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ABSTRACT 

A study is made of the effects of pairing of defects on 

the dynamics of impure lattices, with the prospect of calculating 

the properties of crystals with a reasonably high concentration 

of impurities. A harmonic theory is used, with a mass-defect 

model, i.e. mass differences only are considered. 

Various parameters of lattice dynamics are studied, such 

as the atomic mean square displacement, by use of the Green's 

functions of Zubarev (1960), as evaluated by Bruno (1971). 

Finally, a calculation is made of the shifts and widths 

in the phonon spectrum of Copper due to the addition of 20% 

Gold impurities. The theory of Aiyer et al. (1969) is used, 

as corrected by Nickel and Krumhansl (1971), with a derivation 

along the lines of Langer (1961). 

It is shown that pairing effects are small and that the 

high-concentration calculation does not reproduce the experimental 

results of Svensson and Kamitakahara (1972) so that a more de

tailed model must be employed, in particular the inclusion of force 

constant changes and volume effects appears to be necessary. 
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CHAPTER I 

THEORY 

I.l GREEN'S FUNCTIONS 

I.la Fundamentals 

The Green's functions used throughout this work are those of 

Zubarev (1960) viz. the so-called double time thermal Green's functions. 

A convenient definition of these objects is given by; 

GA(t,t') «A ( t) ; B ( t ' ) » 
A 

+ i8(t'-t)<[A(t) B(t')]> (1)I 

where A and B are arbitrary operators and the subscript A implies ad

vanced to compare with the retarded Green's function defined by; 

GR(t,t') ==-i8(t-t')<[A(t) B(t')]> (2)I 

A and B are understood to be in the Heisenberg representation, square 

brackets imply the algebra appropriate to the statistics of the system, 

commutator in the case of Bosons and anti-commutator in the Fermion 

case. In addition, pointed brackets imply thermal average over a 

canonical ensemble, i.e. 

H 

Tr{e kT A} 

<A> 
H 

(3) 

Tr{e 
kT } 

1 




2 

where k is Eoltzman's constant, T is the absolute temperature and H is 

the Hamiltonian operator for the system. The step function, 8(t) is given 

by 

J l, t>O 
(4)8(t) =l 

0, t<O 

and is not defined for t=O. 

The Green's function behaves as an intermediary between the 

fundamental dynamical law and the thermally averaged correlation functions 

<A(t) B(t')> 

of linear response theory. As will be seen presently the correlation 

function may be readily calculated from the Green's function, which in 

turn may be found from the dynamical law. 

Due to the time independence of the Hamiltonian, a crystal 

system is invariant with respect to time translations, hence the Green's 

function can depend on its two time arguments only through their difference; 

G(t,t') G(t-t') G(T) 

implying, for example 

GR (t-t I) =GR (T) -i8 (T) <(A (T) ,B (0)] > (5) 

where T=t-t' 

The use of Fourier transformation greatly simplifies the solu

tion of the equation of motion, so at this point all quantities are time-

Fourier transformed, and specializing to bosons, 
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G (W)
R 

00 

iWT- iTI f _ 8(T)<A(T)B- BA(T)> e dT. 	 (6)
2

00 

Now we use (3) to give 

-Sw 	 -Sw 
<A(T)B> 	 L: e m <mJA(T)BJm>/L: e m (7) 

m m 

where we have chosen a set of energy eigenstates to sum over, with 

eigenvalues 

E hw 	 (8)
m m 

with -h/kT . 

Thence we find; 

-Sw 	 -Sw 
m 	 m

<A(T)B-BA(T)> == 	 L: e <m!A(T)B-BA(T) lm>/l: e (9) 

m m 

Now using 	the Heisenberg equation of motion 

A(T) 	 (10) 

the right hand side of (9) becomes 

-sw i (w -w ) T 
L: e m{e m 	 n <miAin><nJBJm> 
mn 

-iT(w -w) -Sw 
e m n <mJBJn><niAim>}/L: e m (ll) 

m 
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Interchanqing m and n in the second term leads to 

-Sw iT(W -w) 

<A(T)B-BA(T)> Z <mjAjn><njBjm> e m{e m n 


mn 


sew -w ) -iT(W -W ) (12)
m n 

e m n }/Z- e 
-Bw 

with Z = 2: e 
m 

m 

Now by defining 

-Sw 
s(w) ! z <mjAjn><njBjm> e m o (w-w ) , (13)z nm 

mn 

where w w -w (6) becomes 
nm n m 

co co 

(i iWT -Bw' -iw'-r
GR(W) -- 8(T) e dT S(w') (1-e )e dul'

21T J f (14) 
-CO -CO 

It can be seen that 

co 

f 
-iWT


s(w) e dw <A(T)B > (15) 


hence (14) establishes the connection between the retarded Green's func

tion and the correlation function, and S(W) is simply the Fourier trans

form of the correlation function often called the spectral density func

tion. The relationship can be simplified even further, however, by 

substituting for 8(T) in (14) using; 

-ixT 
elim dx 8(T) (16)
x+iE

s-+o 
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and also 

ro 

ixT e dT ()(x) (17) 

-00 

gives 

(X) 

[1-e-Sw' J 
GR(W) lim 

1 r S (W 1 
) dw' (18)

2'TT )E-+0 w-w'+iE 
-00 

ro 

[1-e-Sw'] i -Sw
__!_ pJ s (w') dw' - [1-e )S (W) (19)
2TI 2w-w' 

-00 

where P implies that the integral to be taken is the Principal value 

integral. 

An identical analysis leads to a similar expression for the 

advanced Green's function, with the sign of the imaginary part reversed. 

Both Green's functions can thus be represented as branches of the same 

function, defined over the complex w plane and given by 

[1-e-Sw' ]S(W')
G (z) ~------~~--~ dw' ( 20)2~ f_ 

00 z-w' 

with a cut along the real axis separating GA in the upper half plane from 

GR in the lower half plane, each of which is taken as the limit of 

vanishingly small imaginary part of W; 

G lim G(W+iE)
R E-+0 

G lim G(W-iE) (21)
A E-+0 
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We have thus seen, from (19), th:1t the spectral density is simply related 

to and may be given by just the imaginary part of the Green's functions. 

Also the real parts are clearly equal and may be written as 

oo Im G ( w ' ) dw ' 

± ~ Pf_oo __.._.R~-- (22)
w-w' 

Thus knowledge of the imaginary part of either of the Green's functions 

leads to all possible knowledge of the ensemble averaged properties of 

the system. 

I. lb Equations of Motion for Lattice Green's Function 

E2ving showil the role played by the Green's function we must now 

show how it may be evaluated. The approach taken is to use the dynamical 

law of quantum mechanics in the Heisenberg representation to derive an 

equation of motion for the Green's function; 

dA i 
dt - ·h "[A,H] (23) 

hence for the Green's function we find 

dG d 

_R := - < [A (T) . B ] > (- i 6 ( T) ) (24)

dT dT I 

-iO(T)<~A(T),B]>- ~ «[A(T),H];B»R · (25) 

Thus we are led to further Green's functions more complicated than the 

original and exact solution is not generally possible, however in the 
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present case of the crystal lattice in the Harmonic approximation exact 

solution is possible as we shall now see. 

The correlation function important in this work is the dis

placement-displacement function, we thus use a Green's function given 

by 

G 
0 

(R,,.Q,• ;T)
af..' R 

(26) 

where Greek subscripts imply Cartesian components and the arguments 

refer to lattice sitEs. 

