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Abstract 

Software Pipelining is a method of instruction scheduling where loops 
are scheduled more efficiently by executing operations from more than one 
iteration of the loop in parallel. Finding an optimal software pipelined schedule 
is NP-complete, but many heuristic algorithms exist. 

In iteration i, a software pipelined loop will execute, in parallel, "stage" 
1 of iteration i, stage 2 of iteration i- 1 and so on until stage k of iteration 
i-k+l. 

We present a new approach to software pipelining based on using a 
hemistic algorithm to explicitly assign each operation to its stage before the 
actual scheduling. 

This explicit assignment allows us to implement control flow mecha­
nisms that are hard to implement with traditional methods of software pipelin­
ing, which do not give us direct control over what stages instructions are as­
signed to. 

iii 



iv 



Acknowledgements 

My sincere thanks go to my supervisors, Dr. Christopher Anand and 
Dr. Wolfram Kahl, for all the support and guidance they provided. Additional 
thanks go to Dr. Anand for a great canoeing and camping trip that helped 
me recover from thesis-induced exhaustion. 

I would also like to thank my family and friends in Austria for support­
ing me from afar, and finally my friends here in Canada for making me feel at 
home here. 

v 



vi 



Contents 

Abstract 

Acknowledgements 

List of Figures 

List of Tables 

1 Introduction 
1.1 Software Pipelining ............. . 

1.1.1 Kernel-based Methods . . 
1.1.2 Modulo Scheduling . . . 
1.1.3 Decomposed Software Pipelining 
1.1.4 Register Issues . . . . . . . . 

1.2 The Cell Synergistic Processor Unit . 

2 Representation 
2.1 Codegraphs 
2.2 Loop Specifications ......... . 
2.3 Maximum Lifetime and Loopability . 
2.4 Loop Termination . 
2.5 Example 0 • • • 

3 Theory of St&ging 
3.1 Pipelining Thansformation 
3.2 Prologue and Epilogue . . . 
3.3 Loop Termination Revisited 
3. 4 Correctness 
3.5 Example . . . . . . . . . . . 

vii 

iii 

v 

ix 

xi 

1 
3 
4 
4 
4 
4 
5 

7 
7 

10 
11 
13 
13 

17 
19 
23 
25 
26 
26 



4 Heuristic Staging 29 
4.1 Height and Depth . ..... 30 
4.2 Stage Constraints . . 32 
4.3 Stage Separation 34 

5 Merge Scheduling 37 
5.1 Separate Scheduling . 1:1 e It a e a a GO a 37 
5.2 Merging . . . . . . . ......... 40 

5.2.1 Merging without dependences 41 
5.2.2 Merging with antidependences only 42 
5.2.3 Handling forward dependences . . 43 

6 Adding Control Flow- The Multiloop 45 

7 Experimental Results 49 
7.1 Simple Loops 49 
7.2 Multiloop '" e a a II • e 54 

8 Conclusions & Outlook 59 

viii 



List of Figures 

2.1 Simple codegraphs ..... o •••••••• 

2.2 Loop that squares all elements in an array 
203 Improved Loop for Software Pipelining .. 0 

301 
3.2 
303 
3.4 
305 
306 
3.7 

Software pipelining with three stages .... 
Inter-iteration dependences in a pipelined loop .. 
Splitting a codegraph into three stages . . . 0 • 

Putting the stages together in parallel .. 
Prologue of loop with three stages . . 
Prologue of loop with three stages . . . 
Pipelined loop, with three stages . 0 • 

8 
14 
16 

18 
19 
21 
22 
24 
27 
28 

4.1 Transforn1ing parts of a codegraph to a minimum cut problem 35 

501 Avoiding dependence cycles when scheduling seperately . . . . 39 

ix 



X 



List of Tables 

7.1 Results of scheduling math functions in simple loops for un-
rolling factors 1 (no unrolling) and 2 . . . . . . . . . . . . . . 50 

7.2 Results of scheduling math functions in simple loops for un-
rolling factors 3 and 4 . . . . . . . . . . . . . . . . . . . . . . 51 

7.3 Merge Scheduling vs. List Scheduling, unrolling factors 1 and 2 52 
7.4 Merge Scheduling vs. List Scheduling, unrolling factors 3 and 4 53 
7.5 Schedulin.g results for the 3D resampling multiloop, cases 0 

through 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
7.6 Scheduling results for the 3D resampling multiloop, cases 27 

through 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

xi 



M.Sc. Thesis- W. Thaller- McMaster- Computing and Software 

xii 



Chapten- 1 

Introduction 

With the advent of pipelined execution, instruction scheduling was hom; two 
instructions that do not depend on each other can be executed in parallel, while 
dependences betw~een instructions can force the processor to finish executing 
one instruction before starting to execute another. Among the many possible 
orderings of instructions that produce the same result, the goal is to find one 
that minimises (or comes close to minimising) the number of machine cycles 
required to execute the code. 

Given a piece of straight-line code, that is code without any branches, 
there are two obvious lower bounds to the number of cycles required for an 
optimal schedule. One of them stems from the limited availability of CPU 
resources - the CPU can only execute a limited number of instructions at the 
same time. 

The other lower bound is the sum of instruction latencies through the 
longest path in the data dependency graph. 

In a loop, we can sometimes do better than just to rearrange the in­
structions within the loop body with respect to each other. Hwe can reach the 
resource-constrained lower bound, there is nothing we can do to improve the 
schedule any more~ except, of course, for improvements in instruction selection 
or in the algorithm that is used, which falls outside the scope of this thesis. 

IT, however~· our schedule is latency-constrained, there are some tricks 
that can be used to improve matters. The best known of these is loop un­
rolling or replication, where the loop body is replicated n times, such that 
one loop iteration iin the final schedule does the work of n ·consecutive ''logical 
iterations" in the original code. In addition to making the cost of the branch 
smaller in relation to the cost of the loop body, this frees up some opportunities 
to overlap instructions from different logical iterations. 

However, replication is not actually necessary to allow overlapping of in-
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structions from different logical iterations. Consider a loop with two operations 
that depend on each other, such as (AB)n; this is equivalent to A(BA)n-1B, 
with one important difference: in the transformed loop, the operations A and 
B operate on data from two different logical iterations and therefore may no 
longer depend on each other. 

This work was developed as part of the CocoNUT project, which pre­
pares to produce a system that provides a coherent and consistent path from a 
mathematical specification of signal processing problems to verified and highly 
optimised machine code [ACK+04]. One of the hypotheses of this project is 
that more efficient implementations would be possible if the interface between 
the compiler front and back-ends were more flexible and extensible. 

In this thesis, we present a new software pipelining scheduling method 
related to decomposed software pipelining {section 1.1.3). It consists of a 
heuristic algorithm to assign operations to different pipeline "stages" (chap­
ter 4) and an accurate description of how a non-pipelined loop can be trans­
formed to a pipelined loop once the staging is known (chapter 3). 

In line with the idea of exposing flexible interfaces from the compiler 
backend, the representation of the input for the scheduler (chapter 2) allows 
us to specify inter-iteration dataflow in loops explicitly, even if that causes the 
loop to become unschedulable without software pipelining - in a software­
pipelined loop, it is sometimes possible to use a value that is produced in a 
future iteration (see sections 2.5 and 3.5 for an example of this). 

Taking advantage of our scheduling algorithm's properties, we intro­
duce a limited form of control flow that can be scheduled especially well using 
our algorithm; a multiloop {chapter 6) is a loop that consists of a block of 
common code followed by a "switch" or "case" construct with an arbitrary 
number of different cases. 

In chapter 5, we explore "Merge Scheduling", a novel approach to 
scheduling the output of our stage assignment heuristic, based on the idea 
of scheduling the stages separately and then "merging" them into one using a 
dynamic programming algorithm. 

Finallly, we give experimental results for our algorithms for our target 
architecture of choice, the Cell Synergistic Processor Unit (see section 1.2 and 
[IBM06]). 

The remainder of this chapter will give a very brief survey of other 
approaches to software pipelining and to the relevant aspects of the Cell ar­
chitecture. 

2 
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1.1 Software Pipelining 

Software Pipelining [ AJLA95] is the problem of finding a schedule for a loop 
while honoring both dependence and resource constraints, but without requir­
ing that one iteration of the loop is finished before the next iteration starts. 

The loop contains a set of operations opi which are executed once in 
each iteration; we refer to the instance of operation opi in iteration j as ( opi, j). 

Resource constraints restrict which operations can be scheduled in the 
same cycle. Dependence constraints restrict the relative ordering of the op­
erations and also may require a certain number of cycles (latency) to pass 
between two instructions. 

There are three kinds of dependence constraints: 

data dependenc~e (read after write) Operation A calculates a value; op­
eration B uses this value, so B has to be scheduled after A. Most instruc­
tions on most architectures take more than one machine cycle until the 
data is actually available (latency). 

antidependence (write after read) Operation A uses a value that will be 
overwritten by operation B, so operation A has to be scheduled before 
operation B. 

output dependence (write after write) Both operations A and B store 
their result in the same location, so the order of execution matters. 

Dependences between two operations in the same iteration are called 
loop independent; dependences between different iterations of the loop are 
called loop carriedo 

In the data dependency graph, each node represents an operation opi. 
Different instances ( opi,j) and ( opi,j) of that operation are represented by 
the same node. Edges in the dependency graph are labelled with the required 
latency (for data dependences) and with the difference in iterations ( 0 for loop 
independent dependences). 

Let us consider the schedule for a completely unrolled loop; in conven­
tional scheduling, all operations of iteration j will have been issued before the 
first operation of iteration j + 1 is issued. In a software-pipelined loop, this is 
not the case; iteration j + 1 will be initiated before iteration j completes. 

We require the unrolled schedule to reach a repeating pattern after a 
short while (otherwise, the result would be code bloat proportional to the num­
ber of iterations). The number of cycles between the start of two consecutive 
(but overlapping) iterations is termed the initiation interval, or ;\. 

3 
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1.1.1 Kernel-based Methods 

One approach to software pipelines is to completely rmroll the loop, run a 
conventional scheduling algorithm on it and wait for a repeating pattern to 
emerge. The drawbacks to this approach are that a repeating pattern might 
not emerge under all circumstances, and that the resulting kernel might be 
longer than desired, i.e. contain multiple copies of each operation. 

1.1.2 Modulo Scheduling 

In modulo scheduling [RG81], the A is chosen beforehand; then, instructions 
are scheduled into this limited space, backtracking as required. The problem 
has been shown to be NP-complete; various heuristics for cutting down the 
search space to a feasible size exist (e.g. [Lam88], [RGSL96]). 

