 S ~ 1 N , f\ S 0 . 2 i'J , n 0 L 1. , l\ f1 ~ 1 , A 0 U i , ,l il 0 t ~ F=. q ~ n , S . 

1 P ~1 ~1T , I ~ -1 J V: t~ .. N rJ .J !< t-~ , I ~~ L T 1-1 ~l , l T Ll , J I( M!! X , I '-i L T Y , I M 1l T Y , I t-1 A X , I t-H\ X ~J 0 , J '< l , J 1( L 

~G,IL,LL~l 

Llt=LL1+". 
5 0 IJ c 8 ~~ 1 'I !\ u : 

~C:T!I~~.J 

~1\Jn 



S ~- J ;:-. '""' 0 ' J T J: \! r. S ::- ~~ c:- ( c ~ T " G , t. S ~ , t1 V 1 , :.. S". 1 , :. ~ t:> 1 ~- ! ., C1 S :::. ? ~. ! , A Ill 1 , t.. n R 1 , A [ ' U. 1 , !J. 0 'J 1 , 
t F ~ ::- rt , ~~ 0 :·· ·1 T , I ~-!. J V ~- ! , ! ' f) P< ~ - 1 , I '•! !_ T !-J' t , i_ T ~l , J '< '--1 :l X , t ~ 1 L T H , I ~11 l T 1-t , I M f. Y , T ~~A X N 0 , l 
?l<L,J<L G ,TL,l1 . . .. .. . .. . . 

C r. to.~ u :) : J :. l ( ~· ) , 0 : T ( f ) " ~ 1. ( ::. ) , C. ?. ( c ) , '; Y \.-' ( ~ 'l l • J I ( S 0 ) ~ . I F ( 5 D ) , I ~.1 T Y ( ? 1 ' , 0 { ? 
1 o ) ~ T ' . .J r ·~, ( ~ 1 ) , =-. ~ 1 < ~ n ) , :-: ~; ;. ( t o } , (, 0 c ( : J > , !J r · ' ·:: '·! c s l , rJ x P < '.;. r ) , 8 Y P < .., n ) , ;:- c· i o > , 
~ I 0 ~ ( 1 J ) , I G C. ( ~ :\ > , '! c ?. ( !. C: ) , I 7-~ !· ' ( 3 > , ' !: ! l ( :3 } , ~=" 'l . f 1 ~ ) , I n T < 1. :'1 > , ~ L ~=" C , ll. t.. T , q c T -~ 

. ' , n l1 T , :: '' , ~ F , C C: , r: 1 , G , Y :~ F F ~ I ::: Y F , I =: , I '.!I T ~ I :: S T , I ~ S , I P P H ~ I t.t I ~1 ~ , I ' ,i 1. , IT ·, I T 
~ ~- o ;'), r o 1. , ..J T n '=' , J "" '!. , .1 ::-: 1 , ~ ~ 1 , ~ ·1 1 , '- r 1.; • . , '-F ·l , ~- ' o c. , N '), t 'L Y • ~!L v , r-! F J:', ~- ! c: r .. i'J~ T , P., ~ 
~ Y 0 ~ , T ') , T · i ~\ 'i , T • T n , 'I r , V ~ , Y ~ , X ( , X :--_ ~ , Y. C , Y_ ·-:: , ~~.. : v , ~ !:' T ~ i 1 ., X r ~ ; L I ~- / , L 7 HI :-~ 1 , t:. { 

G11 :J ),Y!j) 

fJ I ~1?. N .::; I ~.1 \l c h T f I ~-~ J v '-i ) , r { ~-· l J l( ~.~, ) .. r_ S r:- ( T '.1 L T Y :..! >-
0 I :-1 ~ d S I 0 r· l :.. '11. < I._. t.. Y.) , fl S 1 ( I ~ 1 ~- X) , !.. S C( t r-! ( T. ·1 A'< ) , !'I S ~? N ( I ~- 1 t X l , A r; L 1 { I :1 r-. X} , t\ 

1 o ~ 1 ( r tJ. ~ v ) , A :J.' 1 1 ( I H ~ x l , A o n 1 c I \~ ·\ x ) 
Dit-l:=:t'.!SIC"i ~c;_: r (JKL} ,sr-~;~-: r (JKLr,) 
0 I '·1 r- : ·~ c:: -r: C1 \ ! :- ( ~;. ) 

