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PREFACE 

R.M. Thrall and c.~.J. Nesbitt [10] proved that every faithful 

module over a quasi-Frobenius (QF) ring is balanced (i.e. has the 

double centralizer property). Later Thrall [ 9 J gave an example, which 

is presented in·Chapter II, of a ring over which every faithful fin­

itely generated module is balanced, but which is not QF. He called 

the above class of rings QF-1 rings and posed the problem of class­

ifying them in terms of their structure. 

lie shall first give, in Chapter I, a result of Morita [ 7] 
which relates the concepts of generation and co-generation to that 

of the double centralizer property and establishes a necessary and 

sufficient condition for an artinian ring to be QF-1. 

In Chapter III,_we have collected several constructions of 

modules vrhioh are not balanced. These constructions are employed in 

the proofs of several lemmas which lead eventually to establish the 

main theorem in Chapter·rv which describes the structure of certain 

local Q.l},-1 rings and can be considered as a partial solution to Thrall's 

problem. These results are due to V. Dlab. and C.M. Ringel [ 3 J . 
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PRELD.UNARIES 

We shall denote by R an associati~e ring with identity and 

RM or~ a left or right unital R-module respectively. If M is an 

R-module, then the (Jacobson) radical of M, denoted by raill4, is the 

intersection of all the maximal submodules of M. The (Jacobson) rad­

ical of a ring R is defined as the radical of the R-module RR (or 

equivalently~). The dual notion of the radical is the socle. Denoted 

by SocM, the socle of an R-module M is t4e sum of all the minimal sub­

modules of M. Hence if we consider the ring R as a left (right) R­

module, l·Te get the concept of the left (right) socle of R. The left 

and the right socle of R are trro-sided ideals of R. 

R is called a local ring if R satisfies one of the following 

equivalent statement:-

(1) R/radR is a division ring. 

(2) R has exactly one maximal one-sided ideal. 

(3) All non-units of R are contained in a proper ideal. 

R is right perfect if and only if R/W is semisimple and every non-zero 

left module has a non-zero socle. By a perfect ring we shall mean a 

ring which is both left and right perfect. If M has a composition 

series, denote by 0 (M) its length. In case R is a two-sided artinian 

ring, we can speak of the left length o(RR) and right length o(~) of 

R. 

Let S be a subset of R. The left annihilator l(S) of S is 
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defined as l(S) = {a e R : aS = 0 } , whereas the right annihilator 

r(S) is given by r(S) = [a 6 R : Sa = 0} • A two-sided artinian ring 

R is called a quasi-Frobenius (QF) ring if 

l(r(L)) = L and r(l(J)) = J 

for every left ideal 1 and right ideal J in R. An artinian ring R is 

QF if, and only if RR is injective. 

Every left R-module M is a right C-module, where C is the 

endomorphism ring of RM (also called the centralizer of R~). The dou­

ble centralizer D is the endomorphism ring of Me• The map ¢ : R ~ D, 

defined by ¢(a) = ~ where aL(m) = am for every a 6 R and m 6 M, is 

a ring homomorphis~. If this homomorphism is surjective, then M is 

said to have the double centralizer property, or to be balanced. 

In [10] R.M. Thrall and C.J. Nesbitt showed that every faith-

ful module over a QF ring has the double centralizer property. R.M. 

Thrall later introduced the concept of QF-1 rings which is a general­

ization of QF rings. R is said to be a left (right) QF-1 ring if every 

finitely generated faithful left ( right ) R-module has the double 

centralizer property. He also defined a QF-3 ring to be an artinian 

ring R -vrhich has a unique minimal faithful module. A faithful R-module 

M is said to be a minimal faithful module if the deletion of any non-

zero direct summand of M leaves a nonfaithful module. 

Let U and V be R-modules. U is said to generate V if 

V = ~ { ImoC: o< 6 HomR(U,V)} 
' 

or equivalently, if V is isomorphic to a factor module of a direct sum 

of copies of u. Furthermore, U is said to co-generate V if 
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() r ker~ : ~ e Ho~ ( V, U) } = 0 , 

or equivalently, if V is isomorphic to a submodule of a product of 

copies of u. 
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CHAPTER I 

DOUBLE CENTRALIZER PROPERTY .AND ARTINIAN QF-1 RINGS 

We first prove the following theorem (K. Morita [7] , theorem 

1.1) which relates the notion of generation and co-generation to that 

of the double centralizer property. 

THEOREM I.l. Let R be a left artinian ring and U a faithful fin-

itely generated left R-module having the double centralizer property. 

Let V be an indecomposable finitely generated left R-module and i = 

U G Vi. Then the following statements are equivalent: 

(1) W has the double centralizer property. 

(2) U generates or co-generates V. 

PROOF. (1) => (2) 

Denote the R-endomorphism ring of W by c, and assume that U 

neither generates nor co-generates V. Let A. : U 4) V > U and 

)i : U 4) V > V be the natural projections. Then we have 

:B = Ho~ ( u, U) = A c X 

and 

D = HomR ( V, V) = j.J C jJ • 

Write 

and 

• 
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Then with D as the right operator domain of V we obtain the bimodules 

AVl D and AVO n• Now since V is finitely generated and indecomposa­

ble as a left R-module and by Fitting's Lemma , D is a local ring with 

nilpotent radical N. If we set 

* vl = 

* * vl becomes an R-D bimodule. We note that vl I v. For suppose other-

wise, let 

v = vl + VN. 

Then there exists k>l such that 
= 

v; = vl + ~ 

and 

vl + vJ:+l 
l v. 

Multiplying by Nk, we get 

wk = V Nk + VIif2k. 
1 

Substituting this into the former equation we have 

v ·v vl~ VN2k ~ vl 
. 2k 

= + + + VN 
1 

c vl 
~+l c v, = r 

since 2k > k +1. This is a contradiction and therefore we can conclude = 
that 

It follows that vfvi is a non-zero R-~ bimodule, where D = D/N is 

a skewfield. 

Define a submodule 

v: = [ v e v 
0 

I vN = o } 

* of the non-zero left module V • Now V is a non-zero R-D bimodule. 
0 0 



3 

To see that V~ is non-zero, suppose Nk = 0 for some positive integer 

k. Since V I 0, there exists m < k such that 
0 = 

v wn-1 1 o and v 1fl = o. 
0 0 

This means that V ~-l I 0 belongs to v*. 
0 0 

I * * -Hence considering V v1 and V
0 

as right D vector spaces, 

- * * there is a non-zero D-homomorphism from >Vjv1 into V
0

• It follorrs 

that there exists a non-zero D-homomorphism <e: V --7 V such that 

(a) * <e ( v) = 0 for v 6 V 
1

, 

* v for v 6V, and 
0 

(b) 

(c) * = v f 0 for some v1 6 V and v e V • 
0 0 0 

Now if we set 

* ¢( w) = tf> (if ,..u ) e V 
0 

for if 6 W, 

where)J is the natural projection of W onto V, ¢becomes a C-endo-

morphism of W. To see this, it is sufficient to show that 

¢ (we) = ¢ (w)c for c fC, 

that is, to show for u £U, c EC and v EV 

(i) ¢ {uc) = ¢ (u)c = o, 

(ii) ¢ (vc) = ¢ (v)c, 

because if (i) and (ii) hold , ue have 

¢ (we) = ¢ ( w A c + w jl c) = ¢ ( w A c) + ¢ ( w }A c) 

= ¢ (wp)c = (¢(w}-l) + ¢(w"))o 

= ¢ (w,.u + w~ )c = ¢ (w)c. 

