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INTRODUCTION

The concept of injectivity first arose in connection
with abelian groups when in 1940, R, Baer defined and studied
"Abelian subgroups that are direct summands of every containing
abelian group" t_ 8—}. Modules over arbitrary rings with the
above property wére later on called injective and several
equivalent conditions characterizing these were obtéined ['9].
A major step in the theory of injective modules was achieved when
B, Eckmann and A, Schopf proved that for every module M over a
ring, there exist injective hulls, i.e, essential and injective
extensions, and any two of these are isomorphic over M, However,
the proofs showing the existence of these hulls use maximality
arguments and as such they do not provide an explicit method of
construction, It is, therefore, natural that attempts be made to
describe injecti§e hulls of modules by means of explicit constructions,
>In some cases this has already been done, For Z/Zp where Z is the
ring of integers and p a prime number, one knows that Z L_p-l;]/Zp
is an injective hull, In a recent paper [ 2 |B, Banaschewski
has proved that if J is a non-zero proper ideal of a Dedekind domain

R, then \¢}J—k/J is an R-injective hull of R/J, which generalizes
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one of his previous results for principal ideal domains(i 5:} .
B, Brainerd and J, Lambek have ﬁroved E. 7 ] that a complete
Boolean ring is injectivé as a module over itself, and this fact
suggests that one might succeed in obtaining injective hulls of
ideals and quotients of a Boolean ring by suitably defining their
completions, Another clue concerning the construction of an
injective hull of a semi-simple module over a regular ring,tis
provided by the fact that all simple modules over regular rings
are injective [ 21].

On the basis of the above suggestions we examine in
this thesis methods of constructing injective hulls of modules
in some special cases and give characterizations of these in
suitable terms, In addition to these we study some properties
of injective modules, A brief synopsis‘of the material included
here is givep below,

In Chapter O, we collect together basic theorems and
_ definitions which we utilize in later chapters, In particular
we list the properties of semi-simple modules, injective modules,
rings of quotients, Noetherian rings and Dedekind domains,

Chapter I deals with semi-primary modules, E, Mgtlis
has proved E_l8 ] that over a left Noetheriaﬁ ring every injective
module is a direct sum of indecomposable injective submodules,
Here we give characterizations for injective modules over left

Noetherian rings to be semi-primary. For such modules we define
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the injective length and show that any two of these are iso-
morphic if and only if their injective lengths are the same, In
the special case of a torsion module over a Dedekind domain, some
properties of its injective hull are obtained, |

Chapter II is concerned with the study of injective
hulls of modules over a Boolean ring with unit, Here wé give
a description of the injective hulls of cyclic modules as well as
of the ideals considered as modules over the ring, The main tool
in this construction is the concept of Boolean completion, In
the case of normal ideals it is proved that the injective hull
of a quotient of the ring by a normal ideal is the quotient of
their respective injective hulls, .

In Chapter III we consider semi-simple modules over
commutative regular rings and show that each monotypic component
is injective, We also prove a topological lemma that if A and
B are any two ﬁon-void subsets of a Tl-space with the property
that each one of their non-void subsets has an isclated point, then
AUB itself has this property., These facts are used in order to
find an explicit description of an injective hull of a semi-
simple module, The last theorem in this chapter gives a character-
ization for a semi-simple module to be injective,

In Chaéter IV we study the inheritance properties of

R-injective modules E as. the ring R is changed into a suitably



related ring S and E is made into an S-module, It turns out
that this device of changing rings is convenient in proving some
interesting properties about injective hulls, In particular wev
generalize the fact that Z (pm) is isomorphic to each of its non~
zero homomorphic images, to indecomposable injective modules over
rings more general than Dedekind domains, In the last fheorem
we consider two rings R and S suitably related and obtain an
injective hull of a module over R from one over S and use this to
show that if R is a Dedekind domein, PCR a'proper prime ideal,

then the R/Pk- injective hull of R/P is R/Pk.



CHAPTER O

PRELIMINARIES

This chapter is essentially a collection of all the
basic theorenms apd definitions which will be needed in the

ensuing chapters,

l., Modules and Homomorphisms

Let R be a ring with unit 1,

Definition 1. A left R-module (or a left module over R) is an

additive abelian group together with a mapping m ¢ RxM — M
such that for all a, b € R, x, y € M, the following conditions are

satisfied:

Q) m(a x+7) =n(a, x) +n (a y)
(2) m (ab, x) = m (a, m(b, x))
(3 m(a+d, O =mla, x) +m (b, x)
W) n @, 0 =x |

We usually write a x for m (a, x) and call the operation m,
the scalar multiplication, Right modules can similarly be defined,
We shall deal only with left R-modules and hence call these simply

R-modules or even modules if the reference is clear,



A submodule N of a module M is an additive subgroup such
that RNCN,

Definition 2, Let M and M' be two modules, An additive group

homomorphism £ ¢ M —2>M' is called a module homomorphism if

f (ax) = af(x) for all a &R, x¢M, A one~to-one, onto homomorphism

is called an isomorphism,

Definition 3. If {M i’s,,e is a family of submodules of a module M,
1

then 3. M; which consists of all possible finite sums of
i€ I
elementS from the various modules Mi , is clearly a submodule of M,

We call ZMi the sum of the submodules My ., It is also the
jex
smallest of all submodules of M containing the Mi‘ .

Definition 4, A family of submodules -{‘Ml} of a module M,
icy
is said to be free if N 3] M, = O for all i€1I,
i£3el

A module M is said to be a direct sum of submodules

iM}ifI if and only if

(1) in-lgieI is a free family of submodules of M,

(2) M =35 My .
€T

- We shall express this by wriﬁing M= ?{‘ 1 M (dir). -

A submodule N of M is called a direct summand of M if there exists

a submodule N' of M such that M = N + N' (dir),

Direct product and external sum,

Let {Mig ié I be a family of modules,



Definition 5, We consider all functions f : I-UM; and
' ieX

define ;HE-»IM:L = {“:E : I——)uMi'_l f(1)&€ My for allie ‘I.S
then with respect to the addition and scalar multipliéa’cion

defined by

(f+g) (1) = £4) + g (1) X
for all a¢R, icl,
(af) (1) = af (i)

it is clearly a module, We call TT Mi the direct product of the
i€l

femily Mk o7
Now define @M = {‘féeri\f(i) = 0 for all but
ie¢'1 iel
- ¢ Py, .
finitely many i€ I} then jeT M; is a submodule of ;ZTIIJll and

it is called the external sum of nmodules Mi. .

It can be shown that if%M'ijiGI is a free family of sub-

&~ .
T 8.,

Z:
modules of a module M, then je1 ™M iel

Definition 6, If N is a submodule of a module M, then

M/N = {x + N \ .x€ M} with scalar multiplication defined by
r (x+N) =r x+Nis a left module and it is called the

quotient module of M by the submodule N, The mapping V) : M—=> M/N

by » (x) = x + N is called the natural homomorphism,

Definition 7. A module M is called simple if M is non-zero and

contains no proper submodules, A module M is indecomposable if

it is non-zero and its only direct summands are O and M,

Definition 8, A non-zero module M is said to be semi-simple if

it is expressible as a sum of simple submodules,



The following theorem characterizes semi-simple

modules:

Theorem 1, For a module M, the following three conditions are
equivalent:

(1) M is semi-~-simple,

(2) M is a direct sum of simple submodules,

(3) Every submodule of M is a direct summand,

By Zorn's lemma, every free set of simple submodules of a semi~
simple module is contained in a maximal free set of simple submodules,
Moreover, a free set UU of simple submodules of a semi-simple module

M is a maximal such set if and only if M — Széc(. .

Theorem 2, Any‘two maxinal free sets of simple submodules of a
semi~simple module have the same cardinality,
In view of the above theorem we have the following:

Definition 9, The length of a semi~simple module M is the

cardinality of any maximal free set of simple submodules of M,

We will denote the length of M by k(M).

Definition 10, Let £2 denote the set of maximal left ideals

of R and M a semi-simple module, TFor any simple submodule
S € M, there exists Pc{Q2such that S = R/P, Let T be the set
of isomorphism classes of {R/P\ PEQ} For each t € T, choose

S, € t and define M, = 3 8 (S simple), Then M, is called

v st’:SgM t

the t-monotypic component of M, Note that Mt = O if and only if

there is no simple submodule S¢M with S+ St‘



If R is commutative then for each t €T, there exists
exactly one P& such that t ={_R/P} . In this case we put

MP = M, and call MP’ the R/P - monotypic component of M,

t
Theorem 3, For a semi-simple module M, we have M = ttZ.T M, (air),

D Mt. ~ Let M be a semi-simple module,

teT
For each t€T, let k. (M) =k (M), Thus we can associate with M,

It follows that M =

a family (kt(M))téT of cardinal numberst

Theorem 4, Two semi-simple modules M and N are isomorphic if and

| only if (kt(M)) = (kt(N))

t¢T teT
We now consider an arbitrary module M, The set L(M)
of all submodules of M is partially ordered by < and is a complete

lattice with sum as join and intersection as meet,

Theorem 5, Let N be a submodule of a module M, Then the lattice
of submodules of M/N is isomorphic to the lattice of submodules of
M which contain N, Furthermore we have M/L ¥ (M/N)/(L/N) whenever

MO, L2N,

Definition 11, Let M be a module, For x¢ M define

O(x) = { reR|rx=0% , then O(x) is a left ideal of R and is

called the order-ideal of x, It follows that R x'= R/0(x).

