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SCOPE AND CONTENTS @

A Matrix Stiffness-Modification Technique has been proposed
for the inelastic analysis of reinforced concrete frames subjected
to short term or sustained loads. To check the applicability of the
analytical method, two large scale concrete frames were tested
under short-term loads and sustained-loads respectively. 1In
addition, data for twenty-two frame tests from other sources
has also been compared with the non-linear analysis. Close
agﬁeement has . been observed for all the frames considered.

It was further concluded that a conventional elastic matrix
method using stiffnesses based on a cracked transformed section
of concrete does not yield accurate results, especially in the
case of sustained loading conditionS. From the method developed,

comments can therefore be made on present column design practice.
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LIST OF SYMBOLS

Any symbols used are generally defined when introduced. The standard

 symbols are listed below :

Ag Canrete gross section area

As _ Total area of longitudinal tensile steel

Aé Area of longitudinal compression steel

b Width of cross~section

a effective depth or distance of tensile feinforcement

from the compression face

d* ' Concrete cover measured to the centroid of each bars
Ec Modulus of elasticity of concrete
Es Modulus of elasticity of steel
EA Equivalent axial stiffness
- EI Equivalent flexural stiffness
fc : concrete stress
fé concrete cylindervstrength at age 28 days
fs Stress of steel
fy Yield strength of steel
I, Moment of inertia of cracked transformed section of
concrete
Ig Moment of inertia of gross-section of concrete
Kh/r Slenderness ratio
L, 1 length of individual member
M Bending moment acting on a cross-~section
P Axial force acting on a cross-section

P Percentage of stcel reinforcement



wcreep

Veffective

welastic

w €

W .
shrinkage

Yiotal
€y

XI

Radius of gyration of concrete section

Ratio of dead load moment to total moment

Thickness of concrete cross-section

strain

Strain at extreme compressive fibre of concrete section
Axial strain of concrete

Strain of councrete

Creep strain in concrete

Effective strain of concrete

Elastic strain of concrete, same as effective strain
Strain of steel

Shrinkage strain of concrete

Total strain of concrete

yield strain of steel

Curvature
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Chapter 1
INTRODUCTION AND LITERATURE REVIEW

(1.1) General :

It is well known that a complete elastic analysis of even a
very simple indeterminate structure, for instance, a portal frame,
involves a fairly large amount of work by hand computation. The
amount of work increases disproportionatelywith the increase in
the degree of indeterminacy in the structure. When a high degree
of redundancy is coantained in the structure, an exact analysis by
hand solution may be rendered impossible. Consequently, when a
complicated structural system is encountered, it has been necessary
to make simplifying assumptions in the analysis. The result of this
simplified analysis frequently reflects an err9neous depiction of
the behavior of real structures.

Fortunately, because of the development of high-speed
electronic computers, the art and science of Structural Engineering
has been greatly advanced. The ease of a computer to perform
thousands of digital computation and data processing steps within
seconds and with high accuracy has enabléd the implementation of
matrix methods for systematic structural analysis. More recently,
the advancement of the highly versatile finite element methods
has facilitated a more accurate evaluation of stress for almoét
eny structural shape.

However, most work done by the matrix approach has been
confined to the analysis of elastic systems in which the structures

respond linearly to the applied loadings. Relatively little
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attention had been devoted to the behaviorial study of inelastic
concxete structures by matrix method&. The area of sustained load
behavior of concrete structures using a generalized matrix approach
remains largely unexplored. The reasons may be due to the difficul~
ties in formulating a unique set of stifinesses for the concrete
system. It is known, and will be shown later in this report, that
the stiffnesses of a concrete cross-section are influenced by the
degree of cracking , thé amount of reinforcing steel and the geo-
mefric properties of the cross-section., Creep and shrinkage of
concrete influence the long-term behavior of structures by causing
them to continue to deform in the course of time even under constant
applied loads. The implication is that the stiffnesses of the
structural system are functions of creep shrinkage and time. All
the uncertainties zssociated with these functions have hindered the
development of an efficient and systematic matrix method for the
structural analysis of concrete frameworks.

Nevertheless, with the increasing use of computer, researchers
have developed an incremental method,termed by the author as the
"Numerical Moment-Curvature Method ¥ , for the more exact analysis
of concrete structures. The Numerical Moment-Curvature Method will
be briefly described in the next section. Several important
papers havé then been published during the past decade. However,
most work done by the previous investigators had been focused on
the analysis of single members , especially the column. The reason

has been twofold . Firstly, a single member is much easier and
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Simpler'tcvanalyse than a structural system with discontinuities
and complicated boundary conditions. Secondly, slender columns
have been used increasingly in recent building comstruction for
archit@ctural purpcse and also due to the use of high strength
materials uhich has resulted in smaller column sections.

Columns, especially those with high slendermness ratio, are
compression members which are very semsitive to the time-dependent effect
of creep and shrinkage. A column may fail in one of the two modess
Material failure which is tﬁe crushing of concrete in reaching
its ultimate strength, on buckling failure in which lateral
deflection increases without an increase in loads. 'Craep‘increases
the»deflection-of a golumn by decreasing its stiffnesses, which
alternately resultis in.a feduction of the proportion .of the joint
moment which the column must resist This then means that a
redistribution of mcements eccurs due to the effect of creep of the comerete.
’The rather complex interactions associated with the behavior of
5lender_solumns have been excellent topics for research, and have thus

stimulated a great deal of interest in column investigation.

(1.2) Numerical Moment-Curvature Method of Analysis 3

Erom a survey of previous literature concerzed with research
in the area of bebhaviorial study of concrete structures, it was
found that most investigators employed a fairly similar approach
in apalysing concrete structures. To avoid repetition in the
literature review to be described in the next section,kthis approagh,

termed by the author as the Numerical Moment-Curvature4Method, is
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described in this section as follows :

(1

(2)

(&)

(5)

The structure is divided into a number-of small discrete
elements which in turn-are subdivided into ‘a finité nudiber of
element strips.

By assuming plane strain distribution over the concrete cross-
section, for cases where the stress-strain relatiom of

materials are known, an arbitrary set of strains at the

- extreme fibres of the cross-section are imposed and the compa-

tible stresses can be evaluated.

The internal axial force and bending moment for the given

strain distribution are computed using a numerical integration

procedure, and are compared to the externally applied load and

bending moment acting at the geometric centroid of the cross-

section. If equilibrium does not exist, the assumed strain
distribution is changed until external and internal load
and moment differ by less than some permissible tolerance.
Member deformations at consecutive division points are then
computed by using numerical integration procedures.

The compatibility between deformations and moments at a
joint in a structure is then established by another trial

and error iterative process.

Several researchers havereported that the numerical moment-

curvature method can yield satisfactory predictionsof the behavior

of concrete structures. This has then lead to the reasoning that

for an inelastic concrete structure, there must exist an equivalent

set of stiffnesses which can be obtained after modification of
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an initially arbitrary assumed set of stiffnesses for the whole |
structural system. This idea has been the basis for the develop-
ment of the Matrix Stiffness-Modification Method to be reported

in detail in this thesise.

(1.3) Historical Review:

In this section a brief review of recent literatures
concerned with the behaviorial studies of inelastic concrete
structures for the past ten years has been presented. Previous
Reviews (1, 29)** have provided excellent documentation of all but
fairly recent publications.

In 1961, Brom and Viest (11) reported that for short columns, the
effect of slenderness on deflection and stability of a column was very
small but not so for long columns. In CEB (1) recommended practice
for slender column design, the effect of slenderness was considered as
a complementary moment to be added to the initial eccentricity of the
load. The complementary moment was expressed as a function of the
geometric slenderness ratio and the end eccentricity ratio.ﬁ

In 1963, Furlong (28) tested six rectangular frames restrained
from lateral sidesway and having single curvéture columns. He found
that the capacity of the restrained column permitted up to fifteen
percent more axial load capacity than would be expected for an
equivalent isolated column. He then developed two methods for analysis
of columns. In the numerical moment-curvature method, he assumed
the deflected shape of the column was in the form of a parabola
while for the Elastic method, he used an effective stiffness EI

for simplicity of analysis.

»» Number in the Parenthesis refers to number in bibliography
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Chang(14) in the samevyear also aﬁalysed concentrically
loaded long hinged columns employing Von Karman's theory and & numerical
intergration procedure for predicting the deflected shape of columns.
Separate mathematical eq?ations for column moment and load in term
of edge strains were derived and plotted for a rectangular concrete
cross-section. He also proposed a method for determining the critical
length of long hinged and restrained concrete columns as part of a box
frame (15). An analog computer was used to solve the differential
equation for predicting the critical length of a column.He concluded
thaf a long reinforced concrete column may buckle laterally as the
critical section reached material failure, but the material failure
of a column cannot be used as the criteria to determine the critical
column length. Plastic hinges may be developed in a frame, but a
long column may become unstable without developing plastic hinges.

The use of plastic methods of structural analysis incorporated
with the ultimate strength design gethod have been applied to concrete
structures. However, these methods do not always recbgnize the
effects of axial force and creep deformation on the structures. In
1964, Sawyer presented a method based on a bilinear moment-curvature
relationship and used a Plasticity Factor to account for the re-
distribution of moment (3). Later, Adenoit (4) applied the bilinear
moment-curvature concept to the analysis of double~bay one-storey
frames. He reported that the calculation of the rotation capacity
of a plastic hinge by the bilinear moment-curvature method gives an

over-estimated capacity.
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Cranston (17) tested eight single-bay one-storey frames with
fixed end conditions. He concluded that the mechanism method for
plastic design can be applied to concrete sfructures. However, the
fraﬁes he tested did not have high axial load in the columns.
Cranston also presented a computer method for inelastic frame analysis
(18). The frame has to be idealized into an arch or a ring, each
with three hinges. The numerical moment-curvature method was used tb
obtain the solution. His method neglected the influence of axial
force in the frame and the curvature of the section was assumed to
_ be dependent on the bending moment only. Plastic hinge behavior would
be dealt with until the structure had developed into a mechanism,

In 1964, Pfrang (46) studied the effect of creep and shrinkage
on the behavioi and capacity of reinforced concrete columns. For
a column with a slenderness rgtio below some critical value,
creep will increase its capacity, but when the slenderness is high
above the critical.value, creep will decrease its capacity signifi-
cantly. Increasing the ratio of reinforcement reduced the exteant to
hwhich creep influenced the behavior and capacity of the column,

Also increasing the degree of end restraint reduced the detrimental .
effects due to creep. He used a varying stress-strain relation
similar to the Hognestad's curve (32) to approximate creep
deformations, and employed the numerical moment-curvature method

to predict the behavioxr of his frames.

In 1966, Green (29) tested 10 unrestrained eccentrically
loaded columns subjected to sustained load and having a wide range

of axial load intensities applied a: varying end eccentricities. A



time~dependent stress—-strain relationship was used in his numerical
moment-curvature approximation. He concluded that for long columns
under sustained loading, deformation will increase with increasing
duration of loading, and will cause the member to fail in the
instability mode, The deformational characteristics of members
under sustaiﬁed 1oading are greatly affected by the yielding of the
compression reinforcement. If yielding of the compression steel had
not occurred after one month of sustained loading, the subseguent
increases in sectional deformations.were small.

| In 1967, Manual and MacGregor (38) proposed a method of
sustained load analysis of the behavior of concrete colummns in
frames. They also used a time~dependent stress-strain curve
modified from Rusch’s (48) relationship to account for the effect
of creep of concrete under variable stress.

Drysdale (20) investigated the behavior of slender concrete
columns subjected to sustained biaxial bending at the University of
Toronto. A creep and shrinkage function was derived for a general
concrete member. A modified superposition method for determining
creep strain of concrete under varying stress was proposed. The
numerical moment-curvature developed for the analysis yielded
excellent agreement with test results.

In 1970, MacGregor, Breen and Pfrang published jointly a
highly important paper (37) proposing the moment magnifier method
for the design of slender columns. They found that the most

sigrificant variables which affect the strength and behavior of
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slender columns werre the slenderness ratio, end eccentricity, eccen-
tricity ratio, ratio of the reinforcement ratio to the concrete
cylinder strength, degree of end restraint and sustained load. The
ACI 1963 Building Code(2) recommended a Reduction Factor method which was
investigated and found to be unsafe for use with slenderness ratio
Kh/r exceeded 70. In these cases, the Momeﬁt Magnifier Method
should be used instead of the reduction factor method when a rational
second order method of structural analysis is not available. The
mgthod suggested that the moment in the slender column section

should be increased by a moment mognifier which is a function of

the ratio of the ultimate load to the critical load and the ratio

of end moments of the column. In addition, Furlong (27) presented

a useful moment multiplier graph for design of slender column so

that the selection of a column cross-section has been greatly

simplified.

(1.4) Work in McMaster University:

Drysdale (20,21) in 1967 has initiated an extensive program
in the behaviorial research of the non-linear response of concrete
structures in all forms of buildings subjected to short term and
sustained loads. The program has been aimed mainly at the evaluation
of present design methods, with particular attention to the design of
slender co;umns y and to the modification and development of new
methods of structural concrete analysis.

Gray(30) in 1968 developed a method using small elements
to predict creep under variable stress. |

Danielson (19) started research in the sustained-load behavior
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of a single-bay one story portal frame. He applied the numerical
noment=curvature method in the analysis. Ey assuming a set of

elastic reactions at the left base of the frame, the deflection

at the right base of the frame was computed by the numerical
moment-curvature method. By a trial and error method, and by use

of the slope-deflection equations, the compatibility of deflection

in the riéht base was finally adjusted so that it was satisfied within
allowable limits. A word of comment is that his method is not

general enough to be applicable to more complicated structures.

Eichler (22) in 1971 developed a practical method for
calculating creep under variable stress.

The work undertaken and reported in this thesis is intended
to provide the basis for the evaluation of design and analysis
methods as applied to real strﬁctures. It is hoped that this will.
contribute especially to the rationalization of column design

procedures.

