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SCOPE AND CONTENTS: Contemporary approaches to data 

analysis suffer from being both time-consuming and 

subjective; however, the application of numerical techniques 

to the automated (non-interactive) analysis of gamma ray 

spectra often leads to considerably improved performance. 

The foundations and limitations of such techniques lie in 

the applicability of certain mathematical operations such as 

deconvolution, and the careful study of stochastic models. 

The use of digital filters as a method of enhancing detector 

response has been applied to a triple-coincidence counting 

arrangement, after modelling undesired physical effects. An 

objective background estimation method has been described 

based on 

Finally, 

the statistical nature of nuclear measurements. 

the application of such techniques is demonstrated 

with a package of FORTRAN programs designed to be used in a 

variety of situations with minimal modifications. 
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CHAPTER I 

INTRODUCTION 

The analysis of gamma ray spectra from multichannel 

analyzers is an integral part of much work in the field of 

nuclear physics. Historically, the use of sodium iodide 

[Nai] detectors~ posessing inherently poor resolution, led 

to the development of many diverse methods of extracting 

energy and amplitude information from measured spectra. In 

the last two decades, however, two important developments 

have served to revolutionize nuclear measurements. First, 

the introduction of high-speed digital computers heralded 

the possibility of automating analytical methods, more 

promising still in the light of major developments such as 

the discovery of the fast Fourier transform [FFT] algorithm. 

Secondly, the appearance of solid state germanium [Ge] and 

lithium-drifted germanium [Ge(Li)] detectors allowed the 

collection of gamma ray spectra with unheard of resolution. 

Combined, these developments served to provide major impetus 

for much of today's work in experimental nuclear physics, 

simplifying data analysis while providing a richer store of 

precise nuclear data. However, the burden of analysis work 

often is left to the experimenter, despite the availability 

of more sophisticated methods. This situation may prove 
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unmanageable in the presence of large data records, or where 

closely-spaced components make resolution impossible. 

As practical limits of resolution are approached, the 

development of improved computer codes becomes as important 

as the amelioration of existing experimental apparatus, 

since any technical improvement is ultimately reflected in 

the precision of a given measurement. By linking the 

techniques of numerical analysis to the domain of instrument 

design, the inherent physical limitations of a given 

experimental setup may be surmounted. In keeping with this 

philosophy, the wise use of computer methods serves to 

satiate a physicist's natural desire to make objective 

judgements. 

Any approach to numerical analysis demands that the 

methods employed be consistent with the mathematical nature 

of the collected data, and more fundamentally to the nature 

of the physical phenornenon·being measured. While methods 

which mimic human 'intuitivity' are attractive, the more 

secure footing of a mathematical argument lends itself not 

only to the goal of unbiased, reproducible results, but also 

to the actual construction of computer codes. Therefore, a 

careful study of the mathematical origins of nuclear data 

and the appropriateness of certain operations must be 

performed before any such applications are made. Only then 

may techniques such as digital filtering be confidently 
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introduced as a step in the analysis stream, while 

techniques to estimate background continuum in complex 

spectra may rely solely on the mathematical justification to 

be accepted. Of course, any methods are ultimately subject 

to careful scrutiny through use in the laboratory and 

comparison with results obtained in other ways. 

In the end, such analysis programs must be combined in 

a convenient manner to facilitate their use and study. They 

must be combined with other, more mundane, programs which 

simply read data from magnetic tape, or produce numerical 

listings of results. Such a package of programs is far more 

powerful than either isolated routines or one all-purpose 

program. Only with such an efficient method of access and 

use will these methods be accepted in the laboratory and 

used to their fullest. 

In summary, the application of numerical methods to a 

given measurement should be viewed as an extension of the 

measurement process rather than a completely separate 

procedure to be performed at a later time. Ideally, an 

instrument faithfully reports a measurement under all 

conditions; such performance is approachable with the 

enhancement produced by automated analysis. 



CHAPTER II 

• ANALYSIS OF GAMMA RAY SPECTRA 

Spectral analysis encompasses all the procedures 
,. 

through which an experimenter determines the energy and 

relative intensities of gamma rays incident on a detector. 

In more practical terms, it is an effort to determine the 

presence of, the centroid position of, and the area under, 

peaks which have been somewhat broadened, [and often 

distorted] by the measurement process. Of course, if one 

could immediately determine these parameters, spectral 

analysis would be a fait-accompli. Unfortunately for the 

nuclear physicist, no detection system exists which would 

provide perfect resolution with accurate energy information. 

In short, the purpose of spectral analysis is to approach 

the response of an ideal system after the measurement has 

already been made. Automated analysis is the [computerized] 

application of such procedures in a manner which requires 

little or no human intervention to reach this end. 

Mathematical Basis of the Automated Approach 

Even the nature of nuclear measurement precludes such a 

perfect arrangement. Counting experiments follow Poisson 

statistics and, by definition, an error is introduced into 
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each measurement.(BR65) While such effects may be minimized 

by long~acquisitio~ times, the presence of background [both 

instrumental and environmental contributions] and the finite 

time allotted for any experiment, may combine to make this 

recourse impractical. Fortunately, many experiments involve 

the measurement of events which are far more dominant than 

background contributions, and the percentage-error 

introduced through counting statistics becomes manageable at 

large counts. [Where such error varies as the square-root of 

the count.] 

Every measurement made with any instrument involves a 

certain 'colouration' of the desired result with an effect 

characteristic of that particular instrument. The effect a 

given instrument or acquisition system has on a measurement 

is called the response-function of the device. This effect 

is not necessarily due to poor design or mis-use; it may be 

physically impossible to construct a device to perform the 

desired measurement to the necessary precision. Secondly, 

all electronic devices are 'noisy'; that is, an amount of 

random signal is introduced at every stage of the 

measurement chain. The latter effect is unavoidable; thermal 

noise and shot noise are inevitably present in any solid 

state devices. (DI72) Careful design of instruments and 

careful use of detectors may serve to minimize these 

effects; solid state detectors, for example, are usually 
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operated at liquid-nitrogen temperatures [as is the pre­

amp! i fier stage] to minimize noise contributions. The 

mathematical implications of such effects, when combined in 

series, leads to the use of convolution theory and with it, 

the theory of Fourier transforms. Statistical theory, and 

the treatment of stochastic processes will also play a role 

in spectral analysis. 

The use of multichannel analyzers implies that energy 

information must be quantized. While it is not a serious 

problem in determining gamma ray energies [given that the 

system has been wisely assemhled], this condition imp! ies 

that analysis of spectral data will be performed on 

di~crete, rather than continuous data. This, of course, will 

be true for both energy and intensity information; raw data 

is positive-integral in both the abcissa and ordinate 

dimensions. Ultimately, these facts dictate the mathematical 

methods which will be applicable to spectral analysis. 

Finally, it may be impossible to isolate a desired 

phenomenon from other, similar events; in this instance the 

measurement may include undesired information which is left 

to be separated at a later stage. This problem, of course; 

is not unique to nuclear measurements; rather, it is 

fundamental to experimental physics. In light of the 

objectives of automated analysis, the obvious implication is 

that all events must be detected and classified even if they 
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are not directly related to the process involved. 