To show (i) we note that since u~ = o, ¢ (u) = cp(ujl) = 0. 



* :Moreover ¢( uc) = Cf ( UCfl) = 0 since ucp E V1 5 V1 = V1 + VN and 

because of (a). 

Now ¢(vc) = f (vo,.u) = Cf (V,AJC ~). Note that )A Cf E )JCjJ 

= D and is a D-homomorphism and so 

¢ ( vc) = ce ( v }I c fl ) 

= tp(v)pc,u. 

Furthermore, note that 

* <p(v)EV s;v. 
0 0 

Now 

Cf(v)cA = <f>(v),Mc" = 0 

follows from the definition of V
0 

and by considering ~ c A as an 

R-homomorphism of V into U. Therefore 

¢ (v)c = f(v,..u)c = f(v)c 

= f ( v) }-1 c( A + ,u ) 

= f(v)pcA + tp(v)f'Cfl 

= If (v);;c,.u • 

Hence¢ (vc) = ¢ (v)c and we have proved that ¢ is a C-endomorphism 

of ri. 

To complete the proof of (1) ~ (2), rre have to show that 

¢ £ End (W) cannot be obtained from a left multiplication by an c 

element of R. Suppose there exists an a f R such that ¢(w) = aw for 

4 

every w £ W. Since from (c), ¢ ( v1) = f ( v1 ) = v
0 

/: 0 for some v1 £ V 

* and v £ V , we see that a /: 0. Moreover since U is faithful, there 
0 0 . 

is uS U such that au/: 0, but ¢(u) = 0 and we have arrived at a con-

tradiction. 
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(2) ·~ (1). 

Let ¢ £ Endc(u). Then the restriction ¢ I U o~ ¢ on U belongs 

to En~(U) because 

¢ ( u) = ¢ ( u 1\) = ¢ ( u) " 

where A : If ---;. U is required as an element of C. Since U has the 

double centralizer property, there exists an a & R such that 

¢ ( u) = au for all u £ U. 

Let us set 

fb'(w) = fb(w) - aw 

for wE W. Then fb'(w) = 0 if w E u. Our proof would be complete if we 

can show that 

¢'(v) = 0 , for v E V 

also. We have two cases to consider. 

Case I :- V = v1 , i.e. U generates V. 

For every v £ v, there exists a finite number of u. £ u, 
J. 

ci £ c, (i = l, ••• ,n) such that 
n 

Hence 

¢•(v) = 
n 
~ 

i=l 

Case II :- V = o, i.e. U cogenerates V. 
0 

Suppose there exists v E V such that ¢' ( v) f. 0. Now since 

V 
0 

= n { ker 1 I 'Y £ Hom.jl(V, U) J = 0 , for such v, there exist 

"'' V ~ U such that ¢r (v) ¢ Ker '¥ • Hence 

0 '¢'(v)p\V 

= fb'(v,M.tp) = o, 

since v_,.u 'jl £ U and jJ \JI £ C. Due to this contradiction, we can cone-



elude 

¢(w) = aw 

for all w C w. The proof of Theorem I.l is completed. 

Before we proceed to establishing a necessary and sufficient 

condition for a left artinian ring to be QF-1, we remark here that 

statement (2) in Theorem I.l is equivalent to the following : 

(3) there exists a positive integer n such that V is R-isomorphic 

either to a quotient module of U(n) (the direct sum of n copies of U) 

or to an R-submodule of U(n). 

In order to check this equivalence, let U either generate or 

co-generate V. Cohsider the case where 

V = ~ { Im o< : o< e HomR ( U, V) } • 

Let 

n 
be a generating set of V. Then for each i {i = i, ••• ,n) vi = k~l¢k(~!) 

for some ¢i e Homr(U,V) and ~i e U. Now for any(~, ••• , un) e U(n), 

let us set 

If v 3V 
n 

= .:El 1= 

Hence ¢ : U{n) 

a.v., 
1 1 

then 

n 
¢(~, ..• , un) = k~l ¢k(~). 

n * n * 
= ¢( .~1 a.u. 1 , ••• ,.~1a.u.) 1= 1 1 1= 1 1n 

------>> V is an epimorphism and V is therefore isomor-

phic to a quotient module of U(n). 

Consider the case where n { ker p : p G Horn:a(V,U)] = 0. 



Then, because R is artinian, there exists a finite number of R-

homomorphisms piE Ho~(v,w), i = l, ••• ,n such that 

~ ker pi = 0. 
i=l 

If we set 

¢ (v) = {p1 (v), ••• , pn(v)) 

for v e V, then¢ is an R-homomorphism of V into U(n) with 

ker ¢ = n ker p. = o. 
. 1 J. l.= 

Therefore Vis R-isomorphic to a submodule of U(n). Hence we have 

proved (2) ~ (3) and the converse is obvious. 

7 

We are now ready to prove the following theorem (K. Morita [ 7] 

theorem 1.2). 

THEOREM I. 2. Let R be an artinian ring and { U oc:} the totality 

of isomorphism types of minimal faithful finitely generated left R-

modulese In order that R be a QF-1 ring it is necessary and sufficient 

that R satisfy the following two conditions : 

(1) U has the double centralizer property for every cc • 
0: 

(2) For any indecomposable finitely generated left R-module V and 

for each 0( , U generates or co-generates V. oc . 

PROOF. Suppose that R is a QF-1 ring, then {1) is satisfied 

trivially. Let V be any indecomposable finitely generated left R­

module, then U~ ~ V is a faithful finitely generated left R-module. 



Hence Uoc ~ V has the double centralizer property and by Theorem 

I.l we obtain (2). 

To prove the converse, let W by any finitely generated 

8 

faithful left R-module. We may express W as a direct sum of a finite 

number of indecomposable submodules V., that is, 
J. 

W= :!;<9V
1

, 
i~B 

B finite. Consider the collection 

c = [ Bj I j E J } 

of subsets of B such that ~ (i} V. is a. faithful left R-module. , 
iEBj J. 

There is a Bk in C with the smallest cardinality. Then 

P = :;(9 vi 
i€Bk 

is a minimal faithful left R-module, since if otherwise, then 

p = :; (j) v
1 

= P' (i} P', 
i E.Bk 

with P' faithful and P'' non-zero. Now the Krull-Schmidt Theorem tells 

* us that for some proper subset Bk of Bk , 

pr 

and this contradicts our choice of Bk. Hence P is isomorphic to a U~ 

for some 0( • Now we can write 

w = p (j) ~ (i} v. 
i E B-Bk =B 1 J. 

where B' is a finite index set. ll e can 1-1ri te :!; (i} 
i EB 1 

V. as 
l. 

n 
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for some positive integer n. Then by Theorem I.l, UOl ~ v
1 

has the 

double centralizer property. Similarly we.can conclude the same for 

U <X ~ V]. and V 2 • Applying Theorem I .1 repeatedly, we would have, 

finally, that W has the double centralizer property. This completes 

the proof of our theorem. 

As an immediate consequence of Theorem I.2, we have the foll­

owing Corollary (K. Morita [ 7] , Theorem 1.3). 