J r-~ r- ~J s r c ~' ,._ ~- < :1 n , 1_ r } , 7 { l o , '· n ' • '-~' OJ. ! 1 ?. D ' .. ··rt! { t :J l 
')I .·1 ::· '·! S I c .. ! .': t. \ ( ~ r r: " 1 ~. 1 > , r ( 1 1 n , t ) , v ':.. < ~ ·'1 n ·l } 
~: 0 "11:' L '-.:. v 7 , '-! '·1 

r F I X := !") n ::: . ·1 r~ ~' s I ') t\ ':) ·") ~ r~ \IT n, c:- ~ c ~ :.; ~ '·: :: .:-.. r: y :. p () ! I D s ~ ~ I ;_) f. C) F r. c' J ~ s n r::"' r; ::-> 0 lf p s 
r .\~IS r !]:_;. ~ ~~~:-~. I Y r- r!c r:-:~· ! r· J ~· :·~ c;c :-.T I4L r- .: y.:.: nT~ C.~·-lS r:-c·z:nu:: ~·!('T.Fc-

r t.. .:~/1... I t-1 =1r..~ !C• STC ~t ~c- '"101')'7 r:- o ~ ~·lG: '·L~: .. L I7I ~· Jr: 3 D.4TTtil :10 r1r=-t-.~TS 

('. t·l i'·l =or) tJ :::- R. 0 ~ ~- ~ ~: T ·? ! Y .".:. ~ 

r I "!X N 11? = 0 ~ r:l r. ? 0 ~ t-1 f1 T -~ I Y fl.. 1-\ t-, 

Tfi-=1!1 
I 7 = 1 D 
J: .J0:)=2 
Ill1=1 -J 'J 
I~~=10 -~ 
IJ0r.1::1 
rif-! = I ·1 ~ '1. L I 
DO 10 I=t,I'I:4 Y ~. q; 

f1 0 1 0 ~ I = 1. , I :.L-: Y r- J n 

1iJ A.t',(I,II>=IJ. 
Fl II 1.:: !J. 
LQ=n 
l ?:: 0 
f)Q 1 1 !1 I-=1,1·! ~. x 

Il1=IL+L? 
LJ.=L+Lf1 
~ < ~ ) = < :1 Ci L 1 < T } ~ a L.l :r: (I L 1.- t ) + -~ J ~ 1 ( 1 ) ~ ·~ H T ( I L 1. + 1 .. ) + A 'll J 1 ( I > 1;. P 4 1 r I l 1- J I i'.! fJ > + 

t ;'\ rJ 0 1 ( I ) ':'· P ~ I ( I L 1 + J I ~· ~ t'"'l ) - < .~· 0 L 1 ( "t > .J- ~- 'l ~ 1 C T . ) + !'. fll J 1 f I l + f\ 0 0 1 ( I l l J:. o 1--l T ( I l 1 } ) I . 

!!.. t\ < T , I l :::- .'\ v ~- ( I l )\ ( r. ( ! ) + n ;::- T ·-~ ~- ;;. .:- r I ) ;;. r~ S r ( L 1 ) - r, S 1. ( I ) > 
L3= L -LT~--' t .l 

IL?=IL-JI(~ ~~~ Y. 
r')O ~(j IX=t,.i'~t; Y 

L 1:: L) +L i J ... q.t 
I l ? -= I L ? + J I<' ''! 6 X 
I r f T'< . t: 1.T) r, :J TO (:_f! 



X=P~-JI CIL ?) /PYT (Jl1 l 
~ACI,!Xl=AV1(J) 4 1~TM!~F<Il~~5FC~3)~Y __ _ 
ID=IX+1 . 
IF {I ;J • ~ 1 • I } f\ A ( T, I X l =A f ( T , T '< ) + t. V t ( I ) --:c. L\ S ~ 1. ~~ (I > .11- Y. 
IO=IX+? 
I F C I Q • t 1 • T > to t.. C I , I v ) :: r-. r.. { ! , T X > + t:.. V t C I > ~ ll -:: ~ ? ~-l r I > .11- X 

6 0 GONTI ~J!_lf" 
Il2=IL 

.._ f"lO 7 Q i':l::: :t , ~ .! n 
I X=~ J +I ~-l t, v 

t.\A(IX,!X) =-JL OJ} 
X=C(IL?l/P~I<!Lj) 

J\A(I,IX> =t~\11 ( J ) ~FOCI> ~~L (".!) ~v 

c T t:' s T r: o ~ T ~ r. c tl s c L-! I T 4 o " T n F L ~ v c J l\' ~ • 1 r ":"? n ''J -s 
IF (1F.Tt.r:-rJ.Cl o ) r;c TO 70 
I F ( L\ S F ( l 1 ) .. ~- 0 • 0 • ) '" 8 T 0 7 , 
!l fl. ( T X ' I ) = p -:. -;- ( I .l ) 11- :~ 5 F ( L ~ ) I X 

7!) . JL?=I1_2+J ;<'·1f,v 
FL:~G=~Ltr;+ .jSF Cl1 l 
L 0 = l :J + L -; q ~ ! 

