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. ' 
Chapter 1 

Pre1illli!1!17 

Introduction 

~ A complex-valued function f defined on an arbitrar.1 group G 

is called positive definite {abbreviated as p.d.) if the ine~uality 

D -1 -E f(xj xi) ~i 75j ~ 0 
1-;J•l 

holds for every choice of complex DUJibers ~ 1 , ••• , 'in and x1 t • • •, Xza. 

in G.· For the case where G is a locally ooapact abelian group, 

Veil ( 23] , Pevzner [16] and Raikov ( 17] proved that if f is a 

oont~nuous P•d• function on G, then there is a positive bounded 
,... 

measure p on G, the· ·dual group of G, such that 

• f'(x) • r [x,i] dJl(~) 
. J . a . " 

where ( x,% denotes the value ot the. oh~aoter x at the point x. 

'!'his generalizes theorems ot Herglotz ( 10 J ( G.Z, the integers ) 

and ::Sochner(2,3}( G•R, the real numbers ). 

-1-
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1.2 For any looal17 compact abelian group G, written additiveJ.7,. -
there is another notion of positive-definiteness. Let F be a set of 

complex-valued functions ODl G. A complex-valued function f on G is 

called positive definite for F if the integral 

r r f(x-y) cp(x) cp(y}dxey. . 
Ja J~ . 

exists as a Lebesgue integral and is· non--negative for enr.r cpE F, where 

dx denotes integration with respect to Baar measure on G. 'l'he class of 

all flmctiom which are p.d. for F will be denoted 'b7 P(F). Clearl.7 

:r1 S :r2 implies that P(F2)~P(F1). Let us denote 'b7 LP(G) the ordinar.r 

Lp space with respect to Haar measure on G, by L!(G) the set of all 

functions in LP(a) with compact suppor~·.and b7 C
0

(G) the set of all 

continuous functions with compaet support on G. It turns out that 
.. 

1 ' 
P(L (G)) 'is identical, up to sets of measure zero, with the class of 

ordinar.r continuous p.d. functions (see liaimark: [15~ §30, Theorems III 

and IV)). However P(Cc) is a much more erlensive class of functions. 

Hewitt and Ross (11] , Edwards (5] and Rickert [18) have given 

constructions of functions on non-discrete l~call7 compact . groups 

which are in P ( C ) but not in L cro , and there :fore not almost ever.,ywhere 
: 0 . 

equal to the ordinary" p~d. functions. Cooper ( 4] and Stewart (2l)proved 

that P(C }= P(LP) :for everr p 3ll-2 and that ever.r fEP(C
0

) is the . c 0 

Fourier-Stielt~es transform ( in a suitable summability sense) o:f a 
..... 

positive measure, possibly unbounded, on G ( Cooper had proved the result 

tor G • R. '!'he general result was proved 'b7 Stewart). 
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We are interested in the theor,r o~ p.d. functions because the7 

pl~ a ver,r important role in the abstract theor,r o~ harmonic analysis 

OD groups (see e.g. LoomisU4.) and Rudin [19) ) and in the theory of 

un1 tary representations of locall7 compact groups (see e.g. Gelfand 

aud Raikow (6]). For a historical survey- on p.d. functions, the 

reader is recommended to read the ~ticle b7 Stewart (22) • 

Aim o~ the thesis 

~ Let us denote ~ Rn tpe ~-dimensional Euclidean space, and b.7 

C~(Rn) the space of all infinitely differentiable functions with 

compa~t support on Rn • A complex-valued function f on Rn is called 

even if the equality--

holds for ever,y combination of signs. Let F be a set of complex-valued 

functions on Rn, and E the set of all even functions in F. A complex

valued function f on Rn is c8 lled evenl7 positive definite for F 

(abbreviated as e.p.d. for F) if f is an even fUnction which is p.d. 

~or E. We denote 'b7 P 
8

(F) the olass of functions which are e.p.d. for F • 

. · . A Bochner-type theorem, which gave a description of all continuous 

functions in the class P (c 00 (R)), was obtained by Krein. He proved e c 

.. 

\ 
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that everT such function has the form 
00 . 

f(x) .. ~OQ CCSAX drl< ~) + 1 oosh~x d r2<A.>.' 
0 0 

where y- 1 .and f 2 a:re positive measures, JAl is finite, and f 2 is such 

that the second integral converges (see Gelfand and Vilenk:in [9, p.197] ). 

Gelfand and Vilenkin [ 9, Chapter II, Sec. 5) had obtained representation 

theorems for all generalized functions which are e.p.d. Our aims are 

twofold. We first wish to obtain and to extend the representation 

theorems for e.p.d. :functions in Gelfand and Vilenldn. Secondly, for 

EmT locally compact ·abelian srollP G, we wish to define a concept of 

n S1JD11etey on G that would generalize the concept of evenness on R , and 

to obtain representation theorems for functions in P{F) which would 

reflect the kind of ~etr,y that the class F might possess. 

Evenly positive definite functions are considered in Chapter 2, 

where the results of Gelfand and Vilenkin are extended. A concept of 

sJllllletq is introduced in Chapter 3. Symmetrically positive definite 

functions, which is·a generalization of the concept of evenly positive 

definite fUnctions, is considered in Chapter 4• Most material in 

Chapters 3 and 4 is aew, but enough hints to these results are obtained 

from Gelfand and Vilenk:in (especially Sec. 5·4 in Chapt~r II (9 J ) • 

Notations and Terminologies 

!:..!· 'l'hro1J8hout this paper, G will denote a locally compact abelian 

group, and 'G' its dual group. 
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If x~ G ~d ~ ,$, we ahall write (x, ~) for tbe value of the character 

~ at the point x, and [~, x) • (-x, ~J . We shall denote integration 

,.. " with respect to the Harr measures on G and G by dx SDd cb::, respeotive17. 

: 1 ) "' !'he Fourier transform of a function f E-. L ( G , denoted b7 <f , is defined by 

{1) ~ {2) • \ r-x, 2) c:p{x)d% • 
J G . 

We denote b7 K{G) the set of all bounded regular complex-valued measures 

on G, and by' A(G) the set { cf J '~ L1
{G} f .. we denote 'b7 f the :tunotion 

~ {x) • q> ( -x) for all complex-valued. function q> defined on G. For 87.17 

pai~ of measurable tunotioas cp and -t on a, we define their convolution 

cp*t by 

(2) { <t>*~){x) • J G cp{x-;y) "f-{y) ~ 
prorided thai 

(3) 

We have the following. 

Theorem (see Rudin [ 19, p 4) ) 

(a) It (3) holds for some x~G, then (<p*'f'){x) • {'t*cp)(x). 

(b) If fE: L1{G) and ~EL~{G), then Cf>*'i' is bounded and 

uniformly continuous. 

(c) If Cf and + are in C
0

{G), with compact supports A and :B, then 

the support of c:p * 'f' lies in .A.+:B, where 

A+B • f a+b; a6A, b~ Bf , so <p*'t ~C0{G) • 

. · 
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' ' 

(d) 1 If' <p and "\fare in L (G), th.,n (3) holds tor almost all xe G, 

Cf * tE L 
1 

(G), and the inequali V 

l\<r> * i-111 ~ a cr n 1 ''tu 1 

holds. 

(e) If'<{> ,'t, "; are in LJ(G), then (f.*i"~*'5•Cf*("'i-*~). 

Simple Properties of the class PSF) 

!:.2, Theorem Let.. t'-.P(F), where F has the property that f'or any 

compact subset K of G, F containa • bounded function with compact support 

which is strictly positive on K. Then t is locallY' summable. 

Proof'& Let K be a compact subset of G, and let 1' in F be a bounded 

function with c~mpaot support which is strictlY positive on ( K+K )VK. 

"' ' The function ~*f is tben a continuous function with compact support 

and is strictly positiv~ on K. The;-ef~re, ~£ . 11 a in£ { f*cf(x); x~ IC J , 
then m> o. But f'E: P(F) implies that the iXLtegral. 

J G t(x) ~* ~(x)dx_ .•} G ~Gf(x-y) cf (x) fG)cb:dy 

·eXists as Lebesgue integral, therefore . · 

' • fxlt{x) )u$JJt{x) ~·'f<x>/ d:t 6 fa1 i'(x)<p*~(x)/ u < 1:>0 

and hence f' is summa.ble over. JC •• Thus t i$ locally summable. I 



1.6 Theorems Let 't ~P{F), where F is a linear space o'f complex--
Talued flmotions on G. Then the integral' 

(1) K(cp,"t> • SG JG f(x-y)q>(x)y(y) ~~ 

exists as Lebesgue integral for everi cp, ~ E: F, and the inequali_.ty 

(2) lx(tp,'+)f ~ x(cp,cp) x( 'f, 'f') 
holcla for all q>, "+ ~ F. ~ 

Proofa 'fhe integrals K( <p, <p ), K( '+• 't) and K(C(>+'Xi', cp+AY) 

exist for ali <p, '+ ~ F and eve-q )\E. C , tile :field o'f complex n~bers, 

beoause f~ P(F). Since 

(3) lt(Cf+)"f, -tp+}.'f) •lt(<p, <p) + K()\~, ~"/J) 

+ ~ ~ f(x-y) ( ~"f'(x) <p(Y)+ cp(x) ). 'Ytr) J d:xd7 
G G _ 

therefore the integral 

exists as Lebesgue integral for tm7 tp , 'I'~ F, A ~ C -. 

Vi th )\ • 1 and A. • i , · we obtain from ( 4) that the integrals 

~ G JG t(x-y)(_"f' (x) cp(y) +~· (x) ~(~)] cb:~ 

fa fa :t(x-y) ["t(x) cp(y) - cp(x)"'fabr) J d:xq 

exist~ as Lebesgue integrals, and, consequently, the integrals K( <p, '/J) 

and K(~, Cf) exist as Lebesgue integrals. Bow if we put p • X( cp, f), 

q • K( "'f', "f'), r • K( cp, ~} and s • K( .,.., q> ) into (3) we obtain the 

inequality 

(5} p + );r +As + l>.\
2
q • K( ' +.A 'f, cp + >.. 'i' ) ~ 0 



8 

i'o:r ever;y ~ ~ {. • Here we have used the fact that 1' '- P{F). With 

~ • 1 and j\ • i, we see from {5) tb.at both s+r and i{s-r) are real. 

Bence r • a, i.e. X:{ <t', 'f) • X( 'f-t f). 'l'hua IC( tf, 'f) is a posi tivt~ 

heraitian form on F, and therefore, inequality (2) holds. 

A Factorization Theorem for Banach Algebras. 