The equation of motion then gives; 

2TTi 
(27)

h 

The Hamiltonian for 	the lattice in the Harmonic approximation is given by; 

2 (.Q,)
Pa l

H z:: + - z:: AaS(£,£')ua(£)uS(.Q,') (28)
2M ( 9,) 2

a,£ a aS 
.Q,.Q,• 

The system is assumed to consist of a set of atoms located at equilibrium 

sites .Q, with displacements from that equilibrium given by u (.Q,) with 
a 

canonically conjugate momenta in the a direction p (.Q,) . We here assume a a 

Bravais lattice so that each atom is labelled completely by £. The atoms 

are assumed to perform small and hence simple Harmonic oscillations about 

this mean position, hence the neglect of higher order terms. The 

coefficients AaBt£,9,') are assumed to be derivable from a potential¢, 

and by simple Taylor expansion are given by; 
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0 . (29) 

Now using 

p (9,, T) 

[u (9-,T) ,H] i1~ dd u (9, , T ) 
, a 

(30)ih M ( 9,)a t a a 

where H (9,) is the mass of the atom at site 9,, and is clearly independenta 

of a, hence we can put 

dGaS 
(9,,9,• ;T) 

21T 
«p (9, 'T) us(£' ,0)>> (31)

dT -KM (£> a 
a 

Differentiating again leads to: 

2d G ( 9,,9,';T) -2n.
aS l. < [p (9, 'T) us(9,' ,0)> (32)

2 fiH (9,) a
dT a 

~<dp (9-,T),Hln. a 

(33) 

now using 

[p (9-,T) ,H] [P (9-,T), L } AaS(£,9-')ua(£)uS(£')J (34)
a a 

aS 
9,9,• 

leads to 

d2GaS(9,,9,' ;T) 
M (9,) -21T O(T), 00,,~(9,,9,')-l:: A (9,,9,·')G Q(9,",9,• ,T)a 2 P y£" ay Yf-'dT 

(35) 
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To solve the equation of motion, the Green's function is 

Fourier transformed and for simplicity, mass reduced variables are used; 

gaB (9,,9,• ;w) IMa (9,) MB (9,') GaB (9,, 9,' ;w) M GaB(9,,9-';W) 

(36) 

AaB (.9-,9-, > 


aaB (9,,9,') IMa (9,) MB (9,') 1 

AaS (9,,9,•) (37)

M 

wi1ere M is the mass of the (single) atomic species in the pure (Bravais) 

lattice. This leads to; 

6(9, .9-')6 + L: a (9, .9-")g (9," 9,• W) (38)
' aS ay ' YB ' ' y9.," 

2
which we can write as (w I a)g I (39) 

2 -1 
g (w I-a) (40) 

We have thus a linear algebraic equation to solve instead of a linear 

second order differential equation. To solve this equation we must 

diagonalise the force constant matrix, the standard way to achieve this 

(Born and Huang, 1956) is to perform a spatial Fourier transformation 

coupled with a transformation to normal co-ordinates. The simple.st 

system on which to perform this transformation is that of a perfect 

crystal, which is assumed to be of infinite extent and therefore possesses 

discrete translational symmetry, hence the plane wave analysis. In the case 

http:simple.st
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of the perfect lattice the force constants are simply those relating the 

species present in the pure cry:~tal. The results of thus transforming 

the force constant matrix is the dynamical matrix: 

Djj' (k,k') (41) 

the eigenvalues of which are the squares of the normal mode frequencies, 

hence; 

l 


N 


( 42) 

A si~ilar result follows from consideration of the equations 

of motion; 

M (,\!,)u (,Q,,t) - 2: A 0 (5/,,,\!,')u
0 

(,Q,',t). (43)
a a ,\!,'f3 a~-' ~-' 

Time Fourier transformation gives; 

w 2M (,\!,)u (9-,w) 2: A 0 (9-,,Q,')u0 (9,' ,w) (44)
a a 9-'S a~-' ~-' 

Now expressing the atomic displacements in terms of normal co-ordinates 

with a plane wave variation between unit cells; 

u (9-,w)= l 
(45)

a N 
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gives; 

• I R
]_!.<- ·-9.,' 

(46)e 

Using the orthonormality of the normal co-ordinates and the plane waves 

gives; 

1 'I i~.~9_, 
L: A (9., 9.-')0J (k' e o (k')

M ( 9.,) aS ' a -· S ·· .j I k' a 

9.,9.,• 


aS 


Now, from (41) ; 

L: Dj j I ( kk I ) u j I ( ~ I , w) (48) 

j ·~· 

2
with w. as eigenvalues of the dynamical matrix. 

J 

We can thus put; 

1 
(49)

N 

where U is the unitary matrix which diagonalises the force constant 

matrix; 

+
U a U a' (50) 

(47) 
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such that 

a I • ' I (kk I ) ~ • • I ~ • I W • 
2 

(k)= )) -- UJJ v~ J - o (51) 

Thus, by transforming equation (38} we find: 

2 + +uw g u = I + u a gU (52) 

w 
2
2' = I + a' 2' (53) 

Now, in the particular case of perfect crystal lattice dynamics, as we 

have seen 

a I • • I (k,k I) = w. 
2 

Ck>O .. ,ok (54)
1 ,)) - - J - )) ~ 

which leads to 

p' .. ,(k,k',w) = (55)
)) 

Now, by substituting back into 

+p' = UpU (56)- -.-

gives 

- i~. ~.R, • I ik' •R.R, ~ = 1 L e · Jj (k) p .. , (k,k''IW}a} (k')e - 
2 a - JJ ~ N jk 

fi~· (57) 
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ik. (R~ 1 -R.Q_) 
1 e 

{58)
N2 r 2 2 

j~ w -w. (k)
J 

In keeping with the 'classical' Green's function method the 

solution of the non-interacting problem is used as input to solve the 

interacting problem. In the present context, the place of the interacting 

problem is taken by a lattice with defects, i.e. foreign atoms substituted 

for host atoms, or interstLtial foreign atoms. Throughout this work a 

specific model is taken, viz. it is assumed that substitutional impurities 

only occur, it is also assumed that these atoms differ only in mass from 

the host atoms, any change in the force constants restraining the defect 

or host atoms is neglected. Although highly specific, this model is 

felt to be of some value, as force constant changes may be expected to 

contribute little more than a perturbation to any effects due to mass 

change. The equation of motion, (35) for the lattice with mass defects 

is now written, after Fourier transformation; 

r A (~ ~")G (~" ~··w)
~y I y~ I I 

Y~" 

(59) 

We now recast this equation in a form as similar as possible to the 

perfect crystal equation; 

r A (~ ~") G (~" i' •W) 
~y ' '(~ ' ,

Y~" 
(60) 
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where we define the diagonal matrix £ by: 

M-M(R.)
£ (R,) = (61)

l4 

where M is the mass of the host crystal. It is clear that e: vanishes 

unless the site R. contains a defect and is also diagonal on nS. The 

left hand side of (60) is now brought into the perfect crystal form; 

A (R, r')G (R," R.'·w) (62)ny ' yS ' ' 

This equation, (62), may be written in matrix notation as; 

2
W MG = I + AG + VG (63) 

(64) 

2
=> [W MI-A]G = I + VG (65) 

Now, using (40)for the case of the perfect crystal gives 

(66) 

thus 

G = P + PVG (67) 
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Equation (67) is the Dyson equation and is valuable because it allows us 

to solve the complicated problem of a lattice with defects in two stages. 

First, the relatively simple, perfect crystal problem is solved, then the 

Green's function for the defect crystal may be calculated and this step 

solves the problem. However, a general solution of the Dyson equation 

for an arbitrary lattice is not feasible and certain simplifying assump

tions are necessary. As explained earlier we have already built in the 

assumption of mass change only, we shall now see that we are going to 

solve the Dyson equation for a pair of mass defects. 

I. 2 APPLICATION TO THE PAIR PROBLEM 

As found earlier, we must now solve the Dyson equation for 

the system consisting of two foreign atoms situated on an otherwise pure 

lattice. In general, the perturbation matrix 

(68) 

for the mass defect model is clearly diagonal, this being a considerable 

simplification and actually makes the problem trac·table. In the case 

of a force constant change the perturbation matrix is not diagonal and 

the resultant coupling of different lattice sites considerably complicates 

the problem. Having solved for the pair Green's function, we will proceed 

to apply the solution to various parameters of the lattice dynamics; 

the mean square displacements for the defect atoms, exploring the dependence 

on defect mass and temperature. At each step comparison is made between 

the behaviour of a single isolated impurity and one which belongs to a pair. 
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Finally, the scattering t-matrix is explored and used to obtain the 

phonon self-energy due to scattering off a pair of defects. 

