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Abstract

Systems of differential-algebraic equations (DAEs) arise in many areas including

chemical engineering, electrical circuit simulation, and robotics. Such systems are

routinely generated by simulation and modeling environments, like MapleSim, Mat-

lab/Simulink, and those based on the Modelica language. Before a simulation starts

and a numerical solution method is applied, some kind of structural analysis (SA) is

performed to determine the structure and the index of a DAE system.

Structural analysis methods serve as a necessary preprocessing stage, and among

them, Pantelides’s graph-theory-based algorithm is widely used in industry. Recently,

Pryce’s Σ-method is becoming increasingly popular, owing to its straightforward ap-

proach and capability of analyzing high-order systems. Both methods are equivalent

in the sense that (a) when one succeeds, producing a nonsingular Jacobian, the other

also succeeds, and that (b) the two give the same structural index in the case of

either success or failure. When SA succeeds, the structural results can be used to

perform an index reduction process, or to devise a stage-by-stage solution scheme for

computing derivatives or Taylor coefficients up to some order.

Although such a success occurs on fairly many problems of interest, SA can fail on

some simple, solvable DAEs with an identically singular Jacobian, and give incorrect

structural information that usually includes the index. In this thesis, we focus on the
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Σ-method and investigate its failures. Aiming at making this SA more reliable, we

develop two conversion methods for fixing SA failures. These methods reformulate a

DAE on which the Σ-method fails into an equivalent problem on which SA is more

likely to succeed with a nonsingular Jacobian. The implementation of our methods

requires symbolic computations.

We also combine our conversion methods with block triangularization of a DAE.

Using a block triangular form of a Jacobian sparsity pattern, we identify which diago-

nal block(s) of the Jacobian is identically singular, and then perform a conversion on

each singular block. This approach can reduce the computational cost and improve

the efficiency of finding a suitable conversion for fixing SA’s failures.
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Chapter 1

Introduction

Differential-algebraic equation systems (DAEs) are generated routinely by modeling

and simulation environments, such as MapleSim [28], Matlab/Simulink [58, 59],

SimulationX [13], and those built on the Modelica language [23, 42, 61]. These

DAE systems arise from disciplines such as electrical circuits, chemical engineering,

and rigid body mechanical systems.

To simulate the dynamic behaviour of a DAE system, a variety of algorithms are

applied in the steps from creating a mathematical model to constructing a numeri-

cally solvable system of equations. In the modeling process, dynamical systems are

generated by selecting components in different libraries and integrating these compo-

nents into subsystems. Such a subsystem can have its own physical dynamics, and all

these subsystems together can be further interconnected to each other via interface

or coupling formulas. This approach of modeling can result in a large, sparse, and

nonlinear DAE system, which is typically structured: the coupling between compo-

nents is stronger within a subsystem, but is weaker between subsystems. Moreover,

such a DAE can be of high index.

1



2 CHAPTER 1. INTRODUCTION

Understanding the solution process of a DAE is nontrivial. To solve numerically

a DAE, typically derivatives of some of its equations need to be appended to the

original formulation, forming an augmented overdetermined system. We then wish

to reduce this enlarged system to an implicit ODE or index-1 DAE system, so that

a standard numerical code can be used for integration. However, in general, it is

not easy to find which equations are to be differentiated and, especially, how many

times. If the numerical method is not chosen properly for a high-index DAE, then

the integration can lead to instabilities and non-convergence of the method [3,20,25].

Hence, before a numerical solution method is applied to a DAE, some kind of

structural analysis (SA) algorithm is applied to determine some characteristics of the

DAE, such as index, number of degrees of freedom, and variables and derivatives

that need consistent initial values. These structural analysis methods serve as a

preprocessing stage, providing more insights into the underlying structure of a DAE

and indicating which numerical solution method can be applied.

1.1 Overview of DAEs

Throughout this thesis, we discuss an initial value problem DAE of the general form1:

fi( t, the xj and derivatives of them ) = 0, i = 1 :n, (1.1)

where the xj(t), j = 1 :n, are n state variables, and t is the independent variable,

usually regarded as time. The formulation (1.1) includes high-order systems and

systems that are jointly nonlinear in leading derivatives. Furthermore, (1.1) includes

1The colon notation p : q for integers p, q denotes either the unordered set or the enumerated list
of integers i with p ≤ i ≤ q, depending on context.
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ODEs and purely algebraic systems.

An important characteristic of a DAE is its index. Various definitions of index exist

in the literature: differentiation index [6, 16, 17], geometric index [51, 53], structural

index [12, 43, 46], perturbation index [20], tractability index [18], and strangeness

index [25]. Among these definitions, the differentiation index is the most popular

one; see its definition below. Generally speaking, the index measures how different a

DAE is from an ODE, and how difficult it is to solve a DAE.

We let x(t) denote a vector of functions x1(t), x2(t), . . . , xn(t). The following

definition for differentiation index is from [1, p. 236].

Definition 1.1 (Differentiation index) Consider a general form of a first-order

DAE

F(t,x,x′) = 0, (1.2)

where ∂F/∂x′ may be singular. The differentiation index (written also d-index or νd)

along a solution x(t) is the minimum number of differentiations of the system that

would be required to solve x′ uniquely in terms of x and t, that is, to define an ODE

for x. Thus this index is defined in terms of the overdetermined system

F (t,x,x′) = 0,

dF

dt
(t,x,x′,x′′) = 0,

...

dpF

dtp
(
t,x,x′, · · · ,x(p+1)

)
= 0

(1.3)

to be the smallest integer p so that x′ in (1.2) can be solved for in terms of x and t.
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If a DAE (1.1) is of high-order, then one can introduce additional variables to

reduce it to first-order and fit into the form (1.2).

We give a definition for a solution of a DAE.

Definition 1.2 (Solution of a DAE) [46] An n-vector function x(t), defined over

a time interval I ⊂ R, is a solution of (1.1), if (t,x(t)) satisfies fi = 0, i = 1 :n,

pointwise for all t ∈ I—that is, functions fi vanish on I.

Remark 1.3 If x(t) is a solution of (1.1) and is sufficiently differentiable, then func-

tions fi and derivatives of them vanish for all t ∈ I. That is,

0 = f
(m)
i for all i = 1 :n and m ≥ 0.

Since the general form (1.1) we deal with has 0 on the right-hand side, by “an

equation fi” we shall mean its corresponding equation fi = 0, omitting the verbose

“= 0” part.

If a DAE is of index-1, then we say it is of low index. To solve this DAE, a standard

index-1 DAE solver can be used, for example, dassl [3], ida of sundials [21], or

Matlab’s ode15s and ode23t. If a DAE is of index ≥ 2, then the DAE is of high

index and we need a high-index DAE solver, such as radau5 for DAEs of index

≤ 3 [20], or daets for DAEs of any index [39]. Index reduction methods [24,29] and

regularization techniques [25, 55] exist, and can be used to reduce a high-index DAE

to a DAE of index-1 or a regularized (and thus regular) DAE, respectively. Recent

works by Pryce and McKenzie focus on the dummy derivatives (DDs) index reduction

method [31,32,34,35,44,47].
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1.2 Overview of structural analysis methods

To compute the differentiation index from its formal definition in Definition 1.1,

we may use linear algebra to investigate how the first-order derivatives x′ can be

determined by t and x. That is, we construct a system of some or all equations in

(1.3) in t, x, x′, and their higher derivatives. Then we ensure that the Jacobian matrix

of these equations with respect to the relevant variables/derivatives is nonsingular,

so that x′ can be computed. See the derivative array equations approach in [7] and

the tractability index approach in [26], which also use linear algebra.

For DAEs of large size and/or high index, the size of the matrix to be analyzed can

be much larger than the original problem size n, so checking its matrix nonsingularity

can involve heavy linear algebra [48,50]. Therefore, we wish to find the index of a DAE

by its sparsity-based structural information, namely which variables and derivatives

of them occur in each equation. Structural analysis (SA) methods are designed to do

this job, so serve as a preprocessing stage to determine the index before a numerical

solution method is applied. Among them is the Pantelides’s method [43], a graph-

based algorithm that finds how many times each equation needs to be differentiated.

Pryce’s SA, the SIGnature MAtrix method or the Σ-method, involves a combinatorial

optimization problem from discrete mathematics and optimization theory. The Σ-

method is equivalent to Pantelides’s algorithm, and both algorithms always compute

the same structural index [46]. Pantelides’s algorithm can handle first-order systems

(1.2) only, while the Σ-method can be applied to (1.1) of any order. This allows

one to avoid writing less interesting equations like y′ = z, and hence to formulate

many problems in a more compact and concise way; see Example 6.3 for instance.

We believe that the Σ-method is more direct and easier to apply to some extent.
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Throughout this thesis, we shall use the Σ-method and refer to it as our SA. Other

SA methods can be found in, for example, [57] and [62].

The Σ-method determines structural index, which is often the same as the differen-

tiation index, the number of degrees of freedom (DOF), the variables and derivatives

that need to be initialized, the constraints of the DAE, and a solution scheme for a

Taylor series method. We give the definition for the structural index in §2.

Nedialkov and Pryce have developed daets (solving DAEs by Taylor Series), a

C++ package that integrates an initial value problem (IVP) for a DAE system of

arbitrarily high index and order using a Taylor series method [37,38,39]. daets uses

the Σ-method to analyze a DAE of the form (1.1), and the SA result prescribes a

stage by stage solution scheme. This scheme indicates at each stage which equations

need to be solved and for which Taylor coefficients (TCs) [resp. derivatives] for the

solution; see §2.1 and more details in [41]. daets computes these TCs up to some

order and then performs an integration step.

Tan, Nedialkov, and Pryce have developed daesa, DAEs Structural Analyzer,

a Matlab package that performs SA of DAEs [40, 49]. It incorporates recent devel-

opment of our SA theory, and contains more sophisticated SA features compared to

daets. daesa allows convenient translation of a DAE into Matlab and provides a

set of easy-to-use functions (17 functions in Version 1.0) for determining SA results.

It also allows a rapid investigation of the structure of a DAE by visualizing its block

triangular forms (BTFs). daesa performs quasilinearity analysis (QLA) on each

diagonal block, and derives the minimum set of initial values [49] and a blockwise

solution scheme [41]. For usages of this package we refer the reader to the daesa

user guide [33].
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In [2, 19, 22], the Σ-method is also applied to perform SA of DAEs, and the SA

results are used for numerical simulations. In [10], the Σ-method is used to prove

that the computational complexity of solving the initial value problem for a DAE of

arbitrarily high index is polynomial in the number of bits of accuracy needed. The

Σ-method also guides one to carry out a DDs-based index reduction procedure and

to design software code for automating this procedure [31,32,34,35,44,47].

1.3 Limitations of structural analysis methods

Although the Σ-method provably gives correct structural information (including in-

dex) on many DAEs of practical interest [46], it can fail—whence Pantelides’s al-

gorithm fails as well—on simple, solvable DAEs, producing an identically singular

System Jacobian. (See §2 for the definition of System Jacobian and that of SA’s

success.) We shall refer to these solvable DAEs as SA-failure cases or SA-unfriendly

DAEs. The DAEs on which SA succeeds are said to be SA-friendly.

In [46], Pryce shows that, if the Σ-method succeeds, then the structural index νS

is always an upper bound on the differentiation index νd. This implies that, if the

structural index is smaller than νd, then the Σ-method must fail; otherwise we would

have a counter statement to the above Definition 1.1.

The simplest way SA can fail is by hidden symbolic cancellations (see definition

in §3.2). These cancellations can cause more structural zeros in the System Jaco-

bian, making it more likely to be structurally singular; see later discussions in §3.2.

However, SA can fail in a subtle and obscure way. In this case, it was difficult to under-

stand the causes of such failures and to give systematic ways for fixing these problem
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formulations—the last paragraph in [39, §7] and [36, §5.2.3] admit this difficulty. Al-

though such deficiencies occur rarely, they make SA less reliable and hence can pose

limitations to its applications. As SA-based methods are applied more widely, SA’s

failures are likely to become more common and hence should be carefully dealt with.

The following works investigate SA’s failures and attempts to tackle them.

Pryce shows in [45] that the Σ-method fails on the index-5 Campbell-Griepentrog

Robot Arm DAE—the SA produces an identically singular Jacobian; our Example 6.3

shall discuss this. He then provides a remedy: identify the common subexpressions in

the DAE, introduce four extra variables, and substitute them for those subexpressions.

The resulting equivalent problem is an enlarged one, on which the Σ-method succeeds

and reports the correct structural index 5. Pryce introduces the term structure-

revealing to conjecture that a nonsingular System Jacobian might be an effect of

DAE formulation, but not of DAE’s inherent nature.

Chowdhry et al. propose a method called symbolic numeric index analysis (SNIA)

[9]. Their method can accurately detect symbolic cancellation of variables that appear

linearly in equations, and therefore can deal with linear constant coefficient systems.

For general nonlinear DAEs, SNIA is claimed to provide a correct result in some cases,

but not all. Furthermore, it is limited to first-order systems, and cannot handle com-

plex expression substitution and symbolic cancellations, such as (x cos y)′ − x′ cos y.

For the general case, their method does not derive from the original problem an

equivalent one that has the correct index.

Scholz and Steinbrecher are interested in a class of DAEs called coupled sys-

tems [55]. A coupled system in [55] is composed by coupling two semi-explicit systems

of differentiation index 1, and the resulting system can be of high index. They assert
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that the Σ-method succeeds if and only if the coupled system is again of differentia-

tion index 1, and fails if the coupled system is of high index. They show that several

simulation environments such as Dymola, OpenModelica, SimulationX, and

MapleSim all fail on a simple, solvable linear constant coefficient DAE; we shall dis-

cuss this in Example 3.18. They propose a structural-algebraic method to deal with

such SA failures occurring in coupled systems. Their method differentiates a linear

combination of certain algebraic equations that contribute to singularity, appends the

resulting equations, and replaces certain derivatives with newly introduced variables.

They use their regularization process to convert the regular coupled system to a DAE

of index 1, on which SA succeeds with a nonsingular System Jacobian.

Other SA-failure cases include the transistor amplifier and the ring modulator [30].

We shall discuss them in §7.1 and §7.2, respectively. In this thesis, we shall construct

more SA-unfriendly DAEs and show how to convert them to SA-friendly ones.

Another limitation of SA is the index overestimation problem: when SA succeeds

and produces a nonsingular System Jacobian, the structural index may overestimate

the differentiation index. Reißig et al. construct a class of linear constant coefficient

DAEs of differentiation index 1, and claim that the structural index of such DAEs

increases with the problem size and hence can be arbitrarily high [52]. On these DAEs,

Pantelides’s algorithm performs a high number of iterations and differentiations, and

obtains a high structural index exceeding 1. Pryce shows in [46] the application of the

Σ-method on one such DAE of size 5. Producing a nonsingular System Jacobian, this

SA succeeds, but still reports the same high structural index 3 as does Pantelides’s.

This situation is not favoured, since the difficulty of numerically solving each such

DAE is exaggerated. We also attempt to tackle this problem in §7.3.
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1.4 Contributions

This thesis focuses on handling SA-unfriendly DAEs. When SA fails on a DAE and

produces an identically singular System Jacobian, our goal is to convert automatically

this DAE into an equivalent problem on which SA succeeds or (at least) it is more

likely to succed. This thesis is devoted to developing such methods—the conversion

methods.

The main contributions of this thesis are as follows.

• We develop two conversion methods that reformulate an SA-unfriendly DAE

to an equivalent SA-friendly problem formulation. Using a symbolic tool, we

can perform the conversions in a systematic way. We identify the equivalence

of the original DAE and the converted one, and ensure that both have the

same solution (if any). We also give rationale for choosing the most suitable

conversion among possibly several ones. See §4.

• We combine block triangularization of a DAE with our conversion methods.

The block conversion methods can improve the efficiency of finding a useful

conversion for fixing SA’s failures. See §6.

• We give insight into SA’s failures, which were not well understood before. We

point out that the reason behind such failures is related to an overestimation

of the number of degrees of freedom of a DAE.

• We show how to fix the SA-unfriendly DAEs in the existing literature by our

conversion methods. See §5, §7.1, and §7.2. We also show how to resolve the

index overestimation problem on the family of DAEs by Reißig. See §7.3.
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1.5 Thesis organization

The rest of this thesis is organized as follows.

Chapter 2 summarizes the Σ-method and gives definitions and tools that are

needed for our theoretical development. We give a definition for SA’s success and

failure on a DAE, and show how to derive block triangular forms (BTFs) of a DAE.

Chapter 3 describes the problem of SA’s failures on some DAEs. We show how

to distinguish two types of SA’s failure: in one type, SA produces a System Jacobian

that is structurally singular; in the other case, the System Jacobian is structurally

nonsingular but is still identically singular.

Chapter 4 presents the basic version of the conversion methods, the linear com-

bination (LC) method and the expression substitution (ES) method. By “basic” we

mean that these methods do not exploit a BTF of a DAE. We derive conditions under

which we can convert an SA-unfriendly DAE to an equivalent SA-friendly DAE. The

equivalence of DAEs is also discussed.

Chapter 5 illustrates the basic conversion methods with two more examples.

Chapter 6 shows how to combine the conversion methods with a block triangular-

ization of a DAE. Using a BTF based on a Jacobian sparsity pattern, we can identify

which blocks of a Jacobian are identically singular, and then apply the conversion

methods on each such block.

Chapter 7 illustrates these block conversion methods with two DAEs from elec-

trical circuit analysis, and shows our treatment for the index overestimation problem

on the family of DAEs by Reißig.

Chapter 8 gives concluding remarks.
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Chapter 2

Summary of the Σ-method

In this chapter, we review the Σ-method that performs structural analysis (SA) of

a DAE. We present in §2.1 this method and the notation we use, and describe in

§2.2 the block triangularization of DAEs. Terms at their defining occurrence are in

slanted font.