Physical Basis of the Automated Approach 

To appreciate the approaches specific to the problem of 

gamma ray measurements, the interaction of gamma rays within 

a detector and the physical construction of such detectors 

must be considered. Three principal processes characterize a 

gamma ray's interaction in a material; photoelectric effect, 

Compton scattering, and pair-production events. [A fourth 

possibility is that no interaction results; an effect 

nonetheless crucial to experimental and instrumental 

design.] Of course, an interaction must occur if the gamma 

ray is to be detected and its energy established. Since the 

relative probability of each type of interaction varies as 

the atomic number of the target, different detector 

configurations are often used at different gamma ray 

energies. Since the cross-section for each process also 

varies as the gamma ray energy, different effects may 

dominate within the same measured spectrum. Ultimately, 

whichever interaction occurs within a detector must be 

translated into an electrical impulse which is distinguished 

only by the energy of the gamma ray that caused it. Because 

the energy of the incident gamma ray is to be determined, it 

is of ·paramount importance that the type of interaction be 

known, and that all consequences of a given interaction be 
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considered. The ability of a given detector to distinguish 

between gamma rays of nearly-equal energies is referred to 

as the resolution. 

Although many types of detection systems are in use, 

scintillation counters and solid state detectors are most 

commonly encountered in gamma ray experimentation. The 

superior quality of solid state detectors lends itself more 

readily to automated spectral analysis.(EW64) 

Sodium iodide [Nai] detectors are 'scintillation­

counters'. An energetic electron produced by the gamma ray 

causes a small flash of light in the crystal of sodium 

iodide. This light is translated into a measurable 

electrical impulse through a photomultiplier tube in contact 

with the crystal. The resolution of such a detector is poor; 

generally five or ten percent of the incident energy. 

Solid state detectors provide superior resolution to 

that of Nai detectors, principally because the incident 

gamma ray energy is more efficiently translated into the 

production of charge carriers. This detector is basically a 

reverse-biased PN-j unction, and the gamma ray's energy 

serves to create a large number of electron-hole pairs which 

are swept away by a large reverse potential to appear as a 

pulse in the accompanying circuitry. While intrinsic 

germanium (Ge) is a preferred semiconductor, unavoidable 

impurities have been tolerated in the past with the addition 
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of small quantities of lithium, creating a lithium-drifted 

germanium, Ge(Li) detector. [KN79] Figure 2.1 compares the 

resolution of Nai and Ge(Li) detectors. 

The physical interaction of an incident gamma ray on a 

detector provides the necessary secondary effects which make 

it possible to translate the gamma ray energy into a 

specific electrical impulse. However, as discussed above, 

more than one event may occur as a result of the 

interaction. Even worse, an interaction may have side 

effects which do nothing but add uncertainty to the 

measurement. While an experiment may be constructed to 

favour certain events through effective collimation or by 

virtue of the atomic weight of the detector substrate, these 

side effects may be unavoidable. An example of such an 

effect is a direct result of a pair-production interaction. 

Here, the incident gamma ray has the immediate effect of 

converting all its energy into an electron-positron pair, 

and many possible fates unfold from this point. If the full 

gamma ray energy is to be determined, the electron and 

positron must remain within the detector, where the positron 

will ultimately annihilate with a nearby electron, releasing 

two 511 KeV gamma rays which in turn must interact within 

the detector. It is the untimely escape from the detector 

crystal of one or both of the latter gamma rays which 
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FIGURE 2.1 COMPARISON OF Ge(Li) AND Nai DETECTORS 
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Spectrum of 134 cs illustrates the superior 
resolution of the solid state Ge(Li) detector [below]. 
Clearly defined peaks collected with the Ge(Li) detector 
are ideal candidates for automated methods, while a doublet 
[40 Kev separation] is completely masked when the Nai 
detector is used. 
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results in the "single-escape" and "double-escape" peaks 

familiar to spectroscopists. If a Compton interaction 

precedes the escape, some residual energy will remain in the 

detector, resulting in a different energy again. Finally, 

the original electron or positron itself may escape from the 

crystal, leaving behind only a fraction of the incident 

gamma ray energ~ Clearly such physical effects are beyond 

the control of an experimenter, yet the success of an 

experimental technique often depends on dealing with such 

phenomena. It is these effects, and others, which determine 

the response-function of solid state detectors. The 

question of which output signal results from a given gamma 

ray energy and the feasibility of calculating that energy 

given only the resulting signal determines whether or not a 

detector is useful at all. Detector electronics, such as 

fast-coincidence circuits, or applied numerical techniques 

[based on the known interactions] can improve such results 

considerably. 

Much work in numerical analysis is concerned with 

dealing with effects such as those described above. Each 

procedure may be viewed as a specific approach to a well­

defined problem, just as a certain instrument may be used to 

selectively remove or enhance certain effects. The over­

riding goal of such work is to approximate the ideal 

spectrum given actual experimental results. 



CHAPTER III 

DIGITAL FILTERING 

If the response function of a detection system was 

known, it would seem reasonable that the original 

information could be extracted by an inverse mathematical 

operation performed on the measured data. Such a process is 

called unfolding, or deconvolution. Unfortunately, while it 

i-s a promisin9 proposition, the procedure is not easily 

implemented in practice. The response function of an 

acquisition system [detector, amplifier, pulse-height 

analyzer etc.] is not always known per se; although it may 

be determined by the response at an isolated peak, [impulse 

input], or approximated by a Gaussian function, [central-

limit theorem (BR65)] However, it is the unavoidable 

presence of random noise in a measurement which ensures that 

a straightforward approach to deconvolution will result in 

an intolerable increase in background contribution. 

Principle of Deconvolution 

In the notation of Kennett et al.(KE78), a measured 

signal M(x), of a process T(x), by a system with linear 

response function R(x, x•), is expressed as 

M(x') = JR(x,x' )T(x) dx + N(x') 

which is clearly the convolution of the input data with the 

response function. N{x') is an [unknown] noise contribution. 

12 
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By Fourier-transform theory, this convolution becomes a 

multiplication in the transform domain, giving 

M(s) = R(s) T(s) + N(s) 

It may be seen that only the presence of a noise term, N(s) 

prohibits the use of simple division to arrive at the 

desired result T(s), all other variables being known. 

Various iterative approaches to this problem have been 

discussed,notably by Van Cittert, and by Kennett et al. 

(KE78). The latter group have outlined an approach based on 

probabilistid operations, the Bayesian deconvolution, which 

assures positivity of solution while maintaining noise 

growth at tolerable levels. This method, although 

demonstrated to be extremely effective, is too time­

consuming to be performed as part of the routine analysis of 

large spectra, and it is best reserved for the cases of 

resolving poorly defined structure or closely spaced peaks. 

