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Chapter 1 

INTRODUCTION AND LITEBATURE REVIEW 

(1.1) General . • 

1. 

It is well known that a complete e1astic analysis of even a 

very simple indete~minate structure, tor instance, a portal frame, 

involves a fairly large amount of work by hand computation. The 

amount of work increases disproportionate~ywith the increase in 

the degree of indeterminacy in the structure. When a high degree 

of redundancy is co.u tained in the structure, an exact analysis by 

hand solution ma7 b~ rendered impossible. Consequently, when a 

complicated structUFal system is encountered, it has been necessary 

to make simplifying assumptions in the analysis. The result of this 

simplified analysis frequently reflects an erroneous depiction of 

the behavior of real structures. 

Fortunately, because of the development of high-speed 

electronic computers, the art and science of Structural Engineering 

has been greatly advanced. ~e ease of a computer to perform 

thousands of digita1 computation and data processing steps within 

seconds and with high accuracy has enabled the implementation of 

matrix methods for systematic structural analysis. More recently, 

the advancement of the highly versatile finite element methods 

has facilitated a mo~ .. e accurate evaluation of stress for almost 

any structural shapeo 

However, most work done by the matrix approach has been 

confined to the analysis of elastic systems in which the structures 

respond linearly to the applied loadingse Relatively little 



2. 

attention had been devoted to the behaviorial study of inelastic 

concrete structures by matrix methoda. The area of sustained load 

behavior of concrete structures using a generalized matrix approach 

remains largely unexplored. The re.asons may be due to the difficul-

ties in formulating a unique set of stiffnesses for the concrete 

system. It is known, and will be shown later in this report, that 

the stiffnesses of a concrete cross-section are influenced by the 

degree of cracking , the amount of reinforcing steel and the geo-

metric properties ,of the cross-section. Creep and shrinkage of 

concrete influence the long-term behavior of structures by causing 

them to continue to deform in the course of time even under constant 

applied loads. The implication is that the stiffnesses of the 

structural system are functions of creep shrinkage and time. All 

the uncertainties a~ssocia ted with these functions have hindered the 

development of an efficient and systematic matrix method for the 

structural analysis of concrete frameworks. 

Nevertheless, with the increasing use of computer, researchers 

have dev.~oped an incremental method,termed by the author as the 

"Numerical Mom en t-Curva ture l1ethod u , for the more exact analysis 

of concrete structu~es. The Numerical Moment-Curvature Method will 

be briefly described in the next section. Several important 
i 

papers have then been published during the past decade. However, 

most work done by the previous investigators had been focused on 

the analysis of single members , especially the column. The reason 

has been two£old • Firstly, a single member is much easier and 



simpler .to analyse than a structural system with discontinuiti~s 

and complicated boundary conditions.. Secondly, slender columns 

h&ve been used increasingly in recent building construction fo;~r 

archit~ctural purpose and also due to the use of high strength 

materials which has resulted in smaller column sectionso 

Columns, esp(acially those with high slenderness ratio, ar~ 

compression members which are very sensitive to the time-dependent ®ffe@t 

of creep and shrinkage. A column may fail in one of the two mod®~g 

Material failure which is the crushing of concrete in reaching 

its ultimate strength, o~. buckling failure in which lateral 

deflection~.increase~ without an increase in loads. Creep increases 

th<e· deflection of a .eolwm by decreasing its atiffnesses, which 

alternately results .i.:n ~ _reduction ot the proportion ,of the. joint 

moment which the column must resi~t e This then means that a 

redistribution of moments eccura due to ·the e:tf'ect o~ ~r~ep of the ~o:ucret®o 

The rather complex interactions associated with the behavior of 

alender ... columns have been excellent topics for research, and have th:ij;i).~ 

~timulated a great d~al of interest in column investigation. 

~1.2) Numerical Mom®nt~Curvature Method of Analysis : 

From a survey of previous literature conce~~d with resear@h 

in the ~rea of beha.viorial study of concrete structures, it was 

found that most investigators employed a fairly similar approach 

in analysing concrete structures. To avoid repetition in the 

literature review to be described in the next section, this approa©h 9 

termed by the author as the Numerical Moment-Curvature Method, is 



described in this sebtion as follows : 

(1) The structure is divided into a number·- of small discrete 

elem~nta:·which in turn;·are subdivided into 'a'finite··numoer of 

element strips. 

(2) By assuming plane strain distribution over the concrete cross­

sec:ti.On:,.: for cases ·where the stress-strain relation of 

materials are known,·an arbitrary set· of strains at the 

extreme-fibres of the cross-section are imposed and the compa­

tible stresses can be evaluated. 

(3) The' internal axial foree and bending moment for the given 

strain distribution are computed usin·g a n~tcal i.Jlt·egration 

procedure, and are compared to the externally applied load and 

bending moment acting at the geometric centroid of the cross­

section. If equilibrium does not exist, the assumed strain 

distribution is changed until external and internal load 

and moment differ by less than some permissible tolerance. 

(4) Member deformations at consecutive division points are then 

computed by using numerical integration procedures. 

(5) The compatibility between deformations and moments at a 

joint in a structure is then established by another trial 

and error iterative process. 

Several researchers havereported that the numerical moment­

curvature method can yield satisfactory predictionsof the behavior 

of concrete structures. This has then lead to the reasoning that 

for an inelastic concrete structure, there must exist an equivalent 

set of stiffnesses which can be obtained after modification of 



an initially arbitrary assumed set of stiffnesses for the whole 

structural system. This idea has been the basis for the develop­

men.t of the Matrix Stiffness-Ivlodifica tion Method to be reported 

in detail in this thesis. 

(1.3) Historical Review: 

In this sec1~ion a brief review of recent literatures 

concerned with the behaviorial studies of inelastic concrete 

structures for the past ten years has been presented., Previous 

Reviews (1, 29)** have provided excellent documentation of all but 

fairly recent publications. 

In 1961, Brom and Viest (11) reported that for short columns, the 

effect of slenderness on deflection and stability of a column was very 

small but not so for long columns. In CEB (1) recommended practice 

for slender column design, the effect of slenderness was considered as 

a complementary moment to be added to the initial eccentricity of the 

loa4. The complementary moment was expressed as a function of the 

geometric slenderness ratio and the end eccentricity ratio. 

In 1963, Furlong (28) tested six rectangular frames restrained 

from lateral sidesway and having single curvature columns. He found 

that the capacity of the restrained column permitted up to fifteen 

percent more axial load capacity than would be expected for an 

equivalent isolated column. He than developed two methods for analysis 

of columns. In the numerical moment-curvature method, he assumed 

the deflected shape of the column was in the form of a parabola 

while for the Elastic method, he used an effective stiffness EI 

for simplicity of analysis. 

•• Number in the Parenthesis refers to number in bibliography 
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Chang(14) in the same year also analysed concentrically 

loaded long hinged columns employing Von Karman's theory and·a.numerical 

intergration procedure for predicting the deflected shape of columns. 

Separate mathematical eq~ations for column moment and load in term 

of edge strains were derived and plotted for a rectangular concrete 

cross-section. He also proposed a method for determining the critical 

length of long hinged and ·restrained concr~te columns as part of a box 

frame (15). An analog computer was used to solve the differential 

equation for predicting the critical length of a column.He concluded 

that a long reinforced concrete column may buckle laterally as· the 

critical section reached material failure, but the material failure 

of a column cannot be used as the criteria to determine the critical 

column length. Plastic hinges may be developed in a frame, but a 

long column may become unstable without developing plastic hinges. 

The use of plastic methods of structural analysis incorporated 

with the ultimate strength design method have been applied to concrete 

structures. Howeverv these methods do not always recognize the 

effects ot axial force and creep deformation on the structures. In 

1964, Sawyer presented a method based on a bilinear moment-curvature 

relationship and used a Plasticity Factor to account for the re­

distribution of moment (3). Later, Adenoit (4) applied the bilinear 

moment-curvature conc1ept to the analysis of double-bay one-storey 

frames. He reported that the calculation of the rotation capacity 

of a plastic hinge by the bilinear moment-curvature method gives an 

ove1""-estimated capacity. 



Cranston (17) tested eight single-bay one-storey frames with 

fixed end conditions. He concluded that the mechanism method for 

plastic design can be ·applied to concrete structures. However, the 

frames he tested did not have high, axial load in the columns. 

Cranston also presented a computer method for inelastic-frame analysis 

(18). The frame has to be idealized into an arch or a ring, each 

with three hinges. ~he numerical moment-curvature method was used to 

obtain the solution. His method neglected the influence of' axial 

force in the frame and the curvature of the section was assumed to 

be dependent on tha bending moment only. Plastic hinge behavior would 

be dealt with until the structure had developed into a mechanism. 

In 1964, Pfrang (46) studied the effect of creep and shrinkage 

on the behavior and capacity of reinforced concrete columns. For 

a column with a slenderness ratio below some critical value, 

creep will increase its capacity, but when the slenderness is high 

above the critical value, creep will decrease its capacity signifi­

cantly. Increasing the ratio of reinforcement reduced the extent to 

which creep influenced the behavior and capacity of the column. 

Also increasing the degree of end restraint reduced the detrimental 

effects due to creep. He used a varying stress-strain relation 

similar·to the Hognestad's curve (32) to approximate creep 

deformations, and employed the numerical moment-curvature method 

to predict the behavior of his frames. 

In 1966, Green (29) tested. 10 unrestrained eccentrically 

loaded columns subjected to sustained load and having a wide range 

of axial load intell.~.sities applied a·; varying end eccentricities. A 
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time-dependent stress-strain relationship was used in his numerical 

moment-curvature approximation. He concluded that for long columns 

under sustained loading, deformation will increase with increasing 

duration of loading, and will cause the member to fail in the 

instability mode. The deformational characteristics of members 

under sustained loading are greatly affected by the yielding of the 

compression reinforcement. If yielding of the compression steel had 

not occurred after one month of sustained loading, the subsequent 

increases in sectional deformations. were·· small. 

In 19~7, l-1anual and NacGregor (38) proposed a method of 

sustained load analysis of the behavior of concrete columns in 

frames. !rhey also used a time-dependent stress-strain curve 

modified from Ruschas (48) relationship to account for the effect 

of creep of concrete under variable stress. 

Drysdale (20) investigated the behavior of slender concrete 

columns subjected to sustained biaxial bending at the University of 

Toronto. A creep and shrinkage function was derived for a general 

concrete member. A modified superposition method for determining 

creep strain of concrete under varying stress was proposed. The 

numerical moment-curvature developed for the analysis yielded 

excellent agreement with test results. 

In 1970 1 MacG~egor, Breen and Pfrang published jointly a 

highly important paper (37) proposing the moment magnifier method 

for the design of slender columns. They found t~at the most 

sigr.ificant variables wmich affect the strength and behavior of 



slender columns were the slenderness ratio, end eccentricity, eccen­

tricity ratio, ratio of the reinforcement ratio to the concrete 

cy~inder strength, degree of end restraint and sustained load. The 

ACI 1963 Building Code(~)_ .r~~ommended ·~.;Reduction Factor method wliich was 

investigated and found to be unsafe for use with slenderness ratio 

Kh/r exceeded 70. In these cases, the Moment Magnifier Method 

should be used instead of the reduction factor method when a rational 

second order method of structural analysis is not available. The 

method suggested that th~ moment in the slender column section 

should be increased by a moment m~gnifier which is a function of 

the ratio of the ul-timate load to the critical load and the ratio 

of end moments of the column. In addition, Furlong (27) presented 

a useful moment multiplier graph for design of slender column so 

that the selection of a column cross-section has been greatly 

simplified. 

(1.4) Work in McMaster University: 

Drysdale (20,21) in 1967 h4a initiated an extensive program 

in the behaviorial research of the non-linear response of concrete 

structures in all fo~ of buildings subjected_~o short term and 

sustained loads. The program has been aimed mainly at the evaluation 

of present design methods, with particular attention to the design of 

slender columns , ~1d to the modification and development of new 

methods of structural concrete analysis. 

Gray(30) in 1968 developed a method using small elements 

to predict creep under variable stress. 

Danielson (19) started research in the sustained-load behavior 
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of a single-bay on.a story portal frame. He applied the numerical 

moment-curvature method in the analysis. By assuming a set of 

elastic reactions at the left base of the frame, the deflection 

at the right base of the frame was computed by the numerical 

moment-curvature method. By a trial and error method, and by use 

of the slope-deflection equations, the compatibility of deflection 

in the right base was finally adjusted so that it was satisfied within 

allowabie. limits. A word of comment is that his method is not 

general enough to be applicable to more complicated structures. 

Eichler (22) in 1971 developed a practical method for 

calculating creep m1der variable stress. 

The work undertaken and reported in this thesis is intended 

to provide the basis for the evaluation of design and analysis 

methods as applied to real structures. It is hoped that this will 

contribute especially to the rationalization of column design 

procedures. 

(1.5) Conclusion: 

Although several methods have been developed to account for 

and predict the behaTior of inelastic concrete structures, the 

author discovered that a systematic and efficient method for the 

analysis of general and complicatedconcrete structures ,is still 

lacking. For the research in the area of slender columns, the 

reduction fuctor method has been concluded to be unrealistic and 

inadequate. However, the newly proposed Moment Hagnifier Method 

and the Comite Europeen Du Beton (CEB) recommended practice for 
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designing a slender column do not properly account for the effect 

of creep and shrinkage on the capacity of slender columns. This 

is evident . by the fact that the Moment Magnifier method used only 

a "R rr factor which is the ratio of the dead l.oad moment to the m 
total. moment in the column . to account for the effe·ct of creep and 

shrinkage in the column. 

(1.6) Proposal. • • 

It is the put*pose of this research to develop a new method 

for analysing reinforced concrete structures. ~e Matrix-Stiffness 

Modification method has been developed. This method incorporates 

the effect of secondary bending moment and creep and shrinkage of 

concrete, so that a general frame with short or long columns can 

be anal7sed equally well. The computer program is designed to 

analyse any general multi-storey concrete frames. However, with 

some modification to the program, it can be applied to deal with 

general prestressed concrete and composite structures which are 

not within the scope of this study. To test the applicability of the 

method, two large scale frames have been tested by the author to 

provide data for comparison of the experimental and analJtical 

results. In addition, a total of twenty two frame test results from 

other sources were compared. 



(2.1) Introduction: 

Chapter 2 

ExPERI14ENTAL PROGRAM 

12. 

Two large scale portal frames with fixed_bases were built in 

the Applied Dynamic Laboratory (ADL) of McMaster University. The 

purpose of these experiments was to provide data to check the appli­

cability of the proposed Matrix Stiffness-Modification Method of 

Analysis which is described later. This method of analysis is 

intended to be used to investigate the behavior of indeterminate 

frames and to provide criteria and information for present engineer­

ing practice. This comparison should provide a more exact and 

comprehensive evaluation of presently recommended methods of 

design and analysis of inelastic concrete structures. 

Frame FS1 was designed for a sustained load test while frame 

FR1 was intended for a short-term proportional loading test. The 

fabrication details, instrumentation and testing technique are 

described in the following sections. 

(2.2) Details of th~e Test Frames: 

The frames we~e designed to have high_axial loads on both 

columns while the beam was loaded slightly off-centre so that a 

tendency for sidesway was intentionally incorporated. This loading 

facilitated the study of the distribution and the redistribution 

of bending moment due to variation of axial and flexural stiffnesses 

caused by cracking of the concrete and by creep deformations. The 

dimension of the frames was restricted by the available clear 



height and size of the temperature and humidity.controlled enclosure, 

the dimension of the adjustable steel formwork and the position of 

the anchor bolt holes in the test floor of laboratory which were 

spaced at three foot centres. Hence, the span of the beam was set 

at nine feet and the height of the columns was ten feet. The beam 

cross-section was eight inches squa.re with four number six bars. 

Each bar was located in a corner with one inch cover from the near 

faces. The column cross-section was eight inches wide by five inches 

deep with a number four bar in each corner with 3/4 inch cover from 

the eight inches face and one inch cover from the five inch face. 

The selection of such a large scale experimental model minimized 

the error for simulation of a real structure. Figure 2.1 contains 

a sketch of the frame with slender columns and the details of the 

cross-sections. 

The stirrups for the beams and columns were made from the 

0.15 inch diameter wire supplied by the Steel Company of Canada~ 

Limited. A standard Tie Bender was manufacturedto bend the ties 

to the exact dimension so that longitudinal reinforcing steel would 

be accurately located within a tolerance of 1/16 inch. Approximately 

33 ties were required for a single beam while 27 ties were used for 

each column. The uniform spacing of the stirrups was detailed at 

three inches in the beam and four inch in the columns throughout. 

Calculations showed that these ties would provide sufficient shear 

capacity for the frame. 

The cages of reinforcing steel for the beam and columns 

were constructed separately. They were then welded to the Steel 
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Joint -Connector (described later·) to form a integrated cage for the 

frame.· 

The adjustable steel forms were constructed of nine inches 

angle sections bolted to a backing plate which was drilled to , 

accomodate a numbez- of specific dimensions of frame. This form, 

shown· in the .Photograph in Figure 2.2, was designed to make double 

bay single story frames or one bay portal frames. By using a steel 

form, the accuracy in casting of frames could be maintained within 

an allowable tolerance of 1/8 inch. The form accomodated cross­

sections from four to sixteen inches in depth in )2 inch increments. 

The steel form also provide durability, strength, and convenience 

for accurate fabrication of large-scale frames • Each part of the 

steel form was light enough to be cleaned and handled by two men. 

Smooth surface on the concrete were produced so that mechanical gage 

points, for strain measurements, and dial gage points, for monitoring 

deflection, could be conveniently applied. 

Immediately before the installation of the reinforcing cage 

and pouring of concrete, the steel formwork was coated with a layer 

of Form-oil so that ·~Che form could be removed easily from the concrete 

after pouring and curing. 

steel spacers mad~from number three reinforcing bars were 

fabricated to hold the steel cage in its correct position in the 

steel form, so that proper location of the cage was assured. The 

a~rangement of the reinforcing cage and steel form were shown in 

Figure 2.3 and in the photograph in Figure 2.2. 
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(2.3) Design of Steel Joint Connector: 

A steel joint connector was used to integrate the individual 

beam and column cages into a cont:.nuous reinforcing cage for the 

frame. The connector was made from an eight inch by six inch by 

~ inch steel angle with holes drilled as shown in Figure 2.4.a. 

The reinforcing bars of the beam and columns were designed to pass 

through the holes and were welded on both sides of the angle. 

The reason for introducing special joint connector~ in the 

frame was to make the joint rigid ~d prevent possible premature 

cracking of the joint. It was found that (19) bending the longitu­

dinal bar around a small radius in the joint produce a corner which 

was susceptible to excessive cracking in the tension zone. The 

steel joint connect&r was thus designed to eliminate this problem. 

In addition, the connector served as a rigid base in the corner Qf 

the frame to accomodate application of the high column loads. 

After the longitudinal reinforcing bars had been welded to 

the joint connector, additional reinforcing 

was applied to the joint to fasten the bars together, as shown 

in Figure 2.4.b. and photograph 2.5. Three number three bars 

approximately eight inches long were welded to the inner faces of 

the joint connector on an inclined angle so that any possible 

tensile stress in the concrete due to opening of the joint would 

be counteracted by the steel. As will be discussed and visualized 

later , sufficient rigidity was created in the joint so that it 

could be regarded as being fully rigid for analytical purpose. 
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(2.4) Concrete Column Bases: 

The column bases were fabr~cated from eight.inch by eight 

inch wide flange steel sections eight inches long aa_shown in 

Figure 2.6.a. Holes drilled in the web of the section anchored and 

positioned the column bars wllich were welded to the web. Additional 

reinforcement was welded to the section so that tension in the 

column due to uplift or bending could be properly transmitted to 

the base. The bottom of the web of each steel section was 

ground after welding to provide a smooth surface. The space 

below the web was required to insert a steel plate from the column 

loading device. The column axial load assembly for the frames 

will be described later. 

·The details of the rigid base assembly for the frames are 

shown in Figure 2.6~b. The steel wide flange sections were welded 

directly to the one inch thick steel plate of the frame base 

assembly. The lower plate \tas stiffened with eight inch channel 

sections. The entire base system was prestressed to the floor 

of the Applied Dynamic Laboratory using two 2_i inch diameter 

anchor bolts, each stressed to approximately sixty kips in 

tension. 

Triangular steel bl'"acing wings cut. from 1~ inch plate \11ere 

then welded to the column base and to the one inch base plate 

so as to stiffen the base connection ~~d to provide a fixed 

end condition. A picture of the steel bracing wing may be 

observed in Figure 2.10. 
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(2.5) Concrete Mixing Process : 

The concrete mix design was the same as that used in the 

University of Toronto Column Test Series (20) so that predetermined 

data on creep and shrinkage derived by Drysdale (20) could be used. 