Throughout this thesis, we assume that the functions fi in (1.1) are sufficiently

differentiable.

2.1 A simple structural analysis

We call this SA method [46] the Σ-method, because it constructs for (1.1) an n × n

signature matrix Σ = (σij) such that each signature entry

σij =





highest order of derivative to which xj occurs in fi; or

−∞ if xj does not occur in fi.
(2.1)

13
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A transversal T of Σ is a set of n positions (i, j) with exactly one position in each

row and each column. The sum of signature entries over T , or
∑

(i,j)∈T σij, is called

the value of T , written Val(T ). We seek a highest-value transversal (HVT) that gives

this sum the largest value. We call the maximum sum the value of the signature

matrix, written Val(Σ).

We give a definition for a DAE’s structural posedness.

Definition 2.1 (Structural well-posedness of a DAE) A DAE is structurally

well posed (SWP) if there is some one-to-one correspondence between equations and

variables, or equivalently Val(Σ) > −∞; otherwise, the DAE is structurally ill posed

(SIP) and Val(Σ) = −∞.

In the SWP case, we have some transversal T on which all signature entries σij

are finite. Such a transversal is said to be finite. Since Val(Σ) is the maximum

value of Val(T ), Val(Σ) is also finite. In contrast, in the SIP case, there is no finite

transversal, so Val(Σ) = −∞.

We henceforth consider the SWP case. Using an HVT, we find 2n integers

c = (c1, . . . , cn) and d = (d1, . . . , dn)

associated with the equations and variables of (1.1), respectively. These integers

satisfy

ci ≥ 0 for all i; dj − ci ≥ σij for all i, j with equality on an HVT. (2.2)

We refer to such c and d, written as a pair (c; d), as a valid offset pair. A valid offset

pair is not unique, but there exists a unique elementwise smallest solution (c; d) of
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(2.2), which we refer to as the canonical offset pair [46].

Any valid (c; d) can be used to prescribe a stage by stage solution scheme for

solving DAEs by a Taylor series method. The derivatives of the solution are computed

in stages

k = kd, kd + 1, . . . , 0, 1, . . . , where kd = −max
j
dj. (2.3)

At each stage k, we solve a system

0 = f
(ci+k)
i for all i such that ci + k ≥ 0 (2.4)

for derivatives

x
(dj+k)
j for all j such that dj + k ≥ 0, (2.5)

using x
(<dj+k)
j , j = 1 :n, found in previous stages. Here z(<r) is a short notation for

z, z′, . . . , z(r−1), and z(≤r) includes z(<r) and z(r).

The systems at stages k ≥ 0 are always square, since ci + k ≥ 0 and dj + k ≥ 0

for all i, j = 1 :n. For k = kd, . . . ,−1, there are usually more derivatives in (2.5)

than equations in (2.4)—that is, the stage k subsystem is underdetermined. In this

case, we provide trial values x̃
(dj+k)
j , and solve the equations f

(ci+k)
i as a least-square

problem for the derivatives x
(dj+k)
j . Also, if the stage k system is well determined

(meaning square) and the derivatives x
(dj+k)
j occur in a jointly nonlinear way, then we

also need trial values and find a least-square solution for these derivatives. We refer

the reader to [41] for a detailed discussion of the solution scheme.
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We give a definition for a success of our SA.

Definition 2.2 (Success of the Σ-method) If the solution scheme (2.3–2.5) can

be carried out for stages k = kd : 0, and the derivatives x
(≤dj)
j , j = 1 :n, can be

uniquely determined, then we say the solution scheme and the Σ-method succeed.

Otherwise they fail, in the sense that the Jacobian used to solve (2.4) at some stage

k ∈ kd : 0 does not have full row rank.

The Jacobian used to solve (2.4) for stages k ≥ 0 is called the System Jacobian of

(1.1), an n× n matrix J(c; d) = (Jij) defined by

Jij =
∂f

(ci)
i

∂x
(dj)
j

=
∂fi

∂x
(dj−ci)
j

=





∂fi

∂x
(σij)

j

if dj − ci = σij, and

0 otherwise

(2.6)

with i, j = 1 :n. The second “=” in (2.6) is based on Griewank’s Lemma below, and

the third “=” follows from (2.2).

Lemma 2.3 (Griewank’s Lemma) [46] Let w be a function of t, the xj(t), j =

1 :n, and derivatives of them. Denote w(p) = dpw/dtp, where p ≥ 0. If σ (xj, w) ≤ q,

then

∂w

∂x
(q)
j

=
∂w′

∂x
(q+1)
j

= · · · = ∂w(p)

∂x
(q+p)
j

. (2.7)

Using the derivatives computed in stages k = kd : 0, we have found a consistent

point: it is either
(
t, x

(<d1)
1 , . . . , x

(<dn)
n

)
, if every x

(dj)
j occurs in a jointly linear way in

every f
(ci)
i , or

(
t, x

(≤d1)
1 , . . . , x

(≤dn)
n

)
, if some x

(dj)
j occurs in a jointly nonlinear way in

every f
(ci)
i , equations from the stage k = 0 subsystem. We refer to [37,49] for a more

rigorous discussion of a consistent point.
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As noted earlier, we assume that the equations in (1.1) are sufficiently differen-

tiable and that derivatives of a solution x(t) to (1.1) exist to some order. Theorem

4.2 in [46] proves existence of a DAE (1.1), and Section 3 in [37] extends this existence

result to a needed smoothness result: if J is nonsingular at a consistent point of t = t∗

and each function fi has (N + ci) continuous derivatives in a neighbourhood of this

consistent point, for some integer N ≥ 1, then each of xj(t) has (N + dj) continuous

derivatives in a neighbourhood of t∗, and the solution scheme (2.3–2.5) can compute

these derivatives up to stage k = N .

Although a different offset pair (c; d) produces a different solution scheme (2.3–

2.5) and generally a different System Jacobian J(c; d), all J’s nevertheless share the

same determinant [37]. If one J is nonsingular—whence so are all J’s—at a consistent

point, then SA succeeds, and there exists (locally) a unique solution through this

point [46]. Then we use the canonical offset pair (c; d) to determine the structural

index and the number of DOF [46]:

νS = max
i
ci +





1 if minj dj = 0

0 otherwise

(2.8)

and dof = Val(Σ) =
∑

(i,j)∈T
σij =

∑

j

dj −
∑

i

ci. (2.9)

Here “DOF” refers to the phrase “degrees of freedom”, while dof is the corresponding

number.

Remark 2.4 In most cases where SA succeeds, we use the canonical (c; d) to derive

the structural index νS, which is an upper bound for the differentiation index [46].

However, in some special cases, a non-canonical offset pair may give a smaller νS in
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(2.8) than the canonical offset pair does. We provide such examples in §7.3, and shall

see that, for those DAEs of differentiation index 1, a non-canonical offset pair gives

νS = 1, while the canonical offset gives an overestimated νS = 2.

To perform a numerical check for SA’s success, or a success check for short, we

attempt to compute numerically a consistent point at which J is nonsingular within

roundoff. We assign initial values to an appropriate set of derivatives of xj’s and

carry out the solution scheme (2.4–2.5) for stages k = kd : 0. There is a minimal set

of derivatives required for a DAE initial value problem; see discussion in [49].

When SA succeeds, the structural index is an upper bound for the differentiation

index, that is νd ≤ νS, and often they are the same [46]. In the failure case, our

experience suggests the following.

(i) Usually (but not always) νd > νS holds. That is, the index of a DAE is under-

estimated, and hence some equations do not receive enough differentiations.

(ii) The true dof of a DAE is overestimated by Val(Σ).

We shall see these facts throughout the following chapters.

Example 2.5 We illustrate1 the above concepts with the simple pendulum, a DAE

of differentiation index 3.

0 = f1 = x′′ + xλ

0 = f2 = y′′ + yλ−G

0 = f3 = x2 + y2 − `2

(2.10)

1When we present a DAE example, we also present its signature matrix Σ and its value, the
canonical offset pair (c; d), the associated System Jacobian J and its determinant.
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Σ =

x y λ ci







f1 2• 0◦ 0

f2 2◦ 0• 0

f3 0◦ 0• 2

dj 2 2 0 Val(Σ) = 2

J =

x′′ y′′ λ






f1 1 x

f2 1 y

f ′′3 2x 2y

det(J) = −2`2

The state variables are x, y, λ; G is gravity and ` > 0 is the length of the pendulum.

Two HVTs of Σ are marked with • and ◦, respectively. A blank in Σ denotes −∞,

and a blank in J denotes 0. The row and column labels in J, showing equations and

variables differentiated to order ci and dj, aim to remind the reader of the formula

for J in (2.6).

Since det(J) = −2`2 6= 0, J is nonsingular, and SA succeeds. The derivatives

x′′, y′′, λ occur in a jointly linear way in (2.10), so a consistent point comprises

(
t, x(<d1), y(<d2), λ(<d3)

)
=
(
t, x(<2), y(<2), λ(<0)

)
= (t, x, x′, y, y′)

that satisfy (2.4) in stages k = −2,−1, that is, f3 = f ′3 = 0. The structural index

is νS = mini ci + 1 = 2 + 1 = 3 (because minj dj = d3 = 0), which equals the

differentiation index. The number of DOF is dof = Val(Σ) =
∑

j dj−
∑

i ci = 4−2 =

2. The solution scheme prescribed by the canonical offset is shown in Table 2.1.

k solve for using Jacobian

−2 f3 x, y − [2x 2y]

−1 f ′3 x′, y′ x, y [2x 2y]

≥ 0 f
(k)
1 , f

(k)
2 , f

(k+2)
3 x(k+2), y(k+2), λ(k) x(<k+2), y(<k+2), λ(<k) J

Table 2.1: Solution scheme for the simple pendulum DAE.
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2.2 Block triangularization of a DAE

In §2.2.1, we introduce notation for a block triangular form (BTF) of a sparsity

pattern, and shall use such notation throughout this thesis. In §2.2.2, we review how

to derive a BTF of a DAE.

We use bold font for matrices that may split into blocks, and also for the resulting

sub-matrices. Individual entries of a matrix are in lowercase. For example, matrix A

has sub-matrices Alm and entries aij.

2.2.1 Block triangular form of a sparsity pattern

Let R = 1 :n be the set of indices of n rows (equations), and let C = 1 :n be the set

of indices of n columns (variables). A sparsity pattern A is a subset of the Cartesian

product R × C that contains row-column index pairs (i, j). We can view A as its

incidence matrix (aij), where aij equals 1 if (i, j) ∈ A and 0 otherwise. A transversal

of A is n positions in A with exactly one position in each row and each column. If A

has some transversal, then it is structurally nonsingular. The union of all transversals

of A comprise its essential sparsity pattern Aess [50]. Obviously, A is structurally

nonsingular if and only if Aess is nonempty.

Assume henceforth that A is structurally nonsingular. Let P and Q be two

suitable permutation matrices for A, such that the permuted incidence matrix A′ =

PAQ can be written in a p× p block form

A′ =




A11 A12 · · · A1p

A22 · · · A2p

. . .
...

App



, (2.11)
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where each diagonal block Aww, w = 1 : p, is structurally nonsingular and square of

size Nw > 0. Here Akl, k, l = 1 : p, is a submatrix in the context of incidence matrix,

or a sparsity sub-pattern in the context of a sparsity pattern. We say the block form

(2.11) is a BTF of A, in which a below diagonal submatrix Akl, k > l, is empty.

A sparsity pattern is irreducible if it cannot be permuted to a BTF (2.11) with

p > 1 [11]; otherwise it is reducible. A BTF is an irreducible BTF if its diagonal

blocks are all irreducible; otherwise it is a reducible BTF [50]. Hence, if (2.11) is the

irreducible case, then p is the largest number of diagonal blocks among all possible

BTFs of A′. Since every structurally nonsingular A is in a BTF of p = 1, such a

BTF is said to be trivial, while a BTF of p > 1 is nontrivial.

Without loss of generality, we deal with matrices that are already permuted to

some BTF. In other words, the details of permutations are not important to our

exposition, and we can use the same notation for permuted matrices. For example,

we can leave out the apostrophe in (2.11). When we say block w of a matrix in some

BTF, we shall refer to the wth diagonal block submatrix.

For each block w ∈ 1 : p, we define the index set

Bw = the set of indices i that belong to block w.

Another useful notation is blockOf(i) that denotes the block number w such that

index i ∈ Bw. Since each diagonal block is square, each notation applies to rows and

columns equally. To summarize, for i ∈ 1 : n and w ∈ 1 : p,

blockOf(i) = w ⇐⇒ i ∈ Bw ⇐⇒
w−1∑

w=1

Nw + 1 ≤ i ≤
w∑

w=1

Nw.
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× ×

× ×

× ×

× ×

× ×

× ×





× ×

× ×

× ×

× ×

× ×

× ×

w Nw Bw

1 1 { 1 }

2 1 { 2 }

3 1 { 3 }

4 3 { 4, 5, 6 }

(a) (b)

Figure 2.1: (a) Two nontrivial BTFs of the same sparsity pattern. The left one is
reducible with number of blocks p = 2. The right one is irreducible with p = 4. (b)
Block information for the irreducible BTF.

Example 2.6 We illustrate in Figure 2.1 the above block notation with a sparsity

pattern of two nontrivial BTFs.

The following lemma connects the transversals of a sparsity pattern A and the

transversals of its diagonal blocks in some BTF.

Lemma 2.7 [50, Lemma 2.4] Any transversal T of a sparsity pattern A is contained

in the union of the diagonal blocks of any BTF of A, that is, T ⊆ A11 ∪ · · · ∪App.

Equivalently, the intersection of T with block w of A is a transversal Tw of Aww.

2.2.2 Block triangular forms of a DAE

The natural sparsity pattern of a DAE indicates if a variable xj occurs in an equation

fi or not. Each such occurrence corresponds to a finite entry σij in Σ, and hence we

have

S =
{

(i, j) | σij > −∞
}

(the sparsity pattern of Σ).
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From the concepts introduced in §2.1, it is not difficult to show that the following

arguments are equivalent.

Sparsity pattern S of Σ is structurally nonsingular.

⇔ S has some transversal.

⇔ Σ has some finite transversal and hence has a finite Val(Σ).

⇔ DAE is structurally well posed (SWP).

⇔ There is some one-to-one correspondence between equations and variables.

Another BTF derives from the sparsity pattern S0 = S0(c; d) of a System Jacobian

J = J(c; d) as defined in (2.6):

S0(c; d) =
{

(i, j) | dj − ci = σij
}

(the sparsity pattern of J). (2.12)

We call S0(c; d) a Jacobian pattern for short, and also write it as S0 for brevity,

omitting the argument (c; d). By (2.2), dj − ci = σij holds on an HVT T of Σ, so T

is a transversal of S0.

A less obvious set contains the positions that contribute to det(J):

Sess = the union of all HVTs of Σ (the essential sparsity pattern of Σ), (2.13)

which is also the essential sparsity pattern of S0 for any offset pair (c; d) [50, Lemma

3.1].

An equality dj − ci = σij on some HVT also holds on all HVTs [49]. Such an
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equality implies σij > −∞, so we have

Sess ⊆ S0 ⊆ S for any offset pair (c; d).

A BTF of Σ means a BTF based on the sparsity pattern S of Σ, so a signature

matrix in its BTF has the form




Σ11 Σ12 · · · Σ1p

−∞ Σ22 · · · Σ2p

...
. . . . . .

...

−∞ · · · −∞ Σpp



,

where the bolded −∞ means a below diagonal block that is filled with −∞’s. A

BTF of J means a BTF based on the Jacobian pattern S0, so a System Jacobian in

its BTF has the form




J11 J12 · · · J1p

0 J22 · · · J2p

...
. . . . . .

...

0 · · · 0 Jpp



,

where below diagonal blocks are identically zero.

Our experience suggests that the irreducible BTF of J is often significantly finer

than that of Σ. We refer to the former BTF as the fine BTF, and to the latter as the

coarse BTF. We call the diagonal blocks in the fine BTF fine blocks, and call those

in the coarse BTF coarse blocks.

Assume that a Jacobian pattern S0 is permuted into a p × p BTF, which is not
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necessarily irreducible. Following this BTF, we apply the same permutations on J

and Σ, and write them in p× p block forms:

J =







J11 J12 · · · J1p

0 J22 · · · J2p

...
. . . . . .

...

0 · · · 0 Jpp

, Σ =







Σ11 Σ12 · · · Σ1p

Σ21 Σ22 · · · Σ2p

...
...

. . .
...

Σp1 Σp2 · · · Σpp

. (2.14)

We call this procedure a block triangularization of the DAE. When we say block w

of a DAE, we shall refer to the rows and columns of the wth diagonal block, or refer

to the functions and variables (and derivatives of them) in this block, depending on

context.

Notice that in (2.14) Σ may not be permuted into a BTF. That is, every σij in

the below diagonal blocks of Σ is not necessarily −∞, but must satisfy σij < dj − ci
as Jij ≡ 0.

Example 2.8 We illustrate the coarse and fine BTFs with the (artificially) modified

double pendula DAE Mod2Pend (2.15) in [41]. The state variables are x, y, λ, u, v, µ;

G is gravity, ` > 0 is the length of the first pendulum, and α is a constant.
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0 = f1 = x′′ + xλ

0 = f2 = y′′ + yλ+ (x′)3 −G

0 = f3 = x2 + y2 − `2

0 = f4 = u′′ + uµ

0 = f5 = (v′′′)3 + vµ−G

0 = f6 = u2 + v2 − (`+ αλ)2 + λ′′.

(2.15)

In the original index-5 double pendula from [37],

0 = f2 = y′′ + yλ−G

0 = f5 = v′′ + vµ−G

0 = f6 = u2 + v2 − (`+ αλ)2.

Figures 2.2–2.5 illustrate a block triangularization of Mod2Pend.