A module M is called a torsion module if O(x) # O for

every x¢ M,

Definition 12, For a module M, the socle of M denoted by S(M)
is the sum of all simple submodules of M, It is also called the

semi-simple part of M,




2, Rings of Quotients

Let R be a commutative ring with unit 1 and S<R a

multiplicatively closed subset,

Definition 1%, For an ideal J< R, define JS =-{Xf5R | there

exists c¢§ with ¢ x€ J&then Jg is called the S -component of J,

Definition 14, 1Let S be a multiplicatively closed subset of R

such that OQ%S . Let N be theS -component of the zero ideal and
v : R—> R/N, the natural homomorphism, ThenV (S) is a multiplicatively

closed subset of R/N and has no zero divisors in R/N, Let

Ry = {(U ("M/v (s)) \ ré R, sc—gis , then R, is called the

>

generalized ring of quotients of R with respect to§ ,

Special Case: If PCR is a proper prime ideal them = R~P is

a multiplicatively closed subset of R with 0% S . In this case
it is customary to denote RS by RP‘ The following hold in this
case:

(1) U (r)€V (P) if and only if r€ P,

(2 R, ¥ (N2 (R) = ¥ (P),

(3) R, is a local ring with RPZJ (P) as its unique maximal ideal,

%. Noetherian Rings and Dedekind Domains,

Definition 15, A ring R is called a left Noetherian ring if amy

one of the following equivalent conditions holds:
(1) Every left ideal in R is finitely generated,

(2) R satisfies the ascending chain condition for its left ideals,



(3) Every non-void set of left ideals of R contains a maximal

member,

Definition 16, An integral domain R is said to be a Dedekind

domain if and only if
(1) R is a Noetherian ring
(2) Every proper prime ideal in R is maximal

(%) R is integrally closed in its quotient field K;

that is if L€ K is a zero of a monic polynomial belonging to

R{x], then £ € R,

Definition 17, Let R be a Dedekind domain with K its quotient

field, A fractionary ideal in K is a non-zero finitely generated

R-submodule of K, For any ideal A in R, define a1 vy
a1 o {Kex |« acRY,

Theorem 6, Every proper ideal A in a Dedekind domain_is a product
of prime ideals and this decomposition is unique apart from the
order in which the factors appear, Conversely an integral domain
in which everyrproper ideal is a product of prime ideals, is a

Dedekind domain,

Theorem 7, If K is the quotient field of a Dedekind domain R,

then the fractionary ideals in K form an abelian multiplicative

group with identity element R and in which the inverse of A is A-l.



Definition 18, The ideals Ay Ay e, A, in a Dedekind domain

R are called pairwise comaximal if Aj ¢ R and A; + AJ = R for

alli ,j=1, ..., n, withi # j,

Theorem 8, If A, Ay, ...y A are pairwise comaximal ideals

n .
in R, then R/Al Az oo oAn = .@ R/Ak .
. k=1

Corollary. Let M be a torsion module over a Dedekind domain R,

If xe M with 0(x) = Pl{]' p‘;n » 811 E distinct, then

R x ':'R/P:l@»—-- @R/Pl;" .

Theorem 9, For every proper prime ideal P in a Dedekind domain R,
the ring of quotients RP is a principal ideal ring with RPP as its

unique méximal ideal,

4, Injective Modules

In this section we will consider an arbitrary but fixed
ring R with unit 1, All modules will be left R-modules and all

homomorphisms will be R-module homomorphisms,

Definition 19, A module M is said to be injective if for any two

modules A and B with A< B and any homomorphism £ ¢ A—7 M, there

exists a homomorphism f : B—> M which extends f,

Definition 20, A module M is called an essential extension of a

module N if and only if N is a submodule of M and every non-zero

submodule of M has a non-zero intersection with N,



Thus in order to show that M2 N is an essential
extension of N, it is sufficient to prove that Rx ™ N £ O for
21l non-zero x¢M, If M2N is an essential extension, we will say

that N is a large submodule of M,

Remark, Sometimes an additive group may be considered with
module structures over different rings, In' such a case we will
use R-injective module or R-egssential extension if the notions of
injectivity or largeness refer to the considered R-module structure
of the group, About essential»extensions'we note the following:
(1) A union of a directed set of essenfial extensions of M is
itself an essential extension,
(2) If ASBSC such that A is large in B, B is large in C, then

A is large in C,

Theorem 10, For a module M, the following conditions are equivalent:
(1) M is injective
(2) M has no proper essential extension,
(%) M is a direct summand of every module which contains it
(4) For each left ideal IS R and each homomorphism f : I—> M
(I being considered as an R-module), there exists an

element x€ M such thet £(a) = ax for each ac I,

Theorem 11, A direct product of modules is injective if and only

if each factor is injective,

Corollary, A finite direct sum of injective modules is injective

if and only if each summand is injecﬁive.
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Theorem 12, Every module can be imbedded in an injective

module,

V Definition 21, A module H is said to be an injective hull of

a module M if H is an injective module containing M and is

minimal with respect to this property,

Theorem 13,  (Eckmann and Schopf @21)., ZLet M be a module,

Then

(1)_Any injective module containing M, contains an injective
hull of M,

(2) A module H2M is an injective hull of M if and only if H
is a maximal essential extension of M,

(z) 1¢ (?4: M—>M' is an R-module isomorphism and H and H' are
injective hulls of M and M' respectively, thent? can be

extended to an isomorphism C? ¢: H— B,

Remark, 1In view of the above theorem any two injective hulls

of a module M are isomorphic with respect to an isomorphism which
maps M identically, We will use the notation E = H(M) to express
that E is an injective hull of M, Where no ambiguity can arise,

we let H(M) stand for an arbitrary injective hull of M,

Theorem 14, 181 For a module M, the following conditions are
equivalent: A

(1) H(M) is indecomposable

(2)H(M) isaninjective hull of each of its non-zero submodules

(3) M contains no non-zero submodules S and T such that SN T = 0,
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Theorem 15.1 18] Let M = .25 M; (air), Then

: n
Wirr= {12 .., n{ is finite, then H(M) ¥ & H(Mj )
i=1

(2) If R is left Noetherian, then H(M)"¥ L@I HOM; ),
The isomorphism, in either case, is given by extending the

natural isomorphism M—> G My ,

Theorem 18.{; 181 Over a left Noetherian ring every injective

mocdule is a direct sum of indecomposable injective submodules,

Theorem 19, '— 2 J If R is a Dedekind domain and J R is any
non-zero proper ideal of R, then J*/J = H(R/J) where

g = S gk U gk,



CHAPTER I

SEMI-PRIMARY MODULES

This chapter is devoted to the study of injective
semi-primary modules over left Noetherian riﬁgs. We obtain a
-characterization for an injective module to be semi-primary in
terms of a maximal free set of indecomposable injective submodules,
For such a module we introduce the concept of injective length and
establish that this length is invarient under isomorphism, This
enables us to give a description of the injective hull of a semi-~
primary module.

To begin with we consider R to be an arbitrary ring with
unit 1, For an R-module M and x ¢M, recall that S(M) denotes the
soéle of M and O(X) denotes the order ideal of x,

Before we begin our study about semi-primary modules in
general, we would Tike to note the following facts about arbitrary
modules,

Lemma 1., Let E be an essential extension of a module M, Then

S(E) = S,

12
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Proof, For any simple submodule SC E, we haveSNM £ 0, ILet x
be any non-zero element inSAM, then 0 Z R x €S implies that
S = Rx SMsince S is simple, Hence, S(E) € S(M). The

reverse inclusion always holds, hence S (M) = S (E),

Lemma 2, If M is any module such that M = ZMi(dir), then

S = 2.8 (i) (air),
Proof, Any simple submodule of Mi is also a simple submodule

of M,  Thus S(M,) SS(M), hence T S(M,) & s(m) To
show the inclusion the other way round, let SCHM be any
simple submodule, Then S = Rx with O £ x& M, Now with respect

to the direét sum decomposition M=32 Mj , x can be expressed as

= X+ ..o+ X, with O 4 xké M; , Consider the homomorphism
k

Rx—> ka by rx —7 X . It is clearly non-zero and onto, hence
one-to-one since S is simple, Thﬁs Rx = ka and so ka (& (Mik).
This :|.mplies that x =S x € SS (M- )CZS (M;).  Hence

S=Rx €T SM,). It follows that S M) S2S(M{). Thus

S(M) = ZS (Mi).

Definition 1. A left R-module M is said to be semi-primary if

and only if for any non-zero submodule A of M, S (4) # 0. Thus
for M to be semi-primary, it is sufficient that S (Rx) # O for every
non-zero element x € M,

The following proposition characterizes semi-primary

modules:
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Proposition 1, For a left module M, the following conditions are

equivalent:

(1) M is semi-primary,

(2) S(M) is a large submodule of M,

(%) For every non-zero element xc M, there exists in the lattice of

left ideals of R, a left ideal minimal above O(x),

Proof, (1) implies (2): Let M be semi-primary, Then for any
non-zero submodule A of M, § (A) #0, Hence ANS (M) £0 since
SYE AnS(M). This shows that S (M) is a large submodule of M,
(2) implies (%)t Let x be a non-zero element in M, Then by (2),
RXNS(M) #0, Since Rx ¥ R/0(x), this implies that R/0(x)
contains a simple submodule S/0(x) where S is a left ideal of R,
Thus O(x) is a left ideal maximal in 8, that is to say, S is a
left ideal minimal(above o(x).

(3) implies (1): Take any non-zero element x¢M, Then by (3),
there exists a left ideal SSR such tha£ 0(x) is a left ideal maximal
in S, HenceS/0(x) is simple, Since S/0(x)< R/0(x) T Rx, one

has S(Rx) £ 0, Thus M is semi-primary,

Remark 1, It follows from the Proposition that every semi-~simple

module is semi-primary,

Corollary 1, Every non-zero submodule and every essential

extension of a semi-primary module M is semi-primary,
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Proof, Consider any non-zero submodule A of M, If B is a non-
zero submodule of A, then 0 # S(B) € BN S(A) which shows that S (A)
is a large submoéule §f A, Hence A is semi-primary,
Noﬁ, let E> M be an essential extension of M, Take any
non-zero submodule A of E, Then ANM £ O implies O # S (AM) €< AnS (E).