1.1.3 Decomposed Software Pipelining 

Decomposed Software Pipelining [WEJS94; GS94; CDR98] approaches the 
software pipelining problem by decomposing it into two separate problems; 
first, the the problem is transformed into an acyclic scheduling problem by 
taking into account dependence constraints; second, resource constraints are 
taken into account by a classical scheduling algorithm, e.g. list scheduling. 

1.1.4 Register Issues 

If two instances of the same operation, ( opi, j) and ( opi, j + 1) write their 
output to the same location, this introduces loop carried antidependences from 
all consumers of ( opi, j) to ( opi, j + 1); the value has to be used before it is 
overwritten. This means that the longest lifetime the output of opi can have 
is A cycles. 

Special hardware support for software pipelining has been proposed and 
implemented in the past [RYYT89; RST92]; in a rotating register file, several 
instances of a named register exists; a special register, the iteration control 
register (ICR) is used to select the instance to be used. 

Unfortunately, rotating register files have not become commonplace; 
without rotating register files, we are faced with a choice: to accept the added 
antidependences and their consequences on the achievable A, or to ignore them 
and simulate the effect of rotating register files in another way: Modulo variable 
expansion [Lam88] first replicates the loop body a few times; instances of 
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opi from consecutive iterations have now become separate instructions in the 
schedule, and can be made to explicitly reference different registers. 

1.2 The Cell Synergistic Processor Unit 

Our current system targets IBM's and Sony's Cell Broadband Engine architec­
ture [IBM06], more specifically, the "Synergistic Processor Units" of the Cell 
processor. 

The Cell Broadband Engine Processor is a single-chip multiprocessor 
with nine processing units. One of these is the PowerPC-compatible "Pow­
erPC Processor Unit" (PPU) which is intended to run the operating system 
and handle the more control-intensive tasks. The other processing units are 
eight identical "Synergistic Processing Units" (SPUs); these are processors 
optimised for high-speed computation tasks. 

Each SPU has its own 256KB of memory, or local store, for instructions 
and data, and a large register file of 128 general purpose registers of 128 bits 
each. Data is transferred between the local stores and main memory using 
DMA transfers. The SPU instruction set is a SIMD (single instruction multiple 
data) instruction set; all instructions operate on 128-bit vectors. 

Up to two instructions are issued in-order each cycle from two separate 
pipelines; every instruction can only execute in one of the pipelines, depending 
on its type. 

This allows us to model the processor as having just two execution units; 
each instruction op requires a specific unit, unit( op ). Two instructions op1 and 
OP2 (whose dependence constraints have been satisfied) can be scheduled in 
the same cycle iff unit( op1) f= unit( op2 ). 

Another noteworthy feature of the SPU architecture is the absence of 
condition registers; conditional branch instructions will simply compare a word 
in a general purpose register to zero. Of particular interest is also the "hint for 
branch" instruction hbr which can be used to explicitly inform the processor 
of the target a cert.ain branch will jump to. When scheduled early enough in a 
loop, this eliminates all pipeline stalls due to branch misprediction, even when 
the branch in question is an indirect branch (branch to a computed address), 
as is required for a multiloop (see chapter 6). 

5 
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Chapter 2 

Representation 

2.1 Codegraphs 

In our system, a loop body before scheduling is represented by a "codegraph". 
This section smnmarises and adapts definitions from [KAC06] for our purposes. 

A codegraph is a hypergraph with a sequence of input nodes and a 
sequence of output nodes. The hyperedges of the graph are labelled with 
machine instructions and their immediate arguments, i.e. any constants that 
are directly encoded in the opcode, but no source or target registers. Each 
hyperedge has zero or more ordered input tentacles and one or more ordered 
output tentacles, connected to nodes in the codegraph. Each node in the 
codegraph is labelled with a type. 

Definition 2.1 A code graph G = (N, e, In, Out, src, trg, nType, elab) over 
an edge label set Elab and a set of types NType consists of 

• a set .N of nodes and a set e of hyperedges (or edges), 

• two node sequences In, Out: .N* containing the input nodes and output 
nodes of the code graph, 

• two functions src, trg : E ~ N* assigning each hyperedge the sequence of 
its source nodes and target nodes respectively, 

• a function nType: N ~ NType assigning each node its type, and 

• a function elab : e ~ Elab assigning each hyperedge its edge label, 
where the label has to be compatible with the numbers of source and target 
nodes of the edge, and with the types of those nodes. D 

7 
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T TTTT 
X state x addr index 

l 
state' 

~ 
Figure 2.1: Simple codegraphs. Left: a codegraph that squares a vector of 
numbers using the SPU instruction fm (floating point multiply); right: a code­
graph with the state-affecting store instruction stqx 

Definition 2.2 The function consumers : N -+ P £ maps a node to the set of 
all hyperedges in whose source list it appears {its consumers). Likewise, the 
function producers : N -+ JP> £ maps a node to the set of all hyperedges in whose 
target list it appears {its producers}. 0 

Definition 2.3 A codegraph is called executable if 

• It is acyclic. 

• For every edge, an output node is reachable from at least one target node 
of the edge. 

• Every node is either an input node or the target node of exactly one 
edge. 0 

At the left of figure 2.1, you can see a very simple codegraph that squares one 
vector of four floating point values using the SPU instruction fm, floating point 
multiply. To make the figures easier to talk about, we will label each node 
in the codegraph with a unique name; remember, however, that nodes in the 
codegraph actually only have types, not names. The codegraph in the figure 
has two nodes, which we name x and y, and one edge, labeled with the SPU 
instruction. The sequence of input nodes contains only x, and y is the only 

8 
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output node. The input and output sequences are visualised by the nmnbered 
triangles connected to the nodes in the figure. The triangles themselves are 
not nodes or edges of the graph. 

The set of possible types consists of one type for each type of register 
available in the target architecture - in the case of the Cell SPU, there is just 
one type of register -, and the type state. 

The state type exists to account for the fact that some machine in­
structions cannot be modelled as functions from input values to output values; 
examples include load, store, and branch hint instructions; we do not support 
actual branch instructions in the code graph. A value of type state is a token 
that represents all the state that can be affected by an instruction, includ­
ing, but not limited to, memory (in our case, the Cell SPU's local store), and 
the state of the branch processor (which is affected by the hint for branch 
instruction). 

A state-affecting instruction, like the store instruction stqx (store quad­
word indexed} shown on the right of figure 2.1, is then modelled as taking an 
additional parameter of type state, and returning a modified state. The figures 
use slanted text to distinguish nodes of type state, like state and state', from 
nodes of the register type, like addr. 

Sometimes, we want to work with independent aspects of state, e.g. 
with different, non-overlapping areas of memory, without imposing a sequential 
ordering on the instructions that work with different state. In this case, we 
will just use two separate state tokens in the codegraph. Use of two separate 
state tokens is taken as an assertion that the operations on the two separate 
tokens are independent from each other; this assertion is not checked by our 
system. 

To help describe transformations of codegraphs, we use a theory based 
on category theory, more specifically on gs-monoidal categories; this is de­
scribed in detail in [KAC06]; for the purposes of this thesis, it is sufficient to 
summarise the algebra defined by that theory without requiring any ftuther 
understanding of category theory. 

Every codegraph G has a signature which consists of the sequence of 
the types of its input nodes and the sequence of the types of its output nodes; 
it is written as G : I -)' 0. Type sequences can be concatenated using the 
associative operator x; the empty type sequence, denoted by n, is both a right 
and left unit for x. 

For two codegraphs G : A -)' B and H : B -)' C, the codegraph 
denoted A'B : A -)' Cis their sequential composition; G's output nodes are 
identified with H's input nodes. 

9 
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Two codegraphs G : A ~ B and H : C ~ D can also be composed in 
parallel using the ® operator, producing G ® H : A x C -t B x D. 

For a type sequence T, we can construct several basic codegraphs that 
do not contain any edges: 

• liT : T -t T is the identity codegraph over that type sequence; it contains 
no edges, and each of its nodes is both an input node and an output node 
in the corresponding position, with the types taken from T. The identity 
codegraph is both a right and left unit for sequential composition. 

• V T : T ~ T x T is a codegraph without operations that "duplicates" its 
input; the list of output nodes equals the list of input nodes concatenated 
with itself. 

• As a generalisation of the above, V'T : T ~ T X rn is a codegraph 
without operations that replicates its input n times; the list of output 
nodes equals the list of input nodes concatenated with itself n times. 

• !T : T -t 1 contains distinct input nodes, and nothing else. Informally 
speaking, it ignores its input and produces no output. 

2.2 Loop Specifications 

To specify a loop, rather than just a loop body, we need to specify what values 
are communicated between different iterations of the loop. 

Definition 2.4 A loop specification is a tuple ( G, d) containing 

• an executable codegraph G : F x K ~ F x C 

• a sequence of integers d, one for each element of F. D 

The input of the codegraph consists of two parts; for the left part, 
with types F, there are corresponding outputs and an associated integer d. 
These inputs and outputs represent the values that are communicated between 
different iterations of the loop. In any iteration i, the value of each of these 
inputs is equal to the value of the corresponding output in iteration i + d. 

Hence, the usual case of using an output from the previous iteration is 
represented by d = -1. A value of d of less than -1 means that the input for 
the codegraph should be an output from further back in the past; this can, 
for example, be achieved by storing the value in an array so that it won't be 
overwritten by the next iteration. 

10 
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A value of d = 0 means that the input should be equal to the output 
from the same iteration; alternatively, we could just use a single interior node 
in place of the input node and the output node. 

An input/ output pair with an associated d greater than 0 m~ans that 
the input for iteration i should be the output of some future iteration i + d. 
This is, of course, impossible if the loop is scheduled in the conventional way, 
without software pipelining. In the presence of software pipelining, scheduling 
loop specifications with positive d values sometimes becomes possible, as we 
will see in chapter 3. For an example of how d values other than -1 might be 
used in a loop specification, refer to section 2.5. 

In addition to the inputs with corresponding outputs (F), the code­
graph G also has another group of inputs, of types K. These inputs are called 
constant inputs and represent all values that are passed to the loop from the 
outside but are not changed by the loop; these include unchanging parameters 
for the loop and constants that cannot be part of the opcode of a machine 
language instruction (and therefore included in the label of a hyperedge in 
the codegraph). In other words, the constant inputs are those values that are 
required to be available in a register when the loop starts and throughout the 
execution of the loop. 

Finally, G also has a group of outputs of types C, called the control 
outputs. These control outputs are used to control when the loop should 
terminate; their meaning is described in more detail in section 2.4. 

2.3 Maxi1num Lifetime and Loopability 

We impose one additional restriction on the scheduler's output: Every opera­
tion in the codegraph must appear exactly once in the scheduled loop body, 
and every instruction in the scheduled loop body must appear in the code­
graph. We do not want the scheduler to insert additional instructions, like 
extra register-to-r<egister moves. 

