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PREFACE

R.M. Thrall and C.J. Nesbitt [10] proved that every faithful
module over a quasi-Frobenius (QF) ring is balanced (i.e. has the
double centralizer property). Later Thrall [9] gave an example, which
is presented in Chapter II, of a ring over which every faithful fin-
itely generated module is balanced, but which is not QF, He called
the above class of rings QF-l rings éﬁd posed the problem of class-
ifying them in terms of their structure. |

We shall first give, in Chapter I, a Tesult of Morita [7]
which relates the concepts of generation and co-generation to that
of the double centralizer properiy and establishes a necessary and
sufficient condition for an artinian ring to be QF-l.

In Chapter III, we have collected several constructions of
modules which are not balanced. These constructions are employed in
the proofs of several lemmas which lead eventually to establish the
main theorem in Chapter IV which describes the structure of certain
local QF-1 rings and can be considered as a partial solution to Thrall's

problem. These results are due to V. Dlab and C.M. Hingell:3] .
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PRELIMINARIES

We shall denote by R an associatize ring with identity and
gt or MR a left or right unital R-module respectively. If M is an
R-module, then the (Jacobson) radical of M, denoted by radM, is the
intersection of all the maximal submodules of M. The (Jacobson) rad-
ical of a ring ﬁ is defined as the radical of the R-module R (or
equivalently RR)’ The dual notion of the radical is the socle. Denoted
by SocM,  the socle of an R-module M is the sum of all the minimal sub-
modules of M. Hence if we comsider the ring R as a left (right) R—
module, we get the concept of the left (right) socle of R. The left
and the right socle of R are two~sided ideals of R.

R is called a local ring if R satisfies one of the following
equivalent statement:-—
(1) R/radR is a division ring.
(2) R has exactly one maximal one-sided ideai.
(3) All non-units of R are contained in- a proper idéal.
R is right perfect if and only if R/W is semisimple and every non-zero
left module has a non-zero socle. By a perfect ring we shall mean a
ring which is both left and right perfect. If M has a composition
series, denote by O (M) its length. In case R is a two-sided artinian
ring, we can speak of the left length.a(RR) and right length a(BR) of
R,

Let S be a subset of R. The left annihilator 1(S) of S is

V=



defined as 1(S) = { a€R:aS=0 } , whereas the right annihilator
r(S) is given by r(S) = {a €R: Sa = O‘} o A two-sided artinian ring
R is called a quasi-Frobenius (QF) ring if
C1(z(1) =L and  2(1(9) =7

for every left ideal L and right ideal J in R, An artinian ring R is
QF if, and only if RR is injective.

Bvery left R-module M is a right C-module, where C is the
endomorphism ring of M (also called the centralizer of RM). The dou-

ble centralizer D is the endomorphism ring of M.. The map ¢ t R—>D,

c
defined by @#(a) = a; where aL(m) = am for every a € R and m € M, is
a ring homomorphisgp. If this homomorphism is surjective, then M is
said to have the double centralizer property, or to be balanced.

In [io] R.M. Thrall and C.J. Nesbitt showed that every faith-
ful module over a QF ring has the double centralizer property. R.M.
Thrall later introduced the concept of QF-1 rings which is a general-
ization of QF rings. R is said to be a left (right) QF-1 ring if every
finitely generated faithful left ( right ) R-module has the double
centralizer property. He also defined a QF-3 ring to be an artinian
ring R which has a unique minimal faithful module., A faithful R-imodule
M is said to be a minimal faithful module if the deletion of any non-
zero direct summasnd of M leaves a nonfaithful module.

Let U and V be R-modules. U is said to generate V if

vV = S_{Imo(: &€ HomR(U,V)} ’

or equivalently, if V is isomorphic to a factor module of a direct sum

of copies of U. Furthermore, U is said to co-generate V if

o+ & T



N {kergf T 46 HomR(V,U) } =0,
or equivalently, if V is isomorphic to a submodule of a product of

copies of U.
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CHAPTER I

DOUBLE CENTRALIZER PROPERTY AND ARTINIAN QF-1 RINGS

We first prove the following theorem (K. Morita [7] s theorem
i.1) which relates the notion of generation and co-generation to that

of the double centralizer property.

THEOREM I.1. Let R be a left artinian ring and U a faithful fin-
itely generated left R-module having the double centralizer property.
Let V be an indecomposable finitely generated left R-module and W =

U & V, Then the following statements are e;uivalent:

(1) W has the double centralizer property.

(2) U generates or co-generates V.

PROOF. (1) =>(2)
Denote the R-endomorphism ring of W by C, and assume that U
neither generates nor co-generates V. Let A: UOV—>TU and

M: U@ V——-=>V be the natural projections. Then we have

B = HomR(U,U) = ACA
and

D = HomR(V,V) = MCYU .
Hrite

v, = s {Img(: o € Homy (U, )}
and

v, =N {Kerf : Ye Hdu;R(V,U)} .

Py



Then with D as the right operator domain of V we obtain the bimodules
Avl D and AVb D° Now since V is finitely generated and indecomposa-—
ble as a left R-module and by Fitting's Lemma , D is a local ring with
nilpotent radical N. If we set

*
Vl = V1+ VN,
*

*
Vl becomes an R-D bimodule. We note that Vl % V. Por suppose other-

wise, let

Then there exists k 2 1l such that

vV =V + V.Nk

1

and
+1
Vl + VNk ? V.
Multiplying by Nk, we get

wE = vlnk +  THOE,

Substituting this into the former equation we have

v 2k

L]

. N.k &k ¢ :
Vl + Vl + VN = Vl + VN
c Vl VN +1 cVv,

= F

since 2k > k +1. This is a contradiction and therefore we can conclude

that
*
vl,év.
% -— —-—
It follows that V/Vi is a non-zero R-D bimodule, where D = D/N is

a skewfield.

Define a submodule
*

v, o= {”vevo w = 0}

. % , _
of the non-zero left module Vo. Now V° is a non—-zero R-D bimodule.
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* Nk . s .
To see that Vo is non-zero, suppose = 0 for some positive integer

k. Since 'vo # 0, there exists m g k such that

vE" 4 0ana VA" - o,

This means that V "' £ O belongs to

O %O

_ . _
Hence considering V / V; and V_ as right D vedtor spaces,

(o]

— * *
~there is a non-zero D-homomorphism from ;«'V/Vl into Vo. It follows
that there exists a non-zero D-homomorphism ¢ ¢ V-—>V such that
‘,*.

(a) ¢(v) =0 for vev,,

(v) ¢ (v) V: for veV, and

‘ *
(e) ‘P(Vl) =V, # 0 for some v,eVand v ev.

Now if we set
@(w) = cE’(w/u) e V: for weW,
where M is the natural projection of W onto V, ¢ becomes a C-endo-
morphism of W. To see this, it is sufficient to show that
@ (we) = @ (w)e for c €0,
that is, to show for ueU, ¢ €C and v €V
(1)  # (ue) = ¢ (v)e =0,
(i1) # (ve) = ¢ (v)e,
because if (i) and (ii) hold , we have
g (we) =@ (whc+ wpe) = ¢ (wAc) + g (wme)
=f (wple = (Bwp) + g(wr))o
=@f(wp+wh)e=¢ (we.
To show (i) we note that since um = 0, § (u) = ¢(un) = 0.