This DAE has two coarse blocks of size 3. The first one, comprising equations

f5, f4, f6 and variables v, µ, u, can further decompose into three fine blocks of size 1,

while the second coarse block, comprising equations f3, f2, f1 and variables x, y, λ, is

irreducible. Hence there are four blocks in the fine BTF.

The sparsity pattern S0 of J is in Figure 2.1(a), so the fine BTF information is in

Figure 2.1(b).
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Σ =

x y λ u v µ ci






f1 2• 0 4

f2 1 2 0• 4

f3 0 0• 6

f4 2 0• 0

f5 3• 0 0

f6 2 0• 0 2

dj 6 6 4 2 3 0 Val(Σ) = 5

J =

x y λ u v µ






f1 1 x

f2 1 y

f3 2x 2y

f4 1 u

f5 2v′′′ v

f6 1 2u

det(J) = 8`2u2v′′′

Figure 2.2: Σ and J of Mod2Pend (2.15).

x y λ u v µ






f1 × ×

f2 × × ×

S = f3 × ×

f4 × ×

f5 × ×

f6 × × ×

S0 =

x y λ u v µ






f1 ×• ×•

f2 ×• ×•

f3 ×• ×•

f4 × ×•

f5 ×• ×

f6 × ×•

Figure 2.3: Sparsity patterns S and S0 of Mod2Pend (2.15). In S0, the positions
marked by • lie on some HVT and compose the essential sparsity pattern Sess.

S =

x y λ u v µ






f5 × ×

f4 × ×

f6 × × ×

f3 × ×

f2 × × ×

f1 × ×

S0 =

x y λ u v µ






f5 ×• ×

f4 ×• ×

f6 ×• ×

f3 ×• ×

f2 ×• ×

f1 × ×•

Figure 2.4: Permuted sparsity patterns S and S0 of Mod2Pend (2.15).
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Σ =

v µ u x y λ ci






f5 3• 0 0

f4 0• 2 0

f6 0 0• 2 2

f3 0• 0 6

f2 1 2• 0 4

f1 2 0• 4

dj 3 0 2 6 6 4

J =

v′′′ µ u′′ x(6) y(6) λ(4)







f5 2v′′′ v

f4 u 1

f ′′6 2u 1

f
(6)
3 2x 2y

f
(4)
2 1 y

f
(4)
1 1 x

Figure 2.5: Σ and J permuted to BTF based on a Jacobian sparsity pattern S0.

If we state Lemma 2.7 in the context of a Jacobian pattern, then we have the

following lemma.

Lemma 2.9 [50, Lemma 3.3] Assume that a Jacobian pattern S0 is in some BTF.

Let (Σwm)w,m=1 : p be the corresponding sub-matrices of Σ. Then a highest-value

transversal T of Σ is the union of HVTs Tw of the diagonal blocks Σww: T =

T1 ∪ · · · ∪ Tp.

This lemma is not difficult to prove, given that a transversal T of S0 is the union

of transversals Tw of the diagonal blocks of S0.

The following lemma is useful for proving the main Theorems 6.1 and 6.4 of the

block conversion methods in §6.

Lemma 2.10 Assume that Σ has a finite Val(Σ) and is in a p× p block form as in

(2.14) with square diagonal blocks. Let c and d be two nonnegative integer n-vectors.

Assume also that
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(i) dj − ci > σij holds for all entries below the diagonal blocks of Σ,

(ii) dj − ci ≥ σij holds elsewhere, and

(iii) Val(Σ) =
∑

j dj −
∑

i ci.

Then

(a) (c; d) is a valid offset pair of Σ,

(b) the block form of Σ is a BTF of the Jacobian pattern S0, and

(c) a HVT of Σ is the union of HVTs of the diagonal blocks Σww, for all w = 1 : p.

Proof. (a) We let T denote an HVT of Σ. Since Val(Σ) is finite by condition (iii),

σij ≥ 0 for all (i, j) ∈ T . For (c; d) to be a valid offset of Σ, dj − ci ≥ σij must hold

for all i, j = 1 :n, with equalities for all (i, j) ∈ T .

By conditions (i) and (ii), dj − ci ≥ σij holds everywhere. Summing these in-

equalities over T gives

∑

(i,j)∈T
(dj − ci) ≥

∑

(i,j)∈T
σij.

The left-hand side equals
∑

j dj −
∑

i ci, and the right-hand side equals Val(Σ) by

definition. By (iii), these two values are equal, so dj− ci = σij holds for all (i, j) ∈ T ,

and (c; d) is valid for Σ.

(b) By (i), the below diagonal blocks in S0, derived from Σ and (c; d) using (2.12),

are empty. By the definition of a BTF of a Jacobian sparsity pattern, S0 is in a BTF

as described by the p× p block form.

(c) follows immediately from (b) and Lemma 2.9.
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Following a p × p BTF based on a Jacobian pattern S0, we can write any valid

offset pair (c; d) of Σ in a block form as

(c1; d1), (c2; d2), . . . , (cp; dp), (2.16)

where each of the sub-vectors cw and dw is of length Nw, w = 1 : p.

Lemma 2.11 Assume that a Jacobian pattern S0 is in some BTF. Let (c; d) be valid

for Σ, and write (c; d) into block form as in (2.16). Then (cw; dw) is a valid offset

pair of Σww.

Proof. Let T be an HVT of Σ. By Lemma 2.9, the intersection of T with block w is

an HVT Tw of Σww. Then dj − ci = σij holds for all (i, j) ∈ Tw ⊆ T . Since (c; d) is

valid for Σ, dj − ci ≥ σij and ci ≥ 0 hold on Σww, that is, for all i, j ∈ Bw. Thus the

offset pair (cw; dw) matched to block w satisfies the conditions (2.2) for being valid

for Σww.

From the view of Lemma 2.11, we can regard each diagonal block Σww as a

signature matrix in its own right. Equivalently, each block w, having Nw equations

in Nw variables, can be viewed as a sub-DAE in its own right also, with a signature

matrix Σww, a finite value Val(Σww), a local offset pair (cw; dw), and a sub-Jacobian

Jww. Expressions that contribute to entries in an off-diagonal block Σwm, w 6= m,

can be considered as driving terms, or equivalently, the influence of variables in block

m on those in block w. We refer to (c; d) of Σ as a global offset pair. The reader is

referred to [50] for more theoretical results about block triangularization and global

and local offset pairs.



Chapter 3

When structural analysis fails

In this chapter, we investigate several cases where SA fails. In these cases, SA pro-

duces an identically singular system Jacobian, while the DAE may be solvable. In

§3.1, we give a definition of a structurally singular DAE. In §3.2, we classify the SA’s

failure cases into two types.

We use u ≡ 0 to mean u is identically zero. In contrast, by u 6≡ 0 we mean u is

generically nonzero. This u may be a scalar, vector, or matrix, depending on context.

3.1 Success check

To perform a success check for SA on a structurally well-posed DAE, we may simply

follow the solution scheme in (2.4–2.5) and solve the systems for stages k = kd : 0.

We can also obtain a symbolic form of a System Jacobian J in (2.6) and evaluate

its value once we find the derivatives therein. For example, we can evaluate J of the

pendulum DAE (2.10) as soon as we find x and y at stage k = −2.

In the definitions that follow, we let A be an n× n matrix function.

31
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Definition 3.1 An (i, j) position is a structural zero of A if aij ≡ 0; otherwise it is

a structural nonzero.

Definition 3.2 Matrix A is structurally nonsingular if it has a transversal of struc-

tural nonzeros; otherwise it is structurally singular.

Definition 3.3 Matrix A is identically singular if det(A) ≡ 0; otherwise it is gener-

ically nonsingular.

For a matrix function, being structurally singular is a special case of being iden-

tically singular. Similarly, being generically nonsingular is a special case of being

structurally nonsingular.

Example 3.4 Consider the following three matrix functions of variables x and y:

A1 =



x x

0 y − y


 , A2 =



x x

y y


 , and A3 =



x y

y x


 .

A1 is identically singular because det(A1) ≡ 0. It is structurally singular also,

since there exists no transversal of structural nonzeros, as position (2, 2) is a structural

zero position.

A2 is identically singular (because det(A2) ≡ 0) but structurally nonsingular:

there are two transversals of structural nonzeros.

A3 is both structurally and generically nonsingular, since det(A3) = x2 − y2 6≡ 0.

Only when x = ±y is this determinant 0.

In the following, we denote a DAE (1.1) by F and define two concepts for it:
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• a structural zero in the System Jacobian J, and

• a structurally singular DAE whose J is identically singular.

Let J be the (infinite) set of index-order (j, l) pairs

J =
{

(j, l) | j = 1 :n , l ∈ N
}
.

Given an n-vector function x = x(t) that is sufficiently smooth (but not necessarily

a solution of F), we let

xJ =
{
x
(l)
j | (j, l) ∈ J

}
.

For a finite subset J of J , xJ contains derivatives x
(l)
j whose index-order pairs (j, l)

range over J . We may also regard xJ as a |J |-vector, in which the ordering of x
(l)
j

does not matter.

Now we define the derivative set of F as

derset(F) =
{

(j, l) | x(l)j occurs in F
}
.

Then the derivatives occurring in F can be denoted concisely as xderset(F).

By a value point we mean a ξ = (t,xderset(F)) ∈ R×R|derset(F)| that contains values

for t and values for the derivative symbols in xderset(F).

Example 3.5 In the simple pendulum DAE (2.10), denote x, y, λ as x1, x2, x3, re-

spectively. Let ` = 5 and G = 9.8. Then

derset(F) =
{

(1, 0), (1, 2), (2, 0), (2, 2), (3, 0)
}
.
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A possible value point can be

ξ = (t, x1, x
′′
1, x2, x

′′
2, x3) = (2, 3,−3, 4, 1.6, 1),

which satisfies f1 and f3 but not f2.

Similarly, we define the derivative set of J:

derset(J) =
{

(j, l) | x(l)j occurs in J
}
.

From (2.6), a derivative occurring in J must also occur in F , but not vice versa.

For example, in the pendulum DAE, x′′, y′′, λ do not appear in J, and derset(J) =
{

(1, 0), (2, 0)
}

; cf. Example 2.5. The derivative set of J is a subset of that of F :

derset(J) ⊆ derset(F).

Definition 3.6 (Structural zero in System Jacobian) An (i, j) position is a

structural zero in J, if Jij is identically zero at all value points ξ ∈ R|derset(F)|+1 that

satisfy some equations from

0 = f
(m)
i , m ≥ 0, i = 1 :n. (3.1)

Otherwise, (i, j) is a structural nonzero of J.

For the present purpose, we do not require the DAE to have a unique solution, or

even any solution. That is, we do not consider existence and uniqueness of the DAE

at this stage, while identifying structural zeros of J and discussing its singularity.

Recall (2.6) that defines J. If dj − ci > σij, then Jij ≡ 0 and thus position (i, j)

is a structural zero in J. The converse is not true; see the following example.
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Example 3.7 Consider an artificially modified simple pendulum DAE. We multiply

the first equation f1 by x2 + y2 − `2 and obtain

0 = f1 = (x′′ + xλ)(x2 + y2 − `2)

0 = f2 = y′′ + yλ−G

0 = f3 = x2 + y2 − `2.

(3.2)

Σ =

x y λ ci







f1 2• 0 0 0

f2 2 0• 0

f3 0 0• 2

dj 2 2 0 Val(Σ) = 2

J =

x′′ y′′ λ






f1 µ xµ

f2 1 y

f ′′3 2x 2y

det(J) = −2µ(x2 + y2)

Here µ = x2 + y2 − `2. For this DAE,

derset(F) =
{

(1, 0), (1, 2), (2, 0), (2, 2), (3, 0)
}
,

ξ = (t, x1, x
′′
1, x2, x

′′
2, x3) ∈ R6,

and derset(J) =
{

(1, 0), (2, 0)
}
.

If we evaluate J at some random ξ ∈ R6, then µ is generically nonzero, and so are

positions (f1, x) and (f1, λ). In this case, J is generically nonsingular. However, we

should evaluate J at some ξ that satisfies µ = f3 = x2 + y2 − `2 = 0. According to

Definition 3.6, positions (f1, x) and (f1, λ) are structural zeros of J.
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We give a definition for structural regularity of a DAE.

Definition 3.8 (Structurally regular DAE) A DAE is structurally singular if J

is identically singular at all value points ξ ∈ R|derset(F)|+1 that satisfy some equations

from (3.1). Otherwise the DAE is structurally nonsingular, or structurally regular.

Example 3.9 In the previous example, positions (f1, x) and (f1, λ) are structural

zeros of J at any point that satisfies f3 = 0. Then J is structurally singular, and by

Definition 3.8, DAE (3.2) is structurally singular.

In fact, it can be shown that a solution of (2.10) is a solution to (3.2), but not

vice versa.

Example 3.10 Consider the DAE in [1, p. 235, Example 9.2], written as

0 = f1 = −y′1 + y3

0 = f2 = y2(1− y2)

0 = f3 = y1y2 + y3(1− y2)− t.

(3.3)

Σ =

y1 y2 y3 ci







f1 1• 0 0

f2 0• 0

f3 0 0 0• 0

dj 1 0 0 Val(Σ) = 1

J =

y′1 y2 y3






f1 −1 1

f2 1− 2y2

f3 y1 − y3 1− y2
det(J) = −(1− 2y2)(1− y2)

SA gives νS = 1, and det(J) depends solely on y2. From f2 = 0, either y2 = 0 or

y2 = 1. To examine if J is nonsingular, we consider each of the following two cases.
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• If y2 = 0, then det(J) = −1 and SA succeeds. In this case (3.3) is of differenti-

ation index 1.

• If y2 = 1, then det(J) = 0 and SA fails on this structurally singular DAE. The

failure comes as no surprise because DAE (3.3) is now of differentiation index

2 and SA underestimates its index; see the discussion in §1.2.

Remark 3.11 We hereby distinguish the difference between a structurally ill-posed

(SIP) DAE and a structurally singular DAE. A SIP DAE has no finite transversal

in Σ and hence no valid offset pair (c; d), so we cannot define a System Jacobian.

In contrast, a structurally singular DAE has some valid (c; d) and an identically

singular J.

If J is generically nonsingular but numerically singular when evaluated at a value

point ξ, then we say the DAE is locally unsolvable at ξ.

Example 3.12 [14] Consider

0 = f1 = −x′ + y

0 = f2 = x+ cos(t)y.

(3.4)

Σ =

x y ci



f1 1• 0 0

f2 0 0• 0

dj 1 0 Val(Σ) = 1

J =

x′ y




f1 −1 1

f2 cos(t)

det(J) = − cos(t)

Since det(J) is generically nonzero, DAE (3.4) is structurally nonsingular. We

can integrate this problem from t = 0 with any consistent initial value (x(0), y(0)) =
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(x0, y0), and the problem is index-1 (both differentiation and structural indices) as

long as det(J) 6= 0. However, J is singular at t = tk =
(
k + 1

2

)
π, k = 0, 1, . . .. Hence,

we say the DAE has a singularity point at each tk.

3.2 Identifying structural analysis’s failure

We give below a definition for the true highest-order derivative (HOD) of a variable

xj in a function u. This u may be a scalar, vector, or matrix, depending on context.

Definition 3.13 (True highest-order derivative) The true HOD of xj in u is

σ (xj, u) =





highest order of derivatives of xj on which u truly depends; or

−∞ if u does not depend on xj at all.

(3.5)

By “truly” we mean that, if r = σ (xj, u) > −∞, then u is not a constant with

respect to x
(r)
j . For example, u = x′+cos2 x′′+sin2 x′′ = x′+1 truly depends on x′ but

not x′′, resulting in σ (x, u) = 1. If an fi truly depends on x
(σij)
j , then σ (xj, fi) = σij,

so (3.5) can be considered a generalization of (2.1). However, we should note that the

problem of detecting such true dependence (which is equivalent to recognizing zero)

in any expressions is unsolvable in general [54].

The daets and daesa codes, which implement [38, Algorithm 4.1], find the formal

HOD of xj in u, denoted by σ̃ (xj, u), instead of the true HOD. By “formal” we

mean the dependence of an expression (or function) on a derivative without symbolic

simplifications. For example, u = x′ + cos2 x′′ + sin2 x′′ formally depends on x′′ and

hence σ̃ (x, u) = 2, while u = x′+1 and σ (x, u) = 1. We can write σ̃ij = σ̃ (xj, fi) in a
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similar way to σij = σ (xj, fi), so daets and daesa find formal signature entries σ̃ij.

Since the formal dependence is also used in [38, §4], we can adopt the rules in [38,

Lemma 4.1], which indicate how to propagate the formal HOD in an expression. The

most useful rules are:

• if a variable v is a purely algebraic function of a set U of variables u, then

σ̃ (xj, v) = max
u∈U

σ̃ (xj, u) , (3.6)

and

• if v = dpu/dtp, where p > 0, then

σ̃ (xj, v) = σ̃ (xj, u) + p. (3.7)

These rules are proved in [38], to which we refer for details. We illustrate these rules

in Example 3.14.

Example 3.14 Let u = (x1x2)
′ − x′1x2. Applying (3.6) and (3.7), we derive the

formal HOD of x1 in u:

σ̃ (x1, u) = max
{
σ̃ (x1, (x1x2)

′) , σ̃ (x1, x
′
1x2)

}

= max
{
σ̃ (x1, x1x2) + 1, max

{
σ̃ (x1, x

′
1) , σ̃ (x1, x2)

}}

= max
{

max
{
σ̃ (x1, x1) , σ̃ (x1, x2)

}
+ 1,max

{
1,−∞

}}

= max
{

max
{

0,−∞
}

+ 1, 1
}

= max
{

0 + 1, 1
}

= 1.
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Similarly σ̃ (x2, u) = 1. A simplification on u gives

u = (x1x2)
′ − x′1x2 = x1x

′
2 +��

�x′1x2 −���x′1x2 . (3.8)

Hence, the true HOD of x1 in u is σ (x1, u) = 0, and that of x2 in u is σ (x2, u) = 1.