As a consequence, a node in the codegraph will be assigned to at most 
one register for its entire lifetime. The lifetime of one node in one iteration also 
cannot overlap with the lifetime of the same node in another iteration (that is 
being executed at the same time due to software pipelining); we make it the 
duty of the scheduler to limit the lifetimmes to less than.\, so that modulo 
variable expansion is never required. 

Forbidding long lifetimes can have a negative impact on the achieved .,\. 
However, as the codegraph does not explicitly specify locations for temporary 
values, modulo variable expansion becomes nothing but a fancy term for loop 

11 
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unrolling; we can therefore achieve the effects of longer lifetimes and modulo 
variable expansion by replicating the loop body a few times before running the 
software pipeliner. 

This has the advantage that we can always avoid having to use modulo 
variable expansion, which is crucial for scheduling multiloops (see chapter 6). 

Not all loop specifications can be scheduled as loops without adding 
extra instructions. First, we consider the situation without software pipelining, 
i.e. when all operations scheduled in the loop body must operate on data 
belonging to the same iteration. 

If an input node in the codegraph is also an output node, then they 
must be an input and an output in corresponding positions in F. The value 
of the node then has to be the same for all iterations; the input-output pair 
can therefore be converted to a constant input by removing the node from 
the output sequence of the codegraph and moving its position in the input 
sequence to the right to make it part of K rather than of F. 

The case where a node is both an input and the corresponding output 
is easy to avoid by making it a constant instead; in other cases it is easy 
to explicitly specify an appropriate register-to-register move instruction. We 
therefore require the input codegraph to have no input node that is also an 
output. 

If a value is calculated by an instruction in iteration i, the same in­
struction in iteration i + 1 will overwrite it with a new value. Therefore, to 
achieve d < -1, an additional instruction has to be added to move the value 
to some other location before it gets destroyed. 

Positive values for d are impossible: Using results from iteration i + 
d, d > 0 in iteration i requires iteration i + d to start before iteration i has 
finished (software pipelining or reordering of iterations). 

Definition 2.5 A loop specification is loopable if 

• All d are -1 or 0. 

• No input is also an output. D 

An input-output pair with d = 0 is equivalent to identifying the input node 
with the output node (and removing them from the codegraph's input and 
output sequences). If this transformation succeeds without introducing cycles 
into the codegraph, we get a strictly loopable loop specification: 

Definition 2.6 A loop specification is strictly loopable if 

12 
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• All d are -1. 

• No input is also an output. D 

2.4 Loop Termination 

Informally speakh1.g, the control outputs (C) determine whether the loop 
should continue after the current iteration. The control outputs are connected 
directly to the branch instruction at the end of the loop; depending on what 
kind branch instruction is used for the loop, they can have different meanings. 

For the Cell SPU target architecture, we currently use the following 
variants: 

• The loop branch is a brnz (branch if not zero word) instruction; the loop 
continues if the first component of the only control output (which is, as 
are all values on the SPU, a vector) is non-zero. 

• The loop branch is a bi {branch indirect) instruction; the first component 
of the only control output should contain the address of either the first 
instruction of the loop or of the first instruction after the loop. 

• The loop branch is a bi instruction, as above; additionally, a second 
control output is a state token that is generated by a hbr (hint for branch) 
instruction. 

2.5 Example 

As a toy example, let us specify and schedule a loop that takes an array of 
floating point nwnbers as input and writes the square of every element to 
a separate output array. We can start with the codegraph from Figure 2.1, 
but to get a loop, we need to add instructions to load values from the input 
array, store values to the output array, update a loop counter, and calculate a 
loop condition as an output of the codegraph. The actual branch instruction 
will not be part of our codegraph (after all, we do not need an instruction 
scheduling algorithm to tell us that the branch instruction should occur right 
after the end of the loop body). 

Figure 2.2 shows a loop specification for this loop; the d vector for the 
loop specification is visualised by adding dashed, labelled arcs from the output 
to the corresponding input in the codegraph. The instruction lqd 0 loads a 
vector from the SPU's local store; its inputs are a state token and the address 

13 
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Figure 2.2: Loop that squares all elements in an array 

of the vector to load, and its outputs are a state token and the vector that 
was loaded. For storing a vector, we use the stqx instruction; its inputs are 
a state token, the value to be stored, and two values which are added to yield 
the target address in the SPU's local store. We use separate state tokens for 
loading and storing, which are both passed on from one iteration to the next 
(d = -1). 

The loop counter is incremented by 16 (the size in bytes of a vector 
value) in every iteration using the ai 16 instruction and passed on to the 
next iteration ( d = -1). We play a little SPU-specific game here: we take 
advantage of the fact that all values on the SPU are vectors, and the ai 
instruction separately affects all four 32-bit components of the register. We 
initialise the first component of the vector to the address of the input array 
(the lqd and stqx instructions always use the first component of their address 
arguments). The last component will contain -16n, where n is the number of 
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times the loop should be executed; it will reach zero after the nth iteration. 
The stqx instruction stores the vector y at the address that results from 

adding the first components of the vectors ptrDiff and counter'. It conswnes 
the state token outS tate and produces a new state token, outS tate'. 

Finally, the instruction rotqbyi 4 rotates the vector so that the last 
component is moved to the first component, where it is needed for the condi­
tional branch. 

The values counter and counter' will occupy the same register (other­
wise, we would need to insert a register-to-register move instruction), so there 
is a data antidependence between the stqx and the ai 16. The stqx has to 
be scheduled before the ai because an input it needs (counter') is destroyed 
by ai. 

We can novv- estimate a lower bound for the nwnber of cycles this loop 
will take without software pipelining; we need to add up latencies, plus one 
cycle for the antidependence between stqd and ai: 

6 (lqx) + 6 (fm) + 1 (antidependence) + 2 (ai) + 4 (rotqbyi) = 19 

Nineteen cycles is nothing to be proud of for a loop with just five 
instructions. The throughput can be increased by unrolling the loop or by 
applying software pipelining. 

To make software pipelining this loop easier, we can also consider de­
riving the loop condition and the store address from the counter values for a 
different iteration, as shown in Figure 2.3. The value counter' is now mentioned 
twice in the output list of the codegraph; one occurence still corresponds to the 
counter input with d = -1, that is, counter in iteration i is the value computed 
by the ai instruction in iteration i - 1. The other counter' output corresponds 
to a new input counter", which, in iteration i, is the value computed by the 
ai instruction in iteration i + x. 

This loop specification is not semantically equivalent to the earlier one; 
we need to adjust the ptrDiff and the initial value of counter according to the 
value of x. 
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Figure 2.3: Improved Loop for Software Pipelining - use x > 0 to facilitate 
software pipelining 
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Chapter 3 

Theory of Staging 

Software pipelining can be viewed as a transformation of the loop specification. 
Informally speaking, we split up the codegraph into sequential parts, which we 
call stages, and compose them again in parallel to get a new loop body such 
that adding appropriate prologue and epilogue code to the loop yields a loop 
that is equivalent to the original loop. 

For the pmposes of this chapter, we assume a legal assignment to stages 
to be given; a stage assignment is legal when the transformation outlined in 
the next section can transform the loop specification ( G, d) to a loopable loop 
specification ( G', d'). Chapter 4 describes an algorithm for calculating a legal 
stage assignment for a loop specification. 

Consider a loop that we can split into three stages, G~, G2 and G3 • 

In figure 3.1, Gi,j denotes stage Gi operating on data for logical iteration 
j. H we schedule the loop without software pipelining (figure 3.1, left), the 
loop independent data dependences between the stages will prevent us from 
exploiting much parallelism. With software pipelining (figure 3.1, right), these 
dependences are between different iterations of the pipelined loop and therefore 
do not restrict parallelism between the stages. 

Figure 3.2 shows how different values of d can be realised in a pipelined 
loop. When we assign operations to stages (chapter 4), we will need to assign 
stages in such a way that the resulting assignment is legal: 

Definition 3.1 A stage assignment with k stages for a given loop specification 
is considerd legal iff the following conditions are fulfilled: 

• Every operation in the code graph is assigned to exactly one stage in the 
range 1 ... k. 

17 



M.Sc. Thesis - W. Thaller - McMaster - Computing and Software 

i-~-o-T~-1~~-R--~:~--R-:~.:-r: 
I ; -·~"·.,_-c .... -.. _.,:;:. . .. _. -··--r::--.·-:).1- t., -~---..XJ.~- ~·."'··. 1 

'------------------------------------~ 
~--------------------------------~---1 

(=1 I ~~:1MH~2:1_H .~~:1J i 
'------------------------------------~ 

fj~TT~~~:-R--~:~~-R-:;.:-r: 
I --·--lc--¥?4 &MW. · ., _ __.'"_ .. LS ..... $A.~ %.-... ~L ,;t --~..,%R 1 

'------------------------------------~ 
~--------------------------------~---1 

(

3 l G1,3 H G2,3 H Ga,al! 
I . ; ... #co- Jft • s;x .... ;. c-l!t .. ? ,. : ... )12% ~ • .,. ... 1 

'-------------------------------------

~------------------------------------· U = n-1 : 
I I 

l G1 n-1 _... G2 n-1 ~ Gs n-1 : 
I ' ' I I 
I I 
I ~ . . .,»-, ·"-~·· ··< I 

'------------------------------------~ 

r--------------------------------------Prologue 

f]i~7f------------~--..., 

: G r G 
: 1,2 2,1 
I 
I . '· .... -'' ,________________ ---------

--------i 
I 
I 

6 s,o ! 
I 

-~;;':;;;;_:·:..: __ : 
rJ~:=] ____ G;J _________ --------- --------. 
I - I 

~ · G.1:3 G2,2 Ga,1 ... i 
1-------------~-----------------------~ 

Gs,n-2 

Gs,n-1 

Figure 3.1: Software pipelining with three stages; left: loop independent data 
dependences in a non-pipelined loop restrict parallelism; right: the same de­
pendences are now dependences between different iterations of the pipelined 
loop. 

• A value produced by an operation in stage i can be consumed by opera­
tions in stage i and/ or in stage i + 1. 
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Figure 3.2: Inter-iteration dependences in a pipelined loop 

• For an input/ output pair where the output value is produced by an oper­
ation in stage i, the input value can be consumed by operations in stages 
i + d and/ or in stage i + d + 1. 0 

It is tempting to simply split up the codegraph G into k sequentially 
composed subgraphs, the stages Gi: 

G = G1'G2'· .. 'Gk 

and then to recompose them in parallel: 

G' = p,(G1 ® G2 ® ... ® Gk), 

where P is a permutation to make the argument order of the codegraph match 
up. We would then pick an appropriated' to make a new loop specification. 