*

Moreover $(uc) = P (ucu) = O since ucl € Vi €V, =V, + VN and

1 1
because of (a).

Now @(ve) = P (vepu) = ©(vuc u). Note that ucp g pCp
= D and is a D-homomorphism and so

#(ve) = @(vuep)

= P(v)p Cpie
Furthermore, note that
*
P(v) € Vv, & V..

Now
®(v)cA = ‘P(v)pcﬁ = 0
follows from the definition of V0 and by considering M e A as an
R~homomorphism of V into U. Therefore
g (v)e P(vule = ®(v)e
e(v)pec( A+ n)

]

i

e(vV)uecA + P(v)pucu

P(viucu .
Hence @ (vc) = ¢ (v)c and we have proved that ¢ is a C—endomorphism
of W,

To complete the proof of (1) —> (2), we have to show that
¢ € Endc(W) cannot be obtained from a left multiplication by an
element of R. Suppose there exists an a € R such that #(w) = aw for
every w € W. Since from (c), ¢ (vl) = ¢ (vl) = v, # 0 for some v, eV
and v, € V: y We see that‘ a # 0. Moreover since U is faithful, there

is u € U such that au # 0, but @¥(u) = O and we have arrived at a con-

tradiction,



(2) =—=> (1).
Let @ € Endc(w). Then the restriction ¢ l U of ¢ on U belongs
to End.B(U) because
g (u) =g (ud) =6 (v)A
where A : W — U is required as an element of C. Since U has the
double centralizer property, there exists an a g R such that
g (u) = au for all u ¢U,
Let us set
gr(w) = B(w) - aw
for w € W. Then ¢'(w) = O if w g U, Our proof would be complete if we
can show that
gt(v) =0, for v gV
also. We have two cases to consider.

Case I 2= V =V., i.e. U generates V.

1

For every v ¢ V, there exists a finite number of u, € U,

Oi 1 c, (i = 1,.0.,11) SU.Ch that

n
vV = E U,C. o
i1 i’i
Hence
n
] — 1 —
gr(v) = g (ui)ci = 0.
i=1
Case I1 - V_ = 0, i.s. U cogenerates V.
Lase 11 o _
Suppose there exists v €V such that @g'(v) # 0. Now since.
Vo = N { ker¥ I Y€ HomR(V,U)} = 0 , for such v, there exist
Y : V —> U such that ¢'(v) ¢ Ker ¥ . Hence

0 £ g (vuy
= g'(vay) =0,

since Vﬂ\y € U and MY e C. Due to this contradiction, we can conc-
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clude
H(w) = aw

for all w C W. The proof of Theorem I.1 is completed.

Before we proceed to establishing a necessary and sufficient
condition for a left artinian ring to be QF-1, we remark here that
statement (2) in Theorem I.l is equivalent to the following :

(3) there exists a positive integer n such that V is R-isomorphic
either to a quotient module of U(n) (the direct sum of n copies of U)
or to an-R—submodule of U(n).
In order to check this equivalence, let U either generate or
co~generate V. Cohsider the case where
V- S {Im X: o 6 HomR(U,V)} .
Let
{ Vis eee 5 V } .
be a generating set of V. Then for each i (i = i, es. ,n) v, = k§1¢k(uk§)
for some ¢i € Homr(U,V) and w¥, € U. Now for any (ul, coes uh) € U(n),

let us set

By wees w) = 5 B(u).

n
If V3v = &, a.v,, then
i= i'i
n n * n % n *
== E S = *es ] -
v = E B0 e ) L 321 Byupsenes;Fiasuy )
Hence ¢ H U(n) ~———3> V is an epimorphism and V is therefore isomor-

phic to a quotient module of U(n).

Consider the case where (Wz{ker g:4¢€ HomR(V,U)} = 0.



Then, becauss R is artinian, there exists a finite number of R~
homomorphisms ;61 € HomR(V,U), i = 1yeeeyn such that

N ker ﬁi = 0,

i=1
If we set
B (v) = ($(3)s vee s $.(9))
for v € V, then @§ is an R-homomorphism of V into U(n) with

ker § = [ ker ﬁi = 0.
i=1

Therefore V is R-isomorphic to a submodule of U(n). Hence we have

proved (2) —=> (3) and the converse is obvious.

We are now ready to prove the following theorem (K. Morita[7]

theoren 1.2),

THEOREM I.2. Let R be an artinian ring and {Iﬂ‘} the totality

of isomorphism types of-minimal faithful finitely generated left R-
modules. In order that R be a QF-1 ring it is necessary and sufficient
that R satisfy the following two conditions :

(1) Uochas the double centralizer property for every o .

(2) For any indecomposable finitely generated left R-module V and

for each o , Ubt generates or co-generates V.

PROOP., Suppose that R is a QF~l ring, then (1) is satisfied
trivially. Let V be any indecomposable finitely generated left R-

module, then Uo< ® V is a faithful finitely generated left R-module.



Hence U o ® V has the double centralizer property and by Theorem

I.1 we obtain (2).

To prove the converse, let W by any finitely generated
faithful left R-module. We may express W as a direct sum of a finite
number of indecomposable submodules Vi, that is,

H= 26V

?
iep 1

B finite. Consider the collection

¢ ={38,]3es}

of subsets of B such that S6 Vi is a faithful left R-module., -
ie Bj

There is a Bk in C with the smallest cardinality. Then

P= =6 V
i€]3k

i

is a minimal faithful left R~module, since if otherwise, then
P= 36 V, = P'oP"

i
:I.G.Bk

with P' faithful and P'' non-zero. Now the Krull-Schmidt Theorem tells

*
us that for some proper subset Bk of Bk ’
T
TR Ty
k

and this contradicts our choice of Bk' Hence P is isomorphic to a Uo(.

for some o¢ . Now we can write

W =P@& S0 vi’;’U o S0 V,
1 €B-B, =B' *  ieB!
n

where B' is a finite index set. We can write =6 V, as S V
ieB' * i-1 *



for some positive integer n. Then by Theorem 1.1, UoL ® Vl has the
double centralizer property. Similarly we can conclude the same for

U, @V

oL p endV

5 ¢ Applying Theorem 1.1 repeatedly, we would have,
finally, that W has the double centralizer property. This completes

the proof of our theorem.

As an immediate consequence of Theorem 1.2, we have the foll-

owing Corollary (K. Morita [‘7] s Theorem 1.3).

Corollarj I.3. Let R be a left artinian QF-3 ring and U its
unique minimal faithful finitely generated left module. Then the
following two conditions are necessary and sufficient in order that
R be a QF-1 ring;

(1) U has the double centralizer property.

(2) Por any finitely generated indecomposable left R-module v, U

generates or co-gensrates V.



CHAPTER 1II
AN EXAMPLE OF A QF-1 RING WHICH

IS NOT QF

The following is an example of an artinian ring which is QF-1
but not QF, showing that the class of QF-l rings properly contains the
class of QF rings.

Let A be the subalgebra of the full matrix ring (K)4 over a

field K consisting of all elements of the form

8y 0 0 O
a4 a, 0 O
0O O a, 0
0 0 a5 a3
where a, € Ky 1 =1y ¢se 35« The elements
1 0 O 0 0O 0 0 O
0 0 0 0O 0 1 0 O
e = ’ f = a.nd.
0O 0 0 O 0O 01 O
0O 0 0 0 0O 0 0 O
0 0 0 O
0O 0 0 O
g = .
0O 0 0 O
0 0 0 1

are indecomposable orthogonal idempotents of A with sum equal to the
identity element. Then the indecomposable projective left ideals of

A are Ae, Af and Ag.