I. 2a Solving the Dyson Equation 

We assume a pair of identical defects situated on an other

wise copper lattice so that the perturbation matrix becomes a multiple 

of the six-dimensional identity: 

2 
V ::: e:MW ~ (69)6 

We can further break up the Green's function matrix by first projecting 

onto the defect ?Pace, giving a 6X6 matrix, and thus partitioning the 

result into inter- and intra-defect terms; 

c~(l ,1} ~(1,2))
G pair (70) 

G(2,1} G(2 ,2) 

where G(.II,, R,') are each 3X3 rnatrices, the arguments of these being the 

Cartesian components of the defect atoms and their frequency dependence 

being suppressed. We thus find for the Dyson equation that; 

2G pair == P pair + P pair e:MW r G pair (71) 

where P pair is a 6X6 matrix connecting the sites of the defects in the 

pure crystal, i.e. the perfect crystal Green's function projected onto 

the defect space. Thus, 

2G ::: p + e:MW PG (72) 



- - - - - - - -
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by analogy with the defect Green's function we partition P: 

P(l,l) P(l,2)]
P pair (73) 

[P(2,1) P(2,2) 

so we find 

(G(l,l) ~(1,1)9(1,2)] = P(l,2)] 

G(2,1) G(2,2) p ( 2, 1) P(2,2)- [ 

[

~(1,1)~(1,1)+~(1,2)~(2,1) ~(1,1)~(1,2)+~(1,2)~(2,2)] 


(74) 
P(2,l)G(l,l)+P(2,2)G(2,1) P(2,l)G(l,2)+P(2,2)G(2,2) 

we can write this matrix equation as four simultaneous equations: 

G(l,l)=P(l,l)+VP(l,l)G(l,l)+VP(l,2)G(2,1) (75a) 

G(l,2)=P(l,2)+VP(l,l)G(l,2)+VP(l,2)G(2,2) (75b)- ··- - - - 
G(2,l)=P(2,l)+VP(2,l)G(l,l)+VP(2,2)G(2,1) (7Sc) 

G(2,2)=P(2,2)+VP(2,l)G(l,2)+VP(2,2)G(2,2) (75d) 

2where V = £Mw • 

We now proceed to solve these simultaneous equations. First 

note that due to the cubic symmetry of the perfect copper lattice, the 
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three Cartesian directions are independent, hence the Green's function can 

have no elements linking different Cartesian directions of the same atom, 

thus P(l,l) and P(2,2) are diagonal, also, due to cubic symmetry, the 

three Cartesian axes are symmetry related and thus 

P(l,l) = Pl~3 • (76) 

Also, a member of the space group of the crystal can be found which 

transforms any atom into any other atom, hence we require 

P(l,l) = P(2,2) = Pli - (77)
-3 

P(£,£')= P(£' ,~) (78) 

P(l,2) = P(2,1) 

We have thus simplified the simultaneous equatior5to be solved to; 

~ (1,1) =Pl~3+VPl~ (1-, f) +v: {1 ~2) ~ (2, 1) (79a) 

G(1,2)=P(1,2)+VP1G(1,2)+VP(1,2)G(2,2) (79b) 

G (2 ,1) =P (2 ,1) +VP (.2; 1) G (1 ,1) +VP1G (2, i) (79c)- - - ·- 
J 

~(2 ,2) =P1I3+v: ( 2, l) ~(1 ,2) +VP. 1~ (2 ,2). (79d) 



- - -
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Looking at the form of these equations we see that they have 

decoupled naturally into two pairs, a with c and b with d, these pairs 

have identical structures and each may be represented formally by; 

(80) 

B ~ P(l,2)+VP(l,2)A+VP1B 

to get equations a and c we replace.~ and ~ by ~(1,1) and ~(2 1 1) 

respectively, to get equations b and .d we replace A and B with ~(2,2) 

and G(l,2). Thus we have found that-

G(l,2) ~ G(2,1) 

(81) 

G(l,l) ~ G(2,2). 

We now need solve only two simultaneous equations, 

(82a) 

G(l,2)=P{l,2)+VP1G(l,2)+VP{l,2)G{l,l) • (82b) 

Solution of these equations gives; 

2 
+ EMW P{l,2)P{l,2)] (83a) 

G{l,2) ~ [(l-e:MW
2
Pl) 

2
zj{E:Mt.l) 

2
:{1,2):{1,2)"1]-l P{l,2) (83b) 
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We note immediately that on letting E go to zero we recover the perfect 

crystal Green's functions Pl and P(l,2) from ~(1,1) and ~(1,2) respectively. 

The Green's functions may be compared with that for a single defect, given 

in· the defect-defect case_ by; 

PleaS 
(Hampson, 1973) • (84)

2 
1-EMW Pl 

Further checks on the validity of these Green's functions may be made 

by numerically computing them with E:i::Q ensuring that the result agrees 

with the perfect crystal Green's function, this of course provides an 

efficient check on the programme calculating the pair Green's functions. 

Also use may be made of the identities. (Taylor~· 1975) 

co 

2 1 -1
(a) Ill\ I>1 G dW = -I - ImG(w)d ~-~ • (85)

7T 
rW (b) ~ f w 

0 0 

I.2(b) Parameters of Fair Effects 

We look for an expression for the displacement - displacement 

correlation function. From (15) and (19) we find 

co 

<ua(~,T)us<~',O)> = J s(w) e -iWT dw 

-CO 

co 2 Im GR (~ ~'·W) 
- aS ' ' -iWT=.:i._J e dw. (86)27T 1-e-Sw 
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To find the mean square displacement we require 

<u (~) u (~,T=O)> = <u (~,T~)u (~)> (87)a. a. a. a. 

hence we could use the advanced Green's function, in which case we would 

have 

00 

-iWT -Sw A ·(~ ~' ·W) dW<u (~)ua (~,T+O) > = .1i J e e 2ImGa.S ' ' 0'. ~ 2TI 

00 

dW.e (88)= -;~TI f 
-iWT 

2Im 

-00 

We can recast these integrals in the form of an integral over the positive 

real numbers; so that (88) becomes 

00 00-iWTIm GR e 
= Im ~t<w> coth (~) dW (89)f 1-e-Sw J 

-00 0 

(Taylor 1975) 

on making the transformation w+-w and using the fact that ImGR (w) is an 

odd function of w. 

Similarly, from (88) 

R SwImG (~,~;w)coth(----- dw2 ) (90)<u(l(~,T->O)ua(~)> ~- ~ r a.a. 
0 

so the two methods give the same result as required. 

As can be seen from equation (83), a pole appears in the Green's 
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function at the frequency for which 

2 2 2 2 
det[(l-~mw Pl) - (EMw ) P(l,2)P(l,2)]= 0 • (91) 

In general, this will only occur outside the frequency region in which 

the density of states of the host crysta~hence the imaginary part of 

the Green's function, is non-zero. As shown by Taylor (1964) this can 

occur in the case of a single light defect (E>O) in which case three 

degenerate pole modes are peeled off the top of the host density of 

states. It has been shown that these modes are strongly localized on 

the defect site (Hampson, 1973). In the present case, as we shall see, 

six local pair modes appear above the host crystal hand. 