Of course, any deconvolution method demands a translational­

ly invariant response function. [at least locally] (BR65) 

There are cases where a considerable amount of 

improvement may be made to measured spectra without a 

complete deconvolution taking place. Such cases include 

those where definable linear contributions have been made to 

each peak. These effects may be readily reversed by 

modelling the undesirable response and constructing an 

inverse function to remove its contribution. (TE81) 
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FIGURE 3.1 TYPICAL SPECTRUM BEFORE FILTERING 

A high-energy "toe" has appeared on every peak in this spectrum, collected with 
the triple-coincidence spectrometer. Contributed by the detection system, such a 
definable, linear contribution is readily attacked with digital filtering 
techniques. 
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Defining a Filter 

If the physical origins of such effects are known, the 

conditions of linearity and omni-presence may be easily 

verified, and a mathematical model constructed. An example 

of such an effect is shown in Fig 3.1 , where a distinctive 

high-energy toe has appeared on every peak of the 

141Pr(n,g)l42pr spectrum. In this case, the offending toe 

has well defined origins in the triple-coincidence detector 

used (KN79). In this arrangement, only pair production 

events leading to double escape are selectively chosen by 

accepting only events accompanied by the emission of two 511 

KeV gamma rays. [Of course, the measured energy will be 

exactly 1.022 MeV too low.] The toes are formed when one of 

the 511 KeV rays undergoes Compton scattering befqre escape, 

leaving a small amount of energy behind, but still 

satisfying coincidence conditions by being nearly 511 KeV. 

(OR67) The toes, caused by events independent of the 

incident gamma ray energy, are expected to be a linear 

contribution present in every peak. [Fig. 3.2] 

This process may be represented as the convolution of 

the original signal T(x), by some unknown function ?(x), • 

resulting in a measured spectrum with toes M(x). 

T(x) * ?(x) = M(x) 

where "*" represents convolution, following the notation of 

Bracewell (BR65). T(x) is considered, in this case, to be 
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FIGURE 3.2 TRIPLE-COINCIDENCE DETECTOR 

In this arrangement, pair-production events in the 
central [Ge(Li)] detector are selected by accepting only 
those accompanied by two 511 KeV annhilation gamma rays in 
the diametrically opposed Nai detectors. · 

A high-energy component appears on peaks when a Compton 
event precedes the escape from the central detector; while 
energy is left behind, the gamma ray is still nearly 511 KeV 
when a coincidence is recorded. 
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a spectrum which has already suffered the effects of 

measurement, the toe contribution being but the last of 

these effects. This notation is valid since convolution is 

a commutative operation. (BR65) 

A function F(x) is desired which, when acting on M(x), 

will yield the desired T(x). 

F(x) * M(x) = T(x) 

This process may be modelled by convolving the function 

F(x), with a peak-and-toe model Pt(x), leaving only a peak 

P(x), modelled as a Dirac delta function with amplitude c. 

F(x) * Pt(X) = P(x) 

The form of Pt(x} is simply a Dirac delta function with a 

triangular base. [Both the length of the triangle and its 

area ratio to the peak may be adjusted] If the components of 

the modelled process are transformed, the filter may be 

obtained by a simple division, 

F(s) = P(s) 
Pt(s) 

Observing that the Fourier transform of a delta function is 

a constant, the inverse filter is simply 

F(s) = c 
Pt(S} 

where c is simply the amplitude of the delta function, since 

P(s)s=O gives the integral of the function P(x). (BR65) 

If this function, suitably transformed, acts on raw 

data such as that is Fig.3.1, the toe contribution will be 
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effectively suppressed, as Fig.3.3 shows. Furthermore, an 

inspection of the difference between the original and 

filtered spectrum reveals the remarkable smoothness of the 

subtracted data, despite the unavoidable presence of noise 

in the original spectrum. The result is a considerable 

improvement in background regularity, and an important step 

in approaching the response of an ideal system. 

• 
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FIGURE 3.3 SPECTRUM AFTER FILTERING OPERATION 

The spectrum of Fig 3.1 is shown after treatment with a digital filter. 
A considerable improvement in background regularity has been achieved with the 
use of the peak-and-toe model. 



CHAPTER IV 

BACKGROUND ESTIMATION 

Ideally, gamma ray spectra could be collected without 

any information present but the desired peaks. Multi-channel 

analyzer data would appear as a vector containing zeroes 

where there were no peaks, and the peak amplitudes could be 

read directly from channels corresponding to their energy. 

The purpose of any background estimation procedure is to 

render results in this form given raw data having somewhat 

less than ideal characteristics. 

An innumer~ble variety of effects combine to make 

measured spectra less than ideal. While some effects are 

common to all gamma ray spectra collected with Ge or Ge(Li) 

detectors, such_ as counting statistics, others appear only 

under certain experimental conditions, such as pileup [at 

high count rates], or the presence of Compton edges [at low 

energies]. Other effects may be .specific to a certain 

detection system, as with the triple-coincidence arrangement 

of Chapter Two. Effects such as the latter must often be 

dealt with separately to permit any kind of reasonable 

background estimation. 

Assuming the measured spectrum is relatively free from 

untoward distortions [such as overflows in certain channels] 

20 
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and that the number of counts across the spectrum is high 

enough to permit a meaningful approach to the analysis, the 

problem of background estimation is one of removing a 

smoothly varying background continuum upon which peaks have 

been superimposed. Such a background continuum is made up of 

stray counts at other than the desired energies, created 

through some statistical or physical process which, by 

nature of its origins, cannot be treated directly. 

Obviously, random effects, or even non-linear contributions 

to background, cannot be dealt with through simple digital 

filters. Unfortunately, these conditions encompass almost 

all contributions to the background continuum. 

One is not confined to procedures which would remove 

this continuum, leaving peaks on a zero background. Indeed, 

statistical methods are in use, based on the expected shape 

of peaks and the expected behaviour of the continuum, which 

allow peak detection and area estimation without any 

background treatment~ Mariscotti (MA67) and, Robertson et 

al.(R072) have outlined second-differencing methods which 

detect the [Gaussian] peak shape through its characteristic 

second-derivative. These methods rely on the background 

being locally linear to arrive at reliable results; they 

could be misled by sharp, peak-like Compton edges, or may 

fail to detect small peaks at all. 
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FIGURE 4.1 TYPICAL SPECTRUM WITH ESTIMATED BACKGROUND 

This Radium spectrum illustrates the non-zero contin~um 
which is to be removed through background estimation 
procedures. Also shown is the calculated background 
generated with the outlined method. 
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At some point however, a background must usually be 

estimated under a peak (even if only locally) in order to 

determine its area.(QU69) Conventional hand-analysis 

methods, of course, involve determining peak position by 

eye, and drawing a line across the base of the peak, perhaps 

by sampling nearby background points as being typical of the 

region.(K073) (BA77) The computer-aided extension of this 

approach is to determine peak areas directly by fitting a 

Gaussian model to the peaks, often with a correction applied 

to the shape to compensate for particular detector response­

functions. Much work has been done in this 

domain.(R069)p(KI7l),(HI76),(HE67) This technique, although 

extremely popular, requires a degree of parameter-fitting 

around each peak and, like other procedures, special steps 

must be taken in the presence of doublets.(FA70) It is 

noteworthy that many of these methods were developed to 

analyze data from Nai detectors; where a characteristically 

wide response-function demands that poorly-resolved peaks be 

analyzed on an essentially undefinable background. Contempo­

rary solid state detectors supply peaks which are in general 

much more sharply defined, and a more fundamental approach 

may be taken. 

While the above methods are useful in situations where 

the detection system prohibits continuous background 

estimation, there exists a large class of situations where 



24 

it is desirable to first remove the background continuum. 

Simple spectra, of course, may be readily analyzed without 

the need for large investments in computer time if the 

background is first removed. More complex spectra may be 

better analyzed through Bayesian-deconvolution methods which 

allow the resolution of fine details in an unbiased and 

reproducible fashion. (KE78) Athough extremely effective, 

the latter methods work best when performed on data from 

which the background continuum has been removed. 