·100 - l2=l~+J;t · •cx 

G A L l ~ I f: ? F ( '\ ·'\ , \' ~ l , T ~ , T J 0 ''· , !.J 1·1 , 7 , I 7 , ;,J I< , T ·::: ~ ) 
0 0 1 2 ·1 I = 1 , 1·J ~J 
IO=(I-t>•J~~Ax~IL 

1 2 0 F !:' r::- n ( I 0 } = ~·! !·' ( I ) 
I t-1X t·! rJ ?= t\. ;'J ~ \! r---! 

I ~ - ! t·.l n P 1 = ~- · ~-I + t 
Nl~='P.J-1 

NU~=NL~ 

N S = r._i L G + t" J C + 1 
0 0 16 1 I= 1 , T '·I Y t! !i ? 

161 CJ{!)=j. 
00 1~3 I=t.I ~ YNO? 

DO 163 TI=t, NS 
16~ A~ncr.II)=IJ. 

ILL= I ~ Y ~,i 1?.- r:1 t~ n P 1 
L 0 = ~- 'l. C 
IX1=!l 
00170 I=1,~LL,I'1f'! O::>t 

•1 { I > = 1. 
LJ.=LQ.J-1 
LZ=l'J '- ~ , tt ' 

'JO ~6:) I1=L1 , L? 
1 6 5 A r, ~ ( I , I I l = ~ • 

IX1=IX1+1 
I'I?=IX!.'-t _ ... . 
I)O 16.3 I'<0=1,t,Jt! 
IX=IX1+I . 
AAO(IX~l~l= 7 (IY?,IYn) 

102 



168 

170 

172 

180 

AAACIX,LZ>=-7<IX1,IX0) 
LO=Lrl-1 
CONTINUE: 
IX=!X~1 

R{!Xl=1. 

IV'-' 

DO 172 IX0=1,NN 
AAA <IX, IXOl =1 
CALL L ~0 T 18 (.A A A , I M X i\102, N L C, Nt J C, I A 1, q, 1, I 7 1, I J091, XL, IE R l 

-IF <It:R.~rJ.12g) STOP • 
00 180 I=i,IM X 
DO 15 0 I X= 1 'N I 

· ... I 0:::_< I -1) .11- J l<t ~ <I X -1) ~ J KM A X ""I L _ 
II=C!-1)!~-NN+IX 
SPM~~T (Ifll =13 CII> 
CONTINUf 
RFTU~N 

END 

-- " . 

_:· ~ ·-... 
. :.' - :. .. .; . 

. .:.__: ... 

: ..... 
.. ' 

I_ ~ ' 

· .. . :_, 
·. · .. 

.. ·=·.;. . ~ . .. . 
. . . . .. -~·: . 

o 1.• :'w .. \~ • ~ 0 ,t .', .; '• .,··. • ~ • o- o • ' :,. : ~~ 
' : . . .. . ~-- '- _- ;- :- .. : .::·?~- c .. . ~ :~~.::; ~- __ ,_ 

. ..- ~- .. 
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- .. :· - .. , . . . 
.. . ... . • 

. ~' '' --.. ;· ·"-~.t:~i;.:~ 
- . . : . -· . .. :,~i}~~~~;~·. " 

. ~:--~ _;-~ ::~ ;.. .. -· :~ 
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·~ '• ' _.., . . 

~IOE'NT ~XP2 

:IJ.f FOR CHANGING STO~ ·"·Gc TO INCLUDE -SFf1MT ./HJ-0- FREO 
•1 O~FINE IN ADEP PAP~M.FOR VA~IA~l~ DIMENSION 
J~.INSE .~T Ar'IEP.46 