This approach, however, gets us no closer to actually scheduling a 
software-pipelined loop, as we are potentially violating both conditions for 
being loopable. For one, we have no way of guaranteeing that -1 ~ d' ~ 0. 
Also, output values that are computed in one stage have to be passed through 
the later stages in the sequential composition, and inputs have to be passed 
through the stages before the one where they are consumed. 

3.1 Pipelining Transformation 

We want to do the sequential decomposition in a way that connects inputs 
consumed and outputs produced in a stage Gi directly to the inputs and 
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outputs of G as a whole, without routing them "through" the other stages. 
The individual stages will be 

The Ii inputs of each stage are inputs from F, the Ki are constants 
from K, and Mi-l are outputs from the previous stage. Likewise, the Oi and 
Ck are connected to the output of G, while the Mi are fed into the next stage. 

Due to the obvious lack of a stage before the first stage or a stage after 
the last stage, M0 = Mk = :n. Furthermore, we want all control outputs to 
be generated in the same stage c, so we define ci = 1 for all i =I= c, and 
Cc = C. The "control stage number" c becomes an additional parameter for 
the software pipelining and influences the meaning of the control outputs; see 
section 3.3 for details. 

Because every output node has exactly one producer in G, every ele­
ment ofF will appear in the output list Oi of exactly one stage Gi; inputs, 
however, can appear in the Ji lists more than once. 

We will also have to add a codegraph without any operations at the 
top to rearrange the Ii and Ki to match the order of F x K, and to do the 
same at the bottom to make the order of the Oi match up with F x C: 

The codegraph P: F x K ~ (/1 x K1) x ... x (Ik x Kk) has no hyperedges; 
it will route each input to the place or places (if any) where it appears in 
the input lists of the individual stages; constant inputs can appear on P's 
output list any number to times, other inputs up to twice. The codegraph 
Q : 01 X .•. X ok ~ F X c is a permutation, i.e. a codegraph without 
operations whose nodes each appear exactly once on its input sequence and 
exactly once on its output sequence. Figure 3.3 illustrates how three stages 
would fit together. 

If the stages Gi have been chosen appropriately, we can construct a 
new, loopable, software pipelined loop specification ( G', d') where the stages 
are executed in parallel, but for different "logical iterations", i.e. for different 
iterations of the original loop specification. 

We have stated before that an input value from F can be used in more 
than one stage. 

In every iteration of a software pipelined loop; the value of an input in 
F for two different iterations; if at the top of the pipelined loop, the value is 
available for some logical iteration j, then at some later point in the schedule, 
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Figure 3.3: Splitting a codegraph into three stages 

there will be an instruction that produces the value for iteration j + 1, replacing 
the value for iteration j. 

In the pipelined loop, stage i will operate on logical iteration j + 1 while 
stage i + 1 is still working on logical iteration j. Stage i can access the value 
of the input for logical iteration j + 1 if the consmning instruction is scheduled 
below the producer; in the same iteration of the pipelined loop, stage i + 1 can 
access the value forr logical iteration j if the consuming instruction is scheduled 
above the producer. No other stages have access to a value of the input for 
the logical iteration they are working on. 

Therefore, every input value from F can be used by at most two con­
secutive stages; the corresponding output value appears exactly once in the 
Oi list of exactly one stage, but it must appear twice in the output list of 
G'. One appearance will be associated with a d' = -1 entry in d', the other 
appearance with d' = 0. 

Unused inputs are permissible in codegraphs, so we can simply do this 
for all outputs, even if they are used only once. We define 
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Figure 3.4: Putting the stages together in parallel 

c: = Gi{Voi ® 1lci ® ][Mi) 

The kernel G' : F' x K ~ F' x C of the software-pipelined loop will 
then be 

G' = R'( G~ ® ... ® G~),s, 

where F' = 01 X 01 X M1 X .•. X ok X ok, and s : 01 X 01 X cl X Ml X .•. X ok X 

ok X ck ~ F' X c and R : F' ~ /1 X Kl X M1 X /2 X K2 X ... X Mk-1 X Ik X Kk 
is a codegraph without operations. 

S is constructed such that it moves the C outputs to the end of the 
output list; if the control stage is the last stage (c = k), then S = ][F'xC· 

Figure 3.4) shows how these parts fit together for k = c = 3. 
The entries in d' will be 0 for each first instance of Oi outputs, and -1 

for the second instance of Oi outputs and for the Mi. We will chooseR such 
that: 

• Every Mi input is mapped to the corresponding Mi output; the corre­
sponding d' value is -1. 

• If P maps an input from K to an element of Ki, then R will map that 
same input from K to the same element of Ki (which will, in general, 
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not be in th(e same position in the output of R as it is in the output of 
P). 

• The first occeurence of each Oi input is mapped to the corresponding 
output in /i+d' if such a corresponding output exists, where d is the 
value associated with oi in the original loop specification. 

• The second occurence of each Oi input is mapped to the corresponding 
output in /i+d+l, if such a corresponding output exists. 

3.2 Prologue and Epilogue 

The software-pipellined loop specification is not a drop-in replacement for the 
original loop; after all, it requires intermediate results (Mi) as its input, which 
have to be supplied to the first iteration of the modified loop body. We do this 
by prefixing the modified loop with a prologue, a block of non-looped code 
that initialises the pipeline, as we see in the pipelined loop shown on the right 
of figure 3.1. 

The first time the modified loop body executes, it will execute Gk for 
logical iteration 0, Gk - 1 for logical iteration 1, and G1 for logical iteration 
k -1. The prefix code, therefore, has to execute G1 •.• Gk-l for logical iteration 
0, G1 •.. Gk-2 for logical iteration 1, and so on. 

Likewise, after the last iteration of the software pipelined loop body, 
some logical iterations have been started but not finished. If the software 
pipelined loop body has been executed n - k + 2 times, the latest logical 
iteration that has been completed will be n - k - 3; logical iterations n - k + 2 
through n will have been initiated but not completed. The epilogue code needs 
to execute Gk for iteration n - k + 2, Gk-1 and Gk for iteration n - k + 3, and 
so on, and finally G2 through Gk for iteration n. 

Every iteration of the loop uses output values from earlier iterations as 
inputs, so when the loop starts at logical iteration 0, values have to be supplied 
from the outside, as there are no iterations with negative indices. H an input 
is associated with a d value of less than -1, multiple "initial" values for the 
input have to be supplied, corresponding to the outputs of the non-existant 
iterations d through -1. Inputs with nonnegative values for d, on the other 
hand, do not need any initial values at all. 

Figure 3.5 shows how the loop gets initial values that are conceptually 
the outputs of negative iterations; only the values originating from stage 3 of 
iteration -3 and from stage 2 of iteration -1 are shown in the figure. Not 
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Figure 3.5: Prologue of loop with three stages. Initial values from G3,_3 and 
G2,-1 are shown as arrows. 

all the outputs from those stages are required for loop initialisation; some are 
only required by other negative iterations (dashed arrows). 

To construct a codegraph for the loop prologue we first define init(x) 
to be the primitive codegraph consisting of one hyperedge labeled with initx, 
with no inputs and exactly one output. Using that, we define 

Gi,j = Gi if j ~ 0 
Gi,j = !Mi_1 xiixKi'(init(i,j, 1) x ... x init(i,j, IIi x Mix Gil)) if j < 0 

Here, i is the stage number and j is the logical iteration. For negative j, we do 
not want to generate any code; instead of the codegraph Gi for the stage, we 
construct a codegraph with the same input and output types that ignores all 
its inputs, and whose outputs are the results of hyperedges specially marked 
with the stage, iteration and position of the output. 

We then continue with 

a:,j = Gi,j{V' oi X 1£ci X llMJ, 
so that we can define one slice of the prologue 

Prj= R'( GLj ® ... ® G~,j-k+1 ),s. 
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We resolve all d' = -1 by identifying the corresponding input and output 
nodes, and removing them from the input and output lists. Let the results of 
this transformatiora be Prj : F" x K -+ F" x C. We ignore the control outputs 
from the prologue: 

Next, we compose Pr!!_1 ••• Prf_2 sequentialliy, supplying a copy of the constant 
inputs to each: 

Then, we riemove all unused nodes and edges from which no output is 
reachable from Pr', except for the constant inputs; this makes the codegraph 
executable again. Finally, we remove all init-labelled hyperedges and make 
their target nodes inputs of the prologue (the labels of the in it hyperedges now 
define the meaning of those inputs). 

Construction of the epilogue is symmetric to construction of the pro-
Iogue. 

3.3 Loop Termination Revisited 

In a software pipelined loop, we have little choice but to interpret the control 
outputs based on the pipelined loop body; therefore, their meaning changes 
depending on the value of c, i.e. depending one which stage they are produced 
in. 

If the control outputs evaluate to a value meaning "do not continue" 
in stage c of iteration n, then, the last iteration of the pipelined loop executes 
Gt,n+c-1, ... , Gc,n~ ... , Gk,n+c-k· Including the loop epilogue, the last iteration 
to be executed will be iteration n + c- 1. 

If we are trying to save on code size, we can do without an epilogue 
altogether in many cases; we might need to provide some extra space for 
partial results in any memory areas that the loop stores its results in. Without 
a prologue, if iteration n causes loop termination, the last iteration to be 
completed is iteration n + c - k; additionally, iterations n + c - 1 through 
n + c- k + 1 have been initiated, but not finished. It will depend on the 
particular stage assignment chosen for this loop whether any results for those 
partial iterations will be stored to memory or not. 
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3.4 Correctness 

This thesis does not concern itself with a formal proof that the pipelining 
transformation and the prologue/ epilogue construction yield a transformed 
loop that is equivalent to the original. 

However, we can observe that every stage appears is executed the same 
number of times in the original loop and in the pipelined loop with prologue 
and epilogue. Also, the codegraph R (which governs how the inputs of the 
pipelined loop body are arranged) is constructed at the end of section 3.1 to 
always match up the corresponding inputs and outputs, and taking the ap­
propriate d values into account. The transformation makes some assumptions 
about the assignment of operations to stages, which are all covered by the 
definition of a legal stage assignment given in the introduction to this chapter. 

3.5 Example 

Let us now return to our earlier example and have a look at how we can 
stage the loop specification from figure 2.3 on page 16; this is the variant 
where we can choose a parameter x that will tell the store instruction and the 
loop condition to use the loop counter from a different iteration. We will use 
this loop specification instead of the more straightforward one from figure 2.2 
because it is much more amenable to software pipelining. 

If we schedule the stqx two stages or more after the lqd, then the 
counter value will already have been updated in the meantime; the value for 
the current iteration will not be available any more. In its place, however, 
there is the counter value of a later iteration ready for use in the same register. 
Setting x to a value greater than -1 will therefore allow the load and store 
instructions to be farther apart. 