-10-
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Writing h = e + £, we claim that the left A-module Ah is in-

jective. We first show that Ae is injective. The K-basis of Ae is

given by bl = e and b2 .y Where
0O 0 0 O
1 0 0 O
2 T 000 0 )
0 0 0 O

Let us denote the K-dual of Ae by A6 (= HomK(Ae,K)) and let %EA: .
Then the action of ;5 on Ae is described by its action on the basis
elements ‘bl and b2. Hence ¢4 is represented by a pair (k,p)é KoK
where |

#(b;) = k and g(v,) = p.

*
In order to determine the right A-module structure of Ae, we consider

the following. Let r €A, then

a100

0
‘ a, 0 0 O
(Fe)(b) = Blzb) = 4 g N
) 0 0 00

Blby)ay + #lvy)a,

= ka.l + pa4 .

Moreover . 000 0
(r)(b,) = #(xby) = 4 2,0 0 0
0 0 0 O
0 0 0 O

1
o
—~

o

N P
~—
[

N

i

g

iy
N

L]
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*
Hence the right A-module structure of Ae is defined by

fr = (kay + pa; , pay).

Setting
0 0 0 O
| Xk p O O
X(4) =
0 0 p O
0O 0 0 O

* *
for deAe s then X: Ae ——> fA ig an isomorphism. Indeed,

for r€A,

X (¢r)

XA (kay + P2y paé)

0 0 0 0

kal +pa 4 pa, o 0

= 0 0 e, 0]
0 0 0 0

X (B .
Hence ’X is an A-~homomorphism and that X is bijective is quite obvious.
*
Using a similar procedure, we can deduce that Af & gA. Whence,
* *
equivalently, we have proved that gA & Af and fA & Ae. Now since
gA and fA are projective right A-modules, their duals are injective
left A-modules, Therefore Ae ® Af = Ah is an injective left A-moduls.
Now Ah is contained in every finitely generated faithful left

A-module as a direct summand. Liet ,X be a finitely generated faithful

A

left A-module. Then the intersection of the left annihilators of ele-
ments of X is 0. Since A is artinian, there is a finite number of ele-
ments of X such that

n 1(x, = O,
i=1 ( 1)
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Hence A is embedded into a finite direct sum of copies of X by

n
a > (ax;); 4

a€A. Expressing X as a finite direct sum of indecomposable submodules

Wwe can write

n m
Ah € A S—> 19 (.o, X

k=1 ik ) .

Now since Ah is injective, there exists a suitable left A-module Y
such that

m

n
Ah oY = .0, (.kgl xik).

Since Ae #'Af, it follows from the Krull Schmidt theorem that Ae and
Af are isomorphic to two distinet indecomposable direct summand of X,
Hence we have proven that for any finitely generated faithful left A~
module X,

X = Ao @ Af @ Xl @ ... O Xs
where Xi are indecomposable submodules of X,

Fow we make use-of Theorem I.1 to show that X is balanced,
that is, A is a QF-1l ring. To this end, we have to check the follow-
ing’s
(1) Ah has the double centralizer property, and
(2) Por each indecomposable finitely generated left A-module M, Ah
either generates or co—generates M.

Proof of (1) :-

* The elements of A
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1 000 0 0 00
0 0 0 O 01 0O
1 7 000 0 » % T 0010
0O 0 0 O 0 0 0 O
0O 0 0 O 0 0 0 O
1 0 0 O 0 0 0 O
3T 000 0 A 000 0
0 0 0 O 0 01 O
are a basis of Ah over K., Then for zach a€A, we have
I e 1

k=1,.e.54. Hoence the correspondence

a pP——> (xik)
gives a matrix representation of A. It turns out, by direct computat-
ion, that the matrixz (xik)-is identically equal to a, for every a€A.

Now the centralizer EndA(Ah) of Ah consists precisely of those

matrices (yij), 1,j=1y ees34, which commute with all (xij). Hence

(735) oy = o (535
or
v300 00 Y11 T12 13 Y14
I 0 0 0} 0 0 0 o
¥330 00 T 0o 0 0 o
¥4, 0 00 o 0 0 0

which implies that ¥qq is arbitrary and

yil = yli = 0 ? i= 2’3’4‘
Proceeding in the same manner with the elements e,y © and e, we see

3 4
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finally that En@A(Ah) consists precisely of the matrices of the form

x 0 0 0
0 x 2z O
3g) = 00y 0
000 y

where x,y and z €K.

Furthermore, the double centralizer of Ah consists of those
matrices (zij) which commute with all the (yij) . It turns out, éfter
going through a similar procedure as above, that A coincides with the

double centralizer of Ah. Hence we have proven that Ah is balanced.

Proof of (2) :-
A is & semiperfect ring because it is artinian. Let
0—>K—>P —>H—>0

be a projective cover for i, where K = ker t. Now there exists a

homomorphism f which makes the following diagram commutative,

Aln) 45 N

SN
P

where

and {:ml, coey mn.} is a basis of M. Since t is co-essential, and
u is onto, f is necessarily onto. Therefore, since P is projective,
f splits, that is, ‘

2 L yerrey

where Y = P. Hence P is finitely generated. This, together with the



fact that A is semiperfect and P is projective implies that P is
isomorphic to a direct sum of finitely many left A-modules each
isomorphic to some indecomposable left ideal of A, Therefore

P 9 Aei s €, = e, T or g,

“finite i

Since P is a projective cover, K is small and hence

K c rad P = (] Jei
where
0O 0 0 O
_ a,4 0O 0 O~
J = radd = : 47 25 € K .
: 0 0 0 O
0O O a5 0

Now Jg = O and hence
K € 6Je, 4y 0, =eor £,
i i
It follows immediately that
M Y PK

Y e Aei/K , o =6, forg

Y 9he /K0 (0Ag ), o, = e or f.
finite

Since M is indecomposable, either
(i) Mm ¥ 56 Aei/K, e; = e or £, or

(i1) ¥ ¥ ag.

In the first instance, M is generated by Ae ® Af and in the latter,

Ag ¥ Jf € Af

16

and hence M is co-generated by Ae @ Af. This completes the proof of

(2) and consequently Theorem I.l applies, proving that X is balanced.

Therefore A is a QF-1 ring.



17

Finally we show that A is not a QF ring by observing that
A is not self injective. Since Ag is isomorphic to Jf which is pro-
perly contained in the indecomposable left A-module Af, Ag is not

injective which implies that ,A is not injective and hence not QF,

A



CHAPTER III

CONSTRUCTIONS OF NON-BALANCED MODULES

We are going to present seven different ways of constructing
modules which are not balanced. These constructions are essential
for four theorems on certain QF-l rings. The theorems, in turn, lead
us to establishing a characterization of certain QF-l rings. From
here on we shall denote left ideals, two-sided ideals and left R~
modules respectively by the capital letters U, I and M (with approp-

riate subscripts).

CONSTRUCTION I, Let R be a local ring with a minimal right ideal.
Let Ul’ U2 be two non-zero isomorphic left ideals and Il, 12 be two
two-sided ideals of R such that

U, e I (i = 1,2) and IL,ni, =o0.
Then there is a finitely generated faithful left R-module which is

not balanced.