Corollary 1.3. Let R be a left artinian QF-3 ring and U its 

unique minimal faithful finitely generated left modUle. Then the 

following two conditions are necessary and sufficient in order that 

R be a QF-1 ring; 

(1) U has the double centralizer property. 

(2) For any finitely generated indecomposable left R-module v, U 

generates or co-generates V. 



CHAPTER II 

AN EXAMPLE OF A QF-1 RING lfHICH 

IS NOT QF 

The following is an example of an artinian ring which is QF-1 

but not QF, showing that the class of QF-1 rings properly contains the 

class of QF rings. 

Let A be the subalgebra of the full matrix ring (K) 
4 

over a 

field K consisting of all elements of the form 

~ 
o· 0 0 

a4 a2 0 0 

0 0 a2 0 

0 0 a5 a3 

where ai E K, i = 1, ••• ,5. The elements 

1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 
e = ' f = and 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 
g = 

0 0 0 0 

0 0 0 1 

are indecomposable orthogonal idempotents of A with sum equal to the 

identity element. Then the _indecomposable projective left ideals of 

A are Ae, Af and Ag. 

-10-
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Writing h = e + f, we claim that the left A-module Ah is in-

jective. We first show that Ae is injective. The K-basis of Ae is 

given by b1 = e and b2 , where 

0 0 0 0 

1 0 0 0 
= • 

0 0 0 0 

0 0 0 0 

* * Let us denote the K-dual of Ae by Ae ( = Ho~(Ae,K)) and let ~ E Ae • 

Then the action of ~ on Ae is described by its action on the basis 

elements b 1 and b2• Hence pis represented by a pair (k,p)~K Q K 

where 

p(b1 ) = k and ~(b2 ) = p. 

* In order to determine the right A-module structure of Ae, we consider 

the follo•ving. Let r e A, then 

~ 0 0 0 

a4 0 0 0 
(~r)(b1 ) = p(rb1) = ~ 

0 0 0 0 

0 0 0 0 

= p(bl)al + p(b2)a4 

= k~ + pa4 • 

Moreover 0 0 0 0 

(pr)(b2) = ~(rb2 ) = p 
a2 0 0 0 

0 0 0 0 

0 0 0 0 

= p(b2)a2 = pa2 • 



* Hence the right A-module structure of Ae is defined by 

Setting 

* * for /> €Ae , then X: Ae 

for r €A, 

X (~r) = 

= 

0 0 0 0 

k p- 0 0 

0 0 p 0 

0 0 0 0 

fA is an isomorphism. Indeed, 

/(, (k~ ~ pa
4 

, pa2) 

0 0 0 0 

0 0 

0 0 

0 0 

= X (~)r • 

12 

Hence X is an A-homomorphism and that ?(,is bijective is quite obvious. 

* Using a similar procedure, we can deduce that Af 'it gA.. Uhence, 

* /'V * equivalently, we have proved that gA. = Af and fA ~ Ae. Now since 

gA and fA are projective right A-modules, their duals are injective 

left A-modules. Therefore Ae ~ Af = Ah is an injective left A-module. 

Now Ah is contained in every finitely generated faithful left 

A-module as a direct summand. Let AX be a finitely generated faithful 

left A-module. Then the intersection of the left annihilators of ele-

menta of X is 0. Since A is artinian, there is a finite number of ele-

ments of X such that 
n 
n l(x.) = o. 

i=l l. 
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Hence A is embedded into a finite direct sum of copies of X by 

a 1-1 --->~ (ax.). nl , 
J. l.= 

a € A. Expressing X as a finite direct sum of indecomposable submodules 

we can write 

Ah S .A ... C---:)l~ 
:q. m 
i~l (k~l X~ ) • 

Now since Ah is injective, there exists a suitable left A-module Y 

such that 
n m 

Ah ~ y = .Gl ( k21 X. ). 
J.= . J.k 

Since .Ae #'Af, it follows from the Krull Schmidt theorem that .Ae and 

.Af are isomorphic to two distinct indecomposable direct summand of X. 

Hence we have proven that for any finitely generated faithful left A-

module X, 

where X. are indecomposable submodules of X. 
J. 

Now we make use of Theorem I.l to show that X is balanced, 

that is, A is a QF-1 ring. To this end, we have to check the follow-

ing~; 

(1) .Ah has the double centralizer property, and 

(2) For each indecomposable finitely generated left A-module M, Ah 

either generates or co-generates M. 

Proof of (1) :-

The elements of .A 



1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 
= ' 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
= 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

are a basis of Ah over K. Then for each a € A, we have 
4 
~ x.kei ' . 1 1 1= 

k = 1, ••• ,4. Hence the correspondence 

a I > (xik) 

14 

gives a matrix representation of A. It turns out, by direct computat-

ion, that "f!he matrix (:x:1k) is identically equal to a, for every a € A. 

Now the centralizer EndA(Ah) of Ah consists precisely of those 

matrices (y .. ), 
1J 

i,j=l, ••• ,4, which commute with all (x .. ). Hence 
1J 

(yij) el = el (y .. ) 
1J 

or 

yll 0 0 0 Y11 Y12 Yi3 Y14 

y21 ° 0 0 
0 0 0 0 

y31 ° 0 0 = 
0 0 0 0 

~41 ° 0 0 
0 0 0 0 

which implies that y11 is arbitrary and 

yil ~ yli = 0 ' i = 2,3,4. 

Proceeding in the same manner vrith the elements e2, e
3 

and e
4 

we sea 
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finally that EndA(Ah) consists precisely of the matrices of the form 

= 

X 0 0 0 

0 X Z 0 

0 0 y 0 

0 0 0 y 

where x,y and z E K. 

Furthermore, the double centralizer of Ah consists of those 

matrices (z .. ) which commute with all the (y .. ) • It turns out, after 
1J 1J 

going through a similar procedure as above, that A coincides with the 

double centralizer of Ah. Hence we have proven that Ah is balanced. 

Proof of (2) :-

A is a semiperfect ring because it is artinian. Let 

O~K~P~M~O 

be a projective cover for M, where K = leer t. Now there exists a 

homomorphism f which makes the following diagram commutative, 

A (n) __ ..:;;;u-~) M 

~/ 
p 

where 

u > 

and ( lil1 , ••• , mn } is a basis of M. Since t is co-essential, and 

u is onto, f is necessarily onto. Therefore, since P is projective, 

f splits, _that is, 

= ker f (9 Y 

where Y = P. Hence P is finitely generated. This, together with the 



fact that A is semiperfect and P is projective implies that P is 

isomorphic to a direct sum of finitely many left A-modules each 

isomorphic to some indecomposable left ideal of A. Therefore 

P =fi~·t Ae. , e. = e, f or g. 
nJ. e J. J. 

Since P is a projective cover, K is small and hence 

K c; rad P = Q} Je. 
J. 

where 

0 0 0 0 

J = radA = 
a
4 

0 0 0 

0 0 0 0 

0 0 

Now Jg = 0 and hence 

K ~ ~ Je. , e. = e or f. 
J. J. 

It follows immediately that 

M rv P/K 

";/ Q) Ae. /K , e. = e, f or g 
J. J. 

• 

~ ~ Ae./K Q) ( ~ Ag ) , ei = e or f. 
1 finite 

Since M is indecomposable, either 

( i) :M 'it ~ 41 Ae i/K, e i = e or f, or 

( ii) 1li r;i Ag. 