Table 2.1 gives the proportions of the mix design : 

Tabl.e 2.1 : CONCRETE MIX .DESIGN 

Ingredi,en t 

Portland Cement Type I 

Water 

Fine Aggregate (wash pit 
sun sand, finess 2.51) 

Weight per Batch 
{in lb.) 

127.4 

82.6 

424.0 

Coarse Aggregate (3/8 inch 
maximum size crushed 27~1.5 

-stone ) 

Total 909.5 lb. 

Slump Test result: Frame FR1: 2 i inches 

2 }2 inches Frame FS1: 

Weight by percent 

14.0 % 

9.1 % 

46.6 % 

30.3 % 

100.0 % 

The quantity of concrete required for frame FS1 was about six cubic 

feet which would make one large scale frame, five creep and shrin-

kage prisms and twelve standard concrete cylinder test specimens. 

For frame FR1, only four cubic feet of concrete were needed to 

cast a large frame and six cylinders. 
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Concrete components were prepared by weight and mixed in a 

horizontal drum mixer. Batches were mixed in rapid succession to 

avoid drying out of the mix between batches. Each batch was allowed 

to mix for five minutes after the last of the water had been added. A 

slump teat was performed immediately before pouring so that the 

quality and workabi1ity of the concrete ~as known and controlled. 

The designed ultimate strength of concrete for 28 day cylinder 

strength was 4ooo psi. The concrete cylinder test results are 

given in Appendix B. 

The concrete mixes were lifted by overhead crane to the 

second floor level of laboratory where the frames totere fabricated. 

The concrete prisms and cylinders were made with the frame. Each 

specimen including the frame was poured in three layers, with each 

layer vibrated by a poker-type.vibrator. The concrete was placed 

to overfill the form so that a smooth surface finish could be 

trowe1led •. It took approximately three hours for pouring, vibrating 

and surface finishing of the test specimens. 

Approximately five hours after pouring, when the concrete 

began to harden, wet burlap was placed over the specimens so that 

excessive surface drying and cracking of concrete could be prevented. 

After approximately twenty four hours, the sides of the steel form 

were removed and moist curing of the concrete continued for another 

seven days, before the specimen ,,as lifted in to test position. 

However, the procedures for making and curing the concrete 

followed the specification given in AS~l Standard C-192-69. 



(2.6) Erection of Frames : 

Two weeks after pouring, fr;l.me FS 1 was lifted by crane and 

positioned in a tent covered by polyethylene. Inside the enclosure 

the temperature was kept at 75° F ~ 2° F and the relative humidity 

was maintained at 50 % ~ 2 %. The column baseawere welded to the 

steel base assembly described in section 2.4. 

To maintain a constant temperature and relative humidity, 

the tent was equiped with a humidifier, a dehumidifier, four 

electric fans and two electric heaters. The atmospheric conditions 

were controlled by two thermostats and a humidistat mounted on walls 

inside the tent. These instruments were electronically coupled 

and controlled so that relative humidity could be maintained 

within the allowable·tolerance. 

The design of frame FR1 was essentially identical to frame 

FS1. It was cast four weeks after frame FS1 was placed in the tent® 

Seven days after pouring, frame FR1 was lifted by crane to the main 

structural test floor of the laboratory to begin preparation for 

proportional·load testing. 

(2.7) Instrumentation: 

Concrete strains were measured using a demountable mechanical 

strain indicator, the Demec Gauge, housing an eight inch· gauge 

length. The gauge points consisted of 1/4 inch diameter brass gauge 

discs with a number 60 center hole. The gauge points were attached 

to the concrete surface with epoxy cement. To obtain a useful set 

of strain gradients tor the frame,the gauge points were attached 
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to the critical high moment sections of the frames. The positions 

of the gauge points are shown in Figure 2.7. It should be noted 

that these discs were cemented onto the smooth face of the frames 
-

which was the face of concrete inside the steel forme Both columns 

were instrumented with gauge points on the faces of the concrete 

lying perpendicular to the direction of bending. 

Dialgauge with scale division of 0.001 inch were used to 

measure deflection of the frames. Since deflections in the base 

portion of the columns were very small, 0.0001 inch division gauge 

were employed in this region. 

An independent system of pipe-framework was constructed to 

support the dial gauges. The bases of the dial gauge framework were 

glued to the test floor level for frame FR1 and were welded to the 

steel base assembly for frame FS1. The positions of ·dial gauges 

are shown in Figure 2.7 • 

Various sizes of load cells were used to register the loa~s 

applied to ·points_o~ the frames. A load cell consisted of a spool-

shape steel cylinder with four electric resistance strain gages, 

two vertical and two horizontal, mounted on the outside surface 

midway between the ends. These gauges were wired as a full 

wheatstone bridge and therefore formed a temperature compensating 

system. strains were recorded using a switch and balance unit and 

a Budd Model P-350 Strain Indicator. To avoid problems with drift 

of the calibration ~curves, the load cells were selected. so that 

the strains for the maximum applied loads were limited to between 

300 to 700 micro-inches per inch. This limit was sufficiently high 



to provide easy resolution of calibration curves. 

Prior to each test, the load cells.were calibrated in a 

Tinius-Olsen Unive~sal Testing Machine. Loads and ~eadings were 

recorded in increments up to the maximum value .desired. Readings 

were made for several cycles of increasing and decreasing loads. 

Graphs of the load calibration curve were· prepared for each -load 

cell for use in the test. 

In addition to the load cells, high-strength tensile steel 

rod· were employed in the axial load assembly which is described in 

section 2.8. The s'teel rods for frame FS1 were gauged in the same 

manner as the load cells and then calibrated in the Tinius-Olsen 

Universal Testing Nachine. Calibration graphs were prepared for 

use during testing. 

(2.8) Loading ~ystems: 

(a) Column Axial Loading Assembly: 

The column loads were applied through a post-tensioning 

system consisting of two one-inch diameter steel rod as shown in 

Figure 2.8. The threaded tension rods were restrained at the bottom 

of the column base by a six inch by six inch by two inch steel 

plate inserted below the web of the H-section of the concrete 

column base. 

At the top of ·the column, a load cell and hydraulic jack were 

mounted on the steel joint connector. The load was transfered to 

the tension rods thro~tgh a hollow steel section of dimension 

fourteen inch by seven inch by half inch section. The load cell 

transmitted the compression force to the column and therefore was 
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Figure 2.7/ 

·Dial Gauge and Demec Point Position for Frame FS1 & FB1 
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used to monitor and control the level or loade 

For the short-term test of Frame FR1~ the jack was kept in 

the loading position for the duration of the test. However~ fo~ 

t~e sustain~d load specimen 9 Frame FS1, the tension rods were 

fitted with strain gauges so as to act as a load measuring device-

while transmitting the ~~ial loads. In this case, the tension rods 

were tensioned by jacking against a plate positioned over the top 

of the column and the load was maintained by tightening a nut to 

prevent change in the elongation of the rods after the jack pressure 

was removedo At regular intervals, the load on the columns had to 

be adjusted due to the decrease in load associated with creep and 

shrinkagee 

(b) Beam Loading Assembly: 

For the short-term test of Frame FR1, the beam load was 

applied by mounting a vertical load mechanism between the 14 inch 

wideflange steel columns of the loading system in the laboratory. 
I 

The vertical load mechanism consisted of a 50 ton hydraulic jack 

mounted on a. mechanical slide 'lhich allowed eight inches travel 

from the center of the beam in the direction of sidesway~ Load 

~as transferred to the beam through a ball- seat. A load cell was 

used to record the loads appliedc 

The beam loading system for the sustained loading test of 

Frame FS1 was very different from Frame FR1. As shown in Figure 

2o8 9 fo~r vertical load springs were stressed by pulling downward 

on four tension rods 111hich extended from a plate on top of the 

springs to a base bol''ed to the test floor. The base consisted of 

a rigid steel box with a slide ~late located under the top of the 
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box. T.he tension rods passed through the top of the box and the 

slide plate. Both ends of the tension rods were threaded to 

accomodate the adjusting nuts. T.he·s1ide plate was heid against· 

t~e underside of the top of the box by nuts on the tension rods. 

A one inch thick plate was supported by the tension rods 

about one foot bela~w the top of the box. On this plate, a fifty 

ton:_hydraulic jack was placed to l.oad the springs. Load was applied 

by jacking. against the top of the box, thereby pulling downward on 

the tension rods and compressing the springs which in turn transmit 

the load to the top of the beam through a pl.ate and load cell. 

With jacking pressure applied, the nuts holding the tension rods 

against the slide plate were-tightened thus maintaining the 

displace~ent of the springs so that the jack could be removed. The 

decrease in the load caused by defl.ection of the concrete frame with 

time was minimized through use of the springs •. However , 

occassionally, the level of load had-to be corrected by tightening 

the nuts. 

(2.9) Testing and Observations : 

(~) Short-term test, Frame FR1 . • 

For Frame FR1,the axial forces on the column and the vertical 

load on the beam were applied simultaneously in proportional 

increments. The columns were loaded from zero to sixty kips in 

increment of ten kips. The beam load was 20 percent o£ the column 

load, from zero to twelve kips and was loaded in increments of 

2 kips. 

When the loads on the columns reached si~y kips, these loads 



32. 

were maintained constant while the beam load was increased from 

twelve kips to failure of the frame. The dial gauge reading were 

recorded for each loading stage while the strain readings using 

the Demeo Gauge were taken at selected stages of loading. 

It was observed that the beam load became very unstable at 

the load level of fourteen kips and extensive cracking of concrete 

in the region near the beam center was noted. The beam load was 

further increased with one kip incrementa and the top of_ the beam 

under the load began to spall. At the load level of twenty kips, 

the load indicated by the.load cells showed a rapid reduction of load 

within a _ few seconds of achieving this loading. Hence it was 

concluded that the structure had failed. For the applied loading· 

condition, the frame appeared to have collapsed through formation 

of a beam mechanism. 

(b) Sustained-load Test, Frame FS1: 

The sustained load test specimen Frame FS1 was loaded in 

proportional stages1to the load level desired. Upon reaching the 

column load level of 46 kips, on both columns, and a load of 10 

kips on the beam, these loads were sustained so that effect of 

creep and shrinkage could be invest.igated. The deflection was 

observed ·to increase most significantly in the early stages of 

loading and correspondingly decrease the load level in the structure. 

It was therefore necessary to adjust the load level in the frame 

quite often to maintain the desired load intensities. Nevertheless, 

the load level was maintained within~ 2 % of the design load so 

that a constant sustained-load level can be assumed and compared 

to the analytical result. Dial gauge and Demec reading were taken 
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at regular time intervals. After two months of loading at ,constant 

load level, it was observed that the deflection had ceased to increase 

significantly, thence, the load level was increased by 20 % and 

sustained for four additional weeks. After this three months of 

sustained loading, the frame was loaded to failure. The failure 

beam load was reco~ded to be 18 kips when a constant column load 

of 46 kips was sustained on both columns. -The failure mode of 

-the frame was observed to be a beam mechanism. Figures 2.9 

and 2.10 show pic·tures of the Sl.l.stained-load test specimen , 

Frame FS1_ ~ake~ after failure of the frame. 

(2.10) Conclusion: 

This chaptex- has described the fabrication and·testing of 

frames FR1 and FS1 for experimental verification of the proposed 

Matrix Stiffness-Modification method of inela.stic·analysis:cof 

concrete structures., Several details were presented. The otest 

results are believed to be quite reliable due to constant care 

in fabrication and testing and through use· of adequate recalibration 

procedures'. for load monitoring devices~.,, -The tes·t results are 

shown in Chapter six where they are compared with the theore tical 

predictions. 
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Figure 2.10 Frame FS1 



Chapter 3 

PROPERTIES OF MATERIALS 

(,3.1) Introduction : 

36. 

In this chspter, the general stress-strain re1ations of 

concrete and reinforcing steel are described. The phenomenon 

of creep and shrinkage of concrete and their method ot computa­

tion are brief1y i~troduced. 

(3.2) Stress-Strain Curves for Concrete : 

Concrete un~er applied load is ~own to exhibit a non-linear 

stress-strain relationship. T.he general shape of the stress-strain 

curve is shown as the solid line in Figure .3 .1 • The curve begins 

with a fairly linear portion that stretches to about 30 percent of 

the ultimate strength, then gradually deviates from the straight 

line up to a peak at the ultimate strength of concrete. After 

that, the curve starts to descend in a gradual manner until the 

ultimate strain of the concrete has been reached. 

The nonlinearity of the str~ss-strain relationship of 

concrete can be attr~buted to the fact that the failure of concrete 

under load takes place through progressive internal cracking (43). 

At loads below the elastic limit, called the proportional limit 

of concrete, the stress concentrations within the heterogeneous 

internal structure remain at a low enough level that relatively 

minor microcracking occurs, and therefore the stress-strain 
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curve in this region is rather linear. At loads above the proport-

ional limit, the stresses in the concrete cause the development of 

increasing internal micro-cracking of the interfaces between the 

cement paste and the aggregate, and hence, the stress-strain curve 

starts to deviate from the straight line drawn in Fig~e 3.1. With 

increasing stress ~p to the ultimate strength of concrete, the 

propagation of crack increases vigorousl7 within the cement paste, 

arid between the cement paste and the aggregate thereby caueizlsa 

progressive breakdown and discontinuity in the internal structure 

of concrete. For straining beyond ultimate load the ability of 

the section to withstand high stress is reduced and the stress-

strain curve drops down with a decreasing stress until the ultimate 

strain of the concrete is reached. 

For a numerical application of the concrete stress-strain 

zoelationship in the analysis of concrete structures, it is conve-

nient and necessary to formulate standard mathematical curves to 

describe this relationship.It-vas pointed out as early as 1900 by 

the father of Aerodynamics, Von Karman (35) that the stress-strain 

relation of nonlinear material can be approximated by an exponential 

curve, 

where, 

1 (-aw) 
- e • • • (3.1) 

f~ = Ultimate strength of concrete 

a = An experimental constant 

w = Strain of material 
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The exponential term of equation 3.1 can be expanded in aeries 

forms as, 

+ ••• 

Hence Equation 3e1 can be simplified as a series, 

fc 
c1w + 2 

+ C w3 Ciw 
i 

'fT = c2w 3 + ••• + + . .. 
c 

n 

~ Ciw 
i t;.2) ~ ... 

i=1 

where, 

i = 1' 2, '3, 4, ••• 

Ci:= (experimental. constants 

Generally, it is considered that a fourth order polynomial will 

yield a sufficiently accurate approximation of the actual stress-

strain characteristic of concrete. The constants C. are determined 
l. 

from a least-square fitting of large number of test data. For the 

concrete used in Frames FS1 and FR1, and for the. other concrete 

research done at McMaster University, the values of the constants 

are derived as follows, 

c1 = 1.1902628x103 

c2 = -4.80227.54x105 

c3 = ?.6164509x1o7 

c4 = -4.500.5079x109 

In Figure 3.1, the experimental curve reaches its ultimate strength 

at a strain of 0.00215 in./ine, and then gradually decreases until 

the ultimate strain of 0.0038 in./in. is reached. 
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{3.3) Comparison of.the Experimental Stress-Strain relation with 

Hognestad 1 s and Whitney's Curves: 

The Ultimate Strength Design method for proportioning concrete 

members has brought the stress-strain relation of concrete into 

focus. Due to simplicity in application, the Whitney's stress 

block has been accepted b,- the ACI-318-63 (2} as a satisfactory 

representation of the magnitude and position of the resultant of 

the stress distribution in concrete for the Ultimate Design Method. 

On the other hand, for more realistic analysis of the behavior of 

concrete. the Hognestad's curve (32} hae been widely usede It is 

thus the purpose of this 'section to evaluate the experimental 

stress-strain relation by comparing it to the well-known Hognestad's 

and Whitney's Curves. 

Hognestad assumed a parabolic distribution of stress in the 

rising branch of his curve up to the maximum stress occuring at 

& strain which is one-half of the ultimate strain of concrete. A 

discontinuity existed at the point of maximum stress, and a 

straight line approximated the falling branch of the curve. 

Practically 2 the straight line approximation of this curve in the 

falling branch portion is not true and was introduced to provide 

a means of achieving compatible stress resultants. It has been 

proved by strain controlled experiments (5,48) that the falling 

branch is a tailing curve. However, the falling branch,behavior 

is important only to ductility of concrete but not to strength. 

Hognestad originally suggested that the ultimate stress of concrete 
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should be taken as 85 percent of the actual experimental ultimate 

strength of concrete. However, for research, the author sees no 

reason for using only partial strength of the concrete. This point 

was also discussed by Furlong (28) where using 85% of the 

experimental ultimate strength of concrete proved to be too low. 

Thus the author usedthe full strength of concrete in this . 

~omparison and in his research. In Figure 3.1, the Hognestad's 

curve is shown as a dash line whereas the Whitney's stress block 

is shown as a solid-dash line. It is therefore noted that the 

experimental curve follows fairly closely to the Hognestad curve 

in the rising branch of the curve and with minor difference in 

the falling branch. 

The area under the curves and above the strain axis is 

computed as, ~ 

Area = · J f
0 

(w) dw 
0 

the moment of area of the curves about the zero stress axis is 

given by, 

Moment of Area = J; (w) w dw 
0 c 

Table 3.1 gives a summary of the integration by using an ultimate 

strain of concrete of 0.0038 in./in., as recommended by Hognestad. 

From the table, the experimental and Hognestad•s curves differ in 

area by 1.4 %, and in moment of area by less than 1.5 %. However, 

Whitney's stress block seems rather conservative. It is 10.8 % 

less in area and 8 • .5 ,6 less in moment of area than the experimental 

curve; and is 9e4 % less in area and 7.2 % less in moment of area 

than the Hognestad's curve. 



Table3.1 

·COMPARISON OF THE EXPERIMENTAL STRESS-STRAIN 
RELATION WIT.a HOGNESTAD AND WHITNEY CURVES 

B©l~®~tad 

Vh:ttn®:r 

H@~e~tad/Exp®~im®~tal 

Whitn®y/Exp~rim*nt&l 

Whitn®1/Bogneatad 

3e07229x10-3 

3.02423x1o"""3 

2e74202x10-3 

o~986· 

Oa892 

0.906 

Moment of AreQ 

· 6<10.55833x10...,6 

6.46741x1o-6 

6Q00113x1o.,6 

. • 

The ~~inforcing steel is assumed to be an. idealized elasto­

plasti© materi~l. fh~ @ffect of strain hardening in steel has been 

n®~le©teu. Hence ,. th@ curve can be depicted as a perfeetly straight 

line up to the yiald~g point and after that a flat line of constant 

~trel§j~·follo~so Th~ r®lationship between stress and strain can b® 

f 
s 

- I w - " I s l .) 

f 'iJf g stress and yield strength of steel respectively 
s :f 

w~,w7 = strain and yield strain of steel respectively 

Fig~® 3o2 sho~s the th~~re tical and experimental stress-strain curve 
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for the number 4 bar used in Frames FR1 and FS1. It is noted that 

an accurate analysis of Frames FS1 and FR1 requires exact knowledge 

of the stress-strain relationship of number 4 bar if failure of the 

frames occu~s in the columnso Fortunately, for the loading condition 

designed for Frames FR1 and FS1, the higher moment occurs in the beam 

where the number 6 bar has a distinct yield region which closely 

follows the idealized curve (19). 

(3.5) Shrinkage of Concrete . . 
Sh!-inkage of concrete is the volumetric deformation that the 

conct"ete undergoes \then not subjected to load or restraint. It is 

due mainly to the loss of moisture of the concrete by diffusion to, 

or evaporation from free surfaces. The existence of a moisture 

gradi, ent within the concrete hence causes ~ .. differential shrinkage 

which can induce internal stresses. 

~e magnitude of shrinkage strain .is of the same order as 

~he elastic strain of concrete under usual ranges of working stress. 

Shrinkage can produce tensile stress large enough to cause extensive 

cracking of concrete') hence, i~ should· be_ .taken iB.to account in the 

analysis of concrete structures. 

Figure 3.3 shews the shrinkage function used in this analy~is~ 

It was derived by Drysdale (20) from a least square fitting of prism 

resultse T.he derivation assumed uniform shrinkage acting at a. given 

c~a~s-aection. The shrinkage function is given mathematically as, 

Shrinkage = 0.000111 + 0.000224 Log10(Time) ••• (3.4) 
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(3.&) Creep of Concrete : 

Creep is the increase in strain of concrete under sustained 

stress. Creep strain can be several times as large as the elastic 

strain of concrete under load, and hence is of considerable 

importance in analysis of concrete structure. There are several 

theories explaining the phenomenom of creep. They attributed 

creep to be viscous flow of cement water paste, closure of internal 

voids, crystalline flow in aggregate, and by seepage flow of 

colloidal water from the gel that is formed by hydration of the 

cement. 