The problem of automatically estimating a background 

continuum has been approached in the past. In general, most 

methods begin by assuming that background is a minima-event, 

that is to say that background channels contain lower counts 

than those containing peaks. By choosing minima along the 

spectrum, the shape of the continuum may be estimated, and 

subtracted. Such a method was proposed by Inouye (IN69), and 

by Weismeier(WE81). Kennett et al. (KE81) performed a 

systematic study of the background shape, concluding that, 

through choosing minima, the shape of a true background 

could be estimated through a statistical calculation. Given 

a sampled background, the smooth continuum could be modelled 

by interpolating between samples using a cubic-B spline 

calculation. These methods rely on choosing suitable 

intervals for background sampling, a parameter which could 

change with the nature of the data at hand. Unfortunately, 
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such a minima search to determine background behaviour 

presupposes that the background has zero slope within the 

region being examined, or sampled points will not accurately 

represent the background. Choosing smaller intervals will 

ultimately render a background estimation which is too 

readily seen to mistake peaks for fluctations in the 

background. Secondly, the use of minima within intervals as 

a criterion for choosing background overlooks the nature of 

Compton edges; these wide, rising, deviations from a smooth 

background are, by definition, maxima events in the 

background. Approaches which serve to correct the estimation 

around Compton edges quickly fall short of the 

justifications which allowed minima-sampling to take place, 

while other modifications which rely on the detection of 

upward deviations to signal the presence of Compton edges 

may lead to totally unacceptable results, such as the 

removal of entire peaks, mistaken for simple deviations from 

the background. 

A Method for Calculating Background Continuum 

In light of all these problems, a whole new approach to 

the problem must be considered. By definition, the 

background channels contain fewer counts than those 

harbouring peaks, and the concept of choosing channels with 

minimum counts is sound in this respect. However, in order 

to accurately follow the background, a different sampling 
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strategy is necessary, one which eliminates the bias of 

fixed interval lengths. This problem was anticipated by 

Weismeier (WE8l).v who attempted to eliminate it by taking 

the interse.ction of two sampling runs using different 

interval lengthso Of course, this approach makes it even 

less likely that Compton events will be included in the 

background estimation. 

Instead of choosing a minimum point within an interval 

as a background sample, the entire spectrum may be examined 

point-by-point to determine background behaviour. A local 

minimum point is defined as any channel having counts less 

than both adjacent channelso This condition will be met for 

a large percentage of background points, where statistical 

fluctuations prevailo Peaks, on the other hand., 

predominantly span channels where at least one of the 

ad j ace n t c h a. nne 1 s is much 1 ower o Here , s t a t i s t i c a 1 

fluctuations create fewer local minima, since the channel-

to=channel changes through a peak are greater than 

fluctuations aue to counting errore However, this is not the 

case on a Compton edge, where the background has strayed 

from rnonotonici ty in a much slower fashion. Thus the 

channels corresponding to local minima may be considered to 

represent background, including both regular background and 

Compton events. 

Following the work of Kennett et al .. (KE81), the 
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observed background may be viewed as statistical 

fluctuations about a [still to be estimated] continuous 

line. Assuming the cumulative distribution function [CDF] 

across the line is f(x), [for every channel] then 

Pr [X (X] = f (X) 

Since successive samplings may be rionsidered independent 

events, then 

Pr[x<x ; x] = Pr[x<x] Pr[ x ] 

where Pr [x], the probability of choosing an x, is the 

density function for this distribution, evaluated at x. 

Defining Pr[ 'local minimum• ] as 

Pr[ two larger points ; x ] 

the probability of a chosen x being a local minimum ( M [x] ) 

is given by 

M [x] = Pr [x] [ 1 - f ( x) ] 2 

Obviously, the probability of a given point being a chosen 

mimimum varies inversely as its position with respect to the 

background. [A very small point is likely to be surrounded 

by two larger points.] Since counting statistics are the 

major contributor to the form of f(x), then Pr[x] may be 

considered Gaussian with mean m, and variance s. (BR79) 

The integral of M(x) over all x gives the percentage of 

points in regular background expected to tagged as local 

minima. Sinc~2 Pr [x] is by definition t.he derivative of the 
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cumulative distribution function, f(x), the integral reduces 

to 

f M ( X ) dx = f f 1 
( X ) [ 1 - f (X } ] 2 d X 

which gives, by inspection, 

f M (X ) dx = ( -1/3) ( 1 - f (X) ] 3 = 1/3 

or about one-third of all typical background points will be 

chosen as a sampling. [ This may be compared to choosing one 

minimum in an interval perhaps 50 channels wide.] This 

result may be intuitively reached by considering the 

permutations of three equally-likely events; one-third of 

the events place the smallest choice in-between the other 

two. 

The algorithm to accomplish this procedure stores in a 

vector the addresses of all the channels defined as local 

minima. This vector is filled in one pass with the addresses 

of every channel containing less counts than both of the 

adjac~nt channels. This procedure alone may select points 

[such as in doublets] which are not to be included as 

background, and such points may be ignored if they lie 

several standard devations above the previously defined 

minimum. On the other hand, when the background is 

interpolated from a sampling of these minima, the 

uncharacteristic position of such points may be weighted 

against them .. 
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FIGURE 4.2 MAGNIFIED SPECTRUM SHOWING DEFINED MINIMA 

The background is defined by selecting 'local-mini~a', 
points which are lower than both adjaGent channels. A least­
squares fit interpolates the background at every point using 
a number of these minima. 
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The local minima form a set of points which closely 

track background fluctuations. Therefore, the separation 

between points will be an indication of the peak density 

along the spectrum. Where there are many peaks, the 

background minima will be widely spaced, and vice versa. 

Since a sampling of the background is still desired for a 

·curve fit, a fixed number of these chosen minima may be used 

to define an average value for the background. The fixed 

number will span differing channel numbers, meaning that 

wide intervals will be chosen under large peaks, and smaller 

intervals under event-free sections. Although a similar 

criterion was chosen by Kennett (KE81) for establishing 

sampling regions, the choice is now made dynamically and 

will adjust with the spectrum being analyzed. The average 

value chosen for background within this interval will be 

interpolated from a weighted fit of all the local minima in 

the interval. 

To estimate the background at any point, the ten 

nearest local minima within a symmetric region are chosen 

using the vector defined above. These points will correspond 

to a range of somewhat more than thirty channels in regular 

background [from the preceding analysis], and more under 

peaks. Their values form a sampling of background behaviour 

in the region, and a linear [or quadratic] least-squares fit 

provides a reliable background point at each channel in the 
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spectrum. In this case, since several adjacent channels will 

share the same set of [ten] nearby minima, the interpolated 

value of the background will tend to change in steps as 

different samples are included. This effect may be lessened 

by weighting minima closest to the channel being calculated, 

or by smoothing the final answer. Such smoothing must be 

performed with due care, since the representation of true, 

sharp background events would be muddied by the same 

process. 

The line constructed from the local minima passes under 

the data, grazing the background at each point along the 

spectrum. In order to subtract the background continuum, 

this line must be raised to lie at the mean of the 

background, rather than at the mean of the local minima. 