I 

~ A vector space A over the complex i'ield ~s a commutative algebra 

11' a multiplication is defined iDA which satisfies the usual commutative 

aasooia'tive and distributive laws. If a norm is de:f'ined iD .a commutative 

algebra A which makes A into a ~ch Space, and if' the inequality 

n r¥ 1\ ~ 1\ X" ' II y \\ holds for all x,y e .A, then A is a commutative 

Banach Algebra. A net ~ clv) of elements in A is called a bol.Ulded . 

anrorlaa.te unit in A if f II olu llr is ~ bounded set of strictly positive 

DUJDbers and lim oiv a • a for all aE: A. 
u ' 

.!!,& · Theorem· (Hewitt and Ross [12, Sec. 33.12) or Simon ( 20) ) . 

'!'here is a net {otu11n Cc(G) such that the set { (ot"u(x)l; xeG,for all vr 
' .A A lA 1\ ~ 

is bounded, otJ.x) ~ 1 uniformly on compaots,~;r.o, IIC"" E-L (G), (\ o(\J 11 1...-. 1 
.;'\ , 1 lA 

aad olv *f ~ f in L norm tor every f E L (G) • 

!:.2. Theorem (P. J. Cohen) (Hewitt and Ross (12, Sec. 32.26) ). 

Let A be a commutative Banach Algebra with a bounded approximate unit. 

'!'hen every a £A is of the form a • 'q' :f'or some x, 7 EA. 
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Some Theorems from Harmonic Anallsis on Euclidean Spaces 

~ Notations Let us denote ~ (:n the n-dimensional complex space 

ri th the usual inner product ( , ) • Points of C n will be denoted by 

z • (z1 , ••• , •n), where zk E, C • If ~ • XJc + iyk' x • (~, • •• , xnh 

7 • (y1 , ••• , 7n)' then we write z • x + ~. The vectors x • Re z and 
. n 

7 • Im z a:re the real and imaginary parts ot z, respeotivelyJ R will be 

thought of as the set of all z ' C n with Im z • o. The term mlll ti

index denotes an ordered n-tuple c< • (ot1 , • • • , ~ n) of nonnegative 

integers "'- 1• lli th each multi-index o( , each o • ( c1 , • • • , c
11

) ~ :ij.
11 

ad z • (z1 , ••• , z
11

) E; C n, we adopt the following notations 

(l) I~' • o(l + ••• +o{ n 

(2) .o( - z ,, 
1 

z oia. zol"" 2 ••• D 

(3) o~O meus ck~o for 1~ k'$ n 

(4) 0)0 means 'it"> 0 for l ~ k~ n 

(5) D· 
oz - ~ okzk 

k•l 

(6) oz2 • .f::; 2 
~zk 

k•l 
' 

- (7) clfzll -·~ 0klzk' 
k•l 

(8) " oz 1\ -~ ~~~\ k•l 
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~ Let us give c;o(R11
) the topology usual for the theor,r of distributions, 

ieee, q> 11~ 0 in c:(R8
) ~ the supports of all <f'm's lie 

in a common compact set, and f> 
11 

and all its derivatives converge, · 

uniforml7 to o. If T is a distribution, i.e., a continuous linear 

functional on C~(Rn), then T is called positive definite if 
N -

T( <p * tp) ~ 0 for all ~ ~ C: . Schwartz has extended the theor.r of 

p.d. functions to distributions via the following Bochner-type theorem • 

.!,:ll Theorem (see Gelfand and VileDkin ( 9, Chapter II, Sec. 3.3 

~heorem 3) ). If T is a positive definite distribution, then T is 

the Fourier transform of a positive tempered measure ~, i.e., 

'1'( f) • l n ~ (:z:)df (x) 
R , 

A 
wllere cp is the Fourier transform of .Cf , and for some multi-index ol ~ o, 

J dfA(:x) < . 00 

( 2 o(l ( 2)« .. 
Rn .. · 1+1,1 ) ••• l + l:xn1 

1.13 If D is an open set in (.. n, and if f is a continuous complex-

valued function in D, then f is said to be holomorphic in D if it is 

holoaorphic in each variable separate}T. A fUnction that is holomorphio 

in all of (. n is said to be entire. We denote bT Z(n) the space of all 

entire functions cp such ~hat for ~multi-index 0(, the inequali'V 

I z o( c:p ( z) ' ~ Coe e:xp (a 1\ 1' n ) ' z • z + 17 

holds tor some constantsa and C~ • Ve denote ~ Y(n) the spac• ot 

all entire functions c:p satis1)'ing inequalities of the form 

l cp (x+iT) I ~ K exp(.-ex2 + 'bT2) • 
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1.14 Theorem (see Gelfand and Shilov [ 7, Chapter II 1 l J ) , 
If cp ~ C: (Rn) , aztd if we define f , the Fourier transform of cp , by 

cP (z) • fan q> (t)e-i(t,z) dt (z & C. n) ' 

then ~ E: Z(n). Conversely, for arq f c Z.(n), there is a <J' in 

c;- (Rn) suoh that ~ • p . Furthermore, it { c:p 
11 
J is a sequence in C

0

00 

A A 
~~h that c:p m ~ q> in the topology of C: , then cp m ~ cp 

D A 
uniformly- on compact subsets of C. , and eveq <P" satisfies an 1neql18J.i ty 

of the fora 

' 
where the constants c and a are independent of •· 

1.15 Theorem (Gelfand and Shilov ( 8, Chapter IV , Sec. 6.2]) 

If -cp C. Y(n), and it ye define ~ , the· Fourier transform of q> , by 

.. 

~ (s) • ~ Rn c:p (t)e-i(t,z)dt ' 

then q ~ Y(n). ConverselY', tor every i E Y(n), there is a cp E' Y(n) 

such that ~ • ~ • Furthermore, it t ~. 1 is a sequence in Y(n) which 

converges to a function. ~ in Y(n) uniformly- on compact subsets of I en, 

such that evecy ~ satisfies an inequality- of' the form m , 

where the constants x~ a, b do not depend upon m, then there is a 
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sequence f c:p .1 
0011paots, where 

A 
111 Y(n) such that 'f' m • ~~~ , ~ m ~ cp uniformly on 

<p is the tunotion in Y(n) such that $ • ~ , 
ad the inequali v 

holds tor every m, where the ool18tants lC' , a' ancl b • are independent 

ot m. 



Chapter 2 

EVenly Positive Definite Functions on Euclidean Spaces 

Introduction 

~ In this chapter we will develop the representation theorems 

for evenly positive definite functions on Rn. Most o£ the material 

is covered in Gelfand and Vilenkin [9, Chapter II, S~c 5]• The 

author has obtained and extended the results in the above treatise 

t~ various Pe(F) classes. In particular, results similar to the 

Cooper-stewart Theorem (see Sec 1.2) and the Weil-Povzner-Raikov 

Theorem ( see Sec 1.1) are obtained (Theorem 2.7 and Theorem 2.18, 

resp. ). In the meantime, we will need the following auxiliar,y 

theorem~. 

~ Theorem {see Gelfand and Vilenkin (9, pp216-217] ) 

Let + be an entire function of a single variable of order { and 

finite type ( i.e., it satisfies an inequality of the form· :· · 

j "f< z) f ~ C exp( a I z d: ) ) which assumes positive values on the 

real axis. Then f has the form "'• <.?qi where c:p is an entire 

function of order i:' and :finite type, and cp is the function defined 

by cp(z) .. cp(i). 

-13-



~ ~heorem (Bernstein) ( see Achieser [1, ppl37-l39] ) 

Let <p be an entire function of a single variable vhich is of 

exponential type ( i.e. it satisfies an inequality of the form 

I cp(z)l ~ C- exp( c:rrzr)),and which satisfies an inequality of the 

form sup { I c:p (x)l ; - oo< x < co 1 = M < oo • 

Then c:p also satisfies an '-nequa.li ty of the form 

I ~(x+iy)f ~ M exp{\f\Yf) 

where 0"' is such that the inequality 

I q'> (z)l ~ C exp(~Jzl) 
holds tor ·some C •. 

The Class Pe(C~ (.R)) 

Lemma Let 6 be an .:evea-: ·• ,:, function in Z(l) which 

14 

assnme.s vositive values on the set M consisting of the real and pure 

imaginary axes. Then 8 has the form ~ = ot ~ where IX. is some 

even function in Z(l).. 

Proofs { Gelfand and Vilenldn ) The function f , defined by 

'f (z) • (t (JZ ) ( this function is well defined because 9 is even) 

is obviously an entire functio~ which is pqsitive on the. real axis 

an4 has order { and finite type. Theorem 2.2 enables us to write 

+ in .the form + • cp cp , vhere cp is an entire function of order "t 
and finite type. Put ot(z) • cp(z2). Since 

e (z) • 't (z 2) ... cp (z2) ~(z2) • ()(. (z).;{ (z)' 

then for the proof of the assertion, it suffices to show that OC~ Z(l). 
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By construction oC. is of exponential type and therefore the same is 

true of the functions 8 2k c! {z). ,But for real values of z, this 

. . .. 

last function is bounded, since I :z:2k o<. (x) 12 • I :z:4k ~ {z) I and 

s4k 9 (z) is .. bo.unded on the ;~al axis in rlew of the fa,ot that 8 ~ Z(l) • 

Application of Theorem 2.3 proves that ~e Z(l). I 

~ Lemma Let K be a linear space of complex-valued functions, 

and H a linear space of complex-valued functions which is closed under 

oompl~x conjugation, and satisfies the condition that for any <p ~ H · 

there exists ."t ~ lC such that I <p (x) I ~ +{x). Then any positive 

linear functional on K can be extended to a positive linear 

functional on H. 

lftYofa For the case where H is a space of real-valued functions, 

see Gelfand and Vilenkin ( 9, p219 Theorem 3 J , and since H is 

assumed to be closed under complex conjugation, we can extend 

the functional from the ~eal-valued functions in H to all of H. I 

£!.§. We remark that there is an even, positive function cp in 

C~(Rn) such that its Fourier transform ~is positive on ~n J 

in fact, we can take the function + *q:, where -+ is any even 
~sitive function in C~ (Rn ). Sometimes there is an advantage in 

having the transform~ strictly positive on-the whole of ~n, and 

this can be guaranteed in the following way. Let ~ be an even 

positive function in c: such that ~ is positive on en • Then~ 
is an entire function of n-comple:z: variables, and therefore the 
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set o~ zeros of ~is closed and nowhere dense. Thus the function t 2 
,..., 

baa 4 * .{j: for its Fourier transform, and the convolution is never 0 
A 1\ 

since the integrand 'f"(z -1 ) -t( ~) is strictly positive on a set of 

positive measure. 