This shows that S (E) is large in E, Thus E is semi-primary,

Corollary 2, Torsion modules over a Dedekind domain are semi-
primary,

Proof, ILet R be a Dedekind domain and M a torsion module over R,
Take any non-zero element x=M, Then O(x) # O and R/O(x) satisfies
the descending chain condition {257, Hence there exist ideals of
R minimal above O(x), Therefore M is semi-primary byiProposition
1, (3). |

For the next theorem we need the following facts about semi-
primary modules: -

Lemma 3, A semi-primary injective module I is indecomposable if and

only if S(I) is simple,

Proof, Let I be indecomposable, Since I is semi-primary injective,‘
by Proposition 1, I is an injective hull of its socle S (I),

Suppose S (I) is not simple, Then there exists a simple submodule

| SCS (1), sinceS(I) is semi-simple, S (I) = S + T (dir)

for some non-zero submodule T of S(I). This implies that I = H(S(I) =

H(S) + B(T) (dir) contrary to the hypothesis that I is indecomposable,
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Hence S(I) is simple, Conversely if S(I) is simple, then

I = H (S(I)) is indecomposable L 18],

Remark 2, Since a simple module is semi-primary, the above Lemma
implies that indecomposable injective semi-primary modules are

precisely the injective hulls of simple modules,

Remark 3, Over a commutative regular ring, semi-primary indecom-
posable injective modules are exactly the simple ones since every

simple module over a regular ring is injective (211,

Lemma 4, Let C = A + B (dir) where A and B are injective semi-

primary, Then C is injective semi-primary,

Proof, Here 4 = H (8(A)), B = H(S(B)) since A and B are injective
semi-primary, Thus C = A + B = H(S(A)) + H(S(B)) (dir), By

Lemma 2, we have S(C) = S(A) + S(B) which implies that

H(S(A)) + H(S(B)) is an injective hull of S(C), Hence C is injective

semi-ﬁrimary by Proposition 1,
Lemma 5., The union of a directed set of semi-primary modules is semi-
primary,

Proof, Let {A j | 3¢ J} be a directed set of semi-primary modules,

Then U Ai is a module, Take any non-zero element xelJAj. Then
Rx is a non-zero submodule of Aj for some j € J, Hence S(Rx) £ O.
This proves that L/Aj is semi-primary.

From now on we will consider R to be a left Noetherian

ring.
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In the following theorem we give a characterization of

those injective modules which are semi-primary,

Theorem 1, An injective module E is semi-primary if and only if

it is a direct sum of indecomposable injective semi-primary modules,

Proof, Let E = 5. I (dir) where?C is a set of indecomposable
IeyC

injective semi-primary submodules of E, Denote by /~ , the collection
of all finite sums of members ofIC, By Lemma 4, every member in F
is semi-primary, Also if A and B are in‘F', then A + B which

-

contains both A and B, belongs tof~., Hence /~ is a directed set of

seni-primary submodules of E, From Lemma 5, it follows that U

is semi-primary, Since UF contains U I, it contains E, Hence
IehC

E=Ud is seni-primary,

To prove the converse, let E be semi-primary, Since E
is an injective module over a left Noetherian ring, E is a direct
sum of indecomposable injective submodules each of which is semi-
primary by Coroilary 1l of Pfoposition 1 0187, This completes the

proof of the theorem,

Proposition 2, Let VW€ be a set of indecomposable injective sub-

modules of an injective semi-primary module E, Then E = %%ng (dir)

if and only if ¥"C is a maximal free set of indecomposable injective

submodules of E,



18

Proof, Suppose first thatNC is é maximal free set of
indecomposable injective submodules of E, Let E' = %%%,
Each summand I being injective, E' is an injective submodule ;f
E (18], Hence E = E' + E" (dir) for some submodule E" < E,
Therefore E" is injective semi-primary. Assume E" £ 0, Then
S(E") Z O and hence E" contains a simple submodule A, It follows
that any H = H(A) contained in E" is indecomposable injective semi-
primary and this implies that YU { H{ is free contrary to the
maximality of ¢, Hence E" = O and so E = E',

On the other hand if E = %erl (dir), then "C is a free
set and hence, is contained in a maximal free set (U of indecomposable

injective submodules of E, Assume OU £™M¢, then there exists a

non-zero I€0C, I& Y , This implies that

0=In2 A 2In2Z A= INE =1
I£A 0T AE W

a contradiction, Thus 0C - ¥ .

Remark 4, For any free set I{ of indecomposable injective submodules

" of & semi-primafy module E, let WS = {S(I){ I GW}. Then IWC

is maximal free if and only if ‘st is a maximal free set of simple

submodules of E, _

Proof. Let VT be maximal free, Then for any I €1,

S(I)n 2 s(I') € 1 NS I' =0 implies that CW“CS is a free set
I4£Iteyc :

of simple submodules, Suppose that WS is not maximal such,

Then there exists a maximal free set CTof simple submodules of E,
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properly containing ¥'C g Let A€ 0C , ag ‘WCS. Then for any
H=HASE, A=SHS 2 S(I) by Lemma 2, and hence A = O since
An 2 8(1I) =0, a contraéiecﬁon. This proves that WS is’
ma:d:\:]imfree. Conversely if e s is maximal free then"}';fi is
maximal free since oj;herwise YL CTC would meanWSCT(s, a

contradiction,

Corollary, Let¥C be a free set of indecomposable injective sub-
modules of a semi-primary injective module E, Then S(E) = Z S(I)

i
if and only ifVC is maximal,

Proof. Let™'C be a maximal free set of indecomposable injective

submodules of E, Then by Proposition 2, E = 2_ I (dir), Hence

| T Ieve
by Lemma 2, we have S(E) = 2 S(I)., Conversely let
) Iewe
S(E) = 2.S(I). This shows that ¥y is a maximal free set of simple

Tewe
submodules of S(E), and hence I'C itself is maximal by Remark &4,

As before, we will denote byQ , the set of maximal left
ideals of R and by T, the set of isomérphism classes of the R/P with

PELQ, TFor each t¢T, pick S, € tand let I = H(S.)., We then

t t

have the following:

if and only

Remark 5, If I is semi-primary injective, then I = It

if s(1I) = S¢.

Proof, Llet ¢: I— It be an isomorphism, Thend restricted to
S(I) is a non-zero homomorphism and hence P (S(I)) is simple,  Since

@ (S(I)) is a large submodule of I, 8,0 @ (S(I)) £ 0, Hence

S, = @ (s(I). Conversely S(I) &S, implies I = H(S(I)) T H(5) = I

t t*
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Now let E be an injective semi-primary module and °C
a maximal free set of indecomposable injective submodules of E,
Then by Corollary, Proposition 2, S(E) = 2 S(I), Hence

TEMt
8(B), =2 (1) (s, = S(I), 1€M),  For each t € T, define

Ey oo = S. I ., It follows from Remark 5 that
’ S(I)'ést,Iew

E, . = 2 I .

t, e IiIeme

Theorem 2, If¥C and Y€ are any two maximal free sets of indecom-
posable injective submodules of a semi-primary injective module E,
then there exists an automorphism (Pof E such that CP(Et ) = Et': ~

for all t ¢ T,u mapping S(E) identically,

Proof, Here for each t ¢ T, S(Ey oy
! I, =Ieoe 5(I)= s

t . I e
by Remark 5, Since S(E) & is independent of ™, this gives

t

S(Et:m) = S(Et,w). Hence Et,wand Et,‘Y“c are injective hulls of
S(E, ar¢). It follows by [ 11 ] that there exists an isomorphism
L .

¢t B ., E  mapping S(E, v ) identically, Now
Pyt By ac o1 mePPing S(Ey e ally

E = 2. BE_ .. (dir) allows us to define ¢ : E—> E such that
R RS

@ restricted to B is @ g Thus ’ is an automorphism of E,

t, ¥TC
Moreover since () maps each S(E)t identically and S(E) = ZS(E)t , P

maps S(E) identically, The proof of the theorem is thus complete,

Injective length of a semi-primary injective module

Let E be a semi-primary injective module, For t¢& T,

put 'pt(E) = k(S(E)t).,

)= st = S ST = s

t
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of cardinzl numbers

Definition 2, The family (% (E)), .n

associated with an injective semi-primary module E, is called

the injective length of E, We will denote this by L (E), By

the proof of Theorem 2, Lt(E) = k(S(Et¢Wt)) vhere " is any
’
maximal free set of indecomposable injective submodules of E,

s

Also S(E), 2 Lt(E) @ 8, (this notation stands for the
e . ) ~ 7 -
external sum of ut(E) copies of St)’ hence E%,Vt’ t/t(E)CD Iee
The fact that the injective length completely character-

izes isomorphic injective semi-primary modules is given by the

following:

Theorem %3, Two injective semi~-primary modules E and E' are iso-

morphic if and only if they have the same injective length,

Proof, Let%Cand W' be any two maximal free sets of indecom-
posable injective submodules of E and E' respectively,  Suppose
first that C (E) = L-(E'), then Z.t(E) = Z“t(E') for each t ¢ T,

Hence

e

E ;' 51;: Et’;ﬂ(tdir) ® Lt(E)G I, = @Lt (') © I,

ro
P 1 - - t
= Zt Et’w(dlr) = E',

Conversely if E is isomorphic to E', then S(E) = s(E').
Hence we have L% (E) = k(S(E)t) =k (S(E')t) = ‘Lt (E') for each
t €T, This shows that L (E) = C (B'),

We are now in a position to give a description of the

injective hull of a semi-primary module in terms of the injective
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length of the former in the following:

Theorem 4, Let E be an injective hull of a semi-primary module M,
Then Lt(E) = k (S(M),) for all t e T,
Proof, By Lemma 1, S(E) = S(M), hence here:

stm), = s(B), = | Lt (E)® s,. Thus k (S(M),) = . (E),

For the rest of the chapter we will consider R to be a
Dedekind domain and M a torsion module over R,
The following proposition gives a description of the

elements in S(M),

Proposition 3, u Let x be a non-zero element in M, Then x € S(M)

if and only if O(x) has no square factor, .