Neville (31) however suggested that creep is due to oriented 

internal moisture diffusion caused by a free energy gradient ofthe 

absorbed water and to slow deformation of the elastic skeleton of 

. the gel induced by viscous deformation of absorbed water. When 

concrete is under stress, some gel particles moved closer to one 

another while some moved apart. The free energy of water then 

varies accor~dingly, and local energy gradients results. This is 

the driving force for local moisture diffusion. 

Creep is influenced by the aggrega·~e-cement ratio, water­

cement ratio, kind and grading of aggregates, composition and 

finess of cement, age at time of loading, intensity and duration 

of stress, moisture content of concrete, relative humidity of 

ambient air, and size and shape of the concrete member. The rate 

of creep deformation is relatively rapid at early ages after load­

ing, and decreases exponentially with time. Concret~ also exhibits 

creep recovery upon unloading. It can be explained (31) as the 



release of the increased strain energy stored in the gel during 

creep. Creep recovery is gradual because of the viscous restraint 

of the absorbed water. 

This section only briefly introduces the concept of creep. 

However, for further detail of creep, the readers are recommended 

to read references 26, 4o, 50. 

(3.7) Method of Computing Creep under Variable Stress: 

Several methods have been proposed for computing the 

magnitude of creep under varying str·ess. Nevertheless, three 

methods, the! Rate of Creep method, the Effective Modulus method 

and the Superposition method, have been found to be most widely 

used (33, 50) • A summary of these methods is given in Table 3.2. 

Accordingly, the rate of creep method usually overestimates 
I 

creep while the effective modulus method underestimates creep. 

The method of superposition generally gives fairly accurate 

result but s·~till underestimates creep. 

(3.8) Modified Superposition Method: 

This method is proposed by Drysdale (20) and is briefly 

described here. The method can 1)redict creep more acc;:ura_tely by 

· accounting for the stress history of the concrete. 

For a concrete creep specimen subjected to sustained stress, 
.. 

the "elastic strain" is defined as the short-term concrete strain 

corresponding to a given applied loads. The magnitude of the creep 

is then given by, 

••• (3.5) 
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Table 3.2 

METHGD OF COMPUTING CREEP UNDER VARIABLE STRESS 

Method 

Rate of Creep c 

Formula 

= t ~ dt dt 

Remark 

For a given specific creep 

curve, the total creep is given 

by c, where f is the imposed 

stress an4 dc/dt is the rate 

of creep • 

Effective Modulus E~ = E
0
/(1+c1Ec) E

0 
is the modulus of elasti­

city o! concrete, c
1 

is the 

specific creep. 

Superposition A specimen of concrete is loaded 

to stress f 1 from time T
0 

to T1 , 

and the stress was changed to 

£2 and maintained from T1 to T
2 

c1 is the creep due to f2 for 

time T2- T1 minus the creep due 

to stress f1 over the same time 

interval. c
2 

is that creep 

which would have occurred at 

stress f 1 during t~e time T
0 

to 

T
2 

when loaded at time T
0 

• 

• 



where A and B are creep coefficients derived by least square fitting 

of experime~tal data. For the concrete used in making Frames FR1 

and FS1,the functions A and Bare given as, 

where, 

A = A1w' + A2w2 
+ A3w + A4 

B = B1w' + B2w2 + B
3
w + B4 

w = elastic strain of concrete 

A1 
6 = -11D03050x10 

A2 = ,5.748870x102 

A3 = •3.77674x1o:-1 

A4 = -3.0?2250x1o-6 

1.858390x106 ••• (3.7) 
B1 = 
B2 = -1.012295x103 

B3 = 1 • .5213225 

If an element of concrete is loaded so that the elastic strain is 

w1 and maintained at that stress t1 for a period of time T0 to T1 , 

the amount of creep which would occur would be C1 • After that, an 

increased stress f2 which resul.ts in elastic strain w2 is in turn 

maintained for the period T1 to T2 , and the amount of creep which 

would occur during this time if the specimen had been loaded to f2 

at time T0 is then denoted as C2 • To account for the change in 

stress, C3 is the amount of creep which would occur for the chang~ 

of elastic strain w2-w1 over a time interval from zero time to T2-T1• 

The total creep c, is given by, 
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The modified superposition method will slightly unde.r-

estimate creep for increasing stress, and the effect of creep 
-

recovery is not taken into account. Figure 3.4 gives the curves 

for functions A and B and Figure 3.5 illustrates the method of 

modified superposition. 

{3.9) Summary : 

This chapter has discussed the material properties of 

concrete an1i steel. The stress-strain ~elationship of steel 

and concrete must be known in advance so that a rational ·second 

order analysis of inelastic concrete structures can be made. 

Creep and .shrinkage of concrete have been known to have considerable 

importance in structural analysis of sustained load behavior of 

concrete structures, and therefore their method.of computation 

consists of a very important aspect of the present research. 

Creep and shrinkage curves which have been derived by 

Drysdale (20) in his University of Toronto Column Test, have 

been used in this research • 
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Chapter 4 

DEFORMA~ION CHARACTERISTICS OF CONCRET.E SECTIONS 

------~-----------------------------------~ - -

(4.1) Introduction : 

In this chapter, some aspects of the deformation properties 

of a given cross-section of concrete are discussed~ An extended 

Newton-Raphson method (4.9) has been used to determine the strain 

and .curvature distribution in a concrete section subjected to 

externa1ly applied bending moment and axial force. T.he short term 

and sustained load effect on the load-moment-curvature-time 

characteristics and the stiffness properties of concrete sections 

have been derived by the numerical approximation. T.he digital 

computations were performed using a high-spe~d CDC 6400 electronic 

computer in the Computing Center of McMaster Universit7, and the 

results are presented in graphical form. The computer program 

for determination of the.d.eformation characteristics cd.a section 

.forms p~t of the program for the Ma.Crix "Stiffness-M~d.ifi.cation 

Technique (to be discussed in detail in Chapter 5) which is included 

in Appendix A. 

fhe material presented here is of fundamental importance 

for understanding the proposed stiffness modification method of 

inelastic concrete structural anal7sis which is presented in 

Chapter 5. In addition, it is hoped that this chapter will offer 

a clear picture of the nonlinear reJ3ponse of concrete sections 

subjected to applied bending moment and axial load through the-

discussion of t~e g~aphs contained herein. 



54 •. 

(4.2) Int~rnal Load Vector for a Concrete Section : 

For a concrete cross-section subjected to a given strain 

distribution, the internal forces.and bending moment~ can be 

computed provided that the stress-strain properties of materials 

are known. 

The assumption that plane sections remain plane after load-

ing has been e:onfirmed by other investigators (49) and is 

incorporated in this analysis. Hence, for a given cross-section 

of concrete, assuming a linear strain distribution over the section, 

the corresponding stress at any point can be computed from the 

compatible strrass-strain relationship. Figure 4.1 shows the 
1 

given concrete section, the strain distribution diagram and the 

corresponding s.tress diagram. 

Let w denotes strain and f denotes stress, hence, if the 

stress-strain relationshipS of the materials are given as, 

where, 

f• (w) c 

t = t• (w) s s 

fc f
8 

= stress of concrete and steel respectively. 

t~c' f: =stress function of concrete and steel respectivel: 

Thus, for a given strain distribution over the cross-section, the 

internal axial force and bending moment can be computed as follows, 

dw 
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2~-
M = ~2 b t•(w) w dw +A' f*(w2 ) (a-d')+ A t• (w

3
)(d·- a) c . a s s s 

w
1 

o F 
Where, 

_s: b t•(w) w dw - P (a - c) 
+ 2 c 

wt . 

P = internal axial force 

M = internal bending moment 

w1= concrete strain of extreme compressive fibre 

wt= tensil~e strain of concrete 

- = curvature of section 

a,b,c,d,d 1
1 g =length given in Figure 4.1 

A
8

, A~ = area of tension and compression steel respectively. 

However, the calcl'.llations of P and 1-1 are so tedious that hand 

computation is almost not feasible for a large number of 

calculations. For3unately, the high-speed computer can be utilized 

to solve the probJ.em easily. \tli th the addition of creep and 

shrinkage strainsi numerical integration must be resorted to. 

·The cross-section is then subdivided into a finite number of 

fibers, with equal height as shown in Figure 4.1. The internal 

axial force and bending moment can be computed by summing the 

average normal stresses times the area over which they act, and 

by summing·the moment caused by the axial forc.e in each element 

strip respecti velJr •. Therefore, 

••• + b 1 f ) n n en 
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or, 

where, 

M = (b1l1fc1x1 + b2l2fc2x2 + ••• + bnlnfcnxn ) + (As1fs1Y1 

+ As2fszYz + ••• + Admfsm1m) 

n m • • • (4.1) 
:.x = ~bilit .x

1
• + ~A .f .yj· 

i:1 Cl. j=1 SJ SJ 

n = number of element strip 

m= number of row ot reinforcing steel 

x.= distance from the centroid of each element strip to 
l. 

the geometric centroid of section 

Y·= J 
distance from the centroid of each row of steel to 

the geometric centroid of section. 

It is known that concrete cannot take any tensile stress 

beyond a specified limit. Therefore, some of the force components 

in Equation 4.1 corresponding to tensile str~ss in ·the concrete 

will be zero if the tensile strain of the concrete is beyond the cracking 

stress.Due to the non-linear nature of the stress-at~ain 

characteristic of concrete, coupied with the effects of creep and 

shrinkage, the only feasible ~rocess was to employ a nume~ical 

trial and error iteration to determine the unique strain distri-

bution which woul~ yield_ an internal loa~ and moment compatible 

with the externally applied axial load and bending moment. 'To 

speed up the process of convergence of the iteration, an extended 

Newton-Raphson method (49) is presented in next section. 



(4•3) Extended N~wton-Raphson Method: 

For a given set of app~ied load and moment, the Newton-

Baphson method of successive approximation can be conveniently 

applied to determine· the compatible strain distribution. By 

referring to Figure 4.1 again, the internal load and moment can 

be determined pro~ided that the extreme concrete fibre compressive 

strain ~d 

where, 

the curvature are known, or, 

P* = p (w1 ' 
{6) 

• • • (4.2) 
M* = M (w1 t ~) 

w1 = extreme concrete fibre compressive strain 

- = curvature acting over the cross-section 

p•, M* = internal axial load and bending moment 

respectively. 

P, M = load and moment function respectivel7. 

By using T<aylor•s theorem with linear term·only, 

where, 

p• p i»P* dw1 
8P* = + - + .- d/6 aw1 

• • • (4.3) 
M* R "aM* dw1 

1tM* = + - +iT d{6 aw1 

p , R = !mown axial l.oad and moment for a known 

-and -"1 
~p· aM• 'aP* )M* rates of change of P* and M* -- ,_ 

· ar 'ar = ~"1 ~"1 a a_ 
tor which ~ and w1 are sought 

dw1 ,d- =increment of strain and curvature necessary to 

produce P* and M* 



.so that, 

~· = ~ • d¢ 
• . • (4.4.) 

w• 1 = - dw1 w, + 

where-· and w; can be used to compute P* and M*. Equation 4.3 

can also be expressed in Matrix form as~ 

{;:~ ~}= 
(IP*/b¢ I 'oP* /ljw1 

d{6 

I ----+-..,-- ...... • •• I 
~M·/a/6 I ?IM*/~w1 dw1 

or, rewriting equation 4.5 as, 

Q* = w• 

(4.5) 

Hence, if the squa~e matrix E* and the load vector Q* are known, 

the increment vector W* can.be easily determined if E* _,exists, 

= E* -1 
.Q* 

The increment in curvature and strain contained in the w• vector 

can then be subst-ituted into Equation 4.4 to obtain a new set of 

w1 and ¢ and therefore a new set of load and bending moment. The 

computed P and M are then compared to the applied P and M, and if 

the difference between them does not vary by more than an allowable 

error, the process ,of iteration is then terminated. Otherwise, the 

iteration is repeattad by substituting int_o equation 4.3 the computed 

P and M as a new initial value of P and M , and the computed w1 and 

¢ as a new w
1 

and ~ • 
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The Newton-Raphson method is just briefly introduced in 
I 

this section. However; in section 5. 6·.c, a more detail description 

of this method with its application to computer programming is given·. 

Further details may be found in an excellent paper by Robinson (49)., 

(4.4) Selection of Incrementa for Convergence Control : 

The selection of sui table initial values of w1 and ~ t·o 

compute the initial values of ·ts and R , and the increments ot 

concrete strain and curvature, -aw1 and "8¢ , for the corresponding 

increments ~p and ~M, were among the most difficult tasks faciJ!g 

the author for the design of a general program for multi-storey 
) 

frame analysis. After running a great number of frame analysis 

programs for different loading conditions and durations of time, 

it was found that selection of initial values of "Elastic Strainu 

and•EJ.astic Curvat1.1re" for a known applied axial load and bending 

moment, will give satisfactory result for most situations. 

However, when creep and shrinkage have been taken into 

account, ·the elastic strain of concrete may· exhibit nonlinearity 

and the convergence of the Newton-Raphson method to obtain a compa-



where, 

; = ( J . . t. l ) 0.20 K 
1Jll. 1& 

K ~ 1, 2 1 3, 4, ••• 

61 •. 

••• (4.6) 

l31 the above mentioned procedure, provided that a reasonable first 

estimate of ~ and w1 are chosen, convergence b7 the extended 

.Newton-Raphson· method has proved successful. 

(4 .• 5) Short-term Load-Deformation Curves 

From the Newton-Raphson method described in the last section, 

the short-term load-deformation curves for a given cross-section of 

concrete can be easily determined. The typical section used in this 

chapter is the beam section for Frames FS1 and FR1. ~he ultimate 

compressive strain of concrete has been set at o.oo4 in. per·in., 

whi~e the cracking tension strain of concrete was assumed to be 

0.00015 in/in. for cases where tension of concrete was included. 

However, in most cas~ the analysis does not include the effect of 

tensi~n in the concrete • T·he reason will be explained later. 

(4 .• 5.a) Moment - Cvvature Relat_ionship : 

As describ~d previously, tor a given applied bending moment 

and axial load acting on a cross-section, a compatible strain 

distribution was obtainable and the short-tex-m moment - curvature 

curves with differe~t values of constant axial load can be plotted 

as show in Figure ~,.2. 
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The failure envelop is defined as the limiting line at which 

concrete had reached its ultimate strain for different load -levels. 

-The effect of tension of concrete on the moment - curvature 

behavi·or is shown as dotted lines. When the s~ction is uncracked, 

or the strain at the extreme fibre of the concrete is less than 

Oe00015 in/in, the entire section acts to resist the applied bending 

moment and axial load. This impli_es that the moment-curvature curves 

have constant slopes up to the maximum uncracked moment capacity of 

the section. When the tension strain in the extreme tensile fibre 

is reached, the concrete starts to crack which in turn causes loss 

ot· equil~brium which produces more cracking until a new state of 

equilibrium is reached. This unstable moment curvatlire region 

may be thought of as the transition region between uncracked and. 

cracked section behavior. Further increase in applied moment 

reduces the effect of tension on the behavior of the section and 

the curve graduall7 approaches _the one without tension. Thus, at 

high values of applied moment, it can be o}?served that tension ha-s 

a re~atively insignificant influence on the behavior and capacity 

of the section. 

When tension is included, the cracking moment capacity in­

creases with increase in axial load since the presence of axial 

load produces a compression effect which counteracts the tension 

resulting from the applied moment. The increase in axial load 

also caused a decrease in the slope of the moment curvature curves 

prior to cracking because the increase in axial load at constant 

moment level will increase the curvature of the section. 
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When tension is not included, the initial slope of the curves will 

.be increased by the increase in axial load. Nonetheless, when the 

curve has reached a slope equal to the slope of the zero-load c~ve 

with tension included, further increase in axial load will then 

decrease the initial slope of the curve in such a manner to 

approach the zero~load without tension curves. 

From the above discussion, it is quite clear that bounds 

on the moment-curvature curves can be conveniently established by 

the· zero-load curves with and without. included tension of concrete. 

The lower bound is given directly by the zero-load curve without in-

cluding tension of concrete, while the upper bound is limited 

by a line drawing from the origin having the same slope as the 

initial slope of the zero-load with tension curve. The failure 

envelop serves to terminate the curves from further extension 

from the origin. 

(4.5.b) Axial Load - Curvature Relationships : 

The short-term axial load- curvature curves are plotted 

in Figure 4.3 with different value of constant moment. Tension 

of concrete is not included here or in subsequent sections unless 

otherwise specified. The curves are terminated at the fai1ure 

envelop as determined by the concrete reaching the compression 

failure strain. 

It can be observed that the curvature of the ·section 

increases as moment increases at constant load. However, at 

constant moment, by increasing the applied axial load starting from 

zero is equivalent to shifting the neutral axis away from the 



.~, ~----._-r----~--.--------.--------~-------.------~ 

1·4 

••• 

Short~term Axial Load - Curvature Curves 



66. 

, .·extreme coml»ressive fibre so that more uncracked section has been 

provided to resist the applied bending moment. Hence, the 

curvature is decreased to a critical point at which minimum value 

· of the curvature ·has· been rea.ched. Further increase in axial 

. load beyond that point will caus·e the curvature to increase • 

. It is also noted that the load at miniDlUil curvature for constant 

moment increases with increasing moment wh~ch also i~plies that 

at high ~oment, the presence of axial load will help to provide 

·more stiffness to the section for cases where length effects 

are not taken in to consideration.· 

(.4.!).c) Load - A:tial Strain Curves . • 

The axial strain is defined ·as the concrete strain at ·the 

centroid qf a given cross-section which i·s subjected to 

axial force only. Due to the· nonlinearity in the stress-strain 

relationship of concrete coupled with the effect of creep and 

shrinkage, it is cons·idered that the computation ot axial strain 

should include the effect of bending moment. T.herefore, ·the 

axial strain is defined by the author as the difference between 

two components of strain, namely, w81 which is the strain at the 

centroid. Qf the section subjected to combined bending moment and 

axial load, and wa2 which is the strain at the centroid of the 

section c:iue to pure bending only. The axial strain,. waxial, .can 

·then be given as, 

w • 1 = ax1a - wa2 ••• (4.7) 

Figure 4.4 gives the Load-axial strain curves with different level 

ot bending moment. 
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At constant load; it can be observed that the axial strain 

increases with the increasing moment• At constant moment, the 

slope of the curves increases gradually up to a point of inflection 

and then decreases with increasing load. ·The physical 

· implication is that at constant moment and low axial load, the axial :. 

deformation is decreasedb7 the increase in the axial load because 

the presence of axial load produces a compression effect which coun­

teracts the tensile strain resulting from the applied moment. 

However, at higher load above the point of inflection, the higher 

stresses in the section for a known constant moment start to 

override the effect of bending moment and hence cause the axial 

strain to increase with increasing load. 

(4.6) Short-term Stiffness Properties 

This section describes the stiffness properties of a cross­

section of concrete subjected to applied axial load and bending 

moment. The flexural stiffness EI is defined as the secant modulus 

of the moment-curvature curve or, 

M 
••• (4.8) EI = 

The axial stiffness EA is defined as the secant modulus of the 

load-axial strain curve, or 

p 

EA = - ••• (4.9) 

where P and M are the applied axial load and bending moment and ~ 

is the curvature of section. 



(4.6.a) Flexural Stiffness-Moment-Axial Load Curves : 

The short-term flexural stiffness-moment. curves with 

different. value o~f axial load are plotted in Figure 4.5 and 

the flexural stiffness-axial load curves with 4ifferent value 

of constant moment are plotted in Figure 4.6. The stiffness for 

crack.ed transformed section of concrete, Ecic is the product of 

the modulus of elasticity of concrete by the moment of inertia 
. ., 

of the cracked transformed section of concrete. ·The· EI value 

given by the new ACI 318-?1 . for the recommended Moment 

Magnifier method for design of slender column has also been 

included in the graphs. The formula used by the Moment Magnifier 

method (3?) is given as, 

where, 

••• (4.10) 

Ig = moment of inertia of gross-section of concrete 

Rm = ratio of dead load moment to tot~l moment 

The bounds for the moment magnifier method have been given by the 

lines Rm = 0 and Rm = 1 • 

From Figure 4.5 and Figure 4.6, it can be noted that the 

short-term EI is d~creased by the increase in moment which also 

meaas that at high moment, the stiffness is reduced by the crackingot 

the conc~ete aec.tion. ,:At low moment, the difference between the 

theorectical EI and the Ecic can be as high as 70 ,6 but is reduced 

by the increasing moment. Nevertheless,.at high moment and low load, 

the theorectical EI can be 40 % less than E I which also indicates 
c c 
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. . 

that using the s·tiffness for a cracked transformed section in anal:rtsing 

inelastic concrete structures may underesti~ate the deflection 

under short-term loading. For the section analysed, the EI proposed 

·by the Moment Magnifier method underestimates the theorectical 

short-term flexural stiffness of the cross-section and is about· 59% 

less than the stiffness tor the cracked transformed section of concrete. 