J I< L: I ~1 J K '1 + N 0 J '< ~~ 

.Jl(LG=JKL:;.IMAX 
•DELtT~ AQ~o.5g 

~ + 4:;. I H J K ~·1 + J '< l + J K L G 
~o~L~TE AO~P.128 

N47=N46+.JKL 
N43=N47+JKLG 
PRINT 4C,N48 

.. . -.. .,. ---- · 

JS.DELETE AOE:P.-133,A.OC:P.134 . _ . - ,, 
!.to 3 8 ) , Y C N 3 9 ) , Y ( ~· 4 0 > , Y C N 4 1) , Y ( N 4 2 ) ., Y ( N 4 ~ ) , Y C N4 4 ) , Y C N 4 5 } , Y { N 4 E ) , Y ( N 4 7 l 
5 , I '1 J K '1 , N D J l< t~ , I t-1 l T H N , l T H , . J I( ~ t. '< , I ~-1 l T H , I ~11l T H , N W , N t.J 0 , J ~1 A X , I "r L N , N C , I M l 
6X,X~AX,J~L,J~l ~ ) 

•OEL~T~ ~LUX.4,FLUX.~ 

2IDL,V,O,SIG=,siG,SIGR,W,WO,RL,RR,OXW,COFT,FR~q,sP~~T,IMJ~M,NOJI(M,I 

lMLTHN,L7H,JKMnX,IMLTH,IM1LT~,NW,NWD,JMAX,IILN,NC,IMAX,KMAX,J~l,JKL 
4G> . -

ll- I N S ~ ~ T F l 'J X • ? 0 
- 0 I f'-1 c ~J S I 0 N F ? :: Q C J K L ) , S P ~-~ ~ T ( J K I_ G l 

~INSERT FLUX. 3'1 

C RcTA=O. FOR THE CASE WITHOUT DELAYED NEUTRONS 
I ~1 A X~-~ IJ = I ~: 1 C\ X + ~~ 0 
I F ( 3 E T A • E !. • C • ) I :1 A X N 0 ::: I t~ A '< 

~Dcl~Tf. FtEO~A~.40 

10 IF CIEX~.NF..t> GO TO ?.0 
~1 THIS scr OF UPD~T~ 80RP.~CTS FO~ F~PO~S IN AOEP con~ 

~OEL::TE FLUX. 15 3, FLUX. 156 
70 X0=1.-A1CLO>+ X 1+A3(l0l+C~DT2CIL1l 

A<I1>=CC1+A1{l01-X2-A5CL01-C~OT2(IL1l>~PHICIL1l+X?•PH!CIL1+1l+A5Cl . 

10l•PHICIL1+JINOl+Xi•PHI<IL1-1l+A3CLOl•PHICIL1-JINO)+A6CLO>•ALC+9MC 
~I> ) /X 0 ... . 

•flEL~T~ FLUX.:!.64,~='LUX.1E7 
85 XQ=1.-A1£LO)+X2+A5<LO)+O~JT2CIL1> 

.A ( I 1 } ::: ( ( 1 • + A 1 ( L 0 ) -X 1 - A 3 C L r: ) -0 1 ! D T ~ C I l 1 ) ) -* PH I ( I l1 ) + X 1 ~ PH I ( T L t -1 )- + A 3 ( · 
1LOJ•PHICIL1-JIND>+X2•PHICIL1+1)+A5(LO)•PHICIL1+JINn>+A6(LO)•ALC+qM 
2CI)}/XO -

.. f.·,.. . 

ilr£t,~i,~; }'i~~i:;~;L,':~L';~:~·.}~~~~~~~~~~£0:,7:- ~2 ·.; :,: ~;.';.c :~;:•· : '->:c•::::; .. :,•· ... .... · .· ;;· 
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~IOC: N T t--1TT1 
4 / SAME OM~GA AND P FOR PQTH SWEEPS, PASfO ON FLUX~S AT START OF. PR~SENT S 
'1- I N S :=: R T F l U X • 7 2 - .. . .. ~ . . . 

CALL S~TMFCFHT~C,ASF,V,O,SIG,SIGR,W,WO,F~En,sPMMT,IMJKM~NDJK~,IMLT 
1 T N , L T H , ..J I( M A X , I 111 L T H , I M 1 l T H , N I~ , ~·i \>! 0 , I MAX , I ~1 A X N 0 , J K L .t J K l G ) . . 

!) 0 4 2 5 I= 1 , I ~1 A X 
Il2=(I-1)-¥-JKMAY 
IL 0= !) 
~ 1:: I l 2 ~ I '-1 A X N f) 
0 0 4 2 ? K = 2 , l<t11 
ILO=ILC+JIND 
Ji=JI(K} +IL0+1 
J2=JF(K)+IL0-1 
no 425 IL=J1,J2 
IL1=IL+IL? 
I 2 =- J K r1 A X + I L 
Xi= 0. 
X2=0 • 
0 0 4 1 5 I X = 1 , I ~-1 /\ Y N n 
I2=I2+JK~~AX 

I3=I1+I2 
X3=SPMMTCI3l~F X P<DT~FREO(I2>} 

X1=Y1+X7; 
X2=Y2+X~•F~~~<I?) 