Proof, Let O(x) = P; P, ... P where the factors P{ are distinct

prime ideals. Then Rx = R/0(x) T R/Pl@ vee ®R/Pri’ Hence,
x belongs to a sum of simple submodules of M and thus x € S(M),
Conversely if x € S(M) then we can express x in the form

X=X +X 4+ c00 + X, with Rx; simple submodules of M so that

0(xi ) is a maximal ideal of R for each 1, If x; and x4 bave the

same order ideal P, then P = 0 (x; + xj) since PCR is a maximal

ideal with PC O (x; + x,)., Collecting together all those x 's

3

which have the same order ideal we can write x = yl + bee + ym
with O # y,, O(yk) =P and P, £ P if £ 4k, It follows that

Pl P2 L X ]

for each k whence r € Pln P2

is square free since the factors are all distinct,

Pm&' 0(x), On the other hand if re 0 (x), then ry, =0

N ene an. Thus O<X) = Pl Pa XN Pm
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Corollary 1, For any Pel2 if M, = {xeM¥ | For some
integer k, p¥. O(X)k denotes the P-primary component of M, then
s(M)y, = S(Mp).,

Proof, Take a non-zero element x & S(Mp), then O(x) = Pk

is square free by Proposition 3, hence O(x) = P and so x & S(M)P.
On the other hand, if x € S(M);, then O(x) is square free since
x € (M), Also O(x) = PX for some integer k, since x & S(M);,

Hence 0(x) = P and thus x ¢ S(MP).

Corollary 2, If M =R + ... + Rx, (air), then k(S(M),) is the

cardinality of the set of =1, ..., nsuch that O(x ) < P,

Proof, We have M, = (Rxl)P + ees + (Rxn)P (dir), Hence
S(MP) = S((Rxl)P) T S((Rxn)P) llidir) by Lemma 2, Take any
xe M, If O(x) ‘t P, then O(x) = P, 1 cee Pnkn where each prime
k k
ideal P, is distinct from P, Hence Rx = R/O(x) E R/Pl l@ ces ODR/P n

n
implies that (Rx)P =0, IfO(x)< P, then O(x) can be expressed

o(x) = o~ Plkl eee Pmkm which gives (Rx)P = R/Pk. Now, since

R/‘Pk has P/Pk, cen Pk"l/Pk as its only proper ideals, (Rx), contains
only one simple submodule isomorphic to Pk"l/Pk Z R/P, Hence

S((Rx)P) is simple, Thus S((RX)P) is simple or O, depending on
whether O(x) & P or 0(x) é; P, In particular k (S(Rx; )P> =1

or O aécording as O(x;)<P or O(xi.) ¢r for 1 =1, 2, ,.., 1,

This gives k(5(M)p) = H—“.ie {l, 2, see s ng[ 0 (x)< P}!.

By Corollary 1, then the proof is complete,



2l

Remark 6, From Corollary 1 and Theorem 4, it follows that if

E = H(M), then the number of indecomposable injective summands in
a direct sum decomposition of B corresponding to any P& <2, is the
length of the socle of MP.

Proposition 4, Let M be finitely generated. Then k(S(}))

n
is finite and H(M) ¥ > P[*/P, where n = k(S(M)), P;< R
i =1
proper prime ideals and P* = () P-k.
-k

Proof, Since R is Noetherian and M is finitely generated, M

is a Noetherian module, Hence S(M) is also Noetherian, The

fact that S(M) is semi~simple then implies that S(H) satisfies both

the chain conditions for its submodules, Hence S(M) = Al + A2 + aee + An(dir)
with each A; simple and therefore isomorphic to R/Tz where Piei?.,

Thus we have H(M) = H (S(M)) = e’% H (R/B)., Byl2],

H(R/P; ) = P#/P; and so the proof is complete,



CHAPTER II

MODULES OVER BOOLEAN RINGS

In this chaptér we intend to study the injective hulls
of modules over a Boolean ring R, We establish that the injective
hull of a cyclic module over R is obtained by completion in a sense
to be made precise below, We also prove that the injective hull
of an ideal considered as a module ovef the ring, is its completion,
Finally, we show that the injective hull of the quotient of the ring

by a normal ideal is the quotient of their injective hulls,

Definition 1, A ring R is said to be a Boolean ring if r2 =1

for every r ¢ R, TFrom the definition it follows that a Boolean ring
is a commutative ring of characteristic 2,
In this chapter R will always denote a Boolean ring with

unit e,

Divisibility relation in R

Let '.{ ' be defined in R by r { & if and only if

rs = r, It can be easily checked that the relation.{ is a partial

ordering on R, We call this relation the divisibility relation

25
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of R in view of {:he fact that r{ s if and only if r = ts for some
t &R, We also note that r { s implies that ar { as for any ae R
since ar as = ars = ar, It might be mentioned that with this
relation, R is a Boolean lattice where meet, join and complemenf
are respectively given by xAy = Xy, xXVy = Ax + ¥ + xy and

~x=X+e, On the other hand, as is well known, any Boolean -
lattice can be made into a Boolean ring by defining x + y = (xAly))V (ya(~x))
end xy = XAY

For any subset TSR, the symbol \/ T will denote the least

upper bound of elements in T, This supremum need not always exist
in R,

Definition 2, R is said to be complete if and only if V7T exists

in R for all TSR,

Definition 3, A Bolean ring S is called a Boolean completion of

R if and only if

(1) S contains R as a subring

(2) S is complete
(3) s €S implies s =\/{r €R \ r szg

Definition &4, An ideal J<R is a complete ideal of R if and only

ifVA € J whenever A< J such that VA exists in R,

An ideal JC R is said to be complete as a Boolean ring

if and only if for all ACJ, \J/A exists in J, Here it should be

noted that a subring of R need not be a unitary subring,
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We ,staie without proof the following lemma which is a

well known fact about Boolean lattices V__lli ] .

Lemma 1, Let ACR such that VA exists in R, Then for any

BER, b. VA exists in Rand b.VA =\/{va | a€a}

Lemma 2, Let R be complete and JSR an ideal which is complete

as a Boolean ring, then R/J is complete,

Proof, We first show that J is complete és a Boolean ring if and
only if it is a principal ideal, Now suppose that J is complete,
Then a, = \9 J€ J, hence Raog J, Since for every element a ¢ J,
a\< a,, we have Jr_C_ Ra . Therefore J = Ra . Conversely if

J = Ra_, then a € J and a{ a, for all aé J. This shows that for
any T< J, \1?/T\< a € J, hence '@/ TeJ, Thus \J/T (= \R/'r)
exists, Therefore J is <complete as a Boolean ring,

Let a o be the unit in J and consider the mapping

@ : R [a_,e] defined by (f(r) = rVa_ where [a, e] is considered
with the ring structure it has as é. Boolean lattice, In this, the
addition I} is.given in terms of the addition of R by

rifis =r +s +a ., while the multiplication coincides with that of
R, We want to show that (,Q is a ring homomorphism, Now

v+ s)Vao =r +8+ra + sa§ +ta, = P>r) +Y(s) + a, =@ (r) HJ¢(s), hence
(P is additive, Also rsV/ a, = (r\/ao) (sVa#) by the distribu-
tivity éf the lattice structure of R, Hence CP is a ring homo-
morphism, It is onto since xc{a , e] implies x = a_\/ x = C{7(x).

Finally, @ () = a  iff r{ a, i.e. reJ, which showsJ = Ker (§),
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Hence R/J is isomorphic to Lags e} which is a complete ring,
Theref@re R/J is complete,

Lemma %, Suppose S is a Boolean ring and also an R-module,

If ICR is an idéal and £ ¢ I S is an R-module homomorphism such
that \/ £(I) exists in S, then there exists an element c € S

such that f(x)

XC for‘ all x¢ I,

i

Proof, Let ¢ = V £(I), Take x¢I, then f(x)‘g ¢, Hence
£(x) = £(x°) = xf(x) { xc, On the other hand; XC = ij{?(y)\ yéSI} =
'\/{y‘-f(y)\ yel }' (by Lemma 1)

= \/-if (xy) \ y € I‘}, Now, for each yeI, f(xy) = yf(x) § £(x),
hence xc = \¢/{f(xy) \ y & I}.& £f(x). This implies that xc = £(x)
for all x ¢ I,

The injective hull of a cyclic R-module is givén by the

following:
Theorem 1, If JC R is an ideal ande:}R/J a Boolean completion
of R/J as a Boolean ring, then Q can be made into an R-module and
as such it is an R-injective hull of R/J,
Proof, Let Y : R-—>R/J be the natural homomorphism, then Q being
an R/J-module can be made into an R-module by rx = ) (r)-x where
ré¢R, x¢Q. Let ISR be any ideal and f : I-2 Q any R-module homo-
morphism, Since ¢ = \V f(I) exists in Q, by Lemma 3, £(x) = xc
for all x¢ I, The fact that R has a unit, then shows that Q is

R-injective,
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To prove that Q is an‘R-essential extension of R/J,
consider any ﬁon—zero element x£4Q, Since @ is a Boolean comn-
pletion of R we have O £ x = \/{yéiR/J\ MRS x.g. This implies
that there exists a non-zero element y ¢R/J with y $ X, Hence
we have O £y =yx = V(r) x = rx for r Q-Lf%y). Therefore
| 0 # y¢Rx N R/AJ, This proves that R/J is a large submodule of Q,