The cancellation occurring in (3.8) is a hidden symbolic cancellation. When such

cancellations happen, a formal HOD σ̃ (xj, u) can overestimate the true HOD σ (xj, u).

If u is an equation fi, then the formal σ̃ij = σ̃ (xj, fi) may not be the true σij =

σ (xj, fi). We call the matrix Σ̃ = (σ̃ij) the “formal” signature matrix. Also, let

(c̃; d̃) be any valid offset pair for Σ̃, and let J̃ be the resulting Jacobian defined by

(2.6) with Σ̃ and (c̃; d̃).

If some σ̃ij > σij, then hidden symbolic cancellations happen in fi and fi does

not truly depend on x
(σ̃ij)
j . Then J̃ij ≡ 0, and (i, j) is a structural zero in J̃. Due to

such cancellations, J̃ has more structural zeros than J does, so J̃ is more likely to be

structurally singular. It is also possible that the DAE itself is structurally ill posed.

Since σ̃ij ≥ σij for all i, j = 1 :n, we can write Σ̃ ≥ Σ meaning “elementwise

greater or equal”.

Recall the essential sparsity pattern Sess of Σ in (2.13). This set is the union

of all (i, j) positions that lie on any HVT. We give two theorems below, which are

Theorems 5.1 and 5.2 in [37].

Theorem 3.15 Suppose that a valid offset pair (c; d) of Σ gives a nonsingular J as

defined by (2.6) at some consistent point. Then every valid offset pair (c; d) gives a

nonsingular J (not necessarily the same as J) at this point. All resulting J, including

J, are equal on Sess, and all have the same determinant det(J) = det(J).
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By “equal on Sess” we mean J̃ij = Jij for all (i, j) ∈ Sess.

Theorem 3.16 Assume that J, derived from Σ and a valid offset pair (c; d), is

generically nonsingular. Let (c̃; d̃) be a valid offset pair of the formal signature matrix

Σ̃, and let J̃ be the Jacobian derived from Σ̃ and (c̃; d̃). In exact arithmetic, one of

the following two alternatives must occur:

(i) Val(Σ̃) = Val(Σ). Then every HVT of Σ is an HVT of Σ̃, and (c̃; d̃) is valid

for Σ. Consequently, J̃ is also generically nonsingular.

(ii) Val(Σ̃) > Val(Σ). Then J̃ is structurally singular.

We give explanations for each of these two cases.

(i) If Σ̃ ≥ Σ and Val(Σ̃) = Val(Σ), then overestimating some σij does not pose

a danger to SA’s success. In this case, SA uses a valid, but not necessarily canonical,

offset pair (c; d) of the true Σ. As a consequence, we would treat some identically

zero entries of J as nonzeros; this may make the solution scheme slightly less efficient;

see [37, Examples 5.1 and 5.2].

(ii) If Σ̃ ≥ Σ and Val(Σ̃) > Val(Σ), then J̃ is guaranteed to be structurally

singular. Since J, derived from Σ and (c; d) is generically singular, the singularity of

J̃ should attribute to the overestimations of some σij.

Fortunately, modern modeling environments usually perform simplifications on a

problem formulation [8,27,56]. These simplifications may hopefully convert Case (ii)

to Case (i), and hence reduce the occurrence of a structurally singular J when SA is

applied.
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Example 3.17 Consider

0 = f1 = (xy)′ − x′y − xy′ + 2x+ y − 3

0 = f2 = x+ y − 2.

(3.9)

Σ̃ =

x y ci



f1 1• 1 0

f2 0 0• 1

dj 1 1 Val(Σ̃) = 1

J̃ =

x′ y′




f1 0 0

f ′2 1 1

det(J̃) = 0

Here, the signature matrix and Jacobian are the formal ones. Since det(J̃) = 0, SA

fails. Simplifying f1 to f1 = 2x+ y − 3 reveals that (3.9) is a simple linear algebraic

system:

0 = f1 = 2x+ y − 3

0 = f2 = x+ y − 2.

Σ =

x y ci



f1 0• 0 0

f2 0 0• 0

dj 0 0 Val(Σ) = 0

J =

x y




f1 2 1

f2 1 1

det(J) = 1

Hereafter we shall focus on another kind of failure of SA. In this case, no σij is over-

estimated, and J is identically singular but structurally nonsingular. Examples 3.18

and 3.19 illustrate this case.
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Example 3.18 Consider the linear constant coefficient DAE1 from [55] :

0 = f1 = −x′1 + x3 + b1(t)

0 = f2 = −x′2 + x4 + b2(t)

0 = f3 = x2 + x3 + x4 + c1(t)

0 = f4 = −x1 + x3 + x4 + c2(t).

(3.10)

Σ =

x1 x2 x3 x4 ci







f1 1• 0 0

f2 1• 0 0

f3 0 0• 0 0

f4 0 0 0• 0

dj 1 1 0 0 Val(Σ) = 2

J =

x′1 x′2 x3 x4






f1 −1 1

f2 −1 1

f3 1 1

f4 1 1

det(J) ≡ 0

This DAE is of differentiation index 3 [55], while SA finds structural index 1 and

singular J. Hence SA fails.

Example 3.19 In the following DAE, SA reports structural index 2, which equals

the differentiation index. However, J is identically singular.

1We consider this DAE with parameters β = ε = 1, α1 = α2 = δ = 1, and γ = −1. In [55]
superscripts are used as indices, while we use subscripts instead. We also change the (original)
equation names g1, g2 to f3, f4, and the (original) variable names y1, y2 to x3, x4.
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0 = f1 = −x′1 − x′3 + x1 + x2 + g1(t)

0 = f2 = −x′2 − x′3 + x1 + x2 + x3 + x4 + g2(t)

0 = f3 = x2 + x3 + g3(t)

0 = f4 = x1 − x4 + g4(t)

(3.11)

Σ =

x1 x2 x3 x4 ci







f1 1• 0 1 0

f2 0 1• 1 0 0

f3 0 0• 1

f4 0 0• 0

dj 1 1 1 0 Val(Σ) = 2

J =

x′1 x′2 x′3 x4






f1 −1 −1

f2 −1 −1 1

f ′3 −1 −1

f4 1

det(J) ≡ 0

Using the solution scheme derived from the SA result, we would try to solve at stage

k = 0 the linear system 0 = f1, f2, f
′
3, f4 for x′1, x

′
2, x
′
3, x4, where the matrix is J. Since

it is singular, the solution scheme fails in solving (3.11) at this stage; see Table 3.1.

stage k solve for using comment

−1 f3 x2, x3 − initialize x1

0 f1, f2, f
′
3, f4 x′1, x

′
2, x
′
3, x4 x1, x2, x3 singular J; solution scheme fails

Table 3.1: Solution scheme for (3.11).
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Now we replace f2 by f 2 = f2 + f ′3 to obtain

0 = f1 = −x′1 − x′3 + x1 + x2 + g1(t)

0 = f 2 = x1 + x2 + x3 + x4 + g2(t) + g′3(t)

0 = f3 = x2 + x3 + g3(t)

0 = f4 = x1 − x4 + g4(t).

(3.12)

Σ =

x1 x2 x3 x4 ci







f1 1 0 1• 0

f 2 0• 0 0 0 1

f3 0• 0 1

f4 0 0• 1

dj 1 1 1 1 Val(Σ) = 1

J =

x′1 x′2 x′3 x′4






f1 −1 −1

f
′
2 1 1 1 1

f ′3 1 1

f ′4 1 −1

det(J) = 2

The solution scheme succeeds; see Table 3.2. The resulting DAE (3.12) is of structural

index νS = 1, which equals the differentiation index.

stage k solve for using comment

−1 f 2, f3, f4 x1, x2, x3, x4 − −

0 f1, f
′
2, f

′
3, f

′
4 x′1, x

′
2, x
′
3, x
′
4 x1, x2, x3, x4 nonsingular J;

solution scheme succeeds

Table 3.2: Solution scheme for (3.12).
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At stage k = 0, we solve 0 = f1, f
′
2, f

′
3, f

′
4 for x′1, x

′
2, x
′
3, x
′
4 using x1, x2, x3, x4.

Since f
′
2 = f ′2 + f ′′3 , we need f ′′3 to find these first-order derivatives. Therefore, the

original DAE (3.11) is of differentiation index 2.

Note that by setting f2 = f 2 − f ′3 we can recover the original system. It can be

easily verified that a vector function

x(t) =
[
x1(t), x2(t), x3(t), x4(t)

]T

that satisfies (3.12) also satisfies (3.11), and vice versa. We explain in §4.1 how this

conversion makes SA succeed.

In Examples 3.18 and 3.19, J is identically singular but structurally nonsingular.

No symbolic cancellation occurs in the equations therein. Therefore, this kind of

failure is more difficult to detect and remedy.

From our experience, we conjecture that a decrease in the value of a signature

matrix can lead to a better DAE formulation from SA’s perspective. Our techniques,

the conversion methods, are aimed at achieving such a decrease. We describe them

in the upcoming chapters. Provided some conditions are satisfied, these methods

convert a structurally singular DAE into an equivalent DAE on which SA is more

likely to produce a nonsingular System Jacobian and hence succeed. By “equivalent”

we mean that the original DAE and the converted one have (at least locally) the same

solution (if any). We shall also elaborate on this equivalence issue.



Chapter 4

Basic conversion methods

In this chapter, we present two conversion methods. They attempt to fix SA’s failures

systematically by reducing the value of a signature matrix. The first method is

based on replacing an equation by a linear combination of some existing equations

and derivatives of them. We call this method the linear combination (LC) method

and describe it in §4.1. The second method is based on replacing derivatives by a

linear combination of other derivatives and newly introduced variables. After these

replacements, also referred to as expression substitutions, we append new equations

that define the new variables, so the resulting DAE is an enlarged one. We call this

method the expression substitution (ES) method and describe it in §4.2.

Given a DAE (1.1), we assume that it has a finite Val(Σ) and an identically (but

not structurally) singular System Jacobian J. We still assume that the equations

in (1.1) are sufficiently differentiable, so that our conversion methods fit into the

Σ-method theory.

After a conversion, we denote the corresponding signature matrix as Σ and System

Jacobian as J. If Val(Σ) is finite and J is identically singular still, then we can

47
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perform another conversion, using either of the methods, provided the corresponding

conditions are satisfied. Suppose a sequence of conversions ends up with a solvable

DAE with Val(Σ) ≥ 0 and a generically nonsingular J. Given the fact that each

conversion reduces the value of a signature matrix by at least one, the total number

of conversions does not exceed the value of the original signature matrix.

If the resulting system is SIP after a conversion, that is, Val(Σ) = −∞, then we

say the original DAE is ill posed.

4.1 Linear combination method

Let u = [u1, . . . , un]T 6≡ 0 be a nonzero n-vector function in the cokernel of J. That

is, u ∈ coker(J) or equivalently JTu = 0. We use ui to mean the ith component of u.

Remark 4.1 We give several remarks about u.

• For our exposition, we regard the xj’s and derivatives of them as symbols instead

of functions of t. Therefore, we view J and u as functions of t, the xj’s, and

derivatives of them.

• We assume that entries in u do not share a common multiplier. For instance,

if u = [0, 0, 1,−1]T ∈ coker(J), then we shall not use, for example, u =

[0, 0, x′1,−x′1]T ∈ coker(J).

• We avoid “unnecessary” fractions in the entries of u. For example, if u =

[0, 0, x′1, x
−1
1 ]T ∈ coker(J), we shall use u = [0, 0, x1x

′
1, 1]T .
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Denote1

I = { i | ui 6≡ 0 }, c = min
i∈I

ci, and L =
{
l ∈ I | cl = c

}
. (4.1)

Here, I is the set of indices for which the ith component of u is not identically zero,

and obviously |I| ≥ 2; L a subset of I such that f
(cl)
l for l ∈ L is a least differentiated

equation among the f
(ci)
i for i ∈ I. From (4.1), there exists at least one l ∈ I such

that cl = c, so L 6= ∅.

We prove two preliminary lemmas before Theorem 4.4, on which the LC method

is based.

Lemma 4.2 Assume u ∈ coker(J) and u 6≡ 0. If

σ (xj,u) < dj − c for all j = 1 :n, (4.2)

then σ
(
xj, f

)
< dj − c for all j = 1 :n, where

f =
∑

i∈I
uif

(ci−c)
i . (4.3)

Proof. By (4.1), ci− c ≥ 0 for all i ∈ I. By (2.2), σ (xj, fi) = σij ≤ dj − ci. Applying

Griewank’s Lemma (2.7) to (2.6) with w = fi and q = ci − c yields

Jij =
∂fi

∂x
(dj−ci)
j

=
∂f

(ci−c)
i

∂x
(dj−ci+ci−c)
j

=
∂f

(ci−c)
i

∂x
(dj−c)
j

for i ∈ I and all j = 1 :n. (4.4)

1Although I, c, and L depend on u, we omit the argument u to simplify notation.
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This shows that such an f
(ci−c)
i , i ∈ I, depends on x

(≤dj−c)
j only. Then for all j = 1 :n,

∂f

∂x
(dj−c)
j

=
∂
(∑

i∈I uif
(ci−c)
i

)

∂x
(dj−c)
j

by the definition of f in (4.3)

=
∑

i∈I
ui
∂f

(ci−c)
i

∂x
(dj−c)
j

=
∑

i∈I
uiJij by (4.2) and then (4.4)

= (JTu)j = 0 since u ∈ coker(J) .

Hence f depends on x
(<dj−c)
j only, for all j—this results in the inequality in (4.3).

Lemma 4.3 Assume that an n × n signature matrix Σ has a finite Val(Σ) and a

valid offset pair (c; d). Given a row index l, if we replace in row l all entries σlj by

σlj < dj − cl, then Val(Σ) < Val(Σ), where Σ is the resulting signature matrix.

Proof. Since σlj < dj − cl for all j, the intersection of a HVT T of Σ with row l is a

position (l, r) with σlr < dr − cl. Then

Val(Σ) =
∑

(i,j)∈T
σij = σlr+

∑

(i,j)∈T\{ (l,r) }
σij <

∑

j

dj−
∑

i

ci = Val(Σ).

The LC method is based on the following theorem.

Theorem 4.4 Let I, c, and L be as defined in (4.1). If we replace an equation fl,

l ∈ L, by f in (4.3), then Val(Σ) < Val(Σ), where Σ is the signature matrix of the

resulting DAE.

Proof. By Lemma 4.2, such a replacement results in σlj = σ
(
xj, f l

)
< dj − cl for all

j = 1 :n. Immediate from Lemma 4.3 is Val(Σ) < Val(Σ).
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Usually we write f as f l in the resulting DAE, and call the conversion procedure

in Theorem 4.4 an LC conversion.

The inequality in (4.2) is referred to as the LC condition, which is merely sufficient:

if we allow the “<” in (4.2) to be “=” for some i, then we have only Val(Σ) ≤ Val(Σ),

while the strict “<” is not guaranteed. See Example 4.16 for the Val(Σ) = Val(Σ)

case and the example in §6.1 for the Val(Σ) < Val(Σ) case.

Example 4.5 We illustrate this method with the following (artificial) example:

0 = f1 = −x′1 + x3

0 = f2 = −x′2 + x4

0 = f3 = F (x1, x2)

0 = f4 = x3Fx1(x1, x2) + x4Fx2(x1, x2) +G(x1, x2).

(4.5)

Here, variables x1, x2 occur in F (x1, x2) andG(x1, x2). The notation Fx1(x1, x2) means

the partial derivative ∂F (x1, x2)/∂x1, and we write similarly Fx2(x1, x2), Gx1(x1, x2),

and Gx2(x1, x2).

Σ =

x1 x2 x3 x4 ci







f1 1• 0 0

f2 1 0• 0

f3 0 0• 1

f4 0 0 0• 0 0

dj 1 1 0 0 Val(Σ) = 1

J =

x′1 x′2 x3 x4






f1 −1 1

f2 −1 1

f ′3 Fx1 Fx2

f4 Fx1 Fx2

det(J) ≡ 0
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Because of the identically singular J, the SA fails. It reports structural index 2,

but the DAE (4.5) is of differentiation index 3. We choose u = [Fx1 , Fx2 , 1, −1]T ∈

coker(J) and illustrate (4.1):

I =
{
i | ui 6≡ 0

}
=
{

1, 2, 3, 4
}
,

c = min
i∈I

ci = 0,

L =
{
l ∈ I | cl = c = 0

}
=
{

1, 2, 4
}
.

Then we check the LC condition (4.2):

σ (x1,u) ≤ 0 < 1 = d1 − c,

σ (x2,u) ≤ 0 < 1 = d2 − c,

σ (x3,u) = −∞ < 0 = d3 − c, and

σ (x4,u) = −∞ < 0 = d4 − c.

Hence σ (xj,u) < dj − c for all j and the LC condition holds.

Using (4.3) gives

f =
∑

i∈I
uif

(ci−c)
i =

∑

i∈I
uif

(ci)
i

= Fx1f1 + Fx2f2 + f ′3 − f4

= Fx1 · (−x′1 + x3) + Fx2 · (−x′2 + x4) + F ′ − (x3Fx1 + x4Fx2 +G)

= −x′1Fx1 + x3Fx1 − x′2Fx2 + x4Fx2 + x′1Fx1 + x′2Fx2 − x3Fx1 − x4Fx2 −G

= −G.
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For each l ∈ L =
{

1, 2, 4
}

, assuming ul 6= 0, we can replace fl by f l = f . We

show in the following the three possible converted DAEs, each with Val(Σ) = 0 and

a generically nonsingular J.