.. Let <f be a positive even function in c; (R) such that 

f"cp(t)dt=l. For eve1:7 real numbero(~llet ~o<(t) • O(<p(«t). _ .. 
A. 

~ • <:pot will be the SUIIIIUlbili ty function for the following integral 

representation of evenly positive definite fUnctions. 

Theorem If fE:P (C.o {R)), there are even positive 11easures e c 

r l .and \A 2 on R- such that 
00 

(1} .. t(B} • ,!~,. L e1
sx ~"'{x}df1(x} + 

.., 

1·87 d~2{;r} 
-00-

.i.::· 

where the limit exists uniforml7 on any compact set on which f is 

continuous, and exists in L 1 over any compact subset of R. Furthermore, 

rl must satisfy tAl (x +C) :0 as 'X'~~' where c is any co~~act 

subset of R, ~d fA 2 must be such that the integral 

f eay dr 2(y) --converges for all a;r. o. 

Proofs Let X be the subset of C consisting of the real and imaginary 

axes, and X the set { cpl MJ ,~Z(l), Cf even}. Then, in view of 

'l'heorea 1.14 a:nd the uniqueness Theorem on Fourier transforms, _we 
see that to eve1:7 "P E K, there is a unique even .function +~ C; {R.) 

such that ~) M • ~ • Therefore we ca:n define a linear functional ~_on K 
b7 setting ,_. -
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00 

(2) T(~) • f f(t)~(t) dt 
-00 

(the integral on the right hand side of (2) e:dsts since f is locally 

aummable by- Theorem 1.5). Applying Lemma 2.4 and following the same 

argument as before, we see that every positive fUnction! in X (i.e., 

t satisfies the condition that 'f (z) ~ 0 for all z'-M) is ct the form 

~, 
~ • ~*'"t J( 

for some even function ~~c;(R). But since f~Pe( c:(R)), we can 

conclude that T is positive. 

Let H be the space of all functions et the form~~ where 

'i'~ X and g ~ C 
0 

(Ill), the space of all continuous functions on M which 

tend to 0 as l z 1 ~ oo · ( C (M) is taken with the usual topology). We 
0 

can extend T to be a positive linear functional on H b.1 virtue of 

Lemma 2.5 since ever, function in H can be majorized b,y a suitable 

function in X. We mq suppose,·withou.t loss of generality-, that 

T('Pg} • 0 it g is an odd function. 

<lfe now associate with every positive function ~-in X a 

functional Ti on C
0

(M) b,y setting 

ft (g) • T(cEg) 

!hen Ti is a positive linear functional on C
0

(M) since Tt (g)~ 0 

for ever, positive function g E C (M). Hence by- Ries.z-Markov-Kakutanio . 
t~eorem, there, is a positive measure J~ on M such that 

''f~(g). ~ g(z)d .J i (z) 
)( 

· (gf:C (M)) 
0 

since · .!1' i (g) = 0 for odd functions g~ the measure Jot is even. !f 

! ··• • .. 4 .J"t{z) 

we write d ~«t (z) • 
f (z) 

, we obtain the equality 
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~or every positive ~ction c! E 1C and every g E: C (M) • Let "}7 be a function 
0 

in X with '-I:' {z),. 0 :tor all z~ M (such a"±' ensts by Sec. 2.6). Then the 

equality 

- T( ~g) - T('{' ~ g) -l. Tgdfof 

· holds for every positive ~ (: 1C and every g.€: C 
0 

(M), the space o:t all 

continuous functions with compact suppor~ on M. Thus the measure 

r~ in (3) is independent of the choice of ~' and we will denote it 

simply by f . Let f l and f 2 be the restrictions o:f' )A to the real 

and imaginary axes, respectively. Then }Al and y-
2 

are even positive 

measures on R, and the equality 

~ 00 

(4) T(Q) · • J.. 17(x)d rl (x) + r e (iy)d r2(y) 
-o-

hoJ.ds :tor all & of the form e =~g, where ~ is a positive function 

in X, and g E: C {l.t). But any positive function e E 1C can be written 
0 

in this form by setting, for example . 

(it is obvious that e(z)(l + z4) is positive on M and belongs to K, 

l . 
and is in 0

0 
(M) ). Therefore (4) holds :tor all positive 

( l + z4 ) · 

~ctions 8 in K, and hence the .equality' . 
00 DO , 

<s> J :r(t) cp(t)dt • f ~(x)dr1<x> 
-Oo • --

00 

+ s o/ (iY)df2(;y) 
-wo 
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"' holds for all functions cp of the form <t> • '"+* "#- , where + is at1 

even function in c•(n). 
c 

We wish to show that (5) continues to hold for all even 

functions· c:p in c:(R). We first show that the integr~ 

eo 

- . (6) J eq dp2(7) 
-oo 

eonverges for all a"' o. In fact, for arrr a,. o, let cpa be the 

2 2 ltl 
function which is equal to a -7 forltl<& and is equal to 0 

/\ 
for ltf ~a. Then c:p a(z) • 

{.

sin.!! 
2 2 

az -2 

Hence ~a ( 17) ~ 1 for all 1' E Rl and ( ~a ( iy >1 2 
• . 4 

4 
4 [ e 2&7 - 4e q 

a7 

~6 - 4e -ay + e-2-:) • Therefore there is a compact set x
1 

such that 

. 2 e28.Y < I~ a(i7) 12 for all 7 not in x1 , and there is a compact 
&47 4 

aet x
2 

such tha~ eq< 
4 

2 
4 

e2a:r for all 7 not in x
2

• Let c1 • x1 u x
2 

·~ a 7. 

then c1 is compact and eay< l ~ 
8

(17)1 2 for all 7 not in c1 • Now let 

{~ 
11

} be a sequence of even :tu.notions in C: (R) with supports in 

a :common compact set c2 and such that cy m ~ <y a Uniformly~ Then 

90 00 

lim } f(t)Cfm * ~m(t) dt • 
ll -~ 

1 f(t) <fa* ~a(t) dt 
-~ 

• 



amcel q. a<:~T>-f .. <:~T> I ~ rc
2

1 cpa <t>- 11 ,.< t;l e t7dt 

~ aup { et7 ;u-c2 '\ j 02 I cp
8
(t)-f

11
(t)j dt--+ o as m-+ "" 

A. A 
therefore ~m(iy) ~ cp

8
(iy) for all yeR as m~oo, 

&Ad henc-tr- b,r Fatou • s Lemma, 
" ~ J I~ a(i7)J2d ~2(y) ~ ~immini' J \ cp m(iy)l2d f2Cr) 

... oo . 00 -~ 00 . 

~ lim,ini' {I I cp .. <xll 2
d f 1 (xJ + j I~ .<1Tl l2

d f 2(7l} 
.po -f10 

• limllin:f' J"t(t) cp.* '·(t)dt - r·f'.(t) fa* ~a(t)dt < 00 • 
•00 

'-
Thus the inteeral ., 

( 7) s I cp a ( iy) 12 d f 2 {y) _ .. 
. ~ . 

converges tor all a .,. o. But since \ cpa (iy) \ ~ 1 tor all Y'*- R, 

(7) implies that JA 
2 

is tini te. Moreover since ea;y < \ cpa (i;r) 12 

tor all y+ci, therefore 

110 

~ e"Tdf2(7) • _· 1 e"TdJ,\ 2(7) + 
- oo c1 I 

X e117
d r2<7l 

R~Cl 

20 

) l ~a ( iy) 12 d r 2 (y) < l>O • 
R\c1 

Th.Us the integral (6) converges tor all a~ o. 

We are now able to show that equality (5) also holds :f'or even 

functions tD in 0 00 (R), i.e., we have to show that the equality 
. T ~ 0 ~ ~ 

· (8) S f.(tl 'I' (t)dt • J ~ (x)d l"l (x) + J $ (:IT)d f 2(7) 
_.,. -~ -CIO 
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holds for all even flmctions c:p in C: (R). In fact, if cp is an even 

function in C: (R), then ~ satisfies an inequal:1 ty of the form 

\ '(x+iy-) \ ~ C exp(alyl). 
' 

Bence there are constants A and b such that J ~ (z) \<A (2+cosbz) on J&·. 

Now let f be an even positive flmction in c; (R) such that 
wo J f (t) dt • 1, and~ is positive on C., and set ~m(t) • m ~(mtl 

-to 
for all integers m ~ o. Let { cp m) be the sequence in C: (R) defined b7 

<:p m • ~ * ~ m • Then the equality 

' " 
(9) 1~ f f(t)<pm(t)dt • 

-s t( t) cp ( t) dt 
-oo -DG. 

. A 
holds, and moreover each ~ can be represented in the form m . 

"Cp (z) -= A(2+cosbz)(l+z4} "&' m(z) . . . . ~ (z) 
4 m ~ A(2+oosbz)(l+z ) 

• e .<z)g(z) 

. A . 

"'Eire 6
11

(z) = A(2+cosbz){l+z4)f m(z) is a positive flmotion inK 

A 

and g(z) • C{> (z) E- C (M) 
A(2 + cosbz)(l + z4) 0 

• 

Thus the equality 
00 po 

(10) ~(fm) • J $.m(x)dfl(x) + -· f ~ m(iy)d rz(y) 
-110 

holds for every m. Now since the function lcp\ is a positive function 

in K, the integral 
00 . 

~· I ~ <x>l d tt1 <x> 
- IPO 

exists by virtue of the fact that equali :tT (4} holds for the function l ~ 1 ~ 
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" " Using the fact that ( cp m (x) \ ~ ( <:p (x) \for all x E- R, we see that the 

equality 

~ ' " 
(11) liim J <rm(x)d ~1 (x) - . j cp (x)d rl (x) 

-" -oo 
"' holds qy dominated convergence. But since each ~ satisfies 

m 

aa inequality of the f~rm 

whe~ the constants K1 and ~·are independent of m, we can conclude that 
~ 00 ' 

(12) lim 1 cp m(iy)d~ 2(y) • j ~ (iy)d r2(y) 
--..o -oo -by dominated convergence because the integral L .. exp(a1t yl )d _r 2(y) 

exists tor all a1~ 0. Equalities (9), (10), (11) and (12) prove that 

( f(t)cp (t)dt- (~ (x)d rl (x) + r ~ (i:y)d r2(y). 
-" -~ : -~ 

By the evenness of both the function f and the measures r l 
' . 

and r 2' it i~ obvious that (8) also 'holds for odd functions <p in 

c;o(R) {both sides being zero). Since ever.y ~~ c;'(R) is the sum of 

an even function and an odd function in c; (R), therefore (8) holds 

for ever.y ~ ~ C -.o (R). In particular, if we apply this equality to 0 . ,. . 

the functions <pat. ( t + s ) , we obtain 

(13) 

00 J f(-t) cp .. (t + s )dt • 

-oo 

We note that ·~1 satisfies an inequality of the form 
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for some constants-K
2 

and a2, hence the inequality 

. a 
f tfo(. (iy)e'7 f ~ f ~ 1 ( !t )e57J ~ K2 exp(( C: + s) I Yl) 

~ 1C2 exp((a2 + S)l11) 

holds for all Oil~ 1. Moreover since ~ .. (1J')e5" ~ es,y tmif'ormly on 

compact subsets of R as ~~ ~ , we can conclude that 
1)0 

" (14) lim J ~oc.(iy)e57d1A. 2 (y) • 
o(-9.,o I 

-C>e 

by dominated convergence. The integral on the left hand side of (13) 

is (fe( *f}(s) which converges to f(s~ in the manner of' the statement 

of' the theorem. Hence (using (14)). - . 
f(s)_ - lim r eisxci,>O(.(x)d r 1 (x) + 

.c..., lloO - IJO 

where the limit exists in the manner of the statement of the' theorem. 