Thus Q is an R-injective hull of R/J,

Corollary 1. R/J is R-injective if and only if it is complete

as a Boolean ring,

Proof, If R/J is injective, then by the theorem Q = R/J and hence
R/J is complete, On the other hand if R/J is complete, then R/J = Q

and hence R-injective,
Corollary 2, R is injective if and only if it is complete.(_ 7] .
- Proof, Take J = 0 in Corollary 1,

Remark 1, Since any Boolean completion of R as a Boolean ring is an
injective hull of R, it follows that such a completion is unique upto

an isomorphism over R{7],

Remark 2, Corollary 2 should not be confused with the analogous,
but different theorem that R is injective in the category of Boolean
rings and unitary ring homomorphisms iff it is complete [;14],

Corollary 3, Any simple R-module is injective,

Proof, Any simple module is isomorphic to R/P for some maximal ideal
PCR and R/PZ Z/Z2, as is well known, But it is finite, hence

complete and therefore injective.
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Remark %, Corollary % also follows from {~21:§since Boolean rings
are comnutative regular rings,

We now find'én injective hull of an ideal of R considered
as an R-module in the next;
Theorem 2, Let TSR be an ideal, R a Boolean completion of R as a
. Boolean ring and I éﬁ/ S \ I}' Then I is a complete ideal of

R and as an R-module, it is an injective hull of I,

Proof, Let a & T, then 3 is the join of some elements in I and

hence also the join of all its lower bounds in I, Thus
(1) 3 €T implies & =\/{a €I \ a 5}

\V S. We want to show that
5ciI, We have s = \/s, = \/ \é t

< «
8 = \é ta.kﬁﬁ' I, We have thus proved that

Py
2)s <1 implies \/S8 < I

Now let § = {s& |dea JeT, 5 =

with tx[ﬁ € I, Hence

Ap

C

Take any two elements a = \/ e{, b= /b inIwith A<TI, B&I,

- men be B _
~Let C = ab\ a €A b& B'}. Thensincea'\( a, b { b, one
has a b { a b and therefore C { a b, If a % C, then d ) \/ ab
‘ a€ A
for each b€ B which implies that d >/\/ ba = a. Vb = &b,

\ bEB beB
Therefore ab =\/ C. But C < I hence a b € I We have thus

shown that
(3) =, B in I implies a b € I,
Now take TER, 2 €I withT = \/rand @ = \/a, then

B a<a
\/{_ra] r ( r, a ( a } € I since each ra € I, This shows that
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—

(4) FeR, g c¢IimpliesT a € I,

In order to prove that T is closed under addition,

‘consider any two elements a, b in I, Let ER \V 1, then x € I

in view of (2), and X = V x _implies X x=\/xx= =X
{ x

for any X € I, Let 1 be the unit in R, then a + b =(§ (b + DV

o (T + l)) = (3b +a) V (ba +b) = (ab +ax WV (basb 550) = (5(5+§o)\/€(£+§°)).
We now claim that if xcR, then x\( b+ Xo if and only if

bx = 0 and x { X,. To prove this, first suppose that ox = 0, x X .

This implies x (b + x,) = x?co = x, hence we get x { b +x . Con-

versely if x b o+ 3?0, then x(b + 3?0) = x, Therefore bx =7)x(5+§0)

=bx +b X X =bx+ bx =0 since b EX =b, Now, from the given

o
condition x { b +x wehave x { b +%X_ =b x +% =(b +%X )X X .
o i K¢ X, a xgb X, =b X 43X (b+xo)x°\(xo

This proves the claim,

Since b + xoé R we can write

b+ x =\/{xGR{_ x\( F+;S=\/{x éR\?x:O, x(’io in view

(e}
of the preceding claim, We thus have b + x \/X where

& ¢ Rr|b x =0, x\<§€°7§. Teke x € X then x = x x & I
since 1 is closed with respect to multiplication by elements in R

in partlcular by elements in R in view of (4), Thus X € I, It

follows from (2) that b + xo \/ X €I, Replacing b by a we

get§+§0€E, Hencea + b = (a(b+x)\/b(a+x))61by

using (2), (%) and (4), Thus

(5) =, bin I impliesa +b € I
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As a consequence of (2), (%), (4) and (5), it follows that I

is an ideal of R, is complete as a Boolean ring and is an

R-module,

To show that I is R-injective, let JSR be any ideal and

f: J~>"i5 any R-module homomorphism, then since \V £(J) exists in

I, by Lemma 3, there exists C €I such that f(x) = xC for all
x€d, This proves the R-injectivity of_f,

Now, let X be any non-zero element in I, X = \/{x eIl x( 3{“} .
Then there exists x¢ I such that 0 # x{ x, Therefore,
O#£x=xx€RxNI, This shows that I is an R-essential extension

of I and hence an injective hull of I as an R-module,

Lemma 4, Let S be any commutative ring with unit and I < S an
ideal such that I is a Boolean ring (unit not assumed in I), if

I is S-injective, then I has a unit and is I-injective,

Proof, Letg : I—>I be the identity mapping. Then g(sa) = sa = sg(a)
for every s« S, acl, Hence g is an S-homomorphism, Since I is
injective as an S-module, this implies that there exists a, € I such
that a = g(a) =’aao for all acI, Therefore a, is the unit in I,

Now, let JCI be an I-ideal, then ax = ax® = (ax) x € J for any

ac S, x€dJ, hence J is an S-ideal, Moreover any I-homomorphism

f : J>1I is an S-homomorphism since f(sb) = f(sbz) = bsf(b) =

s£(b%) = s2(b) for any b€J, s¢S, As a consequence of S—iﬁjectivity
of I and the fact that S has a unit, there exists fo € I such that

£(v) = br  for all b€ J, Since I contains unit, this implies that

I is I-injective,
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Theorem 3, An ideal I< R is injective as an R—modﬁle if and only
if I is complefe as a Boolean ring,
Proof, Let I = '{§5/ Al AE}I} where R is a Boolean completion of
R as a Boolean ring, Now if I is complete then I =“i; hence by
Theorem 2, 1 is R-injective, Conversely if I is R-injective, then
by Lemma 4, I is I-injective, <Hence by Corollary 2 of Theorem 1,
I is complete as a Boolean ring, .
Remark 4, For R, the following statements are equivalent:

(1) Each ideal ICR is cbmplete as a Boolean ring,

(2) R is semi-simple,

(3) R is finite,

Proof, (1) implies (2): Suppose that every ideal in R is complete
as a Boolean ring, then by Theorem 3, it is injectivé as an R-module,
This implies that any ideél ICR is a direct summand of R, Hence

R is semi-simple, |

(2) implies (3): If R is semi-simple, then it has minimality
condition for its ideals and hence R is a direct sum of finitely
many simplé components A , t=1, 2, ..., n. Since each A;

is isomorphic to R/P. where P: is a maximal ideal of R, A; has
only two elements, Hence R is finite,

(%) implies (1): If R is finite then each ideal ISR is finite and

therefore complete as a Boolean ring,

Definition 5, For AC R, define MLA = {Jxé R\ x\< A} and MaA =
{xeR %) Af . An ideal JCR is called normal if and only if
’ M;vMa J =J, Since for any ideal J, JS}MlQMa J always holds, the
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condition M: MaJ < J is sufficient to ensure that an ideal JCR
is a normal ideal,

Let R be the Boolean completion of R as a Boolean ring,
It was shown in Theorem 2 that 1f JL R is any ideal, then

J = {\1}’/ I l IS& JE is a complete ideal ofi,

Lenma 5, An ideal JCR is normal if and only if JnR = J,

Proof, Let ¢ = \R/ J. Then J = §c. Suppose that J is a
pormal ideal of R, Teke any element r € JAR, Then r{cg M J.
This implies that r€M{ M_J = J, hence JNRSJISJINR, Thus

Jd = Fﬂ R, Conversely, let the ideal J< R satisfy the condition

JNR = J, Since ceﬁ, we can express C as ¢ = és\bER R Let
B = {be Ric € b}. It follows that J = Rc = QB Rb, By
the given condition we therefore have J = Rn bfé\B Rb, We want
to show that J = @ Rb, Clearly QB Rb £ J, To show the

inclusion in the other direction, let x¢J be any element,  Then,

since x { ¢ we get x { b for all b&B, Hence x¢ b(G\B Rb, This

implies J = b@ Rb, It suffices to prove that M, Ma J<J,
| Take yC My M J, then y t for all t¢R with t ) J, - Since every

b& B satisfies the condition bR, b ) ¢ ) J, we have y { b for all
b&E B, Hence y € QB Rb = J, This proves that JCR is a normal

ideal,

Theorem 4, If JCR is a normal ideal then R/J is an R-injective

hull of R/J,
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Proof, Consider the mapping f : R/J—> R/ by £ +3) =7 + J,
It is clearly an R-module homomorphism and is one-~to-one since by
Lemma 5, JAR = J, Thus E/f contains an isomorphic copy of R/J,

To prove that R/J is an essential extension of R/J, let
T + J be a non-zero element in ﬂl.?—/ff. Hence ?7 = \/{_r GR[ r \< F}d;&:
This implies that there exists r € R with r{ ¥ such that r¢J, hence
r&;a Thus we have O £ ¥ + J = r (T + J) which shows that
£(R/3) N R (£+J) £0, Therefore R/J is an essential extension of £(R/J),
Consequently R/J is a large submodule of R/J,

In order to show the injectivity of R/J, we observe that
-ﬁ/j— is a complete Boolean ring and hence for any R-homomorphism (_P
from an ideal ISR to RAJ, \/¢(I) exists in R/J, wé can therefore
apply Lemma % to get the desired R-injectivity of §75: This completes

the proof of the theorem,

Corollary, If JSR is a complete ideal, then R/J is an R-injective
" hull of R/J,
Proof., Take at JAR, Then & =\/s Qith S€J, Since J is a complete
jdeal of R anda = \/S € R we have a€J, | Hence JAR € J and so
Jd is a normal ideal of R, The corollary then follows

~immediately from the theorem,



CHAPTER III

SEMI-SIMPLE MODULES OVER REGUIAR RINGS

Our main objective in this chapter is to provide an
explicit description of the injeCtive hull of a semni-simple médule ‘
over a commutative regular ring, For this purpose we first show
that every monotypic component of the module is injective, This
fact together with some properties of isolated points in the
Zarisky topology of the maximel ideal sﬁace of the ring, then lead
to the desired construction of the injective hull, Finally a
necessary and sufficient condition for the module to be injective
is obtained,

Definition 1, A ring R is called (von Neumann) regular if for

every a ¢ R, there exists an element x &R such that ax a = a, This
condition reduces to a2 X = a if R is commutative, A Boolean ring
is an example of a commutative regular ring, It is well known.{_le
that a commutative ring R with unit is regular if and only if every
simple R-module is injective,

Throughout this chapter we shall consider R to be a
commutative regular ring with unit 1, Let {2 denote the set of max-

imal ideals of R, For each aCR, define () by O) ={Ptea & p}.