(1.5) Conclusion:

Although several methods have been developed to account for
and predict the behavior of inelastic oconcrete structures, the
author discovered that a systematic and efficient method for the
analysis of general and complicatedcbncrete structures is still
lacking. For the research in the area of slender columns, the
reduction factor method has been concluded to be unrealistic and
inadequate. However, the newly proposed Moment Magnifier Method

and the Comite Europeen Du Beton (CEB) recommended practice for
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designing a slender column do not properly account for the effect
of creep and shrinkage on the capacity of slender columns. This

is evident . by the fact that the Moment Magnifier method used only
a "Rm" factor which is the ratio of the dead load moment to the
total moment in the column to account for the effect of créep and

shrinkage in the column.

(1.6) Proposal :

It is the purpose of this research to develop a new method
for analysing reinforced concrete structures. The Matrix-stiffﬁess
Modification method has been developed. This method incorporates
the effect of secondary bending momént and creep and shrinkage of
concrete, so that a general frame with short or long columns can
be analysed equally well. The computer program is designed to
analyse any general multi-storey concrete frames. However, with
some modification to the program, it can be applied to deal with
general prestressed.concrete and composite structures which are
not within the scope of this study. To test the applicability of the
method, two large scale frames have been tested by the author to
provide data for comparison of the experimental and analytical
results. In addition, a total of twemnty two frame test results>from

other sources were compared.
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Chapter 2

EXPERIMENTAL PROGRAM

(2.1) Introduction:

Two large scale portal frames with fixed bases were built in
the Applied Dynamic Laboratory (ADL) of McMaster University. The
purpose of these experiments was to provide data to check the appli-
cability of the proposed Matrix Stiffness-~Modification Method of
Analysis which is described later. This method of analysis is
intended to be used to investigate the behavior of indeterminate
frames and to provide criteria and information for present engineer-
ing practice. This comparison should provide a more exact and
comprehensive evaluation of presently recommended methods of
design and analysis of inelastic concrete structures. |

Frame FS1 wes designed for a sustained load test while frame
FR1 was intended for a short-term proportional loading test. The
fabrication details, instrumentation and testing technique are

described in the following sections.

(2.2) Details of the Test Frames:

The frames were designed to have high axial loads on both
columns while the beam was loaded slightly off-centre so that a
tendency for sidesway was intentionally incorporated. This loading
facilitated the study of the distribution and the redistribution
of bending moment due to variation of axial and flexural stiffnesses
caused by cracking of the concrete and by creep deformations. The

dimension of the frames was restricted by the available clear
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height gnd size of the temperature and humidity controlled enclosgre,
the dimension of the adjustable steel formwork and the position of
the anchor bolt holes in the test floor of laboratory which were
spaced at three foot centres. Hence, the span of the beam was set
at nine feet and the height of the columns was ten feet. The beam
cross~section was eight inches squore with four number six bars.
Each bar was located in a corner with omne inch cover from the near
faces. The column cross-section was eight inches wide by five inches
deep with a number four bar in each corner with 3/4 inch cover from
the eight inches face and one inch cover from the five inch face.
The selection of such a large scale experimental model minimized
the error for simulation of a real structure. Figure 2.1 contains
a sketch of the frame with slender columns and the details of the
cross~sections,.

The stirrups for the beams and columns were made from the
0.15 inch diameter wire supplied by the Steel Company of Canada,
Limited. A standard Tie Bender was manufacturedto bend the ties
to the exact dimemsion so that longitudinal reinforcing steel would
be accurately located within a tolerance of 1/16 inch. Approximately
3% ties were required for a single beam while 27 ties were used for
each column. The uniform spacing of the stirrups was detailed at
three inches in the beam and four inch in the columns throughout.
Calculations showed that these ties would provide sufficient shear
capacity for the frame.

The cages of reinforcing steel for the beam and columns

were constructed separately. They were then welded to the Steel
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Joint7Connec£or (described later) to form a intégrated_cage for the
frame.-

Thé adjustable steel forms were constructed of nine inchee
angle sections bolted to a backing plate which was drilled to.
accomodate'a number of specific dimensions of frame. This-forﬁ,-
shown in the photograph in Figure 2.2, was designed to make double
bay single story frames or one bay portal frames. By using a steel
form, the accuracy in casting of frames could be maintained within
an allowable tolerance of 1/8 inch. The form accomodated cross=-
sections from four to sixteen inches in depth in % inch inérements,
The steel form also provide durability, strength, and convenience
for accurate fabrication of large-scale frames . Each part of the
steel form was light enough'to be cleaned and handled by two men.
Smooth surface on the concrete were produced so that mechanical gage
points, for strain measurements, and dial gage points, for monitoriﬁg
deflection, could be conveniently applied.

Inmediately before the installation of the reinforcing cage
and pouring of concrete, the steel formwork was coated with a layer
of Form-o0il so that the form could be removed easily from the concrete
after pouring and curinge.

Steel spacers made from number three reinforcing bars were
fabricated to hold the steel cage in its correct position in the
steel form, so that proper location of the cage was assured. The
arrangement of the reinforcing cage and steel form were shown in

Figure 2.3 and in the photograph in Figure 2.2.
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Reinforcing Cage and Steel Form
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(2.3) Design of Steel Joint Connector:

A steel joint connector was used to infegrate the individual
beam and column cages intb a cont.nuous reinforcing cage for the
framg. The connector was made from an eight inch by six inch by
%'inch steel angle with holes drilled as shown in Figure 2.4.a.

The feinforcing bars of the beam and columns were designed to pass
through the holes and were welded on both sides of the angle.

The reasonAfor introducing special jdint connector & in the
frame was to make the joint :igid and prevent possible premature
cracking of the joint. It was found that (19) bending the longitu-
dinal bar around a small radius in the joint produce a corner which
was susceptible fo excessive»cracking in the tension zone. The
steel joipt connector was thus designed to eliminate this problem.
In addition, the connecfor served as a rigid base in the corner of
the frame to accomodate application of the high coluhn loads.

After the longitudinal reinforcing bars had been welded to
the joint connector, addition al reinforcing
was applied to the joint to fasten the bars togethér, as shown
in Figure 2.4.b. and photograph 2.5. Three number three bars
approximately eight inches long were welded to the inner faces of
the joint connector on an inclined angle so that any possible
tensile stress in the concrete due to opening of the joint would
be counteracted by the steel. As will be discussed and visualized
latér y sufficient rigidity was created in the joint so that it

could be regarded as being fully rigid for analytical purpose.
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:. Steel Joint Conmnector




Figure 2.5

Detail of Joint Connection
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(2.4) Concrete Column Bases:

The column bases were fabricated from eight inch by eight
inch wide flange steel sections eight inches loﬁg as shown in
Figure 2.6.a. Holes drilled in the web of the section anchored and
positioned the column baré which were welded to thé web. Additional
reinforcement was welded to the section so that temsion in the
column due to wplift or bending could be properly transmitted to
the base. The bottom of the web of each steel section was
ground after welding to provide a smooth surface. ' The space
below the web was required to insert a steel plate from the column
loading device. The column axial load assembly for the frames
will be described later.

'The details of the rigid base assembly for the frames are
shown in Figure 2.6.b. The steel wide flange sections were welded
directly to the one inch thick steel plate of the frame base
assembly. The lower plate was stiffened with eight inch channel ,
sections. The entire base system was prestressed to the floor
of the Applied Dynamic Laboratory using two 2\§ inch diameter
anchor bolts, each . stressed to approximately sixty kips in
tension.

Triangular steel bracing wings cut from )2 inch plate were
then welded to the column base and to the one inch base plate
s0 as to stiffen the base connection and to provide a fixed
end conditions A picture of the steel bracing wing may be

observed in Figure 2410,
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Figure 2.6.b

Figure 2.6 : Concrete Column Base
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(2.5) Concrete Mixing Process :

The concrete mix design was the same as that used in the
University of Toronto Column Test Series (20) so that predetermined
data on creep and shrinkage derived by Drysdale (20) could be used.

Téble 2.1 gives the proportions of the mix design :

Table 2.1: CONCRETE MIX OESIGN

Ingredient  Weight per Batch Weight by percent
(in 1b.)

Portland Cement Type I 127.4 14,0 %

Water 82.6 , 9.1 %

Fine Aggregate (wash pit Lok.o 46.6 %

sun sand, finess 2.51)

Coarse Aggregate (3/8 inch

maximum size crushed 27565 30.3 %
-stone ) :

Total 909.5 1b. 100.0 %

Slump Test result: Frame FR1: 2 E inches

Frane FS1:‘ 2 % inches

The quantity of concrete required for frame FS1 was about six cubic
feet which would make one large scale frame, five creep and shrin-
kage prisms and twelve standard concrete c¢ylinder test specimens.
For frame FR1, only four cubic feet of concrete were needed to

cast a large frame and six cylinders.
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Cdncreﬁe components were prepared by weight and mixed in a
horizontal drum mixer. Batches were mixed in rapid succession to
avoid drying put of the mix between batches. Each batch was allowed
to mix for fivevminutes after the last of the water had been added. A
glump test was.performed immediately before pouring so that the
quality and workability of the concrete was known and controlled.
The designed ultimate strength of concrete for 28 day cylinder
strength was 4000 psi. The concrete cylinder test results are
.given in Appéndix B.

The congrete mixes werc lifted by overhead crane to the
second floor level of laboratory whefe the framés were fabricated.
The concrete prisms and cylinders were made with the frame. Each
. specimen including the frame was poured in three layers, with eaéh
layer vibrated by a poker-typeAvibrator. The concrete was placed
to overfill the forn éo that a smooth surface finish could be
trowelled,.It took approximately three hours for péuring, vibrating
and surfgce finishing of the test specimens.

Approximately five houps after pouring, when the concrete’
began to harden, wet burlap was placed over the specimens so that
excessive surface drying.and cracking of concrete §ou1d be prevented.
After approximately twenty four hours, the sides of the steel form
were removed and moist curing of the concrete continued for another
seven days, before the specimen was lifted into test position.

However, the procedures for making and curing the concrete

followed the specification given in ASTM Standard C-192-69.
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(2.6) Erection of Frames :

Two weeks after pouring, frame FS1 was lifted by crane and
positioned in a tent covered by polyethylene. Inside thg enclosure
the temperature was kept at 75° F + 2° F and the relative humidity
was maintained at 50 %': 2 %. The column basegwere welded to the
steel base assembly described in section 2.4.

To maintain a constant temperature and relative humidity,
the tent was equiped with a humidifier, a dehumidifier, four
electric fans and two electric heaters. The atmospheric conditions
were controlled by two thermostats and a humidistat mounted on walls
inside the tent. These instruments were electronically coupled
and controlled so that relative humidity could be maintained
within the allowable -tolerance.

The design of frame FR1 was essentially identical to frame
FS1. It was cast four weeks after frame FS1 was placed in the tent.
Seven days after pouring, frame FR1 was lifted by crane to the main
structural test floor of the laboratory to begin preparation for

proportional- load testing.

(2.7) Instrumentation:

Concrete strains were measured using a demountable mechanical
strain indicator, the Demec Gauge, housing an eight inch' gauge
length. The gauge points consisted of 1/4 inch diameter brass gauge
discs with a number 60 center hole. The gauge points were attached
to thé concrete surface with epoxy cement. To obtain a useful set

of strain gradients for the frame,the gauge points were attached
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to the critical high moment sections of the frames. The positions
of the'gauge points are shown in Figure 2.7. It should be noted
that these discs were cemented onto the smooth face of the frames
which was the face of concrete inside.the steel form. Both columns
wére‘instrumented with gauge points on the faces of the concrete
lying perpendiéular to the direction of bending.

Dial gauge with scale division of 0.001 inch were used to
measure deflection of the frames. Since deflections in the base
portion of the columns were very small, 0.0001 inch division gauge
were employed in this region.

An independent system of pipe-framework was constructed to
suppoit the dial gauges. The bases of the dial gauge framework were
glued to the test floor level for frame FR1 and wefe welded to the
steel base assembly for frame FS1. The positions of dial gauges
are shown in Figure 2.7 .

Various sizes of load cells were used to register the loads
applied to points on the frames. A load cell consisted of a spool-
shape steel cylinder with four electric resistance strain gages,
two vertical and two horizontal, mounted on the outside surface
midway between the ends. These gauges were wired as a full
wheatstone bridge and therefore formed a temperature cémpensating
system. Strains were recorded using a switch and balance unit and
a Budd Model P=350 3train Indicator. To avoid problems with drift
of the calibration surves, the load cells were selected so that
the strains for the maximum applied loads were limited to between

300 to 700 micro-inches per inch. This limit was sufficiently high
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to provide easy resolution of calibration curves.

Prior to each test, the load cells were calibrated in a
Pinius-Olsen Universal Testing Machine. Loads and feadings were
recorded in increments up to the maximum value desired. Readings
were made for several cycles of increasing and decreasing 1oads..
Graphs of the load calibrationvcurve were prepared for each load
cell for use in the test.

In addition to the load cells, high-strength tensile steel
rod were employed in the axial load assembly which is described in
section 2.8. The steel rods for frame FS1 were gauged in the same
manner as the load c¢ells and then calibrated in the Tinius-Olsen
Universal Testing Machine. Calibration graphs were prepared for

use during testing.

(2.8) lLoading Systems:

(a) Column Axial Loading Assembly:

The column loads were applied through a post-tensioning
system consisting of two one-inch diameter steel rod as shown in
Figure 2.8. The threaded tension rods were restrained at the bottom
of the column base by a six inch by six inch by two inch steel
plate inserted below the web of the He-section of the concrete
column base.

At the top of the column, a load cell and hydraulic jack were
mounted on the steel joint connector. The locad was transfered to
the tension rods through a hollow steel section of dimension

fourteen inch by seven inch by half inch section. The load cell

transmitted the compression force to the column and therefore was
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Figure 2.7/
‘Dial Gauge and Demec Point Position for Frame FS1 & FR1
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"used to monitor and control the level of load.