We now proceed to prove that r 1 satisfies the condition of the 

theorem. Le-t C be any compact subset of R. Let ~ l;le an even positive 
A 

function inc: suoh that ~ is positive on C {such a ~ exists 
' . A 
~Sec. 2.6). For every m"?O let ~m(t) • m~(mt). Then ~m is positive 

/"" . . 
on (. and R ~ 1 uniformly on compacts. Hence there is an m such 

~Ill . . 0 

~ 1 
that ~ m (x) :> 2 for all xE- c. Then 0 E \Ai (x + c) IX) 

i 2 f i ,.
0 

(-:z: + T)d f'-l (T) • 2 cf(t) ~ m• (t)eixtdt - ~J y-,.
0 

(iT-:z:)d r2(;) 

s 2 r·f(t) ~ .. 0 (t)eixtdt • _., 
_.,. 
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Since P. has compact support, the :right hand aide of the •bove 
\ao 

inequality is the Fourier transfora of a function in L1(R), and 

thus converges to 0 as J Xl--i' i)O b7 the well known Riemann-Lebes~ue 

Leua. Hence u l (x + C)_,. o, and thus finishes the proof of the 
theorea. r · I 

Let h be the fUnction which is equal to 

{ ~~ exp(- 1 ~ti) dt J -l exp(- l ;;.\2> for I tl< l and is equal to 0 

for I tl ~ 1. For every real number .l ~ 1, let h,., { t) • o<. b(o( t). 'rb.en 

every hoc. is infi.ni tel7 differentiable w1 th support on the interval 

[ ~ ~ ' ! ) , and n h.c, II i• l •. Supposeif ·f is local}7 summable. !hen the 

o.On'Volution Pha, is defined for eve17 ol~ 1, aDd the inequalit7 

... ... 
(l) J f*hoc (t) - f(t) J • I J ho((s)f(t+s)ds - f h oc(s)f(t)ds / _..., -

~ --
~ . ' .: ~ r o( h(o< s) I f(s+t) - f(t>"J ds' n hiiDO f If(~+ t) - f(t) I du 

-~ . _, 
holds for every ol ~ 1. A point t is said to be a Lebesiue point of a 

locall7 summable function f if aDd onl7· if the average occurring in 

the last term of (1) converges to Q. A st~dard theorem asserts that 

almost ever7 point t in R is a Lebes,ue point for a given locall7 

summable function f. It is Obvious that a point of continuit7 of t 
is a Lebes~ue point. Thus (l).implies that f*h~oonverges to fat 

ever,y.Lebes~ue point of f. Therefore if we consider this special 

"""""" summability function~ •.h~ for the integral representation in 

'l'heorem 2. 7, we can streu~then. the mode of convergence in Theorem 2. ~ 

via the following. 
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Corollarza I:t :tE-P (c 110 (R)), there are even positive measures 
e o 

on R such that 
wo 

:t(a) • lim 
0(7vo 

r eisX HO(. (x)dPJ, (x) + 
-oo 

•! ever3 Lebestue point o:t f, and hence almost eve:eywhere, and in 

particular at eve17 point of continuity of f. Furthermore, f"l must 

satisf.y y- 1 (x + C) ~ 0 as l xI --7> oo . , where C is any compact subset 

o:t R, and )l 2 must be such that the integral ~:eay d r2(7) converges 

:to~- all a~ o. 

2.8 ~heorea (Krein) Let f be a continuous function in the class -
P e(C: (R)). '!'hen :t has the form 

00 

(1) :r<x> • So cos Ax.itr 1 < ~ > + 

.. I co shU: d r 2 ( X ) 
0 

where ~ 1and ~2 are positive measures, ttl is finite, and ·r2 is 

such that the second. -integral converges. Conversel7; i:t two positive 

measures p1 and ~ 2 satisfy the latter conditions, then (1) defines 

a continuous function in Pe(c~(R)). 

Proofa we start with the first part of tbe theorem. We know froa 

fheorem 2.7 that there are even measures t'i, r2 
~ 

(2) f(x). lim f ei~x~O((x) dlAi(X) + 
ot-100 ) . t 

-~ 

on R such that 

where the limit exists uniforal7 on compacts since f is continuous. 

Since C!cx71 uni:torml7 on compact subset C of R , 
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00 

tti(c) • ;~ ~c <£o~.()\) d~i(~) ~~!moor ~0(().)4~i~A) 
_oo 

• t(O) 

~he bound is independent of C, therefore }" i is . finite, and hence the 

fUnction h defined by 
..0 

h(x) • I:iAxdff (:A) 

is continuous and thus 
00 

lim. ~ e1A xcfot( A.)dJAi( A) • 
e(~~ -~ 

holds for all x~ R. If' f l and ~2 are the :restrictions of' 2 J-'i and 2 f2 
onto the interval [o, ~ ) , respectively, then (2) becomes 

. (3) 
00 

f'(x) • J oos'Ax d }Al (A.) + 
0 

where r 1 and f 2 obviously' satisfy the condi tiona of· the theorem. 

·' 
Bow we proceed to the proof of' the conTerse part of' the theorem. 

It suffices to show that f~ Pe(c:(R)) since continuity of' t comes 

• easily from the condi ticns on p l a.nd f 2• Let J" i a.nd J-' 2 be the 
. . . 

even positive measures defined on R such tha.t their restrictions onto 

C ) 1 l . 
the interval o, ~ are 2 fl and 2 ~2, respectiveJ.7. Then f'or &n1'. 

even f'un.ctiom <{> ~ c:(R), we can apply Fubi.n1 1 s theo:rea to obtain 

00 1)0 r r t(x-y) 'f (x) f (y) dxcQ" _ .. _-.. [ r ( (oos>.(x-7)dh().) + 

00 

~ cosh >.(:a:-7)df 2 ( Av<f(:a:}f(7)d>:d; 
0 
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~ r e .l. (x-T) df' 20• >) cp (x) cp (y)d%~ 
-oo 

110 DO 

• f ~~<A->12 dr~ <A>+ 
-oo . 

f 1 cf <1~ >F df 2 <>-> ?:- o 
-oo 

, 

because ~ 1 and \"-
2 

are positive. Thus we have completed the proof 

ot this assertion. I 

Remark 

!!.2, We remark tha-t the measures r l and ~ 2 in Theorems 2. 7 and .2.8 

are not uniquely defined. An example on the non-uniqueness of these 
measures can be fo1.md in Gelfand and Vilenldn ( 9, pp226-228]. 

Note that we have only proved the integral representation theorem 
for the case of a single variable, and the result is not true for 
the case of several variables. However, if f also satisfies the growth 
condition that the integral S. 00

exp(-ox2)f(x)d% converges for all o>O, 
0 

then the integral representation for-t is unique. We will show that 
tho result is also true for the case of sever~ Tariabl~s if a similar 
growth oondi tion> is impesed on t. 

!!1:2 Notations . We adopt freely' the notations introduced in Sec.l.lO 
and Sec. 1.13. We denote b.f ~(n) the set of all functions f on Rn 
such that the integral 

converges for all c,. o. 
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'l'he Class a(n) ri P e {C: (R11
)) 

lill, Le~~~~~a For arq- c • (c1 , ••••• ,c
11

) "'o, and arrr 't E C: (Rn), 

A:. . 2 ""' 2 the function "l: , defined by cf (z) • exp(-cz ),. (z ) , is an even 

~ction in Y(n) (for definition of Y(n) see Seo. 1.13). Furthermore, 

if' { "f' af is a sequence in C: (R~) such that ~ 
11 

___. f in the topology 

of' c;, then there is a sequence { <p 
11 
t in Y(n) such that 

A 2 A 2 cp 
11 

( z) • e:xp ( -cz ) 'f' 
11 

( z ) , cp 
11 
~ cp uni:torml.7 on compact subsets 

n A 2 A 2 
etC_, where cp is the function inY(n) such that cp(z)•exp(-oz )~(z ), 

and the following inequality 

holds for ever, m, where the constants K, a, b do not depend upon m. 

Proof: For arrr 'f ~ C; , by Theorem 1.14, there are constants c and d 

such that ~~ (x + iy) I ::; 0 exp(d lfyK ) 

and therefore 

1 exp(-oz2)i-(z2
) f ~ C exp(-cRez2 + diiimz2 JI) 

holds for all o >O. 
For aey d and c there is an r • .(r1 , ••••• '~n), rk '> o, such 

2. 2 1 
that.~+ rk > (d.k + rk)2.' l~k~n. We set 

1 . 1 

4' • (<~ ~ ri)2, ...... , (d! + r!)2) 

and 

Sinoe 

therefore 



I exp(-cz2) .f<z2) J ~ C exp(-cRez2 + dO Imz21 } 

= C exp{-o•Rez2 + rllez2 + d d Imz2 11 ) 

~ C exp(-o•Rez2 + d' II z 11 2) 

= C exp(-(o'-d')x2 + (o' + d');r
2

) 
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Since, in view of the choice of r, o'> d', the function exp(-oz2)~(z2) 
belongs to Y(n). 

If { 'f m) is a sequence in C: such that "'m ~ 'f in the 

topology of c"" , then 'l'heorea 1.14 shows that exp(-oz2)~ (z2) • o ., . m 
2 ~ 2 . .. 

~ exp( -oz ) 'f( z ) unif'ormq on compacts, and ,the inequality 
A . 

f 'f'm(x + 17}1 ~ C exp(dllyll) 

holds for every m, where the constants C and d do not depend upon m. 