This is similar to an operation suggested by Kennett et 

al.,(KE81) in which a correction term was calculated as a 

function of the interval spacing. In this case, the local 

minima are sampled and distributed in such a manner that 

such a correction may now be made which depends only on the 

standard deviation of the background distribution. This 

term, of course, varies as the square root of the counts in 

each channel, and is expected to be relatively constant 

across an interval. Since the correction factor is to be 

applied in a continuous manner throughout the entire 

spectrum, it would normally be applied to each of the chosen 
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FIGURE 4.3 ILLUSTRATION OF BACKGROUND ON A COMPTON EDGE 

The sharp, peak-like structure of a Compton edge makes it a 
classic troublespot for both peak-detection programs and 
background-estimation procedures. In this case, the 
illustrated background shows the ease with which the edge is 
removed without the need for special·procedures. 
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points before the background curve was calculated. 

The combinatorial nature of the problem prohibits a 

straightforward analytical result, but the correction value 

may be estimated numerically. Ten thousand trials of 

G au s s i an-d i s ·t r i b u ted . random v a 1 u e s on a z e r o- s 1 oped 

background were performed with various means to determine a 

value for this parameter. For means of 100 and lOOOv the 

correction was found to be .83 and e85 standard deviations 

respectively, while similar results were obtained in other 

trials. It should be noted that the background estimation of 

Figure 4.3 has not been corrected in this manner. 

Finally, if the background is simply subtracted based 

on this [or any other] estimation procedure, a great deal of 

information is lost, principally the absolute magnitude of 

spectral features which is essential to determining Poisson 

statistics~ Therefore, the interpolated background would 

normally be stored in a separate vector for later reference 

rather than being immediately subtracted. 

In practice, the ability of a computer program to 

estimate a background continuum is not judicable solely by 

eye. Of course, it is easy to spot an entirely meaningless 

fit, but there are cases where the-•correctness• of a given 

line may be in question, or where no predictable background 

continuum may be drawn. In the latter case, merit is founded 

only on the accuracy of the final values [either peak 
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position or amplitude]. In many cases, where relative, 

rather than absolute figures are required, the 

reproducibility of results is paramount. Computers can 

excell in such a domain, provided that no hidden bias exists 

in the programa 

An Assessment of the Background Estimation Procedure 

To complete any discussion of background continuum 

estimation, some numerical results should be presented. 

While exhaustive testing under all conditions is clearly not 

a practical possibility, some fair test in light of the 

expected applications may be performed. 

Background estimation techniques generally preceed 

peak-detection procedures in the analysis of [a priori] 

unknown spectra. Often, as in the example of neutron­

activation analysis, the presence of statistically­

significant peaks is used to determine chemical composition 

through a study of their position and intensity. Clearly, a 

background estimation procedure should preserve these 

quantities while removing any-underlying continuum. 

A test was devised to determine the effect of 

background removal on a typical spectrum. Two criteria were 

chosen which would noirnally be independent of detector 

efficiencies and therefore solely dependent on the method 

used to determine peak position and amplitude; the 

separation ana the relative intensities of escape-peaks. As 
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described in Chapter IIu escape peaks are spectral artifacts 

resulting from the escape of one or both 511 KeV gamma rays 

from a pair~production interactione Their relative 

intensities are expected to be cortstant for a given detector 

configuration, and they must by definition be separated by 

511 KeV from the incident gamma ray energy and from each 

othere The test would be to remove the background from a 

typical spectrum and to verify these values .. 

Typical (n,g) spectra were collected at the McMaster 

Nuclear Reactor with a solid-state detector, using three 

different samples containing nitrogen and another element .. 

The background continuum was estimated and removed according 

to the outlined methods [with no operator intervention], and 

dominant nitrogen peaks were selected for close examination .. 

Peaks with counts ranging from 20u000 to 300,000 were chosen 

to minimize the effects of statistical fluctuationse Six 

such peaks and their associated escape-peaks were to be used 

for each of the three samples; however, interferences 

prohibited the use of the double-escape peaks in two of the 

cases. 

A comparison was made between the measured intensities 

of the escape peaks in all three samplesc Any error 

introduced by the background estimation procedure would be 

expected to affect these ratios. Figure 4o4 illustrates the 

resultsu while averaging the values obtained for each of the 



three samples gives [showing percentage error] 

Sample 1. 

Sample 2. 

Sample 3 e 

0.2884 + 0.0019 

0.4457 + 0.0074 

0.2656 + 0.0073 

0.6% 

1.7% 

2.7% 
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Since some peaks used for comparison backgounds and 

possible interferences are different, actual error could be 

smaller. The average ratio of double/single escape peaks was 

for all cases 1.42 + 0.05 [ 4.0% ] 
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ENERGY SAMPLE FULL SINGLE DOUBLE single 
[KeV] NUMBER ENERGY ESCAPE ESCAPE double 

10829 1 .289 .287 .286 1.36 
2 .458 .450 .448 1.36 
3 • 253 .263 .266 1.38 

6322 1 .286 .289 .289 * 
2 .457 .446 .447 see 
3 .256 .265 .263 text 

5562 1 .291 .286 .292 1.40 
2 .449 .450 .437 1.41 
3 .260 .263 .271 1.33 

5532 1 .287 .290 .290 * 
2 .449 .440 .445 
3 .264 .271 .264 

5298 1 .289 .289 .289 1.44 
2 .447 .446 .437 1.41 
3 .263 .264 .274 1.50 

5269 1 .287 .290 .286 1.44 
2 .451 .436 .429 1.44 
3 .262 .274 .285 1.52 

FIGURE 4.4 ESCAPE-PEAK ANALYSIS ON TEST SPECTRA 

Test spectra [ 1: N + Be, 2: N + C, 3: N2 + Si ] were 
treated with the background estimation procedure, and the 
escape-peak ratios calculated for some significant peaks. 
Results show that peak areas are preserved by the background 
estimation procedure. 



CHAPTER V 

CONCLUSIONS 

The use of automated [non-interactive] methods in gamma 

ray spectroscopy is justified by a study of the physical and 

mathematical nature of nuclear measurements. Deviations from 

an ideal spectrum may be traced to the inherent statistical 

uncertainty in counting experiments, the unavoidable 

instrumental contributions called 'response-functioni, and 

the unwelcome 'random-noise' present in every measurement. 

While methods of minimizing such effects could be effected 

in the mechanical design of instruments, their nature 

precludes their complete elimination, and the numerical 

analysis of measured data seeks to reduce their 

contributions after the measurement has been made. 

Digital filtering has been proposed as an effective 

method of eliminating some characteristic linear 

distortions, using the high-energy toes from a triple­

coincidence instrument as an example. 

An effective rnethod·of estimating background continuum 

in complex spectra has been outlined, one which proves 

particularly effective on Compton edges, a classic trouble­

spot for automated procedures~ 

Finally, these methods have been implemented in 

FORTRAN IV in a package of analysis programs. 

38 



APPENDIX 

Implementation of the numerical techniques required 

that a system of data handling be developed which would 

allow the efficient transfer of intermediate results from 

one step to the next. While many of the manipulations are 

well suited to implementation on a small computer, the 

desire to analyze raw spectra of up to 8192 channels led to 

the choice of the McMaster University CYBER 170 computer as 

primary computer .. An assortment of peripherals; plotters, 

printers, tape drives etc., and a variety of pre-packaged 

programs available also made this choice desirable. On the 

other hand, some of the development and part of the final 

analysis would be more conveniently performed on a Data 

General NOVA II minicomputer within the laboratory, meaning 

that such a system should also allow the transfer of raw 

data .and intermediate results between the two systems. 