For the short-term test of Frame FR1, the jack was kept in
the 1bading position for the duration of the test. However,vfor 
tke sustained load specimen, FramevFS1, the tension rods were
£ittéd with‘stréin gauges so as to act as a load measuring device:
while trahsmitting the axial loads.v In this case, the tension rods
were tensioned by Jjacking against a plate positioned over the top
of the column and the load was maintained by tightening a nut to
preveﬁt chénge in the elongation of the rods after the Jjack pressure
was removed. At fegular intervals, the load on the columns had io
be adjusted due to the decrease in load associated with creep and
shrinkage. | |

(b) Beam Loading Assembly:

?or the short=term test of Frame FR1, the beam load was
applied by mounting a vertical load mechanism between the 14 inch
wideflange steel columns of the %pading system in the laboratory,
The vertical load mechanism consisted of a 50 ton hydraulic jack
mounted on a mechaniecal slide ‘vhich allowed eight inches travel
from the center of the beam in the direction of sidesway. ILoad
was transferred to the beam through a ball seat. A load cell was
used to record the loads applied;

The beam loading system for the sustained loading test of
Frame FS1 was very different from Frame FR1. As shown in Figure
2.8 , four wvertical load springs were stressed by pulling downward
on four tension rods which extended from a plate on %op of the
springs to a base bolted to the test floor. The base consisted of

a rigid steel box with a slide slate located under the top of the
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box. The tension rods passed through the top of the box and the
slide plate. Both ends of the tension rods were threaded to
accomodate the adjusting nuts. The sitide plate was held against
the underside of the top of the box by nuts on the tension rods.

A one inch thick‘pl#te was supported by the tension rods
-about~0ne foot belcw the top of the box. On this plate, a fifty
ton:hydraulic jack was placed to load the springs. Load was applied
by Jjacking against the top of the box, thereby pulling‘downward on
the tension rods and compressing the springs which in turan transmit
the load to the top of the beam through a plate and load cell.
With jacking pressure applied, the nuts holding the tension rods
against the slide plate were tightened thus maintaining the
displacement of the springs so that the jack could be removed. The
decrease in the load caused by deflection of the concrete frame with
time was minimized through use of the springs. However ,
occassionally, the level of load had to be corrected by tightening

the nutsg

(2.9) Testing and Observations :

(a) Short-term test, Frame FR1

For Frame FR1,the axial forces on the column and the vertical
load on the be#m were applied simultaneously in proportional |
increments. The columns were loaded from zero to sixty kips in
increment of teg kipag The beam load was 20 percent of the cqlumn
load, from zero tovtwelve kips and was loaded in increments of
2 kips.

When the loads on the columns reached sixty kips, these loads
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were maintained constant while the beam load was increased from
twelve kips to failure of the frame. The dial gauge reading weére
recorded for each loading stage while the strain readings using
the Demec Gauge were taken at selected stages of loading.

It was observed that the beam load became very unstable at
the load level of fourteen kips and extensive cracking of concrete
in the region near the beam center was noted. The £eam load was
further increased with one kip increments and the top of the beam
under the load began to spall. At the load level of twenty kips,
the load indicated by the load cells showed a rapid reduction of load
within & _ few seconds of achieving this loading. Hence it was
concluded that the structure had failed. For the applied loading-
condition, the frame appeared to have collapsed through formation
of a beam mechanism.

(b) Sustained-load Test, Frame FS1:

The sustained load test specimen Frame FS1 was loaded in
proportional stages:to the load level desired. Upon reaching the
column load level of 46 kips, on both columns, and a load of 10
kips on the beam, these loads were sustained so that effect of
creep and shrinkage could be investigated. The deflection was
observed to increass most significantly in the early stages of
loading and correspondingly decrease the load level in the structure.
It was therefore necessary to adjust the load level in the frame
quite often to maintain the desired load intensities. Nevertheless,
the load level was maintained within + 2 % of the design load so
that & constant sustained-load level can be assumed and compared

to the analytical result. Dial gauge and Demec reading were taken
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at regular time intervals. After two months of loading at constant
load level, it was observed that the deflection had ceased to increase
significantly, thence, the load level was increased by 20 % and
.sustained forvfour additional weeks. After this three months of
sustained loading, the frame was loaded to failufe. The failure

beam load was recorded to be 18 kips when a constant column load °

of 46 kips was sustained on both columns. The failure mode of

the frame was observed to be a beam mechanism. Figures 2.9

and 2.10 show pictures of the sustained-load test specimen ,

Frame FS1 taken after failure of the frame.

(2.10) Conclusion:

This chapter has described the fabrication and testing of
frames FR1 and FS1 for experimental verification of the proposed
Matrix Stiffness-Modification method of inelastic analysis :of
concrete structures. Several details were presented. The -test
results are believed to be quite reliable due to constant care
in fabrication and testing and through use of adequate recalibration
procedures for load monitoring devices.: The test results are
shown in Chapter six where they are compared with the theore tical

predictions.
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Chapter 3
PROPERTIES OF MATERIALS

(3.1) Introduction : §

In this chapter, the general stress-strain relations of
concrete and reinforcing steel are described. The phenomenon
of creep and shrinkage of concrete and their method of computa-
tion are briefly introduced.

. :

(3.2) Stress-Strain Curves for Concrete :

Concrete under applied load is known to exhibit a non-linear
stress-strain relationship. The general shape of the stress-strain
curve is shown as the s0lid line in Figure 3.1. The curve begins
with a fairly linear portion that stretches to about 30 percent of
the ultimate strength, then gradually deviates from the straight
line up to a peak at the ultimate strength of concrete. After
that, the curve starts to descend in a gradual manner until the
ultimate strgin of the concrete has been reached.

The nonlinéarity of the stress-strain relationship of
concrete can be attributed to the fact that the failure of concrete
under load takes place through progressive internal cracking (43).
At loads below the elastic limit, called the proportional limit
of concrete, the stress concentrations within the heterogeneous

internal structure remain at a low enough level that relatively

minor microcracking cccurs, and therefore the stress-strain
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curve in this region is rather linear. At loads above the prdport-,
ional limit, the stresses in the concrete cause the development éf
increasing internal micro-cracking of the interfaces between the -

_ cement paste and the aggregate, and hence, the stress-strain curve
starts to deviate from the straight line drawn in Figure 3.1. With
increasing stress up to the ultimate strength of concrete, the
propagation of crack increases vigorously within the cement paste,
and between the cement paste and the aggregate thereby causing a
progressive breakdown and discontinuity in the internal structure
of boncrete. For straining beyond ultimate load the ability of

tﬁe section to withstand high stress is reduced and the stress-
strain curve drops cdown with a decreasing stress until the‘ultimate
strain of the concrete is reached.

For a numerical application of the concrete stress-strain -
relationship in the analysis of concrete structures, it is conve~
nient and necessary to formulate standard mathematical curves to
describe this relationship.Itlwas pointed out as early as 1900 by
the father of Aerodynamics, Von Karman (35) that the stress-strain

relation of nonlinear material can be approximated by an exponential

curve,
4
—5= 1= el c oo (3.1)
c
where,
fé = Ultimate strength of concrete
a = An experimental constant

1
U}

Strain of material
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The exponential term of equation 3.1 can be expanded in series

forms as,

{72 4 L v v (@n)?/21 - (aw)3/31 4 e

Hence Equation 3.1 can be simplified as a series,

3

2 i
C1w + 02w + CSW + eee + Giw + sve

o
O =-]O
!

n
é ciwl es e (3.2)

i=1

"

where,
i = 1’ 2, \3' Ll" eeo

ci= experimental constants

Generally, it is considered that a fourth order polynomial will
yield a sufficiently accurate approximation of the actual stress-
strain characteristic of concrete. The constants Ci are determined
from a least-square fitting of large number of test data. For the
concrete used in Frames FS1 and FR1, and for the other concrete
research done at McMaster University, the values of the constants

are derived as follows,

C, = 1.1902628x10°
C, = -b.8022754x107
c5 = 7.6164509x107
¢, = -.5005079x10°

In Figure 3.1, the experimental curve reaches its ultimate strength
at a strain of 0.00215 in./in., and then gradually decreases until

the ultimate strain of 0.0038 in./in. is reached.
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(3.3) Comparison of the Experimental Stress-Strain relation with

Hognestad's and Whitney's Curves:

The Ultimate Strength Design method for proportioning concrete
members has brought the stress~strain relation of concrete into
focus. Due to simplicity in application, the Whitney's stress
block has been accepted by the ACI-318-63 (2) as a satisfactory
representation of the magnitude and position of the resultant of
the stress distribution in concrete for the Ultimate Design Method.
On the other hand, for more realistic analysis of thé behavior of
concrete, the Hognestad's curve (32) has been widely used. It is
thus the purpose of this section to evaluate the experimental
stress~strain relation by comparing it to the well-known Hognestad's
and Whitney's Curves.

Hognestad assumed a parabolic distribution of stress in the
rising branch of his curve up to the maximum stress occuring at
& strain which is one-half of the ultimate strain of concrete. A
discontinuity existed at the point of maximum stress, and a
straight line approximated the falling branch of the curve.
Practically, the straight line approximation of this curve in the
»faliing branch portion is not true and was introduced to provide
a means of achieving compatible stress resultants. It has been
proved by strain controlled experiments (5,48) that the falling
branch is a tailing curve. However, the falling branch behavior
is important only to ductility ©f concrete but not to strength.

Hognestad originally suggested that the ultimate stress of concrete
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should be taken as 35 percent of the actual experimental ultimate
strength of concrete. However, for research, fhe author sees no
reason for using only partial strength of the concrete. This point
was also discussed by Furlong (28) where using 85% of the
ﬁexperimental ultimate strength of concrete proved to be too low.
Thus the author used the full strength of concrete in this
éomparison and in his research. In Figure 3.1, the Hognestad's
curve is shown as a dash line whereas the Whitney's stress block‘
is shown as a solid-dash line. It is therefore noted that the
experimental curve follows fairly closely to the Hognestad curve
in the rising branch of the curve and with minor difference in
the falling branch.

The area under the curves and above the sirain axis is
computed as, Eu

Area = ;ic(") dw

the moment of area of the curves about the zero stress axis is

given by, »
’ Moment of Area = ) £ (w) w dw

o
Table 3.1 gives a summary of the integration by using an ultimate

strain of concrete of 0.0038 in./in., as recommended by Hognestad.
From the table, the experimental and Hognestad's curves differ in
area by 1.4 %, and in moment of area by less than 1.5 %. However,
Whitney's stress block seems rather conservative. It is 10.8 %
less in area and 8.5 % less in moment of area than thé experimental
curve; and is 9.4 % less in area and 7.2 % less in moment of area

than the Hognestad®s curve.
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Table 3.1

“CONPARIEON OF THE EXPERINENTAL STRESS-STRAIN
RELATION WITH HOGNESTAD AND WHITNEY CURVES

Curve Area | . - Mbment of Aves
Experimental . 3.07229x1077 | 6.55833x107°
Hognestad _ 3.02#23x10m3 6.46741x10-6
Waitney : 2.74202x10"° 6000113x10°6
Ratio

Hognestad/Experimental 0,986 0,985
Whitney/Experimental 0.892 - 0.915
Whitney/Hognestad 0.906 | 0.928

(3.4) Stress~Strain Relationship for Reinforcing Steel

The reinforcing steel is éssumed to be an,idealized elasto-
plasfi@ material. The effect of stréin hardening in steel has been
neglect ed, Hence , the curve can be depicted as a perfectly straight
line wp to the yieldimg point and after that a flat line of comstant
5@?@55*f@11©w50 The_relatianship between siress and strain can be
r@pr@S@nted by the following equation,

& W - |
W W - !ws

L) oo (3.3)

£ s £ (
B 2 W
where, : o

fggfy = stress and yield strength of steel respectively

w@swy = strain and yield strain of steel respectively

Figure 3.2 shows the theore tical and experimental stress~strain curve
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for the number 4 bar used ip Frames FR1 and FS1. It is noted that

an accurate analysis of Frames FS1 and FR1 requires exact knowledge
of the stress-strain relationship of number 4 bar if failure of the
frames occurs in the columns. Fortunately, for the loading condition
designed for Frames FR1 and FS1, the higher moment occurs in the beam
where the number 6 bar has a distinet yield regioniwhich closely

follows the idealized curve (19).

{3.5) Shrinkage of Concrete :

Shrinkage of concrete is the volumetric deformation that the
concrete undergoes when not subjected to load or restraint. It is
due mainly to the loss of moisture of the concrete by diffusion to,
or evaporation from free surfaces. The existence of a moisture
gradient within the concrete hence causes - differential shrinkage
which can induce internal stresses.

The magnitude of shrinkage strain is of the same order as
the elastic strain of concrete under usual ranges of working stress.
Skrinkage can produce tensile stress large enough to cause extensive
cracking of concrete, hence, it should be taken into account in the
analysis of concrete structures.

Figure 3.3 shows the shrinkage function used in this analysis.
It was derived by Drysdale (20) from a least square fitting of prism
results. The derivétion assumed uniform shrinkage acting at a given

cross-~section. The shrinkage function is given mathematically as,

Shrinkage = 0.000111 + 0.00022% Log,,(Time) -« (3.4)
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(3.6) Creep of Concrete :

Creep is the increase in strain of concrete under sustained
istress. Creep strain can be several times as large as the elastic
strain of concrete under load, and hence is of coansiderable
importance in analysis of concrete structure. There are several
theories explaining the phenomenom of creep. They attributed
creep to be viscous flow of cement water paste, closure of internal
voids, crystalline flow in aggregate, and by seepage flow of
colloidal water from the gel that is formed by hydration of the
cement.

Neville (31) however suggested that creep is due to oriented
internal moisture diffusion caused by a free energy gradient of the
absorbed water and to slow deformation of the elastic skeleton of
~the gel induced by viscous deformation of absorbed water. When
concrete is under stress, some gel particles moved closer to one
another while some moved apart. The free energy of water then
varies accordingly, and local energy gradients results. This is
the driving force for local moisture diffusion.

Creep is influenced by the aggrega .e-cement ratio; water-
cement ratio, kind and grading of aggregaies, composition and
finess of cement, age at time of loading, intensity and duration
of stress, moisture content of concrete, relative humidity of
ambient air, and size and shape of the concrete member. The rate
of creep deformation is relativelyArapid at early ages after load-
ing, and decreases expohentially with time. Concrete also exhibits

creep recovery upon unloading. It can be explained (31) as the
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release of the increased strain energy‘stored in tﬁe»gel during
creep.' Creep recovery is-gradﬁal becauée of the viscous restraint
of the absorbed water.