PROOF, We construct the module ¥ in question as follows, Let
t 2 U1 ——— U2 be an isomorphism and set

D = {(a -at) : aev; } .
Then

.M = RO@R/D

=18~
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is a finitely generated and faithful left R-module. The endomorphisms
of M can be lifted to those endomorphisms of the left R-module R ® R

which map D into D. Let
¢11 ¢12
¢21 ¢22
be the matrix representation of such an endomorphism of R @ R where

the ¢ij € EndR(R) are right multiplications by elements of R. Consider

(d9 "'dt) ¢1l ¢12 = (d¢11 - (dt)¢21 b d¢12 - (dt)¢22)
¢21 ¢22
with (4, -dt)€ D. Hence
ag,; - (at)g,;, € U, (1=1,2) ——— (1)

and we claim that both ¢21 and ¢12 belong to the radical of R which

is denoted by W. For, suppose that ¢21 is a unit, then from (1),
© =1 1
818, - 4t € U,y
and hence
U =Ut ¢ Ut +ud gt ¢ 1
2 1 = 1721 1711721 = "1 °?
a contradiction. Similarly, if ¢12 does not belong to W, then
1 1
Up s Ufp, + (U380,
= U g+ U gl €1
12 pre2rle & 2?
another contradiction.

We then construct a homomorphism f : R § R ———> R O R

which commutes with all



20
¢ll ¢12
¢21 ¢22
mapping D into D, Thus, f will induce an element of the double cent-

ralizer D(M) of M. Let us define f by

£2(x, y) = (zx, 0)
where z is a non-zero element of the right socle and (x, y) € R @ R.

Now since U; C W and z¥ = O, (D) = 0. Moreover
(f(XQ .Y)) ¢11 ¢12 = (zx¢ll’ ZI¢12)

¢21 ¢22

It

(zxf,,, 0)
because ¢12 € W. Similarly,
$11 ¢12
Po1 P20

£ (x, y)

]

(zx¢1l + zy¢21 ’ 0)

(ZX¢11 s 0)
and thus f induces an element of D(M).
Now suppose that f is induced by an element r €R, that is,
£(z, y) - (rx, ry) €D,
for 211 (x,y) € R ® R. Hence if (x, y) = (0, 1), we get (0, r)eD
and it follows immediately that r = 0. But if (x, y) = (1, O) we have
(z, 0) €D which is a contradiction. Therefore f is not induced by a

left multiplication by an element of R, that is, M is not balanced.

We shall see later,~in the proof of Lemma IV,1, that Construc-
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tion I implies, that a perfect local QF-l ring has a unique minimal
two-sided ideal. Construction II will be used in the proof of Constr-
uction III which deals with a situation similar to that of the pre-

vious one,

CONSTRUCTION II. Let R be a local ring with the radical W. Let

M., and M

1 o satisfy Mif c ij, for every homomorphism f @ Mi —> Y

J

with i % j. Horeover, let, M, be faithful, and suppose that the anni-

2

hilator of M, does not contain the right socle SocRB of R. Then

1
M= Ml 9 M2
is not balanced.
PROOF: Let the matrices
P fro
¢21 ¢22

represent the elements of C = EndR(M), where ¢ij H Mi ———-€>>Mj.

Lot z €SocR - Ann(Ml), where Ann(Ml) denotes the annihilator of M

and define an additive homomorphism £ ¢ M ————3> M by

1’

f(ml, mz) = (zml, 0)

o M,.

for all (ml, m2) €M =N 5

Now f so defined actually belongs to EndC(M). To see this,

consider
(£(mys m)) [ By Foo Prn oo

= (zm,, 0)
¢21 ¢22 ' ¢21 ¢22
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= (Zml¢11’ Zml¢12) = (Zm1¢119 0)
since zml¢12 = 0 because mi¢ij € Wi, for i # j. By similar considera~

tion, we have

STRCP
£ (mysmp) = f(myfyy + mfbyys mbp + myfpy))

¢21 ¢22

(zml¢ll + zm2¢21, 0)

= (Zm1¢11’ 0)

¢11 ¢12
¢21 ¢22 )

= (f(ml’ mz))

To conclude the construction, suppose that there is a reR
such that
f(ml, m2) = (rml, rm2) = (zml, 0).

Now since M_, is faithful by assumption, we have that r = 0. Further—

2
more, since z g‘ Ann(Ml), there is mie Hl such that zm:'L ;é 0 and thus

£(m!, 0) = (zn}, 0) # (xn}, 0) = (0, 0).

Therefore £ is not induced by left multiplication, ie. M is not bal-

anced.

Our next construction deals with a situation similar to that
of Construction I. We shall make use of Constructions I, III and IV

to prove Lemma IV.1l.
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CONSTRUCTION IIIX. Let R be a local ring and Ul’ ,U2 be two non-
zero left ideals and I1 a two-sided ideal of R such that
Ul _C_Il and Ian2 = 0,

Furthermore, let U2 contein no non-zero two-sided ideal of R and let

SocRR g Ul' Then there is a finitely generated faithful left R~ module

which is not balanced.

PROOF. Since we are going to apply Construction II, let

M, = R/Ui, i=1, 2and ¥ =H 0N,

Now M,is faithful and since A.nn(Ml) C Uy, SocRy ¢ Ann(Ml). We next

consider the morphisms between M, and M,. Every homomorphism fl H Ml

1 2

—— Li2 can be lifted to an element of EndR(R) which maps U1 into

U2. It follows that there is a right multiplication by an element

r,€R with U,r, C U

1 151 o Since Ul C Il, we have

Ulrl Cc Iln U2 = 0.
Necesgarily Ty € W, otherwise we would have Ul = 0, Hence

lel Cc HMZ.

In a similar manner, every f2 : M2 — Ml can be lifted to

a right multiplication by some T, € R with U,r, C U . Again , € W,
otherwise

U, curtc I

2 = 1’2 = "1
is a contradiction. Hence

M_f, C WM
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The assumptions of Construction II are now satisfied.

CONSTRUCTION IV. - Let R be a left artinian local ring. Let U C
SocRR be a non-zero left idesl containing no non-zero two-sided ideal.
Let © be a unit of R such that Ur & U and SocRy & U + Ur. Then there

is a finitely generated faithful left R-module which is not balanced.

Proof. If we set
M = R/U,

then M is a finitely generated faithful left R-module. Every element
£ e End_R(lvi) = C can be lifted to a right multiplication by an element
a, € R which satisfy

Uaf

c U,
Let us denote the radicals of R, M and C respectively by W, T = W/U
and W', Now
W= {recia e
and hence C is local and MW' C T. Moreover T is a C-submodule of M
and M/T is a completely reducible right C-module, Writing
X=x+U€M
for every x € R, weo claim that
M/T=(I+T)Ce(T+T)CON
for a suitable right C—~submodule of M/T. To see this, suppose that the

right C-modules (I + T)C and (T + T) C have a non-trivial intersection,

that is, there is some f € C with
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(I+m)fe (r+ T)C and Tf g m,

Hence If -~ T 6 T and we can 1ift £ to a right multiplication by en:

element ap of R satisfying'Uafgg‘U. It follows that laf -7 € W, Now
since U'g_SocRR, we have

Ua, ~ Ur € UW = 0.
Hence Ua, = Ur C U, contradicting the fact that a, induces the endo-

f
morphism £ of M.