Developed computer methods must, of course, be general 

enough to accommodate future changes to the available 

service. 

No one multi-purpose program would fulfil the above 

requirements, so a package of modular programs was developed 

in which each step of the analysis procedure could be 

performed independently. Written in FORTRAN IV, the programs 

each form but one step in the analysis stream, a stream 

which could be constructed simply by placing the desired 

39 
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procedures in a sequential set, just as one constructs a 

flow-chartc In this wayv the analysis could be as limited or 

as varied as the user desired with an absolute minimum of 

reprogramming effort. The plot of an intermediate result, 

for example, could be obtained by simply placing program 

PLOT in the list of analysis programs. Specialized routines, 

such as for tape reading and writing, which depend heavily 

upon the demands of the computer in use, may, in this 

manner, be customised and tested independently of the 

analysis routines, at which point they appear to the user 

only as TAPEIN, or TAPEOUT~~- the intricacies of a 

particular hardware configuration disappearo 

By definition, this system allows for future changes or 

improvements to be made by writing a FORTRAN program to 

perform the desired manipulation [bearing in mind the 

formalities of the system as a whole] and incorporating the 

new program into a library of routines available to the 

user .. 
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TERVLIB: A Spectrum Analysis Package 

This package of programs was written in FORTRAN IV 

using a CDC CYBER 170 computer under the NOS operating 

system. An effort has been made to implement only standard 

FORTRAN functions and syntax, despite the fact that CDC 

F 0 R T RAN features a number of add i t ions to the 1 an g u age. 0 f 

course, if another system is used to. run these programs, 

some modification may be necessary~ particularly where 

library routines have been used [special routines were used 

from the IMSL collection of programs] and especially where 

tape reading and writing is performed. The latter case 

ensuing, inp.utjoutpu t routines rnus t be writ ten which 

transfer data in blocks of 8192 channels to and from the 

computer, usually to be stored on disk until analysis is 

complete. 

The pack3ge itself consists of a number of programs 

which may each be used as one step in the analysis streame 

By sharing common features, each routine [although a 

complete program in itself]' may accept and modify data 

produced by any of the others. 

The operating system allows a certain amount of file 

manipulation such as storing and retrieving files from disk 

and renaming files to allow output data to be designated as 

input for the next step in analysis. This flexibility 

further extends the usefulness of the package. 
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Common Features : 

1/ All programs work on 8192 channel integer data. 

2/ All programs accept as input 

the FORTRAN logical file TAPE3. 

3/ All programs write output to TAPE4; 

all leave TAPE3 [input] in tact. 

Certain programs may also use TAPE7 as output. 

4/ All prograrrs begin by rewinding the TAPE#s to be used 

5/ Certain programs require additional information such 

as gain or zero-energy information. Such information 

is accepted as INPUT directly from the procedure 

file [TAPElO]. 

Figure 1 illustrates the way in which various programs 

interact through FORTRAN logical files. The programs shown 

were typical of those which would be included as an absolute 

minimum in such a package. More specifically, the programs 

FILTER, and BACKGR are implementations of the procedures 

described in chapters three and four. Each of these programs 

is to be d~scribed in some detail. 
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FIGURE ls TERVLIB File Structure 

The various programs in the package interact through 
FORTRAN logical file names. Combined with other common 
features, this allows the programs· to be rearranged in 
various combinations depending on specific applications. 
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The Programs of TERVLIB 

l.TAPEIN & TAPEOUT: These two programs combine to allow data 

to be passed in and out of the computer. They both contain 

assembly-language code to convert tape formats between 

computers. Since their use and structure is so machine­

dependent, no effort is made to explain further. 

TAPEIN allows files on magnetic tape to be read by file 

number [or for various files to be summed], creating an 8192 

channel integer file called TAPE3. The file number to be 

read must be specified in a procedure file. 

TAPEOUT writes an 8192 integer file [from TAPE3] onto 

magnetic tape, readable by another computer. 

2. FILTER: This program is an implementation of the 

techniques in Chapter Three to remove a high-energy toe from 

collected data [in TAPE3]. The toe parameters being a 

constant for a given detector arrangement, only the system 

gain [energy per channel (Kev•channel-1)] need be specified 

in the procedure file. The filtered spectrum is written into 

TAPE4. 

FILTER calls a system program to accomplish a complex 

Fourier transform of the 8192 channel data [and to perform 

the inverse operation]. If such a program was not available, 

then it would need to be included as a subroutine. 
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3. BACKGR: This program implements the background-generation 

technique described in Chapter Four, reading the original 

spectrum from TAPE3, and writing the generated background 

into TAPE4. No other information is necessarye 

4. MINUS: This program simply subtracts two spectra, 

[from TAPE3 & TAPE4] channel-by-channel, and writes the 

result into TAPE?. It may be used, for example, in removing 

the background generated by BACKGD. 

5. PLOTl, PLOT2, PLOT2L: These three programs call the 

plotter, producing respectively a plot of the data in TAPE3, 

a plot of the data in TAPE3 & TAPE4 on the same graph, and a 

log-scale plot of TAPE3 & TAPE4 on the same graph. The 

latter two programs are especially useful in checking the 

generated background of BACKGR. 

6. LIST: Produces a numerical printout of the value of ~11 

8192 values in TAPE3. 
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Useful Operating System Commands 

The package relies on the presence of some system 

commands, interspersed between programs, to ensure data 

flow. Of course, these are specific to CDC computers. 

1. GET(filenarne = TAPE3) retrieves a file called 

"filename" from disk for analysis, giving it the name 

TAPE3. 

2. RENAME(TAPE4=TAPE3) : assigns the name TAPE3 to a file 

called TAPE4, used to allow output data to be passed into 

the next program. 

3. SAVE(filename = TAPE3) : saves on disk the contents on 

TAPE3 under the name "filename" [also use REPLACE] 

Typical Data Analysis Procedure 

The programs may be stored either as source listings, 

complied when needed, or stored in the compiled form for 

immediate use~ The obvious trade-off is between the cost and 

time of compilation, and the cost of storing files on disk. 

Data too, may be stored on disk or read from tape whenever 

needed. In general, however, data would be read from tape, 

processed, and written out as one procedure. Such a 

procedure is outlined below. 
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Suppose that a file resides on magnetic tape which is 

to be filtered, the background removed and the result placed 

on disk as a file called RESULT, and a plot made of the 

filtered-only data. The programs to be run need only be 

listed [assumed compiled versions] as follows; 

RESTAPE(MT=l) 
LABEL(TAPE18,D=556,MT,F=L,LB=KU,VSN=7Ul248,PO=W) 

[specifies tape parameters for CDC computer] 

GRAB,PLOTVER. 
LIBRARY,PLOTVER. [ specifies plot-package for computer] 

GET, TAPEIN, FILTER, BACKGR, PLOT!, MINUS. 

TAPEIN. [reads data (100,200) and puts into TAPE3] 

FILTER. [reads data (0.75 =gain) and removes toes] 

RENAME(TAPE3 = TAPE4). 