This section only briefly introduces the concept of creep.
However, for further defail of creep,vthe‘readers are recommended

to read references 26, 40, 50.

(3.7) Method of Computing Creep under Variable Stress:

| Several methods have been proposed for computing the
magnitude of creep under varyihg stress. Nevertheless, three
methods, the Rate of Creep method, the Effective Modulus method
and the Superposition method, have been found to be most widely
used (33, 50) . A summary of these methods is given in Table 3.2.

Accordingly, the rate of creep mefhod usual;y overestimates

c}eep while the effective modulus method underestimates creep.
The method of superposition generally gives fairly accurate

result but still underestimates creep.

(3.8) Modified Superposition Method:

This method is proposed by,Drysdale (20) and is briefly
described here. The method can predict creep more accurately by
Aaccounting for the stress histofy of the concrete.

For a concrete creep specimen subjected to sustained stress,
the Melastic strain" is defined as the short-term concrete strain
corresponding to a given applied loads. The magnitude of the creep
is then given by, |

Creep = A + B Lpg,,(time) eee (3.5)



48,

Table o2

METHCD OF COMPUTING CREEP UNDER VARIABLE STRESS

Method Formula Remark
Rate of Creép ¢ = Sf %% dt For a given specific creep

curve, the total creep is given
by ¢, where I is the imposed
stress and dc¢/dt is the rate

of creep .

Effective Modulus Eé = Ec/(1+c1Ec) E, is the modulus of elasti-
city of concrete, 4 is the

specific creep.

Superposition c=¢c,+¢C A specimen of concrete is loaded

to stress £, from time T to T
1 o 1,

and the stress was changed to

f2 and maintained from T1 to T2 "
c4 is the creep due to f2 for

time T2~ T1 minus the creep due

to stress f1 over the same time
interval. c2 is that creep

which would have occurred at
stress £, during the time T, to

T2 when loaded at time TO .
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where A and B are creep coefficients derived by least square fitting
of experimental data. For the concrete used in making Frames FR1

and Fs1, the funetions A and B are given as,

2
A= A193 o+ Azw + A3w - A4

>
B = B1w3 + Bw® + Byw + By

where, v = elastic strain of concrete

6

A, = =1.03050x10
A, = 5. 748870x10°
A, = =3.77674x10"

A, = -3.072250x1o°6

4 ¢ oo (3.7)
By, = 1.858390x10

B, = =1.012295x10°

33 = 1 05213225 /

6

By = «7.986250x10"

If an element of coﬁcrete is loaded so that the elastic strain is
w, and maintained at that stress £4 for a period of time T, to T4 ,
the amount of creep which would occur would be Cq . After that, an
increased stress f, which results in elastic strain wy is in turn
maintained for the period T4 to Tp , and the amount of creep which
would occur during this time if the specimen had been loaded to £
at time T, is then denoted as C» . To account for the change in
stress, C3 is the amount of creep which would occur for the change
of elastic strain wp~wq over a time interval from zero time to T5-T4.
The total creep C, is given by,

C = C

'+ C, + C

1 2

3
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The modified superpositioﬁ rniethod will slightly under-
estimate creep for increasing stress, and the effect of creep
recovery is not taken into account. Figure 3.4 gives the curves
for functions A and B and Figure 3.5 illustrates the method of

modified superposition,

(3.9) Summary :

This chapter has discussed the material properties of
concrete and steel. The stress-strain relationship of steel
and concrete must be known in advance so that a rational second
order analysis of inelastic concrete structures can be made.
Creep and shrinkage of concrete have beén known to have considerable
importance in structural analysis of sustained load behavior of
concrete structures, and therefore their method of computation
consists of a very important aspect of the present research.

Creep and shrinkage curves which have been derived by
Drysdale (20) in his University of Toronto Column Test, have

been used in this research .
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Chapter 4

DEFORMATION CHARACTERISTICS OF CONCRETE SECTIONS

(4.1) Introduction :

In this chapter, some aspects of the deformation properties
of a given cross-section of concrete are discussed. An extended
Newton-Raphson method (49) has been used to determine the strain
and curvature distribution in a concrete section subjected to
externally applied bending moment and axial force. The short term
and sustained load effect on the load-moment-curvature-time
characteristics and the stiffness properties of concrete sections
have been derived by the numerical approximation. The digital
computations were performed using a high~speed CDC 6400 electronic
computer in the Computing Center of McMaster University, and the
results are presented in graphical form. The computer program
for determination of the deformation characteristics of a section
forms part of the program for the Matrix ‘Stiffness-Modification
Technique (to be discussed in detail in Chapter 5) which is included
in Appendix A.

The material presented here is of fundamental importance
for understanding the proposed stiffness modification method of
inelastic concrete structural analysis which is presented in
Chapter 5. In addition, it is hoped that this chapter will offer
a clear picture of the nonlinear response of concrete sections
subjected to applied bending moment and axial load through the

discussion of the graphs contained herein.
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(4.2) Internal Load Vector for a Concrete Section ¢

| For a concrete cross-section subjected to a given strain
distribution, the internal forces and bending moments can be
computed provided that-the stress-strain propérties of'm&terialé
are.known.‘

The assumption that plane sections remain plane after load-
ing has been confirmed by other investigators (49) and is
incorporated in this analysis. Hence, for a given cross-section
of concrete, assuming a linear strain distribution over the section,
the correspondihg stress at ény point can be computed from the
compatible stress-~strain relationship. Figure k.1 shows the
given‘concrete section, the strain distribution diagram and the
corresponding stress diagram.

Let w denotes strain and £ denotes stress, hence, if the

stress-strain relationships of the‘ﬁaterials are givén as,
fc = f; (w)

- *»

£,o= £ (W)

where,

£ , fs

c stress of concrete and steel respectively.

£ ’f; = stress function of concrete and steel respective

c’

’Thus, for a given strain distribution over the cross-section, the

internal axial force and bending moment can be computed as follows,

o]
[}

C + C -7 - T
c s c s

a Wy ' E Nt‘
—;; b f;(w) dw + Aé f;(wa) - Asf;(w ) - W, b f;(w) dw
o _ . °

n



55.

=
ll

h : ,
2
_r: f*(w) wdw + A' f*(w (a - da') + A £ (w ¥(d - a)

+...E.. ff‘(W)wdw - P (a - ¢)

P = internal axial force

Where,

M = internal bending moment

Wy= concrete strain of extreme compressive fibre
W= tensile strain of concrete |

@ = curvature of section

a,byc,d,d',g = length given in figure 4.1

As' A; = area of tension and compression steel respectively.

However, the calculations of P and M are so tedious that hand
computation is almost not feasible for a large nqmbef of
calculations. Foriunately, the high-speed computer can be utilized
to solve tﬁe problem easily. With the addition of creep and
shrinkage strains, numerical integration must be resorted to.

-The cross-secfibn is then subdivided into a finite number of
fibers, with equal height as shown in Figure 4.1. The internal
axial force and bending moment can be computed by summing thé
average normal stresses times the area over which they act, and
by summing the moment caused by the axial force in each element

strip respectively. Therefore,

P= (b1l f . + bl 51 81

1% e1 22c2+¢..+bnlnf ) (A

Aszfsa ¥ eoe + Asmfsm )
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M= (bglqfoqy + balafcaxa oo # bnlnfcnxn ) + (A s1°’1;

*ALE Y, +oeee t LY . )

‘ ‘n. - | m
P = iﬁbilifci + jﬁ‘s;jfaj
e e e (4.1)
‘M = "bi i cix. + ‘ASJ SJ :
where,

n number of element strip

m = number of row of reinforcing steel

X;= distance from the centroid of each element strip to
_ the geometric centroid of section
yj= distance from the centroid of each row of steel to

the‘geometric centroid of section.

If is known ﬁhat concrete cannot take any tensile étress

beyond a specified limit. Therefore, some of the force compohents
in Equation 4.1 corresponding to temsile stfesé in the concrete
will be zer§ if the tensile strain of the concrete is beyond thé Craéking
stress.Due to the non-linear nature of the stfess-st:ain
characteristic of concrete, coupled with the effects of creep and
shrinkage, the only feasible process was to employ a numerical
trial and error iteration to determine the unique strain distri-
bution which would yield an inﬁefnal1loa§ and mpmeﬁt compatible
with thé externaliy applied axial load and bending moment. 'To
speed up the process of convergence of the iteration, an extended

Newton-Raphson method (49) is presented in next section.
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(4.3) Extended Newton-Raphson Method:

For a given set of applied load and moment, the Newton-

A'Raphson method of sucéeesive approximation can be conveniently
vapplied to determine the compatible strain distribution. By
~'referring to Figure 4.1 again, the internal load and moment can

be determined provided that the extreme concrete fibre compressive

strain and the curvature are known, or,

p (W.l ’ ¢)

P* = .
) * o o (ll' .2 )
M* = M (w1 s 9
W_here'
w, = extreme concretc fibre compressive strain
# = curvature acting over the cross-section

P*, M* = internal axial load and bending moment

respectively.

Py, M = load and moment function respectively.

By using Taylor's theorem with linear term only,

: op* JAP*
» o———
=5 + v, dw, + W ag

DM oM™
»* _ —
M* =N + av, dw1 +Wd¢

e oo (4.3)

where,
P, M = kmown axial load and moment for a known
‘E and §1
p*
2P ,2M* | Jpr s%%: = rates of change of P* and M*

for which # and w, are sought

dwﬁ,dﬁ = increment of strain and curvature necessary to

produce P* and M*
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so that,
g g + ag

wg = Wy o+ dw1

e o o l(li‘o‘!l‘)

where @* and wj can be used to compute P* and M*. Equation 4.3

can also be expressed in Matrix form as,

P*- B wWRF | oP*/yw, )|
) Jull PSSR SRR £ (- soe (4e5)

_ _ {
M*- R W/ | ?M"/)w.l dw,

or, rewriting equation 4.5 as,
Q* = _ E* W

Hence, if the square matrix E* and the load vector Q* are known,

the increment vector W* can be easily determined if E* =1 exists,

W = E* -1 Q*

The increment in curvature and strain contained in the W* vector
can then be substituted into Equation 4.4 to obtain a new set of

w, and @ and therefore a new set of load and bending moment. The
computed P and M are then compared to the applied P and M, and if A
the difference between them does not vary by more than an allowable
error, the process of iteration is then terminated. Otherwise, the
iteration is repeated by substituting into equation 4.3 the computed
P and M as a new initial value of P and M , and the computed w, and

g as a new %, and B .
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The Newton-Raphson method is just briefly introduced in
this section. Howevefg in section 5.6;c, a more detail description
of this method with its application to computer programming is given;

Further details may be found iﬁ-an excellent paper by Robinson (49).

(4.4) Selection of Increments for Convergence Control :

' The selection of suitable initial values of W, and @ to
compute the initial values of Pana & , and the increments of
concrete strain and curvature,‘3w1 and 9¢ , for the corresponding
increments dP and DM, were among the most difficult tasks facing
the author for the design of a general program for Tulti-storeyA
frame analysis. #iter running a great number of fréme analysis
programs for different loading conditions and durations of time,
it was found that selection of initial values of "Elastic Strain"
and"Elastic Curvature" for a known apﬁlied axial load and bending
moment, will give satisfactory result for most situations.

However, when creep and shrinkage have been taken into
account, the elastic strain of concrete may exhibit nonlinearity
and the convergence oif the Newton-Raphson method to obtain a compa=-
tible set of w: and @g* for known values of P*and M* may become
difficult. It is sometimes necessary to change the initially
selected value of B and §1 to catalize the convérgence of the method.
Thus, if after 50 cycles of numerical iteration wifh each cycle begin-
ing with a selected @g* and wj for computing P* and M*, then comparing
the computed P*and N*with the applied P and M , it is found
that convergence cannot be obtained, the initial value of $ and 51

are incremented linearly as follows,
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B = (2

e = ( Y9 initial

nitial ) 020 K e (1)
) 0.20 kK ‘
where, |
K=1, 2, 3, 4, «eo.
By the above mentioned procedure, provided that a reasonable first

estimate of @ and v, are chosen, convergence by the extended

.Newton-Raphson method has proved successful.

(4.5) Short-term Load-Deformation Curves :

From the Newton~Raphson method described in the last section,
the short-term load-deformation curves for a given cross~-section of
concrete can be easily determined. The typical section used in this
chapter is the beam section for Frames FS1 and FR1. -The ultimate
compressive strain of concrete has been set at 0.004 in. per in.,
while the cracking tension strain of concrete was assumed to be
0.00015 in/in. for cases where tension of concreté was included.
However, in most caseg the analysis does not include the effect of

tension in the concrete ., The reason will be explained later.

(#<5.a) Moment - Curvature Relationship :

. As described previously, for a given applied bending moment
and axial loéd acting on a cross-section, a compatible strain
distribution was obtainable and the short-term moment - curvature
curves with different values of constant axial load can be plotted

as shown in Figure 4.2.
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The failure envelop is defined as the limiting line at which
concrétevhad reaehed its ultimaté strain for different 1oad-levéls.
The effect of tens;on of concrete on the. moment - curvature
'behav1or is shoun as dotted lines. When the sectlon is uncracked,
or the straln at the extreme fibre of the concrete is less than
0 00015 1n/1n, the entlre section acts to resist the applled bendlng
moment and.axial load. This implies that the moment-curvature curves
vhave'consfént‘slopes up to the maximum uncracked moment capacity of
" the séctién; When the tension strain in the extreme tensile fibre
bis reachéd, the'cdncrete starts to crack which in turn causes loss
of‘equilibrium which produces more cracking untilka hew staté of
equillbr1um is reached. This unstable moment curvatuie region
- may be thought of as the tran51t10n region between uncracked and’

_ cracked section behavior. Further increase in applied moment
fedﬁces>the effect of tension on the behavior of the section and
the curve gradually approaches the one withdut tension. Thus, at
high vaiues of applied moment, it can be observed that tension has
a relatively insignificant influence on the behaviqr and capacity
of the sgction. | |
when tension is included, the cracking moment c#pacity in-
créases‘with increase in axial load since the presence of axial
load produces a compression effect which counteracts the temnsion
reéulting from the applied moment. The increase in axial load
also caused a‘decrease in the slope of the moment cﬁrvature curves
prior td cracking because the increase in axial load at coanstant

‘moment levél will increase the curvature of the section.
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When tension is not included, the initialAslope of the curves will
,beviucreased by the increase in axial load. Nonetheless, when the
- gurve has reached a slope equal to the slope of the zero-lbad curve
with.tension included, further increase in axial load will then
decrease the initial slope of the curve in such a mannér to
approach the zero-load without tension curves.