With x = 1, the stqx and rotqbyi instructions that use counter" can 
be two or three stages after the ai instruction that produces them. If we 
decide on a total of three stages, this means that the ai instruction will be 
in the first stage, and the stqx and rotqbyi instructions will be in the last 
stage. 

Figure 3.6 shows how the codegraph can be split up into three sequen­
tially composed stages. In the example at hand, P ends up being an identity 
codegraph because the inputs used by stage 1 happen to be listed before the 
inputs used by stage 3 in the input sequence· of the original codegraph. 

The loop can then be pipelined by recomposing the stages in parallel, 
as shown in figure 3.7. The vertical positions of the operations indicate where 
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Figure 3.6: Splitting up the loop into three stages. d = ( -1, -1, -1, 1) 

they occur in the final schedule. None of the inputs with d' = 0 (shown 
slightly above and to the left of the inputs with d' = -1) are actually used 
in this example; the nodes a, b, c and d are not used by any operations. 
Transforming the loop specification to a strictly loopable loop specification 
will therefore simply remove them and their corresponding outputs. 

The scheduled loop body takes just 7 cycles to execute; this is just one 
cycle longer than the latency of the multiply and load instructions, and is an 
optimal schedule for this code. 
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Figure 3.7: Pipelined loop, with three stages. 
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Chapter 4 

Heuristic Staging 

We will now present a heuristic algorithm for splitting up a given loop speci­
fication into k stages. This means assigning a stage number in the range 1 .. k 
to each hyperedge in the given codegraph. 

In addition to having to find a legal stage assignment, we want to avoid 
partitioning the codegraph in such a way that: 

1. The latency along the longest path through one of the stages is greater 
than the initiation interval we expect to achieve. 

2. Too many registers are alive accross stages. 

All registers that are alive accross stages will be live at the top of the 
final scheduled loop and will therefore conflict with each other. On the 
other hand, higher register requirements inside a stage can be mitigated 
by good decisions in the later steps. 

3. Too many forward dependences between stages arise between stages. 

An inter-stage forward dependence corresponds to an input/ output pair 
in the pipelined loop specification for which the associated d' = 0. This 
is generally undesirable, because it reduces parallelism between the in­
volved stages; it is especially undesirable when we use the merge schedul­
ing algoritlun (chapter 5) which cannot handle forward dependences well. 

The heuristic method we are going to use is based on using two functions, 
depth and height, that map every operation in the code graph to a nonnegative 
"depth" and "height" value. 

We will use the depth and height values to decide approximately where 
to cut the codegraph into stages. More restrictions are placed on where to split 
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based on the dependences between the operations; finally, from the cuts that 
have not been eliminated earlier, we pick the one that minimises the number 
of values communicated from one stage to the next, i.e. we minimise register 
requirements at the top of the loop. 

The algorithm proceeds as follows: 

1. Initialise a constraints graphS (see section 4.2) that contains our current 
knowledge about the stage assignment. 

2. For i := k down to 2 

(a) Calculate height, depth, htot, and dtot based on the codegraph with 
all operations known to be in stage i + 1 or greater removed (see 
section 4.1) 

(b) Try to mark all operations with height > htot! i as being in stage 
i- 1 or less 

(c) Try to mark all operations with depth > ( i - 1) dtot/ i as being in 
stage i 

(d) Let A be the set of all opoerations known (according to S) to be in 
stage i - 1 or less, and let B be the set of all operations known to 
be in stage i or greater 

(e) Construct Gcut (see section 4.3) 

(f) Run a minimum cut algorithm on Gcut 

(g) Mark all operations in Gcut that are above the minimum cut as 
being in stage i - 1 or less 

(h) Mark all operations in Gcut that are below the minimum cut as 
being in stage i or greater 

3. Extract final stage assignment from S. 

4.1 Height and Depth 

There are several choices for the depth and height functions. The simplest is 
to calculate depth and height based on the latencies of instructions: 

Definition 4.1 Given a codegraph G, 
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• For all n E N, depthL(n) is the depth of the producer of n plus the 
producer's latency, or 0. 

• heightL(n) is the maximum of the heights of all consumers ofn plus their 
respective latencies, or 0. 

• For all e E e, depth L (e) is the maximum of the depths of all sources of 
e. 

• height£( e) is the maximum of the heights of all targets of e. D 

For an operation (a hyperedge) e in the codegraph, the function depth L (e) 
gives a lower bound on the number of cycles that pass between the initiation of 
an iteration and ·when the instruction is issued for that iteration in a software 
pipelined schedule. Likewise, height£( e) gives a lower bound for the number of 
cycles that pass between the completion of the instruction and the completion 
of the last instruction in the iteration. 

Definition 4.2 Given a codegraph G, 

• For all e E E, height u (e) is the number of hyperedges e' that are reachable 
in G from e and for which unit( e') = u when u is chosen such that 
height u (e) becomes maximal. 

• depth u (e) is the number of hyperedges e' that are reachable in reverse 
direction from e and for which unit( e') = u when u is chosen such that 
depth u (e) becomes maximal. D 

The lower bounds provided by height u (e) and depth u (e) stem from the 
fact that only one instruction per unit can be executed in one machine cycle; 
all edges reachable from e have to be executed after it, and all nodes reachable 
in reverse direction have to be executed before it. 

To get the "best of both worlds" , we therefore define 

Definition 4.3 For all e E £, heightLu(e) = max(heightL(e), heightu(e)) and 
depthLu( e) = maa:(depthL( e), depthu( e)). D 

Definition 4.4 Furthermore, we define a total height htot and a total depth 
dtot: 

• htot = max nEN height( n) 

• dtot = max nEN depth ( n) D 
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4.2 Stage Constraints 

Let s be the function that maps each operation to its stage number. During 
the execution of the algorithm, a directed graph S will represent our current 
knowledge about this function. Its nodes are the operations in G, plus an 
additional node z. We define s ( z) = 0. An edge ( x, y, d) (an edge from x to 
y, labeled with the integer d) is taken to denote the constraint 

s(x) + d > s(y). 

Due to the transitivity of 2::::, the shortest path SP(x, y) between two nodes 
can be used to derive new constraints. 

V x, y: s(x) + SP(x, y) 2:::: s(y) 

Specifically, we get: 

V x: -SP(x, z) ~ s(x) ~ SP(z, x) 

Initially, we populate the graph with edges representing the constraints we 
already know: 

• Edges· to and from z to enforce V x: 0 ~ s(x) < k 

• For every edge ( x, y, d) in the dependency graph, edges ( x, y, d + 1) and 
(y, x, -d) 

• Edges forcing all producers of control outputs to be in the last stage. 

Then, we add some more constraints that are likely to yield a better stage 
assignment: 

• Edges forcing the operations with the greatest height to be in the first 
stage. 

This is essential for making the stage assignment yield good results. 

• For each non-constant input, edges forcing all its consumers to be in the 
same stage. 

This constraint serves to subtly discourage, but not entirely forbid inter­
stage forward dependences ( d' = 0 in the pipelined loop specification). 
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These constraints are not logically necessary, and as such can cause negative­
weight cycles in S if they contradict other constraints. Therefore, if adding an 
edge for one of these constraints would create such a cycle, the constraint is 
simply ignored. 

The algorithm then decides the boundaries between stages one by one, 
starting at the last stage. The number of the stage below the boundary to be 
decided shall be denoted by i. 

For each boundary, the height and depth functions are used to clas­
sify each operation into three categories: above, below and undecided. The 
primary aim here is to exclude stage assignments that violate the second con­
dition stated above, i.e. assignments where one of the stages, when scheduled 
individually, is longer than we would like our final loop body to be. 

We calculate the height and depth functions based on a subgraph of 
the codegraph G; all nodes that are (according to S) known to be in stage 
i + 1 or below are excluded. Thus, the total height and depth correspond to 
all the instructions from the first stage to stage i, inclusively. 

Rather than pre-determining a target ..X, we just strive to split up the 
codegraph into stages of roughly equal size, as measured by the height and 
depth functions. As the height function is intended to give a lower bound of the 
distance in cycles between an instruction and the "bottom" of the codegraph, 
we force all operations with a height greater than htot/ i to be in stage i - 1 
or above; likewise7 all instructions with depth greater than {i- l)dtot/i to be 
in stage i. 

The graph S is augmented to reflect this new information by adding 
the appropriate edges to and from z. If adding such an edge would create a 
cycle with negative weight in S, then it is skipped. This means that previous 
decisions, or their consequences, contradict the new "recommendation" that 
was derived from the height and depth functions. Precedence has to be given 
to the earlier decisions. 

We can now extract the set of all operations whose position with respect 
to the stage boundary under consideration is not yet known from the graph S. 
The exact boundary is then determined in a way that minimises the number 
of registers required (as described below). The results of that decision is then 
recorded in S again, and the process repeated for the next lower-numbered 
boundary, until all stages are decided. 
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4.3 Stage Separation 

Now let us turn to the problem of determining where to draw the exact bound­
ary between two stages. We have already narrowed down our choice so that 
condition 1 will always be fulfilled. 

The goal now is to find a partitioning that fulfills the other two con­
ditions, i.e. one that minimises register use without violating any of the con­
straints and without generating too many forward dependences. Of course, 
we must still make sure that our choices don't violate any other constraints 
defined in the previous section. 

We can do this by transforming the remaining codegraph (after re­
moving the nodes that are already known to be either above or below the 
boundary) to an instance of the minimmn cut problem; the minimmn cut will 
be the stage bonndary that uses the smallest nmnber of registers at the top of 
the loop. 

We want to define a graph Gcut such that: 

1. A minimum cut yields two stages with no illegal dependences. 

2. The size of the minimum cut equals the number of values that have to 
be kept in registers from one stage to the next. 

Definition 4. 5 Given a codegraph G, we first define a graph G~t containing 

• A "source" node s 

• A "sink" node t 

• For every operation in the codegraph, an "operation" node 

• For every node in the codegraph, a "value" node 

• An edge with infinite weight from each consumer of a value to the pro­
ducer 

• An edge with weight 1.0 from each producer to the corresponding value 
node 

• An edge with infinite weight from each value node to each of its con-
sumers. 0 
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Figure 4.1: Transforming parts of a codegraph {left) to a minimum cut problem 
{right). Edges A and D are known to be above and below the stage boundary 
beforehand; using the mininnun cut we decide to put B and C below the cut, 
because that requires the least number of registers to be live at the top of the 
stage. 