(4.6.b) Axial Stiffness-Load-Moment Curves : 

The contours Qf short-term axial stiffness-load curves 

with different value of constant benc;ling moment areplotted in 

Figure 4.7. The axial stiffness for an uncracked section Ecbt 1 

is the prociuct of the modulus of elasticity of concrete by the gross 

section area of the section, and is shown in Figure 4.7 as a 

dotted-solid line~ 

At zero moment, where the section is subjected to axial 

fo~ce only, the ~:ial stiffness decreases as the axial load increases. 

However, this possiblity has been ruled out in the design of conc~ete 

column sections since the 1963 ACI Code (2) required that a minimum 

eccentricity should be considered in cases where the·applied moment 

is zero. Therefore, generally, the axial stiffness at low load, 

for instance, at 5 ~ of t~bt, is confined to a range of 35 % to 

50 % of E
0
bt but increases with the applied axial load at different 

values of constant moment. However, the increase in El with axial 

force stops at a maxima, corresponding to the point of inflection . 

discussed.in section 4.5.c tor the load-axial strain curves, after 

which EA is decreased by the increasing axial force. 
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·At constant axial load,,the axial stiffness decreases as the moment 

increases wl!eh also implies that the presence of bending moment. 

wili. increase the axial deformation of a member in a structure. For 

most cases, the uncracked stiffness overestimates the theore,tical 

EA. which implies that the axial. displacement will. ~be underestimated 

by using E
0
bt for axial stiffness. For the working st~ess region 

the main reasoh ie due to the fact that the section will crack 

under loads which will subsequently reduce the effective area of 

the section to resist applied load and bending moment. 

(4.6.c) Unit Slenderness-Moment-Load Curves • • 

When the length effects of a member are taken in account, 

the radius of gyration, r, of ~e section plays an important role 

in defining the sl~nderness of the memper. · The radius o£ gyration 

is given by, 

r = 
Due to cracking of the concrete s~ction, the moment of.inertia I, 

and the area of the section A, are not constant for a sec.tion 

subjected to applied load and moment. Hence it is not possible to 

define .an axact I and A for a section under varyins loads. However, 

this difficulty may be overcome by defining the EI and EA values 

discussed previousl~. T.nerefore, the radius of gyration can be 

determined by the square root of the ratio of EI to EA. Henc·e, a · 

characteristic measnre of slenderness has been defined as the 

Unit Slenderness as follow: 

t 
----= t ( 

r 

EA 
••• (4.11) 

EI 
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~e Unit slenderness-moment relationships with different values 
. . . . - . 

of constant load ·are plotted in.Figure 4.8 and the unit slenderness-. 

· axial load curvetS with varying levels ot constant moment are give~· 
.· . 

in Figure 4.9. The radius .ot.g;Tai;ion recommended·by the 1963.and. 

1971 ACI Code.is also drawn in the grl!lphs as the .alternate.dot~d~sh 

line for rectangular sections. 

From the graphs, the unit· slenderness at low mo_men t and 

under constant applied axial force tends to decrease with increasing 

moment until a minimum value or t/r is reached after which the 

curve increases tJith i.nczteasing moment and fi~all:y terminat~s at 

the failure envelop shown as· dashed line in_ the diagram. ·Ph7sicall7, 

at constant load and low moment, the presence ot axial torce tends 

to stif·fen the section and therefore reduce the slenderness· effect 

·on the·cr.oss-section. At highe».am~ata·above. the minimum value 

of t/r ' the section starts to crack which reduces the effective 

area ot the cross-section· contributing to the evaluation of radius 

of gration. Bence the radius of ·gyration begins to decrease with_ 

increasing.moment. !he minima of unit slende:rness·tends to shift 

~to higher moments as load increases because the higher the axial· 

load,. the. larger the moment required to crack the section or to 

deoreasethe radius of gyration of the section. 

From a practical point of view, the unit slenderness seems · 

to give a measure of the.dee;ree ~t cracking or the cracking profile 

of the section.; By comparison with the ACI.recommended value of 

t/r, it indicates that the code may underestimate the radiuS of 

grration of a section subjected to sho~t term loading. 
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(4.?) Long-term Stiffness Pro;perties • • 

?8. 

~e long-termstiffness properties of a concrete cross-se~tion 

S\l.bjected to ~onstan·t sustained applied bending moment and axial . 

force are discussed briefly in this section. The. modified 

superposition method.for determining creep, which was described in 

section 3.8, was used to predict creep deformation. Tension and 

shrinkage of concrete are not included in this analysis. A total 

time period of two years has been used in the computation of 

stiffness properties and the time was divided into discrete 

intervals for con~enience of analysis. 

(4.?.a) Flexural Stiffness - Time :Relationships : 

l'he long-term flexural stiffness-time curves with differ.ent 

values of applied moment and axial force are plotted in Figure 4.10 

and Figure 4.11. The value of ·flexural stiffness for the cracked 

transformed section of concrete and for the proposed Moment Magnifier 

method.are also drawn in the graphs. 

It is interesting to note that the flexural stiffnesses 

converge to a near constant value as time ela,ses. In addition , 

no matter how the load and bending moment vary, the EI for the 

sustained loading condition tends to be limited by the bounds 

imposed by the ACI moment magnifier method. The cracked transformed 

section of concrete gives a flexural stiffness which overestimates 

the theorectical EI values by more than 100 %. 
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(4.7.b) Axial Stiffness - i'iine Curves : 

The sustained-load axial stiffness-time curves with different 

values of constant axial load and bending moment are shown in · 

·Figures 4.12 and4.1~. The axial stiffness has also shown the 

tendency to converge to a constant value in the course.of time 

regardless of. the combination of load and bendins mom~nt in the 

section. The: theorecti·cal· values of EA are only 30 " of the · . 

.. UDDJZacked axial stiffness, E bt. 
c 

It is now quite apparent that an appropriate expression 

for the axial stiffness of a concrete section can be derived by 

refering toe the graphs. ·Hence, the author recommends the following 

EA value according to Figure 4.12 and Figure 4.13, 

EA :: 

where, 

Ag = 

Ec = 

Rm = 

c = 

EA c g 

C(1 + Bm) 

gross-section area 

33 (W) 1.5 ( f' c 
,~ 

Ratio of dead load 

2 • .5 to 3.0 

••• (4.12) 

of concrete section 

moment to total moment 

The Equation for EA is similar to the EI value proposed 
\ . \ 

by the Moment Ivlag~ifier method which is given in Equation 4.10, 

and the bounds for R = 0 and R = 1 for Equation 4.12 are drawn m m 

as shown in Figures 4.12 and 4.13. 
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( 4. 8) SUJill!larl : 

!he various short-term and sustained load deformation 

characteristics and stiffness properties for a typical concrete· 

cross-section have been studied. The following conclusion can 

then be ~wna 

. . 

. (1) For short~term analysis, the cracked transformed section 
~ 

does not give an adequate· ·estimate of the flexural 

stiffness and will in most cases overestimate the actual 

II of the section. 

(2) ~e Er value recommended by the ACI·Moment Magnifier method 

underestimates the short-term theorectica~ EI but provides 

accurate bounds for the iong term theorectical f~exural 

stiffness. 

(3) ~e axial stiffness EA for an uncracked section usually 

overestimates the theorectical EA value in a section. A 

recommended value for EA has been given in Equation 4.12. 

(4) T.he radius of gyration recommended by the ACI code may 

either underestimate or overestimate the actual radius of 

gyration of a section subjected to short-term loading. 
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ChapteZ> 5 

This cha.p·t.er pdres®n ts a ma tri.x stiffness modi fica. tion method 

for nonlinear analysiS~ of co:n©rete structures., Reference is made 

to a computer program ~hich was deweloped to incorporate the above 

analytical technique f©r predicting beh.a:vior of concrete frames 

iteratiwe method of stiffness modification is discusseda 

As an indication of the ability of this method to predict 

non=linaar behavior 9 the deflection data for short-term test 

frame FR1 are compared to the analytic resultse The description 

of the computer program is included in this chapter" A copy of' 

the program is also presented in Appendix A. 

(5Q2) Concept of Stiffness Modification and its Limitation ~ 

It has been discus~ed in section 1o2 that for a structure 

subjected to given applied loads~ an equiwalent set of. 

stiffncsses for the whole structure may be obtainable if an 

appropriate modification process has been devisedm The equivalent 

stiffnesses EI and EA f'or an element of a structure ©an be derived 

If an estimated set of equivalent stiffness is arbitrarily 

assumed for each ~lcment of a. structure subjected t@· (i. puti@Ul~ 
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type of loading, the compatible strain distribution for equilibrium 

of external and internal load can be used to recalculate the 

estimated equivalent stiffness in an iterative sequence until the 

change in the stiffnesses approache·s an acceptable value. This set 

of equivalent stiffnesses can be used to genera~e :the realistic 

behavior of structures. Then it is necessary to develop a general 

computer program incorpo~ating the idea of stiffness modification 

to acquire the correct s·et of ec1uivalent stiffness for inelastic 

analysis of concrete ·structures. 

However, by comparison of a large number of experimental 

and analytical res;ults, it is concluded that the convergence of 

the stiffness modification method in predicting the behavior Qf 

actual structures is limited by the following criteria: 

"No plastic hinge is allowed to form in the structure 

under coasideration" 

By this limitation" the frame is loaded. only below the ultimate 

capacity of any section and thus no plastic hinge is allowed to 

form anywhere in the.structure. Hence, for studies of failure, 

failure is defined when any part of the structure reaches its ultimate. 

capacity and no account is taken of the redistribution of load 

which can occur due to plastic deformation. The reason for this 

limitation is that when plastic hinge has formed in the structure, 

the hinge will allow an undefined increase in rotation at the 

hinge without further increase in the moment capacity of the struc­

ture under increasing applied ·loads. Therefore, the stiffness 

modification procedure cannot insure a definite set of equivalent 

stiffnesses tor the whole structure. 



(5.3) Mathematical Model of the Frame : 

This section describes the mathematical model of a specified 

frame and indicates the data required f~r the computer analysis of the 

structure. 

A mathematical model of the frame is formed by dividing the 

frame into a number of interconnected discrete elements·of member 

lengths, with the nodal points of each element being selected at 

points of geometric disco~tinuity, points under concentrated load 

and at any suitable points which are considered important in the 

analysis.· Theoretically, a large number of elements can be 

selected for a given structure. However, within the tolerable 

limits for accur~cy, this.selection is limited principally by the 

storage capacity and the computing time required for the computer. 

For the CDC 6400 computer ~ed at McMaster Univer$ity, 26. elements 

for a single-bay one-storey frame can yield sufficient accuracy (19) 

in the predicted r·esul t. 

When the frame has been divided into elements. the following 

numbering rules should be followed in setting up the model for-the 

structure: 

(1) Assign joint numbers and el'ement numbers. to all joints 

and elements. 

(2) Loads can be located at nodal pointe onl7. 

(3) All bases must be assigned number zero. 

(4) Those· elements which require modification of their 

stiffnesses are numbered firat. 

Rules 1, 2, 3 are required for conventional matrix manipulation 
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and can be found in textbooks. on matrix str~ctural analysis(36,44). 

Rule 4 provides the computer with the addresses of.~he·elements which 

need no modification of their stif!nesses. 

As an illustration, FigUre 5.1 shows the mathematical model 

of Frame FR1 f'or the short-term test. The ideal~zed beam and column 

line represents the · centroid of the actual beam and column~. 

The frame is divided into 26 elements and 25 joints. All the 

elements and joints have been numbere4 suecessive~Y•In this· case· 

a1l·elements req~ire modification of their stiffnesses due to 

inelastic behavior. The bases have been assigned number zero. 

Vert~cal loads are positioned only at nodal joints 19, 22 and 25 

respectively. 

The mathematical model required the following input to the · 

computer which can be generalized in the following sequence: 

Tit~e of the frame, allowable cycle of iteration for 

the main program, a conversion factor which converts 

the unit of length of the coordinate ·of the mathematical 

model into inches,total number of joints in the structure, 

total n~mber of elements , total number of inelastic 

elements which require modification of their stiffness, 

number of element strips desired for the element cross­

section, allowable number of iteration for the Newton-

·Raphson method (to be described in section 5.6.c.) , cracking 

tensile strain for concrete, shrinkage strain of concrete, 

concrete cylinder strength, steel yield strength, modulus 

of elasticity of steel,coordinates of each element , location 

and amount of the tension and compression steel in each 
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elemeni~ cross-section, the .epecified loading system, the·. 

duration of sustained load desired .• 

(5.4) The Element Stiffness Matrix 

Before describing the technique of stiffness modification, 

it is also necessary to understand the reason for modifying the 

stiffness matrix ·and identifying where'the modification occurs. Hence, in 

Figure 5.2, the element stiffness matrix for a slender member 

is formulated in its member coordinates which a~e the coordinate 

system whose X-axis coincides with the direction of the centroid 

of the unloaded element and the Y-axis is ~rthogonal to the X-axis 

in the direction: of' principal bending. The derivation of this 

element stiffness matrix can be found in textbook$on Matrix 

method of' structural analysis (36,44). 

The element stiffne-ss matrix describes the responses of each 

element subjected to externally applied loads. If the·element 

stiffness matrix for each element of the structure can be formulated, 

the assembly stiffness matrix for the whole structure can be assembl ed 

and inverted to obtain the displacement and internal force vecto~s 

for the whole structure. 

With structures made of elastic materials, such as steel, 

the element stiffness matrix is readily determined but this is not 

true for inelastic concrete structures. It has been shown in 

Chapter 4 that the stiffnesses EI and EA contained in the element 

stiffness matrix of the structure vary significantly with the degree 

of cracking of concrete and the level of stress in the concrete. 
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It is thus not po·ssible to formulate a constant set of stiffne.sses 

EI and EA for a structure subjected to loads which will cause 

·.inelastic behavior. However, by incorporating the idea of stiffness-

modification propos~d in s.ection 5.2, an arbitrarily assumed set 

of initial stiffnesses·EI and EA can be modified to obtain an 

unique.set of equivalent stiffnesses under a specific loading 

condition. These e~uivalent stiffnesses are substituted into the· 

element stiffness matrix for each element for subsequent generation 

of displacement and internal force vectors of the structure. 

The stiffness modi'fication process is described in.the 

next ·section. 

(5.5) Matrix Stiffness-Modification Method . • 

The proposad stiffness modification method as applied to 

nonlinear analysis of concrete struc-tures is pres en ~ed in this 

section. The method implements the concept proposed in section .5.2, 

and operates the steps in stiffness modificationas follows: 

(1) From the g<eometric properties of each element, the cross-

section of each·element is subdivided into a number of 

element st:rrips. 

(2) The elastic axial stiffness EA and flexural stiff'ues·s EI 

are c.omputad using the follo\-ring values: 

( W = 145 pcf. for·concrete) 

A = gross section area of concrete 

I = moment of inertia of cracked transformed ~ection 

These stiffnesses are substituted into the element stiffness 
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. matrix fol .. each element. 

(3) With the element stiffness matrix for each element formulated, 

·the assembly stiffness matrix for the whole structure can 

be assembled and used to determine the d.ispla~ement and 

force vectors for the-structure. 

(4) With the deflected shape of the structure known, the secondary 

bending moment due to deflection of the members (P-Delta effect) 

are computed and added to the primary moment acting at the 

center of the length of each element. 

(.5) For the knrown bending moment and axial force acting on a 

given element cross-section, the Newton-Raphson method is 

employed to determine the unique strain distribution for each 

element, thereby permitting the computation of the modified 

values of EI and EA. For the sustained loading condition, 

the shrinkage and creep deformation and stress history are 

included in the unique strain distribution whi-ch provide 

equilibrium of the section. 

(6) These new equ~valent stiffnesses EI and EA for each element 

are then compared to the previous stiffnesses, and when the 

error between them is less-than 1 %for each element, the 

set of modified stiffness is said to have converged to the 

equivalent atiffnesses for the structure. and the process 

of iteration is terminated. Otherwise, the new stif'fnesses 

are substituted into the element stiffness matrix for each 

element and the process in steps 2, 3, and 4 is repeated. 

A flow chart showing the execution steps is given in Figure 5.3 •. 
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~~~:r~~,·tor loads applied below the ultimate capacity 

of the structure,· the stiffness criteria can be easily satisfied 

within a. few c~cle ·Of iteratio (3 to 1 c,-cies was gen~~~y. o~'bserved). 

However, for loads near ulti~ate capacity of the struc~ure, or when 

creep, shrinkage and stress-histor7 were included, the ·analysis 

us~l17 require4 more cycles of iteratio&. !his was due to the 

large modification in equivalent stiffneases required to account 

for these large inelastic deformations. 

(5.6) !he Comput~r Prosram . • 

A brief description of the computer program developed .f~r 

frame analysis ~ins the matrix stiffness modification technique 

is civen in this section. 

The program consists of a main prosram and eipt subprograms. 

Ill Figure s.4, a flow· chart is drawn to show the location and function 

of each subprosram~ 

~e procedu-e for the elastic structural anal7sis which is 

performed b7 the subroutines 11A.BBA!IGE1i • 11BALANCE11 , "ENLARGE'', 

"~F" and "STIITN'' , can be found iA textbooks on matrix Dnithods 

of structural anal7sis (36,44) and is th.erefore not discussed 

in here. 

!h.e subrouthes 11MPHI11 , 11BMPOAL" ud 11CREEP" were developed 

for the stiffness modification process and are described in the 

following sections. In addition, the computation of secondar7 

bending moment is also given in this section. 
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(5.6sa) Subroutine "BMPCAL11 . . 
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This subroutine operates th~ numerical integration 

procedures as described in section 4.2. Its function is to compute 

the internal force and moment for a concrete cross-section subjected 

to a·given strain distribution. The following sign conventions are 

u~ed in this subroutine, 

(1) Compressive· stresses or strains in concrete or steel are 

positive. 

(2) Distances from. the neutral axis of the section towards the 

concrete extreme compressive fibre are positive. 

The steps for nume~ical integration are as follows, 

(1) The geometric properties and the number of element strips 

of a given cross-section are read and transferred from the 

main program. The d~pth of the section is thus subdivided 

into a finite number of element strips and all the elements 

of the structure are assumed to have the same number of 

element strips. 

(2) A known linear strain distribution from subroutine ' 1 ~IPHI" 

(to be described later) is transferred. .From this linear 

strain distribution, the neutral axis is computed and the 

·total strain acting at the centroid of each element strip 

are calculate. Similarly, the strain acting at the level 

of the steel reinforcement can be determined. The strain 

in the steel and concrete due to shrinkage are included 

from data obtained from prism tests. 
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(3) Where sustained loads are studied, the creep strain and 

additional shrinkage strain for a specific increment of time 

are included·so that the total strain of concrete is comprised 

of 

wtotal = welastic _+ wcreep + wshrinkage 

where, w = strain in concrete • 

Therefore the · elastic strain in concrete, or the strain 

contributing to stress acting on each element strip, is 

calculated by subtracting the creep and shrinkage strain 

from the total strain at the centroid of each element strip • 

(4) From the s•,ress-strain. relationships of the concrete and the 

steel given in Equations 3.2 and 3.3 respectively, the stress 

acting at t~e centroid of each element strip and at the 

level of the steel are computed and Equation 4.1 is used 

to calculate the total axial torce and bending moment acting 

at the centroid of the cross-section. 

(5.6.b) SubroutiDe "CREEP" . . 
For cases where sustained loading is included, this subroutine 

is called upon to calculate and store the creep strains for ~ specified 

increment of time. ~he modified superposition method as described 

in se~tion 3 .. 8 is used to compute the creep for variable stress 

conditions. The computational steps for this routine are summarized 

as follows, 

(1) The additional shrinkage strain in concrete for the specified 

time increment is computed by Equation 3.4. 



(2) ~e loads and stress levels acting on a-concrete cross­

section are assumed to remain constant for the specified. 

increments of time. The elastic strain acting at the centroid 

of each.co~crete element strip ot the section which were 

. computed and stored.-in subroutine BMPCAL , .are then 

transferred and stored in this subroutine. The creep strains 

for each concrete element· are then computed by the process .. 

described in section 3.8 • 

(') For the next time interval, the stresses on the element 

strips may be different from the previous values. These 

changes can result from a change in load intensity on the 

structure or from the redistribution ot loa~ caused .b1 

changes in stiffnesses associated with the sustained load 

deformation. ~e nonlinearit7 of creep versus stress also 

could cause a redistribution of stress on a cross-section. 