£

Take a non—-zero element z € SocRR - (U + Ur) and observe that
z € SocMC because z W' = O. Now we are ready to construct an element
g of the double centralizer D(M) of M and eventually show that g is

not induced by left multiplication., We first define a C-~homomorphisnm

g' s (M/‘I‘)C ————= SocM, by setting

g'(I+7) =0, g(r+7T) =12
and
g'(n +T) =0forn+TEN,
Ifp: M

——— (M/T)C and m ¢ SocM, —————> } | are the respective

C c C
projection and injection, then we set g € D(MC) to be
g = ng'p
and it is obvious that g has the required properties.
Now suppose that there exists’s € R such that sx = g(i) for
all X 6 M. By the definition of g, we see that sI = O which implies
s € U. On the other hand sT = z implies z € sr + U, Therefore we have

z € Ur + U which contradicts our choice of z and hence ¥ is not balan—

ced.
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The following result will be needed in Construction VI.

CONSTRUCTION V. Let M be an indecomposable left R-module of fi-
nite length. Assume that M possesses a proper submodule and a quotient
both isomorphic to a faithful left R-module N. Moreover, let MC ‘have
a non—trivia; socle and a non-trivial radical, where C = EndR(M).

Then M is not balanced.

PROOP. By Fitting's lemma, C is a local ring with a nilpotent
radical W'. If £ ¢ N =——> M is an embedding, we shall show that
NfC MH's Let p 8 M — > N be an epimorphism, then pf € C. Since
Nf is a proper submodule of M, pf is not invertible and hence belong
to the set of non-units W'. It follows that Nf = Mpf C MW'.

Now since MC has non-trivial socle and radical, there exists
a non-zero C-homomorphism

gr s M/UN' ———> Soc(M,).

Denoting the embedding by f£' : Soc(MC) ——3 M, and the canonical

epimorphism by p' @ MC — M/MW', we see that the C-homomorphism
¢ = f'¢'P'
belong to EndC(M).

Pinally we show that @ is not induced by right multiplication.

Assuming that @§(m) = rm for all m € M and a suitable r € R. Since

@ £ 0, TAO and

Nf.c v(MW') = g(Mur) = 0
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contradicts the fact that N is faithful and hence M is not balanced.

In order to simplify the presentation of Constructions VI and

VII; it is necessary for us to establish the following lemma,

LEMMA III.1, Let R be a local ring with the radical W. Let x,
y and z be elements of R éuch that

x £ 0, X8 = 0, Hy = O,

z Rx + yR and y £ zW.
Then
M=(R&R)/D,

where D = {(by, -bz + ax): a,b € RJ— sis a faithful indecomposable
left R-module. Moreover if

(] Cc

11 12

c c

21 22

cij € R, represents an endomorphism of the left R-module R @ R which

maps D into D, then 5y € W.

PROOF. Let

T =(WeR)/D CM.
Firstly, we show that if m € T, then Ann,(m) # 0. For m = (w,r) + D,
with w € W, r € B, if © € W then SocRy C Amn,(m). If r # W, consider

-1
Xr m

[}

x Y ((w,z) + D)

L(xr-lw, x) + D.

Since © W C W and x# = 0, ‘Wwe have
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2 tn = (0,x) + D =1D

1

and hence O # xr ~ € Annl(m). Conversely if Annl(m) # 0 for m = (rl,

r2) + D € M, then

u(rl, r2) = (by, -bx + ax) € D —— (1)

for some O £ u, b and a of R and we are going to show that m € T,

Suppose that r, # W and from (1) we get

1 1

r, = =bz + ax —— (2)

u = byr; and ur, = byr;

Now since Wy = O and 0 # u = byrIl, we have that b is a unit. There-
fore from (2),

z = (b_la)x + y(-rzlrz) € BRx + yR

which is a contradiction and we conclude that rl € Horm¢€ T, The

above considerations thus allow us to characterize T in the following
way ¢

T

{m:me€Mwith hnn,(m) O] .

Now m_ - (1,0) + D § T. For supposing the contrary and say

ua = 0 for some O £ u € R, then
(u,0) = (by, =bz + ax)
for some b, a € R. Since Wy = 0 and O % u = by, it follows that b is
a unit, -But then
bz +ax =0 or =z =1b lax € Rx

is a contradiction.

In order to prove that M is indecomposable we assume the
contrary. Since (M/radM),é 2, M is the direct sum of two local

modules. This follows from the fact that if, say,
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M= 0N, 0N,

then

M/radd = Ml/radml ) Mz/radMZ ® M3/ra.dM3

and since M is finitely generated, each Mi/radMi (i =1, 2,3) is non~
zero. Hence O (M/radM)>2 is a contradiction and therefore we can
write

M = Rp © Rq
for suitable p,q © M. Hence m, = TP + Toq for some Ty Ty € Ry and
since, as remarked, m_ g 1T or Annl(mo) = 0, we can assume that A.nnl(rlp)
= 0, It follows that Rmon Rq = O; otherwise, for some s, t € R, sm =

tq. Then

s(mo) = s(rlp + r2q) ST{D + sT,q = tq,

or, eguivalently,

sTP = ~8T,q + tq (—s:c'2 + t)g € Rq— (1)

and s=0 because RpNRq = 0. Moreover, Ty is a unit because if Ty e W

we have
SocR, < Annl(rl) - Anni(rlp),

contrary to the fact that Annl(rlp) = 0. Therefore (1) gives

-1 -1

P=r,m -T T,
and we can conclude that M = Rmo ® Rgqg.
Let M = Rmo ® Rq -—-—--1-{-—-) Rmo be the canonical epimorphism

where m k = m_. Define P:R=———>MN by 1P = (0,1) + D. Now since
(y, =z) € D or (y,0) - (O,z) € D we see that

z‘-?=(0,z)+D=(y,O)+D=ymo.
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FPurthermore, define ¢ : R ——> Rmo by 1¢ =m, and @ is easily seen

to be an isomorphism. Consider the composite homomorphism
1
gt : R > i —E >Rmo——£-9R

and its action on zj;

z‘Ek¢—l

((7,0) + D) xf™"
(v(n ) W™ = y((m)x)g™
y(mosfl) = 3.

(]

[}

t

Since ‘ek¢—l is induced by a right multiplication, for a-suitable reR
we obtain y = zr. But this is impossible because if r € W, then y € zW

which contradicts the assumption on y. On the other hand if r § W, then

zZ = yr—l € yR, another contradiction. Therefore M must be indecompos-

able.
Finally, let

c c

11 12

c C

21 22

be an endomorphism of R(R ® R)mapping D into D. Now (o,x) € D and hence

(0,x) 19 P
. o = (x0y, x0,,)
21 22
= (by, =bz + ax) € D
for suitable b,a € R, that is, XCxp = by and XChs = -by + ax., Suppo-
sing that 5y ¢ W, we have, from the above that,
-1
04x = by,

vwhich means that b § W. Hence

-1 -l
Zz=Db ax->5 x022
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and after substituting, the above becomes

-1 -]
X =5 ax + y(-021c22) € Rx + yR.
Hence we arrive at a contradiction and we conclude that c21 € W. The

proof of our lemmsa is completed.

We shall examine the double centralizer of an indecomposable
module, specifically the left R-module M of the previous lemma in

Constructions VI and VII which will be used in the next chapter.