Definition 4.6 Biased on G~ut' a set A of operations {hyperedges in the code­
graph} known to be above the boundary, i.e. in stage i- 1 or less, and a set 
B of operations known to be below the boundary, i.e. in stage i or greater, we 
define a graph G cut by 

• Deleting all operation nodes in A U B 

• Deleting all value nodes that are not connnected to a consumer or pro-
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ducer not in A U B 

• Deleting all edges that connect two deleted nodes 

• Replacing all mention of nodes in A in the remaining edges with s 

• Replacing all mention of nodes in B in the remaining edges with t D 

Figure 4.1 illustrates this transformation on a simple example. 
If at least one of the consumers of a value is above the cut, then the 

producer must also be above the cut. This is easily achieved by having an edge 
with infinite weight point from each of the consumers to the producer; any cut 
where the producer is below the cut but one of the consumers is above would 
therefore have infinite weight, and therefore cannot be the minimum cut. 

A value is live at the top of the loop if the operation that produces it 
is above the cut and at least one of the consumers is below the cut. For every 
value, we want an edge with weight 1.0 that crosses the cut if and only if the 
value is live at the top of the loop. We only want one such edge per value in 
order to avoid counting any live value twice. Therefore, this edge with weight 
1.0 connects the producer node to the value node; edges with infinite weight 
are used to connect the value node to each of its consumers. Note that there 
is no edge going from the consumer to the value, so that it is possible for a 
value node to be below the cut while the operation node that consumes the 
value is above the cut. 

We express the constraint that we want all consumers of an input to be 
in the same stage at this level by adding a cycle of edges with infinite weight 
between all successors of each input. 

If a value has a producer or consumer whose stage is already known 
and a producer or consumer whose stage is not yet known, the transformation 
is done as above, but t is substituted for any operation that is known to be in 
stage i or greater, and s is substituted for any operation that is known to be 
in stage i- 1 or less. 
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Chapter 5 

Merge Scheduling 

Merge scheduling is based on the idea of ''merging" two or more scheduled 
pieces of code to be executed in parallel. The individual stages we just created 
have relatively fevr inter-stage dependences, which works in our favour. 

Analogous to the use of the term "merging'' in the well-known merge 
sort algorithm, we do not rearrange the instructions in any one input schedule 
with respect to other instructions from the same input schedule. Merging can 
be done optimally in O(nk+l) cycles, where k is the number of schedules to 
be merged and n is the number of instructions involved. 

This naturally leads to the following plan for software-pipelining loops: 

1. Heuristically assign instructions to stages 

2. Schedule the individual stages using a conventional scheduling algorithm 

3. "Merge" the individual linear schedules. 

5.1 Separate Scheduling 

After the stages have been decided, we need to come up with separate schedules 
for each of the stages. For this, we can essentially use any scheduling algo­
rithm for straight-line code, as long as we enforce a few additional restrictions 
imposed by loop carried dependences. 

After staging, loop carried and inter-stage dependences can be classified 
in two groups depending on the value of their associated component in d', and 
based on whether the producing and the conswning instruction are in the same 
stage or not. 
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• d' = 0, same stage 

This can only be caused by an input/ output pair with d = 0 in the 
original loop specification. We can eliminate this either before or after 
staging by identifying the input and the output node in the codegraph 
and removing them from the input and output sequences. 

• d' = 0, different stages 

An inter-stage forward data dependence constraint is passed on to the 
merging algorithm; no special treatment is required when scheduling the 
individual stages. 

• d' = -1, same stage 

The producer will overwrite the value used by the consumer - this 
is a data antidependence which needs to be taken into account when 
generating the schedule for the stage. 

• d' = -1, different stages 

The inter-stage antidependence is passed \. u to the merging algorithm. 

Also, in the d' = -1 case, there is a forward dependence between 
the producer in one iteration of the pipelined loop and the consumer in the 
following iteration. First, let us observe that this can be ignored completely; 
violating these dependences does not affect correctness, but it will introduce 
a pipeline stall once for every iteration of the loop. 

Adding the appropriate number of empty cycles to the end of each of 
the individual schedules is a definite win if not all schedules require the same 
amount of padding; the merging algorithm will automatically try to schedule 
the empty cycles in parallel with instructions from other stages. 

Deciding the schedule for one stage amounts to arbitrarily adding edges 
to the dependency graph for operations that do not depend on each other but 
happen to appear in a certain order in the schedule. When scheduling a stage, 
decisions that have already been made while scheduling other stages have to 
be respected. 

Assume we have two stages; 1 contains operations op1 and op2 , and 
stage 2 contains op3 and op4. FUrther assume that, due to inter-stage depen­
dences, op3 has to appear before op1 and op2 has to appear before op4 in the 
final schedule (solid arrows in figure 5.1). While scheduling stage 1, we decide 
that OPt will appear before OP2 in the schedule (dashed arrow in the figure). 
If we schedule stage 2 without taking that decision into ·acconnt, we might 
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Figure 5.1: Avoiding dependence cycles when scheduling seperately 

decide to schedule op4 before op3 , thereby creating a cycle in the dependency 
graph which prevents merge scheduling from succeeding (figure 5.1, top). 

Therefore, when scheduling stage 2, we have to take the fact into ac­
count that after scheduling stage 1, there is a path from op3 to op4 in the 
dependence graph, and therefore op3 has to be scheduled before op4 , as shown 
at the bottom of figure 5.1. 

To summarise, the following steps have to be performed to build the 
per-stage schedules: 

1. Generate the pipelined loop specification ( G', d') {see chapter 3). 
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2. Let the dependency graph Do be a graph consisting of: 

® For every hyperedge in G', a node. 

• For every node in G', edges from the producer to each consumer, 
labelled with the producer's latency. 

~ For every input/ output pair with d' = -1, edges from each con­
sumer to the producer ( antidependence), labelled with 0. 

• For every input/output pair with d' = 0, edges from the producer to 
each consumer (forward dependence), labelled with the producer's 
latency. 

3. For each stage i from 1 to k, 

(a) Build a dependence graph for the operations in the stage by taking 
the subgraph of the transitive closure of Di_1 consisting of only the 
operations in stage i. 

(b) Run the list scheduling algorithm (or another straight-line schedul­
ing algorithm) on this graph. 

(c) Let Di be the graph that results from adding edges (x, y) with label 
0 to Di_1 for every pair of nodes x and y where x has been scheduled 
before y. 

4. For each stage i from 1 to k, 

(a) For each input/output pairinG' with an associated d' = -1 where 
the producing operation is in stage i, check the latency from the 
producer to the consumers. 

(b) Add the minimwn nmnber of empty cycles at the end of the schedule 
for stage i required to satisfy the latency constraints. 

5.2 Merging 

At this point, we have k non-software-pipelined schedules for the individual 
stages, and a set of dependences between those stages. 

The dependences are now neatly divided into two groups: 

• data antidependences 

These indicate that a consuming instruction in one stage has to be sched­
uled before a producing instruction in another stage, which will overwrite 
the data with a new value; this kind of dependence arises very often. 
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• forward dependences 

A consmning instruction in one stage requires data produced by a pro­
ducing instruction from another stage; the producer has to be scheduled 
after the consumer in the resulting schedule, while taking account of la­
tency. Forward dependences are rare because our staging algorithm tries 
to avoid them in most situations. 

5.2.1 MergiLrJ.g without dependences 

To explore the basics of merging schedules, let us disregard all inter-stage 
dependences for a while. 

The input consists of schedules Si for each the k stages; we denote the 
length in cycles of each schedule as f1i. Every cycle contains zero or more 
instructions which can be issued in that cycle. All pipeline stalls are explicitly 
represented by empty cycles in the schedule. 

The instructions in each cycle j use a subset Ui,j of the functional units 
U of the processor. 

In the process of merging, two instructions from the same stage are 
never reordered; more specifically, 

• If two instructions are in the same cycle of one stage schedule, they will 
be in the sarne cycle in the final schedule. 

• If two instructions are in cycles c1 and c2, c2 - c1 = d > 0 in one stage, 
then they will be in cycles c~ and ~ in the merged schedule, such that 
c~ 2:: c1 and ~ - c~ > d. 

At each cycle of the merged schedule, the merging algorithm can sched­
ule a combination of the first unscheduled cycles from each of the stage sched­
ules. 

After picking which instructions to issue in the first cycle, the remaining 
schedule can be found by recursively solving the subproblem of merging the k 
schedules with the already-scheduled instructions removed, so that ni- 1 ::; 
n; ::; ni. All the subproblems that arise this way are obviously independent 
from each other' and there are only n:=l r1i such subproblems; the problem 
can therefore be solved using the technique known as dynamic programming, 
where subproblems of increasing size are calculated by a loop, storing the 
results that might still be needed in an array. 

This leads us to the following algorithm: We define A[x1, ••• , xk] to be 
the minimum number of cycles required to merge the first Xi cycles of each of 
the k stages. Trivially, we define A[O, ... , 0] = 0. 
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To determine the value of A[x~, ... , xk], we need to examine all combi­
nations C E P 1, ... , k of stages such that the instructions Si,x.;. for i E C do 
not cause a resource conflict, i.e. V i,j E C, i =f. j: Ui,x.; n Uj,xj = 0. 

Let bi = 1 if i E C and bi = 0 otherwise. We pick C such that 
A[x1 -b~, ... , Xk-bk] is minimal; then, A[x~, ... , xk] = 1+A[xt-bt, ... , Xk-bk]· 
We also define an array L and define L[ x1, •.. , Xn] = C; at the end, the schedule 
can be constructed from L by going backwards starting at L[nt, ... , nk]· 

One of the main concerns with software pipelining is the increased 
register pressure. Therefore, it is worthwhile to extend the algorithm to choose 
the schedule with the minimum number of simultaneously live values among 
all the possible schedules with minimum number of cycles. 

To do so, we need every instruction in the non-software-pipelined sched­
ules to be annotated with the difference Di,j between the number of values that 
are live beginning at that instructions and the number of values that die at 
that instruction. 

For this algorithm, we define Rmax such that Rmax[i, Xt, .•. , xk] is the 
minimum number of simultaneously live values required when merging the 
first Xi cycles of each of the k states into a merged schedule with a length of 
j cycles; we further define R[j, x1, .•. , xk] to be the number of simultaneously 
live values after cycle j in that optimal merged schedule. As initial values, 
R[O, 0, ... , 0] = Rmax [0, 0, ... , 0] = ro, the number of live values at the top of 
the loop, and R[O, Xi, ... , Xk] = Rmax [0, Xi, ... , xk] = oo (if at least one Xk =f. 0). 

We again examine all combinations C that do not cause resource con­
flicts; this time, we pick C such that RmaxU- 1, Xt- b1, ... , Xk- bk] is min­
imal, and define Rfj, x1, ... , Xk] = R[j - 1, Xt- bt, ... , Xk- bk] + L:iEC Di,x.;, 
and Rmax[i, Xt, •.. 'Xk] = max(RmaxfJ - 1, Xt - bl, 0 •• 'Xk - bk], R[i - 1, Xt -

b~, ... , Xk- bk]). 