Thus in the case of a light defect care must be taken in 

evaluating the integral in (90). The residue theorem can be applied 

immediately to (88) 1 . hut the fact that poles occur in pairs at frequencies 

± w complicates the situation, so instead the Dirac identity is applied
0 

to e.g. ~0), in which a single set of poles occur, giving; 

= - ·t Im f
00

coth Sw G (Jl.,Jl.,w) dw . 1f 2 00 

0 

~ .sw 
=- TI Im(-i1f)coth(: 2 °){Residue of Goo(Jl.,Jl.;wo)} 

sw·. 
= ~ coth(~){ r Residue of G00 (Jl.,R.;w )}. (92)

0poles 

Evaluation of the residue is performed numerically making use of the 

theorem that if a function of the complex variable w can he expressed in 
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the form 

p(W)
f{W) = (93)q(W)

where p and q are analytic function of w at the pole, then for a first 

order pole, for which q' (w )t O, the residue of f is given by
0

(Churchill, 1960) • (94) 

If the pole is of the second order, and q'{w
0

)=0, but q"(w
0
>to then the 

expression 

p(z )q'"(z)
2 0 0 

(95)3 2Iq" (z ) ] 
0 

{Churchill, 1960) 

must be used. Use of (94). requires that the Green's function be ex

pressed with a non-matrix denominator to which end the relation 

2 

{96) 


where the adjugate of A is given by; 

(ADJA) .. = (-1) i+jC.. (97) 
~J J~ 

and C.. is the matrix of cofactors, is invoked. Thus is we express the 
~J 

diagonal components of the Green's function as; 
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(98) 

then the residue is; 

(99) 

In order to evaluate the residue it is necessary to find the frequencies 

at which poles occur. Two approaches to this problem may be taken, the 

first is to evaluate the determinant involved in (91) and to look for 

zeros-- of this function. Clearly this is more advantageous in the present 

context as it is necessary to find the derivatives of this function at 

the zeros, and both can be performed simultaneously. Alternatively, the 

eigenvalue problem can be solved explicitly, i.e. we solve 

(100) 

which we obtain in the following manner from the equation of motion (44): 

(101) 

where again force constant changes are neglected but their inclusion is 

straightforward; thus 

2 . 
e:(1)MWU (1',W) (102)

a. 

which, from (40), we see gives 

u == PVu (103) 
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To solve this equation we must transform it so as to diagonalize 

the matrix PV, so we now consider the projection of equation (103) 

onto the space of the pair of defects, giving 

v = I:: VI (104) 

giving 

VPu = u (lOS) 

hence 

+VT+PTT+u = T u (106)- --·· 

VPjju,j::;~> = u'j (107) 

leading to 

1 - £.MtiPjj = 0 (108) 

In the present context, the appropriate transformation is to 

symmetry co-ordinates of the pair space. This is a transformation to be 

used frequently in the present work as it is clearly the necessary approach 

to solving the pair problem. Appendix I discussed the application of 

Group theory to the pair problem, for first and second neighbours in a 

F.C.C. lattice, appropriate to a Copper host. Projection and transfer 

operators (Tinkham, 1964) are used to derive the symmetry co-ordinates 

and the transformation is then given by 

I: (109) 
a.S=I,3 
R-R-'=1,2 
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The transformed equation~ (108) now become 

21-E:Mul {p (1,1) - P (1,2)-P (1,2)} = 0 (a)Alg XX XX XX 

. B2g 
21-E:Mul {p (1,1)

zz - p (1,2)}zz = 0 (b) 

B3g 
2 {p (1,1)1-E:MW 

XX 
- P (1,2)+P (1,2)}

XX XX 
= 0 (c) 

Blu 
2

1-E:Mul {P (1,1)
XX 

+ p (1,2)
XX 

+ p (1,2)}
XX 

= 0 (d) 

2 
B2u 1-E:Mul {p (1,1)

XX 
+ p (1,2)

XX 
- p 11,2)

XX 
= 0 (e) 

B3u l-e:Mul2{P (1,1)zz 
+ p (1,2)}

zz 
= 0 (110) 

for nearest neighbours((O,O,O) .and (1,1,0)) and for

((o·,o ,0) and (2 ,o ,0)) we find 

' 2 ~, 

1-e:Mul {P;ciU,~)~ixx(l,2)} = 0 (a) 

2
l-e:MW {P (1,1)-P (1,2)} = 0 (b)

YY _iyy 

2
l-e:MW {Pzz(l,1)-Pzz(l,2)} = 0 (c) 

l-e:MW2{P (l,l)+P (1,2)} = 0 (d)
XX XX 

2l-e:MW {P (l,l)+P (1,2)} = 0 (e)
YY YY 

2l-e:Mul {p (l,l)+P (1,2)} = O. (f)
zz zz 

(111) 

The equations b and c are clearly identical in the second 

neighbour case (2,0,0) as the y and z axes ane symmetry related, similarly 

e and f are equivalent. 

Again, as shown by Taylor (1964), in the case of a heavy defect 

(£<0) a LorGntzian resonance appears in the Green's function. The 
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frequencies at which the resonances occur are given by (91) and (108) 

A further parameter of the effects of pairing in lattice 

dynamics is given by the optical absorption by charged defects. Taylor 

' (1964) discusses the absorption by a single defect and arrives at the 

result. 

N 2 

Xaa <,k' ;w) = - ~ GaS (k,k • ;w) (112) 

for the susceptibility X of the system, consisting of N atoms and 

occupying volume V. For our purposes, we Fourier transform this 

relation; 

N 2 e 
(113)v 

Now, transforming to symmetry co-ordinates to find the effects due to a 

single defect. pair; 

Ne2 
=- -=· v 

* :::--- ~ s;(~)Ga0 (~,~·;w)s~C~!) (114)v ~~·=1,2 1-' 1-' 

al3=1,3 

We also use the relation 

4'ITW ' ' 
-- ImxJJ (115)me · 

derived from Maxwell's equation and the fact that the absorption 
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coefficient a is given by the imaginary part of the complex wave-vector. 

We must now sum over optically active symmetry modes to obtain 

the total absorption. To discover which modes are optically active, we 

consider the basic relations of the absorption process, firstly, absorption, 

in the absence of permanent dipoles, is due to an induced dipole moment 

given by; 

E Xa0 (k,k';W)E0 (k') (116) 
ak' 1-' 1-' 

where X is the susceptibility per unit volume. Spatially Fourier 

transforming and using (113) ; 

N 2 eP (JI.,w) = --- E Gae<.R.,.R.';w>Ea<.R.',w>Ea<.R.',w>. (117)
a c a.R.· 

Now the energy absorbed is given by 

= -g.~ (118) 

Ne2 
= (119)

c 

where we have assumed a monochromatic radiation field. 

Now we demand that the dipole moment associated with a 

particular symmetry mode, which we obtain by transforming to symmetry 

co-ordinates; 

(120} 

= E'G'E' (121) 

(122) 



29 

should transform according to the irreducible representation of the 

pair synunetry group correspondi_ng to that mode, but the dipole moment 

transforms as a vector, hence only those modes can-acquire a dipole moment 

whose basis functions transform like vectors. This limits the possible 

modes in the present context to those of odd symmetry under inversion, 

i.e. the ungerade modes. This is made quite clear by the simple argument 

that if the two charged defects are vibrating ~ out of phase, the dipole 

moment is identically zero and does not change, thus it is unable to respond 

to radiation, whereas for motion in phase, the system corresponds to an 

oscillating charge distribution, thus acquiring a harmonically varying 

dipole moment. Of course, if the charges on the two defects were of 

opposite sign the opposite would be the case, viz. the gerade modes 

would be infra-red active and the ungerade modes not. Also one might 

expect the gerade modes to be Roman active in the like-charge case. 

Martin (1967) discusses the absorption by a random array of nearest

neighbour defect pairs, using a simpler model for the·.Green's functions. 
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I.3 SECOND ORDER SELF-ENERGY 

The most important effect of pairing on lattice dynamics of im

pure crystals is to evaluate the pair contribution to the self energy 

which, as we shall see, informs us of the extent to which the phonon 

frequencies and lifetimes are perturbed due to scattering from defects, 

and hence gives the modified density of states. Such shifts and widths 

may be experimentally observed via inelastic neutron scattering. 

At the outset one performs an averaging over.: all configura

tions of the lattice with defects. This step makes the theory compatible 

with any experimental work as any real crystal consists of host and 

defect atoms randomly dispersed, neglecting short range order, so that 

any given lattice site is equally likely to contain a defect. 