By following the same argument as before, we see that every exp(-cz2)'f m(z2) 

sa~isfies aa inequali t7 of the form 

\ exp(-cz2) ¢m(z2) I~ o• exp(-a•x2 + e•y-2). 

~ Theorem 1.15, there is a sequence fcp m) in Y(n) such that 

· cpm(~ • exp(-cz2) ~(z2), cpm-+ cp uniformly on. compacts, where 
1\ 2 A ·2 . c:p is a function in Y(n) such that cp (z) • exp(-cz )"'/J (z ) , and there 

are constants a and b, not depending upon m, such. that 

. 2 2 I fm(x +iy) I:$ k exp(-ax + by.) 

holds for ever,r a. I 
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2.12 - Lemaa I:t O<b<2cJ i.e. 0<'\:<2clt (1~k~n), then there 

is a sequence { "f m 1' in C; such that 

""" {1) 't .(x) ~ 0 for all xE: R11 

( 2 A 2 2 2) exp(-cz ) 'f m(z ) ~ exp(-bz ) uniforml.y on compacts-

(3) the inequality 

\ exp(-cz2) ~ (z2) \ ~ IC exp(-ax2 + b72) m 
holds for every m, where the constants IC, a,-b ,do not depend upon a 

n ... 
(4) for real values x~R , the inequaliV' 

;'\ ·' 

l exp( -ex) 'f m.(x) I ~ K1 exp( -hx) 
' holds for every- m, "Where the constants x1, h do not depend upon m, 

.~,. \ ;,~ i 

and 0< h<2c. 

Proofa (Gelfand and VilenkiD) Take arq function o< ~ Z(n) such that .x'Co). 1 

aDd \ ~ (x + 17) l ~ C e:z:p(r \\ y II ) 
- 1 . . 

wh.ere r satisfies the ineqUality O< r< ¥e-ll b-e II ). We set 

(5) e (z) - o( (.!)~(~) [, i: {c-b)k zk] 2 
11 m _ m \ltl • 0 2k. kl 

• 

~hen each &-
11 

E: Z(n). , because it is the product of the function 
.~ 

o< (.!.) ;(. (.!) E; Z(n) and a polynomial, aDd hence by Theorem 1.14 there m m , 

is a sequence { + ' inc pO such:that t' •.. e • w~ shall prove that .- m c . . m · m 

t~e sequence f 'I' ml satisfies the oondi t~ons. of the liemma. The expression 

within the square bracket of (5) is the partial. sum o:t the Taylor series 
) ·:. l ' . . •. -. 1' . 
for e:z:p(2(c-b)z) and therefore converges to exp(2(c-b)z) uniformly 

on compacts as 11 -.:p c;oo • At the same time, the function o<. (.!.) ~ (.!) 
c a m 

converges to o<. ( 0) • 1 uniforDaly on compacts as m ~ pO • Therefore 

exp(-cz2)~ (z2) ~ exp(..;.:.bz2) unitoriDl.y on compacts. Moreover . . .... , 



Jexp(-cz) t.(z) \ ~ I e:xp(-cz)o( <i>O{ <i>) exp( II (~-b)z II ) 
~ c2e:xp{-cx + 2r llzll . + II (o-p)z II ) 

m 

~ c2e:xp(-cx + all z II) 

where s • 11 o-b n · + 2r < c U. view of the choice of r. 

Bence l exp(-cs2) ~ m(z2) \ ~ c2 exp(-(c-s)x2 + (c+s)y2) 

and therefore condition (3) holds. 
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!J~~ since the functions ex(.!.) have ·a, common bot.md on the reals, . m . 

'the inequality 

(6) I e:xp(-ox) fm(x) I $ Kl; exp(-cx + n (o-b)x") 

holds with x
1 

independent of Dh In expanded form the expression 
n . 

-ox+ II (o-b)x If is - ~(<it~ + l( <'1c,- \;):z:tll) 
k•l ... 

n 

• - L Xk: [ ~ -1~ - <;c\ sign :z:tc:] 
k•l 

But in view of the inequali V O< \: <· 2~ (l ~ k ~ n) 

ve have 0 < ~ - I ~ - ~ 1 si~ :z:tc: <. 2"k:. Set ~ • "k -I\; -<;c I sign :1Jc , 
then 0< h< 2c and (6) becomes 

"' l exp(-cx) 'f m(x) \ ~ Kiexp(-hx) 

which proves condition (4) I 

·-' 
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2.13 Lemma For arrr a • (a1 , ..... , an)> 0 and a.rr:r cp in Cc00 
, 

there exist t = ( o1, •••• ,on) '> 0 and a sequence { '1-m) in C; (Rn) such that 

(1) exp(-cz2) f' (z2) 7' exp(-az2) ~ (z) 
- m 

unif'or~~l.y on compact subsets of' C. n as m ___..:;, 010 

(2) the inequality 

I exp(-cz2) t.,. (z2) I ~ 1Cexp(-dx2 ~ ey2) 

holdS for eve;rr m, where the constants x, d, e do not depend upon 11 

(3) for real values x in Rn, the inequality 

~ I exp(-ox) f.(x) I :5 X exp(-hx) , h7 0 

holds for ever, m, where the constants K, h are independent of m. 

Proof'a In view of' Theorem 1.14, ~ satisfies an inequa.li tt of the 

tom I ,(x + iy) I ~ L exp(b'll Yll ) for some constants L and b', 

and therefore I exp(-az2) ~ (z) I ~ LJ exp(-az2 + b'l yJf ) I 
~ Llexp(-az2 +II b•n + biy~)l 

= Llexp (-ax2 + by-2) 

~ ~exp(~a+b)z2 + ¥b-a) ll z2 1)) 

where L1 • Lexp( n b'll } and b • a +. b1 • 

~ . A 
The function cp (/i) (this function is well defl.ned since cp is 

even) is obriously an entire function. we take o >a and·let f>m(z) be 

th ' 
the m partial sum o:f' the T~1or series for the entire function 

A 
exp( (o-a)z) q> (/Z). Let co< E Z(n) be such that ~ (0) • 1 and 

I c:>< (x + iy) I :::= M exp(r 1\ yl\), where o < r< ~2 , and let 'it (z) • o< (.!.) P (z). 
11 m \m. 

Then'!'.~ Z(n}~ and by' Theorem 1.14, there is a sequencef'fml in c; 
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A. 
euoh that 'fm • \f'

11
• It is obvious that condition (l) holds, and 

I exp( (c-a)z) ~(Ji) I ~ ~ exp(cx~(a+b)x + ¥b-a) II z II ) 

~ L1 e:xp((c-a) d z U ) • 

Bence tor all b1 > o-a, one has 

1 where x1 does not depend upon m. In partiQular it holds for b1 • o -? 

8DCl nence 

(5) 1 exp(-oz)~11(z)l ~ exp(-cz)(oc:(i>llr.<z)J 

( rll Yll 
~ ~Kl exp -ox + m l 

+ {c - ?) II z U ) 

~ :R exp{-cx + s H z II ) 
' ~ 

where s • o - ~ • Obviousq 0< s < c , and (5) is equivalent to condition 

(2). For real values x E Rn, (5) is equivalent to condition (3). 1 
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Theorem If fE-G(n)nPe(c:(nn)) (i.e., f is a function in the 

class P 8 (c:) such that f exp(-ot2)f(t)dt converges for all c :i'O)J there 

is a uniquely defined even positive measure p, concentrated on the set 

M of points s • (zl,. •• ,zn}• each of whose coordinates zk is either 

real or pure imaginary, such that the integral 

(l) ~X oxp(-cs2)D.p(s) 

converges for all o.,. o, and the equality 

(2) f( t) • S Mei( t,z) dp(z) 

holds for almost all t (: Rn. 

Conversely, if p is an even positive measure on M such that 

the integral (1) converges for all c '7 o, then the integral 

~ X81(t,z) dp(z) 

converges for almost a,ll t t Rn, and the function. f , which .. is defined 

almost ever,yvhere by (2), is a function in the class G(n)nPe(C~). 

Proof& We start with the second part of the theorem. Suppose p is 

an even positive measure on M such that the integral (1) converges 
-

for all o .,.o. In view of Fubini's Theorem, we see that 

4t dp(z) • 



35 

1 -· 40 ( ·-41 , ••• , ~) 
. 01· --n • 

Hence the integral ~ 
11
ei(t,z) dp(z) converges ·for almost all t~ Rn, 

and the function :t, which is almost ever,yvhere defined by (2), is in 

the class G(n). Now for any even function cp~ c;", we can apply 

Fubini 1 s Theorem to obtain the inequality 

Here we have used the fact that pis positive. Therefore t is also ·in 

the class Pe(c:), and hence we finish the proof of the second part of 

the theorem. 

We now proceed to the proof of the direct assertion of the 

theorem. Since the integral (1) converges for all ~70, we can 

apply the dominated convergence theorem to prove that ft Pe(Y(n)) 

(for the definition.of Y(n) see Sec 1.13 ). In view of Theorem 1.15,, 

we can define a linear functional T on Y(n) by setting 

T(~) • s t(t)~(t)dt nn . (J) ( t~ Y(n)) 

where cp is the function in Y(n) such that f • if • Then for every 

o•(clt•••Cn)?O, the functional T0 defined by 

(4) <t~ c~) 
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exists b7 virtue of Lemma 2.11. We first show 'that T
0 

is con-tinuous 

on C
0
0o. Indeed, if +m~fin the topologr of c';, le-t{cpm1 be the 

sequence constructed in LeJDJDa 2.11 suoh that cp m ~ cp uniformly on 

compacts, where cp is the function in Y(n) such that 

A. -21\2 ~ 2~ 2 <p (z) • e:x:p(-oz ) 'f(z ) , ~m(z) • exp(-cz )'fm(z ), and the inequa1it7 

\ cp (x+iy) I ~ X e:x:p(-ax2 + b72) m . -

holds tor eve-q m, where X, a, b: are independent of •· Ve caD appl7 . 

the dominated convergence theorem to show that 

·Lia f f(t) <p (t)d't • f f(t) Cf(t) dt 
II Rn m Rn 

and hence T0 ( ~) • T(exP(-oz
2

) ~(z2)) • f Rn f(t) f(t) dt • 

• 1~ fan t(t) 'fa(t) dt • 1~ !l'(exp(-oz~)~11(z2)) • lim o.r0 ('t8 ) 

·~ ' 

showing that T
0 

is continuous on C 00
• Since t ~ P (Y(n)), the inequali v c · e 

1 2 1-l 
N ~ - -~ • 'Z ) 

Tc('\'*i') • 'l'{exp{-cz2) i'(z2) ~(z2)) • 'l'(e 2 4 (z2) e 2. ~ (i
1

) :=:, 0 

holds for all 't E C 00 (Rn). Therefore T is a· positive definite 
c 0 -

distribution, and by ~heorem 1.12, there is a positive tempered measure 

(t 
0 

·on Rn such· that 

· !l'(exp(-oz2)~(z2)) • fan -t(t)d ¢"
0
(t) 

.. ~ t 
holds :tor $11 "''~ 0

0 
• Setting d\lc(t) • e

0 
d G"

0
(t), we obtain to:r 

:-t·.'. 

eve-q o 7 0 a positive measure J c such that 

(5) T(exp(-oz2)~(z2)) ·-- SRn exp(-ot)-t(t) d~c(t) 

tor all -t.: 0 uo. Thus we have proven tha't the equality .o 

(6) T( 6 (z2
)) • )Rn tt( t) d '\J

0
( t) 
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A 
holds for all entire functions fJ of the form 8'(z) • exp( -cz)f( z), 

where f E. c: ~ 
We wish to show that the measures V0 are independent of the 

choice of c. We first show that the integral 

converges for O<b<2c. Indeed, iff 'I'm) is ·the sequence of functions 

constructed in Lemma 2.12, then the inequality 

holds for ever, m, where the constants K, a, b do not depend upon m. 