From the above.discussion, it is quite clear that bounds
on the moment-curvature curves can be conveniently established by
the zero=-load curves with and without included ténsion of concrete.
The lower bound is given directly by the zero-load cufvevwithout'in-
eluding tension of concrete, while thg upper bound is limited
by a line drawing from the origin having the same slope as the
initial slope of the zero-load with tension curve. The failure
envelop serves to terminate the curves from further extension

from the origin.

(4.5.b) Axial Load = Curvature Relationships :

The short-term axial load- curvature curves are plotted
in Figure 4.3 with different value of constant moment. Tension
of concrete is not included here or in subséquent sections unless
otherwise specified. The curves are terminated at the faiiure
envelop as determined by the concrete reaching the compression
failure strain.

It can be observed that the curvature of the section
increases as moment increases at constant load. However, at
constant moment, by increasing the applied axial load starting from

zero is equivalent to shifting the ncutral axis away from the
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{fextremé comﬁressi#e”fibre so that more uncrﬁcked segtionvhaé,beén
profided’to resist the applied b;nding ﬁomeht. Henée, the
?»curvature is decreased #o a pritiéai point atﬁﬁhich minimum value
~of thé>¢urvatnréfhas‘beén reached. Further inéfease in aiial }‘
¢ioad bejond tﬁat point will cause the curvature to increase .

. It is also noted tﬁat fhe load at minimum curvature for constant
(moment.increases with increasing moment which also i@plies that
at high moﬁent, the presence of axial load will help to provide
 mofe stiffness to the section for cases where length effects

’axe not taken into consideratiom.

(4;5.Q)A Load - Axial Strain Curves :

_ Thé axial‘atréin is defined as the concrete strain at the
centroid of a given cross-section = which is subjected to
axial force only. Due to the nonlinearity in the stresse-strain
felationship of concrete coupled‘ﬁith the effect of creep and
vshrinkage, it is considered that thé computation of axial strain
should include the effect of bending moment. Therefore, the
axia1~sﬁrain.is defined by the author as the difference between
two cdmpoﬁents of strain, namely, “hi which is the strain at the
centroid of the secﬁion subjected to combined bendiﬁg moment and

axial load, and LA which is the strain at the centroid of the

2

pection due to pure bending only. The axial strain,_wa#ial.Acan

then be given as,
Yaxial ® Ya1 T Va2 ces (B.7)
Figure 4.4 gives the Load-axial strain curves with different level

of bending moment.
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At constant load, it can be obserﬁed that the axial strain
‘increases with thevincreésing moment. Af constént momenf, the
sibpe}bf_the curves indreases gfaduélly up to a poinf’of‘inflectioﬁ X
| ‘and thén decregses' with increasing load. The physicai

-implication is thafvét constant moment and‘iow axial ioad, the‘axigl;
- deformation is decreasedby the increase in the axial load because
the presenoe'of axial load produces a comfression effect which cbun-
teracts the tensile strain resulfing from the applied moment.
. However, at higher loéd'aboie the point of inflection, the higher
‘stresses in the section for a known‘constant moment start to
o#erride-the'effect’of bending moment and hence cause the axigl

strain to increase with increasing load.

‘(4.6) $ﬁort;term Stiffness Properties :

This sécfion describes the stiffness pfoperties of a cross-
' section of concrete subjected tobappliéd axial load andvﬁehding
moment., The flexural stiffness EI is defined as thé secant modulus

' of the moment-curvature curve s oOr,

Boe— e D)
[/

The axial stiffness EA is defined as the secant modulus of the
load-axial strain curvé, or
EA = eee (4.9)

where P and M are the applied axial load and bending moment and @

is the curvature of section,
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(4.6.a) Flexural Stiffness—Moment-Axigl Load Curves :

The short-term flexural stiffness-moment curves withv
‘diffgrentAvalué oanxial load‘are plotted in Figure 4.5.and
_the f;éxﬁral sfiffhesé—axial load curves with diffefént value -
of constant moment are plotted in Figure 4,6, The stiffness for
‘cracked transformed'section 6f conbrete, Ecic is the prbduct of
the modulus of elasticity of concrete by the moment of iﬁertia
‘of the cracked transforﬁed'sectioﬁ of concrete. The EI valﬁe'
“given by the new ACI 318-71 . for the = - recommended Moment
,’Magnifier method for design of slender column has also been.
included in the graphs. The formula used by the Moment Magnifier

method (37) is given as,

ET - Ech : :
= X os e (4.10)
| 2.5 (1 + Rm)
where,
| | = Te5 Y
E, =33 (W "7(£)
_Ig = moment of inertia of gross-section of concrete
R, = ratio of dead load moment to total moment

The bounds for the mbmént magnifier method have been givenAbyvfhe
lines R, = O and R = 1.

From Figure 4.5 and Figure 4.6, it can be noted that the
short-term EI is decreaséd by the increase in moment which also
 means thaf at high moment, the stiffness is reduced by the cracking of
the'concreté'section.‘At low moment, the difference bétween the
theorectical EI and the EcIc can be as high as 70 % but is reduced
by the increasing moment. Nevertheless, at high moment and low load,

the theorectical EI can be 40 % less than E I, which also indicates
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that using the stiffness for a cracked transformed section in‘éﬁalysing
inelastic concreﬁe structu;es may underestimate the defiection | |
under short=term loadihg. 'For»the section anélyséd, the EI proposed

| by the Moﬁent Magnifier method»underestinates the theotéétical’ |
short-term flexural stiffness of the cross-séctioh and iévabout'so% :

less than the'stiffness for the cracked transformed section of concrete.

(4.6.b) Axial Stiffness-Load-Moment Curves :

| The contours of short-term axial stiffness-load curves
wiﬁh different value of constant bending moment are plotted in
Figure 4.7. The axial stiffness for an uncracked section E bt , -
is the product of the modulus of elasticity of concrete bj the gross
section area of the section, and is shown in Figurevh.?:aé a
dotted-soiid‘lineo

At zero moment, where the section is subjected to axiﬁl'

. force oniy, fhe axial stiffness decreasés as the»at&al load ihcreases.
However, this possiblity has been ruled out in the design of conc?ete
- column sections since the 1963 ACI Code (2) required that a minimum
. eccentricity should be cons:dered in cases where the applied -oment
is zero. Therefore, generally, the axial stiffness at low load,
for instance, at 5 % of fébt, is confined to a range of 35 % to
S50 % of Ecbt but increases with the applied axial ldad at different
valueﬁ of constant moment. However, the increase‘in EA with axial
fbrce afops at a maxima, corresponding to the point of inflection;
discuésed.in section 4.5.c f§r the 1oad-axia1 straih curves, after

which EA is decreased by the increasing axial force.
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At constant axial load, -the axial stiftneas decreases as the moment
inéreases whiich also implies that the presence of bending moment.
will increase the axiél deformation of a member in a structure. For
most cases, the uncracked stiffness overestimates the theoré‘tical
EA which implies that the axial displacement will:bé underestimated
by using Ecbt for axial stiffness. For the workiné stress region
the main reason is due to the fact that the section will crack
under 1oadsVWhich will subsequently reduce the effective area of

the section to resist applied load and bending moment.

(ke6.c) Dnit Slenderness-Moment-Load Curves :

When the length effects of a member are taken in account,
the radius of gyration, r, of the section plays an importént role
in defining the slenderness of the member. The radius of gyration
is given by,

I
r = ( - ) %

Due to cracking of the concrete section, the moment of inertia I,
.and the area of the section A, are not‘éonstant for a section
subjected to applied load and moment. Hence it is not possible to
dgfine,an axact I and A for a section under varying loads. However,
this difficulty may be overcome by defining the EI and EA values
discussed previously. Therefore, the radius of gyration can be
determined by the square root of the ratio of EI to EA. Hence, a
characteristic measure of slenderness has been defined as the

Unit Slenderness as follow:

t EA % :
—— t ( —— ) ‘ YY) (4.11)
r EI
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The unlt slendernesa-moment relat;onships with dlfferent values S

of constant load are plotted in. Figure 4, 8 and the unit slenderness-_

- axial 1oad curvea with varylng levele of constant moment are g;ven

d’in Fzgure 4, 9.' The rad:us of gyratzon recommended by the 1963 and
'd.19?1 ACI Code. is also drawn in the graphs as the alternate dotodash
Q'llne for rectangular sectzons..
From the graphs, the unit slendernees at low moment and
.vunder constant applzed ax;al force tends to decrease w1th 1ncreaslng
moment unt;l a mlnimum value of t/r is reached after which the
- curve 1ncreases ‘with increasing moment and finally termznates at
the failure envelop shown as dashed line in the diagram. Physically.v
aticonstantvload and low moment, the}presence o£ axial foroe tends
" to stiffen the eection and therefore reduoe the slenderness effect
: on the'cgoes-seotione .At highenﬂanmente-dboye«the minimum'valueio
of t/r , tﬁeﬂsection starts to craok whdoh reduces the effective
' gree of the cross-sectioh'contributihg to the etaluation ofvradius
' or syrationei Hencetthe rediua of-gyration begins.to decrease with}f‘
1ncreaszng moment.~ The minima of unit sleoderneBS“tends to‘ehift'
.to h;gher moments as load 1ncreases becauae the higher the axial:
3 load,ethe:larser the moment required to crack»the sect;on or to
decrease the radiue‘of gyration of the ‘seotion._ .

| Ijom a practioai point_of vieﬁ, the unit slendefness seems -
1to‘give e.meaeure of the degree of cracking or the oracking profile‘
'ofdthe aection; By comparzeon thh the ACI recommended value of |
t/:, it 1nd;catee that the code may underest;mate the radius of

‘gyratzon_or a sect:on_subjected to short term loadinge.
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" (4e7) Long-term Stiffness Properties {

- The long-term»étiffness properties of a concrete cross-section
subjected to constant sustained applied bending moment and axial .
force are discussed briefly in this section. The modified
sﬁﬁerpésition»method<for determining creep, which was described in
section 3.8, was used to predict creep deformation. Tension and
shrinkage of councrete are not included in this analysis. A total
time period of two years has been used iﬁ the computation of
stiffnéss properties and the time was divided into discrete

. intervals for convenience of analysis.

(447.a) Flexural Stiffness - Time Relationships :

The long~term flexural stiffness-time curves Qith different

values of applied moment and axial force are>plotted in Figure 4,10
and Figure 4%.11. The value of #lexural stiffness for the cracked
transformed section of concrete and for the proposed Moﬁent Magnifier
method are also drawn in the graphs.

: Iﬁ is interesting to nqte that the flexural étiffnesseé
converge to a near constant value as time elapses. In addition ,
no matter how the load and bending moment vary, the EI for the
sustained loading condition tends to be limited by the bounds
imposed by the ACI moment magnifier method. The cracked transformed
section of concrete gives a flexural stiffness which overestimates

the theorectical EI values by more than 100 %.
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(h;?.b) Axial Stiffness - Time Curves :

v The'éusﬁaihed-load axial stiffness-time curves withAdifferent
véiﬁés of constént axial load énd bending momeﬁt are shown;in‘
'Figuies'#.12’and 4.1% . Thé axial stiffness has also shown the
| tendency to converge to a constant value iﬁ the course of time
'régardless'ofithe combination of load and bending mom#ﬁﬁ»ih the
section: The: theorectical values of EA are only 30 % of the
-1uncnacked ax1a1 stiffness, E bt.

It is now quite apparent that an app:opriate expression
» f§r the axigl stiffness of a concrete section can be dérived by
_;efering toc the graphs.»Henée, the author recommends the following

EA value according to Figure 4.12 and Figure 4.13,

C(1 + Rm) '
where,
Ag = gross-section area of concrete section
- 1.5 %
E, = 33 (W) (£2) | |
Rm = Ratio of dead load moment to total moment
C = 2.5 to 3.0

li

The Equation for EA is similar to the EI value proposed
. 1 ) \

by the Moment Magnifier method which is given in Equation 4.10,

‘and the bounds for R = O and R_ = 1 for Equation 4.12 are drawn

as shown in Figures 4.12 and 4.13.
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(4.8) Summary :‘ |

Thé various Bhort-fefm and sustained load deformation
: charaqteristics and stiffﬁess properties for a typical concré£e~ 
croes-sectioﬁfhave‘béen studiéd. The following conclusion can. ’

 then be drawns

(1) »Fér‘shorfwterm analysis. the'cﬂacked transforﬁed section
does not givé an adequate estimate of the flexural
stiffness and will in most cases overestimate the actual.
kEI of the section. o

(2) The EI value recommeﬁded by the ACI Moment Magnifier method |
underestimates the short-term theorectical EI>but provides
accurate bounds for the long term theorectical flexural
stiffness. | | |

(3) The axial stiffness EA for an uncracked section usually
overestimates the theorectical EA value inAa‘section. A
recommended value for EA has been given ih Equation 4.12. -

(&) fIhe radius of gyration recommended by the ACI code maj

| either'underestimate or overestimate the actual radius 6£

gyration of a section subjected to short-term loading.
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Chapter 5

' MATRIIL STIFFNESS@M@DIFIGATI@NVTEGHNIQEE

(5.1) Introduction 3

This chapter presents a matrix stiffness modification metheod
for nonlinear analysis of conerete structures. Reference is made
to a computer program which was developed to incorporate the above
analytical teechnique for predicting beh&vi@r of c@ﬁcrgte frames
subje@t@d to short-term and sustained loading. Convergence of the
iterative method of stiffness modification is discussed.