When this step is taken, it is clear that translational in

variance is restored since all lattice sites are equivalent. We now 

rewrite the Dyson equation as 

<G> = p + PL<G> (123) 

where <G> is the configurationally averaged Green's function, and (123) 

defines L , both L and G are now translationally invariant. This then 

leads to the very important property of E that it is diagonal in the K 

representatiort, as are~ p· anc;l <G>. Equation (123) leads to 
"r 

<G(K)> = P(K) + P(K) L(K) <G(K)> (124) 

where P,L and <G(K)> are now matrices with respect to the normal mode 
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co-ordinates. Hence 

1 1<G{K)> = II-P{K)L{K)J- P(K) = IP- {K)-L{K)]-l 

2 2 jj'c><G(K)>:7 = (W -w. {K) 'o) ... - L . !S (125) 
- JJ' J - JJ' 

If ~ lies along a symmetry direction it can be shown {Hampson 

(1973)) thatE .is diagonal with respect to the normal modes thus 

jj' 
(126)2 2 . • 

w -w. (K) ..l: J (K,w)
J -

Ej(~) thus acquires the status of a phonon self-energy resulting from 

defect scattering. 

From the quasi-Lorentzian form of Equation (126) we see that the 

peak in G occurs at 

(127) 


solving for w and expanding, assuming Re L small, 

Re I) (!S) 
(128)W = Wj (K__) + 2W. (K) 


J 

Thus the phonon frequency has been shifted by Re Ej(K)/2W.{K) and similarly 
- J 

we find that the phonons acquire a finite lifetime characterised by the 

half-width at half-maximum Im Ej(K)/2w.{K). If E were·frequency independent
- . J 

we would expect a pure Lorentzian behaviour for G, but in fact L shows 
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interesting structure due to resonant scattering. 

We now proceed to derive an expression forE via the·Dyson equation. 

The conventional approach is to perform an expansion in the small para

meter C, the concentration of defects. Thus we put 

== (129) 

or, in the phonon representation 

L (K) == CU 

(130) 


Iterating the Dyson equation leads to the infinite series; 


G == P + PVP + PVPVP + •••• (131) 

Now, in the present mass-defect model, V is diagonal in co-ordinate re

presentation so we find 

(132) 

where P and G are now matrices only with respect to Cartesian components but 

this fact may be dropped without trouble. It proves convenient in keeping 

track of terms in this and similar expansions to represent the series dia

· gramatica·lly. In the present context the re-levant diagrams are those in 
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equation (133). A horizontal single line represents a free pro,t>agator i.e. the 

passage of a phonon from one lattice site to another without scattering from 

a defect and the dotted lines represent a phonon scattering event from a 

defect site (large dots). Certain well defined rules exist for the con

struction·of a particular series of diagrams so that translation into diagrams 
/ 

allows the summation of the original algebraic series through simple syste

matic procedures. 

• • b ••• d•.a 
I I 

,• ... . c • • •I a• I ~·.' ..' ..G - -- = ' + • ' +'--' + 

~,f .• g h• • e • • • •I~ I e \ It' 
I \ ' I •• • • t ' t 

I I ' 
I \ •+ + -·-·-· + L...L..!. + • • • • 
• • i ;•\ ,•, j ,·~?, k ,,•,, R. ~·, m 
f ,_,

I '•'f I I I I • I II ' \ 'I" ._.•• I I • .' • ' t \ ' I ' l I \ l + .......
I t+ + ' + ' + + 

(133) 

The diagrams in equation (133) are arranged according to increasing number 

of interaction lines. A certain simplification is possible immediately by 

2
noting the v sum in (132) contains the term for which R1=R.2 viz. 

which can thus be grouped with the term linear in V. Similarly all higher 

order terms contribute so that the coefficient of PP becomes the series 

in (134) 

1 •• ; ' '•\
I I I I \•..!.. L_j l • \= + + + .... (134} 

= v + VPlV + VPlVPlV + .... = V/(1-PlV) 
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which we call t 
1 

(w), and is the total or dressed interaction of a phonon 

with a defect site. Our perturbation expansion for G now becomes 

(135) 

The important fact arises that restrictions are placed on the lattice 

sites in the higher order terms as the excluded terms have been trans

ferred to the preceeding term. As a first approximation in finding 

the self-energy, one decides to ignore the restrictions after performing 

a configurational average so that we find 

+ •••••••••• (136) 

where the original summation over defect sites becomes a sum over the 

entire lattice, with the statistical weighting factor c appearing. It 

is clear that (136) is simply the iterated form of the equation. 

G = P + ct P G (137)
1 

so that we may put 

(138) 
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In general one should write equation (135) as 

G = P + PTP (139) 

which equation defines T, the scattering t matrix. 

This expression for L: we know to be incorrect for two reasons. 

Firstly we ignored the restrictions on the lattice sums in (135) and 

secondly it is essentially a single site approximation, since we only 

summed one-defect diagrams in equation (134). It thus neglects pairing 

effects, in particular diagrams like f, kin (133) have been neglected. 

To correct the problem of restricted lattice sums we use 

the diagrammatic method of Aiyer et al. (1969). The essence of this 

approach is that one performs the calculation incorrectly and then corrects 

this expression in a self-consistent fashion. In the single site theory 

one returns to the expansion of equation (134) and singles out those 

terms which are given an incorrect statistical weighting. 
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• 
For example the term in the i~reducible self-energy gives rise to 

terms like ~ in the Green ''s function expansion when iterated. Now 

Jhin a configurational average is performed both sites in the diagram 

are allowe~ to range over the whole crystal which means that they,•, 
may be the same site, but the term f..__j in the irreducible s~energy 

already takes this possibility into account so that the term -·---· , where 

the curved line implies that the defects connected are to be identified, 
• 

2must be removed but with a weighting of c since it arises from ..:.__:... which 

2 . h .h as a .c we1g t1ng. Similarly all diagrams in (134) must be corrected 

and we write 

• • e
I ,'::5 !:e.•• ,__,_, CEi 

= + --- + + •••.• 

' t2 V' 
= V + PlV + ...• {140)

1-PlV' 

where hatching implies the corrected diagrams and the correction is 

formally transferred to V via the prime. We now execute a self-consistent 

. k (l) d . . t t h d't'procedure by assumJ.ng we now t.. an us1ng 1 o sum t e correcte 

diagrams. The corrections are given by Table VIA where the first 

column gives the terms going into the first approximation and column n 

gives the corrections to these terms which are composed of n irreducible 

pieces. The rows are designed to contain only diagrams of the same 

http:assumJ.ng


----

-- --

37 

H 
:> 
17:4 
H 
111 
~ 
E-t 

..... .....·--· ··-
~ .... ·---~ ·--~ ·--~ ·--·..... ·--,~-----~ ·- ........ 
·--·--· ...:-•-,- •-r·"'\-· 

•,~- ..........l
...... ...~ 
... .... 1··-1·--, ·--.. -·•-r= ·-·--- ··!!"- ' 

~:I ~=:1......' ..(~~ 'c~
: ~=~:~ I ' • ,..,,-j l·- .,~i ~~ +· ...'...._ .. __-:~-- ,,....~ ......... ___ •£]-
. 

"........ +···· 
 ....._..._..... _, 

g··... -..... 

' 
r 

~J 
l 

~iil ·
~~I~~ 

\ I 

c--...... 
I 

~ 
~ 

q~ l]~
CiH CII 
' ' 

··-I 
, .. ,·: .... 

..,•'--' .. ... '1,_.
•.:-- ....... ...... 

.... 




• • 

38 

number of interaction lines, which relation must hold between a diagram 

and its corrections. As the table implies we have corrected using the 

corrected irreducible diagrams, thus .making the calculation self-

consistent. Now s'Wlliiting the entire Table VIA, gives our corrected ex

pression for scattering from a single site. S'Wlliitation is performed by 

columns, column 2 for instance gives;..
• • 

column 2 += -·--· 

~ :e
+ • r.:;:::::,+ 

(141) 

so that by (140) 

(142)column 2 

· "1 1 1 t Pln-l"(l)nSJ.m~ ar y co umn n sums o '-' • Hence summing all diagrams 

in Table VIA, which we have said gives L(l): 

(1) 2 (1) 3 2 =E (1)t {w) - E Pl - E Pl - •••• (143)
1 

leading to 

= = v (144) 
l+ct (w)Pl 1-(1-C)l?lV

1 
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E(~) is clearly a multiple of the unit matrix in real space, since all 

lattice sites are equivalent due to configuration averaging and no inter

defect terms are considered. Thus in the phonon representation, ~(l) is 

independent of (K,j) and the Fourier transformation is trivial. 