Therefore, for a new set of elastic strains after the first 

time interva1, the stress history must be taken into account, 

and the creep strain due to stress histor7 is calculated 

by the proce~ure described in section ,.8~ 

(~) The total inelastic strain due to time effect is thus given 

by, 

wtotal = wcreep + wadditional shrinkage + wstress histor~ 

~is total inelastic strain is transferred to subroutine BMPCAL 

for the computation of the elastic strain of the concrete. 
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(5.6.c) Subroutine liMPBI" : 

In this subroutine, the Newton-Raphson method as described 

in section 4.} is utilized to facilitate convergence on an unique 

straiD.distribution for a specified axial force and bending mo~ent 

combination. The computational procedure is described below: 

(1) fhe applied bending moment and axial. force acting at the 

· cross-section which were calculated in the main program 

are tr~sferred to this subroutine. 

(2) For an initially assumed strain distribution, the subroutine 

BHPCAL is (called to calculate the axial force and bending 

moment cor~esponding to this assumed strain distribution. 

(') ~e computed axial force and bending moment are compared to 

the applied load and moment. The difference is measured b~ 

the folloWing ratios, 

• I<. 

= I< 

Papplied - Pcalculated ; 

Papplied 

Mapplied - Mcalculated 

Map plied 

where, if R1 _and R2 are not greater tha.%1. 

>I 

iteration process .is. terminated, and the concrete strain 

and Qurvature are transferred to the main program for 

evaluation of equivalent stif'fnes~.EA .and· EI. In. cases 
. . 

wbere the applied load p is·equiU. to orne~ zero, the convergence 

procedure requires the calculated P be less than 0.01 kip. 

If the applied M is less than 10 in-kips, it is required that 

the computed M be leas than or equal to 10 in-kips. 
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(4) If eithe~ R1 or i2 exceeds the allowable tolerance of 1 %,· 

the conve~gence process is carried on b7 incrementing the 

concrete strain and curvature as follows, 

8 w, II G w1 + B 

SStS • G- + B 

where, 

G = o.ooos 
H = 1.0x1o-10 

~ese will then senerate a new concrete strain. and· a new curvature 

as, 

w1 new = "1 previous + ~ 111 

~ new = · SIS · previous + I 16 

To find tha terras 1>P/;,w1 , ?JP/eJ , "DM/av1 , "aM/a$6 required 

for Equation 4.S, it is necessar7 to call the subroutine 

BMPCAL twice. Firstly, the curvature remaining constant 

and the new concrete strain w1 is substituted, a new new 

set of P Uld M'values whic~. are due to the increment ot w1 onl,-

will be calculated. Therefore, 

"DM Mnew - Mprevious . ( ) ¢ = constant 
-aw, w, new - wl' previous 

")p Pnew - p . preVl.OUS . ( ) - = constant 
;,w1 w - w • 1 new 1 prev1ous 

Secondly, by calling the subroutine BMPCAL, with the concrete 

strain remaining constant,the new curvature -. is substituted and new . . ' 



the remaining terms for Equation 4.S are calculated as_ 

shown below , 

,p 
P~ew - P.previous 

- = ( ) 
71{6 Sinew - S6previous 

v1 =. constant 

'"aM ~ew- Mprevious 
-= ( ) 
-ailS SlJnew flpreviou• 

w1 .= constant 

~ese values are then substituted into Equation 4.5 which 

is inverted to calculate-the increment val.ues ot concrete 

strain and curvature dw1 and df6 • ~e new concrete strain 

. and curvature are now given b7, 

:new = !6 previous 

T-hese new values are used to compute a new set of axial force 

P and bending moment H, and the process in steps 2 13 is 

repeated • • 

(5.6.d) Computation ot Secondary Bending Moment : 

The compu~tation of P-Delta second.&r7 bendins moment which 

is the effect of a:cial load multiplied by the additional eccentricity 

due to defl~ction, is performed in the main program. The matrix 

analysis generates a displacement vector tor each element in the 

member coordinate system tor the element, and then transforms this 

displacement vector i~to global coordinates which is the coordinate 
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srstem tor the whole structure. Hence in member coordinates the 

deflection in the X-direction indicates the longitudinal shortening 

or elongation of the element. Displacement in th" !-direction 

thus shows the_amount of lateral deflection from the original 

undeflected position. Therefore, the secondary moment or P-Delt·a 

moment is computed b:y multipl)'ing the axial force acting at the 

element centroid b7 theY-direction-deflection from the undeflected 

position of the elemento 

(5.7) nlustration • • 

To illustrate the convergence procedure for the matrix 

stiffness modification technique used in the anal7sis, the test 

results from the large scale frame FR1 under short-term loadinc 

are compared to the analytical prediction during the iterative 

process • As shown in Figure s.s, the ratio of the predicted 

deflection to_the measured deflection. is plotted against the number 

of iterative cycles ot stiffness modification. The predicted 

deflection in the first cycle of iteration differs quite a1sni­

ficantl7 from the test result. However, after 3 crcles of iteration, 

the convergence is apparent. Considering possibility of experimental 

error and some simplifying assumptions, convergence has been 

obtained after 5 ·to 10 iterations. 

(5. 8) Swaman • • 

In this Chapter, a detail description of the computer program 

for the matrix stiffness-modification method has been present. B7 

comparison of the short-term test results of Frame F.R1 with the 
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predicted values as well as the results in Chapter 6, it can be 

observed .that the stiffness modification procedure is an effective 

method for analysing inelastic concrete structures. The accuracy 

·of the method 11rill be discussed in Chapt"r 6. 
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Chapter 6 

· COMPARISON OF ANALYTICAL AND EXPERIMDtTAL BESUL!S 

(6.1) Introduction : 

!his chapter presents an ext~nsive evaluation of the applicability 

of the proposed matrix stiffness modi~icationmethod b7 comparison.· 

of.the anal7tical results with the measured results of several 

reinforced concrete fr~es tested at.McMaster Universit7 (19,52), 

McGill Universit~ (4,51) and the Cement 8c Conc·rete Aaaoci•tioa· (1?). 

In all .. cases, deflection was used as the main basis for comparison 

because it is directly aeasurable and is least susceptible to. 

experimental error and analytical misinterpretation as compared 

to those measurable quantities such as strain, slope, rotation and 

crack width. However, in a few cases, the comparison of anal7tical 

and experimentall7 derived bendins moment are included to add ~evidence 

·ror the applicability of the proposed anal,-sis. A word of caution 

is that the experimental bending moment is derived from measured 

strain reading fron which the numerical integration procedure as 

described in section 4.2 is used to obtain the moment .• 

Therefore, the tera1 "experimental bending momentn is really .a combination 

of experimental strain readil'ls and analyticai interpretation. 

In addition, an elastic analysis using the same mathematical 

model ot frames as used for the nonlinear anal;ysis, ~as developed 

to compute the elastic response of the frames. T.he stiffnesses 

were based.on a cracked transformed section of concrete. !his 

elastic method through use of s~l elements takes into account 

the distribution and amount of reinforcement in the frames. 
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(6.2) Shan-term Test Results : 

In this section, the comparison of the analytical and 

measured results of a total of 2- frames tested b7 the author an~ 

b;y others (4,1?,19 1.51 152) has been repol:ted~ The dimension of the 
. . 

frames and the initial purpose of the tests are briefly introduced. 

(6.2.a) fan's Frames • • 

The measured tlet·le·ctions of Frame FR1 under short-term 

proportional loading, were compared to the analytical prediction 

as Shown ia Figur<a 6.1. The load-deflection data for three 

critical points on the frame were plotted. The fabrication and 

testing of this trame has been described in detail in Chapter 2. · 

Reterins to the figure, it can be concluded that excellent 

agreement has been observed between the modified stiffness analysis 

and the test results for three points compared • Except to~ point 

c, the- analytical prediction slightly overestimates the tested · 

deflection at high loads. The elastic solution which is a1so 

shown underestimates significantly the vertical deflection at 

point A and C .• This has added evidence for the inaccurac7 of the 

elastic anal~si~ in predicting behavior of real structures. 

In Figure 6.2, the predicted concrete strain distributions 

are compared to th~ measured values for points B and E. Close 

agreement between analytical and measured results is evident. 

Figure 6.3 shows the comparison of deflection for Frames 

FG1 and Fa2 tested b7 Mr. Golec, an undergraduate student , during 

the summer· of 1970~ T.he dime~sion and cross-section of these frames 
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frames are the same as those tested b7 Danielson (to be discussed 

later). It . can be se.en. that the predicted deflection _fol1o'fs quite 

closel7 with the test result except at higher l"ads. At h:.~h loads, 
. - . . . . . . 

cracking. of the joint was ver7 s~vere and lik~ly c~ntribu~ed to the 

discrepancy between predicted and tested deflections.· 

(6.2.b) Svihra's Frames (52) : 

Svihra im 1970 tested four tvo-ba7 single-storey frames 

in McMaster University to investigate the behavior __ and capacit7 of 

concrete frames subjected to c7clic loadings.· T.he dimension· o£ 

these frame are shoWn in Figure 6.4 to have a clear span o~ _8.3 

feet for the beams and the columns were 8_feet high measured to 

the mid-height of the beam. !he cross-section of the frames is 

constant and is identical. to the beam section for Frame J'R1 -

which was described in Chapter 2. 

The -experimental and analytical result for one of Svihra 1 s 

frame, Frame BF-4, is presented in Figure 6.4. For the loadins 

configuration, the sid~sway deflection of the frame was the 

dominant displacement. The non-linear analysis predicts values 

which quite closely follow the measured values. T.he difference 

between predicted and tested deflection increases with increasing 

load but the percentage of· error remained relatively small. T.he 

elastic analysis differs from the test resUlts by a.much greater 

error especially at high loads. 

In Figure 6o5 1 the load-moment curves at various location 

on the frame were plotted and compared. The same trends as discussed 

for Figure 6.4 are evident. 
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(6.2.c) Danielson's Frames (19) : 

~e results of one of the three en~ ba7·single storey 

· frames tested by Danielsen at McMaster University are shown in 

Figure 6.6. ~he frames had the sam~ dimension as Svihra's Frame • 

. Frame i2 provided results for a short-term proportional load 

test. As can be seen in Figure 6.6, the non-linear analysis provide 

a reasonable prediction of the side$way deflection and· the midspan · 

deflection whereas the elastic analysis did not. Even though an 

attempt was made to stiffen th& ~oints, considerable cracking was 

readil1 visible. Hence this feature can account for some·of the 

difference between predicted and test values. 

In Figure 6.7, t~e bending moment in various critical 

point of the frame has been drawn against increasing horizontal 

load and the above discussion also applied. 

(6.2.d) Cranston's Frames (17) . • 

Cranston in 1969·presented a report to the Cement and 

C~ncrete Association of the United Kingdom , describing, the 

design and testing of eight one-store7 single bay fixed-base 

frames. ~e p~pose of these tests was to prove that the 

Mechanism Method of Limit Design could be equally applicable 

to reinforced concrete structures. 

~e dimensions of all his frames were the same, with the 

~enter to cent~r span of t~e beam being 120 inches.loas aD4 the 

TAeisht of the ooluam 60 inches as shown in Figure 6.8. ne 

cross-sectiona ot.the frames were constant at 4 inches wide and 
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6 inches deep. The reinforcing in the frame differed from cross-

section to cross-section and from frame to frame. file vertical 

loads were not.applied proportionall7 to the horizont~ load • 

. . ~·- ·. magnitudes are included in Cranston's Report (1?). 

Six of the frames were analysed b~ the Matrix Stiffness-· 

Modification method and by the elastic analysis. Both methods 

take into account the variation of distribution of reinforcement 

in the frames. The results of the predicted and ·tested de.flections 

under increa~ing horizontal load are shown in Figure 6.8. 

It is observed that both the stif'fnes• modification me·thod 

and the elastic analysis underestimate the experiment&l deflection. 

T.he discrepanc1 between test and elastic analysis was approximately 

double that between non-linear analysis and test. !he .unaccounted 

for effects of rotation in the joints and visible diagonal crack-

ing may be identified as partially responsible for·the larger 

measured deflections especially at high loads. 

In Figure 6.9, the bending moment, vs. horizontal load 

curves were drawn for the points F1 and K1 in the frame~ as shown 

in Figure 6.8 for four of the six frames selected. The same 

observation as discussed above is applicable to this Figure. 

(6.2.e) Bader's Frames (51) . • 

In 19&7, Sader tested 20 single storey one-bay frames wi.th 

fixed bases at McGil1 University. The dimension of these frames 

were approximately at a one to six scale. T.he purpose· of these 

experiments was to investigate the ultimate strength of concrete 
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frames,·the mode of fail~e, and the moment rotation characteristics 

of a critical joint in the frames. 

· The results of four o:':' these frames· are present .i in 

· Figure 6.10. . !rile four frames he- d different percentage• of· 

reinforcement and.different loading co~figurations. 'rn all but 

a few cases at very low loads, the nonlinear analysis predicted 

s~desways and midspan beam deflections fairly accurately. The 

deflections fr·om· elastic calculations exhibit much larger error • 

. Except for Frame no. 1 ,·the exl>erimental deflections were larger 

than the predicted values. The effect of.joint rotation is. thought 

to be the main reason for the difference between the tested and 

nonlinear predicted value. 

(6.2.f) Adenoit's Frames (4) . • 

In 1970, Adenoit at McGill University- tested 11 double..; 

bay single-store7 fixed end concrete fram~ models with the same 

. scale as used by Sader. These frames·were subjected to a constant 

double point vertical load and an increasing horizontal load. The 

experimental specimens include two set of concrete frames using 

plain and deformed reinforcing bars respectively. The varying 

parameter in this study was the percentage of reinforcement in 

the column cross-section. 

Six of the eleven frames having a wide range of percentage 

of reinforcement were chosen for comparison. The sidesway deflection 

and the midspan deflection of the beams were predicted.by the 

stiffness modification method and by the elastic method. The· 

results are pl.otte~d. in Figure 6.11. The comparison of this Figure 

is apparent and the same discussion as given for Sader's Fr~mes applies. 



& 

-....H.........,__........__~ <I)_L Elatfte; 

41'' 

H •.Va.= o. 

F/fiiN8 liD. 8 
P•l-2% 

FRAHM ND.5 
,. 4-.tJ ." 

... 1 

. _Ei_PdaW.·· 

-~- Testd 

~·0. . .,., ... 
• . .... 

., 
• 

r--. 
• 

0 
~ ,.-, 

• ! 

'( 

.. 
• r-, 

I I 

.--. 
•. I I 
I 
I 

Ot 
< I 

I 
•• 

figure 6.10 

·c; • 

Comparison of Deflection tor Sa4ei- • s Frames 

FitiHR 
No-J . 
,.~o_f ;, cw.., . 

: 'FilAHE. 
ND.7. 