• l = 1:

0 = f 1 = −G(x1, x2)

0 = f2 = −x′2 + x4

0 = f3 = F (x1, x2)

0 = f4 = x3Fx1(x1, x2) + x4Fx2(x1, x2) +G(x1, x2)

(4.6)

Σ =

x1 x2 x3 x4 ci







f 1 0• 0 1

f2 1 0• 0

f3 0 0• 1

f4 0 0 0• 0 0

dj 1 1 0 0 Val(Σ) = 0

J =

x1 x2 x3 x4






f
′
1 −Gx1 −Gx2

f2 −1 1

f ′3 Fx1 Fx2

f4 Fx1 Fx2

det(J) = Fx1(Fx1Gx2 − Fx2Gx1)

When u1 = Fx1 6= 0 and Fx1Gx2 6= Fx2Gx1 , the determinant is nonzero and the

SA succeeds.

• l = 2:

0 = f1 = −x′1 + x3

0 = f 2 = −G(x1, x2)

0 = f3 = F (x1, x2)

0 = f4 = x3Fx1(x1, x2) + x4Fx2(x1, x2) +G(x1, x2)

(4.7)
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Σ =

x1 x2 x3 x4 ci







f1 1 0• 0

f 2 0• 0 1

f3 0 0• 1

f4 0 0 0 0• 0

dj 1 1 0 0 Val(Σ) = 0

J =

x′1 x′2 x3 x4






f1 −1 1

f
′
2 −Gx1 −Gx2

f ′3 Fx1 Fx2

f4 Fx1 Fx2

det(J) = Fx2(Fx1Gx2 − Fx2Gx1)

Similarly, the SA succeeds when u2 = Fx2 6= 0 and Fx1Gx2 6= Fx2Gx1 .

• l = 4:

0 = f1 = −x′1 + x3

0 = f2 = −x′2 + x4

0 = f3 = F (x1, x2)

0 = f 4 = −G(x1, x2)

(4.8)

Σ =

x1 x2 x3 x4 ci







f1 1 0• 0

f2 1 0• 0

f3 0 0• 1

f 4 0• 0 1

dj 1 1 0 0 Val(Σ) = 0

J =

x′1 x′2 x3 x4






f1 −1 1

f2 −1 1

f ′3 Fx1 Fx2

f
′
4 −Gx1 −Gx2

det(J) = −Fx1Gx2 + Fx2Gx1

In this case, SA’s success requires only Fx1Gx2 6= Fx2Gx1 .
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Using the LC method, we obtain three converted DAEs (4.6)-(4.8). However, only

(4.8) and (4.5) have exactly the same solution sets, that is, they are always equivalent.

In the rest of this section, we address the equivalence between a converted DAE and

the original DAE.

First, we give a definition for equivalent DAEs.

Definition 4.6 (Equivalent DAEs) Let F and F denote two DAEs. They are

equivalent for all t on some interval I ⊂ R, if a solution of F is a solution to F and

vice versa.

In the following context, we denote by F the original DAE with equations fi

and an identically singular System Jacobian J. After an LC conversion, we obtain a

(converted) DAE, denoted by F , with equations f i and a System Jacobian J, whose

non-singularity does not matter here.

Theorem 4.7 We assume the following holds.

(i) A DAE F has a finite Val(Σ) and an identically singular System Jacobian J.

(ii) A vector u ∈ coker(J) is well defined for all t on some time interval I.

(iii) The LC condition (4.2) is satisfied, and we perform an LC conversion to obtain

a DAE F .

Then DAEs F and F are equivalent, if ul 6= 0 for all t ∈ I.

Proof. Let a solution of F over some interval I ⊂ R be a vector-valued function

x(t) =
[
x1(t), . . . , xn(t)

]T
.
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Then functions in (1.1) and derivatives of them vanish for all t ∈ I, or we say they

“vanish on I”. Since u is well defined for all t ∈ I and can be evaluated by x(t) and

derivatives of them, functions

f l =
∑

i∈I
uif

(ci−c)
i and f i = fi for i 6= l

and derivatives of f i also vanish on I. Therefore x(t) is a solution to F .

Conversely, assume that x(t) is a solution of F on I. Since u is well defined on I

and ul(t) 6= 0 for all t ∈ I,

fl =
1

ul

(
f l −

∑

i∈I\{l}
uif

(ci−c)
i

)
and fi = f i for i 6= l

and derivatives of them vanish on I. Hence x(t) is a solution to F .

By Definition 4.6, F and F are equivalent.

We learn from Theorem 4.7 that, it is desirable to choose a row index l ∈ L

such that ul is an expression that never becomes zero. For example, ul is a nonzero

constant, or expressions like x21 + 1 and 2 + cosx′2. Such a choice of l guarantees that

the resulting DAE is always equivalent to the original DAE. However, in general, it is

undecidable whether an expression is identically zero or not [54]. Hence, we consider

a (nonzero) constant ul as the most preferable choice among all l ∈ L, and use L to

denote a set of indices l for such ul:

L =
{
l ∈ L | ul is constant

}
. (4.9)
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Example 4.8 In Example 4.5, L =
{

4
}

. Case l = 1 [resp. l = 2] requires Fx1 6= 0

[resp. Fx2 6= 0] to recover the original DAE (4.5) from (4.6) [resp. from (4.7)].

However, for case l = 4 ∈ L, u4 = 1 is a nonzero constant for any t. Therefore this

choice is the most desirable among the three.

Remark 4.9 We name our method the “LC method” because of the following con-

sideration. The LC condition (4.2) says that, the vector u ∈ coker(J) comprises only

derivatives x
(<dj−c)
j for all j, while x

(dj−c)
j are the leading derivatives in f

(ci−c)
i for all

i ∈ I. Therefore, by regarding each ui as a “constant” in
∑

i∈I uif
(ci−c)
i = f l, we say

f l is a “linear combination” of the equations f
(ci−c)
i .

If u is a constant vector, then σ (xj,u) = −∞ for every xj. In this case, the

condition (4.2) certainly holds, so we do not need to check it. We illustrate this in

the next example.

Example 4.10 Consider

0 = f1 = x1 + tx2 + t2x3 + g1(t)

0 = f2 = x′1 + tx′2 + t2x′3 + g2(t)

0 = f3 = x′′1 + tx′′2 + 2t2x′′3 + g3(t).

Σ =

x1 x2 x3 ci







f1 0• 0 0 2

f2 1 1• 1 1

f3 2 2 2• 0

dj 2 2 2 Val(Σ) = 3

J =

x′′1 x′′2 x′′3





f ′′1 1 t t2

f ′2 1 t t2

f3 1 t 2t2

det(J) ≡ 0
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For u = [−1, 1, 0]T ∈ coker(J), we use (4.1) and (4.9) to derive

I =
{

1, 2
}
, c = c2 = 1, and L = L =

{
2
}
.

Since u is a constant vector, the LC condition (4.2) is satisfied. We replace f2 by

f 2 = u1f
(2−1)
1 + u2f

(1−1)
2 = −f ′1 + f2

= −
(
x1 + tx2 + t2x3 − g1

)′
+ (x′1 + tx′2 + t2x′3 + g2)

= −x2 − 2tx3 − g′1 + g2.

The converted DAE is

0 = f1 = x1 + tx2 + t2x3 + g1

0 = f 2 = −x2 − 2tx3 − g′1 + g2

0 = f3 = x′′1 + tx′′2 + 2t2x′′3 + g3.

Σ =

x1 x2 x3 ci







f1 0• 0 0 2

f 2 0• 0 2

f3 2 2 2• 0

dj 2 2 2 Val(Σ) = 2

J =

x′′1 x′′2 x′′3





f ′′1 1 t t2

f
′′
2 −1 −2t

f3 1 t 2t2

det(J) = −t2

If t 6= 0 and its magnitude is not too small compared to the scale of the derivatives,

then J is computably nonsingular.
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Below we define an ill-posed DAE using the structural posedness defined in the

daesa papers [40, 49]; see also Definition 2.1.

Definition 4.11 (Well-posedness of a DAE) A DAE is ill posed if it has an

equivalent DAE that is structurally ill posed (SIP); otherwise it is well posed.

Example 4.12 Consider problem (3.2). Using 0 = f3 = x2 + y2 − `2, we reduce f1

to f 1, a trivial equation 0 = 0. This is simply performing a simple substitution, and

is not applying the LC method. The signature matrix

Σ =

x y λ






f 1

f2 2 0

f3 0 0

(4.10)

does not have a finite HVT, so the resulting DAE is SIP. Hence, by Definition 4.11 ,

the original SWP DAE (3.2) is ill posed.

Corollary 4.13 If we can reformulate a structurally well-posed DAE, by a conversion

method, into an equivalent DAE that is structurally ill-posed, then the original DAE

is ill posed.

Proof. This follows from Theorem 4.7 and Definition 4.11.

Example 4.14 Consider the following SWP DAE

0 = f1 = y′′′ + y′λ+ yλ′

0 = f2 = y′′ + yλ−G

0 = f3 = x2 + y2 − `2.

(4.11)
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Σ =

x y λ ci







f1 3 1• 0

f2 2• 0 1

f3 0• 0 0

dj 0 3 1 Val(Σ) = 3

J =

x y′′′ λ′







f1 1 y

f ′2 1 y

f3 2x

det(J) ≡ 0

For u = [1,−1, 0]T , JTu = 0. Using (4.1) and (4.9) gives

I =
{

1, 2
}
, c = c1 = 0, and L = L =

{
1
}
.

Since u is a constant vector, the LC condition (4.2) is satisfied. We replace f1 by

f 1 = f1 − f ′2 = (y′′′ + y′λ+ yλ′)− (y′′ + yλ−G)′ = 0.

The signature matrix of the resulting problem is exactly (4.10). Hence, by Corol-

lary 4.13, DAE (4.11) is ill posed.

Example 4.15 We construct the following (artificial) DAE from the pendulum DAE

(2.10):

0 = A = f ′1 + f3 = x2 + y2 − `2 + (x′′ + xλ)′

0 = B = f1 + A′′ = f1 + (f ′1 + f3)
′′

= x′′ + xλ+
(
x2 + y2 − `2 + (x′′ + xλ)′

)′′

0 = C = f2 + A′′′ = f2 + (f ′1 + f3)
′′′

= y′′ + yλ−G+
(
x2 + y2 − `2 + (x′′ + xλ)′

)′′′
.

(4.12)
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Σ0 =

x y λ ci







A 3• 0 1 3

B 5 2• 3 1

C 6 3 4• 0

dj 6 3 4 Val(Σ0) = 9

J0 =

x(6) y′′′ λ(4)







A′′′ 1 2y x

B′ 1 2y x

C 1 2y x

det(J0) ≡ 0

(A superscript denotes an iteration number, not a power.) We show how to recover

the simple pendulum problem.

We find u = [−1, 1, 0]T ∈ coker(J0). Then by (4.1), I =
{

1, 2
}

, c = 1, and

L = L =
{

2
}

. We replace the second equation B by

−A(3−1) +B = −A′′ + (A′′ + f1) = f1 = x′′ + xλ.

The converted DAE is

0 = A = x2 + y2 − `2 + (x′′ + xλ)′

0 = f1 = x′′ + xλ

0 = C = y′′ + yλ−G+
(
x2 + y2 − `2 + (x′′ + xλ)′

)′′′
.

Σ1 =

x y λ ci







A 3• 0 1 3

f1 2 0• 4

C 6 3• 4 0

dj 6 3 4 Val(Σ1) = 6

J1 =

x(6) y′′′ λ(4)







A′′′ 1 2y x

f
(4)
1 1 x

C 1 2y x

det(J1) ≡ 0
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Although Val(Σ1) = 6 < 9 = Val(Σ0), the System Jacobian J1 is still singular, so

we attempt the LC method again.

Choosing u = [−1, 0, 1]T ∈ coker(J1) gives

I =
{

1, 3
}
, c = 0, and L = L =

{
3
}
.

We replace the third equation C by

−A(3−0) + C = −A′′′ + (f2 + A′′′) = f2 = y′′ + yλ−G.

The converted DAE is

0 = A = x2 + y2 − `2 + (x′′ + xλ)′

0 = f1 = x′′ + xλ

0 = f2 = y′′ + yλ−G.

Σ2 =

x y λ ci







A 3• 0 1 0

f1 2 0• 1

f2 2• 0 0

dj 3 2 1 Val(Σ2) = 5

J2 =

x′′′ y′′ λ′







A 1 x

f ′1 1 x

f2 1

det(J2) ≡ 0

.

We have Val(Σ2) = 5 < 6 = Val(Σ1), but the System Jacobian J2 is still singular.
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Attempting again the LC methods, we find u = [1,−1, 0]T ∈ coker(J2). Then

I = {1, 2}, c = 0, and L = L =
{

1
}
.

Replacing the first equation A by

A− f ′1 = (f3 + f ′1)− f ′1 = f3 = x2 + y2 − `2,

we recover f1, f2, f3 from (4.12). The resulting solvable DAE is exactly the pendulum

DAE (2.10), with Val(Σ) = 2 and det(J) = −2`2; cf. Example 2.5.

Since each u is a constant vector in each of the iterations, each ul we pick is a

nonzero constant. The DAE (4.12) and the pendulum DAE (2.10) are equivalent.

Hence, we can solve (4.12) by simply solving (2.10).

We summarize the steps of an LC conversion.

1) Obtain a symbolic form of J.

2) Compute a vector u ∈ coker(J).

3) Derive I, c, and L as defined in (4.1).

4) Check the LC condition (4.2). If it is not satisfied, then the LC method is not

applicable and we set L← ∅; otherwise proceed to the next step.

5) Derive L←
{
l ∈ L | ul is constant

}
. If L 6= ∅, then we choose an l ∈ L; otherwise

we choose an l ∈ L.

6) Perform an LC conversion: replace fl by f l = f as defined in (4.3).
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The sets L and L are used to decide the desirable conversion method; see §4.3 and

Table 4.1 therein.

In the following example, we show that the LC method cannot fix the (artificially

constructed) DAE (4.13). The LC condition (4.2) is not satisfied, so Val(Σ) < Val(Σ)

is not guaranteed. This incapability of the LC method leads to a motivation to develop

its “dual method”, which is the ES method introduced in the next section.

Example 4.16 Consider

0 = f1 = x1 + e−x
′
1−x2x′′2 + h1(t)

0 = f2 = x1 + x2x
′
2 + x22 + h2(t).

(4.13)

Σ =

x1 x2 ci



f1 1• 2 0

f2 0 1• 1

dj 1 2 Val(Σ) = 2

J =

x′1 x′′2



f1 −α −αx2

f ′2 1 x2

det(J) ≡ 0

Here h1 and h2 are given driving functions, and α = e−x
′
1−x2x′′2 . The SA fails.

Choose u = [α−1, 1]T = [ex
′
1+x2x

′′
2 , 1]T ∈ coker(J). Then (4.1) and (4.9) read

I =
{

1, 2
}
, c = 0, L =

{
1
}
, and L = ∅.

Since x′1 and x′′2 occur in u, σ (x1,u) = d1 − c and σ (x2,u) = d2 − c violate the LC

condition (4.2). If we choose l = 1 ∈ L and replace f1 by

f 1 = u1f1 + u2f
′
2 = β + x′1 + x2x

′′
2 + (x′2)

2 + 2x2x
′
2 + h′2(t),
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then the resulting DAE is 0 =
(
f 1, f2

)
. Here β = α−1(x1 + h1(t)) + 1.

Σ =

x1 x2 ci



f 1 1• 2 0

f2 0 1• 1

dj 1 2 Val(Σ) = 2

J =

x′1 x′′2



f 1 β βx2

f ′2 1 x2

det(J) ≡ 0

The SA fails still.

Since the LC condition does not hold, we return L = ∅ instead of L = { 1 } by

(4.1) to indicate the inapplicability of the LC method.

We shall show in Example 4.18 that the ES method can fix (4.13).

4.2 Expression substitution method

Let v = [v1, . . . , vn]T 6≡ 0 be a nonzero n-vector function in the kernel of J, that is,

v ∈ ker(J), or equivalently Jv = 0. We also consider v in its simplest form; see

Remark 4.1 for a vector u in the LC method.

Denote

J =
{
j | vj 6≡ 0

}
, s = |J |,

M =
{
i | dj − ci = σij for some j ∈ J

}
, and c = max

i∈M
ci.

(4.14)

Here, J is the set of column indices j for which the jth component of v is generically

nonzero, and s is the number of these indices. Since J is identically singular, s ≥ 2.
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We choose an l ∈ J and introduce s− 1 new variables

yj = x
(dj−c)
j − vj

vl
· x(dl−c)l for all j ∈ J \

{
l
}
. (4.15)

In each fi, we

replace every x
(σij)
j = x

(dj−ci)
j with j ∈ J \

{
l
}

by
(
yj +

vj
vl
· x(dl−c)l

)(c−ci)
.

(4.16)

From the formula (4.14) for M , these replacements (or substitutions) occur only in

fi’s with i ∈M , because at least one equality dj − ci = σij must hold for some j ∈ J .

The replacements use the fact that, for such an x
(σij)
j with i ∈M and j ∈ J \

{
l
}

,

x
(σij)
j = x

(dj−ci)
j =

(
x
(dj−c)
j

)(c−ci)
=

(
yj +

vj
vl
· x(dl−c)l

)(c−ci)
.

After these substitutions, denote each equation by f i (for i /∈ M , f i and fi are

the same). Using (4.15), we introduce s− 1 equations

0 = gj = −yj + x
(dj−c)
j − vj

vl
· x(dl−c)l for all j ∈ J \

{
l
}

(4.17)

that define the variables yj and prescribe the substitutions in (4.16). Appending

(4.17) to the f i’s results in an enlarged DAE consisting of

equations 0 =
(
f 1, . . . , fn

)
and 0 = gj for all j ∈ J \

{
l
}

in variables x1, . . . , xn and yj for all j ∈ J \
{
l
}
.
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The ES method is based on the following theorem.

Theorem 4.17 Let J , s, M , and c be as defined in (4.14). Assume

σ (xj,v)





< dj − c if j ∈ J

≤ dj − c otherwise,

dj − c ≥ 0 for all j ∈ J.