Furthe·r expanding equation (144) leads to 

(145) 

so that the correct treatment of single site scattering leads to a 

second order term in E. This term we call E( 2,l). 

Our second problem, the treatment of pairs, also gives rise, 

2 2as we shall see, to a term quadratic in c, which we callE ( ' ). In 
I 

treating pairs correctly we shall begin by treating them incorrectly, as 

for the single site, with the approach of Langer (1961). We consider first 

those irreducible scattering terms for a single isolated pair, in exact 

parallel with the single site case. This leads to the series in equation 

(146), where we have considered only those terms beginning on one defect 

2and ending on the other, which thus gives the off diagonal piece of r< 2 ' ). 

(146) 

We are here using solid interaction lines to represent the dressed inter

action t (w) as we must allow any number of separate consecutive scatter
1 

ings from each defect. Equation (146) gives 
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= t~(W)P~(R)Il+a+a2 + •••• ] 

(147) 

where a 

=(0 P(l,2)) 
p 2 (!3-) 

P(l,2)0 

is the propagator taking a phonon from one member of the pair to the other. 

Because P~(~) is diagonal with respect to site indices, (147} can be written 

as 

}:; (2,2)(R) = (148)
O.D. 

This is a convenient technique pointed out by Aiyer et al., viz. to regard 

pair matrices such as L( 2) as sums of pieces which are multiples of the 

real Pauli matrices a and I: 
-x 

L (2) L (2) L(2)= I + a (149)
D O.D. -x 

with a 
-x ~c :) . 

This allows matrix equations to be regarded to an extent as algebraic 

2 2equations. Now evaluating the diagonal component of L( ' ) we use 
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equation 	(150) 

~(2,2)(R) (150)
-D. 

We can thus write ~( 2 , 2 ) as 

(151) 

Fouriter 	transforming now leads to 

(152) 

after employing translational invariance. Now employing inversion symmetry 

we find: 

(153) 

where the 	prime on the summation implies summation over only half the lattice. 

Now adding in ~( 2 ,l) and ~(l) we find 

(154) 

At this point we note that our derivation of !:(
2) contains the 

same flaw as our first derivation of ~il), viz. we have performed the 

configuration averaging incorrectly and wrongly weighted certain diagrams. 

We thus perform a self-consistent calculation to determine the corrected 

form exactly as in the single site case. As in the case of ~(l) we write 

out the corrections in the form of a table, Table VI. 
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Again the table is summed by columns giving 

l: (R) = (155) 

To compare with our previous result we use Il+A+Bcr J-l "' 1-A-Bcr for 
X 'V X 

small A and B to expand the denominator after rationalising it, giving 

(156) 

th 1' . b f ~sh . at our ear ~er result was ~n error y f actors o 1-c, as ~(l)ow~ng 

had been (equation 144). This expression now refers to the complete 

self energy to second order, and we note that naively Fourier trans

forming as suggested by Aiyer et. al., i.e. putting 

l: (K) = ~ [ED(~) + (157)
.R 

leads to difficulties as ED is essentially constant as a function of R 

so that E(~) becomes proportional to Avogadro's number. To correctly 

Fourier transform we return to equation (154) and note that 1:(
2) (~) i.e. 

the pure pair second order contribution must be transformed on its own, 

as pointed out by Nickel and Krumhansl (1971) who write 

E<K> = E<1> + E + •••• 
R 

~ ~ ( 2 ) ( ) iK • R (158)+ .u .u R e - 
. B O.D. 
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neglecting higher order terms, where the superscripts now refer to the 


number of defects being treated in each terrn and not the exponent of 


in that term. Thus the full self-energy must be calculated, first to 


second order, then to first order and the difference used in the lattice 


sum. 

For computing purposes the method used was to put 

where t +- _l 
-PAIR-:-: l 

(159} 

( (o P02 <~,·hence. T(-2.) - ct1 (w)L}! + ct1 (w) · 
p2 (~) 

(160) 

This expression is now substituted into 

(161) 

where I:, ·· T 'and P are all 6X6 matrices in the pair subspace. Equation (161) 

comes very simply from comparing equations 123 and 139 and, in the general 

coseof the whole crystal, is given by 

-1
I: = Tfl+PT] (162) 
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As shown by Aiyer et al. these two methods of deriving the correct self-

energy are equivalent. 

In conclusion we remark that the differential scattering cross 

section for single phonon inelastic scattering of thermal neutrons is given 

by (Bruno (1971) ) 

(163) 

Hence by (126) an experimental examination of the peaks in neutron scatter

ing data gives information on the shifts and widths of phonons in impure 

crystals. This then allows comparison with calculations from the self 

energy. Such experiments have been performed by Svensson and Kamitakahara 

(1971) at a Gold concentration in Copper of 9.3% and the results will be 

discussed in the following chapter. 



CHAPTER II 

CALCULATIONS 

II. la Green's Functions for the Pair 

The perfect crystal Green's functions used were 

those of Bruno (1971), calculated from 

*' . · 'K (~ ~') 3 
Vao<~~~';W) = 

v 
3 

. cr J(K)crJ (K)e_l_. - ' o(w. (K)-w) d K 
a - S - J IJ ( 2'IT) 

{164) 

which is the generalised density of states, and 

(165) 

w 
ImPaS 

R = - 'ITl PJ MAX (~,~·;w)dw'.Re PaS(~,~· ;W) w-w' 
0 

(166) 

From these the Green's functions for a defect pair are calculated 

as described in I.2. A comparison of the mean square displacement, 

which is proportional to Im Gaa(~ 1 ~;w} by 90, of a heavy defect 

to that of a host atom is obtained by plotting Im MG (~ 1 ~;W) for zz 

a single defect against that for a host atom, as in Fig. 1, which 

shows a Gold defect in a Copper lattice with £ = -2.1. The resonance 

in the host band is observed, as discussed in I.2b. To find the 

effect on the dynamics of a defect atom of adding another defect 

nearby, Figs. 2-3 show plots of Im Gaa(O,O;w) for one member of a 

pair, ranging from first neighbour to third, against Im G for a 

single defect. It is seen that any differences, small at first 
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neighbour~ decay rapidly with separation of the m~mbers · 

of the pair •. Possible broadening of the resonance in 

the pair case may indicate the splitting of resonant mode frequencies 

due to the lifting of degeneracies by the lowered symmetry in the pair 

situation. But because of the low density of states of the perfect 

crystal at the resonance, the width of the resonance is small, making 

structure hard to determine. 

For a light defect, I.2b leads us to expect a local mode out

side the host crystal band, with consequent loss of intensity in the 

band. Fig. 4 illustrates this for a single defect, AR. in Cu with e:=.575. 

Figs. 5-6 illustrate the similarity between Im G for a single defect 

and for a member of a pair. Again the difference is seen to be small. 

II lb Mean Square Displacement 

To calculate the mean square displacement the integral over 

w in 90 is performed and a summation over Cartesian directions per

formed; 

=_{I
00 

• 7T coth (13w) · E Im G (R., R. ;W) dw • (167'2 a.a. 
0 a. 

In the case of light defects, the pole contribution is calculated 

by numerically ev·.~luating the residue at the pole frequencies, to be found 
,

in the next section, as in I.2b. Table I shows a comparison of<~·> for a 

single defect with that for one member of a nearest neighbour pair, for 

a range of absolute temperature. We notice the essential mass independence at 

high temperatures, which we expect to first order since coth(s;) -> 1/Sw • 
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TABLE I 

MEAN SQUARE DISPLACEMENTS 

3 2
E == -2.1 UNITS OF 10- (ANG.) 