%6
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It follows that () A (2 =02 . Ts {2 can be made into
a topological space with{Qa | ace R} as the system of its
basic open sets, This topology of L2 is called the Zarisky
topology, Q is clearly a Tl-space since if P and Q are any
two distinct points in @) , then there exists a € P - Q which

implies that Qa is a neighbourhood of Q not containing P,

Definition 2, TFor a semi-simple M, the support of M, to be denoted

by supp (M), is the set ofk all those maximal ideals P¢ {2 , for which
the associated monotypic component is non-zero,

In what follows M will denote a semi-simple module with
supp (M) = 8, For any PGS, the R/P - monotypic comﬁonent of M will
be denoted by MP. As usual, for any function f, the symbol supp(f)

will denote the set of all elements x in domain (f) for which

f(x) £ 0,
Theorem 1, Every monotypic component of M is injective,

Proof, For any P& S, consider the monotypic component MP of M,

Let &£ be the length of M_ and T a set with | T| = o{. Then

P
MP YTLORP = E, Let K:{f’\f:T“}R/P}_ Now each
factor R/P of JU being injective, JU is injective and therefore’there
exists an H(B) € J{ ., Without loss of generality we can take £

to be an infinite cardinal, Assume E is not injective, Then

ECH(E) € JU., |Take any element £ € H (E) - E, Since H(E) is

an essential extension of E, one has RfNE # O and this implies
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0 £ rfcE for some rcR>P, As R/P is a field and £(t) # O for
infinitely many t<T, we have rf(t) = (r + P) £(¢t) £ O for infinitely
many t< T, But this contradicts the fact that rf¢E, Hence E

is injective,

Remark 1., “1[ M, is injective since each factor M, is injective,
PesS

Definition 3, Let X be any topological space and AC X, An

element x €A is called an isolated point of A if there exists a

neighbourhood U of x such that UnA = { x }, i,e, if {x} is an
open set in the relative topology of A, A su‘bset ACXis said to

be discrete if every xc A is an isolated point of A,

Lemma 1., Let £ CTUM, and a € R such that O # af € €P uy, then
I PLS T Pe S

every element in supp (af) is an isolated point of supp(f),

Proof, Let supp(af) = %_Pl’ Poy eees Png where P, # Pj if i £ j.
This implies that there exist elements ay = Pi\Pl i= 2, vue, N,
Put b = a ay a5,“. a. Then b é@ Pl and b belongs to every P iAn
supp (f) with P £ P,. HenceQb O supp (£) = { P1} . This shows
that Pl is an isolated point of supp (f), Similar argument shows

that P,, ..., P are also isolated points of supp (f),

Remark 2, It follows from the above Lemma that the support of any

non-zero element in an essential extension of GB MP contains an
PeEs
isolated point, '
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Lemma 2, Let E be a proper essential extension of G} MP' Then
PesS

for any f¢E \Q}MP ,supp (f) contains infinitely many isolated points,
Proof, Since E is an essential extension of @MP and O # f€E, we

can find an element a¢ R such that O # af€@M,,  Let

supp (af) = {Pl, 1 Png . By lemma 1, each P, is an ]
isolated point of supp (f), Choose an element Q € Supp (f) ~ Supp (af),
As Py <_\'F Q, there exist elements r; € P;~Q for i =1, 2, ..., n.

Then r = Ty Ty oeee Ty < (Plﬁ P,
0 A rfc€ B, Moreover no element in supp (af) belongs to supp (rf).

N see N Pn) ~Q, This shows that

Since for some s € R, 0f£srfc @MP, Qe can apply Lemma 1 to show
that the elements in supp (srf) are isolated points of supp (f) and
they are all distinct from Po, P,y ..., P, Now supp (£) veing
infinite we can find an element in supp (£) ™ (Supp (af) U supp (s¥f))
which will give rise to another set of finitely many isolated points
of supp (f), each being different from the ones obtained before,
Proceeding thus we get infinitely many isolated points of supp (f),

If R is Noetherian then R is semi-simple and every
module is injective\ilS ]. In order to describe the injective hull

of a semi-simple module over a general regular ring, we need the

following topological fact about Tl-spaces:

Lemma 3, In any Tl space X, if A and B are non-void subsets such
that A as well as every non-void subset of B has an isolated point,

then there exists an isolated point in AUB,
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_Pi_r;g_gf_, Let p be an isolated point of A, Then there existé an

open neighbourhood U of p such that UNA = { p‘ }, ‘Since

NNV RVES:Nal § UI)) = UNA, we conclude that p is also an isolated
point of AU (BN U)), If BNAU is empty, then p is an isolated
point of AUB and so the Lemma holds, We have therefore to consider
only the case when BNU is non-void, By hypothesis BA U contains an
isolated point g whiéh can be assumed to be distinct from p without
any loss in generality. This assumption, together with the fact that
X is Tl implies that ({ P }is an open set containing q.' Now g

being an isolated point of BnU, we have VABNU = {' q } for some

(ve}

neighbourhood V of q, Thus we obtain UAVAN ({p}(\(\!\\) B) = UnVA ({p}ﬂ
{qi(\ ({p% = { q } . SinceUn VAN ({p} is a neighbourhood of
q, the above relation implies that q is an isolated point of AUB,

From Lemma 3, we immediately have the following:

Corollary 1, Let B be a discrete subset of a Tl-space X and

A C X with an isolated point, Then AUB has an isolated point,

Corollary 2, If A and B are subsets of a Tl-space X with the

property that each of their non-void subsets has an isolated point, then

AVUB has the same property.

Proof, Let Y< AUB be any non-void subset, Then Y = Alu B,

where Al = ANY, Bl = BN Y, Without loss of generality we can

assume that Al and Bl are both non-empty, Then by the Lemma, Y

has an isolated point,
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Remark %, (1) Let A = U A, where each A, is without an isolated
point, Then A has no isolated point since if p were an isolated
point in A, then p ¢ Ai for some i, would imply that p is an
isolated point of»Ai contrary to the hypothesis,

(2) If A has no isolated point then I’ A (Closure of A)
also has no isolated point since if we assume that p ¢ " A is an
isolated point in ["A with V NI (A) = -{p} for somé neighbourhood
V of p, then p CPANC A implies the existence of an element

q €EVAA S VnT"A with q distinct from p, which gives a contradiction,

Theorem 2, Let M be a semi-simple module over a regular ring R

with supp (M) = S, then H = { fe 1T MP \ Every non-void subset of
rPes

supp (f) has an isolated point E is an injective hull of M,

Proof, lLet f, g be any two elements in H, then since

supp (£ + g) € supp (£) U supp (g), we have £ + g € H by
Corollary 2 of Lemma 3., Now if a € R, f € H, then supp (af) =
Qa (\ supp (f) implies that af € H, Hence H is an R-module and

it contains 6{3 MP since every non-void subset of a finite set
PES

is discrete, Now let O # f€H, then supp (f) is non-empty and
hence contains an isolated point P so that for some a¢R, supp (af)
=Qaf\ supp (f):{ P}. _ThusO;éaféfﬁMP. . Hence H is an

essential extension of @ MP'

As to the injectivity of H assume by way of contradiction

that H has a proper essential extension E, Then HCE €T MP.
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Take f ¢ E, f &; H, Then there exists a non-void subset of

supp (f) without isolated points, Denote by X, the union of all
those subsets of supp (f) which have no isolated points, By
Remark 4, X has no isolated point, Let Y = supp (£) N X,

Then Y is non-void since by Lemma 1, supp (f) contains an isolated
point which cannot belong to X, Thus Supp (f) = XUY is a
decomposition of supp (f) into disjoint non-empty subsets X and Y,
Moreover every non-void subset of Y contains an isolated point

for otherwise it will have to be contained in X thch is not
possible, Now, for any subset A C supp (f), define fA to be the
function such that |

f(P) 4if PE A ‘
£,(P) = K 0o if Pes A CA

We can then write f = f, + f,. Since supp (fY) = Y, one has

f&,é H and hence from f, = £ - f,, it follows that fy ¢ E,

X Y
The fact that fx # 0 and E is an essential extension of &3] MP’
then implies by Lemma 1 that X = Supp (fx) has an isolated point,