CONSTRUCTION VI. Let R be a left artinian local ring. Let

S = SocBRFISocRR.

Purthermore, let x,y € S such that Rx and Ry are not two-sided ideals
and

S # Rx + yR.
Then there exists a finitely generated faithful left R-module which

is not balanced.

PROOF, We begin by observing that, in view of Construction II,
we may assume that R/Rx Q’R/Ry. To see this, suppose that the finite-
1y generated faithful left R-modules R/Rx and R/Ry are not isomorphism.
Let § : R/Rx ———> R/Ry be an epimorphism, then

R/Ry % (R/Rx) / kerf.
Hence

9, (R/Ry) = 3, (8/R%) - 2, (xer 4).

Now Ry and Rx are simple because Rx ¥ R/I where R/I is semisimple.
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This implies that W(R/I) C I and hence W C I. Necessarily, W = I,
and therefore Bx ¥ R/W is simple since R is local. The same goes for

Ry and we have.

al(R/Rx) = al(R/Ry) .

It follows that al(ker @) = 0 and so ker § = O, Therefore an epi-
morphism between R/Rx and R/Ry is necessarily an isomorphism. In the
case where the homomorphismis not epimorphic, then

#(rR/Rx) = RF(1 + Rx) g R/Ry.
Now #(1 + Rx) must belong to rad(R/Ry) because, if not, there is r € R
such that

r(@(1 + Rx)) = 1 + Ry

and R(#(1 + Rx)) = R/Ry. To satiafy the rest of the assumption of

Construction II, suppose that SocRR c Amll(R/Rx), that is,
SocRR(R/RX) C Rx.

Hence S & SocR, ¢ SocRp.R & Rx. Therefore we have Rx = 5 since Rx ¢ S,

a contradiction. Whence
SocRy, ¢ Ann, (R/Rx)

and Construction II can be applied and we are through. Hence, in what

follows, we assume that R/Rx ¥ R/Ry.

Let z € S = (Rx + yR) and consider the finitely generated
faithful left R-module M = (R & R)/D of lemma III.1l., Since M is an
indecomposable R-module of finite length (Lemma III.l), the central-
izer C of M is a local ring with a nil radical W'. Moreover, if

c c

11 12

°21 %



c.. € R, represents an endomorphism ¢ of the left R-module R @ R

ij
mapping D into D, then ¢

o2
we have
®11
(0,1)
Co1
How since
¢11
(0,1t)
| Co1

we have

2i € W, We shall show that also ¢

€ W provided that ¢ is nilpotent. Say ¢n = 0 and taking t € SocRR,

11

C12

. = (tc2l, t022) = (O,tczz).
22

012 n o

. = (o, t022) € D,
22

(o, tcgz) = (by, =bz + ax) € D,

for suitable bya € R, and formulating we obtain

= 0 and tcn

by 22

Since Wy = O, b € W and hence bz = O and (1) becomes tc

-n

if ey, g, t= axc,,

a £ W and so

Takihg t+ = z, we get 2 = azc

2,
Now consider
11

(v, "Z)
21

for suitable b,a € R where (y,

and letting t =x, x = axe,

and hence we conclude that c

(1)

= ~h2Z + aX.
n
22

g € Rx. Since Wx

-1 ~-n
X = x022 € Rx.
Eg € Rx which contradicts the choice of
22 e W.
¢2
o (ycl:'_’ ycl2)
22
= (by, -bz + ax) € D
-z) €

€ W and

= axXx. Now

D, Suppose that Gil # W. Since
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yoq; =byory = byczi, which implies that b ¢ W. Now

Yoo = -bz + ax,

or equivalently,

-1 -]
z = (b a)x + y(_cllcl2)

which again contradicts the fact that z € S - (Bx + yR). Therefore

011 e W.

Consider the right C-module M = (R & R)/D. We shall show that
SocM, # O anq rad(mc) £ M.
In order to show the first inequality we first note that zW = O and

(0,2z) # D. Therefore (0,z) + D = m is a non-zero element of M such

that mi = O. Indeed, every ¢ € W' is nilpotent and if ¢ is represented

by 91 12
21 %22
11 %12
nd = (0,3) +D = (z021, chz).+ D
o1 %22

which is zero in M since 021 € W and 022 e .

To show that rad(MC) # MC’ we note that the radical W' of C
is the set
WY = { dec: rg € H]
Hence rad(Mc) C MH' € ¥ © R/D which is not equal to M because mo=(1,0)
+ D € M is not contained in (W @ R)/D (cf. proof of Lemma III.1).

Now R/Rx is a faithful left R-module and the map h : R ——>

Ry ® R/D defined by -
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h(1l) = (0,1) + D
is surjective with Rx as its kernel. To see this, let (ry, r') + D 6

(Ry @ R)/D, then

(ry, ') + D = (ry, v2z) + (0, =Tz + ') + D

(=rz + ') (0,1) + D

(-rz + ') h(1)
since (ry, rz) € D. Moreover h has Rx as its kernel because (0,rx) €
D for all rx € Bx, Therefore R/Rx ¥ Ry ® R/D.
The map g : M ——> (R @ R)/Ry & R defined by
g((1,1) + D) = (1,0) + (Ry @ R)
is surjective with kernel Ry @ R/D =K, i.e.,
M/K ¥ (RéR) / (RyeR).

For, let (r,r') + (Ry @ R) € (R®R)/(Ry®R), r ¢ Ry, T,r' € R, then

!

(r,r*) + (Ry ® R) = (r,0) +( O,r') + (Ry ® R)
(r,0) + (Ry é R)
r(g((1,1) + D)).

Let (ry, r') + D € (Ry @ R)/D where Ty € Ry, r' € R, then
(ry, ') (&((1,1) + D))

(ry, =') ((1,0) + (Ry @ R))

(ry, 0) + (Ry @ R) = O.

g((ry, ') +D)

[

Hence
M/K ¥ (R @ R)/(Ry & R) ¥ R/Ry ¥ R/Rx.
We are now in a position to apply Construction V by taking R/Rx to

be the faithful left R-module N. Hence the proof is completed.
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CONSTRUCTION VII. Let R be a left artinian local ring. Let x be
a non-zero element of S = SocRRr\SocRB suéh that Rx is a two-sided
ideal. Furtherﬁore, let y and z be two elements of R such that

vy $ Rx, Wy =0, yicRBx
and

z ¢ Rx + yR, Wz + z¥ C Rx.
Then there exists a finitely generated faithful left R-module which

is not balanced.,

PROOF. We shall show that the finitely generated faithful left
R-module M = (R @ B)/D of Lemma IXI.l1 is the required non-balanced
left R~module, where

D = {(by, -bz + ax) £ Dbya € R.} .