2 2T(K) <u (SINGLE DEFECT)> <u (N.N.PAIR)> 

10 3.2887 3.2942 

25 3.5466 3.5452 

50 4.5820 4.5828 

100 7.5502 7.5511 

200 14.2150 14.2158 

300 21.0700 21.0709 

E == .575 

T(K) LOCAL MODES · BAND TOTAL · ·LOCAL MODES . BAND TOTAL 

10 5.0662 3.2463 8.3125 5.0048 3.3316 8.3364 

25 5.0662 3.4013 8.4675 5.0048 3.4853 8.4901 

so· 5.0692 3.8997 8.9690 5.0082 3.9782 8.9863 

100 5.2447 5.5000 10.7447 5.1877 5.5690 10.7567 

200 6.6013 9.5541 16.1554 6.5441 9.6267 16.1709 

300 8.6019 13.8990 22.5010 8.5352 13.9871 22.5223 
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TABLE II 

MEAN SQUARE DISPLACEMENT 

-3 2
T = 50K UNITS OF 10 (ANG.) 

E = -2.1 

RELATIVE ORIENTATION 

FIRST NEIGHBOUR (110) 4.5828 

SECOND NEIGHBOUR (200) 4.5833 

THIRD NEIGHBOUR (211) 4.5826 

FOURTH NEIGHBOUR (220) 4.5827 

FIFTH NEIGHBOUR (310) 4.5830 

SINGLE DEFECT 4.5820 

PERFECT CRYSTAL 6.4105 

E = .575 

LOCAL MODES BAND TOTAL 

FIRST NEIGHBOUR 5.0082 3.9782 8.9863 

SECOND NEIGHBOUR 5.0820 3.8950 8.9770 

THIRD NEIGHBOUR 5.0805 3.8875 8.9680 

FOURTH NEIGHBOUR 5.0811 3.8771 8.9583 

FIFTH NEIGHBOUR 5.0704 3.8974 8.9678 

SINGLE DEFECT 5.0692 3.8997 8.9690 

PERFECT CRYSTAL 0 6.4105 6.4105 
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for large T, hence 85(b) , <ti2> tends to a constant value. Table II 

shows the dependence on separation between the defects ir. the pair, again 

compared with the single defect values. Again the pair values shows 

remarkably little difference from the single defect case. We also note 

the large band mode contribution in the nearest neighbour case for At 

defects. 

II.2 PAIR MODE FREQUENCIES 

To find the frequencies associated with defect pair modes, 

the two methods discussed in I.2b were used. The group theory approach was 

taken in the case of first and second neighbour pairs. In the second 

neighbour case this is necessary as there exist residual degeneracies, in 

fact two eigenvalues are doubly degenerate and the irreducible represen

tations of the symmetry group are useful in characterising these. To 

derive these results it was necessary to use the condition that a resonance 

occurs only when 

d 2
dw W Re G(W) < 0 (168) 

As discussed by Taylor (1975), other values of the frequency 

for which the expressions in I.2b are satisfied, but for which 127 is 

not satisfied are named "anti-resonances" and do not manifest themselves 

physically. Table III shows these ranges of allowed resonance fre

quencies. The top of the host band in Copper occurs at 7.3THz. Table 

IV gives the resonance and local mode frequencies for light and heavy 

defects, along with the symmetry of the associated pair mode. We notice 
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TABLE III 


RANGES OF ALLOWED RESONANCE FREQUENCIES 


d 2
FREQUENCY (THz) dw w Re G(w) 

0.92 <~ v < 3.24 < 0 

3.24 < v < 5.0 > 0 

5.0 ~ v < 6.36 < 0 

6.36 ~ v < 6.84 > 0 

6.84 < v < 0 



TABLE IV 
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RESONANCE AND LOCAL MODE FREQUENCIES 

£ = .575 UNITS OF THZ 

SYMMETRY wi w 
R 

FIRST NEIGHBOUR A1g 9.1337 

B2g 8.3084 

B3g 8.3580 

B1u 7.5125 6.012 

B2u 8.5406 

B3u 8.5807 

SECOND NEIGHBOUR A
1g 

8.379., 

E 8.4250 
g 

A2u 8.5180 

E 8.478l 
u 

£ = -2.1 WR WR 

FIRST NEIGHBOUR A1g 2.7628 6.06 

B2 .g 2.4460 6.14 

B3g 2.3844 6.396 

B1u 2~3l16 

B 
2u 2.9516 6.22 

B3u 2.8628 6.14 

SECOND NEIGHBOUR A1g 2.5348 6.308 

E 
g ;2.3868 6.148 

A2u 2.5556 6.228 

E 2.6838 
u 
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TABLE V 

PAIR LOCAL MODE FREQUENCIES (THz.) 

e: == .575 

W_Q, 

THIRD NEIGHBOUR 	 8.3728 

8.3923 

8.4336 

8.4703 

8.5078 

8.5242 

FOURTH NEIGHBOUR 	 8.3704 

8.4412 

8.4495 

8.4550 

8.4631 

8.5241 

FIFTH NEIGHBOUR 	 8.4398 

8~4420 

8.4463 

a 4623 

8.4623 

8.4644 
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in the light defect case that the mode B oscillates at frequencies. 1u 

above and below the host band to maximum, thus accounting for the large 

band mode contribution for a nearest neighbour pair notice. in the last 

section. By referring to the pure crystal density of states (Fig. 7 ) we 

see that in the light defect case local modes are peeled off the peak near the 

top of the Copper band, while the resonance of Blu symmetry is pulled up from 

the states below V ~ 5 THz. In the heavy defect case, we find two 

ranges of resonance frequencies, around 6 THz and below 3 ~z. Presumab1y 

these modes are pulled down in frequency from the two peaks in the pure 

crystal density of states just mentioned. 

Table V gives the local mode frequencies derived from 91 for third 

to fifth neighbour defect pairs. We may note the convergence of the local mode 

frequencies to the single defect value, almost complete by fifth neigh

bour and Fig. 8 shows this graphically. 

II.3 OPTICAL ABSORPTION 

Using the expressions derived in II.2b we calculate the ab

sorption coefficient for infra-red radiation for a system of randomly oriented 

charged defects. Fig. 9 shows the absorption by an alloy of charged 

gold atoms in copper which ab-sorb radiation as a single defect i.e~ neglecting 

pairing effects. Figs.1o and 11 show the expected absorption for nearest 

neighbour and second neighbour charged defect pairs, respectively. 

These plots exhibit the same qualitative features as the cal

culation of Martin (1967), who employed a simpler model with which to cal

culate the Green's functions for the perfect crystal •. 
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From the Appendix we see that the absorption coefficient is 

given, in the nearest neighbour case, after summing our ungerade modes, 

by 

a.(w} a. wim {G (1,1} + G (1,2} + G (1,2}
XX XX XY 

+ G (1,1} + G (1,2} - G (1,2} + G (1,1) + G (1,2)}
XX XX xy ZZ ZZ 

= Wim {2G (1,1} + 2 G (1,2} + G (1,1} + G (1,2)}
XX XX ZZ ZZ 

wim {Tr ~(1,1) + Tr £(1,2)} (169) 

since the x and y axis are symmetry related. We find for the second neigh

bour case that the result is the same, i.e. a. is proportional to the sum 

of the traces of the inter and intra defect Green's functions. 
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II.4 PHONON SHIFTS AND WIDTHS 

To perform the Fourier transformation discussed in section I.3 

certain symmetry directions inK space were chosen viz. the (111),(110) 

and (100) directions. L may now be regarded as diagonal so that a 

single (j,K) pair specifies it. From equation 154 it is noted that a 

sum is necessary over half the lattice; of course this is impossible in 

practice so that only certain shells of the closest neighbours are 

chosen. In the present work the calculation was performed out to fifth 

neighbout but little difference accrued on summing beyond second 

neighbours, so that the major effects were due to nearest and second 

neighbours. Fig. 19 illustrates the convergence, showing the on-shell 

shifts summed to first, second and fifth neighbour shells. This verifies 

the assumed convergence of the sum and validates the approximation of 

terminating the sum. 