(4.18)

For any l ∈ J , if we

1) introduce s− 1 new variables xj, j ∈ J \
{
l
}

, as defined in (4.15),

2) perform substitutions in fi, for all i = 1 :n, by (4.16), and

3) append s− 1 equations gj, j ∈ J \
{
l
}

, as defined in (4.17),

then Val(Σ) < Val(Σ), where Σ is the signature matrix of the resulting DAE.

We refer to the procedure described by 1–3 in Theorem 4.17 as an ES conversion,

and we refer to (4.18) as the ES conditions. These conditions are again sufficient for

obtaining Val(Σ) < Val(Σ).

Before proving this theorem, we give an example that illustrates the ES method.

Example 4.18 We illustrate the application of the ES method on the DAE (4.13).

Suppose we choose v = [x2,−1]T ∈ ker(J). Then (4.14) becomes

J =
{

1, 2
}
, s = |J | = 2, M =

{
1, 2

}
, and c = max

i∈M
ci = c2 = 1.
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We can apply the ES method as the ES conditions (4.18) hold:

σ (x1,v) =−∞ < 1− 1 = d1 − c, d1 − c = 1− 1 ≥ 0,

σ (x2,v) = 0 < 2− 1 = d2 − c, d2 − c = 2− 1 ≥ 0.

We choose l = 2 ∈ J . Now J \
{
l
}

=
{

1
}

. Using (4.15) and (4.17), we introduce

for x1 a new variable

y1 = x
(d1−c)
1 − v1

v2
· x(d2−c)2 = x

(1−1)
1 − x2

(−1)
· x(2−1)2 = x1 + x2x

′
2,

and append the equation 0 = g1 = −y1 + x1 + x2x
′
2 to the original equations. Then

we replace x′1 by (y1 − x2x′2)′ in f1 to obtain f 1, and replace x1 by y1 − x2x′2 in f2 to

obtain f 2. The resulting DAE and its SA results are shown below.

0 = f 1 = x1 + e−y
′
1+x

′2
2 + h1(t)

0 = f 2 = y1 + x22 + h2(t)

0 = g1 = −y1 + x1 + x2x
′
2

Σ =

x1 x2 y1 ci







f 1 0 1 1• 0

f 2 0• 0 1

g1 0• 1 0 0

dj 0 1 1 Val(Σ) = 1

J =

x1 x′2 y′1





f 1 1 2x′2γ −γ

f
′
2 2x2 1

g1 1 x2

det(J) = 2γ(x2 + x′2)− x2

Here γ = e−y
′
1+x

′2
2 . Now Val(Σ) = 1 < 2 = Val(Σ). The SA succeeds at all points

where det(J) 6= 0.
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We prove a lemma related to Theorem 4.17, using the following assumptions for

the sake of the proof.

(a) Without loss of generality, we assume the entries vj 6≡ 0 are in the first s positions

of v, that is, v = [v1, . . . , vs, 0, . . . , 0]T . Then J = {1, . . . , s} by (4.14).

(b) We introduce one more variable yl = x
(dl−c)
l for the chosen l ∈ J , and append

correspondingly one more equation 0 = gl = −yl + x
(dl−c)
l .

Lemma 4.19 Let (c; d) = (c1, . . . , cn; d1, . . . , dn) be a valid offset pair of Σ. Let c̃

and d̃ be the two (n+ s)-vectors defined as

d̃j =





dj if j = 1 :n

c if j = n+ 1 :n+ s,

c̃i =





ci if i = 1 :n

c if i = n+ 1 :n+ s,

(4.19)

where c is as defined (4.14). Then the signature matrix Σ of the resulting DAE from

the ES method has the form in Figure 4.1.

The proof of this lemma is rather technical, so we present it in Appendix A.1.

Using Lemma 4.19, we prove Theorem 4.17.

Proof. Let T be an HVT of Σ. By Lemma 4.19,

Val(Σ) =
∑

(i,j)∈T

σij ≤
∑

(i,j)∈T

(d̃j − c̃i) since d̃j − c̃i ≥ σij

=
n+s∑

j=1

d̃j −
n+s∑

i=1

c̃i =
n∑

j=1

dj + sc−
n∑

i=1

ci − sc by (4.19)

=
n∑

j=1

dj −
n∑

i=1

ci = Val(Σ).
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x1 · · ·xl−1 xl xl+1 · · · xs xs+1 · · · xn y1 · · · yl−1 yl yl+1 · · · ys c̃i






f1 −∞ c1
... < ≤ ≤ ... ≤ ...

fn −∞ cn

g1 =
<

=

<
≤ 0 c

...
. . .

...
. . . −∞ ...

gl = −∞· · · −∞ 0 c

... <
...

. . .

≤ −∞ . . .
...

gs =

<
= 0 c

d̃j d1 · · · dl−1 dl dl+1 · · · ds ds+1 · · · dn c · · · c c c · · · c

Figure 4.1: The form of Σ for the resulting DAE from the ES method. The <, ≤,
and = mean the relations between σij and d̃j − c̃i, respectively. For instance, every

σij whose (i, j) position is in the region marked with “≤” is ≤ d̃j − c̃i.

We assert Val(Σ) < Val(Σ), and show below that an equality leads to a contradiction.

Assume Val(Σ) = Val(Σ). Then there exists a transversal T of Σ such that

d̃j − c̃i = σij > −∞ for all (i, j) ∈ T . (4.20)

Consider (i1, 1), . . . , (is, s) ∈ T for the first s columns. Since the yl column has only

one finite entry σn+l,n+l = 0, position (n + l, n + l) is in T , and thus row numbers

i1, . . . , is can only take values among

1, 2, . . . , n, n+ 1, . . . , n+ l − 1, n+ l + 1, . . . , n+ s.
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Here only s − 1 numbers are greater than n, so at least one of them is among 1 :n.

In other words, there exists a position (r, j) ∈ T with 1 ≤ r ≤ n and 1 ≤ j ≤ s in the

“<” region in Figure 4.1. Hence d̃j − c̃r > σrj, which yields a contradiction of (4.20).

Therefore Val(Σ) < Val(Σ).

Finally, we remove the yl column and its matched gl row. The resulting signature

matrix is still of value Val(Σ), since (n+ l, n+ l) ∈ T and σn+l,n+l = 0.

Remark 4.20 We give several remarks about the ES method.

• After an ES conversion, we do symbolic simplifications on f i for i ∈ M and

ensure that the x
(dj−ci)
j for j ∈ J = {1, . . . , s} no longer occur in these equations.

That is, σ
(
xj, f i

)
< dj − ci for j = 1 : s and i ∈M .

• If some derivative x
(dj−ci)
j , for i = 1 :n and j ∈ J \

{
l
}

, appears implicitly in

an expression in fi, then we need to write this expression into a form in which

x
(dj−ci)
j appears explicitly. See Example 4.21 below.

Example 4.21 Assume that f1 contains (sin 2x′1)
′′, σ11 = 3, and the ES method

finds

v = [1, 1]T , J =
{

1, 2
}
, l = 2, d1 = d2 = 3, and c = c1 = 0.

To replace x
(d1−c1)
1 = x′′′1 by

(
y1 +

v1
v2
x
(d2−c)
2

)(c−c1)
= y1 + x′′′2 ,
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we first need to write

(sin 2x′1)
′′ = 2x′′′1 cosx′1 − 4(x′′1)2 sinx′1

so that x′′′1 appears explicitly in f1. Then we can substitute y1 + x′′′2 for this x′′′1 .

In the following, we analyze the equivalence between the original DAE and the

converted DAE resulting from the ES method. Our analysis below is similar to the

analysis of the equivalence for the LC method.

We denote by F the original DAE with equations fi and an identically singular

System Jacobian J. After an ES conversion, we obtain a converted DAE F with equa-

tions f i, i = 1 :n, and gj, j ∈ J \
{
l
}

, and a System Jacobian J, whose nonsingularity

does not matter here.

Assume that x(t) =
[
x1(t), . . . , xn(t)

]T
is a solution of F on some time interval

I ⊂ R. Then functions fi and derivatives of them vanish on I. Assume also that

v ∈ ker(J) is well defined on I and vl(t) 6= 0 for all t ∈ I. Then we can use x(t)

and (4.15) to construct y(t) comprising yj(t), j ∈ J \
{
l
}

, such that each function

gj in (4.17) and derivatives of them vanish on I. Using (4.15) again, we perform

substitutions in fi, i ∈ M , to obtain f i, and let f i = fi for i /∈ M to obtain the rest

of the functions f i. Obviously these substitutions do not change the function values,

f i and derivatives of them also vanish on I. Therefore (x(t),y(t)) is a solution to F .

Conversely, assume that (x(t),y(t)) is a solution of F on I ⊂ R. Recall that

the vector v, depending solely on t and x(t), is well defined for all t ∈ I. Since vl

is a denominator in each gj in (4.17), the existence of the solution already implies

vl(t) 6= 0 on I. Given that functions gj and derivatives of them vanish on I, from
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(4.15) we have

y
(m)
j =





(
x
(dj−c)
j − vj

vl
x
(dl−c)
l

)(m)

j ∈ J \
{
l
}

(
x
(dl−c)
l

)(m)

j = l,

where m ≥ 0. If we substitute the expressions on the right-hand side for the deriva-

tives of yj in each f i, then we recover the original functions fi and meanwhile do

not change their function values. Therefore, functions fi and derivatives of them also

vanish on I. Now variables y(t) do not appear in F , and x(t) is a solution to F .

The above discussion gives the following theorem.

Theorem 4.22 If

(i) a DAE F has a finite Val(Σ) and an identically singular System Jacobian J,

(ii) a vector v ∈ ker(J) is well defined for all t on some time interval I,

(iii) the ES conditions (4.18) are satisfied, and we perform an ES conversion to

obtain a DAE F , and

(iv) vl 6= 0 for all t ∈ I,

then DAEs F and F are equivalent.

Example 4.23 In Example 4.18, assume we pick l = 1. Then by (4.15) we introduce

for x2 a new variable

y2 = x
(d2−c)
2 − v2

v1
x
(d1−c)
1 = x′2 −

1

x2
x1.
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Here we use

d1 = 1, d2 = 2, c = 1, and v = [x2,−1]T .

Then we

substitute for in

(y2 − x1/x2)′ x′′2 f1

y2 − x1/x2 x′2 f2

The resulting DAE is

0 = f 1 = x1 + e−x
′
1−x2·(y2−x1/x2)′ + h1(t)

= x1 + e−x
′
1−x2y′2−x′2x1/x2+x′1 + h1(t)

= x1 + e−x2y
′
2−x′2x1/x2 + h1(t)

0 = f 2 = x1 + x2(y2 − x1/x2) + x22 + h2(t)

= x2y2 + x22 + h2(t)

0 = g = −y2 + x′2 + x1/x2.

Σ =

x1 x2 y2 ci







f 1 0 1 1• 0

f 2 0• 0 1

g 0• 1 0 0

dj 0 1 1 Val(Σ) = 1
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J =

x1 x′2 y′2





f 1 1− x′2β/x2 −x1β/x2 −x2β

f
′
2 2x2 + y2 x2

g 1/x2 1

det(J) = −x2 + β(2x2 + y2 + x′2 − x1/x2)

In J, β = exp(−x2y′2−x′2x1/x2). If det(J) 6= 0, then SA succeeds and gives structural

index νS = 2. Here Val(Σ) = 1 < 2 = Val(Σ).

However, the original DAE and the resulting one are equivalent only if v1 = x2 6= 0

on some time interval I. In practice, it is more desirable to choose l = 2 since vl = −1

is a nonzero constant; see also Example 4.18.

Comparing Examples 4.18 with 4.23, we can see that it is again desirable to choose

a column index l ∈ J , such that the vl is an expression that never becomes 0, or even

better, a (nonzero) constant. With this choice, the original DAE and the converted

one are always equivalent. We hence derive a set J , a subset of J that contains these

column indices l for which l ∈ J and vl is constant:

J =
{
l ∈ J | vl is constant

}
. (4.21)

We summarize the steps of an ES conversion.

1) Obtain a symbolic form of J.

2) Compute a vector v ∈ ker(J).

3) Derive J , s, M , and c as defined in (4.14).
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4) Check the ES conditions (4.18). If either of the conditions is not satisfied, then

the ES method is not applicable and we set J ← ∅; otherwise proceed to the next

step.

5) Set J ←
{
l ∈ J | vl is constant

}
. If J 6= ∅, then we choose an l ∈ J ; otherwise

we choose an l ∈ J .

6) For each j ∈ J \
{
l
}

, introduce yj, as defined in (4.15), and append the corre-

sponding equation gj, as defined in (4.17).

7) Replace each x
(dj−ci)
j in fi by

(
yj+(vj/vl)·x(dl−c)l

)(c−ci)
, for all i and all j ∈ J\

{
l
}

.

8) (Optional) For consistence, rename variables yj, j ∈ J \
{
l
}

, to xn+1,. . .,xn+s−1,

and rename equations gj, j ∈ J \
{
l
}

, to fn+1, . . . , fn+s−1.

The sets J and J are used to decide the desirable conversion method; see below.

4.3 Choosing a desirable conversion

We present our rationale for choosing a conversion method in Table 4.1 and base

our choice on the following observations. For some failure cases, either LC condition

(4.2) or the ES conditions (4.18) are satisfied, but not both, so we can apply one

conversion method only. For other cases where both methods are applicable, we

consider as priority the equivalence between the original DAE and the resulting one.

As discussed in the above two sections, we wish to choose a nonzero constant ul [resp.

vl] in the LC [resp. ES] method, that is, l ∈ L [resp. l ∈ J ]. Our experience suggests

that such a constant frequently exists for one of the methods. If both methods
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Desirable conversion method
ES method

J 6= ∅ J = ∅ and J 6= ∅ J = ∅

LC method

L 6= ∅ LC LC LC

L = ∅ and L 6= ∅ ES LC LC

L = ∅ ES ES N/A

Table 4.1: The rationale for choosing the desirable conversion method.

guarantee equivalence or neither of them does, then we choose the LC method, as it

replaces only one existing equation and maintains the problem size.

We summarize in Table 4.1 the above logic of finding a desirable conversion in the

sense of equivalence. The three rows correspond to the three cases where

• some LC conversion is available with a constant ul,

• some LC conversion is available but none of ul is constant, and

• the LC method is not applicable.

The three columns correspond to the three cases where

• some ES conversion is available with a constant vl,

• some ES conversion is available but none of vl is constant, and

• the ES method is not applicable.

Take for instance the two cases for the positions (2, 1) and (2, 2) in Table 4.1. For

position (2, 1), we can perform an LC conversion, but since L = ∅ and L 6= ∅, none

of ul 6≡ 0 for l ∈ L is constant. Hence, no LC conversion is desirable. Meanwhile,

because J 6= ∅ in the ES method, some ES conversion with a nonzero constant vl ∈ J
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is desirable. That is, this ES conversion guarantees the equivalence between the

original DAE and the converted one, and hence is desirable. Therefore, we perform

the ES conversion with this vl. For position (2, 2), both methods are applicable but

neither of them gives a desirable conversion, so we choose the LC method, because it

is simpler to perform than the ES method.

In Chapters 6 and 7, when we apply the block conversion methods on an SA-

unfriendly DAE, we shall use the same rationale for choosing a desirable conversion.

We end this chapter with another simple DAE on which neither the LC method

nor the ES method is applicable, though the conversion is easy to find.

Example 4.24 Consider

0 = f1 = x′1x
′
2 + h1(t)

0 = f2 = (x′1x
′
2)

2 + x1 + x2 + h2(t).

(4.22)

Σ =

x1 x2 ci



f1 1• 1 0

f2 1 1• 0

dj 1 1 Val(Σ) = 2

J =

x′1 x′2



f1 x′2 x′1

f2 2x′1(x
′
2)

2 2x′2(x
′
1)

2

det(J) ≡ 0

It is straightforward to come up with a fix: we introduce a new variable x3 to

represent the common sub-expression x′1x
′
2, and then replace this expression by x3 in

the two equations. This procedure seems an ES conversion. The resulting DAE is

0 = f 1 = x3 + h1(t)

0 = f 2 = x23 + x1 + x2 + h2(t)

0 = f 3 = −x3 + x′1x
′
2.
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Σ =

x1 x2 x3 ci







f 1 0• 1

f 2 0 0• 0 1

f 3 1• 1 0 0

dj 1 1 1 Val(Σ) = 1

J =

x′1 x′2 x′3





f
′
1 1

f
′
2 1 1 2x3

f 3 x′2 x′1 −1

det(J) = x′1 − x′2

SA succeeds with Val(Σ) = 1 < 2 = Val(Σ) at any point where x′1 6= x′2.

In the LC method, we choose u = [2x′1x
′
2, 1]T ∈ coker(J), and use (4.1) and (4.9)

to find

I =
{

1, 2
}
, c = 0, L =

{
1, 2

}
, and L =

{
2
}
.

However, x′1 and x′2 occur in u, so the LC condition (4.2) is violated:

σ (x1,u) = d1 − c = 1 and σ (x2,u) = d2 − c = 1.

Due to these violations, the procedure for the LC method produces L = ∅ to mean

that this method is not applicable.

In the ES method, we choose v = [x′1, x
′
2]
T ∈ ker(J), and use (4.14) and (4.21) to

find

J =
{

1, 2
}
, s = |J | = 2, M =

{
1, 2

}
, c = max

i∈M
ci = 0, and J = ∅.

Similarly, x′1 and x′2 occur in v, so the first ES condition in (4.18) is violated:

σ (x1,v) = d1 − c = 1 and σ (x2,v) = d2 − c = 1.



80 CHAPTER 4. BASIC CONVERSION METHODS

Due to these violations, the procedure for the ES method produces J = ∅ to mean

that this method is not applicable.

The incapability of the two conversion methods is due to a nonlinear operation

on the common sub-expression that is again nonlinear in the derivatives of highest

order. We believe that such a situation is rare in practice and should not affect the

usefulness and applicability of our conversion methods.