The~efore we can apply Theorem 1.15 and th.e dominated convergence theorem 

to obtain ~ · 
lim T(exp(-cz2)'fm(z2))• T(exp{-bz2)). 
ll 

A . . 
Hence by Fatou•s Lemma ( since 'tm(t)~ 0 for all t ) , 

i.e., the integral (7) converges. We next show that (6) continues 
. .A . 

to hold for all functiws 8 of the 8(z). • exp(-bz)"f(z), where O<'b<2c 

and t~ c:. In fact, iffi>m"s is the sequence constructed in-

. ~ A - I\ 
Lemma 2.12, then exp(-cz)"fm(z}"t(z) ~exp(-bz}'f(z) uniformly 

on compacts as m~ ~ • In view of condition ( 3) of Lemma 2.1~, we can 

follow the same argument as in the proof of Lemma 2.11 to conclude 
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that the sequence f exp(-cz2) ~(z2) ~(z2) J is uniformly dominated 

by a fUnction of the form: Kexp(-ax2 + by2). Application~ of 

Theore~ 1.15 and the dominated convergence theorem show that 

(8} 

A. 
Since the function 't is bounded on R11, by condition (4) of Lemm 2.12 11 

the inequality 

holds for every m, where the constants K1 and h do not depend upon m, 

and O<h<2c, and hence 

by virtue of dominated convergence the_orem. Therefore we obtain 

by virtue of(8). Comparing the above equality with (5); we see that 

r · exp(-bt} -tc t)d ~ 0 ( t) D r exp(-bt)-t ( ~)d J b( t) 
JRn . JRn 

for every + '= c:O • Hence Jb • ~ 0 since the set of all ¢ is dense 

in C0 (R") • 

Thus we have proven ~hat Yb • J0 if Q.( b < 2o. Now for ~ 

o,d )'0, there exit;~ts at least one b '1' 0 such that b< 2o and b< 2d, and 

hence ~c -~b • .J d • Therefore the measures V0 are independent of the 
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choice of c, and we shall denote the common value of the measures J 0 by -J. 

·.i . So far we have proven that the equality 

(9) T( 9 (z2)) !18 f ~( t)d~ ( t) 
- JRn 

A 
holds for all entire functions e of the forlll ~ (z) • exp(-cz) 't (z), 

where c.,. 0 and 'f' e- c:O. We shall now show _that (9) continues to hold 
1\ . 

for all functions 8 of the form 9 (z) • exp(-bz)<p(Ji), where b> 0 and 

~is an even function in c: . In fact, the sequence {"tm.fin Lemma 2.13 

satisfies the inequality 

where the constants K, d, e do not depend upon a, therefore we can 

apply Theorem 1.15 and the dominated convergence theorem. to prove that 

(10) 

But the sequence{'f'm.J also satisfies the inequality 

Jexp{-cx)-tm<x>l~ Kexp(-h:x) , h>·o 

for real values x ~ Rn , where the constants K and h are independent of m, 

we see that lim f exp(-c:x) ~111 (x)d~(x) • S, exp(-bx) f (Ji)d.J(x) 
m .} an . Rn 

by dominated convergence, and hence by (10) we obtain 

T(exp(-bz2)~ (z)) ··f: --exp(-bx)~ (Ji)dJ(x), 
Rn 

i.e., (9) holds for functions a of t~e form 8(z) • exp(-bz2) f (z), 
00 

b)' o, Cf is an even function in C0 • 
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Now let p be the even positive measure concentrated on the set 

X, as defined in the statement of the theore• t such that 

511" ~( t)dll( t) • s. ~ (z2)dl'(s) 

for all~~ c:. From the properties of~, we see that the integral 

converges for all o~O, and the equality 

(12) T( 6 ) • lx 6(z)dp{z) 

holds for all 9 of the form & (z) ~'-exp(-bz2) ~ (z), where b ~ 0 and 

90 
~ is an even function in Co • 

B7 the converse part of the theorem, we see that the integral 

n exists f'or almost all t 6 R , and that the function g, defined by 

a.e. 

is locally in L1 (Rn). Let fa.) be the Gauss kernel, l.e., 

·n 
. - 2 ~ 

Gj(Z) • (
2
m ).2 exp{- ~ j 

.'tt 

then by virtue of the fact that 
' 

~ z2 1\ 
C. *f (z) • exp(- ; )<p (z) t 

we can apply (12) to obtain 
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(13) SRn:t(t)G11*<p(t)dt ·f~~~ (z)dp(z) 

:tor all m ) 0 and all even functions 'f E:-C~ • Applying Fubini • s Theorem 

to the integr~s in (13), we can prove that the equality 

r (:t*GmHt><p<t)dt • r (g*Gm)(t>cp<t)dt 
JRn . JRn 

• 110 
holds :tor all m > o, and all even functions cp' Co • Since f*Gm~f 

and ~ ~ g on compact subsets of Rn in L1 norms, therefore the equality 

(14) ~ Rn:t(t)f>(t)dt • fRng(t)cp(t)dt" 

holds for all even functions cp' ego. 
w n o 

J'ow for all Cf ( c0 (R ) , let cp be the function defined by 

cp (xl, ••• ,~') • ~n 'Lcp< :txl' ... ,:t~) 

where the summation is taken over all permutations of the signs. 
0 ~ 

!hen <p is an even function in Cq , and by the evenness of both 

t ahd St we see that 

• • 

and hence (14) holds for all Cf6 c;'. The fact that both f and g are 

locally in L1 (Rn) shows that f • g locally ~lmost ever.ywhere in Rn. 

But since R" is a countab1e union of compact subsets, we. can conclude 

that :t • g almost everywhere, and the proof of the theorem is completed.l 
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2.15 Theorem Let f be a continuous function in·the class 
'OD 

P8 (C0 (Rn)) such that the integral 

J e:xp(-ct2)f(t)dt 
Rn 

converges for all o>O, then there is an even.positive measure f on the 

set M of points, each of whose coordinates is either real or pure 

imaginary, such that 

The measure p'is such that the integral 

(2) J exp(oy2)dp(z) 
M ' 

converges for all c" o. Conversely,--if the positive even measure 

p is such that the integral (2) converges for all c .,.o, th~n (1) 

defines a continuous fUnction in the class G(n)nPe(c:(Rn)). 

Proofs The second ( converse ) part of the theorem is obvious. 

For the .direct assertion of the theorem, it suffices to prove 

that the measure p defined in Theorem 2.14 is finite. ,Le:t Gm 

be the Gauss kernel, i.e., 

n 
Gm(x) • ( ..!!..)2 exp(- m:

2 
) 

2 2 
, ll >0 

then by Theorem 1.14, we obtain 



'!'he integral on the left hand side of ( 3) converges 'b7 the grorlh 

~striction on.f, and we oan appl7 Fubini•s 'l'heorem to obtain 

(4) J f( t)Ga( t)dt • J 'G;.(z)dp(z) 
Rn X. 

' /' 
Since G11 ~ 1 unifo1'11ll7 on compacts, therefore for any compact 

subset C of K, 

Jl(c) • Jc djl(•) 

• l~m ! 
0 
~11(z)dp(z) 

~ li• l Jl 'G8 (z)dp(s) 

•lim (Gm*f}{O) 
Ill 

• f(O) . 

Since the bound is independent of c, f is finite. I 

43 
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Remarks on the Class Pe{F) 
'· 

z.4! We know from Cooper ( 4 J and Stewart ( 21) that 

P(O~(Rn)) • P(C 0 (Rn)) • P(L~(Rn)) for every p ~ 2. We remark that 

the corresponding theorem also holds for evenly positive definite 

functions, i.e., Pe(cC:(nD)) • Pe(C0 (Rn)) • P8(L~(Rn)) for every p~ 2. 

In fact, the following inclusion always holds 

Pe{L~(Rn)) ~ Pe(Cc(Rn) )~ Pe(c:(nJll)) • 
110 

But if f&Pe(Cc(Rn)), then f is locally summable by virtue ot 

Theorem 1.5. Hence the integral 

(l) 

exists as Lebesgue integral for every even function cp in L~(Rn) {p~2)• 

Since the set of all even functions in o:(nD) is dense in the set of 
- p . . 

all even functions in Lc , there is a sequence of -even function { 'P ml ... 
in Cc(Rn) such that l<p"'l increases to l fl and hence, by dominated 

convergence theorem, · 

r r f(X-3'),(x)cptr)dxd1' • li
JRn JRn 

'.rhus f is e.p.d.for Lg(Rn). < ., 

We remark that the class Pe(L1 (Rn)) is a much more restricted 

class of functions than the class Pe(C~(Rn)). In the next section 

we will show that every- function in 'lle class Pe(Ll(Rn)l is essentially 

bounded, and consequently, they ar~ exactly all those even functions 

in the class P(L1 (Rn)) • 
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Proof'a Let E be the set of all even functions in L1(Rn), and { <fot j 
the sequence constructed in Sec 2.6. Then E is obviously a Banach 

.·.Ubal:gebraof the commutative Banach algebra L1(Rn), and f <p.c.) is a 

bounded approximate unit of E. In view of Theorems 1.6 and 1.9, we 

see that the integral 

(1) 

converges for ever:~ even function cp l: Ll(R11). Now for every 

function 'f " L 1 {R."'), let "f t be the function defined by 

t'(x , •.• ,x ) ·• -1:.:_ Z. 1 f<:tox1, ... , :i::zn) I 
2n . 

where the summation is taken over all possible combinations of signs. 