I=J.'% 



... 
I 

··~ 

122. 

~~~~~~@~~;~ . . 

]_&"Hie 
~ .... Teile/ 

·~ " ..... ,A • 

!=JUIMM $21) 

P~Z-o(.J~ 

FRIIME SiD 
P=tltJ~ 

FRAMJ: S~]) 
i=2·42% 

l'ipre 6.11 

Coaparia~a of Deflection ta.t A4-.oit•a Fr .... 

. . . . !• 

' ... '• . . . 
!• ....... . 

•· ... . . . 

··\t .. ... 
: N. 

. ~: "'' tt· 
~ 



(6.3) .Comparison ·ot Su&tained Load Test Results • • 

123. 

In this section, the sustained-load test results of three 

frames tested. at McMaster ·university have been presented. 

In FigUre 16.12, the experimentai deflections of Frame FS1; 

tested b7 the author have been plotted. !he frame was loaded wl.th 

a high coiumn load of 46 kips and with a beam load of 10 kips. 

1'his loading was sustained for 80 days. ·~e testing and 

observation of this fraae is given in detail in section 2.9.b. 

It is observed that the nonlinear· predictions do not 

differ much from the test values whereas -the elastic anal7sis 

obviously gives an erro~eous constant deflection with time. 
. . . - ' . 

In Figure 6.13, the·-experimental result ot J'rame N2 

were presented. The details ot this frame·were given in 

section 6.2.a. 

In Figure 6.14, the test results of Frame L1 tested by. 

Danieison (19)· were given. The dimension and cross-section of 

this frame were the same as Frame B2 as described in section 

6.2~c. 

F.rom·a stud7 of Figure 6.13 and 6.14 , the same discussion 

as given for Frame FS1 applies to comparison of the results for 

these two frames. 
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(6.4) Conclusion : 

A representative sample of the test. results reported 

from the Cement & Concrete Association, McGill Un: tersity, and 

McMaster University has been chosen as a basis for.evaluating 

the proposed Matrix Stiffness-Modification Technique. It·can be 

concluded by comparison of the analytical and test results !or a 

total of twent7 four large scale and reduced scale frames, that 

the Matrix Stiffness-Modification method yields accurate results 

in predicting realistic behavior of actual structures. On the 

other hand, the elastic method which is based on a constant cracked 

transformed section of concrete, always gives inadequate prediction 

of the Qehavior of real structures, especiall7 when time~ependent 

creep deformation o~ high loads are considered. 



Chaptex- 7 

DISCUSSIONS AND CONCLUSIONS 

· (7.1) Introduction • • 

128. 

!he purpose of this research was to propose a method using 

a matrix approach tor an efficient nonlinear analysis of reinforced 

concrete structures. fhe Matrix Stiffness-Modification Method was 

developed and its validity checked by comparison with the results 

of several experi~ental frame tests. The modification is ·in the 

evaluation of a s~t of equivalent stiffnesses EI and EA for each 

element of a structure which has been subjected to a particular 

loading and stresB history. From comparisons with experimental 

data, it'is concluded that the procedure for computation of the 

equivalent stiffnasses in this analysis yields realistic prediction 

of the deformations of a concrete structure. The discussi·on in this 

chapter is devoted to the following two sections which re'late in 

the first case to the major work involved and in the second case 

to the major application of this research: 

(1) Matrix Stiffness-Modification Technique 

(2) Present Column Desisn Practice. 

(7.2) Discussion of the Matrix Stiffness-Modification Method : 

This section discusses the difference between the elastic 

matrix method of structural anal7sis and the stiffness modification 

method, the difficulties and experience found in developing the 

computer program, and the possibility of partial non-linear analysis 
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for prediction of the effects o.: inelastic behavior on compone:D.t·s 

of a mul~istorey rigid frame building. 

(7.2.a) Elastic Matrix Method vs. Matrix Stiffness-Modification Metho.d: 

It is concluded, from the comparison of the anal7tical and 

experimental frame test results, presented in Chap.ter 6, that the 

Matrix Stiffness-Modification Technique predicts accurately the 

inelastic behavior of concrete frames provided that the mathematical 

model of the framra is adequatelydescribed. On the.other hand, the 

elastic method using stiffnesses based on a cracked ~ransformed 

section of concrete is seen. to be inaccurate especially for 

sustained loads and high levels of load. T.his is due to the fact 

that the elastic method does not take into accoun·t the variation 

of stiffnesses due to the effect of the nonlinearity in the concrete 

stress-strain relationship, the effect of different load and moment 

combinatione, the ·effect of secondary bending moments, and the effect 

of creep and shri~ge in concrete. However, the Matrix Stiffness­

Modification method is based on a concept that equivaleat stitfnesses 

ot a structure cam. be obtained using a modification procedure which . 

takes into account the aforementioned factors. Bence the non-linear 

short-term and su6tained-load behavior of structure can be accurately 

predicted. 

(?.2.b) Discussion on Convergence Control for the Computer Program: 

In .the earl7 stage of developing the computer program for 

the Matrix Stiffness-Modification method, several difficulties were 

encountered. Of these, the convergence oontrol of the iterative 
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process for the main program and for the subroutine "MPHI11 which 

are described in sections 5•5 and 5.6.crespective1y, was the most 

diff'icult. It is thought to be worthwhile to contribute the 

experience accUmulated in this research for future reference. 

For the main program, it was discovered that in the process 

of iteration, which is described in section 5.5 , the stiffnesses 

for each element of the structure ma7 occassionally exhibited 

periodic oscillation. This problem occured when a set of equivalent 

stif'f'nesses were used to generate a set of applied load which were 

used to yield new stiffnesses which inturn were used to calcul.ate 

new loads which ware used to generate new stiffnesses which changed 

very little from the first set of stiffnesses. Thisdifficulty 

was overcome by introducing an averaging process for each iteration. 

The effective stiffnesses· ·EI and EA were averaged with the corresponding 

stiffnesses from the previous two cycle after the comparison step 

described in section 5.5 was completed. ·These averaged stiffnesses 

were used as new stiffneeses to obtain the new displacement and 

force vectors for subsequent generation of another aes of new 

equivalent stiffnesses. From a physical point of view, the averaging· 

calcul.ation serves as a daehpot to damp the oscillation of the 

stiffness to convergence. 

In the subroutine "MPHin as described. ~n section.5.6.c, 

the Newton-Baphson method was used to determine the strain distri­

bution for a cross .. section of concrete subjected to known applied 

load and bending moment. This method required an initiall7 

assumed strain distrib~tion to obtain a final strain distribution 



compatible to the applied loads. After several trials of the 

nonlinear frame program, it was concluded that the assumption of· 

an initially elastic .strain distribution would lead to satisfactor7 

convergenc~ in the subroutine. 

(7.2•c) Discussion on Partial Nonlinear Anal-ysis . • 

Most research done on the behaviorial study of the inelastic 

response of a beam column in multi-storey buildings has been 

restricted to an idealized member separated from the structure. 

The member is loaded with constant axial force and end eccentricity. 

However, the behavior of real beam-columns in a·multistorey building 

subjected to constant externally applied loading, is actually 

influenced by the variation of the stiffnesses of the member 

itself, and of th~ other members in the structure. A rational 

analysis for this type of behavior has been missing. For this 

reason, the possibility of the application of the Matrix 

Stiffness-Modification Technique to a partial non•linear analysis 

of realistic inelastic reinforced concrete structure was studied. 

The idea was that a localized portion of the structure 

would be studied for iaelastic behavior. T.he reason for introducing . 

partial non-linear analysis is also due to the limitation of the 

computer storage capacity and the computing time required. In 

addition, for a rational investigation of the behavior of a beam~ 

column in a multistorey building, it is realized that those members 

which are far away from the localized inelastic column do not 

produce significant effect on the distribution and redistribution 
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of bending moment in the beam-column. Therefore, it ie justiticable to 

apply partial nonlinear analysis to the behaviorial study of localized 

inelastic members in a mUltistorey structure. The selection of the 

partial in~~-astic portion of a multi-storey- building is in turn limited 

by the comptu.er sto~age capacity, -the computing time required., and 

the error associated with the effect of using elastic elements for 

the remainder of the structure. 

To illustrate this method, a four storey concrete frame has 

been analysed. The details of the location and amount of reinforcing 

steel in the frame are shown in Figure 7.1. The frame was subjected 

to a proportional loading tor the short-term analysis. . As indicated 

in Figure 7.2, the members AB, BO and CD of the .frame were designed 

to exhibit nonlinear behavior while the other members remained 

essentially elastic with a cracked transformed section ot concrete. 

The ~trix Stiffness-Modification method is then applied to the 

analysis of the whole strucuural system using constant stiffnesses 

for all members except members AB, BC and CD. Figure 7.2 and Figure 7.3 

show the performance of the substructure under short-term and 

sustained load respectively. 

From the above discussion, it is concluded that the Matrix 

Stiffneas~Modification ~echnique is not only effective in system 

analysis but is also applicable for the analysis of substructures •. 
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Discussion on present ColUmn Desise Practice :: 
I 

From a study of the deformation characteristic~ of concrete 

sections given in Chapter 4, some comments can be made regarding 

present column design methods. The Reduction Factor Methoa (2) and 

the Moment Magnifier Method (37) ~e discussed in this section. 

(7.3,a) 1963 ACI "Reduction Factor Method" (2) : 

T.he 1963 ACI code (2) specified the use of a reduction 

factor tor design of slender columns taking into account the 

length effects. This reduction factor was based directly on the 

slenderness ratio, 1/r , of the columns •. Different formula for 

the reduction factor provided for different ranges of slenderness 

and different modes of deformation. 

It is observed that the reduction factor R is a function 

of the radius of g~ation r of the structure. However, the ACI 

code specified that r is a constant regardless of the effect of 

the axial load versus bending moment relationship. In thi~ r~sard, 

the investigation ot the unit slenderness curves p1otted in 

Figures 4.8 and 4.9 demonstrated that the radius of gyration ot 

a concrete cross-section is not constant but is a function of the 

loading condition. Therefore, the reduction factor is concluded 

~o be unrealistic and according to several researchers (24) may 

be unsafe. 

(?.3.b) 197~ ACI"Moment Magnifier Method" : 

Recentl1 the Reduction Factor Method has been replaced by 

a Moment Magnifier Me'thod in ACI C.ode 318-71 for design of slender 



columns (3?). The Moment Magnifier Method requires the·determina-

tion of the critical load, Per , which is given by, 

2 .EI 
1t 

T.he f~exural stiffness EI can be taken either as, 

or, 

where, · 

( 

EI =··-----------------

EI = 

ICh = effective· he·ight of colu.mn 

E = 3~ w1•S f'~ c _, c 

Es = modulus of elasticity of steel 

Ig = momsnt of inertia of gross-section of concrete 

Is = momtant of inertia ot reinto~cina steel about the 

oen~roi·d. 

column 

The ratio Rm is the ratio of the dead load moment to the total 

moment and therefore is intended to take into account the effect 

ot creep b7 reducing the effective stiffness in proportion to the 

amount of load which is sustained for a long period of time. 
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The Moment Mag.nifier,F,is given by, 

where, 

' ~- 1.0 

Pu = Ultimate axial force for which the column is 

designed 

em = Coefficient reflecting ratio of end moments. 

Now it is quite obvious that the moment magnifier method no longer 

relies directly on the slenderness ratio, 1/r, of the member but 

it uses a stiffness EI which is modified .to account for the cracking 

of ctincrete, the creep associated with the applied load and bending 

moment, and the load vs . moment relationship. 

The effe~ctive EI given by the moment magnifier method is 

evaluated b_y using so~e abstraction of the subroutine from the 

Matrix Stitfness.;.Modification method. In Figure ?.4, the analytical 

results of flexural stiffness EI were plotted for different values 

of constant rei-nforcement ratio, p, in the concrete section. The 

EI given by the moment magnifier method are shown by the bound lines 

as :indicated. The ratio for deal.loacl moment to total moment for 

this nonlinear analysis gives a Rm value of 1.0 • In Figures 

?.S through 7.8, the parameters d', f
1

, t~ and shrinkage strain 

are varied and compared to the EI value given b7 the Moment 

Magnifier Method. It is then concluded that the stiffness EI 

recommended by the Moment Magnifier Method provides a safe estimate 

of the effective stiffness EI. 
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(?.4) Final Conclusion . • 

14lt-•. 

The follo1wing conclusions are made based on results reported 

in this research : 

(1) !he Matrix Stiffness-Modification Method which has b~.:.en 

developed accurately predicts the behavior of real structures 

subjected to short-term and sustained loading with the 

provision that elastic and inelastic deformation characteristics 

ot the concrete are properly modeled mathematically. 

(2) The elastic matrix method using stiffnesses based on the cracked 

transformed section of concrete will give inadequated prediction 