Let c

11 ¢

12 represent an endomorphism of the left R-module

Cc c

21 22

R ® R mapping D into D and let the induced endomorphism ¢ of M be
nilpctent, say ¢n = O for some positive integer n. ¥e claim that under
this condition, all cij (i,3 = l,2)(belong to We It was shown in Lemma

I11.1 that 021 € W and hence to show the rest consider
11 %12
(x,0) = (xc

1 %22

y XC

11 12)

where (x, 0) ¢ D since x ¢ Ry. Since Rx is a two--sided ideal ,'xc12

€ Rx, that is, (O, xclz) € D and (xo D = (xcll,o) + D, Now

110 *p0) +
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by induction, we obtain

(] C

11 12 n n
(x, 0) = (xcll, x¢,,) + D

Co1  Cop

= (XC?I, O) + D

where (O, xc?z) € D. Since ¢ = 0, (x,0) is being mapped into D

and we have (xc?l y 0) € D which in turn means that xc?l = by for
a suitable b € R, Now if c,, is a unit, xc); # O and hence by # 0.
Since Wy = Oy, b does not belong to W and y = b_lxcil € Rx is a con-
tradictioﬁ. We conclude that °11 e .
We show next that oo €W. Consider, for arbitrary u € R
c c
(w x yck ) H 12 = (uxc,. + yck c Xc., ., + yck+1)
Ye®r IC22 %e*C11 22%1° %*%12 22
%21 %22

(yok c ,'ukzc + yck+1 ).
2221 12 22

k

50%51 € W and since yW c Rx

Since 5 € W, c

k
€001 = Wey1*
for a suitable uk+1 € R. Therefore

c c -
11 12

(ukx, yck ) +D = (uk X, W XC, + yck+1)+D.
22 +] 12 22

Co1 %22 '

Now if u, = 0 and by induction, we have

c Cc n

11 12

(0, ¥) . . +D = (uhx, ycgz) + D,

21 ©22
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Since @ = 0, (0, y) is mapped into D and so
n
(unx, y°22) = (by, =bz + ax)

for suitable b and a € R, It follows that

ux = by and ycgz = ~bz + ax,

and hence b € W, for otherwise y = b-luhx € Rx which is a contradic-
tion. Hence

ycg2 = =bz + ax C Wz + Rx = Rx

and consequently oo € W.

Finally, for (y, -z) € D

¢11 %12

(y,-Z) . c = (ycll—ZGZI’ ych—ZCZZ)
21 22

= (by, =bz +ax) € D
or equivalently,

JC11~2Cy = by and §C =200, = ~bz + ax

for suitable b and a € R. Since 11 and 5 e W, yeq1 and 205, € Rx.

This yields by € Rx and so b € W, Now we have

JCq,~20,, = ~bz + ax € Wz + Rx = Rx

and yo;, € Rx because -zc,, € zW &€ Rx. Therefore c,, € W.

22 1

Since the left R-module M is indecomposable of finite length,
its centralizer C is a local ring with a nil radical W'. Now we note

that (x,0) + D belongs to SocM.. If § € W', then #" = O for some n

C

c ~ be the endomorphism of R @ R which induces

and if we let cll 12

c c

21 22
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@, then

11 12
(X, 0) = (xcll’ xc12) = (0! O)’
21 22

Hence SocMc £ 0.

We shall construct an element f of the double centralizer
of M which camnot be indﬁced by left multiplication. Since all cij
belong to W when the induced endomorphism f of M belongs to W',

X=(vwew/p =i UL
Hence if.MC —2 MC/X is the canonical epimorphism and m: SocMc
—3p MC the embedding, we can define ¢ by setting

g =, —E—>u./x 25 socn, —Bs

C c

where

gr((o, 1) + X) = (x, 0) + D.
Now suppose that there is r € R such that

#((0, 1) + D) = =((0, 1) + D)
or

(x4 0) + D = (0, T) + D,
then

(x,0) - (O,z) 6 D or (x,-r) € D.

Since by assumption y ¢ Bx and Wy = O; RxNRy = 0. For if there is
O#r¢€ RrNRy, then r = r'x = r''y with units r and r'' € R, It
follows that

(') etz = y



and so y € Rx which is a contradiction. Now if (x, -r) € D, then -

x € Ry and hence from the above remark x = 0. This contradiction
allows us to conclude that M is not balanced and the proof 8f the

construction is completed.

40
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CHAPTER IV
ARTINIAN LOCAL QF-1 RINGS FINITELY GENERATED

OVER THEIR CENTERS ARE QF

This chapter is devoted to presenting the assertion stated
as the title as 'a consequence of the preceeding Constructions. It
can be considered as a partial solution to Thrall's problem. This
is a generalization of theorems of D.R. Floyd [6] , and that of

Dickson and Fuller'[sj. The following results will be needed.

LEMMA IV.1. Let R be a local right perfect left QF-1 ring with
a minimal right ideal., Then R has a unique minimal two-sided ideal 1

and, moreover,

(i) Bl(I) = 1 and I is the left socle of R, or

(ii) al(I) = 1 and I is the right socle of R, or

(1i1)9,(I) = 2 and I is both the left and right socle of R.
1

PROOF. Case 13

Assume that there is a two-sided ideal IC SocRy with 81(1)
= 1. In this case, we claim that I is the unique minimal two-sided
ideal and that I is the left or the right socle of R. To check that
I is the unique minimal two-sided ideal, we let 12 be any non-zero
two—-sided ideal of R. The hypothesis of Construction I would be sat-=

isfied if we let I = Il’ U1 = Il and U2 be any simple left-submodule
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of 12' Note that U2

zero left module has a non-zero socle. Now since R is local, it has

exists because R is right perfect so that every non-~

only one isomorphism type of simple left ideals and we have Ul iso-

morphic to U2. Consider Iln I2 which is & two-sided ideal. If Ilﬂ I2

= O, the hypothesis of Construction I is satisfied contradicting the

fact that R is QP-1. Hence I,N1I, # 0 and since I, is left simple,

1 1

Ilﬂ i, = Il’ i.e. I, C I,. This means that Il is contained in every

1
two-sided ideal of R.

2

To check the rest of the claim -~ that I is the left or the
right socle of R, we make use of Construction III., Suppose that I is
neither the left nor the right socle of R, take a minimal left ideal
U, which is not contained in I and let Ul = I. The assumptions of

2

Construction III are satisfied and we obtain a contradiction.

Case 2 : Suppose that there exists no two-sided ideal of left
length 1 in Soc}itB and denote by I the left socle of S. Then 61(1) >
2. Now I is a unique minimal two-sided ideal and is the left socle of
R; for, otherwise, we can apply again Construction I or Construction
III to obtain a contradictionas above. It remains to show that I is
the right socle of R and, to this end, we make use of Construction
IV. Supposing the contrary, say, SocR.R é I. Let U be a non-zero min-
imal left ideal contained in S, since R is right perfect. Now since
U annihilates the non-units, there a unit r € R such that Ur ¢ U,
Since I is the left socle of SocRR, IC SocRR and it follows that

SocRRQU +UrC I
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for otherwise we would contradict our assumption that I % SocRR. Now
we can apply Comstruction IV to obtain a contradiction and consequ-

ently we conclude that

I = SOORR.
Furthermore by using Construction IV again we easily check that

0,(1) = 9,(8) g 2.

The proof of Lemma IV.1 is completed.

He proceed to examine further the left and right socles of
the local left QF-1 rings. In view of the following lemma, the third
case of Lemma Iv.l will be eliminated for rings which are finitely

generated over their centers.

LEMMA IV.2, Let R be a left artinian left Q-1 locazl ring. Then
for any two non~zero

Xy y€ S = SocRRFISocRR,

the following holds,

PROOF, From Lemma IV.1l, S is a minimal two-sided ideal and E&(S)
< 2. When 81(3) = 1, Rx is a non-zero left ideal contained in S and
hence S5 = Rx. Now from a remark on page 31 (proof of Construction IV)
Rx is simple. Therefore when al(s) = 2, Rx cannot be a two-sided id-
eal contained& in S, and the same goes for Ry. Now the equality

Rx + yJR = S
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must hold, or else we can apply Construction VI to obtain a contrad-

iction.,

Our next lemma modifies the result of Lemma IV.1l, where a
perfect left QF-1 local ring was shown to possess a unique minimal

two~sided ideal which was the left or the right socle.