As an indication of the ability of this method to predict
non-linear behavior9 the deflection data for short-term test
frame FR1 are compared to the amalytic results. The description
of the computer program is included in this chapter. 4 copy of

the program is also presented in Appendix A.

(5.2) GConcept of Siiffness Modification and its Limitation :

It has been discussed in section 1.2 that fer a structure
subjected to given applied loads, an eqﬁivalent set of
stiffnesses for the whole structure may be obtainable if an
appropriate modification process has been devised. The equivalent
stiffnesses EI and EA for an element of a structure can be derived
- from the characterisgtic curves for moment-curvature and load -
axial strain relatiénships as described in Chapter L

If an estimated set of equivalent:stiffness is arbitrarily

assumed for each element of a structure subjected %o a particulaw
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type of loading, the compatible strain distribution for equilibrium
of external and internal load can be used to recalculate the
estimated equivalent stiffness in an iterative sequence until the
o change in the stiffnesses approaches an acceptable value. This.set
of equivalent stiffnesses can be used to generate the realiétic
behavior of structures. Then it is necessary to develop a general
computer pfogram incorporating the idea of stiffness modification
to acquire the correct set of equivalent stiffness for'inelastic
analysis of concfete'structures. |

However, by comparison of a large number of experimental
and analytical results, it is concluded that the cénvergence of
the stiffness modification method in predicting the Behavior of
actual structures is limited by the following criteria: |

"No plastic hinge is allowed to form in the structure
under consideration”

By this limitation, the frame is loaded only below the ultimate
capacity of any section and thus no plastic hinge is allowed to
form anywhere in the structure. Hence, for studies of failure,
failure'is defined when any part of the structure feaches its ultimate.
capacity and no account is taken of the redistribution of load
which can occur due to plastic deformation. The reasbn for this
limitation is that when plasfic hinge has formed in the structure,
the hinge will allow:an undefined increase in rotation at the
hinge without further increase in the moment capacity of the struc-
ture under increasing applied loads. Therefore, the stiffness
modification procedure cannot insure a definite set of equivalent

stiffnesses for the whole structure.
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(5.3) Mathematical Model of the Frame :

' This section describes the mathematical model of a specified
 frame and.indicates the data required for the“éomputer analysis of the
gtructure. » |

A mathematical model of the frame is‘formed by dividing the »
frame into a numbef of interconnected discrete elements of member
lengths, with the nodal points of each elecment being selected at
foints of geometric discontinuity, points under concentrated load
and.at any suitable points which are.considered important in the
analysis;' Theore tically, a large number of elements can be
selected for a gi#en structure. However, within the tolerable
limits for accuracy, this selection is limited priﬁcipally by the
storage capacity and the computing’time required for the computer.
For the CDC 6400 computer used at McMastef University, 26 elements
for a single-bay one-storey frame can yield sufficient accuracy (19)
in the predicted result.

When the fréﬁe has been divided into elements, the following
numbering rules should be followed in setting up the model for the
structure:

(1) Assign joint numbers and element numbers to all joints

and elements.

(2) Loads can be located at nodal points only.

(3) All bases must be assigned number zero.

(4) Those elements which require modification of their

stiffnesses are numbered first.

Rules 1,’2, 53 are required for conventional matrix manipulation
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" and can be found in textbooks. on matrix structural analysis(36'44)-‘

Rule 4 provides the computer with the addresses of the elements which
'need no modlflcatlon of their stlffnesses.

As an illustration, Flgure Se 1 shows the mathematlcal model
of Frame FR1 for the short-term test. The idealized beam and co;umn
line represents the  centroid of the acfﬁal beam and columns.

The frame is divided into 26 elements and 25 joints. All the
elements and joirnts have been numbered suecessmvely.xn this case’
all- elements requlre modlflcatlon of their stiffnesses due to
inelastic behav1or. The bases have been asslgned number zZero.
Verfical loads are positioned only at nodal joints119, 22 and 25
respectively. |

The mathematical model required the following input to the
computer which can be generalized in thekfollowing sequence:

Title of fhe frame, allowable cycle of iteration for

the main program, a conversion féctor which converss

the unit of length of the coordinate of the mathematical
model into inches,total number of joints in the étruéture.

. total number of élements y total number of inelastic

- elements which require modification of theiﬁ stiffness,
number of element strips desired for the elemeﬁt cross-
section, allowable number of iteration for the Newton-
'Raphson method (to be described in section 5.6.¢.) , cracking
tensile strain for concrete, shrinkage strain of concrete,
concrete cylinder strength, steel yield stréngth, modulus
of elasticity of steel,coordinates of each element , locatién

and amount of the tension and compression steel in each
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Figure 5.1

Mathematigal Model for Frame FR1



90.

element cross-section, the specified loading system, the’

duration of sustained load desired.

(5.4) The Element Stiffness Matrix :

Before desciibing the technigue of stiffness modification,
it is also necessary to understand the reason for modifying the
stiffness matrix and.identifying where ' the modification occuﬁs. Hence, in
Figure 5.2, the element stiffness matrix for a slender member
is formulated in its member coordinates which are the coordinat§
system whose X-axis coincides with the direction of»the centroid
of the unloaded element and the Y-~axis is orthogonal to the X=axis
in the direction’ of principal bending. The derivation of this
element stiffness matrix can be found in textbookson Hatrix
method of structural analysis (36,4#).

The element stiffnesS'matrix describes the responses of each
element subjected to externally applied loads. If the element
stiffness matrix for each element of the structure can be formulated,
the assembly stiffness matrix for the Qhole structure can be assembl ed
and inverted to dbtain the displacement and internal force vectors
for the whoie structure.

With structures made of elastic materials, such as steel,
the element stiffness matrix is readily determined but this is not
true for inelastic concrete structures. It has been shown in
Chaptér L that the stiffnesses EI and EA contained in the element
stiffness matrix of the structure vary significantly with the degree

of cracking of concrete and the level of stress in the concrete.
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It is thus not possible to fo:mulate a constant set of stiffnesses
EI and EA‘for a structure subjected to loads which will cause
 ine1astic behavior. However, by incorporating the idea of stiffness-
.modification proposed.in section 5.2, an arbitrarily assumed set
of initial stiffnesses EI and EA can be modified to obtain an
unique set of equivalent stiffnesses under a specific loading
condition. These equivalent stiffnesses are substituted into the:
elemeﬁt stiffness matrix for eacﬁ element for subsequent generation
of displacement and internal force vectors of the structure.

The stiffness modification process is described in the

next section.

(5.5) Matrix Stiffness~Modification Method :

The proposed stiffness modification method as applied to
nonlinear analysis of concrete structures is presented in this
section. The method implements the concept proposed in section 5.2,

and operates the steps in stiffness modification a8 followﬁ H

(1) PFrom the geometric properties of each element, the cross=-
section of each element is subdivided into a number of
element strips.

(2) The elastic axial stiffness EA and flexural stiffuess EI

are computed using the following values:

Ec ‘= 33 (\:1)1'5-(f<':)}é (W= 145 pef. for concrete)
A = gross section area of concrete
I = moment of inertia of cracked transformed section

These stiffnesses are substituted into the element stiffness
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"matrix for each element.

(3) With the element stiffness matrix for each elemént formulated,
‘the assembly stiffnéss matrix for the whole structure .can |
be assembléd ana used to défermine théAdisplagément.and'
force yectofs for the structure. .

(4) With the détiected shape ofAthe structure knowﬁ,‘the secondary
bending moment due to deflection of the members (P-Delté'effect)
are computed and added to the’primary moment acting at the
center of the 1ength'of each element.

(5) FdrAthe known bending moment and axial force acting on a
given element cross-section, the Newton-Raphson method ié
emfloyedfto determine the unique étrain distribution for each
element, thereby permitting the computation of the modified
values of EI and EA. For the sustained loading condition,
the sﬁrinkage‘and creep deformation and stress history are

included in the unique strain distribution which proﬁde
equiiibrium of the section. |

(6) These new equivalent stiffnesses EI and EA for each element

| are then compared to the previous stiffnesses, and when the
 efror between them is less than 1 % for each element, the
set of modified stiffness is said to have converged to the
equivalent stiffnesses for the structure, and the procésé
‘of iteration is terﬁinated. Otherwise, the new stiffnesses
are substituted into the element stiffness matrix for each
element and the prbcess in steps 2, 3, and 4 is répeated.

A flow chart showing the execution steps is giﬁen in Figure 5.3.1
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input
Y

Computation of elastic stiffnesses EI & EA

{

»] Formulation of element stiffness matrix for all eléments "T'.

Formulation of assembly stiffness matrix

Matrix stiffness method of elastic structural analysis
solving for displacement, moment M and axial force P for
all element. in the structure using conventional program

/

Computation of P-Delta secondary moment

f

- Computation of concrete extreme fibre compressive strain,
curvature and axial strain for known P & M for all elements

1

} For known P & M, Computation of equivalent stiffness

EI = M/8 ‘ : ’
EA = B/ w axial - : *
Is number of iteration greater than 1
; Is EI and EA differ from previous EI and EA by more than 1%
_ for each element of the structure

f;. NO

Stop & Ind

YES

_Figure 5.3 : Matrix Stiffness-Modification Method (I),Flowchart
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Generally for loads applied below the ultimate capacity
of the structure, the stiffness criteria can be easily satisfied
within a few cycle of iteratio (3 to 7 cycles w&s geng;glly.qbsérved).
However, for loads near ultimate capacity of the structure, or when A
creep, shrinkége and streSS-history were included, the analysis
usually reduireg more cycles of iteration. This was due to the
large modificaticn;in equivalent stiffnesses required to account

for these large inelastic_deformations.

(5.6) The Computer Program

| A brief description of the computer prograM'developéd.fqr
frame analysis using the matrix stiffness modificatiﬁn technique
is given in this section.

The program consists of a main program and eight subprogréma.
I Figure 5.4, a flow chart is drawn to show the location and function
of each subprogram, | | '

The procedure for the elastic structural analysis which is
performed by the subroutines "AﬁRAﬁéE”. “BALANCE", WENLARGE",
"TRANSF" and "STIFFN" , can be found in textbooks on matrix meéthods
of structural analysis (36,44) and is therefore not discﬁSsed |
in here. |

Ihé subroutines YMPHI", "BMPCAL" and "“CREEP" were developed
for the stiffness modification process and are described in the
following sections. In addition, the computation of;secondary

bending moment is also given in this section.
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- (5.6.a) Subroutine "BMPCAL" :

This subroutine operates the numerical integration
procedures as described in secfion h,2. 1Its fﬂnction is to compute
the internal force and moment for a concrete cross—-section subjected
to a given strain distribution. The following sign conventions are

used in this aubroutine,'

(1) Compressive stresses or strains in concrete or steel are
positive.
(2) Distances from the neutral axis of the section towards the

concrete extreme compressive fibre are positive.

The steps for numerical integration are as follows,

(1) The geometric properties and the number of element strips
of a given cross-section are read and transferred from the
main program. The dvpth of the section is thus subdivided
into a finite number of element strips and all the elements
of the structure are assumed to have the séme number of
element strips.

(2) A known linear strain distribution from subroutine "MPHI"
(to be described later) is transferred. From this lipear
strain distribution, the neutral axis is computed and the
'tqtal stfain acting at the centroid of each element strip
are calculate. Similarly, the strain acting at the level
of the steel reinforcement can be determined. The strain
in the steel and concrete due to shrinkage are included

from data obtained from prism tests.
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(3) Where sustained loads are studied, the creep strain and
_additional shrinkage strain for a specific increment of time
are included so that the total strain of concrete is compfised
of :

+ - + .
wcreep wshr:.nkage

*total = Velastic

where, w = strain in concrete .

‘Therefore the - elastic strain in concrete, or the strain

contributing to stress acting on eaéh element strip, is

calculated by subtracting the c¢reep and shrinkage strain

from the total strain at the centroid of each element strip .
(4) From the stress-strain relationships of the concrete and the

steel given in Equations 3.2 and 3.3 respectively, the stress

acting at the centroid of each element strip and at the

level of the steel are computed and Equation 4.1 is used

to calculate the total axial force and bending moment acting

at the centroid of the cross~section.

(5.6.b) Subroutine M"CREEP" :

For cases where sustained loading is included, this subroutine
is called upon to calculate and store the creep strains for a specified
increment of time. The modified superposition method as described
in section 3.8 is used to compute the creep for variable stress
conditions. The computational steﬁs for this routine are summarized
as follows,

(1) The additional shrinkage strain in concrete for the specified

time increment is computed by Equation 3.4.
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(2) The loads and stress levels acting on a concrete cross-
section are assumed to remain constant for the specifie&
increments of time. The elastic strain acting at the centroid
bf each concrete element strip of the section which were

- computed and stored in subroutine BMPCAL sy -are then |
tfansferred and stored in this subroutine. The creep strains
_for each concrete element are then compﬁted by the process
described in section 3.8 .

(3) For the next time interval, fhe stresses on the element
strips may be different from the previoﬁs values. These
changes can result from a change in load'intensity on the
structure or from the redistribution of load caused by
changes in stiffnesses associated with the sustained load
deformation. The nonlineérity of creep versus stress élso
could cause a redistribution of stress on a cross-section.
Therefore, for a new set of elastic strains after the first
time interval, the stress history must be taken into account,
and the creep strain due to stress history is calculated
by the procedure described in section 3.8.