In the first instance, M is generated by Ae Q) Af and in the latter, 

Ag ~ Jf £ Af 

16 

and hence M is co-generated by Ae Q) Af. This completes the proof of 

(2) and consequently Theorem I.l applies, proving that X is balanced. 

Therefore A is a QF-1 ring. 
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Finally we show that A is not a QF ring by observing that 

A is not self injective. Since Ag is isomorphic to Jf which is pro­

perly contained in the indecomposable left A-module Af, Ag is not 

injective which i~lies that AA is not injective and hence not QF. 



CHAPTER III 

CONSTRUCTIONS OF NON-BALAUCED MODULES 

We are going to present seven different ways of constructing 

modules which are not balanced. These constructions are essential 

for four theorems on certain QF-1 rings. The theorems, in turn, lead 

us to establishing a characterization of certain QF-1 rings. From 

here on we shall denote left ideals, two-sided ideals and left R­

modules respectively by the capital letters u, I and 1>1 b·ri th approp­

riate subscripts). 

CONSTRUCTION I. Let R be a local ring with a minimal right ideal. 

Let u1 , u2 be two non-zero isomorphic left ideals and I 1 , I 2 be two 

two-sided ideals of R such that 

ui s Ii (i = 1,2) and I1 ni2 = o. 

Then there is a finitely generated faithful left R-module which is 

not balanced. 

PROOF. We construct the module M in question as follows. Let 

u2 be an isomorphism and set 

D = { (d, -dt) : d eu1 } • 

Then 

.M = RQ1RjD 

-18-
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is a finitely generated and faithful left R-module. The endomorphisms 

of M can be lifted to those endomorphisms of the left R-module R ~ R 

which map D into D. Let 

be the matrix representation of such an endomorphism of R ~ R where 

the ¢ij E En~(R) are right mul,tiplications by elements of R. Consider 

"VTith (d, -dt) ED. Hence 

(1) 

and we claim that both ¢
21 

and ¢
12 

belong to the radical of R whi'ch 

is denoted by w. For, suppose that ¢
21 

is a unit, then from (1), 

d¢~1¢;i - dt s ul¢;i 

and hence 

a contradiction. Similarly, if ¢
12 

does not belong to if, then 

ul s u2~~ + (ult)¢22¢i~ 

= uti~ + u~¢22¢i~ £ 12 ' 

another contradiction. 

1·1e then construct a homomorphism f : R ~ R ---->:;. R 4) R 

which commutes with all 
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mapping D into D. Thus, f will induce an element of the double cent­

ralizer D(M) of M. Let us define f by 

f(x, y) = (zx, 0) 

where z is a non-zero element of the right socle and (x, y) e R ~ R. 

Now since u1 £ W and z}I = o, f(D) .. 0. Moreover 

because ¢12 € W. Similarly, 

f 

= (zx¢11 , 0) 

and thus f induces an element of D(M). 

Now suppose that f is induced by an element r eR, that is, 

f(x, y) - (rx, ry) € D, 

for all (x,y) €R Q:l R. Hence if (x, y) = (o, 1), w·e get (O,r)e:D 

and it follows immediately that r = 0. But if (x, y) = (1, 0) we have 

{ z, 0) € D 11hich is a contradiction. Therefore f is not induced by a 

left multiplication by an element of R, that is, I. is not balanced. 

We shall see later, in the proof of Lemma IV.l, that Construe-
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tion I implies, that a perfect local QF-1 ring has a unique minimal 

two-sided ideal. Construction II will be used in the proof of Constr-

uction III which deals with a situation similar to that of the pre-

vious one. 

CONSTRUCTION II. Let R be a local ring with the radical W. Let 

with i j j. Moreover, let, M2 be faithful, and suppose that the anni­

hilator of M1 does not contain the right socle SocHa of R. Then 

is not balanced. 

PROOF: Let the matrices 

represent the elements of C = EncL (M), where ¢ . . : l>L ---:>:;. M .• 
-"R 1J 1 J 

Let z E SocRR - Ann(r.11), where Ann(M1) denotes the annihilator of 111 , 

and define an additive homomorphism f: M ----~>~M by 

Nmr f so defined actually belongs to Endc(M). To see this, 

consider 

(f(ml' m2)) ( ¢i1 

¢21 
= 
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since zm1¢12 = 0 because mi¢ij E ~!j for i / j. By similar considera­

tion, w_e have 

f = 

• (zml¢11 + zm2¢21' O) 

• (zm1¢11' 0) 

• 

To conclude the construction, suppose that there is a rER 

such that 

Now since M2 is faithful by assumption, we have that r = 0. Further­

more, since z ¢ Ann(M1), there is mj_ e M1 such that zmi f. 0 and thus 

Therefore f is not induced by left multiplication, ie. M is not bal-

anced. 

Our next construction deals with a situation similar to that 

of Construction I. We shall make use of Constructions I, III and IV 

to prove Lemma IV.l. 
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CONSTRUCTION III. Let R be a local ring and u1 , .U2 be two non-

zero left ideals and I
1 

a two-sided ideal of R suoh that 

u1 s: I 1 and I 1 n u2 = o. 

Furthermore, let u2 contain no non-zero two-sided ideal of R and ~et 

Soc~ ~ u
1

• Then there is a finitely generated faithful left R- module 

which is not balanced. 

PROOF. Since we are going to apply Construction II, let 

Mi = R/Ui' i = 1, 2 and :r.1 = :r.Il i M2• 

Now M2is faithful and since Ann(M1 ) f Ul' SacRa %. Ann(r.I1 ). We next 

consider the morphisms between :M
1 

and 1-12• Every homomorphism f 1 : M1 

--->~ r.i2 can be lifted to an element of End_a(R) which maps u1 into 

u2• It follows that there is a right multiplication by an element 

r
1 

€ R with u
1 

r
1 
~ u2• Since u

1 
~ I

1
, we have 

= 0 • 

Necessarily r
1 

€ \"l, other1dse we would have u1 = o. Hence 

M1f 1 ~ WM2• 

In a similar manner, every f 2 : M2 ~ M
1 

oan be lifted to 

a right multiplication by some r 2 € R with U 2r 2 ~ u1
• Again r 2 € \i, 

otherwise 

is a contradiction. Hence 
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The assumptions of Construction II are now satisfied. 

CONSTRUCTION IV. Let R be a left artinian local ring. Let U.S 

SocRa be a non-zero left ideal containing no non-zero two-sided ideal. 

Let r be a unit of R such that Ur ~ U and SocRa ~ U + Ur. Then there 

is a finitely generated faithful left R-module which is not balanced. 

Proof. If we set 

M = R/U, 

then r.1 is a finitely generated faithful left R-module. Every element 

f e En~(M) = C can be lifted to a right multiplication by an element 

af e R which satisfy 

Uaf S u. 

Let us denote the radicals of R, M and C respectively by W, T = W/U 

and W'. Now 

w' = { f e. c : af e W' } 

and hence C is local and P.Hl' s_ T. Moreover T is a C-submodule of M 

and M/T is a completely reducible right C-module. ~fri ting 

x=:x:+UeM 

for every :x: e R, we claim that 

M/T = (l + T)C ~ (r + T)C ~ N 

for a suitable right C-submodule of M/T. To see this, suppose that the 

right C-modules (! + T)C and (r + T) C have a non-trivial intersection, 

that is, there is some f S C with 
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(I + T)f S (r + T)C and If ~ T. 