Chapter 5

Examples of basic conversion

methods

In this chapter, we illustrate the conversion methods with two SA-unfriendly DAEs.

After a conversion, if we obtain a DAE with a smaller value of the signature matrix,

then we say this conversion succeeds.

In §5.1, we apply both conversion methods to the linear constant coefficient DAE

(3.10). The LC method converts it to an SA-friendly one in two iterations, and reduces

the value of the the signature matrix by 2. In contrast, the ES method reduces the

value of the signature matrix by 1 in the first iteration, but becomes inapplicable in

the second iteration, as the second ES condition in (4.18) is not satisfied.

In §5.2, we illustrate both conversion methods with an artificially modified DAE

derived from the simple pendulum (2.10). The ES method produces an SA-friendly

DAE of a relatively simple formulation. The LC method gives a complicated DAE,

because the set L in the method is empty.

81
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5.1 A simple linear constant coefficient DAE

Recall (3.10):

F0 :





0 = f1 = −x′1 + x3 + b1(t)

0 = f2 = −x′2 + x4 + b2(t)

0 = f3 = x2 + x3 + x4 + c1(t)

0 = f4 = −x1 + x3 + x4 + c2(t).

(5.1)

Σ0 =

x1 x2 x3 x4 ci







f1 1• 0 0

f2 1• 0 0

f3 0 0• 0 0

f4 0 0 0• 0

dj 1 1 0 0 Val(Σ0) = 2

J0 =

x′1 x′2 x3 x4






f1 −1 1

f2 −1 1

f3 1 1

f4 1 1

det(J0) ≡ 0

Here a superscript indicates an iteration number, not a power, so F0 denotes the

original problem formulation. We let Σ0 and J0 denote the signature matrix and

Jacobian of the original problem, respectively.

LC method. We perform two LC conversions and obtain an equivalent structurally

regular DAE on which SA succeeds.

We compute u = [0, 0,−1, 1]T ∈ coker(J0) and use (4.1) and (4.9) to derive

I =
{

3, 4
}
, c = 0, and L = L =

{
3, 4

}
.
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We choose l = 3 ∈ L and replace f3 by

f 3 = u3f3 + u4f4 = −f3 + f4 = −x1 − x2 − c1(t) + c2(t).

The converted DAE is

F1 :





0 = f1 = −x′1 + x3 + b1(t)

0 = f2 = −x′2 + x4 + b2(t)

0 = f 3 = −x1 − x2 − c1(t) + c2(t)

0 = f4 = −x1 + x3 + x4 + c2(t).

Σ1 =

x1 x2 x3 x4 ci







f1 1• 0 0

f2 1 0• 0

f 3 0 0• 1

f4 0 0• 0 0

dj 1 1 0 0 Val(Σ1) = 1

J1 =

x′1 x′2 x3 x4






f1 −1 1

f2 −1 1

f
′
3 −1 −1

f4 1 1

det(J1) ≡ 0

Since J1 is still identically singular, we try another LC conversion. We compute

u = [−1,−1, 1, 1]T in coker(J1). Then

I =
{

1, 2, 3, 4
}
, c = 0, and L = L =

{
1, 2, 4

}
.
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We choose l = 1 ∈ L and replace f1 by

f 1 = u1f1 + u2f2 + u3f
′
3 + u4f4

= −f1 − f2 + f
′
3 + f4

= − [−x′1 + x3 + b1(t)]− [−x′2 + x4 + b2(t)] + [−x1 − x2 − c1(t) + c2(t)]
′

+ [−x1 + x3 + x4 + c2(t)]

= −x1 − b1(t)− b2(t)− c′1(t) + c′2(t) + c2(t).

The converted DAE is

F2 :





0 = f 1 = −x1 − b1(t)− b2(t)− c′1(t) + c′2(t) + c2(t)

0 = f2 = −x′2 + x4 + b2(t)

0 = f 3 = −x1 − x2 − c1(t) + c2(t)

0 = f4 = −x1 + x3 + x4 + c2(t).

Σ2 =

x1 x2 x3 x4 c̃i







f 1 0• 1

f2 1 0• 0

f 3 0 0• 1

f4 0 0• 0 0

d̃j 1 1 0 0 Val(Σ2) = 0

J2 =

x′1 x′2 x3 x4






f
′
1 −1

f2 −1 1

f
′
3 −1 −1

f4 1 1

det(J2) = 1

The SA succeeds on this converted DAE and gives structural index νS = 2. Since we

choose l ∈ L for both LC conversions, the equivalence of DAEs F2, F1, and F0 is
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guaranteed.

ES method. We show below that the ES method cannot convert F0 in (5.1) to a

structurally regular DAE. We illustrate one choice of l ∈ J in each iteration of the

ES method, and do not explore all possible combinations of choices. To handle the

limitation of the ES method, further development is required and left as future work.

We find v = [1,−1, 1,−1]T ∈ ker(J0), and the ES method uses (4.14) to obtain

J = J =
{

1, 2, 3, 4
}
, s = |J | = 4, M =

{
1, 2, 3, 4

}
, and c = max

i∈M
ci = 0.

Assume we pick l = 3. Using (4.15), we introduce yj for each j ∈ J \
{
l
}

=
{

1, 2, 4
}

:

y1 = x
(d1−c)
1 − (v1/v3)x

(d3−c)
3 = x′1 − x3

y2 = x
(d2−c)
2 − (v2/v3)x

(d3−c)
3 = x′2 + x3

y4 = x
(d4−c)
4 − (v4/v3)x

(d3−c)
3 = x4 + x3.

(5.2)

From (5.2), we construct equations gj in (4.17). By (5.2), we write

x′1 = y1 + x3, x′2 = y2 − x3, and x4 = y4 − x3.

In (3.10), we

substitute for in

y1 + x3 x′1 f1

y2 − x3 x′2 f2

y4 − x3 x4 f2, f3, f4
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The converted DAE is

0 = f1 = −y1 + b1(t)

0 = f2 = y4 − y2 + b2(t)

0 = f3 = x2 + y4 + c1(t)

0 = f4 = −x1 + y4 + c2(t)

0 = g1 = −y1 + x′1 − x3

0 = g2 = −y2 + x′2 + x3

0 = g4 = −y4 + x4 + x3.

Σ =

x1 x2 x3 x4 y1 y2 y4 ci







f1 0• 0

f2 0• 0 0

f3 0• 0 1

f4 0 0• 1

g1 1• 0 0 0

g2 1 0• 0 0

g4 0 0• 0 0

dj 1 1 0 0 0 0 1 Val(Σ) = 1
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J =

x′1 x′2 x3 x4 y1 y2 y′4






f1 −1

f2 −1

f ′3 1 1

f ′4 −1 1

g1 1 −1 −1

g2 1 1 −1

g4 1 1

det(J) ≡ 0

Since J is still identically singular, we attempt another ES conversion. We compute

v = [1,−1, 1,−1, 0, 0, 1]T ∈ ker(J) and use (4.14) to find

J = J =
{

1, 2, 3, 4, 7
}
, s = |J | = 5, M =

{
3, 4, 5, 6, 7

}
, and c = max

i∈M
ci = 1.

Since

d3 − c = d4 − c = 0− 1 = −1 < 0 for j = 3, 4 ∈ J,

the latter ES condition in (4.18) is not satisfied. If we perform an ES conversion, then

a strict decrease in Val(Σ) does not occur. We omit the details of this conversion due

to the large size of the resulting DAE.
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5.2 Modified pendulum by change of variables

If we perform the following linear transformation on the state variables in the pen-

dulum DAE (2.10)




x

y

λ




=




1 1 0

0 1 1

1 0 1







z1

z2

z3



, (5.3)

then we obtain a new DAE from the original one:

0 = f1 = (z1 + z2)
′′ + (z1 + z2)(z3 + z1)

0 = f2 = (z2 + z3)
′′ + (z2 + z3)(z3 + z1)−G

0 = f3 = (z1 + z2)
2 + (z2 + z3)

2 − `2.

(5.4)

Σ0 =

z1 z2 z3 ci







f1 2 2 0 0

f2 0 2 2 0

f3 0 0 0 2

dj 2 2 2 Val(Σ0) = 2

J0 =

z′′1 z′′2 z′′3





f1 1 1

f2 1 1

f ′′3 2α 2(α + β) 2β

det(J0) ≡ 0

Here α = z1 + z2 and β = z2 + z3.

LC method. We perform two LC conversions on (5.4) to obtain a structurally

regular DAE. Its formulation is complicated, partly because we cannot find a nonzero

constant ul in each iteration of the method. The equivalence of the resulting DAE

and the original one requires the ul in each iteration to be nonzero.
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We first compute u =
(
α, β,−1/2

)
∈ coker(J0). Using (4.1) and (4.9), we obtain

I =
{

1, 2, 3
}
, c = 0, L =

{
1, 2

}
, and L = ∅.

Since L = ∅ and we cannot guarantee u1 = α = z1 + z2 and u2 = β = z2 + z3 to be

always nonzero, the converted DAE is equivalent to (5.4) only if ul 6= 0 for the l we

pick.

We illustrate the case u1 = α = z1 +z2 6= 0. The other case β 6= 0 can be analyzed

in an analogous way. We pick l = 1 ∈ L and replace f1 by

f 1 = u1f1 + u2f2 + u3f
′′
3

= (z1 + z2)f1 + (z2 + z3)f2 − f ′′3 /2

= ((((
((((

((
(z1 + z2)(z1 + z2)

′′ + (z1 + z2)
2(z3 + z1)((((

((((
(((

+(z2 + z3)(z2 + z3)
′′

+ (z2 + z3)
2(z3 + z1)−G(z2 + z3)((((

(((
((((−(z1 + z2)(z1 + z2)

′′

− (z′1 + z′2)
2

((((
((((

(((−(z2 + z3)(z2 + z3)
′′ − (z′2 + z′3)

2

=
[
(z1 + z2)

2 + (z2 + z3)
2
]

(z3 + z1)−G(z2 + z3)− (z′1 + z′2)
2 − (z′2 + z′3)

2

= `2(z3 + z1)−G(z2 + z3)− (z′1 + z′2)
2 − (z′2 + z′3)

2.

The resulting DAE is

F1 :





0 = f 1 = `2(z3 + z1)−G(z2 + z3)− (z′1 + z′2)
2 − (z′2 + z′3)

2

0 = f2 = (z2 + z3)
′′ + (z2 + z3)(z3 + z1)−G

0 = f3 = (z1 + z2)
2 + (z2 + z3)

2 − `2.
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Σ1 =

z1 z2 z3 ci







f 1 1 1 1 1

f2 0 2 2 0

f3 0 0 0 2

dj 2 2 2 Val(Σ1) = 3

J1 =

z′′1 z′′2 z′′3





f
′
1 −2α′ −2(α + β)′ −2β′

f2 1 1

f ′′3 2α 2(α + β) 2β

det(J1) ≡ 0

We use α and β to denote z1 + z2 and z2 + z3, respectively. Also let γ denote z3 + z1

to simplify notation. By (5.3), we notice that variables α, β, γ are in fact the state

variables (x, y, λ) in (2.10). However, in our illustration of the LC method, we prefer

not to apply the ES method by replacing z1 + z2, z2 + z3, and z3 + z1 by α, β, and γ,

respectively.

Since the System Jacobian J1 is still identically singular, we attempt another LC

conversion. We compute u =
(
α, 2αβ′ − 2βα′, α′

)T ∈ coker(J1). Using (4.1) and

(4.9) again, we find I =
{

1, 2, 3
}

, c = 0, L =
{

2
}

, and L = ∅. Suppose

u2/2 = αβ′ − βα′ = (z1 + z2)(z
′
2 + z′3)− (z2 + z3)(z

′
1 + z′2) 6= 0.

We choose l = 2 ∈ L, and replace f2 by

f 2 = u1f
′
1 + u2f2 + u3f

′′
3 = αf ′1 + 2(αβ′ − α′β)f2 + α′f ′′3

= α(`2γ′ −Gβ′ − 2α′α′′ − 2β′β′′) + 2(αβ′ − α′β)(β′′ + βγ −G)

+ 2α′(α′2 + αα′′ + β′2 + ββ′′)

= α(`2γ′ −Gβ′) + 2(αβ′ − α′β)(βγ −G) + 2α′(α′2 + β′2)

= (z1 + z2)
[
`2(z′3 + z′1)−G(z′1 + z′2)

]

+ 2
[
(z1 + z2)(z

′
2 + z′3)− (z′1 + z′2)(z2 + z3)

][
(z2 + z3)(z3 + z1)−G

]

+ 2(z′1 + z′2)
[
(z′1 + z′2)

2 + (z′2 + z′3)
2
]
.
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The resulting DAE is

F2 :





0 = f 1 = `2(z3 + z1)−G(z2 + z3)− (z′1 + z′2)
2 − (z′2 + z′3)

2

0 = f 2 = (z1 + z2)
[
`2(z′3 + z′1)−G(z′1 + z′2)

]

+ 2
[
(z1 + z2)(z

′
2 + z′3)− (z′1 + z′2)(z2 + z3)

][
(z2 + z3)(z3 + z1)−G

]

+ 2(z′1 + z′2)
[
(z′1 + z′2)

2 + (z′2 + z′3)
2
]

0 = f3 = (z1 + z2)
2 + (z2 + z3)

2 − `2.

Σ2 =

z1 z2 z3 ci







f 1 1 1 1• 0

f 2 1• 1 1 0

f3 0 0• 0 1

dj 1 1 1 Val(Σ2) = 2

The System Jacobian J2 is complicated, so we do not show it here. Its determinant

is

det(J2) = −4`2 (z1 + z2) [(z1 + z2)(z
′
2 + z′3)− (z2 + z3)(z

′
1 + z′2)]

= −4α`2(αβ′ − βα′) 6= 0.

This nonzero attributes to α = z1 + z2 6= 0 and αβ′ − βα′ 6= 0. The converted DAE

F2 is equivalent to F1 only if αβ′ − βα′ 6= 0 on some time interval I. Hence SA

succeeds and gives structural index νS = 1.
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Now we consider the case αβ′ − βα′ = 0. Since 0 = h′ = 2αα′ + 2ββ′ and α 6= 0,

we have

0 = αβ′ − βα′ = αβ′ + β · (ββ′)/α = β′(α2 + β2)/α = β′`2/α.

So β′ = α′ = 0. Since u =
(
α, 2αβ′ − 2βα′, α′

)T
= [α, 0, 0]T , the first row in

J1 is identically zero and the System Jacobian is structurally singular. Hence the

conversion methods are not applicable here.

To sum up, the DAEs F2 and F0 are equivalent, if

α = z1 + z2 6= 0 and β′ = z′2 + z′3 6= 0.

ES method. Suppose we choose v = [1,−1, 1]T ∈ ker(J0). We use (4.14) to derive

J = J =
{

1, 2, 3
}
, s = |J | = 3, M =

{
1, 2, 3

}
, and c = max

i∈M
ci = c3 = 2.

We illustrate below the ES method with the choice l = 1 ∈ J .

Since J \
{
l
}

=
{

2, 3
}

, we introduce for z2 and z3 two new variables

w2 = z
(d2−c)
2 − v2

v1
z
(d1−c)
1 = z2 + z1

and w3 = z
(d3−c)
3 − v3

v1
z
(d1−c)
1 = z3 − z1,

respectively. To perform the expression substitutions, we first write explicitly the
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derivatives z′′1 , z
′′
2 and z′′3 in f1 and f2:

0 = f1 = z′′1 + z′′2 + (z1 + z2)(z3 + z1)

0 = f2 = z′′2 + z′′3 + (z2 + z3)(z3 + z1)−G.

Then we

substitute for in

w′′2 − z′′1 z′′2 f1, f2

w′′3 + z′′1 z′′3 f2

w2 − z1 z2 f3

w3 + z1 z3 f3

The resulting DAE is

0 = f 1 = w′′2 + w2(2z1 + w3)

0 = f 2 = (w2 + w3)
′′ + (w2 + w3)(2z1 + w3)−G

0 = f 3 = w2
2 + (w2 + w3)

2 − `2

0 = g2 = −z2 + w2 − z1

0 = g3 = −z3 + w3 + z1.

(5.5)



94 CHAPTER 5. EXAMPLES OF BASIC CONVERSION METHODS

Σ =

z1 z2 z3 w2 w3 ci





f 1 0 2• 0 0

f 2 0• 2 2 0

f 3 0 0• 2

g2 0 0• 0 0

g3 0 0• 0 0

dj 0 0 0 2 2 Val(Σ) = 2

J =

z1 z2 z3 w′′2 w′′3





f 1 2w2 1

f 2 2(w2 + w3) 1 1

f
′′
3 2(2w2 + w3) 2(w2 + w3)

g2 −1 −1

g3 1 −1

det(J) = −4`2

We use equation f 3 = 0 to derive

det(J) = −4(2w2
2 + 2w2w3 + w2

3) = −4`2 6= 0.

Hence the SA succeeds on (5.5). Since we choose l ∈ J in the ES conversion, the

converted DAE (5.5) and the original (5.4) are always equivalent.



Chapter 6

Block conversion methods

In this chapter, we combine our conversion methods with block triangularization of a

DAE, and derive the block conversion methods—that is, the block LC method and the

block ES method. If a System Jacobian J is identically singular, and the DAE has a

nontrivial BTF of p ≥ 1 diagonal blocks, then by (2.14), det(J) =
∏p

q=1 det(Jqq) ≡ 0,

so at least one Jqq for some q = 1 : p is identically singular. As discussed in §2.2.2, we

can regard block q as a sub-DAE, with signature matrix Σqq and System Jacobian Jqq.

Then we may wish to apply the basic conversion methods on this sub-DAE to achieve

a strict decrease in Val(Σqq), provided the conditions for applying these methods are

satisfied for those variables and equations within block q.