(4) The total inelastic strain due to time effect is thus'given
by,

Yiotal = wcreep * Yagditional shrinkage * Ystress history

This tothl inelastic strain is transferred to subroutine BMPCAL

for the computation of the elastic strain of the concrete.
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(5.6.c) sdbroutinel"MPBI“ :k

| In‘this subroutine, the Newton-Raphsonlmethod’és describgd
in segtionv4.3 is'uiilized to facilitate convefgence on an unique
strain-distributidn fdr a épecified axial forde énd bending mogenf

combination. The computational procedure is described below:

(1) The applied bénding moment and axial force acting ét the
: crosa-seétioh .ﬁhich were calculated in the main program
are-transferred to this subroutine. | _ |
(2) For an initially assumed strain distribution, the subroutine
BMPCAL is called to calculate the axial force and bend;ng
moment corresponding to this assumed strazn distr;butzon.
(3) The computed axial force and bending moment are compared to
the applied load and momenf. The diffefence’is measured bj

the followins'ratios,

. I( apglzed Péalcplated; )I‘
' Papplled
| Mopplied Mealculated
R = ‘( applie calculate )l
2 : M . '
applied
where, if R, and R, are not greater than 1%, the

iteration process is terminated, and the concrete strain
and curvature are tranéferred to the main program for
evaluat;on of equivalent stiffnesses EA and EI. In cases
where the applied load P is- equal to or near zero. the eonvergence
procedure requires the calculated P be 1ess'than 0.01 kip.

If the applied M is less than 10 in-kips, it is required that

the computéd M be less than or equal to 10 in-kips.
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(4) If either R, or RZ exceeds the allowable tolerance of 1 %,
' the éonvérgence process is carried on by incrementing the

concrete strain and curvature as follows,

8w1 == G w, +‘H
S¢ = @G + H

where,
@ = 0.0005
H = 1.0x10"1°

These will then generate a new concrete strain and a new curvature

as, | |
Y1 new = M1 previoué + 5w1

i = g + 8¢

new previous
To find the terms DP/aW1, 'OP/iﬂ ’ ‘aM/aw1, 2M/2¢8 Trequired
for Equation 4.5, it is ‘neéessary to call the ub:oﬁtine
BMPCAL twice. Firstly, the curvature remaining constant

and the nev concrete strain w is substituted, a new

, 1 new ‘
set of P and M values which are due to the increment of wy only

will be calculated. Therefore,

oM M

- M
_— o (——2SY Rreﬁ.ous ) @ = constant
v, ¥4 new ¥4 previous
2P Prew ~ Pprevious o ,
iy Y1 new ~ Y1 previous

Secondly, by calling the subroutine BMPCAL, with the concrete

strain remaining constant,the new curvature ﬁn ey 18 substituted, and
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the rémaining terms for Equation 4.5 are calculated as

shown below ,

?F Paew = Fprevious L S
= (= . ) ‘W, = constant

o8 L ¢previou5

M Yow = Mprevious

— ) w, = constant

L ¢new gpre‘viou_s

These values are then substituted into Equation 4.5 which
is iﬁverteoi to calculate the increment values of concrete
strain and curvature dw, and df . The new concrete strain

.and curvature are now given by,

Y"1 new = Y1 previous * M4

o = g

new

previous dﬁ‘
These new values are used to compute a new set orf axial force
P and bending moment M, and the process in steps 2,3 is

re‘pea.;l;ed.

(5.6.4) Congutation of Secondary Bending Moment :

The computation yof P-Delta secondary bending moment which

is the effect of axial load multiplied by the additional eccentricity

due to deflection, is performed in the main program. The matrix

analysis generates a displacement vector for each element in the

member coordinate system for the element, and then transforms this

displacement vector into glob_al coordinétés which is the coordinate
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syétem for the whole structure. Hence in member coordinafes the
deflection in the X~direction indicates the longitudinal shortening
or elongation of the element. Displacemeht in the Yedirection

thus shows the amount of lateral deflection from the original
undeflegted position. Therefore, the secondary moment or P-Delta
moment is computed by multiplying the axial force acting at.the
element centroid by the Y-direction deflection from the undeflected

position of the clement.

(5.7) Illustration :

To illustrate the convergence procedure for the matrix
stiffness modification technique used in the analysis, the test
results from the large scale frame FR1 under short-term loading
are compared to the analytical prediction during the iterative
process . As shown in Figure 5.5, the ratio of the predicted
deflection to the measured deflection is plotted against the number
| of iterative cycles of stiffness modification. The predicted
deflection in the first cycle of iteration differs quite signi=-
ficantly from the test remult. However, after 3 cycies of iteration,
the convergence is apparent. Considering possibility of experimental
error and some simplifying assumptions, convergence has been

obtained after 5 to 10 iterations.

(5.8) summary :
In this Chapter, a detail desoription of the computer program
for the matrix stiffness-modification method has been present. By

comparison of the short-term test results of Frame FR1 with the
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predicted values as well as the results in Chaptef 6, it can be
observed that the stiffness modifiéation procedure is an effective
method for analysing inelastic concrete structures. The accuracy

of the method will be discussed in Chapter 6.
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Chapter 6

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

(6.1) Introduction :

This chapter pfesents an extensive eVaiﬁation of the applicability
of the proposed matrix stiffness modi?ication method by comparisén_'
‘of the analyfical results with‘the measured results of several
reinforéed concrete frames tested at McMaster Uhiversity (19,52),

, McGill Un;vers;ty (4,51) and the Cement & Concrete Association (17).
In all cases, deflection was used as the main baais foxr coupar1son
'becansekit 1s»direetly measurable and is least susceptible to
e#perimental error and aﬁalytiéai misinterpretation as compared

“to those me#surable quantities such as strain, slope, rotation and
crack width. ﬁowaver, in a few cases, the compariéon of anglytical
and experimentaiiy derived bending moment are included to add ‘evidence
for the apélicability of the proposed analysis. A word of caution
is that the experimental bending ﬁoment is derived from measured o
strain réading fron which the numerical integration procedure as
described in section 4.2 is used to obtain the moment .

Therefore, the term "experimental bending moment' is really.a combination
of ex@efimental strain reading'and_analytical interpretation.

'In addition, an elastic analysis using the same mathematical
model of frames as used for the nonlinear,analysis, w&s devéloped
to compute the elastic response §f the frames. The stiffnesses
were baéed,on a cracked transformed section of concrete. This
elastic method through use of small elements takes into accoﬁnt

the distribution and'amouﬁtvof reinforcement in the frames.
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(6.2) Short-tern Test Results :

In this section, the cémparison of the analytical and
' _ﬁeaSﬁred_resn1ts of a total of 24 frames festgd Sy the author and
Ey,otheis (4,17,19,51}52) has been répo?tgd;' Tﬁé dimensioh'ofvtye  .

frames and the'initia1 purposerf'the tests are briefly introduced.

'(6.2.#) Tan's Frames :

The measured deflections of Frame FR1 under short-term
proportional loading, were compared to the analytical prediétion
és shown in Fisureb6.1. The load-deflection data for three.

"~ eritical points on the frame were plotted. The fabrication aﬁd
teéting of this frame has been described in &etailliﬁ Chapter 2.
'Reféring to the figure, it can be concluded that excellent
_agreement has been observed between the modifiéd étiffness analysis
and the teét results for three points compared . Except for point
C, the analytical prediction slightly overestimates the testéd
deflection at high loads. The elastic solution which is also
shown underestimateé significantly the vertical deflection at
point’AAand C. This has adde& evideﬁce for the inaccuracy of the
elastic analysis in predicting behavior of real structures.

- In Figure 6.2, the predicted concrete strain distributions
are compared to the measured values for points B and E. Close
'agreément between analytical and measured results is evident,

‘Figﬁre 6.3 Bhows the comparison of defiectibn for Frames
FG1 and FG2 tested by Mr. Golec, an undergraduate student , during

the summer of 1970, The dimension and cross-section of these frames
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frames are the Same‘as those téstéd by Danielson (to be discussed

later). It can be seen ‘that the predicted deflectlon follows qumte
» closely with the test result except at hzgher luads. At hugn loaés.
‘cracking of the joint was very.severe and l;kely cqntriﬁﬁt¢d td'the-

'discrepancy betﬁean_prééicted and tested deflections.’

(6.2.b) Svihra's Frames (222

Svihra in 1970 tested faur two-hay Bingle-storey frames
in McMaster University to investigate the behavior_and capacity ot 
- concrete frames suﬁjected tokcyclié 1oadiﬁgs,f The;dimension'éf
these frame are shown in Figure 6.4 to have a clear span of 8.3
feet for the beams and the éolumns were S,Ieét high measured to
the mid~height of the beam. The cross-section of the frames is
constant and is identical to the beam section for Frame FR1
which was described in Chapter 2.
| The experimental and aﬁalytical result for One:of'Svihra's
ffame, Frame BF-4, iS'presentgd in Figure 6.4. For the loading
configuration, the sidesway deflection of the fraﬁe was the
dominantvdisplacement, The ndn-linear analysis predicts values
which quite cloéely follow the measured values. The differepc§
between predicted andktested deflection increases with increasing
load but the percemtage of error remained relatively small. The
elastic analysis differs from the test results by a‘much greater
>errorvespecially at high loads. |
In Figure 6.5, the load-moment curves at various location
on the frame were plotted and compared. The same trends as discussed

for Figure 6.4 are evident.
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(G.Z.c)'kDanielson's Franeq (122 :

The results of one of the three ome bay single storey
 £rameé tested by Danielsen at McMaster University are shown in
Figure 6.6. The frames had the same dimension as Svihra's Frame.
Frame R2 provided results for a short-term proportional load
test.. As can be seen in Figure 6.6, the non-linear analysis provide
a reasonable predicti&n of the sideswaj deflection and the midspan
deflection wheréas the elastic analysis did not. Even though an
attempt was made to stiffen the joints, considerable cracking was
readily visible. Hence this feafure can account for some of the
difference bétween predicted and test values. |
In Figure 6.7, the bending moment in various critical
point of the frame has been drawn against increasing hérizontal

load and the above discussion also applied.

(6.2.4) Cranston's Frames (17) :

Cranston in 1969 presented a report to the Cement and
Concrete Aésociation of the United Kingdom , describing the
design and testing of eight one-storey single bay fixed~base
frames. The purpose of these tests was to prove that the
Mechanism Method of Limit Design could be equally applicable
to reinforced concrete structures.

The dimensions of ali his frames were the same, with the
center to éenter span of the beam being 120 inches long and the

height of the column 60 inches as shown in Figure 6.8. The

eross=-sectiong of tha frames were constant at 4 inches wide and
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. 6 inches deep.' The reinforcing in the frame differed from'croés-
section to crosé-section and from frame to frame. The vertical
loads were not,épplied proportionally to the horizontal load ,
  £he;.ma5@itudes are - included in Cranston's Report (17).
| Six of the frames were analysed by the Matrix stiffneés;'_
Modificati&n method and by the elastic analySis.. Both methpds
take info account fhe variation of distribution of reinforcement
in the frames. The results of the predicted and tested deflectiqné
under increasing horizontal load are shown in Figure 6.8.
It is observed that both the stiffness MOdifiéation method

and the elastic analysis underestimate the éxperimental deflection.
~ The diécrepancy between test and elastic analysis was approximateiy
double that between non-linear analysis and test. The unaccounted
for effects of rotation in the joints and visible diagonal crack-
ing may be identified as partially responsible for the larger
measured deflections especially at high loads.

| In Figure 6.9, the bending momént‘vé. horizontal ioad
curves were drawn for the points F1 and k1 in the frames as shown
in Figure 6.8 for four of the six frames selected. The same

~ observation as discussed above is applicable to this Figure.

(6;2.3) Sader's Frames (51) :

In 1967, Sader tested 20 single storey one~bay frames with
fixed bases at McGill University. The dimension of these frames.
were approximately at a one to six scale. The purpose of these

experiments was to investigate the ultimate strength of concrete
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:raméé,ithp mode of failure, and the moment rotation characteristics
pf'a,cfitical joint in the frames. |

| The results of four oFf theée framés are present 4 in

: Flsure 6.10. . The four frames hed dlfferent percentages of
Z_reinforcement and‘dlfferent-loading conf;guratlons., In all but

a féw cases at véry low ioads.lihe nonlinear analyéls predicted
sidésways and midspan beam deflections fairlyyéccurately. The
 deflections from elastic calculations exhibit much larger érfor.
:Except for Frame Nlo. 1 , the experimental deflections were lﬁrger
than the'predicted values. The effect_bf:jbinf rotation ié‘thought
"to be the main reason for the difference befﬁeen the tested and

nonlinear predicted value.

C (6e2.F) Adenomt's Frames )

In 1970, Aden01t at McGill Uhlverslty tested 11 double-
'bay Bingle-storey fixed end concrete frame models with the same
scale aé used by Sader. These frames»wére subjecte& to a constant
ﬁouble point.vertical load and an increasing ho:izonfal load. The
experimental specimens include two set of concrete frames using
plain and‘deformed reinforcing bars respectively. Thé vgrying
parameter in this study was the percentage of reinforcement in

‘the column cross-section.

| B8ix of the eleven frames having a wide range of peréentage
of reinforcement were chosen for comparison. The sidesway deflection
and the midspan deflection of the beams were predicted by the
stiffness modification method and b& the elastic method. The-
results are plotted in Fisufe 6.11. The comparison of this Figure

is apparent and the same discussion as given for Sader's Frames applies. :
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(6.3) Comparison_of Sustained Load Testhgsnlﬁé";

' 'In this section, the sustained-load test results of threé
fréﬁes tested at McMaster bniyersity have been preseﬁtgd.

In figure‘6;12. the experimental déflectionslbf Frame FS1,
tested by fhe"aﬁthor’have been piottedf.The frame was loaded with
a high column load of 46 kips and with a beam load of 10 kips.
Iﬁis loadiﬁg was sustained for 80 days. The testing and
observation of this frame is given in detail in éection 2.9.5.

it is observed that thé nonlinear predictions do not
differ much frbm the test values whereas the elastic analisié'
ob#ioﬁsly_gives an erroneous constant deflection with tiﬁe.