Hence If -r S T and we can lift f to a :right multiplication by an _ 

element af of R satisfying Uaf £ u. It follo"tTS that laf - r S W. Now 

since U C Soc~, we have 

Uaf - Ur S fit = 0. 

Hence Uaf = Ur C U, contradic.ting the fact that af induces the endo­

morphism f of M~ 

Take a non-zero element z S Soc~ - (U + Ur) and observe that 

z 8 SocMC becauwe z W' = 0. No1; we are ready to construct an element 

g of the double centralizer D(M) of M and eventually show that g is 

not induced by left multiplication. We first define a C-homomorphism 

g' (I + T) = 5, g'(r+T) -= z 

and 

g'(n + T) = 0 for n + T S N. 

(M/T) C and m : SocM:C --~~ ]tlc are the respective 

projection and injection, then v1e set g S D(MC) to be 

g = mg'p 

and it is obvious that g has the required properties. 

Now suppose that there exists s S R such that si = g(i) for 

all iS M. By the definition of g, we see that si = 0 which implies 

s S U. On the other hand sr = z implies z 8 sr + U. Therefore we have 

z 8 Ur + U which contradicts our choice of z and hence M is not balan-

cad. 
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The following result will be needed in Construction VI. 

CONSTRUCTION V. Let M be an indecomposable left R-module of fi-

nite length. Assume that M possesses a proper submodule and a quotient 

both isomorphic to a faithful left R-module N. Moreover, let M0 have 

a non-trivial socle and a non-trivial radical, where C = Enda(M). 

Then M is not balanced. 

PROOF. By Fitting's lemma, C is a local ring with a nilpotent 

radical W'. If f : N ---~ M is an embedding, we shall show that 

Nf S MW'. Let p: M N be an epimorphism, then pf e C. Since 

Nf is a proper submodule of M, pf is not invertible and hence belong 

to the set of non-units W'. It follows that Nf = Mpf £Mil'. 

N01v since 1-1
0 

has non-trivial socle and radical, there exists 

a non-zero C-homomorphism 

¢' : M/I.Ul' Soc(M0 ). 

Denoting the embedding by f' : Soc(l\1
0

) --~ M0 and the canonical 

epimorphism by p 1 : hlc ---~ M/MW"' , we see that the G-homomorphism 

¢ = f''¢'p' 

belong to End0(M). 

Finally we show that ¢ is not induced by right multiplication. 

Assuming that ¢(m) = rm for all m e M and a suitable r e R. Since 

¢ /= o, r/=0 and 

rNf .c r(MW') = ¢(M~i 1 ) = 0 
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contradicts the fact that N i~ faithful and hence M is not balanced. 

In order to simplify the presentation of Constructions VI and 

VIIi it is necessary for us to establish the following lemma. 

LEMMA III.l. Let R be a local ring -rri th the radical W. Let :x:, 

y and z be elements of R such that 

Then 

X f O, :x:W = O, Wy = O, 

z ¢ Rx + yR and y ¢ zW. 

M = (R ~ R)/D , 

where D = {(by, -bz + ax): a, b e R} ,is a faithful indecomposable 

left R-module. Moreover if 

c .. S R, represents an endomorphism of the left R-module R ~ R which 
l.J 

maps D into D, then c21 S W. 

PROOF. Let 

T = (l'l 4> R)/D f. M. 

Firstly, we show that if m 6 T, then Ann1(m) f o. Form= (w,r) + D, 

with we w, r S R, if r S li then SocRa f. Ann
1 

(m). If r ¢ w, consider 

xr-1m = xr-1 ((w,r) + D) 
. 1 

= (xr- w, x) + D. 

Since r -lw f. 'if and xW = o, 1-1e have 
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-1 ) xr m = (O,x + D = D 

and hence 0 I xr-l € Ann1(m). Conversely if Ann1(m) ~ 0 form~ {r
1

, 

u(r1 , r 2) = {by, -bx + ax) € D ---- (1) 

for some 0 I u, b and a of R and we are going to show that m € T. 

Suppose that r 1 ¢ W and from (1) we get 

1 -1 Now since Wy = 0 and 0 r u = byr1 , we have that b is a unit. There-

fore from (2), 

which is a contradiction and we conclude that r 1 € W or m e T. The 

above considerations thus allow us to characterize T in the following 

way : 

T = ( m : m € M with Ann1 (m) ~ 0 J • 
Now m = (1,0) + D ¢ T. For supposing the contrary and say 

0 

um = 0 for some 0 I u e R, then 
0 

(u,o) = (by, -bz + ax) 

for some b, a'. S R. Since Vfy = 0 and 0 f u = by, it follows that b is 

a unit, .. But then 

-bz + ax = 0 or -1 z=b ax€Rx 

is a contradiction. 

In order to prove that M is indecomposable we assume the 

contrary. Since (M/radM) ~ 2, M is the direct sum of two local 

modules. This follows from the fact that if, say, 
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then 

and since M is finitely generated, each M./radM. (i = 1, 2,3) is non-
~ ~ 

zero. Hence 8 (.M/rad.IYI) > 2 is a contradiction and therefore we can 

write 

:f.i = Rp ~ Rq 

for suitable p,q G M. Hence m
0 

= r 1p + r 2q for some r 1 , r 2 S R, and 

since, as remarked, m
0 

¢Tor Ann1(m
0

) = o, we can assume that Ann1(r1p) 

= o. It follows that Rm n Rq = 0; otherwise, for some s, t 6 R, am = 
0 0 

tq. Then 

or, equivalently, 

and s=O because Rp 11 Rq = 0. Moreover, r l is a unit because if r l 6 'il 

we have 

contrary to the fact that Ann1(r1p) = 0. Therefore (1) gives 

-1 -1 
P = rl mo - rl r2q' 

and we can conclude that M = Rm ~ Rq. 
0 

Let M = Rm ~ Rq k ~ Rm be the canonical epimorphism 
0 0 

where m k = m • Define If : R --~:> MJ: by 1 f = (0,1) + D. Now since 
0 0 

(y, -z) e D or (y,O) - (o,z) e D we see that 

z If = (O,z) + D = (y,O) + D = ym • 
0 
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Furthermore, define ¢ : R ----~>> Rm by 1¢ = m and ¢ is easily seen 
0 0 

to be an isomorphism. Consider the compos~te homomorphism 

and its action on z; 

k >Rm 
0 

z tpkf"1 = ( (y,O) + D ) kf"1 

= (y(m )) k~1 = y((m )k)~1 
0 0 

•1 = y(m f" ) = Y• 
0 

Since fkf"1 is induced by a right multiplication, for a'.suitable rE:R 

we obtain y = zr. But this is impossible because if r E: W, then y E: zW 

which contradicts the assumption on y. On the other hand if r ¢ u, then 

-1 z = yr e yR, another contradiction. Therefore M must be indecompos-

able. 

Finally, let 

be an endomorphism of R(R ~ R)mapping D into D. Now (o,x) S D and hence 

(o,x) 
= 

= (by, -bz + ax) e D 

for suitable b,a S R, that is, xc21 = by and xc22 = -by + ax. Suppo­

sing that c21 ¢ w, we have, from the above that, 

o.;. x 

which means that b ¢ W. Hence 

-1 
= byc21 

-1 -1 z = b ax - b xc22 



and after substituting, the above becomes 

e Rx + yR. 