418 CONTINIJF 
OMOT2CIL1)=.5• T~X2/X1 
P(IL1)=X!_ 

4 2 5 CO NTI NUf 
.7fQ ~ L;:::TE: FLUX.212 

135 IF <IEXF.NE.ll GO TO 14S 

• 

. . ·"' - ·-"- _.:.. ....,.;;.. _--:., ... __ • .._. 

.. . 
. ...... 

• 
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~ I 0 ~NT ~1 T T 2 
~I OIFFEPFNT 0"1J::"'GA tlO ~XPONENTIAL . TERMS _ IN. . AlTERNATE SHEEPS · • 
-v-INSE~T FLUX .. 71 

CALL SF T ,_, F { r- HI , C , AS F , V , 0 , S I G, S I G R , \~ , W n , I= R En , S P. '·H1 T , I MJ !( M , r~ 0 J K M , I t1 L T 
1 H n , l T H , ,J !( t·i t\ X , I ~-1L T H , I t11 l T H , ~ ! \.J , l'-1 W 0 , I t·1 A X , I ~-1 A X t-1 0 , J I( L , J K L G ) 

OTi=iJT 
~ I N S .r:~ RT F l U X • i ' 5 

I 1 = I l 2 ~ I ~·1 A X N D 
~ I N S E~ T F' L U X • f ~ 

IF (I EX F. EO. 1 
I?=- J '< !'-1 A X +I L 
X1=D . _ 
X 2= D • 

GO TO ?ll 

DO 1S IX=l,IM AXtFl 
I?=I? .. JK ~ 1AX 

I3=I1i-I2 
Xl=SP~~TCI3>~ ~ XPCDT1•FREOCI2> · > 

X1=X1+X~ 

X2=X2+X3¥FP~~ C I2) 

1 8 C 0 N T I r-J U t 
O~DTZCIL1l=0. 5•CT•X2/X1 
P(Il1)=Y1/PT~I IL1) 
PTN<IL1)=X1 
IF {1° .~fl. 2) PTNCIL1>=!. 

~INSEi?.T Fl'JX. 210 
IF <I'.:XP. r0..2 ) DT1=Di1+0T1 

.!i~-QELET~ FLUX.21? 
115 IF {I~XP.N ~ .1 GO TD 145 

·o~L ~ T~ s~rco~.24? 

PT NCIL>=PHICIL> 
IF <I::XF.ErJ.~) PTN(IL)=1.. 

120 CONTI0JtJV" 

. - . ·- .... .. _ ~-- , . ..:. . 
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:;.IO~NT MTT3 
•1 SA~€ ONEGA dNO P=EXPCOT•OMEGa) FOR 90T4 SWEEPS 
~INS~?T FLUX.7~ . 

CALL S~l. 4 F(~HI C,ASF,V,O,SIG,SIG~,w,wo,FRfO,SPMMT,IMJ~M,NOJKM,IMLT 
1TN,LTY,JKMAX,IMLTH,IM1LTH,N~,NWO,IMAX,I~AXNO,JKL,JKLG) . . 

DO 425 I=1,IMAX 
I L ?. = C I- 1 ) ~ J I< ~1 A X 
ILO=O 

J 1 = I l 2 • I f.~ A X ~·I 0 
00 42? i<'=2,~'11 

. ILO=Il!J+JIND 
· .J 1::: J I ( K ) + I L 0 t- 1 
J2=JFCK>+-Il0-1 
DO 425 IL=J1,J?. 
Ilt=IL+Il2 
I 2 ~ - J I(~~ A X + I L 
Xi=O. 
X2= 0. 
DO 413 IX=t,IMOYNO 
I 2 = I 2 + . J :< : .. 1 A X 
I 3= I 1 +I 2 
X3=S~MMTCI3>•FXPCDT•FRE0<I2l) 

X1=Xl+X3 
X2=X2+X3~F~[~CI2> 

4 1 8 CONTINIJF 
O~OT=QT.:r.X2/X1 

OMOT2<IL1>=.5•0HOT 
P (I l 1 ) =~X P ( 0 ~-1 0 T ) 

425 CONTINU,... 
~nELETE FLUX.212 

115 IF CI:::XP.N~.1) GO TO 14~ 

• =-· • 

·- ---~ -· 

• 

... 