ot behavior of real structures especially when sustained loads 

or high levels of loading occur. 

(3) The Moment Magn~fier Method as recommended by the 1971 ACI Code 

gives a safe and realistic estimate of flexural stiffness EI 

for design of siender columns. It was also concluded that the 

Reduction Factor Method is unrealistic and may be unsafe (24). 

(4) Additional studies have indicated that the Matrix Stiffness-

Modification Technique can be easily modified to accomodate 

the analysis ot prestressed concrete structures, composite 

structures and structures with variable cross-se~tions. 

(S) For a realistic analysis of the behavior of single beam-column 

members in multistorey buildings, the partial nonlinear 

analysis using the Matrix Stiffness-Modification Method can 

be applied8 It is intended that the development ot this 

analytical technique will lead to a comprehensive evaluation 

of current column design procedure. 
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The meanings of the important variables used in th~ a program 

are listed below: 

AASC(I) 

AAST(I) 

CF 

CYL 

DDB(I) 

DDSC(I) 

DDST(I) 

DDTH(I) 

EA(I) 

EI(I) 

ES 

FSY 

IIFROM(I) 

IITO(I) 

KJOIN 

NALLOW 

I'ELEM 

NPLA.ST 

NSTRiP 

Area of compression reinforcing steel 

~ea of tensile reinforcing steel 

L~ngth conversion factor 

Concrete cylinder strength at 28 days 

Width of cross-section of element i 

Distance from the centroid of the compression steel 

to the extreme compressive fibre of section 

Distance from the centroid of the tensile steel 

to the extreme compressive fibre of sedition 

Total depth of .cross-section of ele .. ent i 

Axial stiffness EA for element i 

Flexural stiffness EI tor element i 

Modulus of elasticity of reinforcing steel 

YiGld strength of steel 

Coordinate of end 1 of member i 

Coordin'a te of end 2 of member i 

Joint nwaber of which load is applied 

All(owable c7cle of iteration for subroutine "MPHI" 

Total number of elements in frame 

Total number of inelastic element in frame 

Number of element strips in concrete cross-section 



NJOIN 

NCYCL 

PHI, PHITRI 

PX 

PY 

PMZ 

PCAL,BMCAL 

T·'i, T2 

WEEP 

WSHRINC 

WTENSIL 

WU(L,I) 

XP1(I) 

XP2(I) 

YP1(I) 

YP2(I) 

To~tal number of joints in frame 

Number of iterative cycle in the main program 

Curvature 

x-cQmponent·of applied load 

Y•component of applied load 

z-eomponent of applied load 

calculated axial force and bending moment acting at 

the centroid of a concrete cross-section. 

Tine increment , from time 1 to time 2 

Creep strain 

Shrinkage of concrete 

Allowable tensile strain of concrete 

Effective or elastic strain of concrete 

X-coordinate of element i , end 1 

x-coordinate of element i, end 2 

Y-coordinate of element i, end 1 

Y-coordinate of element i, end.2 



APPENDIX A 

MATRIX STIFFNESS-MODIFICAT·ION TECHNIQUE 
FORTRAN PROGRAM FOR THE INELASTIC ANALYSIS OF CONCRETE FRAMES 

HRDCtCMlOOOOO~T400. 
RUNCS> . 
SET I NDF. 
REDUCE. 
LG0tLCt40000. 

BY K• B• TAN 
GRADUATE STUDENT . 
DEPARTMENT OF ClVIL ENGINEERING 
MtMASTER UNIVERSITY 
HAMILTON ; ONTARIO 
CANADA 

• . 6400 END OF RECORD 
PROGRAM TST (JNPUTtOUTPUTtTAPE5=INPUTtTAPE6=0UTPUTl 
DIMENSION SAMC75t75)tP0(75)tiGLORPClt2t30)t01(3)t02(3) 
DIMENSION G01(3)tGD2(3)tFORCll3ltFORC2<3) tPDDC96) 
DIMENSION XAC3t3)tX8(3t3)tXE(3,3)tXf(3t3)tXlNT1(5t5)tXINT2(5,5) 
DIMENSION DDlC30)t002(30)tBBL<30l,ElC30)~EA(30) 
DIMENSION STIF1(5t5)tSTIF2C5t5)tSTIF3C5t5)tSTIF4(4t4) 
DIMENSION DDTH(30)t006(3U)tAAST(30)tAASC(30)t0DSTl30)t0DSC(3Q) 
DIMENSION MEMBER(30ltiiFRUM(3Q),IITOC30JtXP1(30)tYPll30)tXP2(30) 
DIMENSION WU2(30t20)tSEEP2(30t20),UUFlC30t20ltUUF2(30t20). 
DIMENSION WEEP(30t20),WU1<30t20ltSEEP1(30t20)tCEEPC30t20l 
DIMENSION BMCC30)tG00(30)tPAXIAL2(30)tBMOM2C30>tV2(30) 
DIMENSION YP2(30)tNNR<30)tllR(30t4)tEEIIC20t30)t£EAAC20t30) 
COMMON/BLOCKl/DTHtOBtAST•ASCtDSTtDSC 
COMMON/BLOCK2/NSTRIPtKONT~TltT2 
COMMON/BLOCK3/WSHRINSt WSHRINC 
COMMON/BLOCK4/WTENS1Lt WYtFSYt CYLt TCFt NALLOWt ES 
COMMON/BLOCK5/PHITRitWTRIAL 
COMMON/BLOCK7/XXPltXXP2tYYPltYYP2tEEitEEAtKOUNTtCF 

, COMMON/BLOK1/TC3t3)/BLOK2/TTC3t3)/BLOK3/SF(6t6) 
COMMON/BLOK4/RESTIF<5t5)/BLOK5/NRtlRC4) 
COMMON/BLOK6/STF11<3t3t30)tSTF12(3t3t30)tSTF21(3t3t30)t 

lSTF22C3t3t30)tTTTC3t3t30) . · 
READC5t77721NAltNA2tNA3tNA4tNA5tNA6tNA7~NA8tNA9tNAlOtNAlltNAl2tNdl 

7772 FORMAT(l3A6) 
READC5t15) MCYCLtC~ 

15 FORMATCI5tFlUe3) 
READC5t2)NJOINtNELEMtNPLAST 

2 FORMAT <31 5 l 
REA0(5tl444)NSTRIPt NALLOWtWTENSILtWSHRINC 

1444 FORMAT(215t 2E10~2) 
READC5t1445) CYLt FSYt ES 

1445 FORMATC2Fl0e3t E10.3) 
DO 1004 I = lt NELEM . . 
READ(5t5)MEMBER(I)t!IFROMflJtiiTO(I)tNNR(I),XPl(l)tYPl<l)tXP2(l)t 

1 YP2Cl) 
5 FORMAT<415t4Fl0.3) 

IF(NNR(l))l0U8tl004tl008 
1008 NR = NNRCI) 

READ(5t20) «IIRlltJ)t J = ltNR) 
20 FORMATC4I5l 
1004 b8Nio~¥E I = lt NELEM 

READ(5tl447)0DTHllltODB(I)tAAST<I)tAASC(I!tOOST(I)tOD5C(l) 
1447 FORMAT<6Fl0e3) 
1007 CONTINUE 

WCON= 145.00 
ECON=(33.U*CWCON)**l•5*(~YL*l00Ue)**0.5)/lOOO. 
WTR.IAL = leOOE-04 
PHITRI = WTRIAL/3.0 
TCF = o.o 
NEC= ES/ECON 
ECS= NEC 

~~ziefir~~~JNAltNA2tNA3tNA4tNA5tNA6tNA7tNA8tN~9tNAlO~NAlltNA12tNdl 
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772 FORMAT.///35Xtl3A6///) 
WRITEC6tl001) 

1001 FORMAT(lHUt30Xt*COMPUTER ANALYSIS OF INELASTIC REINFORCED CONCRETE 
1 FRAME*/1H0t40Xt*MATRIX METHOD OF STRUCTURAL ANALYSIS*/lHOt 
2 45Xt *THESIS PROJECT, BY K.B. TAN*/lHOt45Xt*DEPARTMENT OF CIVIL 
3 ENGINEERING*/1H0t45Xt*M~MASTER UNIVERSITY*///) 

WRITEC6t1002) MCYCL. · . · 
1002 FORMATClHUt 40Xt*ALLOWABLE MAXIMUM NO. OF ITERATION: *tl5) 

WRITE<6tl003) NJOINt NELEM . . 
1003 FORMATC1H0t40Xt*NUMBER OF DISCRETE JOINT = *t9Xtl5/lHOt40Xt 

1 *NUMBER OF FINITE ELEMENTS = * , 8Xt 15) . . . 
WRITE(6t8230) NSTRIP t NALLOWt WTENSIL · 

8230 FORMATC1H0t40Xt*NO. OF ELEMENT ST~IP IN EACH CROSS-SE~TION =*,15/1 
lHOt40Xt*PERMlSSIBLE NO. OF CYCLE FOR MOMENT-CURVATURE ITERATION=*• 
2 15/lHOt40Xt*MAXIMUM CONtRETE TENSILE STRAIN =*tfl2.5/J 

WRITEC6t2459)CYLtFSYtEStWY . . 
2459 FORMATC1H0t40XJ*CONCRETE CYLINDER STRENGTH AT·AGE 28 DAYS =~tF15.5 

l/1H0t40Xt*YIELD STRENGTH OF STEEL REINFORCEMENT =*~E15.5/lHUt40Xt* 
2MODULUS OF ELASTICITY OF STEEL =*tE15.5/lHQ,40Xt*ULTIMATE STRAIN 
30F STEEL =*• El5.5////) 

WRITEC6tl453) 
1453 FORMAT(lH0~30Xu*GEOMETRI~ PROPERTIES OF CONCRETE ELEMENT CROSS-SEC 

lTION*//20Xt12HELEMENT NO. t5Xt5HTHICKtlOX,5HWIDTHt5XtlOHCOMP. AS 
2 5XtlOHTENSION AS t5XtlOHDIST. AST t5X,lOHDIST. ASC /) 

DO 1454 I = 1t NELEM. 
. WRITEC6t1457)lf00THCl)tDDBfl)tAASTCI)tAASCCIJ~DDSTC1JtDDSCCIJ 

1457 FORMATC1Ht18Xti3t5Xt6C5XtF10.3)J 
1454 CONTINUE . 

WRITEC6t7696) · 
7696 FORMATClHUtl5Xtl2HELEMENT NO. tl0Xt5HEND 1 t5Xt5HEND 2 t5Xt2HXl 

lt8Xt2HYlt8Xt2HX2t8Xt2HY2tlOXt5H EA tl3Xt3HEI /) 
DO 1013 I = lt NELEM 
DTHl=DOTHClJ 
DBl=DDBfl) 
ASTl=AASTCI) 
ASCl=AASCCIJ 
DSTl=DDSTliJ 
DSCl=DDSC(I) 
AA=DB1*0.50 
BB=ASCl*C2.0*ECS-l.OJ+ECS*AST1 
CC=-ASC1*f2.0*ECS~l.Ol*DSTl-ECS*ASTl*DSTl 
XW=C-BB+CBB**2-4.0*AA*CC>**Oe50)/C2.0*AA> . 
EAfiJ=ECON*DB1*DTHl . · . 
EICI>=ECON*COBl*XW**3/3.0+ASC1*(2eO*ECS-l.J*CXW-OSClJ**2+ECS*ASTl* 

1 CDST1 - XW>**2) . 
WRITEC6tl006JMEMBERCIJtiiFROMCiltiiTOCIJtXPlfl)tYPlCIJtXP2l1)t 

1 YP2CI)t EACI)tEICIJ . . 
1006 FORMAT(lH tl8Xti5,7Xt2IlOt4Fl0.3tEI5.5tE18.-5) 
1013 CONTINUE 

JOINT=3*NJOIN • · 
8147 REAOC5t8148JIDEX 
8148 FORMATC15) 

NMl=O 
NM2 = 0 
IFCIDEX.EQ.l) GO TO 9373 
DO 904 I=1tJOINT 

904 POD(!) = o.o 
114 READC5t3)KJOINtiNDEXtPXtPYtPMZ 

3 FORMATC2I5t3FlU.31 
JIND = 3*KJOIN -2 
JINE = JIND + 1 
JINF = JIND + 2 
PDDCJINDJ = PX 
PDDCJINE) ~ PY 
PDDCJINF ) = PMZ 
IFCINDEX.EQ.U) GO TO 114 
WRITEC6;905) 

905 FORMAT(1Hlt35Xt*APPLIED LUAD VECTORS*///lHOtl6Xt8HPX(KIPSJtl7Xt 
1 8HPYCKIPSJ , 17XtlOHMXCFT-KIP) //) 
WRITEC6t9U3)(P00(1Jtl = lt JOINTJ 

903 FORMATC3F25e5) 
If( IDEX.GTe1) GO TO 1199 
DO 1977 J = lt NELEM 
DO 1977 I = ltNSTRIP 
CEEPCJtiJ = .o.o 



SEEPlCJtl) = 0.0 
SEEP2CJtl) = o.o 

1977 WEEPCJtl) = o.o 
1199 CONTINUE 
9111 READC5t9996) INDEXXt Tlt T2 
9996 FORMATCI5t2F10.3) 

IFCINDEXX.GT.O) GO TO dl47 
IFCNM1.GT~U.OR.NM2.GT.O) GO TO 9111 
NCYCL = 0 . 

16 NCYCL = NCYCL + 1 
WRITEC6t·l010) NCYCL · ... 

150. 

1010 FORMATC1H0///1H0•80Xt*lTERATION NOe*t2Xtl3//) 
WRITEC6t9172)TltT2 

9172 FORMATC1H0t20Xt8HTIME 1 = tF10.3t5X•8HTIME 2 = tFl0.3/J 
DO 3773 I = lt.JOINT 
PO C I ) = PDD ( I ) . 

3773 CONTINUE 
DO 7 I=ltNJOIN 
IIIJ=3*1 
POCIIIJJ=l2.0*PDCIIIJl 

7 CONTINUE 
DO 2008 I = 1t NELEM 
EEAACNCYCLtl) = EACI) 

2008 EEIICNCYCLtl) = EICI) 
IFCNCYCL.LE.lJ GO TO 2001 
DO 20u2 I = 19 NELEM 
GOD C I ) · = 002 C I li 
El(f) =CEEIICNCYCLtll+EEIICNCYCL-ltl))*0•50 

2002 EACI) =CEEAACNCYCLtll+EEAACNCYCL-1tl))*0•50 
IFCNCYCL-5)2001t2003t2003 

2003 DO 20U5 I = lt NELEM 
EICIJ=CEEIICNCYCLtiJ+EEIICNCYCL-ltiJ+EEIICNCYCL-2ti)J/3eO 

2005 EACI)=tEEAACNCYCLtiJ+EEAACNCYCL-lti)+EEAACNCYCL-Ztl))/3eO 
IFCNCYCL-8J200lt2006t2006 

2006 DO 2007 I = 1, NELEM 
EICl)=CEEIICNCYCLtiJ+EEIICNCYCL-1ti)+EEIICNCYCL-2ti)+EEIICNCYCL-3t 

1 J))/4.0 
2007 EA<I>=CEEAACNCYCLtll+EEAACNCYCL-1ti)+EEAACNCYCL-2ti)+EEAA(NCYCL-3t 

. 1 I)J/4.0 . 
2001 DO 5000· II = lt NELEM 

KOUNT = II 
XXP1 = XPl(ll) 
YYPl = YP!CII) 
XXP2 = XP2CII) 
YYP2 = YP2CII> 
BBLCIIl=· C ( (XXP2-XXP1)**2 +CYYP2-YYP1>**2)**0•5 )*CF 
EEl = EICII) 
EEA = EACII> 
IFROM = IIFROMCIIl 
ITO= IITOCII) 
IF(NNRCIIJ .EQ.O)GO TO 100 
NR = NNR(II) 
DO 1009 I = 1t NR 

1 0 0 9 I -R ( I ) = I I R ( I I t I ) 
C CHECK EQUILIBRIUM CONDITIONS IN MEMBER CONTAINING RELEASES 

c 
c 
c 

c 

CALL BALANCE 
IF<NR.GE.51GO TO 124 
FORMULATE MEMBER STIFFNESS MATRIX IN MEMBER COO~DINATES 
CALL STIFFN 
"ARRANG~ THE ELEMENTS OF STIFFNE~S MATRIX FOR PARTITION1NG 
~~h~rfr~A~a~ STIFFNESS MATRIX 
N=6-NR 
DO 25 I= 1 tN 
DO 25 J=ltN 
STIFlCitJ)=SFCI,J) 

25 CONTINUE 
IF Kl ONLY IS NONSINGULARt DELETE CALCULATION OF K2t K3t K4 
IFCNR.EQ.4)G0 TO 81 
DO 30 J=ltNR 
NM=J+N 
DO .30 I=ltN 
STif2(l,JJ=SFCitNM) 

30 CONTINUE 



DO 40 I=ltNR 
NI=I+N 
D0*40 J=ltN 
STIF3<ItJl=SFCNitJ) 

40 CONTINUE 
DO 50 . I.= l11 NR 
NNI=l+N 
DO 50 J=ltNR 
NNJ=J+N 
STIF4CitJl=SFCNNltNNJ). 

50 CONTINUE 
C INVERT K4 TO OBTAIN K4~1NVERSE 

CALL lNVMAT!STIF4t4tNRtlE-07tlERRtNll 
IFliERR.NE.OJGO TO 126 
DO 60 I=lt5 
DO 60 J=lt5 
XINTllltJ)=O.O 
XINT2CitJ)=O.O 

60 CONTINUE 
DO 70 I=ltNR 
DO 70 J=ltN 
DO 70 K=l tNR 
XINTlCitJ)=XINTlCitJ)+STif4(ltK)*STIF3CK,J) 

70 CONTINUE 
DO 75 I=ltN 
DO 75 J=ltN 
DO 75 K=ltNR 
XIN~2(ltJ)~XINT2lltJ)+STIF2(1tK)*XINTl(~t~) 

75 CONTINUE 
C CALCULATE REDUCED STIFFNESS MATRIXt OF SIZE N X N 

DO 80 I=ltN 
DO 80 J=ltN 
RESTIFCitJl=STIFllltJ)-XINT2(1tJ) 

80 CONTINUE . 

151 •. 

GO TO 83 
C CALCULATE REDUCED STIFFNESS MATRIXt OF SIZE N X N (FOR 4 RELEASE~) 

81 DO 82 I=ltN 
DO 82 J=1tN 
RESTIFtltJ)=STIFlCitJ) 

82 CONTINUE 
C EXPAND REDUCED STIFFNESS MATRIX TO FULL 6 X 6 BY INTRODUCTION OF 
C APPROPRIATE NULL ELEMENTS 

83 CALL ENLARGECN) 
C PARTITION AND STORE REDU~ED MEMBER STIFFNESS MATRIX 

DO 400 I=lt3 
DO 400 J=lt3 
STF11(ItJtKOUNTJ=SF(I,J) 
STF12(1tJtKOUNT)=SF<ItJ+3) 
STF2l<I•J,KOUNT)=SFCI+3tJ) 
STF22(1tJtKOUNT»=SF(I+3tJ+3) 

400 CONTINUE 
DO 85 I=lt3. 
DO 8·5 J=1t3 
XAC I tJJ=SF( I tJJ 
XBCitJ)=SFC1tJ+3) 
XECitJ)=SFCI+3tJ) 
XF(I,Jl~SF(I+3tJ+3) 

85 CONTINUE 
C TRANSFORM STIFFNESS MATRIX TO GLOBAL COORDINATES 

CALL TRANSF(XAtltl) 
CALL TRANSFCXBtlt4) 
CALL TRANSFCXEt4tl) 
CALL TRANSFCXFt4,4) 
GO TO 110 

100 CALL STJFFN 
110 IFCKOUNT.GEe2)G0 TO 134 

DO 13U I=ltJOINT 
DO 130 J=ltJOINT 
SAMCitJ)=OeU 

130 CONTINUE 
134 IF(IFROM.EQ.O)GO TO 501 

C ADD Kllt Kl2t K2lt K22 TO ASSEMBLY MATRIX AT CORRECT LOCATION. 
DO 135 I=lt3 
DO 135 J=lt3· 



IFROG = I + 3*(1FROM- 1) 
JFROG=J+3*<IFROM-l) 
ITOAD=I+3*liTO~l) 
JTOAO=J+3*CIT0-1) 
SAMliFROGtJFROGl=SAMCtFROGtJFROG>+SFlltJ) 
SAMCIFROGtJTOADl=SAM<IFROGtJTOAD>+SFlltJ+3) 
SAMCITOADtJFROG)=SAM(ITOADtJFROGl+SF(l+3,~) 
SAMliTOAOtJTOADl=SAMCITOAD,JTOAD>+SF<I+3tJ+3) 

c 
135 CONTINUE 

GO TO 505 
1 ADD K22 TO ASSEMBLY MATRIX FOR MEMBERS CONNECTING TO BASE JOINTS 

501 DO 502 I=lt3 
DO 502 J=lt3 
ITOAO=I+3*(ITO~l) 
JTOAO=J+3*liTO~l) 
SAM<ITOADtJTOADJ=SAMCITOADtJTOADl+SF<I+3,J+3l 

502 CONTINUE . 
C STORE JOINT NUMBERS CORRESPONDING TO MEMBER NUMBER 

505 IGLORPlltltKOUNT)=IFROM 
IGLORPClt2tKOUNT)=ITO 

C WHEN ALL MEMBERS HAVE BEEN PROCESSED• PROCEED WITH SOLUTION 
5000 CONTINUE . 

C SOLVE FOR JOINT DISPLACEMENTS USING LIBRARY SUBROUTINE •SOLVE• 
160 CALL SOLVE<SAMtPOtiOtJOINTt75) 

WRITEl6tl65) . 
165 FORMATC1H0t/ 15X t*MEM~ER DISPLACEMENT CINCH) IN GLOtiAL COORUI 

lNATE AND MEMBER FORCElKIP AND IN-K) IN MEMBER COORDINATE*/) 

c 

WRITEC6tl666) 
1666 FORMAT(lHO t49Xtl2HX-DIRECTION 

1 12HZ-DIRECTION ) 
tl8Xtl2HY-DIRECTION 

DO 25U K=ltNELEM 
JNOl=IGLORPCltluK) 
JN02=IGLORPC1t2~K) 
IFCJNOl.EQ.O)GO TO 510 
NOPD1=3*CJN01-1) 
NOPD2=3*CJN02-1) 
OBTAIN GLOBAL DISPLACEMENTS FROM SOLUTION VECTOR. WRITE VA 
DO 200 I=lt3 . 
IPDl = I + NOPDl 
"IPD2=1+NOPD2 
GDl (I l=PD ( I.PDl) 
G02(1)=PDCIPD2) 

200 CONTINUE 

18X t 

WRITEC6tl90) K tCGOl(l)ti = lt3l 
190 FORMATClHOt lOXtllHMEMBER NO. tl3/1H tl0Xtl3HDISPL-END 1 t 

1 7Xt3E30.5) 
WRITEC6•19l)CGD2«IJtl=1t3) 

191 FORMATClH tlUXtl3HDISPL-END 2 
DO 205 I= lt3 
01(1)=0.0 
02(1)=0.0 
FORCl(l) = 0.0 
FORC2(1) = 0.0 

205 CONTINUE 
DO 405 L=lt3 
DO 405 M=lt3 
Dl(L)=Ol(L)+UTTCLtMtK)*GDl(Ml 

t7Xt3E30.5) 

02(L)=02(L)+TTTCLtMtKl*GD2CM) . 
405 CONTINUE 

C CALCULATE MEMBER fORCES IN MEMBER COORDINATES 
88 ~l8 ~:l;i . . 
FORCl(l)=FoRCl(I)+STFllCitJtK)*Dl(J)+STF12CitJtK)*D2CJ) 
FORC2(1)=FORC2CI>+STF2l(ItJtK)*Dl(J)+STF22(ItJtK)*02(J) 

210 CONTINUE 
WRITE(6t215>(FORC1Cl)tl=lt3) 

215 FORMATClH tl0Xtl3HFORCE-END 1 
WRIT~l6t216>CFORC2CI)tl=1•3) 

216 FORMATflH t10Xtl3HFORCE-END 2 
GO TO 259 

510 NOPD2=3*(JN02-1) 
DO 515 I=lt3 

Ab~~il!~8~9~o2J 

t7Xt3E30e5l 

t7Xt3E30.5) 



515 CONTINUE 
WRITE(6t516) KtC~D2CI)ti = lt3) 

516 FORMATClHUt 10Xtl1HMEMBER NO. ti3/1H tl0Xtl3HDISPL-END_2 t 
1 7 X , 3 E 3 0. 5 ). 

DO 520 1=1t3 
02(1)=0·0 
FORCI C I.) =0. 0 
FORC2(1)=0.0 

520 CONTINUE-
DO 525 L=lt3 
DO 525 M=1t3 
02 C L) =02 l L) + TT T ("L tM, K.) *GD2 ( M) 
DlCL) = o.o 

525 CONTINUE 
DO 530 I=lt3 
DO 530 J=lt3 
FORC1CI>=FORC1CI)+STF12CitJtK.)*02CJ) 
FORC2CI)=FORC2Cil+STF22CitJtKl*D2CJ) 

530 CONTINUE 
WRITEC6t535)(FORC1CI)tl=lt3) 

535 FORMATClH t10Xtl3HFORCE-END 1 t7Xt3E30.5) 
WRITEC6t536)CFORC2Cilti=lt3) 

536 FORMATClH t1UXtl3HFORCE-END 2 t7X~3E30.5) 
259 PAXIAL2CK) = -FORC2Cl) 

V2CKJ =-FORC2C2l 
BMOM2. CK) =-FORC2 (. 3) 
DD1CK) = DlC2> · 
002 C K) =-02 ( 2 ~ 

250. ·CONTINUE 
IFCNCYCL.LEell GO TO 9573 
KADD2 = 0 
KADD= .0 
DO 7379 I = 1~ NELEM 
RATI01= ( EEIICNCYCLtll-EEIICNCYCL-lti)J/EEilCNCYCLtil 
RATI02~ C EEAACNCYCLti>-EEAACNCYCL-lti)l/EEAACNCYCLti) 
RATI03=CGDDCIJ-DD2ClJJ/DD2CIJ 
IF1ABSCRATI01J~LE.O.Ol.AND.ABSCRATI02leLE.O.Oll KADD2= KADD2+ 1 