Hence we arrive at a contradictionmd we conclude that c21 e W. The 

proof of our lemma is completed. 
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We shall examine the double centralizer of an indecomposable 

module, specifically the left R-module M of the previous lemma in 

Constructions VI and VII which will be used in the next chapter. 

CONSTRUCTION VI. Let R be a left artinian local ring. Let 

Furthermore, let x,y e S such that Rx and Ry are not two-sided ideals 

and 

S f. Rx + yR. 

Then there exists a fin~tely generated faithful left R-module which 

is not balanced. 

PROOF. We begin by observing that, in view of Construction II, 

we may assume that R/Rx ~ R/Ry. To see this, suppose that the finite­

ly generated faithful left R-modules R/Rx and R/Ry are not isomorphism. 

Let ¢ : R/Rx --~> R/Ry be an epimorphisl}l, then 

R/Ry ':t (R/Rx) / ker¢. 

Hence 

Now Ry and Rx are simple because Rx ~ R/I where R/I is semisimple. 
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This implies that W(R/I) S I and hence WS I. Necessarily, W ~I, 

and therefore Rx ~R/W is simple since R is local. The same goes for 

Ry and we have . 

It follows that 31(ker ¢) = 0 and so ker ¢ = 0. Therefore an epi­

morphism between R/Rx and R/Ry is necessarily an isomorphism. In the 

case where the homomorphismis not epimorphic, then 

¢(R/Rx) = R¢(1 + Rx) ~ R/Ry. 

Now ¢(1 + Rx) must belong to rad(R/Ry) because, if not, there is r S R 

such that 

r(¢(1 + Rx)) = 1 + Ry 

and R(¢(1 + Rx)) = R/Ry. To satisfy the rest of the assumption of 

Construction II, suppose that Soc~~ Ann1 (R/Rx), that is, 

Hence S S Soc~ S. SocRa. R S Rx. Therefore we have Rx = S since Rx S S, 

a contradiction. Whence 

SocRa r;f Ann1 (R/Rx) 

and Construction II can be applied and we are through. Hence, in what 

follows, we assume that R/Rx ~ R/Ry. 

Let z e S - (Rx + yR) and consider the finitely generated 

faithful left R-module M = (R ~ R)/D of lemma III.l. Since M is an 

indecomposable R-module of finite length (Lemma III.l), the central-

izer C of M is a local ring with a nil radical w•. Moreover, if 
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cij S R, represents an endomorphism ¢ of the left R-module R ~ R 

mapping D into D, then c2l 6 il. We shall show that also c11 e ll and 

c22 6 W provided that ¢ is nilpotent. Say ¢n = 0 and taking t 6 SocRa, 

we have 

(ell e12) 
(O,t) 

c21 c22 

Now since 

(ell e12 r (O,t) 
0 21 0 22 

we have 

(o, tc~2) = (by, -bz + ax) e D, 

for suitable b,a S R, and formulating 1fe obtain 

n by = 0 and tc22 = -bz + ax. (1) 

Since Wy = o, b e W and hence bz = 0 and (1) becomes tc~2= ax. Now 

ti -n . -n . if c22 p w, t = axc22 and lett1ng t =x, x = axc22 6 Rx. S1nce Wx = o, 

a '/. li and so 

-1 a x = Rx. 

-n . Taking t = z, rre get z = azc22 E: Rx wh1ch contradicts the choice of 

z, and hence we conclude that c22 e W. 

Now consider 

= {by, -bz + ax) e D 

for suitable b,a S R where (y, -z) 6 D. Suppose that Oil ¢ w. Since 
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-1 yo11 =by or y = byo11 , which implies that b ¢ W. Now 

yo12 = -bz + ax, 

or equivalently, 

( -1 ( -1 ) z = b a)x + y -o11o12 

which again contradicts the fact that z e S- (Rx + yR). Therefore 

Consider the right C-module M = (R @ R)/D. 1fe shall show that 

In order to show the first inequality we first note that zW = 0 and 

( o, z) ¢ D. Therefore ( o, z) + D = m is a non-zero element of :r.1 such 

that mH' = 0. Indeed, every ~ e if' is nilpotent and if ~ is represented 

by 

( 
0
11 012) 

0 21 0 22 

( 

0

u 
012 

) m¢ = {O,z) + D = {zc21 , zo
22

) + D 
0 21 0 22 

which is zero in M since c21 e W and o
22 

e w. 

To show that rad(Mc) ~ M0, we note that the radical W1 of C 

is the set 

w• = [ ¢ e c : r~ e w] 

Hence rad(MC) C:. Mif' £. W ~ R/D which is not equal to M because m
0

={l,O) 

+De :M is not contained in (if <9 R)/D {of. proof of Lemma. III.l). 

Now R/Rx is a faithful left R-module and the map h : R > 

Ry ~ R/D defined by · 
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h(l) = (0,1) + D 

is surjective with Rx as its kernel. To see this, let (ry, r') + D 6 

(Ry ~ R)/D, then 

(ry, r') + D = {ry, rz) + (o, -rz + r') + D 

= (-rz + r') {0,1) + D 

= {-rz + r') h(l) 

since (ry, rz) 6 D. Moreover h has Rx as its kernel because (O,rx} 6 

D for all rx e Rx. Therefore R/Rx ~ Ry ~ R/D. 

The map_ g M > (R (i) R) /Ry (i) R defined by 

g((l,l) + D) = (1,0) + (Ry ~ R) 

is surjective with kernel Ry (i) R/D = K, i.e., 

M/K ';;! (RGfR) I (Ry~R). 

For, let (r,r') + (Ry ~ R) 6 (R(UR)/(Ry(i)R), r ¢ Ry, r,r' 6 R, then 

(r,r 1 ) + (Ry ~ R) = (r,O) +( O,r') + (Ry ~ R) 

= (r,O) + (Ry ~ R) 

= r(g((l,l) + D)). 

Let (ry, r•) + D 6 (Ry (i) R)/D where ry 6 Ry, r' 6 R, then 

g((ry, r'l +D)= (ry, r') (g((l,l) +D)) 

(ry, r') ((1,0) + (Ry 9 R)) 

= {ry, o) + (Ry (i) R) = o. 
Hence 

M/K t;;! (R (i) R)/(Ry ~ R) "i: R/Ry ~ R/Rx. 

We are now in a :position to apply Construction V by taking R/Rx to 

be the faithful left R-module N. Hence the :proof is completed. 
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CONSTRUCTION VII. Let R be a left artinian local ring. Let x be 

a non-zero element of S = Soc~nsocRR such that Rx is a two-sided 

ideal. Furthermore, let y and z be two elements of R such that 

y ¢ Rx, Wy = 0 , ylf £ Rx 

and 

z ¢ Rx + yR, Wz + z\1 S Rx. 

Then there exists a finitely generated faithful left R-module which 

is not balanced. 