PLOTl. 

BACKGR. 

MINUS. 

[plots intermediate result now named TAPE3] 

[generate background into TAPE4] 

[subtract background, result in TAPE7] 

SAVE(RESULT =TAPE?). 

/EOR. [these numbers are read as data] 

100 200 

/EOR. 

0.75 

EXIT. 



PROGRAH FILTRE(INPUT,OUTPUT,TAPE3,TAPE4,TAPE10=INPUT) 
* 
* ••• A NON-INTERACTIVE TOE-REMOVAL PROGRAM ••• R.TERVO JANI81 
* 
* THIS PROGRAM READS AN 8K SPECTRUM FROM .TAPE3. 
* AND WRITES THE TOE-LESS SPECTRUM INTO .TAPE4. 
* >>>> GAIN r1UST BE PROVIDED IN PROCEDURE FILE <<<< 
* 

* 

* 

* 

COMPLEX PEAKFFT, SPECTRA(8192),TOE(8192),FILTER(8192) 
DIMENSION IWK(l4) 
EQUIVALENCE (TOE,FILTER) 

DATA ,\REAIO. I 

REWIND3 
REWIND4 

DO 1 J=l , 8192 
1 TOE(J) = CMPLX(O.,O.) 

* THIS PART CREATES THE PEAK-WITH-TOE MODEL ••• 
* 

* 
* 

* 

* 

* 

READ(lO,*) GAIN 
LENGTH=INT(230.IGAIN) 
LHEIGHT=LENGTH 
TOEPERC=.35 

DO 2 J=l , LENGTH 
TOE(J) (FLOAT(LHEIGHT-J)) 

2 AREA AREA+ FLOAT(LHEIGHT-J) 

TOE(l) 
PEAKFFT 

TOE(l)+((AREA*(l.-TOEPERC)ITOEPERC)) 
TOE(1) 

CALL FFT2C{TOE,l3,IWK) 

*TRANSFORM THE TOE MODEL (STILL CALLED .TOE.) 
*AND DIVIDE TO GIVE THE SOUGHT FUNCTION, CALLED FILTER{X). 
* 

DO 3 ,J=l , 8192 
FILTER(J) = PEAKFFT I TOE(J) 

* 
* THE FILTER COMPLETE, THE SPECTRA MAY NOW BE READ IN 
* 

* 

* 

* 

READ I. 3, *) !TEMP 
3 SPEC~RA(J) = CMPLX(FLOAT(ITEMP),O.) 

CALL FFT2C(SPECTRA,13,IWK) 

DO 4 J=l , 8192 
SPECTRA(J) = FILTER{J) * SPECTRA{J) 

4 SPECTRA(J) = CMPLX(REAL{SPECTRA(J) ),-AIMAG(SPECTRA{J))) 

* AFTER ANO'rHER TRANSFORMATION, THE RESULT IS IN SPECTRA(X) 
* 

CALL ~FT2C (SPECTRA, 13, H~K) 
* 
* SPECTRA(X) MUST BE DIVIDED BY .8192. TO NORMALIZE 
* SEND FINISHED DATA OUT VIA .TAPE4. 
* 

* 

DO 5 J=1 , 8192 
5 WRITE(4,*) MAX1( (REAL(SPECTRA(J)) I 8192.) , 0.) 

STOP 
END 



* 

PROGRAM BACKGR(INPUT,OUTPUT,TAPE4,TAPE3) 
DIMENSION MINIMA(3000),NSPEC(8192) 
DATA NSPECI8192( 0) I, r-~INIMAI3000 ( 0) I 

* A BACKGROUND GENERATION PROGRAM R.TERVO OCTI81 
* 
* READ SPECTRUM IN FROM .TAPE3. 
* ~JRITE BACKGROUND INTO • TAPE4. 
* 

* 

* 

* 

SIGMA(X,NCHAN) 
REWIND ..:· 
REWIND 4 

NSPEC(NCHAN) +X* SQRT(FLOAT(NSPEC(NCHAN))) 

DO 1 J= 1 , 8192 
READ(3,*) NSPEC{J) 

1 NSPEC(J) = MAXO{ NSPEC{J) 1 0 ) 

MINTOTL = 0 
PREVIUS = 999999 

* ADDRESSES OF DEFINED LOCAL MINIMA ARE STORED, 
* IGNORING POINTS > 3*SIGMA ABOVE PREVIOUS MINIMUM 
* 

* 

* 

DO 2 J=l , 8192 
IF(NSPEC(J).GE.NSPEC(J-l).OR.NSPEC{J).GE.NSPEC(J+l)) GOTO 2 
IF(NSPEC(J).GT.PREVIUS) GOTO 2 
PREVIUS = SIGMA( +3. , J ) 
MINTOTL = MINTOTL + 1 
MINIMA(MINTOTL) = J 

2 CONTINUE 

!START = 1 
!WIDTH = 15 

* A QUADRATIC LEAST-SQUARES FIT INTERPOLATES BACKGROUND 
* AT EVERY POI~T, USING THE .!WIDTH. NEAREST MINIMA 
* 

* 
3 

* 

* 

4 
* 

DO 6 J=1 I 8192 
IF(J.EQ.l) GOTO 3 
IF(J..-f.HNIMA(ISTART) .LE.MINIMA(ISTART+IWIDTH)-J) GOTO 5 
IF{ISTART.GE.MINTOTL - !WIDTH) GOTO 5 
!START = !START + 1 

X1 0 
X2 0 
X3 0 
X4 0 
Y1 0 
YX 0 
YXX 0 
N HHDTH 

DO 4 K=1 ' N y NSPEC(MINIMA(ISTART+K)) 
X MINIMA(ISTART + K) - I-UNIMA( !START) 

X1 X1 + X 
X2 X2 + X*X 
X3 X3 + X*X*X 
X4 X4 + X*X*X*X 
Y1 Yl + y 

YX YX + Y*X 
YXX YXX+ Y*X*X 

D= 1 I ( N*(X4*X2-X3*X3 -X1*(X4*Xl-X2*X3 ) +X2*(X3*X1-X2*X2 ) 
A= D * (Y1*(X4*X2-X3*X3 ) -Xl*(X4*YX-X3*YXX) +X2*(X3*YX-X2*YXX) 
B= D * ( N*(X4*YX-YXX*X3) -Y1*(X4*Xl-X3*X2 ) +X2*(Xl*YXX-X2*YX) 
C= D * ( N*(YXX*X2-X3*YX) -Xl*(YXX*Xl-X2*YX) +Yl*(X3*X1-X2*X2 ) 

* 
5 X J MINIMA(ISTART) 

* 
6 WRITE(4,*} MAX!( A + B*X + C*X*X 0.0 } 

* 
STOP 

END 



PROGRAM PLOT1(INPUT,OUTPUT,TAPE3) 
* * A PLOTTING PROGRAM R.TERVO FEV/81 
* * THIS PROGRAM PLOTS AN 8K INTEGER FILE FROM .TAPE3. 
* 

REWIND3 
* 

CALL P~TIN(400. , 0600. , 0.5 I 0.5 I 0.0 I 8193. I o.o , 65000.) 
* -------·----XSCALE--YSCALE---XO----YO---XMIN--XMAX----YMIN--YMAX---
* 

* 

* 

* 

* 

* 

DO 1 J = 1 1 8192 
READ(3,*) !TEMP 
TEMP = AMAXO( ITEMP 1 0 
CALL UNITTO( FLOAT(J) 

IF(YP.LT.O.) YP = 0. 
IF(YP.GT.10.} YP = 10. 