5.2.2 Merging with antidependences only 

The dynamic programming algorithm can easily be extended to accomodate 
antidependences. An antidependence tells us that a certain instruction in one 
stage must be scheduled before another instruction in another stage, because 
the latter instruction overwrites and destroys an input for the former. 

When considering whether to schedule the instructions at position Xi 

from stage i in a cycle j, we know exactly how many instructions from each of 
the stages have already been scheduled before cycle j. H the dependence is vi­
olated, the instructions from that stage are simply not eligible to be scheduled 
at this point. 
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5.2.3 Handling forward dependences 

A forward dependence between two instructions means that one instruction 
from one stage must be scheduled at least a certain number of cycles after 
another instruction from another stage, because the latter calculates data used 
by the former. 

Unfortunately, handling latencies at this point violates one of the fun­
damental requirements of the dynamic programming approach. For dynamic 
programming to work, all the subproblems have to be independent from one 
another; in the presence of latencies greater than one, we cannot tell whether 
a particular schedule for the cycles up to j is optimal without knowing what 
code follows. 

We can approximate the solution in the presence of forward depen­
dences by counting only the cycles within one stage. To satisfy a forward 
dependence that requires the instructions from cycle j 1 of stage a to be sched­
uled at least l cycles after the instructions from cycle j 2 of stage b, we instead 
require the instructions from cycle j 2 + l of stage b to be scheduled before the 
instructions from cycle it of stage a. 
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Chapter 6 

Adding Control Flow - The 
Multiloop 

Control flow in software-pipelined loops has been the subject of much research. 
In the context of software pipelining, it is always necessary to impose some 
kind of limitation on control flow, or to accept the fact that the presence of 
control flow might severly limit the efficacy of software pipelining. 

In many cases, it is beneficial to avoid control flow altogether and in­
stead use some ldnd of conditional "select" instructions to select one result 
after calculating both alternatives unconditionally. 

One possible approach to implementing limited forms of control flow 
is to have several versions of the entire software-pipelined loop body and to 
jump to the appropriate version of the loop body after every iteration. 

This approach becomes very interesting when we have direct control 
over which operation is scheduled in which stage. Given a loop of the form 

for i=O .. n 
A(i); 
B(i); 
c = C(i); 
case c of 

1 -> D1(i); 
2 -> D2(i); 

n -> Dn(i); 
end case 

end for 

we can restrict all the Dn operations to the last stage; we can then software-
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pipeline the loop, resulting in the following structure: 

A(O); 
A(1); B(O); 
A(2); B(l); c = C(O); 
for i=O .. n-3 

case c of 
1 -> A(i+3); B(i+2); c = C(i+1); Dl(i); 

n -> A(i+3); B(i+2); c = C(i+1); Dn(i); 
end case 

end for 

In fact, the branch instruction at the end of the loop will be a computed 
branch that will jump to the appropriate version of the loop body for the next 
iteration. A branch hint instruction scheduled earlier can make this jump 
ahnost free of cost. 

Let us now extend the definition of a loop specification from chapter 3 
for multiloops: 

Definition 6.1 A multiloop specification with n cases is a tuple ( G, n, d) 
containing 

• a codegraph G : F X K --+ pn x C 

• a positive integer n 

• a sequence of integers d, one for each element of F. D 

The control outputs C are interpreted to specify which of the n blocks 
of F outputs are to be used as the output of this iteration; only instructions 
that the selected set of outputs or the control outputs depend on are to be 
executed for this iteration of the loop. 

Definition 6.2 We define control dependent nodes and edges in a multiloop 
specification inductively: 

• A node that occurs in the output sequence of G, but not at exactly the 
same position(s) for all cases is control dependent. 

• If a node is control dependent, then its producer is control dependent. 
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• If a node is control dependent, then all its consumers are control depen­
dent. 

G If an edge is control dependent, then all its targets are control depen-
dent. D 

Control dependent edges are those operations which have to be different 
for different cases of the multiloop, after register allocation; if one edge in G 
delivers its result to the ith output of one case, and to the jth (i =f j) output 
of another case, then it is control dependent, because the assembly language 
instructions in the final schedule will have to differ by their target register. 

When a multiloop is software pipelined, all control dependent edges 
have to be in the last stage. For every case, a separate version of the entire 
loop body is scheduled. The individual versions contain the same instructions 
for stages 1 to k - 1, they only differ in the last stage. 

The edges that generate the control outputs C have to be in the second­
to-last stage, so that the branch instruction at the end of the loop can select 
which version of the final stage (and therefore, which version of the ·scheduled 
loop body) to execute. 

In the context of multiloops, the decision to disallow the scheduler 
from duplicating any instructions from section 2.3 pays off. For a simple loop, 
modulo variable expansion is always an option; in a multiloop, our scheme for 
handling control flow would break down if we allowed the loop body to be 
replicated. 
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ChapteiL 7 

Experimental Results 

We have implemented a prototype scheduler based on the algorithms described 
in this thesis; concurrently, several efforts have been underway in our group to 
develop code and other tools target the Cell SPU and the CocoNUT declara­
tive assembly language [ACK+04], a textual representation of codegraphs. In 
the following, we give some results on how our algorithms perform on some of 
that code. 

7 e 1 Simp lie Loops 

We evaluate the performance of the algorithm for regular loops on a library 
of basic mathematical functions for the Cell SPU that has been developed at 
our work group. 

Each of the basic mathematical functions takes one or two arguments 
and returns one or two results; the majority take one argument and return one 
result. They operate on vectors of four floating point values in parallel. We 
have run the scheduler on loops that sequentially read input values from an 
input area in memory and store the output values to a different memory area. 

We can apply two different preprocessing steps to the code before 
scheduling it; we can unroll the loop by replicating the loop body au times in 
parallel (the parallel instances of the loop body will use common loop counting 
instructions). 

We can also apply a preprocessing step that splits up the m nodes 
with the greatest lifetimes (as estimated before scheduling using the height L u 
nmction from section 4.1) by inserting register-to-register move instructions 
(we use the rotqbyi 0 instruction, rotate quad word by zero bytes). 

Tables 7.1 and 7.2 show the result of applying the heuristic staging 
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acos 6 2 28 43 38 6 4 55 59 58 
acosh 5 2 23 32 37 5 4 45 45 49 

as in 6 2 28 54 39 4 4 55 77 44 
asinh 5 2 21 35 36 5 4 41 42 46 
atan2 2 2 24 103 32 2 4 47 103 43 
a tanh 7 2 20 21 40 3 0 39 42 41 

cbrt 3 2 21 26 39 3 4 41 44 41 
cos 4 2 26 29 41 4 4 51 51 53 

cosh 6 2 17 28 36 6 4 33 34 44 
div 2 2 13 24 "13 2 4 17 20 17 
exp 4 0 13 23 29 4 4 23 25 36 

loglO 5 2 15 23 35 6 4 25 25 48 
log 5 2 15 23 35 6 4 25 25 48 

pow 5 2 23 41 45 4 4 45 46 58 
qd.rt 5 2 13 25 17 4 4 25 40 23 

rcbrt 5 2 24 32 40 5 4 47 49 56 
rec 4 2 11 15 13 3 4 14 19 14 

rqd.rt 4 2 12 21 17 4 4 19 26 24 
rsqrt 4 2 11 19 15 2 4 14 23 18 

sin 4 2 26 30 43 3 4 51 51 50 
sin cos 5 2 29 32 50 3 0 57 57 51 

sinh 6 2 17 28 36 6 4 33 34 44 
sqrt 4 2 11 23 15 3 4 14 20 18 
tan 5 2 33 40 45 2 4 65 65 47 

tanh 8 2 19 25 37 6 4 37 37 46 

Table 7.1: Results of scheduling math functions in simple loops for nnrolling 
factors 1 (no unrolling) and 2 

algorithm followed by a simple list-scheduling algorithm to schedule the trans­
formed loop body; for each function and each value of the unrolling factor 
u, the table shows the number of stages sand the number of inserted moves 
m that yielded the shortest schedule; for this shortest schedule, it shows the 
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acos 5 0 82 87 59 3 0 109 112 69 
acosh 3 6 67 69 51 2 0 89 91 56 

as in 3 6 82 91 61 3 8 109 110 76 
asinh 3 6 61 61 51 3 8 81 81 62 
atan2 2 6 70 105 52 2 8 93 107 60 
a tanh 3 0 58 59 51 3 8 77 77 61 

cbrt 2 6 61 61 51 2 8 81 81 60 
cos 3 6 76 79 58 3 8 101 102 70 

cosh 6 6 49 49 56 4 0 65 65 61 
div 2 6 21 23 21 2 0 23 24 22 
exp 4 6 34 34 44 4 8 45 45 52 

loglO 3 6 37 37 42 3 8 49 49 48 
log 3 6 37 37 42 3 8 49 49 48 

pow 3 6 67 67 63 3 8 89 90 74 
qdrt 4 6 37 50 30 2 8 49 59 34 

rcbrt 4 6 70 70 65 4 8 93 93 78 
rec 2 6 17 19 17 2 8 20 21 20 

rqdrt 3 6 28 37 28 3 8 37 44 34 
rsqrt 2 6 17 23 22 2 0 21 24 25 

sin 3 0 76 76 59 3 8 101 101 72 
sin cos 3 6 85 85 63 2 8 113 113 66 

sinh 6 6 49 49 56 4 0 65 65 61 
sqrt 3 6 19 37 22 2 8 25 37 26 
tan 2 0 97 97 57 2 8 129 129 63 

tanh 5 6 55 55 54 6 8 73 73 74 

Table 7.2: Results of scheduling math functions in simple loops for unrolling 
factors 3 and 4 

theoretical lower bound b for the schedule length calculated from the nwnber 
of instructions for each of the Cell SPU's two execution units, the achieved 
schedule length (in cycles) nand the number of registers r used by the sched­
ule. 