PROOF. We shall show that the finitely generated faithful left 

R-module M = (R ~ R)/D of Lemma III.l is the required non-balanced 

left R-module, where 

D = { (by, -bz + ax) .:? b, a S R } • 

Let represent an endomorphism of the left R-module 

R ~ R mapping D into D and let the induced endomorphism ~ of M be 

nilpotent, say ~n = 0 for some positive integer n. We claim that under 

this condition, all cij ( i, j = 1, 2) belong to W. It rras shorm in Lemma 

III.l that c21 S tf and hence to show the rest consider 

(x,o) = 

where (:x:, 0) ¢ D since x ¢ Ry. Since R:x: is a tvro-sided jdeal , · xc12 

~ Rx, that is, (o, :x:c12) e D and (xo11 , xc12) + D = (xc11,o) + D. Now 



by induction, we obtain 

n 

(:x:, 0) 

= (:x:c~1 , 0) + D 

where (o, xc~2 ) ~ D. Since ¢n = 0 , (x,O) is being mapped into D 

and we have (xc~1 , 0) e D which in turn means that xc~1 = by for 

a suitable b e R. Now if c11 is a unit, xc~1 I 0 and hence by I 0. 

S . o -1 n • 1nce Wy = , b does not belong to W and y = b xc11 e R:x: 1s a con-

tradiction. We conclude that c11 S w. 

We show next that c22 SW. Consider, for arbitrary ~ ~ R 

= 

for a suitable ~+l e R. Therefore 

::: r ( k+l) + D = ~+1x, ~xc12 + yc22 +D. 

Now if ~ = 0 and by induction, we have 

(0, y) c1 .. 2) n 
+ D = 

0 22 
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Since ~n = o, (o, y} is mapped into D and so 

{unx' yc~2) = (by, -bz + ax) 

for suitable b and a 6 R. It follows that 

U X= by n and n yc22 = -bz + ax, 

38 

and hence b 6 W, for otherwise y = b-lu x 6 Rx which is a contradic­
n 

tion. H~nce 

yc~2 = -bz + ax C Wz + Rx = Rx 

and consequently o22 e W. 

Finally, for (y, -z) e D 

= (by, -bz +ax) S D 

or equivalently, 

for suitable band a e R. Since o11 and c21 e W, yo11 and zc21 e Rx. 

This yields by e Rx and so b 6 W. Now we have 

and yc12 8 Rx because -zc22 8 zW£ Rx. Therefore c12 S W. 

Since the left R-module M is indecomposable of finite length, 

its centralizer Cis a local ring with a nil radical W'. Now we note 

that (x,O) + D belongs to SocMc• If¢ 6 w•, then ¢n = 0 for some n 

and if we let ( c12 ) . be the endomorphism of R Ci) R which induces 

0 22 



¢, then 

(x, 0) 

Hence SocMC ' 0. 

We shall construct an element f of the double centralizer 

of M which cannot be induced by left multiplication. Since all c .. 
1J 

belong toW when the induced endomorphism f of M belongs to w•, 

X = (W Q) W)/D S, Mvl'. 

Hence if .Me P > Me/X is the canonical epimorphism and m: SocMe 

--~>Me the embedding, lte can define ¢ by setting 

where 

¢•((0, 1) +X) = (x, 0) +D. 

Now suppose that there is r e R such that 

¢((o, 1) + D) * r((o, 1) + D) 

or 

(x; o) + D = (o, r) + D, 

then 

(x,o) - (o,r) 6 D or (x,-r) S D. 

Since by assumption y ¢ Rx and \fy = 0~ Rxn Ry = o. For if there is 

0 .J r e Rrf\Ry, then r = r'x = r 11 y with units rand r" SR. It 

follows that 
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and so y e Rx which is a contradiction. Now if (x, -r) e D, then 

x G Ry and hence from the above remark x = 0. This contradiction 

allow·s us to conclude that !,1[ is not balanced and the proof tJ.f' the 

construction is completed. 
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CHAPTER IV 

ARTINIAN LOCAL QF-1 RINGS FINITELY GENERATED 

OVER THEIR CENTERS ARE QF 

This chapter is devoted to presenting the assertion stated 

as the title as ·a consequence of the preceeding Constructions. It 

can be considered as a partial solution to Thrall's problem. This 

is a generalization of theorems of D.R. Floyd [ 6 J , and that of 

Dickson and Fuller [sJ. The following results will be needed. 
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LEMMA IV.l. Let R be a local right perfect left QF-1 ring with 

a minimal right ideal. Then R has a unique minimal two-sided ideal I 

and, moreover, 

(i) o1 (I) = 1 and I is_the left socle of R, or 

(ii) o1 (I) = 1 and I is the right socle of R, or 

(iii)a1 <r> = 2 and I is both the left and right socle of R. 

PROOF. Case 1: 

Assume that there is a two-sided ideal I C Soc~ with o
1 
(I) 

= 1. In this case, we claim that I is·the unique minimal two-sided 

ideal and that I is the left or the right socle of R. To check that 

I is the unique minimal two-sided ideal, we let I 2 be any non-zero 

two-sided ideal of R. The hypothesis of Construction I would be sat~ 

isfied if we let I = I
1

, u
1 

= I
1 

and u2 be any simple left-submodule 
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of I 2• Note that u2exists because R is right perfect·so that every non­

zero left module has a non-zero socle. Now since R is local, it has 

only one isomorphism type of simple left ideals and we have u1 iso­

morphic to U2• Consider I 1 n I 2 which is a two-sided ideal. If I 1 n I 2 

= 0, the hypothesis of Construction I is satisfied contradicting the 

fact that R is QF-1. Hence I 1n I 2 I 0 and since I 1 is left simple, 

I 1ni2 = I 1 , i.e. I 1 S I 2• This means that I 1 is contained in every 

two-sided ideal of R. 

To check the rest of the claim - that I is the left or the 

right socle of R, we make use of Construction III. Suppose that I is 

neither the left nor the right socle of R, take a minimal left ideal 

u2 which is not contained in I and let u1 = I. The assumptions of 

Construction III are satisfied and we obtain a contradiction. 

Case 2 : Suppose that there exists no two-sided ideal of left 

length 1 in SocRa and denote by I the left socle of S. Then o1(I) 2 

2. Now I is a unique minimal two-sided ideal and is the left socle of 

R; for, otherwise, we can apply again Construction I or Construction 

III to obtain a contradictionas above. It remains to show that I is 

the right socle of R and, to this end, we make use of Construction 

IV. Supposing the contrary, say, SocRa i I. Let U be a non-zero min­

imal left ideal contained in S, since R is right perfect. Now since 

U annihilates the non-units, there a unit r e R such that Ur~ U. 

Since I is the left socle o~ SocRR' I£ SacRa and it follows that 

SocRR g U + Ur £. I 
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for otherwise we would contradict our assumption that I ' SocRa· Now 

we can apply Construction IV to obtain a contradiction and consequ­

ently we conclude that 

I = SocRa· 

Furthermore by using Construction IV again we easily check that 

The proof of Lemma IV.l is completed. 

We proceed to examine further the left and right socles of 

the local left QF-1 rings. In view of -~he following lemma, t~e third 

case of Lemma Iv.l will be eliminated for rings which are finitely 

generated over their centers. 

LEMMA IV~ 2. Let R be a left artinian left QF-1 local ring. Then 

for any two non-zero 

the following holds, 

Rx + yR = S. 