LEMMA IV.3. Let R be a left artinian left QF-1 local ring.
Assume that R is finitely generated over its center. Then the unigque
minimal two-sided ideal is both a minimal left ideal and a minimal

right ideal.

PROOF. Let I be the unigue minimal {two~sided ideal. Now
HI = IH = O

where W = rad R, because I belongs to both the left and the right
socle of R. If K stands for the center of R, we see that (K + W)/W
is contained in the center of the division ring R/W. Form the quoti-
ent field P of (K + W)/W and consider it as subring of R/W. In view
of the R/W - R/W - bimodule structure of I, it follows that R/W is
finitely generated over K. Hence we can consider R/W as a finite-
dimensional vector space over the quotient field F.

Now dim(FR/H) = dim(R/WF) because (K + W)/W is contained in
the center of R/W. It follows that

dim(FR/w).dim(R/wI)

dim(FI)

dim(IF)
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B /w) . dim(R/wF)
implies
dim(p /WI) = dim(Ig /w)‘
We would be through if
81(1) = dlm(R/wI) =1,
Hence, because of Lemma 1V,l1, we only have to show that dim(R/WI)

£ 2. Sey aim(, ,,I) = 2 and applying lemma IV.2, then

R/W
Rx + xR = 1

for all O # x € I. Whence, if n = dim(gR/W) and 0 £ x € I,

on dim(R /WI) . dim(FR/W)

dim(I)

dim(F(Rx + xR))

dinRx + dimgxR - dimy(Rx N xR)

= n + n -dimF(Rx('\xR).

This is a contradiction because, obviously, dimF(Rx N xk) # 0. Hence

dim(R /WI) = dim(IR /H) =1,

In order to prove the main theorem in this chapter, we need

still another result,

Lemma IV.4. Let R be a left artinian left QF-1 local ring.

Then the left socle of R is the unique minimal two-sided ideal.

PROCF. Write the left and the right socles of R as Sl and Sr



46

respectively., Assume that S1 is not the unique minimal two-sided
ideal of R. In view of Lemma IV.l, it follows that Sr is properly
contained in S, and that al(Sr) = 1. We want to show that the
intersection S of the left and the right socles of R/Sr is containgd

in Sl/S:r:° So let 0 £ x € S, then since

al(sr) =1, Bx = §_

and since Sr is 'a two-sided idezal, so is Rx. Now let y + S:r: be a

non-zero element of the right socle of Sl/sr’ that is,

Let z be an arbitrary element such that z + S:r: belongs to S, Then
Wz + zH C Sr=Rx.

YNow the assumptions of Consiruction VII are satisfied for our choice
of x, y and z except for the condition that

z § Rx + yR.
Since B by assumption ié a left QF-1 ring, Construction VII implies
that z is necessarily contained in Rx + yR C S1 and hence

S ¢ sl/sr.'

Now, if ¥ # 0 and W' = 0, then since S, is the unique

minimal two-sided ideal (proof of Lemma IV.1), S_ = ., 7Lt

is contained in the intersection of the left and the right socles

of B/H" because W' 1/W® annihilates W/W" on both sides. This implies



that
-1
Hence,

P - vt ¢ W.s, = 0,

contradicting our hypothesis. Since the assumption that Sl was not
the unique minimal two-sided ideal leads to this contradiction, we

have proven the lemma,

Finally, we are in a position to prove our main assertion.
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THEOREM IV.5,. Let R be a two-sided artinian local ring finite-

ly generated over its center, Then R is a QF-1l ring if, and only if

it is Q,F‘o

PROOF. (= )

This is trivial.,

(=) He first apply Lemma IV.4 both to the right and the
left of R. Then

SocRR = I = SocRR

isg the unique minimal two-sided ideal of R. Now by Lemma IV.3, I

is both a minimal left ideal and a minimal right ideal.

Let U be a non~zero left idezal of R and let U' be a maximal

left subideal of U. We shali denote the left and the right annihila-
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tors of U by 1(U) and r(U) respectively. If a € R, then the left ideal
Ua ¥ U/UN1(a).
1f, in particular, a € r(U'), then
1(a) 2 1(=(u*)) 2 U,
and consequently,
UN1(a) 2 UNL(x(U')) DUNU = TU' ,
Hence Ua is either left simple or equal to O because U! is maximal
in U. This implies that, since a € r(U'),

ur(U') C SocRy = SocgR = I

but because I is (both left and right) simple we actually have Ur(U')
equal to I or O. Taking b € U - U', we obtain
Rb + U' = U,
Moreover, by the preceeding remark
br(U') = I or O.
It follows that
br(Ut) = x(U')/z(0') N r(b)
is right simple or equal to O, However,
r(U')Nr(b) = z(U' + Rb) = »(U)
and hence
br(U') = z{U')/r(U)
is right simple or equal to O. |
Now consider a composition éeries of left ideals of length n,
Uo =0CU

CU C...CU =R.
= = = n

1 2

Correspondingly, we obtain a new series of right ideals given by,
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r(Uo) =R2D r(Ul) 2 r(UZ) D...2r(R) =0

having r(Ui)/r(Ui+l) (i =0y ees 9 n-1) either right simple or O in

view of the above consideration. This means that.

0.(R) = 9J;(R).

However, the inequality of the other direction can be seen in the
same manner, had we started with right ideals instead of left ideals.

Hence
0,.(R) = 9,(»)

and r(Ui)/r(Ui+1), i =0, oo 4 n=1, is right simple for every i.

Now, using the same argument, we have that

l(r(Ui))/l(r(Ui_l)), 1=1,6e0yn,
is simple for every i and

1(2(0)) = 0€ Uz(U;)) € U=(U)) € +ov € Uz(U__,) JcR=1r(R)

is a composition series of length n. Comparing the series with the

following
uo=O_gU1_C_U2_C_..._<;_Un_1t_:_Un=R,
we see that necessarily
1(r(Un-—l) = Un—l

since they are both maximal in R and U , € l(r(Un_l)). Applying

the same argument on the corresponding left ideals down the two seri-

es, we obtain
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l(r(Ui)) = U,

for every i = Oy ... yn. Analogously, for any right ideal J,
r(1(J3)) =J.

Therefore R is a QF-ring and the proof of the theorem is completed.

We have collected the theorems of K.R. Fuller and S.E.
Dickson in [ 5] as well as that of D.R. Floyd in [ 6 | as immed-

iate consequences of Theorem IV,5.

COROLLARY IV.6. (X.R Fuller and S.E. Dickson)
Let R be a commutative artinien ring. Then R is QF-1 if, and

only if, it if QF.

PROCF. R is clearly finitely generated over itself. Moreover
R is a finite product of commutative artinian local rings and since
the property of being QF-1 is preserved under finite products, this

corollary follows from Theorem IV.5.

COROLLARY IV.7. (D.R. Floyd)
A commutative finite dimensional algebra over a field is

QPF-1 if, and only if, it is QF.

PROOF. Since every finite dimensional algebra is an artinjan

ring, this corollary follows from the previous one,
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