Th~n for+ E;L1 (~n), the equality 

)~:r(t)'t(tl\dt • ~RL:r<ti-f''(t)l dt 

holds by virtue of the fact that f is even. Since ~· is an even 

function in tl(Rn), therefore the integral {1) converges for all 

<p l: t 1 (Rn). Thus f ~ L00(Rn) ( see Hewitt and Stromberg [13, p348 

Theorem 20.15) ). I 



~ Theorem If fE Pe(L1 (Rn)), there is a unique even positive , 

measure f E M(RD) such that 

f'( t) -. fRnei( t,x) dp(x) 

for almost all t(: :an. 

Proofa We know from Lemma 2.17 that f'~L .. (Rn), and therefore the integral 

r e%p(-ct2)f(t)dt 
JRn 

converges for all c~ o. Hence by Theorem 2,14, there is a unique 

even positive measure p on the set M of all points Z • ( Zlt•••tZn), 

each of whose coordinate zk is either real oT ~pure 1aas1nar7, such that 

(1) :r(1) -. SM ei(t,z) dp(s} 

for almost all t eRn • lle first show tha. t the meas~e p,. is finite. 

In fact, if{~~' is the summability kernel defined in Sec 2.6, then 

we obtain from (1) that 

Here we have used Fubini • s Theorem. Since Cfot*f ~ f in L Oo norm, 

the function g • lim ~~*f' is a bounded continuous function which is 
oe.~" 

equal to f almost everywhere. Now since ~(z)7 1 uniformly on compacts, 

therefore if C is a compact subset of C. n, then 

ll(C) • lim \ ~(z)dp(z) ~ lim f ci,.(z)dp(z) • lim( <p;:f)(O) • g(O). 
e(..,.a ~c ·il( -<..,. 00 )M ~ ..... 

the bound is independent of the choice of c, p is finit~. Since 
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Now let p1 and P2 be the restriction of p ontothe real and 

imaginar,y axes, respectively, such that p2(~ol) • o. We obtain from 

(1) that 

(2) ~(t) .• r ei(t,:z:) dpl(:z:) + r .<t,y) «\U2(y) 
JBn ~RD 

for almost all tE:Rn • Sin.ce P.l and Pn are.finite, and f~L~ the 

function h , defined by h(t) • JRn e(t,y) dp2(y) is bounded and 

continuous. Let m • (m, ••• ,a)6Rn, then the inequality 

. h(m) • r e(m,ITJ )du (7) ~ r (m,lyl)dp {y) • 
JRn 12 ~ JRn 2 

am f (\Yl1+•••+\Yn/)df2(Y) 
lRn 

holds for arbitrar,r large values of m, and thus p2•0 since h is bounded. 

Therefore ~ • ~1 and 

f(t) • f ei(t,x) dy(x) 
Ir1 ' 

for almost all t E: Rn. . I 



Chapter 3 

Symmetry OD. Ch-oups 

Definition of Symmetry on Groups 

Ji! , Let G be a locally compact abelian group. We denote by Aut G 

the group of all continuous automo;phisms on G, where group operations 

in Aut G is function composition and is written multiplicatively. A 

subgroup r of Aut G is called a symmetry on G if r is finite. We · 

. first note the following invariant property of r. 

~Theorem Let r' be a symmetry on G. Then the equality 

· (1) Ja q<n)a.x = J0~x)dx 
holds for every <:p ~ C 0 {G) and every y E r . 
Proof: Since 4( is a continuous automorppism on G, the integral 

exists and is translation invariant. Therefore there is a positive 

real number D( Y') such that 

5£i. <p (1r'x)dx = D( 1') 5 G <p(x)~ 
holds for all'~ Cc(G). Clearly D(e) = 1 if e is the identity 

automorphism of G. We show. that D(Yl r" 2) = D(. '( l)D( l' 2). Indeed, 

D0fi ~ 2) Sa cp (x)dx ... ~ G <p ( 0 l 0 ~)dx ~ r G( cpo ((l)( ~ ~)dx = 

= D( o2} fGq>( 1r1x)dx = D( Y1)D( l' 2) r G<p(x}dx 

holds for all cp E Cc {G). Consequently, each D( Y) must satisfy the 

-48-
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equation (D( t ))n = 1 where n is the order of r • The fact that 

D( T )~ 0 forces D ( '() = 1, and hence (1) holds • 

.l!.J. Let r be a symmetry on G. For any ~ E r , it is natural to 
A A 

look at its ~djoint ¥*t which is a fUnction defined from G into G by 

[:r:, 'r*~ J = c~ x,~J (x~ G, ~'G). 
A 

It is clear that l* is an automorphism of G. We wish to show that 

1S * is continuous. In .fact, the sets 

VK,t = { ~E:-d;\ [.x,~] -1\<ffor all x'"K 1 
with K a, compact subset of G and t 7 0 form a neighbourhood basis of 0 

in G. Since l4~ VK,~ for all ~~Vr"'K,t t where r 1K • t Y"1:z:J xe-Kf 

, which is compact whenever K is, we can conclude that "r* is continuous. 

Therefore the group r * • l'lf*J ~( r1 is a symmetry on G, and we shall. 

call this the adjoint symmetry of ron G. Throughout this paper, r 
A 

will denote a symmetry on G, and r * its adjoint symmetry on G. 

Examples 

J:.i The trivial symmetry I Let I • f e 1 be the trivial subgroup 

of Aut G. Then it is obvious that I is a symmetry on G. We shall 

call this the trivial symmetry on G, and we can identify any locally 

compact abelian group with a symmetric group with trivial symmetry • 

.J.:.2. The even symmetries E(n) . If G • Rn, let E(n) be the group of 

all linear transformations Cf in Rn such that mat 'IS' is an nxn diagonal 

matrix with diagonal entries taken from the set f -l,lf• It is clear 

that E(n) is a symmetry on Rn, and we call this, the even symmetry on 
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Rn. It turns out that E(n) is equivalent to the ordinar.y concept 

of evenness in Rn. 

Symmetric functions and measures 

~ Definitions: A complex-valued function~ on G is said to 

be r -symmetric if cp ( l( x) ... <:p (x) for all' y ~ r and for all X e G. 

A measure JA on G is said to be r -symmetric if for all cpE: C
0

(G) 

the following equality 

(1) ~G <p(rx)dr{x) = facp(x)dr{x) 

holds for all )'£ r . Thus any constant function on G is r -symmetric, 

'and. the Haar.measure on G is also r-symmetric by virtue of Theorem 3.2. 

A subset M of G is said to be r -invariant if O'M ~ M for 

all ...-~r , :where.l'"M .. •{ Yx; x~M 1. 
For any complex-valued funqtion cp on G, we define the 

0 r -mean of <p ' denoted, by c.p ' by 

(2) ~ ...1-- 2:. cpo r 
· • = . 1 r I tE r . 

where t r' = order of r . 
Let Xt>e a set of complex-valued functions on G. we 

define the r -part of x, denoted by r x, by 

rx ""ff~ X ; f is r -symmetric 1 • 

3.7 It would be desirable if we could single out some function 

spaces on G that "'iould r~.flect the symmetry .that is on G. Throughout 

this paper, we.are interested in all those function spaces which are 

also topological linear spaces, and we make .the following definition. 
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Let X be a topological linear space of complex-valued functions on G. 

Then X is call~d a r -symmetric function space on G. if" the opera tor T r ~ 
T l" ( tp) = ~o ~ , is a continuous .linear opera tor on X .for all. y 6 r • 
The following theorem is valid. 

3.8 Theorem Let X be a r -symmetric furiction space on G. 
. " Then the .operator P, defined from X onto r ~ by P(~) = <p , is a 

continuous projection from X onto r X. 

Proof: Obvious. 

1:.2 _ Corollary Let X and Y be r -s.fllliiletric function spaces on G 

such that X .. is .dense . in .Y:. _ Then. r 4 is. dense in .. r.Y •. 
Proof: Obvious. 

and C{G) a~e r· -symmetric.-

{b) .The space A(G) 
0 ~ 

is r *-symmetric and ~ = cp 
for all tf1 ~ tl(G) •. 

Proof: . {a) The proof is easy. For the spaces .tP, Lg (1 ~ p~ 110} use 

·the symmetric property of" the'Haar measure on G. ·For the other 

e~aces, us.e the fact that. every .¥'~ -r is continuous. . 

(b) It is obvious that f o(f* .= (fo?r-1)" ~ A(G}, and 

II~,~~~ .. HI?' = ll f Hoo' hence A{G) is r*-symmetric. Moreover for every 
. 1 

f (: L (G), 

-tls. ~ 

I 
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Symmetric Linear Functionals 

Let X be a r -symmetric function space on G. It is natural 

to look at all those linear functiona.ls on X that would preserve 

the symmetries that exist on both X and G. Accordingly, a linear 

functional T on X is said to be r -symmetric if T(cpo tr) = T( q>) 

for every<p~ X and every 1f""r. It is clear tha.t the above equality 

is equivalent to the e~uality 
() 

·T(<p) • T(tp) 
for all <p ~ X. 

To give an example of such a symmetric linear functional, we 

take the case X = c0 (G) and define a linear functional T on X by 

T(f) = s G <:p (x)dx ( cpt:: X) • 

Then T is a r -symmetric linear functional by virtue of Theorem 3.2. 

It is clear that every r-symmetric(positive, continuous,resp.) 

linear functional on X is a (positive, continuous, resp.) linear 

functional on rx. The following theorem shows that the converse 

ot this is also true. 

3.12 Theorem Let X be a r -symmetric function. space on G. ·Then 

every (positive, continuous, resp.) linear functional Ton rx can 

be extended uniquely to a r -symmetric (positive, continuous, 

reap.) linear functional T1 on X. 

Proof& Define a linear functional T! on X by 
0 

T1 (f) • T(~) ( «p ~ X) 

Then T1 is uniquely defined, :because if T2 is another r-symmetric 

extension of T, then 
/ 

() 0 

T2 ( f) = T2 ( <p ) = T( cp ) = T1 ( f ) 
holds for all ~~X, and hence T1 • T2. The rest of the theorem is 

obvious. I 
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Combining the above theorem with the Riesz-Markov-Kakutani 

Theorem (see e.g. Rudin [1'3, p266] ), we obtain the following 

symmetric form of the Riesz-Markov-Kakutani Theorem. 

l:.U Theorem 

(a) To each continuous linear functional T on rc0 {G), there corresponds 

a unique p -symmetric measure .J4 t: M(G) such that 

T1 {f) • Jacp dtA- ( <fE: C0 (G)) 

where T1 is the r -symmetric extension ofT to C0 (G). 