In Figure 6.13, the experimental result of Frame FaG2
vwere presented. The‘detaiis of this frame were given-in'
section 6.2.a. " |

In Figure 6,14, the test results of Frame 1 tested by .
~ Danielson (19) were given. The dimension and cross-section of
this frame were the s#me as Frame R2 as described in section
6.2;9. |

From a study of Figure 6.13 and 6.14 , the same discussion
~‘as given forAFrame FS1 applies to_compafiéon of the'reéults for

these two frames.
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(6.4) Conclusion :

| A representative sample  of the test  results reported
from the Cement & Concrete Association, McGill Un: rersity, and
McMaster University has been chpsen as a basis for evaluating

the proposed Matrix Stiffness-Modification Technique. It can be
concluded by comparison of the analytical and test resulis for a
total of twenty four large scale and reduced scale frames, that

the Matrix Stiffness-Modification method yields accurate results
in predicting realistic behavior of aétual structures. On the
other'hand, the elzstic method which is based on a consiant cracked
transformed section of concrete, always gives inadequate prediction
of the behavior of real structures, especially when time-dependent

creep deformation or high loads are considered.
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Chapter 7?7

DISCUSSIONS AND CONCLUSIONS

(7.1) Introﬁucfion 3

The purpﬁsé of this research was to propose a method using
a matrix approach for an efficient nonlinear analysis of reinforced
concrete structures. The Matrix stiffnéss-Modification Method was
deieloped and its validity checked by comparison with the results
of sevéral experimental frame tests. The modification is in the
évaluation of a set of equivalent stiffnesses EI and EA for each
element of a structure which has been subjected to a particular
loadingvand stress history. From comparisoné with experimental
data, it is concluded that the procedure for computation of the
equivalent stiffnesses in this analysis yields‘realistic prediction
of the deformations of a concrete structure. The discussion in this
chapter is devoted to the following two sections which relate in
the firsf'case to the major work involved and in the second case
to the major application of this research:

(1) Matrix Stiffness-Modification Technique

(2) Present Column Design Practice.

(7.2) Discussion of the Matrix stiffness-uo&ification_Method H
This section discusses the difference between the elastic

matrix method of structural analysis and the stiffness modification

method, the difficulties and experience found in developing the

computer program, and the possibility of partial non-linear analysis
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for prediction of the effects o. inelastic behavior on components

of a multistorey rigid frame building.

(7.2.a) Elastic Matrix Method vs. Matrix stirfness—nddification Method :
It is concluded, from the comparison of the analytical and
experimental frame test results, presented in Chapter 6, that the
Matrix Stiffness-nodification Technique predicts accurately the
inelastic behavior of concrete frames provided'that'tpe mathematical
model of the frame is adequately described. On the other hand, the
élaatic method using stiffnesses based on a cracked transformed
section‘of.concrete is seen to be inaccurate especially for
sustained loadé and high levels of load. This is due to the fact
that the elastic method does not take into account the variation
of stiffnesses due to the effect of the nonlinearity in the concrete
stress-strain relationship, the effect of different load and moment
combinations, the effect of secondary bending moments, and the effect
of creep and shrinkage in concrete. However, the Matrix Stiffness-
Modification method is based on a concept that equivalent stiffnesses
of a structure can be obtained using a modification procedure which’
takes into account the aforementioned factors. Hence the non-linear
short=-term and sustained-load behavior of structure can be accurately

ﬁredicted.

(7.2.b) Discussion on Convergence Control for the Computer Program:
In the early stage of developing the computer program for

the Matrix Stiffness-Modification method, several difficulties were

encountered. Of these, the convergence gontrol of the iterative

\
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_process for the main program and for the subroutine WMPHIM which
are described in sections 5;5 and 5.6.c,res§éctively, wﬁs the most
© aifficult. It is thought to be worthwhile to cdngribute fheA
| experience'acpumﬁlated in this research for future réference._

| For the main program, it was discbvered thaf in the process
of iteration; whi¢h is described in section 5.5 , the stiffnesses
for each element of the structure may occassionally exhibited
_ periodic oscillation. This problem océured‘when'é set of equivalent
stiffnesses were used to generate a set of applied lbad which were
~ used to yield new stiffnesses which inturn were used to calcﬁlate
geﬁ léads which were used to generate new stiffnessés which changed
very‘little from the first set of stiffnesses. This.difficulfy
Qas overcome by introducing an averaging process fér each iteration.
~ The effective stiffnesses;EI and EA were averaged with the corresponding
stiffnesées from the previous two cycle after the comparison step
described in.seétion 5.5 was completed. -These averaged stiffnesses
Qere used as new stiffnesses to obtain the new displacement and
force vectors for subsequent generation of another Bet of new
equivalent stiffnesses. From a physical point of view, the averaging
calculation serves as a dashpof to démp the oscillation of the
stiffness to convergence. - |

In the subroutihe “MPHI" as described in section. 5.6.c,

the Newton-Raphson method was used to determine the strain distri-
bution for a cross-section of concrete subjected to known appliéd
load‘aﬁd‘bending moment. This method required an initially

assumed strain distribution to obtain a final strain_distribution
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compatible to the applied loads. After several trials of the
nonlinear frame progranm, it was concluded that the assumption of-
an initially elastic strain distributionkwduld lead to satisfactdry

convergence in the subroutine.

(7.2.3) Discussion on Partlal Nonlinear Analxs;s :

Most research done on the behavxorlal study of the inelastic
response of a beam column in multi-storey buildings has been
restricted to an idealized member séparated from the structure.

The member is loaded with constant axial force and end eccentricity;
However, tﬁe behavior of real beam-columms in a multistorey building
subjected to constant externally applied loading, is actually
influenced by the variation of the stiffnesses of the member

itself, and of the ofher members in the structure. A rational
analysis for this type of behayior has been missing. For this
reason, the possibility of the application of‘the Matrix |
stiffgess-nodification Technique to a partial non-linear analysis

of realistic inelastic reinforced concreté structure was studied.

The idea was that a 1oca1ized~portioﬁ of the structure
ﬁould be studied for imelastic behavior. The reason for introducing:
partial non-linear analysis is also due to the limitation of the
computer storage capacity and the computing time,requifed. In
addition, for a rational investigation of the behavior of a beam-
cblumn in a multistorey building, it is realized that those members
which aré»far away from the localized inelastic column dobnot

produce significant effect on the distribution and redistribution
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" of bending moment iﬁ the beam-column. Therefore, it is juatificabie to
apply partial nonlinear analysis to the behaviorial study of iocalized
inelastic members in a multistorey structure. .The‘selection of théi’
partial inelastic portion of a multi-storey ﬁuilding is in turnAlimited’
byvﬁhe compuver stoxage capacity, the gomputing-time required, and
the error éésociafed'with the effect'of usiné élastic elements fér
the remainder‘of the structuré. |

To illustrate this method, a four storey céncrete frame has
béén analysed. The de#ails of the location and amount of reinforcing
steel in the frame are shown in Figure 7.1. The frame was subjecte&
to a proportional ioading for the short=ternm analyais.. As indicated
in Figure 7.2, the members AB, BC and CD of the frame were designed'
to exhibit nonlinear behavior while the other mémbers remained
eséentiélly elastic with a cracked transformed section of concrete.
The Matrix Stiffness-nodificationvnethod is then'applied to tﬁe
analysis of the whole structmral system using COnstént stiffnesses
for all members except members AB, BC and CD. Figure 7.2 and Figure.7.3
show the performance of the substructure under short-term and
sustained load respectively. |

From the above discussion, it is concluded that the Matrix

Stiffness-Modification Technique is not only effective in system

analysis but is also applicable for the analysis of substructures.
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(7.3) Discussion on present Column Design Practice ::

From a study of the deformation characteristics of concrete
sections given in Chapter 4, some comments can be made regarding
present column design methods. The Reduction Factor Method (2) and

the Moment Magnifier Method (37) ate discussed in this section.

(7.3.2) 1963 ACI “Reduction Factor Method" (2) :

The 1963 ACI code (2) specified the use of a reduction

factor for design of slender columns taking into account the
length effects. This reduction factor was based directly.on the
élenderness ratio, 1/r , of the columns. Different formula for
the reduction factor provided for different ranges of slenderneés
and different modeg of deformation.

It is observed that the reduction factor R is a function
of the radius of gyration r of the structure. However, the ACI
code specified that r is a constant regardless of the effect of
the axial load versus bending moment relationship. In this rggafd,
the investigation of the unit slenderness curves plotted in
Figures 4.8 and 4.9 demonstrated that the radius of gyration of
a concrete cross-section is not constant but is a function of the
loading condition. Therefore, the reduction factor is concluded
to be unrealistic and according to several researchers (24) may

be unsafe.

(7.3.b) 1971 ACI"Moment Magnifier Method" :
' Recently the Reduction Factor Method has been replaced by

a Moment Magnifier Method in ACI Code 318-71 for design of slender
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columns (37). The Moment Magnifier Method requires the determina-

~ tion of the critical load, Pcr s which is given by,

i EL

P _
cr '(Kh)a

' The faexural stiffness EI can be taken either as,

or,

2.5 (1 + Rm)

where, -
= effective height of column

= modulus of elasticity of steel

i -

moment of inertia of gross-section of concrete

L B |
n

moment of inertia of reinforcing steel about the column .

centroid.

The ratio R_ is the ratio of the dead load moment to the total
moment and therefore is intended to take into account the effect
of creep'by reducing the effective stiffness in proportion to the

amount of load which is sustained for a long period of time.
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 The Moﬁent Magnifiet.?.is 5i§en by,
. o cm
' _‘(1 - Pu/Pcr)

ny

whereg~:;
Pu‘ = Ultimate axial force for which the colummn is
: desigﬁed A |

Cm = Coefficient reflecting ratio of end moments.

Now it is quite obvious that the momént_magnifief method no longef
‘rélies di;ectlﬁ on.the élendgtness ratio, 1/r, of the member but
it uses a stiffness EI which is modified to account for the cracking
of cahcfete, the creep associated with the applied load and bending |
- moment, and the load vs . moment relationéhip.

; The effective‘EI given by the moment magnifier method isv.
evaluated by using some abstraction of the subroutine from the
Matrix stiffneBGAModificgtibn method. In Figure 7.4, the analytical
results of flexural stiffness EI were ﬁ;otted for different values
of constant reinforcement iatio, P, in the concrete section. The
EX given>by the moment magnifier method are shéwn by the bound lines
as indicated. The ratio for dead load moment to total moment for

»fhis nonlinear inalysis gives a R value of 1.0 . In Figures

'7.5 through 7.8, the parameters ar, £_, f; and shrinkage strain

_ J
 are varied and compared to the EI value given by the Moment
Magnifier Method. It isithen concluded that the stiffmness EI
recommended by the Moment Mégnifier Method provides a'safe estimate

' of the effecfive stiffness EI.
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Final Conclusion :

The following conclusions are made based on results reported

in this research :

1

(2)

(3)

(4)

(5

The Matrix Stiffness-Modification Method which has buen
developed accurately predicts the behavior of real structures
subjected to short-term and sustained loading with the

provision that elastic and inelastic deformation characteristics
of the concrete are properly modeled mathenatically.

The elastic matrix method using stiffnesses based on the‘cracked
transformed section of concrete will give inadequated prediction
of b;haviof of real structures especially when sustained loads
or high levels of loading occur.

The Moment Magnifier Method as recommended by the 1971 ACI Code
gives a' safe and realistic estimate of flexural stiffness EI
for design of slender columns. It.was also concluded that the

Reduction Factor Method is unrealistic and may be unsafe (24).

Additional studies have indicated that the Matrix Stiffness-

Modification Technique can be easily modified to accomodate
the analysis of prestressed concrete structures, composite
structures and structures with variable cross-sections.

For a realistic analysis of the behavior of single beam~-column
members in multistoréy buildings, the partial nonlinear .
analysis using the Matrix Stiffness-Modification Method can
be applied. It is intended that the development of this
analytical technique will lead to a comprehensive qvaluation

of current column design procedure.
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 APPENDIX A
FORTRAN PROGRAM

Nomenclature H

The meanings of the important variables used in th. s program

are listed below:

AASC(I) Area of compression reinforcing steel

AAST(I) Area of tensile reinforcing steel

CF | Length conversion factor

CYL Concrete eyiinder strength at 28 days

DDB(I) Width of cross-section of element i

DDSC(I)  Distance from the centroid of the compression steel

tc the extreme compressive fibre of section
DDST(I) Distance from the centroid of the tensile steel

. to the extreme compressive fibre of seétion

DDTH(I) Potal depth of cross-section of element i
EA(I) Axial stiffness EA for element i

EI(I) Flexural stiffness EI for element i

ES vModulus of elasticity of reinforcing steel
FsY Yield strength of steel

IIFROM(I) Cocrdinate of end 1 of member i

I170(I) Coordinate of end 2 of member i

KJOIN Joint number of which load is applied
NALLOW Allowable cycle of iteration for subroutine "MPHI"
NELEM Total number of elements in frame

NPLAST Total number of inelastic element in frame

NSTRIP ‘ Number of element strips in concrete cross-section
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NJOIN Total number of joints in frame
NCYCL Number of iterétive cycle in the main program

PHI, PEITRI  Curvature

PX ' X~component of applied load
PY Y-component of applied load
PMZ Z-component of applied load

PCAL, BMCAL Calculated axial force and bending moment acting at

the centroid of a concrete cross-section.

T4, T2 Tine increment , from time 1 to time 2
WEEP Creep strain

WSHRINC Shrinkage of concrete

WIENSIL Allowable tensile strain of concrete
Wwu(L,I) Effective or elastic strain of concrete
XP1(1) ‘ X-coordinate of element i , end 1
Xp2(1) X-coordinate of element i, end 2

YPI(I) Y-coordinate of element i, end 1

Yp2(I1) Y-coordinate of element i, end 2
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(FOR 4 RELEASES)

ORRECT LOCATION.
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SEQUENT CALCULATION OF REDUCED STIFFNESS
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APPENDIX B
FRAME CYLINDER NO. AGE (DAY) STRENGTH ( LB/IN> )
FR1 K1 | 23 4380.
K3 _ 28 hi2s,
K4 - 28 4360.
XS ' 28 o0,
K6 ' 28 4470,
Average | 4408,
Mean Deviation 23,
Standard Deviation 17. |
Fs1 ¢1 28 4360.
c2 28 k420,
Cc3 26 Lh60.
Average 4410,
Mean Deviation 37.
Standard Deviation 41,
FS1 c4 44 he20.
c5 | (VA 4600,
Average - 4610.
Mean Deviation 10.
Standard Deviation 10.
Mean Deviation =2¥|fé -_!éb /N
Standard Deviation Ié)a/ N) %

Br = £ /N

N = number of specimen
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