CALL PLOT ( XP 1 YP , 2 
l CONTINUE 

300.+ TEMP I XP I YP ) 

CALL GRIDGS( o.o , 0.26 I 0.25 , 0.04, 10 , 0 , 81 , 0 ) 

CALL NEWPEN ( 5) 

DO 2 J=l , 8 
ENCODE(l,lOO,BCD) J 
XL=FLOAT(J) * 2.5 

2 CALL LETTER( 1 , .22 , 0. , XL , 0.02 , BCD ) 
100 FOru1l~T(I1} 

CALL PLOT(O.Ol , 0.01 , -3) 

STOP 
END 



PROGRAM PLOT2(INPUT 1 0UTPUT 1 TAPE3 1 TAPE4) 
* 
* A PLOTTING PRGGRAM R.TERVO SEPT/81 

* 
*THIS PROGRAM READS AND PLOTS DATA FROM TWO FILES •••• 
* • TAPE3. AND • TAPE4. 1 BOTH ON THE SAr1E GRAPH , 
* RIGHT ON TOP OF EACH OTHER. 

* 
* ADJACENT POINTS ARE SUMMED AND THE Y-SCALE IS HALVED 
* 

* 

REWIND 3 
REWIND 4 

CALL PLTIN(400. I 1200. I 0.5 , 0.5 I 0.0 I 8193. I o.o I 65000.) 
* -----------XSCALE--YSCALE---XO----YO---XMIN--XMAX----YMIN--YMAX---
* 

* 
* 

* 

* 

* 

DO 1 J = 1 1 8192 1 2 
READ(3 1 *) IFIRST 
READ(3 1 *) !SECOND 
POINT = AMAXO( 0 I !FIRST + !SECOND ) 
CALL UNITTO( FLOAT(J) I 1000.+ POINT I XP I YP ) 

IF(YP.GT.9.) YP = 9. 
1 CALL PLOT( XP I yp I 2 ) 

CALL PLOT( 0.01 , 0.01 , 3 ) 

DO 2 J = 1 1 8192,2 
READ(4,*) !FIRST 
READ(4 1 *) !SECOND 
POINT = AMAXO( 0 I !FIRST + !SECOND ) 
CALL UNITTO( FLOAT(J) , 1000.+ POINT 

IF ( YP" GT • 9 • } YP = 9 • 
2 CALL PLO~( XP , YP , 2 ) 

I XP , YP } 

CALL GRIDGS( 0. , .26 , .25 , .04 , 10 1 0 , 81 , 0 } 
CALL NEHPEN(5) 

DO 3 J=1 , 8 
ENCODE( 1,200,BCD } J 
XL = FLOAT(J) * 2.5 

3 CALL LETTER( 1 , .22 , 0. , XL , .02 , BCD } 
200 FORMAT (I1} 

CALL PLOT(.01 1 .01 , -3 } 

STOP 
END 



PROGRM1 PLOTL2 (INPUT ,OUTPUT ,TAPE3 ,TAPE4) 
* 
* A LOGARITHMIC PLOTTING PROGRAM R.TERVO OCT/81 
* 
*THIS PROGRAM READS AND PLOTS DATA FROM TWO FILES •••• 
* .TAPE3. AND .TAPE4. , BOTH ON THE SAME GRAPH , 
* RIGHT ON TOP OF CACH OTHER. 
* 
* ADJACENT POINTS ARE SUMMED AND THE Y-SCALE IS HALVED 
* 

* 

REWIND 3 
REWIND 4 

CALL PLTIN(400. , 2. , 0.5 , 0.5 , 0.0 , 8193. , 0.0 , 12. ) 
* -----------XSCALE--YSCALE---XO----YO---XMIN--XMAX----YMIN--YMAX---
* 

* 

* 

* 

* 

* 

DO 1 J = 1,8192,2 
READ(3,*) !FIRST 
READ(3,*) !SECOND 
POINT = AMAXO( 0 , !FIRST + !SECOND 
CALL UNITTO( FLOAT(J) , 1 + ALOG( 1. + POINT ) , XP , YP ) 

IF(YP.GT.9.) YP = 9. 
CALL PLOT( XP , YP , 2 

1 CONTINUE 

CALL PLOT( 0.01 , 0.01 , 3 ) 

DO 2 J = 1,8192,2 
READ(4,*) I FIRST 
READ(4,*) I SECOND 
POINT = AMAXO( 0 , I FIRST + I SECOND ) 
CALL UNITTO( FLOAT(J) , 1 + ALOG( 1. + POINT ) , XP , YP ) 

IF( YP.GT<9. ) YP 9. 
CALL PLOT( XP , YP , 2 ) 

2 CONTINUE 

CALL GRIDGS( o. , .26 , .25 , .04 , 10 , 0 , 81 , 0 ) 
CALL NEWPEH( 5) 

CALL LETTER( 8 , .22 , 0. , .02 , .02 , "LOG PLOT" ) 
DO 3 J=1 , 3 

ENCODE( 1,200,BCD ) J 
XL = FLOAT(J) * 2.5 

3 CALL LETTER( 1 , .22 , 0. , XL , .02 , BCD ) 
200 FORMAT (11) 

CALL PLOT(.01 , .01 , -3 ) 

STOP 
END 



PROGRAM MH!US (INPUT ,OUTPUT ,TAPE3 ,TAPE4 ,TAPE7) 
* 
* A SUBTRACTION ROUTINE R.TERVO MAR/81 
* 
* 
* 

.TAPE7. .TAPEl. - .TAPE4. 

* NEGATIVE RESULTS ARE SET TO ZERO 
* 

* 

* 

* 

* 

* 

* 

DIMENSION KTHREE(8192),KFOUR(8192) 

REWIND 3 
REWIND 4 
REHIND 7 

READ(3,*) (KTHREE(J),J=1 , 8192) 
READ(4,*) (KFOUR(J) ,J=1 , 8192) 

DO 1 J=1 , 8192 
1 KFOUR(J) = MAXO( KTHREE(J) - KFOUR(J) , 0 ) 

WRITE(7,*) (KFOUR(J),~=1 , 8192) 

STOP 
END 

PROGRAM LIST( INPUT,OUTPUT,TAPE3 ) 
DIMENSION IDATA(8193) 

* A PRINTING OUT PROGRAM R.TERVO MAI/81 
* 

* 

* 

* 

* 

REWIND3 

DO 1 J= 1 , 8192 
1 READ(3,*) IDATA(J+1) 

DO 3 J= 1 , 8001 , 500 
PRINT200, (M-1,M=1,10) 
DO 2 K= 1 , 500 , 10 
IF(J+K .GE. 8192) STOP 
PRINT100,J+K-2, (IDATA(J+K+L-2),L=1,10) 

2 CONTINUE 
3 CONTINUE 

100 
200 

FORMAT(1E ,I10,3H •. ,10!10) 
FORMAT(1E1,13H ,10I10) 

STOP 
END 
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