PROOF. From Lemma IV.l, S is a minimal two-sided ideal and 3
1

(s) 

< 2. When o1 (s) = 1, Rx is a non-zero left ideal contained inS and 

hence S = Rx. Now from a remark on page 31 (proof of Construction IV) 

Rx is simple. Therefore when 3
1

(s) = 2, Rx cannot be a two-sided id­

eal containe~ in s, and the same goes for Ry. Now the equality 

Rx + yR = S 
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must hold, or else we can apply Construction VI to obtain a contrad-

iction. 

Our next lemma modifies the result of Lemma IV.l, where a 

perfect left QF-1 local ring was shown to possess a unique minimal 

two-sided ideal which was the left or the right socle. 

LEL1}I.A IV. 3 • Let R be a left artinian left QF-1 local ring. 

Assume that R is finitely generated over its center. Then the unique 

minimal two-sided ideal is both a minimal left ideal and a minimal 

right ideal. 

PROOF. Let I be the unique minimal two-sided ideal. Now 

;;here W = rad R, because I belongs to both the left and the right 

socle of R. If K stands for the center of R, we see that (K + W)/W 

is contained in the center of the division ring R/lf. Form the quoti­

ent field F of (K + W)/W and consider it as subring of R/U. In vieli 

of the R/W - R/~ - bimodule structure of I, it follows that R/W is 

finitely generated over K. Hence we can consider R/W as a finite­

dimensional vector space over the quotient field F. 

Now dim(FR/W) = dim(R/WF) because (K + W)/W is contained in 

the center of R/W. It follows that 

dim(FR/W~.dim(R/WI) = dim(FI) 

= dim(IF) 



implies 

We would be through if 

Hence, because of Lemma IV.l, we only have to show that dim(R/WI) 

~ 2. Say dim(R/WI) = 2 and applying lemma IV.2, then 

for all 0 ~ x e I. Whence, if n = dim(~/W) and 0 ~ x e I, 

2n = dim{R/WI) • dim(~/W) 

= dim(FI) 

= dim(F(Rx + xH)) 

= di~Rx + di~xR - di~(Rx n xR) 

= n + n - di~(Rx n xR). 
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This is a contradiction because, obviously, dimF(Rx n xR) ~ O. Hence 

In order to prove the main theorem in this chapter, we need 

still another result. 

Lemma IV.4. Let R be a left artinian left QF-1 local ring. 

Then the left socle of R is the unique minimal two-sided ideal. 

PROOF. Write the left and the right sooles of R as s1 and Sr 



respectively. Assume that s1 is not the unique minimal two-sided 

ideal of R. In view of' Lemma IV.l, it follows that S is properly 
r 

contained in s1 and that o1(sr) = 1. We want to show that the 
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intersection S of' the left and the right socles of R/Sr is contained 

in Sl/S • So let 0 ~ X e s ' then since r r 

and since Sr is a two-sided ideal, so is Rx. Now let y + Sr be a 

non-zero element of' the right socle o~ s
1
jsr, that is, 

and 

y ¢ S = Rx, Wy = 0 r 

Yw c s = Rx. 
- r 

Let z be an arbitrary element such that z + S belongs to s. ~en 
r 

Wz + zW c S = Rx. 
- r 

Now the assumptions of Construction VII are satisfied for our choice 

of x, y and z except for the condition that 

z ¢ Rx + yR. 

Since R by assumption is a left QF-1 ring, Construction VII implies 

that z is necessarily contained in Rx + yR c s1 and hence 

S £ s1jsr • 

. .n _l • .n+l Now, if w r 0 and w = 0, then since S is the unique r 

minimal two-sided ide~l (proof of Lemma IV.l), S = wn. wn-1;wn r 

is contained in the intersection of the left and the right socles 
-1 .. 

of R/~ because wn /tf annihilates W/~ on both sides. This implies 



that 

Hence, 

contradicting our hypothesis. Since the assumption that s1 was not 

the unique minimal two-sided ideal leads to this contradiction, we 

have proven the lemma. 

Finally, we are in a position to prove our main assertion. 
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THEOREM IV. 5. Let R be a trro-sided artinian local ring finite-

ly generated over its center. Then R is a QF-1 ring if, and only if 

it is QF. 

PROOF. 

This is trivial. 

( ====>) He first apply Lemma IV .4 both to the right and the 

left of R. Then 

SocRa = I = SocRR 

is the unique minimal two-sided ideal of R. Now by Lemma IV.3, I 

is both a minimal left ideal and a minimal right ideal. 

Let U be a non-zero left ideal of R and let U' be a maximal 

left subideal of u. We shall denote the left and the right annihila-
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tors of U by l(U) and r(U) respectively. If a e R, then the left ideal 

ua ';t ujunl(a). 

If, in particular, a 6 r(U'), then 

1( a) 2 l(r(U')) 2 u•, 

and consequently, 

U (')l(a) 2 unl(r{U' )) 2 unu• .:. U' • 

Hence Ua is either left simple or equal to 0 because U' is maximal 

in U. This implies that, since a 6 r(U•), 

Ur(u•) C Soc~ = So~R = I 

but because I is (both left and right) simple we actually have Ur(U') 

equal to I oro. Taking b 6 U- u•, we obtain 

Rb + U' = U. 

Moreover, by the preceeding remark 

br(U') =I or 0. 

It follows that 

br{U 1 ) = r(u•)/r(U') n r(b) 

is right simple or equal to o. However, 

r(U') n r(b) :::: r(U 1 + Rb) = r(U) 

and hence 

br(U') = rtu•)/r(U) 

is right simple or equ~l to 0. 

Now consider a composition series of left ideals of length n, 

u = o c u1 c u2 c • • • c u = R. 
o - - - - n 

Correspondingly, we obtain a new series of right ideals given by, 
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having r(U.)/r(U. 1) (i = o, ••• , n-1) either right simple or 0 in 
J. J.+ 

view of the above consideration. This means that 

However, the inequality of the other direction can be seen in the 

same manner, had we started with right ideals instead of left ideals. 

Hence 

and r(U.)/r(U. 1), i = 0, ••• , n-1, is right simple for every i. 
:l ::t+ 

Non, using the same argument, we have that 

is simple for every i and 

is a composition series of length n. Comparing the series with the 

following 

we see that necessarily 

l(r(Un_1) = u 1 n-

since they are both maximal in Rand U 1 C l(r(U 1)). Applying 
n- - n-

the same argument on the corresponding left ideals down the two sari-

es, we obtain 



for every i = 0, ••• ,n. Analogously, for any right ideal J, 

r(l(J)) = J. 

Therefore R is a QF-ring and the proof of the theorem is completed. 

We have collected the theorems of K.R. Fuller and s.E. 

Dickson in [ sJ as well as that of D.R. Floyd in [ 6 J as immed­

iate consequences of Theorem IV.5. 

COROLLARY IV •. 6. (K.R Fuller and S.E. Dickson) 
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Let R be a commutative artinian ring. Then R is QF-1 if, and 

only if, it if QF. 

PHOOF. R is clearly finitely generated over itself. Uoreover 

R is a finite product of commutative artinian local rings and since 

the property of being QF-1 is preserved under finj. te products, this 

corollary follows from Theorem IV.5. 

COROLLARY IV. 7. (D.R. Floyd) 

A commutative finite dimensional algebra over a field is 

QF-1 if, and only if, it is QF. 

PROOF. Since every finite dimensional algebra is an artin);an 

ring, this corollary follows from the previous one. 
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