The sum to be performed is rewritten as; 

(170) 

where S(~) is a notation matrix which is a representative of a member 

of the point group of the crystal and notates L for a given lattice 
n 

site into that for another lattice si~e at the same distance from the 

origin, thus E(R) need only be known for one site in each shell, and 

the sum over n implies summation over shells. Now further transforming 

to phonon modes gives; 

r r' cr*js+(~) ~ ~(R)~jcos(K•R) (171) 
n R 
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Now we note that it is only necessary to evaluate the column matrix 

(172) 


for each R and j so instead of performing matrix multiplication only 

matrices and vectors need be multiplied: 

n R n 
(173) 


The results of these calculations appropriate for gold impuri

ties in copper are shown in Figs. 12-15. Figs. 12 and 13 show the calculated 

frequency shifts for the L(llO) and T(lll) phonon modes at C = 20%. These 

shifts are "on-shell", i.e. they are plotted against the host phonon 

frequency, so that it is necessary to calculate Ej(K,w) at several 

points inK space and then evaluate w.(K) for the perfect copper crystal
J-

and choose the corresponding frequency at each K value. In these illustra

tions we have plotted the single site approximation to E (solid line) 

and the second order calculation (discrete points). It is important to 

2note that the single site calculation contains E( ,l), the first second 

order correction so that the difference between the two plots is just 

pairing effects. The largest effects obtained among all nine phonon modes 

along symmetry directions are those illustrated, although variation between 

modes was very small. Figs. 14 and 15 illustrate the half widths corres

ponding to Figs. 12 and 13. 

As we can see pairing effects contribute little to the phonon 

shifts and widths. Any effects there are tend to strengthen the resonant 

behaviour, sharpening the resonant jump in the shift and increasing the 
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resonant widths. 

Figs. 16-19 illustrate experimental determinations of shifts 

and widths at a gold concentration of 9.3%. It is clear that pairing 

effects are too small to be the cause of the observed effects. In fact 

we see for the L(lOO) case that the resonant behaviour has been complete

ly lost. 

It is thus apparent that the mass defect model, even calculated 

to second order in the defect concentration is unable to give the ob

served phenomena, hence one must turn to alternative causes, notably 

force constant changes and volume changes. Force constant changes have 

been considered by Bruno (1971), Hampson (1973) and Woodside (1976) 

by fitting force constant changes to elastic constant measurements. 

These results were also unable to reproduce the phenomena, although 

several errors have been found in that work by Woodside (1976). The 

effects of volume changes is as yet an unsolved problem and the 

current approach is to include volume changes via the mode Gruneisen 

parameter. Again the theory is insufficient so that the dynamics of 

lattices with a high concentration of defects remains a problem to be 

solved. What we can infer from the present work is the positive result 

that the solution does not lie in the pairing effects of mass defects. 
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II. 5 CONCLUSIONS 


The consistent result of this work has been that the interac

tion between neighbouring defect atoms in the harmonic, mass-defect 

model is extremely small. In the vibrational spectrum of a single atom, 

a small change was observed on adding another defect as nearest neighbour 

but on integrating over all frequencies to obtain the mean square dis~ 

placement, the effects became less than 0.1%. 

We thus expect little difference between the single-site 

approximation and a calculation that takes account of defect interac

tions. This is, in fact, the case and a calculation of phonon shifts 

and widths in the pair approximation at 20% impurity concentration 

gives a small perturbation to the single-site result, with no essentially 

new structure. 

However the experimental results of Svensson and Kamitakahara 

at an impurity concentration of only 9.3% show considerable distortion 

from the low concentration results. Thus the mass-defect model does 

not take account of the important effects at reasonably high concentration. 

To improve the model, the first necessary step at this point. 

is to include changes in the force constants. Force constant changes 

have been included at low concentration in the single-site approximation 

by Bruno, Hampson and Woodside, and also by Kesharwani and Agrawal, but 

the extension to including pairs correctly would be extremely complicated 

and promises to provide a lot of work in the future. 
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APPENDIX 

GROUP THEORY OF AN ISOLATED DEFECT PAIR 

In this appendix we derive the irreducible representations of 

the point group according to which the symmetry modes of a defect pair, 

in an otherwise perfect crystal, transform. 

For a nearest neighbour pair, the symmetry group is o h, whose2

elements are 

where the notation is given in Fig. A.l we first notice that the point 

group D h has no irreducible representations of diversionality greater
2

than one (Tinkham (1964)) hence we expect no degenerate symmetry modes. 

We proceed to construct the reducible six-dimensional re

presentation axis of the two atoms, evaluating the characters of the 

associated matrices leads to the character table 

R 6 -2 0 0 0 0 0 2 

Reducing this representation into its component irreducible representa

tions leads to 

(Al) 



so 


The same process applied to the second nearest neighbour case whose 

symmetry group is o h leads to the reduction4

R 6 -2 2 0 0 0 0 0 2 2 

R ...;....> ·A · $. Er . $ ·A - e E . 	 (A2)
lg g 	 -2u u 

Thus we see that two-dimensional irreducible representations appear, 

so that two doubly degenerate symmet~J modes are found. We can now 

construct projection operators to project out those functions that trans

form according to each irreducible representation, thus giving us the 

symmetry vectors for the normal modes. These projection operators are 

given by (Tinkham (1964)) 

.P (_!j.) = 	 R, j 1: X ( j ) ( R) P (A3)
h R R 

where j labels the normal mode which transforms according to an 

irreducible representation of diversionality R-. and with respect to 
J 

(")
which the group element R has character X J (R) • h is the number of 

elements in the group and PR is the operator corresponding to the group 

elevent R. For example in the second neighbour case for the irreducible 

representation E ; 
g 

.1' = 	 (A4)
E 

g 
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l {2Z -2(-Z )+ 2(-Z )-2(Z )} (AS)
8 1 1 2 2 


Thus the symmetry vector is 1_(00100-1) in a Cartesian basis. Similarly 
.f2 

the symmetry vectors for all symmetry modes are found to be; 

NEAREST NEIGHBOUR 

Alg 

B
·2g 

B3g 

Blu 

B2u 

B3u 

SECOND NEIGHBOUR 

Alg 

E 
g 

I! 

E 
g 

1
-(110-1-10)
2 


. .!.(00100-1) 
12 


1
-(1-10-110)
2 


~(110110) 

1

-(1-101-10)2 


.!_(OOlOOi) 
12 


!.(100-100) 
12 


.!.(0100-10) 
12 


!.(00100-1) 
12 


!.(100100)A2u 
12 
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E .!.(010010) 
u 12 

II 

E _!_(001001) 
u 

12 

We now employ these symmetry vectors to transform the Green's 

functions to normal co-ordinates via 

r (A6) 

af3 

where a and f3 range over the values l to 6. Applying this transformation 

for all symmetry modes we find; 

NEAREST NEIGHBOUR 

p (1,1) - p (1,2) - p (1,2) (a)PA: = 
XX .XX xy

lg 

PB = p (1,1) - p (1,2) (b)
zz zz

2g 

= p (1,1) - p (1,2) + p (1,2) (c)PB XX XX xy
3g 

(A7) 

p = p (1,1) + p (1,2) + p (1,2) (d) . 
XX XX xyB.1u 

p (1,1) + p (1,2) - p (1,2) (e)PB = 
XXXX xy

2u 

PB = p (1,1) + p (1,2) (f) 
zz . zz 

3u 



83 

SECOND NEIGHBOUR 

= p (1,1) - p (1,2) (a)PA .XX XXlg 

p ' = p (1,1) - p (1,2) (b)
Eg YY yy 

p " = p (1,1) - p (1,2) (c)
E zz zzg 

(AS) 

= p (1,1) + p (1,2) (d)PA XX XX2u 

p E.·' = p (1,1) + p (1,2) (e)g yy yy 

= p (1,1) + p (1,2) (f)zz zz 
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