We thus arrive at a contradiction, Hence H is injective, This

completes the proof,

Corollary 1, 11 M, is an injective hull of M if and only if
PcS

every non-void subset of supp (M) has an isolated point, In

particular if § is discrete in{), then TV My < HMWM),
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Proof, If S has the property that each of its non-void subsets
contains an isolated point, then for every f Efﬁ_MP, supp (f)

has the same property, Hence, by the fheorem TT~MP = B @ MP).
On the otﬁer hand letTT—MP = H (ff9MP), Suppose that some non-
empty subset A & S has no isolated point, Then A must be an
infinite set, We can find a function f eTl-MP v}ith supp (f) = A,
Then f ¢5€B MP and hence £ # O, Since'TT'MP is an essential
extension of'q}MP, by Lemma 1, supp (f) has an isolated point
contrary to the assumption that A has no isolated point, Hence
every non-void subset of S has an isolated point, The last part
of the corollary follows immediately from the fact that every

element in a discrete set has an isolated point,

Corollary 2, If S contains only principal ideals, then

WH, = H (D my),

Proof, Téke Ra and Rb two different principal ideals in S, Then

a é-Rb since if a = rb then Ra C Rb will imply Ra = Rb a contradiction,

Now R being a regular ring, one can find an element x in R such that

a = aex. ‘Since 0 =a (1 - ax) belongs to every P in S, 1 = axl%.Ra
and 1 - ax.bélongs to every P in S distinct from Ra, Hence

'jrll-axf\ 5 = %» Raﬂi . Thus every elemeint in S is an isolated

point which shows by Corollary 1 that (1 M, = H (P MP)'

Corollary 3, There exist semi-simple modules over a regular

ring, which are not injective,
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Proof, Let R be the two-element Boolean riﬁg {o, e, } .

I an infinite index set and R = { £lr:1> Ro} , then R is
a complete Boolean ring and hence a commutative regular ring, .
For each of € I define P, byB = {fer|r ()= 0 1.

It is easily seen that Po& is-a maximal ideal of R, Let

M= D R/R, . Then M is a semi-simple module with supp M) =

‘\,Pd\ [ LeI }. Take any element Po( € Supp (M) and define f by
. . o

if «£ =
£ () ieo X =X
0 if L £ X

then f ¢ R~P, and f € Pf5 for all PEI with B £ v(o. Thus

(o)
_an Supp(M) = SL P, 73 This implies that supp (M) is discrete
o n
and hence T{R/Py = H (@ R/Py ). The fact that I is infinite

then shows that @ R/Px is not injective,

Corollary 4, If S =AU DlU D2U “’UDn where A has an isolated

point and D,, D,, ..., D are discrete sets thenT] MP'.:.-' H(M),

Proof, It follows immediately from Lemma % and Corollary 1,
In Corollary 3, we have a concrete example showing that not every semi-
simple module is injective, It is therefore worthwhile to ask
under what conditions a semi-simple module is injective, The
follo‘wing, theorem gives a characterisation for the injectivity of

a semi-simple module,
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Theorem 3, A semi~-simple module M is injective if and only if its

support S has only finite discrete subsets,

Proof, Let M'be injective, Assume that DES is an infinite
discrete subset, We can find fGJTTMP with supp f = D, Since
D is infinite, f &I@}MP. But the fact that supp (f) is discrete
implies by Theorem 2, that £EH ( &;MP) =>€E>MP and so we get a
contradiction, Hence S contains only finite discrete subsets,
Conversely suppose that S has only finite discrete
subsets, Assume that M is not injective, Then 69 MP has a proper
essential extension E insideTTMP. Hence for any f€E @,

supp (f) contains an infinite discrete subset by Lemma 2, This

contradiction then proves that M is injeétive,



CHAPTER 1V

CHANGE OF RINGS

This chapter is concerned with the study of the
inheritance properties of R-injective hulls E of a module M
by changing the ground ring R into a suitably related ring S
and making E into an S-module, This device of changing rings
is used to obtain a generalization of the known fact ébout Z(pw)
that it is isomorphic to any one of its quotients by a proper
subgroup, In the case when R is a homomorphic imaée of 5, we
show how to obtain an R-injective hull of a module from its
S-injective hull,

Let R be a commutative ring with unit 1, For any
non-zero R-module M, we define A(M) by A(M) = {s €r| £+ x—Dsx
is an automorphism of M }', Since for any two elements s and

t in A(M), fs = fs ft is an automorphism of M,” A(M) is a multi-

t
plicative monoid with 1 as its unit, Moreover O &.A(M) because
x—7 0.x is not one-to-one, We can therefore form the generalized
ring of quotients of R with respect to A(M), As usual, this

ring of quotients will be denoted by RA(M)‘ Let N =-{lr € R(

there exists s¢€ A(M) with sr = o} be the A(M) - component of the

Lo
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zero ideal, then R, .y = {:“)(r)/}j(s) \ rcR, s € A(M) }
where ¥J : R —>R/N is the natural homomorphism, Now for any
element Y (r)/ 2 (s) G&RA(M) and x¢€M, define (VY (r)/) (s))x =

f;l (rx), In order to show that M is an R - module with

AQM)
respect to this definition, it is enough to check that YV (r) =0
implies f;l(rx) = 0, Let us suppose thatl(r) = O, then there
exists s' CA(M) such that s'r = 0, Hence O = s'rx, This
implies rx = 0 since fs' is one-to-one, Therefore, f;l (rx) =0

since s ¢ A(M), Thus M is an RA(M) - module, This fact extends

as follows to an R-injective hull E of M:

Theorem 1, By extending the R - module structure of M,

A1)
E can be made into an RA(M) - module and as such it is an

RA(M) -injective hull of M,

Proof, To prove the first part of the theorem it is sufficient

to show that A(M) E;A(E). Let s¢& A(M) and take any non-zero element
x & Ej then for some element r € R, O ¥ rxc M, Since fs is one-
to-one on M, this implies srx # O, hence sx # O, Thus fs isAone-
to-one on E, Therefore E is isomorphic to fS(E). This shows

that fS(E) is R-injective, Since E 2 fs(E) 2 f_ (M) = M, one has

E = fS(E). Hence fs is an automorphism of E and so s € A(M), This
proves A(E) = A(M), One can therefore define for Z)(r)/ZJ(s)EERA<M),

x€E (VY)/V () x= f"sl (rx) which makes E into an R

A(PI)"mOdule

by extending the RA(M) module structure of M,
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Let‘; 0 £ xc E, then 0 £ rx€M for some r& R, hence
0 £ (V(r)/ Y (D)x = rx € Ry(yy xN M by the definition of E as
RA(M) - module, This shows thé.t E is an RA(M) -essential extension
of M; To prove the injectivity of E, let F 2 E be any RA(M)- |
essential extension of E, Since any RA(M)v - module can be made
jnto an R-module by defining ¥ (r)x = rx, E is an R-submodule of F,
Hence by the R-injectivity of E, we have F = E + H (dir) for some
R-submodule HCF, Suppose H # 0 and let O £ x € H, Then
RA(M) xNE £0, Hence there exists a non-zero element
(V(r)/v(s)) x ¢E which implies that O £ZV(r) x€¢E, But in F,
WV(r) x = X, Hence O £ rx¢ ENH which is a contradiction,
Therefore F = E and thus E has no proper RA(M) ~ essential exténsion

and the proof is complete,

Remark 1, If PCR is a maximal ideal and M = R/P, then A(M) = R~P

and hence RA(M) = RP‘

Proof. If s&A(M), then s(1 + P) # O and this implies s eR\P,
Hence A(M) C RNP, On the other hand .if s © R~NP then f_ is one-to-
one since s(r + P) = O implies sr ¢ P whence r ¢P, Moreover since
R/P is a field, s + P is invertible and hence any r + P in R/P

can be expressed as r + P = s (rs' + P) where s' + P = (s + P)™1,
This shows that fs is onto and hence an automo'rphism of M, Thus

RNP < A(M)., Hence A(M) = R~P,
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Remark 2, ©Let PLR be a maximal ideal, N, the R~P-component
of the zero ideal and V: R—>R/N, the natural homomorphism,

then R/P is isomorphic to RP/RP)) (p),

g_z_-ggf_. Consider (3 R/P —> RP/RPU (P) by @ (r + P) =V(r) + RP'U (P).
Since ) (r) & RPU (P) OV (R) = V(P) implies rcP, (§ is one-to- .
one, Now take any elementd (r)/u (s) + RPU (P) in RP/RP 2 (p),
Since s€ RN\P we have R = Rs + P, hence 1 = r, s + p with
r &R, p €P, This gives V(1) = Y (s) V(r)) + 2 (p) and
therefore V(r)/Y(s) = Y (rro) + 2 (rp)f Y (s), Since the
last term is in R,V (P), one has V) (r)/ Y (s) + va (P) =
@ (rro + P), This shows that ({is an epimorphism and hence an
isomorphism,

From Theorem 1 and these remarks, one immediately has
the following: ‘
Corollary, If R is a commutative ring with unit, PSR a maximal
ideal, E an R-injecfive hull of R/P and E' an RP-injective hull of

_ BP/RP)) (P), then E as Rp-module is isomorphic to E',

Remark 3, If R is an integral domain, then N = 0, 2 is the
identity mapping of R, RP‘U (P) = hPP and Ry = {(r/s) | r €R, seR~P }.
Thus in this case we have E isomorphié to the Rp-injective hull of
Rp/RpP.

v For 2, the ring of integers and p a prime number,

©0 - .
Z(p) =2 (p 1_] / 2 is the injective hull of Z/Zp and hence it is
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indecomposable LZ , 18 :\, It is well known that Z(pm) is isomorphic
to each of its non-zero homomorphic images [15 ], The following
theorem generalizes this fact about Z(pw) to indecbmposable injective
medules over rings more general than the ring of integers which will

include Dedekind domains as a special case,

Theorem 2, Let R be an integral domain, PSR a maximal ideal such
that RP is a principal ideal ring, Then the injective hull of R/P

is isomorphic to any of its quotients by a proper submodule[ 25],

Proof, Here R;P = R JC for some € Ry, and RP/RPTC has
E =R =) /RpIT as its injective hull{3z Twhere RP L]
is generated by y(:'l as ring extension of RP in the quotient field
of R, By the Corollary of Theorem 1, it suffices to consider this
>R-module E, |