IFCABS~RATI03).LE.O.Ol) KAOD=KADD+l 

7379 CONTINUE 
IFCKADDeEQ.NELEM.OR.KADD2•EQ.NELEMJGO TO 5555 
GO TO 9573 

5555 WRITEC6•9273) 
9273 FORMATClHOt40Xt*--- - - CORRECT ANSWER - -- - - -*/lHl) 

GO TO 9111 
9573 DO 733 JJ= lt NELEM 

BMCCJJ)=BMOM2CJJ)+V2CJJ)*BBLCJJ)*0•50+PAXIAL2(JJ)*CDD2CJJJ+DD1CJJ) 
1 ) *0• 50 

733 CONTINUE 
WRITEC6t61U) 

610 FORMATC///1H0t13Xt5HWCONC , 8Xt 5HWTENS t7Xtl2H CURVATURE 
lt6Xt1VHAXIAL P t2Xt10HAPPLIED M t5Xtl0H EI t4X.t 5H EA • 
2 10Xt5H R /) 

DO 9991 I = lt NELEM 
IFCI.GT.NPLAST) GO TO 126 
KONT = I . 
ASC = AASCCI) 
AST = AASTCl) 
DB= DOBCIJ 
D T H = .. DOTH C I J 
DST = DDSTCIJ 
DSC = DDSCCI) 
PAXl. = PAXIAL2CI) . 
BMCL= ABSCBMC(I)) 
DCGC = lDB*DTH**2*0.5+AST*DST+ASC*DSC)/(DB*DTH + ASC + AST) 
WTRIAL = CBMCL*DCGC)/EICI) + PAX1/EAC1) 
WBOT = CBMCL*DCGCJ/EICIJ - PAXl/EACI) 
PHITRI =CWTRIAL + WBOTJ/ UTH 
CALL MPHICPAXltBMCLtWWltPHI1tWEEPtWUltSEEPl,NMltUUFltWTN) 
IFCNMleGT.O) GO TO 9111 
WTRIAL = CBMCL*DCGC)/EICI) . 
PHITRI = WTRIAL I DCGC 
CALL MPHICO.OtBMCLtWPltPHIPltCEEPtWU2tSEEP2,NM2tUUF2tW9) 
IFCNM2.GT.O) GO TO 9111 
IFCKADD2.EQ.NELEMe0ReKADDeEQeNELEM ) GO TO 1279 



1239 
1279 

613 
9991 

124 
125 

127 

126 

8127 

9373 
8012 

DO 1239 L2 = lt NSTRIP 
WEEP(I,L2)=WEEP(ItL2l-SEEP1Cltl2l 
CEEPCitL2J=CEEPCitL2)-5EEP2Citl2l 
CONTINUE 
DNAX3 = WPl/PHIPl 
DNAXl = WWl/PHil 
WCGCl = PHll*(DNAXl-DCGC) 
WCGCPl = PHIP1*1DNAX3-DCGC) 
WAXIAL1 = WCGCl-WCGCPl 
IFCWAXIALl.EQ.O.)WAXIALl=WCGC1 
EICIJ ~ ABS(BMCL/PHilJ 
EACI) = ABSCPAX1/WAXIAL1l 
RC =CEI(IJ/CA<IJ>**0•50 
WRITEC6t613) WWltWTNtPHiltPAXltBMCLtEICI)tEA(l) tRC 
FORMATClH t5Xt3El5.5t5El4.5) 
CONTINUE 
GO TO 126 
WRITEC6t125J KOUNT 
FORMAT(45H SYSTEM UNSTABLE. TOO MANY RELEASES IN MEMBERtl3) 
W R I T E ( 6 ' 12 7 ) · I FROM t I T 0 
FORMAT((33H REPLACE BY FORCE ACTING AT JOINTtl3)tl9H OR JOINT,I3)) 
CALL EXIT 
IF<NCYCL.LT.MCYCL)GO TO 16 
WRITE<6t8127) 
FORMAT(///40X,*------ NO CONVERGENCE ------ ---- -*/) 
GO TO 9111 
WRITEC6t8012) 
FORMATC1H0t////1H0t50Xt*END OF PROGRAM*) 
CALL EXIT 
END 



1.5.5. 
SUBROUTINE ARRANGE . 

C THIS SUBROUTINE REPOSITIONS THE COLUMNS OF THE STIFFNESS MATRIXt 
C IN PREPARATION FOR THE PARTITIONING OF SF, AND THE SUBSEQUENT 
C MULTIPLICATION OF THE PARTITIONED SUBMATRI~ES• 

COMMON/BLOK3/SF(6t6) 
COMMON/BLOK5/NRtiR(4) 
DIMENSION WMAT(7t7) 

C TRANSFER STIFFNESS MATRIX <MEMBER COORD'S) TO WORKING MATRIX WMAT 
DO 3 l=lt6 
DO 3 J=lt6 
WM~T(ItJ)=SF(J,J) 

3· CONTINUE . . . 
C TRANSFER COLUMNS CONTAINING RELEASES FROM PRESENT POSITIONS IN. 
C WMAT TO EXTREME RIGHT-HAND SIDE OF MATRIX. INTERMEDIATE STEP 
C CONSISTS OF TRANSFER FROM PRESENT POSITION TO COLUMN 7t THEN 
C MOVING ALL COLUMNS ONE POSITION TO THE LEFT. 

DO ·7 K=l tNR. 
KRAP=IR(K)-K+l 
DO 4 I=lt6 
WMAT(It7J=WMATCitKRAP) 

4 CONTINUE . 
DO 6 J=KRAPt6 
DO 6 I=lt6 
WMATCitJ)=WMATCitJ+l) 

6 CONTINUE 
7 CONTINUE 

C TRANSFER ALL ROWS CONTAINING RELEASES FROM PRESENT POSITIONS TO 
C BY PREVIOUS COLUMN SHIFT>. 

DO 12 K=ltNR 
KRR=IRCKl-K+l 
DO 11 J= t7 
WMAT17tJ)=WMAT(KRR~J) 

11 CONTINUE 
00*10 I=KRRt6 
00*10 J=lt7 
WMATC·ItJ)=WMATCI+ltJ) 

10 CONTINUE 
12 CONTINUE 

C TRANSFER RE-ARRANGED STIFFNESS MATRIX (WMAT) BACK TO SF AND 
C RETURN TO MAIN PROGRAM· 

DO 8 I =l.t6 
DO 8 J=lt6 
SFCI,JJ=WMAT(ItJ) 

8 CONTINUE 
RETURN 
END 



c 
c 

c 
c 

c 
c 

c 
c 

c 

156. 
SUBROUTINE BALANCE . 
THIS SUBROUTINE CHECKS THE EQUILIBRIUM CONDITIONS FOR POSSIBLE 
ERRONEOUS SPECIFICATION OF MEMBER RELEASES. 
COMMON/BLOK5/NRtl.R(4) 
DIMENSION IPC6) 
GENERATE INTEGER ARRAY OF 6 ELEMENTSt SUCH THAT ELEMENT VALUE IS 

IDENTICAL WITH SUBSC~IPT VALUE. CALL THiS ARRAY 1 IP 1
e 

DO 5 K=lt6 
IPCK)=K 

5 CONTINUE 
DO 10 L=ltNR 
KK=IRCL) 
IP(KK)=O 

10 CONTINUE 
CHECK AXIAL AND SHEAR FORlE EQUILIBRIUM. IF EITHER PlX OR P2X 

IS ZEROt SET BOTH EQUAL TO ZERO. (SIMILARLY FOR PlYt P2Y) 
ICHEK1=1P(l)*IPC4) 
ICHEK2=1P(2)*1P(5) 
IFCICHEKl.EQ.U)GO TO 30 

15 IFCICHEK2.EQ.O)G0 TO 35 
GO TO 50 

30 I p·( 1) =0 
IP(4)=0 
GO TO 15 

35 IPC2)=0 
IPC5)=0 
CHECK MOMENT EQUILIBRIUM FOR ALL 3 POSSIBILITIES OF NON-RESTRAINT 

AND ADJUST ACCORDINGLY. 
50 ICHEK3=IP(3)+IPC6)+10*IPC2) 

IFCICHEK3.EQ.20)G0 TO 60 
IFCICHEK3.EQ.6) GO TO 65 
IF(ICHEK3.EQ.3)G0 TO 70 
GO TO 90 

60 IP(2)=0 
IP(5)=0 
GO TO 90 

65 IPC6)=0 
GO TO 90 

70 IPC3)=0 
SPECIFY ACTUAL NUMBER OF RELEASES IN SYSTEM FOR EYUILIBRIUM (WITH 

90 KOUNT=O 
DO 95 I=lt6 
ISNIK=IP(I) 
IFCISNIK.NE.O>GO. TO 95 
KOUNT=KOUNT+l 
IRCKOUNT)=I 
NR=KOUNT 

95 CONTINUE 
RETURN 
END 



10 

20 

30 

100 

SUBROUTINE BMPCAL<WtPHltPtALtBMCALtWUtWEEPtCYLtW4) 
COMMONJBLOCKl/DTHtOBtASTtASCtDSTtDSC 
COMMON/BLOCK2/NSTRIPtLtTltT2 
COMMON/BLOCK3/WSHRINS~ WSHRtNC 
COMMON/BLOCK4/WTENSIL~ WYtFSYtFCYLt TCF• NALLOWt ES 
DIMENSION WEEPC30t20lt WU<30t20) 

157. 

Dl = DTH/NSTRIP . 
DCGC = (0B*OTH**2*0.5+AST*DST+ASC*DSC)/tDB*DTH + ASC + AST) 
Wl =.W 
DNAXIS = Wl/PHI 
W2 =<DNAXIS - DSC)*PHI + WSHRINS 
W3 =(DNAXIS -·· !DSTl*PHI + WSHniNS 
W4 = PHI*CDNAXIS-DTH) 
OX = DCGC + Oe5*DL 
PCON = o.o 
BMCON = o.o 
DO 100 I = lt NSTRIP 
OX = OX - DL 
WU(Ltl)=PHI*CDNAX1S+DL*0•50-DL*FLOAT(l)) -WEEP(Ltl)- WSH~INC 
WX = WUlLtl) 
IF<WX+WTENSIL)l0,20t20 
STRESS = o.u 
GO TO 30 
STRESS=CYL*<-4.5005079E+09*WX**4+7e6164509E+07*WX**3-4.8022754E+05 

1 *WX**2 +1.1902628E+03*WXl 
PCONCR = STRESS*DB*DL 
BMCONC = PCONCR *OX 
PCON = PCON + PCONCR 
BMCON ·= BMCON + BMCONC 
CONTINUE 
IF(W2.EQ.O.) W2 = 1.0 
IF(W3.EQ.0.01 W3 = 1.0 
WA:: ABS(W2) 
WB= ABS(W3) 
STEEL2= FSY*W2*lWA+WY-ABS<WA-WY))/(2.0*WY*WA) 
STEEL3= FSY*W3*(WB+WY-ABS<WB-WY))/(2.0*WY*WB) 
IF<W2.EQ.O.) STEEL2= o.o 
IF(W3.EQ.O.J STEEL3=0.0 
PS2 = ASC*STEEL2 
PS3= AST*STEEL3 
BMS2 = PS2*(0CGC-DSC) 
BMS3 = PS3*(0CGC ~DST) 
PCAL = PCON +PS2+PS3 
BMCAL = BMCON + BMS2+BMS3 
RETURN 
END 



87 

129 
88 

125 

124 

96 
69 

I. 

67 

987 

988 

75 

) 

SUBROUTlNE·CREEPCWEEPtWU~SEEPtUUfl) 
COMMON/BLOCK2/NSTRIPtKONTtTltT2 
DIMENSION WEEPC30t20ltWUC30t20),SEEPC30t20)tUUF1C30t20) 
Al = -l.03050E+06 
A2 = 5e748870E+02 
A3 ·= - 3.776740E-01 
A4 = - 3.072250E-06 
Bl = le858390E+06 
82 ~ ~l.Ul22~5E+03 
83=le5215225E+OO 
B4 : -7.9862500E-06 
L = KONT . 
IFCTleGT.U.O) GO TO 87 
SHRINK=-0.000lll+0.000224*ALOG10CT2) 
GO TO 88 
IF C T 2 • G T. 7 U 0 • ) GO T 0 12 9 · 
SHRINK=0.000224*CALOG10CT2l-ALOG10CT1>> 
GO TO 88 . . . 
SHRINK = 0 • 000224.* C ALOGlO C 700 • > - ALOGl 0 C·T 1) ) 
SSRR= SHRINK 
IFCTleGT.7UO.) SSRR = o. 
IFCTleGT.O.O) GO TO 67 
DO 69 I =.ltNSTRIP 
CLU=WUCLtl) 
X= CLU 

158. 

IFC X )124tl24~125 . . . 
WEEPCL,Il=CAl*X**3+A2*X**2+A3*X+A4)+CBl*X**3+B2*X**2+B3*X+B4)* 

1 ALOG10CT2)+ SSRR 
U UF 1 C L t I ) = X 
GO TO 96 
WEEPCLtl) = SSRR 
UUFlCLtl) = 0.0 
SEEPCLti) = WEEPCLtl) 
CONTI Nu·E 
RETURN 
DO 75 I = lt NSTRIP 
CLU = WUCLtl) 
X = CLU 
IFC X )988t988t987 
OLDU=ABSC X -UUFlCLtl)) 
Y = OLDU 
SOLD=CAl*Y**3+A2*Y**2+A3*Y+A4)+(Bl*Y**3+B2*Y**2+B3*Y+B4)*AL0GlOCT2 

1 - Tl) . 
SEEPCLti)=CBl*X**3+82*X**2+B3*X+B4>*CAL0GlOCT2)-ALOGlOCTl))+SSRR+ 

1 SOLD 
WEEPCLti)=WEEPCLti)+SEEPCLtl) 
UUFlCLtl)= CLU 
GO TO 75 
WEEPCLti)=WEEP<Lti)+SSRR 

. UUF 1 C L t I ). = 0 • 
SEEPCLtl) = SSRR 
CONTINUE 
RETURN 
END 



c 

c 

c 
c 
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c 

c c 
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c 

c 
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SUBROUTINE ENLARGECN) 
159. 

TO ENLARGE THE REDUCED STIFFNESS MATRIX TU THE ORIGINAL SIZEC6X6) 
COMMON/BLOK3/SF(6t6)/BLOK4/RC5t5)/BlOK5/NRtiRC4) 
DIMENSION RINT1(6t6)tRINT2(6t6) 
TRANSFER REDUCED STIFFNESS MATRIXt Rt TO WORKING MATRIX RJNTl 
DO 5 I=ltN 
DO 5 ..J=1tN 
RINT1(J,J)=RCitJ) 

5 CONTINUE 
TRANSFER ALL COLUMNSt WHitH HAVE NUMBERS EQUAL TO OR GREATER THAN 

THE RELEASE CODE NUMBERS, ONE POSITION TO THE RIGHT. 1 

POPULATE THE COLUMNS HAVING NUMBERS EQUAL TO RELEASE COUE 
NUMBERS WITH ZERO ELEMENTS. 

DO 10 K=1tNR 
KRAP=IRCK)-K+l 
IFCKRAP.LE.NJGO.TO 6 
KKRAP=IRCK) 
DO 40 I=ltN 
RINT1(ltKKRAPJ=O~O 

40 CONTINUE 
GO TO 10 

6 DO 10 J=KRAPtN 
JJ=J+K 
DO 10 I=1tN 
RINTlCitJ..JJ=R{ItJ) 

10 CONTINUE 
TRANSFER RINT1 ·TO WORKING ·MATRIX RINT2 
DO 50 l=ltN 
DO 50 J.=1 t6 
RINT2(J,J)=RINT1CI~J) 

50· CONTINUE 
EXPAND ROW POSITIONS FOR ROWS HAVING NUMBERS EQUAL TO OR GREATER 

THAN RELEASE CODE NUMBERS CAS FOR COLUMNSt AtiOVE). 
DO 15 K=ltNR 
KRUD=IR(K)-K+l 
JF(KRUO.LE.N)GO TO 11 
KKRUD=IR(K) 
DO 35 J=1t6 
RINT2CKKRUDtJ)=O.O 

35 CONTINUE 
GO TO 15 

11 DO 15 t=KRUDtN 
II=I+K 
DO 15 J = lt6 
RINT2CiltJ) = RINTlCit..J) 
CONTINUE 
ZERO ROWS AND COLUMNS OF RINT2 CORRESPONDING TO RELEASE CODES 
DO 55 K=1tNR 
DO 55 I = 1t 6 
KOUT=IRCK) 
RINT2CitKOUTJ=O.O 
RINT2CKOUTtl)=O.O 

55 CONTINUE 
TRANSFER EXPANDED C6 X 6) MODIFIED STlFFNESS MATRIX BACK TO SF 
AND RETURN TO MAIN PROGRAM 
DO 60 I=1t6 
DO 6U ..J=1t6 
SFCJ,J)=RINT2CitJ) 

60 CONTINUE 
RETURN 
END 

·' 



2388 

3388 

3377 

444 
436 

7712 
3012 

600 

608 

160. 
SUBROUTINE MPHICPAXIALtBMUMtSTRAlNtCURVAtWEEPtWUtSEEPtNMtUUFltWTE> 
COMMON/BLOCKl/DTHtDB•ASTtASCtDS.TtDSC 
COMMON/BLOCK2/NSTRIPtKONTtTltT2 . 
COMMON/BLOCK3/WSHRSt WSHRC . . 
COMMON/BLOCK4/WTENSILt WYtFSYtFCYLt rCFt NALLOWt ES 
COMMON/BLOCK5/PHITRitWTRIAL . 
DIMENSION WGC30t20)tWHC30t20) _ 
DIMENSION WEEPC30t20>tWUC30t20)tSEEPC30t20)~UUF1C30t20) 
KADD= 0 
CCA=S.OE-04 
CCB =· leOE-10 
EROR = 0.01 
KDD= 0 
P = PAXIAL 
BM = BMOM 
TDEL= T2 - Tl. 
W*= WTRIAL 
PHI = PHITRI 
WCF = 145.0 
EC = 33e*WCF**lo5*C FCYL*l000.)**0.50/lOOO. 
WSHRS = CDB*DTH-AST-ASC>*EC*WSHRC/C(AST+ASC>*ES> 
KOUNT = 0 
LM = KONT 
IFCT2)2388t2388~3377 
CYL = FCYL 
DO 3388 LN= lt NSTRIP 
SEEPCLMtLN)= u.o 
WEEPCLMtLN):::: 0.0 
GO TO 444 
FCI= FCYL 
IFCT2eLE.O.O.OR.TDEL.EQ.O.) GO TO 444 
CALL CREEPCWEEPtWUtSEEPtUUFl) 
IFCT2.LE.l2u.) CYL = CleO+TCF*T2/12Ue)*FCI 
CYL =CleO+TCF)*FCI 
CONTINUE 
CALL BMPCALCWtPHitPCALltBMCALltWUtWEEP,CYLtW4) 
KOUNT = KOUNT + 1 
IFCP.EQ.O.) P= 1.0 
IFCBM.EQ.O.)BM= 1.0 
ERRl = ABSCCP-PCALl)/Pl 
ERR2 = ABSCCBM-BMCAL11/BM) 
IFCP.EQ.u.u) ERRl = ABS(P(ALl) 
IFCBM.EQ.G.)ERR2 = ABSCBM,ALl> 
IFCERRI.LE.EROR.AND.ERR2.LE.EROR) GO TO 600 
IFCA85(8M)eLE •. lOe0) GO TO 7712 
GO TO 3012 
IF(BMCALl.LE.lO.O.AND.ERRl.LEeEROR) GO TO 600 
CONTINUE 
WlNC = CCA*W + CCB 
PH!NC = CCA*PHI+CCB 
IFCWINC.EQ.o.O.OR.PHINC.EQ.O.O) GO TO 608 
WNEW = W + WINC· 
PHINEW = PHI + PHINC 
CALL BMPCALCWtPHINEWtPCAL2tBMCAL2tWGtWEEPtCYL,W7) 
CALL BMPCALCWNEW9PHitPCAL3tBMCAL3tWHtWEEPtCYLtW8) 
All =CPCAL2-PCAL1)/PHINC 
Al2 = CPCAL3-PCALll/WINC 
Al3 = P - PCALl 
A21 = (8MCAL2 - BMCAL1)/PHINC 
A22 = C BMCAL3-BMCALll/WINC 
A23 = BM - BMCALl 
RR = All*A22-A2l*Al2 
IFCRR.EQ.O.) GO TO 608 
WDEL = CAll*A23-Al3*A21)/RR 
PHIDEL = ·CA13*A22 - A23*Al2)/RR 
PHI = PHI + PHIDEL 
W = W + WDEL 
IF{KQUNT-NALLOW)436t436t608 
STRAIN = W . 
CURVA = PHI 
WTE= W4 
NM= 0 
IFCCURVA.LE.Oe) GO TO 608 
RETURN 
KOUNT= 0 
KADD= KADD .+ 1 



GG = KADD 
W = WTRIAL*GG*0.25 
PHI = PHITRI*GG*0.20 
IF(KADD- 20)436tl23tl23 

123 WRITE(6tl98J 
198 FORMATClH t40Xt*- - - - - - -- - - - - - - - - - - - - - - - -*) 

NM~ 1 
STRAIN = 0.0015 
CURVA=0.0002 
RETURN 
END 



c 
c 
c 

c 
c 

c 

c 
c 

c 

c 

. 162. 

SUBROUTINE STIFFN 
THIS SUBROUTINE CALCULATES THE· 6X6 STIFFNESS MATRIXt EITHER IN 
MEMBER COORDINATES OR GLObAL COORDINATES, DEPENDING UPON wHETHER 
THE MEMBER HAS REDUCED OR FULL STIFFNESS <RESPECTIVELY). 
COMMON/BLOCK7/XltX2tYl~Y2~EitEAtKNTtCF 
COMMON/BLOK5/NRtiRC4) 
COMMON/BL0Kl/TC3t3)/BLOK2/TTC3t3)/8LOK3/SFC6t6) 
COMMON/BLOK6/STF11(3t3t30)tSTF12C3t3t30)tSTF21C3t3t30>• 

lSTF22C3t3t30)tTTTC3t3t30) 
DIMENSION RKC3t3)tSKC3t3)tQKC3t3)tUKC3t3) 
CALCULATE MEMBER LENGTH FROM COORDINATES 
AL=((X2-Xll**2+CY2-Yl)**2)**0•5 
POPULATE TRANSFORMATION MATRIX 
TCltl)=(X2-Xl)/AL 
TClt2)=CY2-Yl)/AL 
TClt3f=O.O 
TC2tl)=-Tllt2) 
T<2•2>=TCltl) 
TC2t3)=0•0 
TC3tl)=O.u 
TC3t2)=0.0 
TC3t3)=1.0 
DO 3 l=lt3 
DO 3 J=lt3 
TTTCltJtKNT>=TCitJ) 

3 CONTINUE 
4 DO 7 I=lt3 

DO 1 J=lt3 
RKCitJ)=O.u 
S K ( I , J.) = 0. u 
QKCitJ)=O.O 
UKCltJJ=O.O 

7 ·CONTINUE 
BL = AL * CF 
RKCltl)= EA/BL 
RKC2t2) = 12.*EI/BL**3 
RKC2t3)=6.U*EI/BL**2 
RKC3t2) : 6.0 * El/BL**2 
RK(3~3) ~ 4.0*EI/BL 
SKCltl)=-RKCltl) 
SKC2t2)=-RKC2t2) 
SKC2t3)=RKC2t3) 
S K (3 t 2 ) =-R K ( 3 t 2 ) 
SKC3t3)=0.5*RKC3t3) 
QKCltl)=-RKCltl) 

·QKC2t2)=-RKC2t2) 
QKC2t3)=-RKC2t3) 
QI(C3t2J=RK(3t2) 
QKC3t3)=SKC3t3) 
UKCltl)=RKfltl) 
UKC2t2)=RKC2t2) 
UKC2t3)=-RKC2t3) 
UKC3t2)=-RKC3t2) 
UKC3t3)=RKC3t3) 
CALCULATE TRANSPOSE OF TRANSFORMATION MATRIX 
DO 8 I=lt3 
DO 8 J =. 1 t 3 
T T ( J t I ) = T C I t .J ) ",,,\ 

8 CONTINUE 
STORE MEMBER STIFFNESS MATRIX CMEMBER CUOHD•S> IN 3-DIMENSIONAL 

ARRAY. THIRD SUBSCRIPT DEFINES MEMBER NUMtiER. 
DO 30 I=lt3 
DO 30 J=lt3 
STFllCitJtKNT>=RKCitJ) 
STF12CitJtKNT)=SKCitJ) 
STF21CitJtKNT)=QK{ItJ) 
STF22CitJtKNT)=UKlitJ) 

30 CONTINUE 
IF MEMBER HAS NO RELEASESt THANSFORM MEM~ER STIFFN~SS TO GLUbAL ~ORO. 
IFCNR.Gf.l)GO TO 15 
CALL TRANSFCRKt ltl) 
CALL TRANSFCSKtlt4) 
CALL TRANSF(QKt4tl) 
CALL TRANSFCUKt4t4) 
GO TO 25 
IF MEMBER HAS RELEASESt RETAIN ME~BER STIFFNE~S MATRIX IN MEMBER 



C COORDINATES FOR SUBSEQUENT CALCUL.ATION OF REDUCED STIFFNESS 
C MATRIX IN MAIN PROGRAM. 

· 15 DO 35 I=lt3 
DO 35 J=lt3 
SFCltJ)=STFllCitJtKNT) 
SFCitJ+3)=STF12(ItJtKNT) 
SFCI+3tJ.)=STF21CitJtKNT) 
SFCI+3tJ+3)=STF22(ltJtKNT) 

35 CONTINUE 
25 RETURN 

END 



c 
c 
c 

c 

c c c 

164. 
SUBROUTINE TWANSF (·A , Ilt J1) 
THIS SUBROUTINE ACTUATES A SIMILARITY TRANSFOHM, OPEHATIN~ UN THt 
PRIMARY 3X3 MATRICES. THESE ARE SUBSEQUENTLY PLACED IN THE PROPER 
LOCATIONS IN THE STIFFNESS MATRIX, SF. 
COMMON/BLOK1/TC3t3)/BLOK2/TT(3,3)/Bl0K3/SFC6t6) 
DIMENSION AC3t3ltBC3t3)t0C3t3) 
ZERO WORKING MATRICES B AND D 
DO 12 I=lt3 
DO 12 J=lt3 
BCitJ)=OeU 
·oci,Jl=O.o 

12 CONTINUE 
DO 14 I=1t3 
DO 14 J=1t3 
DO 14 K=lt3 
BC I tJ)=BC I ,J)+AC I tK)*TCKt..J) 
CONTINUE 
DO 16 I=lt3 
DO 16 J=lt3 
DO 16 K=1t3 
DCitJ)=DCitJ)+TTCitKl*BCKtJ) 

16 CONTINUE . 
POPULATE STIFFNESS MATRIX WITH SUBMATRICES WHICH ARE NOW 

EXPRESSED IN GLOBAL COORDINATES. RESULT IS MEMBER STIFFNESS 
MATRIX IN GLO~AL COORDINATtSt READY FOR ADOlTION TO SAM. 

SFCiltJl)=DC1t1) 
SF C . I 1 ' J 1+ l ) = D C 1 , 2 ) . 
SFCiltJ1+2)=0(1;3) 
SFCI1+1t~ll=DC2tl) 
SFCII+ltJl+ll=DC2t2) 
SFC1l+lt~l+2)=0C2t3) 
SFCI1+2tJlJ=DC3tl) 
SFCI1+2tJl+ll=DC3t2) 
SFCI1+2tJ1+2)=0(3,3) 
RETURN 
END 

.i 
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APPENDIX B 

CYLINDER NO. AGE (DAY) STRENGTH ( LBLIN2 
~ 

FR1 l\1 28 4380. 
K2 28 4420. 

K3 ·28 4425. 
1:4 28 4}60. 
K5 28 4400. 

K6 28 44?0. 

Average 4408. 
Hean Deviation 23. 
Standard Deviation 1'7.. 

FS1 01 28 4360. 
C2 28 4420. 

C3 28 4460. 

Average 4410. 

Mean Deviation 37. 
Standard Deviation 41. 

FS1 c4 44 4620. 
05 44 4600. 

Average 4610. 

Mean Deviation 10~ 

Standard Deviation 10. 

Mean Deviation =~Cif~- !:~IN 
Standard Deviation; ((f' - !•)2/ N) ~ c c 

= ~f~ IN 
N = number of specimen 
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