(b) T~ each positive linear functional Ton rcc(G), there corresponds 

a unique r -symmetric regitlar non-negative measure t4 on G such that 

where T1 is the r -symmetric extension ofT to C0(G). 



Chapter 4 

Symmetrically Positive Definite,Functions 

Introduction 

i:.!, Let X be a f' -symmetric function space on G. A complex

valued function f on G is called r -positive-definite for X if t 
is r -symmetric and· f 1:- P ( r X). The class of all functions which are 

r-positive-definite for X will be denoted by Pr(X). 

Remarks 

4.2 If G is a locally compact abelian gToup, then we can -
identit.f G as a group with the trivial symmetry I (see Sec.3.4). 

In this case~ the class P(X) coincides with the class PI (X). 

4•3 If G = Rn and_ r = _E(n) (see Sec 3.5), then the class 

P r (X) coincides with the cla~9 P e (X). :, 
·' 

.i:.! By Theo;-em 3elO(a), we know that the spaces .r.P(G), L~(G) 

(1 ~ p~ P<1 ),,-and 00 (G) are r -symmetric function spaces on G. 

Hence it is meaningful to consider the classes P 1" (LP), P r (Li) 

and Pr (c0 ). 

:""54-
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.4:2, Lemma I:f' :f'E:Pr (L1), then f't:L~. 
Proof' a Let { r;( u f be a bounded approximate unit of Ll which exists 

0 0 

by virtue of Theorem 1.8, and set hu = o<..0 where o<..0 :.rl:fi:'t:Xtf r 
o nr 

Then.ll hull, -\ICilun ~ \\tX- 0 {\ by virtue of Theorem 3.8. But since 

for every c:p ~rLl, therefore { huT is a bounded approximate unit in 

the Banach algebra r Ll which is a Banach subalgebra of the 

commutative Banach algebra Ll. In view of Theorem 1.9 and 1.6, w~ 

see that the integral 

(1) J 
0

) f(x) cp (x)J dx 

exists for everyc:pEr 11 • For anyfi:. 11 , let '/'' be the function 

defined by 
...L. 

· \l''(x) • Jrl Ll'f("(x)/. 
~t:r 

Then by the symmetric property of f, the equality 

)
0

ff(x)'f{x)fdx • {Gff(x)'f•(x)Jdx . 

holds for every ~L! Since 'f-'~, Ll, the integral on the right 

hand side of the above equality converges, and hence the integral 

J G \ f(x)"t (~)f dx 

exists for all "'"l: Ll. Thus f6 L r;o (see Hewitt and Stromberg 

(13, p348 Theorem 20.15 J ) • / 
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i!§. Theorem If f~Pr (L' ), there is a unique positive 

"' r *-symmetric measure 1.\ E: 1d(G) such that 

f(x) =fa ( x,'i)d r- (2) 

tor almost all x ~G. 

Proofa In view of Lemma 4.5, f~ L(>o and therefore the functional T 

defined by 

(1) T(f) =fG f(x)f (x)dx ( f t: Ll) . 

is a continuous linear functional on L2
• If (~,'f) = T(<p *~)= 

• ~ ~ ~Gf(x-y) <p (x)'f'trJdxdy, then the inequality 

(2) ,.{<p,t>J2' ~ {<p,cp) (~,'f). 
holds for all tp , '{-- 6 r Ll by virtue of Theorem 1.6. Let f hu l 
with 1\ hu 1\, :S 1 be an approximate· unit in r L1which exists by th& 

argument in the proof of Lemma 4.5. Then, since T is co.ntinuous, 

for every Cf E- r 11 and aey f. 7 0 theze is a U such that 

I T( f) \ ~ I T(if * hu ) I + i 
and together with (2)., we obtain 

\ T{ f) I ~ I T( ~*~)I~ 1 T(hu * hu ) lt + t 

~ \T(cp*~Ht { l\f\\0o II hull 2 1't + € 

~ (\fl\! jT(<f*f)l'i +f. • 
But this holds for all 17 o, therefore the inequality 

J,. ,v\.1-
(3) \T{tp)\~ 1\ fl\.~ \ T(q>*<f)l.,_ 

holds for all Cf ~ r L
1 

• Setting A= q>* <p, )\.2 =A* A, -,.._n.,. A.n-1 *A., 
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(3) gives 
..l ..L 

fT(Cf>)l 2 ~1\f'll 017 T())~ )\fl\;+~ [T(i\,2))'2. ~ . . . 

~·n f'n~-2-n [ T( 'A2n ) J 2-n ~ \\ fl\~-2-(n-l) 1\ A 2n 1\ 1 2 .... n 

as n ~ ~ 

by the spectral radius theorem (see Rudin ( 19, Appendix D6 and 

Theorem 1.2.2] ) • This implies that I T( cp )I 2 ~ 1\fl\~ 1\ ~ (\-oo "" 
• Ud;f(~·n~ , i.e., IT(f)l~fltll,."n~n~. Thus the 

functional T1 , defined by 

Tl(') a T(f) • fG:r(x)1'(x)dx 

is a bounded linear functional on rA(a). Here we have made use of 

.the fact that t ~ ; cp E: r L11 = r A(G) proved in Theorem 3.10. 

Moreover, T1 is positive since 

T 1C I ~12 ) = f G } Gf(x-y) cp (x) cptv)cixdy~O for all cp ~rL'. 
. A 

~herefore T1 is a bounded positive linear functional on P A(G). 
A A ~ 

But since A( G) is dense in C0 (G), we conclude that 1' A(G) is dense in 

f C0 (a) by. virtue of Corollary 3.9, and hence T1 can be extended to 

a positive.bounded linear functional on rco(G). The functional T2 

defined by 

is obviously the r*-symmetric extension of Tl 
A. 

to A(G), hence in 

view of the symmetric form of Riesz-Markov-Kakutani Theorem 

(Theorem 3.13), there is a unique positive r*-symmetric measure 

~Ae M(G) such that 

A f 1\ A ,.. 
T2 <cp) = c/f(-x)dl" (x) 
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I Then for ever,y ~~L, we can apply Fubini Theorem to obtain 

~Gf(x)<p(x)dx. T1 {~) .. fa ~{-~)dr-(x) =fa cp<x>(faC:x,x1dr-(~))dx 
and. hence 

f(x) = r~ (x,~ 1 d ~(2) 
for almost a.ll xE: G. 

hl Theorem Let ~ be a positive r *-symmetric measure in 

Then the function f, defined almost everywhere by 

t(x) ... fa Cx,~] d f <~> 
is in the-class Pr(Ll). 

Proofs Obvious. 

I 

' 
I 
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The Class Pr(La ) 

4.8 Lemniaa If :fE Pr (L~ ) , then :f is locally in L". 

Proofs It is obvious that rLA is a Banach subalgebra of the Banach 

~lgebra r Ll • Let f hu 1 be a bounded a,pproximate unit of r Ll 

which exists by the proof of Lemma 4•5• Let [ o< ~ 1 be the 'net in 

Cc(G) such that \ ~f (x) I :S 1, ~ t (x) -:; 1 uniformly on compacts. 

Such a net existsby virtue of Theorem 1.8. Then l ;& 1 is a net 
0 0 \ 

in r Cc(G) such that 1.1~ {x) l :S. l, cX'f (:x:) ~ 1.- uniformly on compacts. 
- ~ 

Now let us define a net f g(U, ~ ) 1 by setting g(U, ~ ) (x)• ~~ (:x:)~(:x:), 
~ ' 

where we direct the pairs (u, ~) by setting (ul, ~l) ~ (02' ~2) 

iff u1 ~ u2 or u1 = u2 and ~ 1 ~ ~ 2 • Then g(u, ~ )~ ,., L~ , 

S(u,,) *~ ~cr and llg(u,~)\\< \\hul\, i.e., {g(u,f)S 

is a bounded approximate unit in T' L~ • In view of Theorelll'i 1.6 

and 1.9, we see that_the integral 

(l) ~ Gl f'{x) Cf (:x:)) dx 

exists for every ~ (: 'P L~ • For any 'foE: L~ ~ let "'I- • be the function 

defined by 

'f-' {x) • fr;; 5'" \"'f( t x) J • nr 
Then by the symmetric property of f', the equality 
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holds for every ~~ LA • Since 'f ' £ rLA , the integral on the right 

hand side of the above equality converges, and hence the integral 

)G I f'(x) 'f'(x) f dx 

1 ~ exists for all t~ Lc • Thus f is locally in L ( see Hewitt and 

Stromberg(l3, p348 Theorem 20.15) ). I 

.hl Theorem If' f' tf P f' (L~ ) , then f~ L00 
• 

Proof: Let K( q>, t) = J G la f'(x-y) ~(:x:) 'f'(y)dxdy • Then by 

Theorem 1.6 the inequality 

holds for all <f , 'f- ~ r L~ • Let U and V be compact neighbourhoods 

of' 0 in G such that v-vsu. Let a and b be arbitrar,y elements in G, 

and let tp , 'f- ~ rL~ be such that CJ' is zero outside the set a+V 

(\J "' and '/' is zero outside the set b+V. '!'hen <p * ~ and "'f * 'f are 

zero outside the side V-V, which is compact. Hence 

K(cp,cp) = Ia f(:x:)dx rq. cp(x+y) cp(y)dy 

... r f'(x)dx f <p(:x:+y)f(y)dy 
v-v G 

.. ov f 
G 



where Cv • ess sup f J f(:z:) I ; :z:~ V-V 1 < oo 

Since f is locally in L • by virtue of Lemma 4.8. Then we obtain 

from (1) that 

• 

But since the set a-b+V-V is compact, we c~ conclude that 

ess sup {I f(x) \ J :z: E- a.-b+V-V l _::S Cv • 

61 

Since a and B are arbitrary, we obtain I f(x) I ~ Cv for almost 

all x E: G, and hence f E: L 00 
• I 

.i!.!O Theorem Pr (L~ ) = P T' (L1
) 

Proof a Obvious by virtue of Theorem 4.9 and dominated convergence 

Theorem. I 
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Concluding Remarks 

We remark that the relation 

also holds. A proof oan be obtained by following the argument of 

Sec 2.16. In this chapter we have only obtained representation 

theorems for the classes Pr (Ll) and P r (L~ ) • It would be 

interesting if we could find integral representation theorems 

for the class Pr (C 0 ) for, if this is done, we will have a 

generalization of Krein's theorem for even~ positive definite 

functions. 
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