We first show that every R-submodule of E is also an
‘RP-submodule which will imply that the Rp-submodules are the same as
the R-submodules, For this, it is sufficient to prove that if
SCE is any R-submodule of E and s, € R™P, then (1/s ) § < S.
Now, R, EK-IJ = kL)/JO Rp 5UTT implies that any element in
S is of the form x = (a/s) J‘C-k + R,OC where a € R, s € R"P and k

is an integer, From R = Rso + Pk+l

we get 1 = sot + u with t& R,
ue P and, therefore, (l/so) x=tx + (/s ) ux =
tx + (u/so) ((a/s)TC-k + RPTC) = tx € 8, Hence (l/so) s<C s

and we can talk about the submodules of E without reference to R or

R,

MILLS MEMORIAL LIBRARY:
McMASTER UNIVERSITY
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Next we wish to show that every submodule of E is of the
— =N rnd " _1 —— . . .

form R, 3T /RP)L . NowE = RPD"C J /RP)L implies that the lattice
of all submodules of E is isomorphic to the lattice of RP—submodules

=1 . . S X
of RP K_)L :Swhlch contain RpoC., Hence any submodule of E corres-

. R . ~ -1
ponds to exactly one fractional ideal S of RP with RP)& s cC RPLFI | J =
UJ ~k _ — =k — cp oy ok

k)% R, 7. Let § = SAR,JUT, then R JT & § SRy

which implies that RPYCk+l & § ot k C Rp. By the fact that

RP is a principal ideal ring, Sk xk = RP u for some u ¢ RP‘

Hence yck“' & RP u implies that u \:,%Hl. But T is irreducible,
£

hence u is some power of JT with index \( k + 1, Thus u = 5T_k

£ £ with 0 £ { k +1 and N ith0¢ & {k+1

or some £ wi NER + 1 an Sk)L = wi Kk + 1,

P
Therefore Sk = Rk 'ek_k. If S corresponds to a proper submodule of

-1 U [}
E, then S C R, L JT ] and sinvce S = K50 S, and the S 's form
an ascending sequence, one has S = RPR-n for some integer n, Thus

every proper submodule of E is of the form RPTC—n/RP')_C and any

quotient of E by such a submodule may be expressed as

e Rt

Now if we compose the homomorphism X%j{(nﬂ.) x of
RP b’t _IJ into itself with the natural homomorphism y —> y + Rp >u 8

— =1 -1 -n R .
from Rj \JL } to RPL'JT» j/RP JC we get an gplrnorphlsm whose
kernal is RPT. This shows that E is isomorphic to RP[_K -]:}RPK -
and the proof of the theorem is complete,

If R is a Dedekind domain then each proper prime ideal P

of R is maximal and RP is a principal ideal ring; therefore, Theorem 2
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then applies to any R/P. Since torsion modules over R are semi~
primary and hence the indecomposable injective torsion modules are
injective hulls of simple modules, it follows from‘the above that
the indecomposable injective torsion modules over a Dedekind

do@aiﬁ all have the property that they are isomorphié to any of
their non-zero homomorphic images, In the following, we provide
an example which shows that this is not the case for indecomposable

injective modules in general, For this, we first require:

Lemma 1, Let R be a commutative ring with unit 1, PSR a proper
prime ideal, If M is an R-module with the property that for no

x&M, 0(x) = P, then the same holds for any essential extension of M,

Proof, Let EOM be an essential extension of M, Suppose there
eixsts z¢E with 0(z) = P, then since P is proper, z # O, Hence
Rz M £ O and therefore there exists r € R with O £rz ¢ M, hence
0(rz) # P, Since for every u€O (rz) we have ur€ 0(z) = P, it
follows that O(rz) r € P, Now Prz = O implies PCO (rz); hence
PCO(rz), Take s €O (rz)~P, then sr € O(rz) r <P, This implies
rcP since P is a prime ideal and sé;P. Hence rz = O and we arrive
at a contradiction, This éroves ﬁhat E has no element whose order

ideal is P,

Corollary, If R is a commutative ring with unit, and P and P!
are proper prime ideals of R, then H(R/P) is isomorphic to H(R/P')

if and only if P = P',
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Proof, If P = P' then H(R/P) and H(R/P') are isomorphic trivially.
Let H(R/P) =2 H(R/P') and suppose that P £ P', Now H(R/P) is
an iﬂjective hull of R/P and’hence an essential extension of R/P,
Since R/P has the propérty that each of its non-zero elements has
order ideal P £ P', it follows from Lemma 1 that there is no
element in H(R/P') with order ideal P! wﬂich is not true since
every non-zero element in R/P' has order ideal P', This contra-
diction shows that P = P!,

The next proposition will give the desired example where

an indecomposable injective module has a quotient module which is

neither zero nor isomorphic to itself,

Proposition, Let R be a commutative ring with unit, P a non-
zero, non-maximal prime ideal in R and B an injective hull of R/P,

Then E has a quotient module which is neither O nor isomorphic to B,

Proof, Since P is a non-zero non-maximal ideal, there exists

a maximal ideal M such that OCPCMCR and so we have E2R/POM/P £ O, -
Hence E/(M/P) # 0. We will show that E is not isomorphic to E/(M/P).
Assume the contrary, Then E/(M/P) is indecomposable injective and
contains (R/P)/(M/P) which is isomorphic¢ to the injective hull of

R/M, This implies that R/M and R/P have isomorphic injective hulls,
Hence by corollary, Lemma 1, P = M, a contradiction, Thus the

quotient module E/(M/P) is neither zero nor isomorphic to E,
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We will now consider two rings R and S with unit and

a unitary ring epimorphism q}: S‘*%’R,

- Remark 4, Any left module M over R can be mgde into a left
S-module in a natural way by defining sx = Cp(s) x for s€S, xc M,

' We will denote this S-module by (¥M' Now for a left module M over
S, define M' = {xéMl Ker (@) , x

0 % . Clesrly M' is an
S-submodule of M and it can be made into an R-module by setting
rx = sy vhere r&R, x¢H' and s e‘c@l (r), This R-module will be
denoted by Mo. LethC(R) and)bL(S) denote the categories of left
modules over R and S respectively, Define the functors
Eo 2 W (RS (S) and G, :M(S)>M(R) by F , (M) = M and
¢ ¢ ¢ ¢
G, (M) =M . Then it is easy to check that G,,, F., is the

< o wey ¢ g

identity oniY(,(R) and o Gq7 acts identically on those Mféjvt(S)

'
for which M' = M,
We prove the following:

Lemma 2, F<$ carries essential extensions into essential extensions

and G(Q carries injectives into injectives,

Procf, Let E2 M be an essential extension of M in)((R),
We will show that Fqg (E) is an essential extension of FCP (M) in

M (s)., Let 0 £ x Q;CQE, Since E is an R-essential extension of M,
we have 0 £ rx¢ M for some r€ R and hence O # @ (s) x € M vhere

M £ 0,

¢ ¢

Therefore F(?(E) is an essential extention of Fq>(M) in M(8).

s & C\Sl (r)., This implies O # sx € .,M, Thus Sx /N
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To prove the second part of the Lemma, let E be
injective ian((S), Suppose GCP(E) has a proper essential
extension A in ((R), then as shown above F, A D F_ G ,(E) is

| ¢ ¢ ¢
an essential extension inSY((S). But E is injective ian((S)
and contains Fq’G(Q(E>' hence there exists a B isomorphic to FEPA
over Fq”) G(s? (£) in E, Hence (Ker @) B = O and therefore
B=F,G,,(E) which implies that F.A = F _G,,(E), Since
¢-q P ¢° = g g

G, F,is an identity on){(R), we have A = G .o(E), Hence G, (E)

g y on R, ¢ ¢
is injective in Y{(R) and so the proof of the Lemma is complete, -

The relation between injective hulls of a module in the

categories ((S) and JY( (R) is given by the following:

Theoren 3, Let MéESY((R), E an injective hull of F(Q(M) ian(ﬂs),

Then Ggo(E) is an injective hull of M in M) (1],

Proof, By Lemma 2, G (E) is injective in M (R).  Moreover
G(Q(E) contains G(?(FLP (M)) = M, We have therefore only to show
that G(P(E) is an R-essential extension of M, Let O £ x € G(_P(E).
Since E is an S:essential extension of F(P(M)’ there exists s € S,

s & Ker () such that 0 £ sx € F (M),  From the definition of
Gq)(E) as R-module, it follows that 0 A({(s)x € M, " Hence Rx NM £ 0,

Thus G, ,(E) is an R-essential extension of M as desired,

(_k

Corollary 1, Let JCR be a left ideal, M an R-module with JM = 0O
and E an R-injective hull of M, Then A = {x ¢E(Jx =0} made

into an R/J-module is an R/J-injective hull of M,
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Proof, Here CQ is the natural homomorphism R—>R/J with
Ker () = J, Hence by Theorem 3, G‘PE = A is an R/J-injective

hull of M,

Corollary 2, If R is a Dedekind domain, PCR a proper prime

ideal, then R/P® is an R/P’-injective hull of R/P,

U P-k. Then E .= P*/PI is an R_injective
k
null of RP[ 27, Now r/BS T p 1) p -{x+Pex] Y epm (k1)

ie, Pl x ¢ R}

Proof, Let P*

i

{: y€E \ Pky = O} . Hence by Corollary 1,

R/P* is an R/P -injective hull of R/P,
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