As was to be expected, we can see that we are more likely to find a 
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acos 3 2 28 54 54 0 3 4 55 63 64 1 
acosh 3 2 23 44 44 0 3 4 45 50 51 1 

as in 3 2 28 77 78 1 3 4 55 82 93 11 
asinh 3 2 21 51 54 3 3 4 41 50 54 4 
a tanh 3 0 20 41 42 1 3 0 39 42 44 2 

cbrt 3 2 21 26 31 5 3 4 41 44 44 0 
cos 2 2 26 39 41 2 3 0 51 52 55 3 

cosh 3 2 17 43 45 2 3 4 33 43 48 5 
div 3 2 13 24 32 8 2 4 17 20 29 9 
exp 2 2 15 31 31 0 3 4 23 31 39 8 

log10 3 2 15 29 27 -2 3 4 25 26 30 4 
log 3 2 15 29 27 -2 3 4 25 26 30 4 

pow 3 2 23 48 53 5 3 4 45 51 57 6 
qdrt 3 2 13 34 36 2 3 4 25 43 43 0 

rcbrt 3 2 24 39 38 -1 3 4 47 55 55 0 
rec 3 2 11 18 25 7 3 4 14 19 32 13 

rqdrt 3 2 12 36 38 2 3 4 19 37 36 -1 
rsqrt 3 2 11 21 22 1 2 4 14 23 24 1 

sin 3 2 26 36 50 14 3 4 51 51 57 6 
sin cos 3 2 29 38 47 9 3 0 57 57 63 6 

sinh 3 2 17 43 45 2 3 4 33 43 48 5 
sqrt 3 2 11 24 26 2 3 4 14 20 28 8 
tan 3 2 33 51 53 2 2 4 65 65 69 4 

tanh 3 2 19 52 52 0 3 4 37 54 54 0 

Table 7.3: Merge Scheduling vs. List Scheduling, unrolling factors 1 and 2 

schedule close to the minimum bound at higher unrolling factors; we have good 
schedules for u = 1 for a few of the functions (atanh, cos, sin, sincos); at u = 2, 
we have reason to be happy with most of the schedules, and for u = 4, almost 
all functions schedule within a few cycles of the theoretical lower bound b. 

Merge scheduling, while having polynomial complexity in the size of 
its input, is exponential in the number of stages; For the math functions 
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acos 2 6 82 90 87 -3 3 0 109 112 116 4 
acosh 3 6 67 69 69 0 2 0 89 91 94 3 

as in 3 6 82 91 100 9 3 8 109 110 119 9 
asinh 3 6 61 61 65 4 3 8 81 81 85 4 
a tanh 3 0 58 59 59 0 3 8 77 77 77 0 

cbrt 2 6 61 61 64 3 2 8 81 81 83 2 
cos 3 6 76 79 81 2 3 8 101 102 106 4 

cosh 3 0 49 57 53 -4 2 8 65 66 69 3 
div 3 6 21 23 29 6 2 0 23 24 34 10 
exp 3 6 34 40 43 3 3 8 45 48 47 -1 

loglO 3 6 37 37 43 6 3 8 49 49 55 6 
log 3 6 37 37 43 6 3 8 49 49 55 6 

pow 3 6 67 67 71 4 3 8 89 90 90 0 
qdrt 3 6 37 53 50 -3 2 8 49 59 65 6 

rcbrt 2 6 70 76 74 -2 2 8 93 95 95 0 
rec 2 6 17 19 21 2 3 8 20 21 33 12 

rqdrt 3 6 28 37 48 11 3 8 37 44 53 9 
rsqrt 2 6 17 23 24 1 2 0 21 24 27 3 

I 

sin 3' 0 76 76 80 4 3 8 101 101 104 3 
sin cos 3 6 85 85 88 3 3 8 113 113 115 2 

sinh 3 0 49 57 53 -4 2 8 65 66 69 3 
sqrt 3 6 19 37 39 2 2 8 25 37 40 3 
tan 2 0 97 97 100 3 3 0 129 129 129 0 

tanh 3 6 55 59 58 -1 3 0 73 75 76 1 

Table 7.4: Merge Scheduling vs. List Scheduling, unrolling factors 3 and 4 

(especially for u > 1), this means that the execution time required for merge 
scheduling becomes impractical when using more than three stages. 

Tables 7.3 and 7.4 show how merge scheduling stacks up against plain 
list scheduling after the pipelining transformation. This time, we limit the 
maximum nmnber of stages to use to three, in order to be able to compare 
both algorithms at equal values of s; keep in mind, however, that by using list 
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scheduling directly, we can use higher values for s and thereby achieve better 
schedules in many cases. 

In addition to the columns we have seen in the earlier tables, these 
tables show the schedule length nm achieved by merge scheduling and the dif­
ference ~ = 'flm- n between the schedule lengths achieved by merge scheduling 
and list scheduling. The tables do not show register usage. 

The difference~ varies from -4 to 14; in most cases, thesimpler al­
gorithm, list scheduling, is also the better one. In those cases where merge 
scheduling delivers a better schedule, it does so by only a few cycles; it is con­
ceivable that minor adjustments to the priority nmction used in list scheduling 
might allow list scheduling to catch up there, too. 

H we take into account the high time complexity of merge scheduling, 
we unfortunately have to conclude that merge scheduling is not suitable for 
practical use. 

7.2 Multiloop 

We have developed one real-world algorithm that exploits the strengths of the 
multiloop to the fullest. The algorithm was initially developed by Dr. Anand 
and not only serves as a test case for the multiloop scheduler, but also served 
as the original inspiration for the concept of a multiloop. 

As part of a non-uniform fourier transform, we need to resample non­
uniform samples in three-dimensional space to a regular grid; more specifically, 
we have samples along a trajectory through three-dimensional space, and we 
need to convolve these samples with a gaussian kernel. It boils down to having 
to add something to the entries near the position of the sample in the three­
dimensional grid, for every sample on the trajectory. 

The distance between two successive samples is small, so that many of 
the same grid positions will be affected by two consecutive samples; in fact, 
it is guaranteed to be less than the size of a grid cell per dimension. We 
therefore have a window of interest that moves by at most one grid cell in 
every dimension for each sample in the input. 

At 128 registers, the Cell SPU's register file is large enough to accomo­
date a decently-sized window of 4 x 4 x 4 complex values, stored in 32 vector 
registers. 

The loop will, at each step, add the kernel to the current window (which 
is in registers) and then, depending on the trajectory, move the window by 
storing "old" values, shifting all values in the window, and loading "new" 
values. The 33 = 27 different possible directions to move the window (including 

54 



M.Sc. Thesis- W. Thaller- McMaster- Computing and Software 

the case of not moving at all) are each implemented as a case of the multiloop. 
Things are further complicated by the fact that the Cell SPU only 

supports vector-aligned loads and stores; we therefore need to round up the 
size of the register window in the unaligned case; we keep the "unused" parts 
of the unaligned window in 4 x 4 additional registers. Adding the convolution 
kernel to the register window works the same for both aligned and unaligned 
windows; the extra registers are not modified. Moving the window, however, 
needs to be done differently for the aligned and for the unaligned case. This 
doubles the total number of different cases to 54. 

Tables 7.5 and 7.6 show the results of scheduling the multiloop; for 
each of the 54 cases, the table shows the lower bound b, the length n of the 
schedule achieved by heuristic staging followed by list scheduling, the number 
r of registers used, the length nm of the schedule achieved by heuristic staging 
followed by merge scheduling, and the difference n,.,. - n between the results 
of the two scheduling strategies. 

Merge scheduling is again outperformed on most cases, and it even 
happens to deliver one of its worst results on case 53, which will be executed 
most often, as it is the case where the register window does not move. 

On the other hand, we see that by software pipelining the multiloop 
using our heuristic staging algorithm, we can achieve close-to-optimal sched­
ules for most of the 54 cases of our code; we are confident that this level of 
performance carm.ot be reached without using a software-pipelined multiloop. 
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0 151 151 110 151 0 
1 151 156 92 159 3 
2 151 152 110 151 -1 
3 151 155 92 159 4 
4 87 98 87 98 0 
5 143 143 110 143 0 
6 151 151 110 151 0 
7 151 156 91 159 3 
8 151 154 110 151 -3 
9 151 156 92 159 3 

10 87 104 88 103 -1 
11 143 145 110 143 -2 
12 139 141 108 139 -2 
13 139 144 92 150 6 
14 139 139 108 139 0 
15 139 144 91 150 6 
16 81 91 85 100 9 
17 107 117 104 117 0 
18 151 151 110 151 0 
19 151 156 92 159 3 
20 151 151 110 151 0 
21 151 156 92 159 3 
22 87 103 88 103 0 
23 143 143 110 143 0 
24 151 151 109 151 0 
25 151 155 91 159 4 
26 151 151 109 151 0 

Table 7.5: Scheduling results for the 3D resampling multiloop, cases 0 through 
26 
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27 151 155 92 159 4 
28 87 101 . 87 102 1 
29 143 143 110 143 0 
30 139 139 107 139 0 
31 139 144 90 150 6 
32 139 139 107 139 0 
33 139 144 91 150 6 
34 81 91 83 100 9 
35 107 117 102 117 0 
36 139 139 109 139 0 
37 139 144 92 151 7 
38 139 139 108 139 0 
39 139 144 91 151 7 
40 80 97 88 101 4 
41 107 115 110 115 0 
42 139 139 108 139 0 
43 139 144 92 151 7 
44 139 139 107 139 0 
45 139 144 92 151 7 
46 80 99 87 99 0 
47 107 120 108 114 -6 
48 123 125 111 130 5 
49 123 127 93 141 14 
50 123 123 111 130 7 
51 123 127 93 141 14 
52 80 86 86 99 13 
53 79 86 86 99 13 

Table 7.6: Scheduling results for the 3D resampling multiloop, cases 27 through 
53 
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Chapter 8 

Conclusions & Outlook 

We have developed a new method of software pipelining that gives explicit 
control about which stages operations are assigned to. 

We have defined a way of describing loops that allows specifying arbi­
trary inter-iteration dataflow, allowing the user or earlier stages in the com­
pilation process to take better advantage of software pipelining. We have 
formalised software pipelining as a transformation between such loop specifi­
cations. 

Controlling stage assignment explicitly and avoiding the need for mod­
uJlo variable expansion after scheduling allowed us to handle a special but very 
useful case of control flow, the multiloop very efficiently. Even though several 
design decisions were made specifically to support the multiloop, the algorithm 
also performs well on a selection of simple loops. 

As a futme research direction, it should be investigated whether the 
heuristics of deco1nposed software pipelining [WEJS94; GS94; CDR98], espe­
cially the circuit-retiming based approach given in [CDR98], can be adapted to 
our framework. The algorithm of [CDR98] has a known efficiency bound, but 
it does not currently have any provisions for pre-assigning stages (required for 
the multiloop). Also, it does not limit the lifetime of values to .X, but instead 
relies on modulo variable expansion to handle these long lifetimes, which again 
precludes its use for scheduling multiloops. 

In [KAC06], the concept of joins is discussed; the idea is to allow a node 
in the codegraph to have multiple producers; the scheduler is then expected to 
choose one alternative, based on which leads to the better code. This would 
allow us to specify a loop like the one from figure 2.3 (section 2.5) without 
having to decide on a value for the iteration distance x before scheduling; 
instead, the loop specification would contain a join that tells the scheduler to 
choose among several inputs with different d values. 
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