However, what we should ensure is a strict decrease in the value of the whole

signature matrix, namely Val(Σ) < Val(Σ), where Σ is the signature matrix of the

resulting DAE. Proving this inequality from a decrease in Val(Σqq) is nontrivial,

because a conversion on block q may affect blocks Σqw for w = 1, . . . , q−1, q+1, . . . , p.

Especially in the ES method, Σqq and these blocks are enlarged. Hence, the conditions

and the conversion processes from §4 need to be carefully modified.

95
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Now that the block conversion methods allow us to deal with only those equations

and variables within a singular block, which is usually of a smaller size compared to

the whole DAE, these methods require fewer symbolic computations and hence are

generally more efficient to find a useful conversion for fixing SA’s failures.

Recall that when a Jacobian pattern S0 of a DAE is in some BTF, Σ and J are

in p× p block form:

J =







J11 J12 · · · J1p

0 J22 · · · J2p

...
. . . . . .

...

0 · · · 0 Jpp

Σ =







Σ11 Σ12 · · · Σ1p

Σ21 Σ22 · · · Σ2p

...
. . . . . .

...

Σp1 Σp2 · · · Σpp

.

From this block triangularization, we have

dj − ci




> σij

≥ σij

if blockOf(i) > blockOf(j)

if blockOf(i) ≤ blockOf(j),

(6.1)

and Jij ≡ 0 if blockOf(i) > blockOf(j).

This chapter is organized as follows. We give an introductory example in §6.1.

Then we present the block LC method in §6.2 and the block ES method in §6.3. We

illustrate these two block conversion methods with the Campbell-Griepentrog robot

arm DAE [7]. For more examples on which these methods are applied, see Chapter 7.

Throughout the rest of this thesis, we use the fine BTF in the examples for demon-

stration, since each fine block contains an irreducible sub-Jacobian sparsity pattern.

Our experience suggests that a useful conversion can usually be derived from the fine
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BTF of a DAE. However, we emphasize that the block conversion methods can be

applied not only to the irreducible BTF of a Jacobian pattern S0 with some valid off-

set pair (c; d), but also to any BTF of S0. For example, the basic conversion methods

consider a DAE in a (trivial) BTF of one n× n block.

6.1 An introductory example

Consider

0 = f1 = x1 + x2 + h1(t)

0 = f2 = x1 + (x′1 + x′2)x
′
3 + h2(t)

0 = f3 = x′3 + h3(t).

(6.2)

Σ =

x1 x2 x3 ci







f1 0• 0 1

f2 1 1• 1 0

f3 1• 0

dj 1 1 1 Val(Σ) = 2

J =

x′1 x′2 x′3





f ′1 1 1

f2 x′3 x′3 x′1 + x′2

f3 1

det(J) ≡ 0

The coarse BTF and the fine BTF are identical.

In the basic LC method, we can choose u = [−x′3, 1,−x′1−x′2]T ∈ coker(J). Using

(4.1), we have

I =
{
i | ui 6≡ 0

}
=
{

1, 2, 3
}
, c = min

i∈I
ci = 0, L =

{
l ∈ I | cl = c

}
=
{

2, 3
}
.
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Since

σ (xj, u) = 1 6< 1 = dj − c for all j = 1 : 3,

the LC condition (4.2) is violated. An LC conversion outputs L = ∅, which means

the basic LC method is not applicable. Not surprisingly, replacing either f2 or f3 by

f =
∑

i∈I
uif

(ci−c)
i = −x′3h′1(t) + (x1 + h2(t))− (x′1 + x′2)(x

′
3 + h3(t))

does not result in a decrease in Val(Σ)—verifying this is not difficult.

Notice that only the sub-Jacobian of block 1, J11 = ∂(f ′1, f2)/∂(x′1, x
′
2), is singular.

Suppose we consider block 1, with B1 =
{

1, 2
}

, as a sub-DAE, and choose u =

[−x′3, 1]T ∈ coker(J11). Within block 1, the LC method derives

I =
{
i ∈ B1 | ui 6≡ 0

}
=
{

1, 2
}
, c = min

i∈I
ci = 0, L =

{
l ∈ I | cl = c

}
=
{

2
}
.

Now the LC condition (4.2) is satisfied for the column indices in block 1: σ (xj,u) =

−∞ < dj−c for j = 1, 2 ∈ B1. Replacing f2 by f 2 = u1f
′
1+u2f2 = x1+h2(t)−x′3h′1(t)

results in the DAE with the following SA result.

Σ =

x2 x1 x3 ci







f1 0• 0 0

f 2 0• 1 0

f3 1• 0

dj 0 0 1 Val(Σ) = 1

J =

x2 x1 x′3





f1 1 1

f 2 1 g′1(t)

f3 1

det(J) = 1

The SA succeeds as J is nonsingular. The conversion results in a decrease in the value

of the signature matrix: Val(Σ) = 1 < 2 = Val(Σ).
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The basic ES method can work on (6.2) by choosing v = [1,−1, 0]T ∈ ker(J).

It is simpler—though trivial for this example—to work on block 1 only. We find

v = [1,−1]T ∈ ker(J11), and use (4.14) to derive

J =
{
l ∈ B1 | vl 6≡ 0

}
=
{

1, 2
}
, s = |J | = 2, M =

{
1, 2

}
, c = max

i∈M
ci = 1.

Since v is constant, the first ES condition in (4.18) certainly hold. The second

condition holds also as d1 − c1 = d2 − c1 = 0.

We choose l = 2 ∈ J and introduce for x1 a new variable

y1 = x
(d1−c)
1 − v1

v2
· x(d2−c)2 = x1 + x2.

The ES method hence says: replace x1 by y1−x2 in f1, and replace x′1 by y′1−x′2 in f2.

Finally we append the equation g1 that defines y1 and prescribes such replacements,

and obtain

0 = f 1 = y1 + h1(t)

0 = f 2 = x1 + y′1x
′
3 + h2(t)

0 = f 3 = x′3 + h3(t)

0 = g1 = −y1 + x1 + x2.

Σ =

x2 x1 y1 x3 ci







g1 0• 0 0 0

f 2 0• 1 1 0

f 1 0• 1

f3 1• 0

dj 0 0 1 1

J =

x2 x1 y′1 x′3






g1 1 1 −1

f 2 1 x′3 y′1

f
′
1 1

f3 1
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Again Val(Σ) = 1 < 2 = Val(Σ), and the SA succeeds as det(J) = 1.

6.2 Block linear combination method

We first introduce some convenient notation for the block LC method. Assume that

a Jqq is identically singular. We use 0m to denote the zero vector of size m. Let

û ∈ coker(Jqq) and û 6≡ 0Nq . Let also

u =




0N1+···+Nq−1

û

0Nq+1+···+Np



.

We denote

I =
{
i | ui 6≡ 0

}
⊆ Bq, c = min

i∈I
ci, L =

{
l ∈ I | cl = c

}
, and

L =
{
l ∈ L | ul is (nonzero) constant

}
.

(6.3)

The set L is used to seek a conversion that guarantees equivalence between the original

DAE and the converted one. The block LC method is based on the following theorem.

Theorem 6.1 If

σ (xj,u) < dj − c for all j ∈ Bq (6.4)

and we replace an equation fl, l ∈ L, by

f =
∑

i∈I
uif

(ci−c)
i , (6.5)

then Val(Σ) < Val(Σ), where Σ = (σij) is the signature matrix of the resulting DAE.
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We give two proofs of this theorem. The first proof connects the block LC method

with the basic LC method, and follows from the proof of Lemma 6.2 below. The

second proof of Theorem 6.1 is in Appendix B.

Lemma 6.2 Consider a BTF of a Jacobian pattern S0 derived from Σ and (c; d). If

we perform the LC conversion as described in Lemma 6.2, then in the resulting Σ,

dj − ci





> σij if blockOf(j) < blockOf(i)

≥ σij if blockOf(j) ≥ blockOf(i) .

(6.6)

Proof. We only replace fl by f l = f in a conversion, so σij = σij for all i 6= l and all

j. By (6.1), (6.6) holds for all i 6= l.

When i = l, we consider two cases: (a) blockOf(j) < q, and (b) blockOf(j) ≥ q.

(a) blockOf(j) < q = blockOf(l). By (6.1), σlj < dj − cl. Then

σlj = σ
(
xj, f l

)

= σ

(
xj,
∑

i∈I
uif

(ci−c)
i

)
≤ max

{
σ (xj,u) , max

i∈I
σ
(
xj, f

(ci−c)
i

)}
. (6.7)

We have

σ (xj,u) ≤ σ (xj,Jqq) ≤ max
i∈I

σ (xj, fi) = max
i∈I

σij

< max
i∈I

(dj − ci) = dj −min
i∈I

ci = dj − cl and (6.8a)

max
i∈I

σ
(
xj, f

(ci−c)
i

)
= max

i∈I
(σij + ci − c) < dj − c = dj − cl. (6.8b)

Using (6.8a) and (6.8b) in (6.7), we obtain σlj < dj − cl.

(b) blockOf(j) ≥ q = blockOf(l). By (6.1), σlj ≤ dj − cl. We can replace the two

“<” in (6.8) by “≤”. Using these inequalities in (6.7), we obtain σlj ≤ dj − cl.
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Now we prove Theorem 6.1.

Proof. Let T be a transversal of Σ. Using Lemma 6.2 and (6.6), we derive

Val(Σ) =
∑

(i,j)∈T

σij ≤
∑

(i,j)∈T

(dj − ci) =
n∑

j=1

dj −
n∑

i=1

ci = Val(Σ). (6.9)

By Lemma 2.11, we can regard block q as a sub-DAE, with its signature matrix Σqq

and offset pair (cq; dq). The conversion described in Theorem 6.1 can be considered

as an application of the basic LC method to this sub-DAE. Since the block LC

condition (6.4) holds, that is, σ (xj, û) < dj − c for all j ∈ Bq that belong to this

sub-DAE, the basic LC condition (4.2) also holds for the block q sub-DAE. Hence

Val(Σqq) < Val(Σqq).

We prove Val(Σ) < Val(Σ) by contradiction. Assume Val(Σ) = Val(Σ) =
∑n

j=1 dj −
∑n

i=1 ci ≥ 0. Also, (6.6) holds by Lemma 6.2. So the three conditions

in Lemma 2.10 are satisfied. By this lemma, the Jacobian patterns S0, derived from

Σ and (c; d), and S0, derived from Σ and (c; d), are in the same p× p BTF.

Let T be a HVT of Σ. A HVT T of Σ is the union of HVTs Tw of all diagonal

blocks Σww, w = 1 : p. By the construction of Σ, we have Val(Σww) = Val(Σww) for

all w 6= q. Then a contradiction follows from

Val(Σ) =
∑

(i,j)∈T

σij =

p∑

w=1

∑

(i,j)∈Tw

σij =

p∑

w=1

Val(Σww)

=
∑

w 6=q
Val(Σww) + Val(Σqq) <

∑

w 6=q
Val(Σww) + Val(Σqq)

=

p∑

w=1

Val(Σww) =

p∑

w=1

∑

(i,j)∈Tw

σij =
∑

(i,j)∈T
σij = Val(Σ). (6.10)

Hence, the assumption Val(Σ) = Val(Σ) is erroneous. By (6.9), only Val(Σ) <

Val(Σ) can hold.
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Example 6.3 We illustrate the block LC method with the Campbell-Griepentrog

two-link robot arm DAE in [7]. We slightly simplify the original first-order problem

formulation to (6.11), in which x1, x2, x3 occur of second order and x′1, x
′
2, and x′3

occur implicitly. The two state variables u1 and u2 in the original formulation are

renamed x4 and x5, respectively, and hence are not to be confused with entries in a

vector u in our notation.

0 = A = x′′1 −
[
2c(x3)(x

′
1 + x′3)

2 + x′21 d(x3) + (2x3 − x2)
(
a(x3) + 2b(x3)

)

+ a(x3)(x4 − x5)
]

0 = B = x′′2 −
[
−2c(x3)(x

′
1 + x′3)

2 − x′21 d(x3) + (2x3 − x2)
(
1− 3a(x3)− 2b(x3)

)

− a(x3)x4 +
(
a(x3) + 1

)
x5

]

0 = C = x′′3 −
[
−2c(x3)(x

′
1 + x′3)

2 − x′21 d(x3) + (2x3 − x2)
(
a(x3)− 9b(x3)

)

− 2x′21 c(x3)− d(x3)
(
x′1 + x′3

)2 −
(
a(x3) + b(x3)

)
(x4 − x5)

]

0 = D = cosx1 + cos(x1 + x3)− p1(t)

0 = E = sinx1 + sin(x1 + x3)− p2(t), (6.11)

where

a(θ) = 2/(2− cos2 θ)

c(θ) = sin θ/(2− cos2 θ)

p1(t) = cos(1− et) + cos(1− t)

b(θ) = cos θ/(2− cos2 θ)

d(θ) = sin θ cos θ/(2− cos2 θ)

p2(t) = sin(1− et) + sin(1− t).
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Σ =

x2 x4 x5 x1 x3 ci






f1 B 2• 0 0 1 1 0

f2 C 0 0• 0 1 2 0

f3 A 0 0 0• 2 1 0

f4 D 0• 0 2

f5 E 0 0• 2

dj 2 0 0 2 2

J =

x′′2 x4 x5 x′′1 x′′3





B 1 a3 −a3 − 1

C a3 + b3 −a3 − b3 1

A −a3 a3 1

D′′ ∂D
∂x1

∂D
∂x3

E′′ ∂E
∂x1

∂E
∂x3

Here, in J,

a3 = a(x3) = 2/(2− cos2 x3) b3 = b(x3) = cos x3/(2− cos2 x3)

∂D/∂x1 = − sinx1 − sin(x1 + x3) ∂D/∂x3 = − sin(x1 + x3)

∂E/∂x1 = cosx1 + cos(x1 + x3) ∂E/∂x3 = cos(x1 + x3).

The DAE (6.11) is of differentiation index 5, while the SA reports structural

index νS = 3. Hence this must be a failure case, because νS is an upper bound for the

differentiation index when the SA succeeds [46]. We can see that the sub-Jacobian

J22 of block 2 is identically singular.

The block LC method first computes û = [2, 2 + cosx3]
T ∈ coker(J22). Then

u = [0, 2, 2 + cos x3, 0, 0]T . Note that u /∈ coker(J). Using (6.3), we have

I =
{
i | ui 6≡ 0

}
=
{

2, 3
}
, c = min

i∈I
ci = 0, L = { 2, 3 }, and L = { 2 }.

The variables x4 and x5 in block 2 do not occur in u, so the condition (6.4) is satisfied.



6.3. BLOCK EXPRESSION SUBSTITUTION METHOD 105

Considering equivalence, we pick l = 2 ∈ L over l = 3 ∈ L \L, and replace fl = C

by C = u1C + u2A = 2C + (2 + cosx3)A. According to the proof of Theorem 6.1,

neither of x4 and x5 occurs in C. The SA results of the resulting DAE are as follows.

Σ =

x4 x5 x2 x1 x3 ci






A 0• 0 0 2 1 0

B 0 0• 2 1 1 0

C 0• 2 2 2

D 0• 0 4

E 0 0• 4

dj 0 0 2 4 4

J =

x4 x5 x′′2 x
(4)
1 x

(4)
3






A −a3 a3

B a3 −a3 − 1 1

C
′′ ∂C

∂x2
2 + cosx3 2

D(4) ∂D
∂x1

∂D
∂x3

E(4) ∂E
∂x1

∂E
∂x3

Here ∂C/∂x2 = 2(a23− 3a3b3 + b23)(2− cos2 x3). The SA reports νS = 5, and succeeds

at any point where det(J) = 4(a23 − 3a3b3 + b23) sinx3 6= 0. Now Val(Σ) = 0 < 2 =

Val(Σ).

6.3 Block expression substitution method

Assume that a Jqq is identically singular. Let v̂ ∈ ker(Jqq) and v̂ 6≡ 0Nq . Similarly,

we construct

v =




0N1+···+Nq−1

v̂

0Nq+1+···+Np



.
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We use notation similar to that used in the basic ES method:

J =
{
j | vj 6≡ 0

}
⊆ Bq, M =

{
i ∈ Bq | dj − ci = σij for some j ∈ J

}
,

s = |J |, c = max
i∈M

ci and

J =
{
l | vl is (nonzero) constant

}
.

(6.12)

The set J is used to seek a conversion that guarantees equivalence in the original

DAE and the converted one.

The block ES conditions are

σ (xj,v)





< dj − c if j ∈ J or blockOf(j) < q

≤ dj − c if j ∈ Bq \ J or blockOf(j) > q ,

dj − c ≥ 0 for all j ∈ J .

(6.13)

We choose an l ∈ J , and introduce s− 1 new variables

yj = x
(dj−c)
j − vj

vl
· x(dl−c)l for all j ∈ J \

{
l
}
. (6.14)

In each fi with i ∈ Bq, we

replace each x
(σij)
j with dj − ci = σij and j ∈ J \

{
l
}

by
(
yj +

vj
vl
· x(dl−c)l

)(c−ci)
.

(6.15)

Note that, because of M in (6.12), we actually perform expression substitutions in

only fi’s with i ∈ M ⊆ Bq. Denote each new fi by f i, and let also f i = fi for the

unchanged equations with i /∈M .
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By (6.14), we append s− 1 equations that prescribe the substitutions in (6.15):

0 = gj = −yj + x
(dj−c)
j − vj

vl
· x(dl−c)l for all j ∈ J \

{
l
}
. (6.16)

The block ES method is based on the following theorem.

Theorem 6.4 Let J , s, M , and c be as defined in (6.12). Assume that the block ES

conditions (6.13) hold. For an l ∈ J , if we

1) introduce s− 1 new variables xj, j ∈ J \
{
l
}

, as defined in (6.14),

2) perform replacements in fi, for all i ∈ Bq, as described in (6.15), and

3) append s− 1 equations gj, j ∈ J \
{
l
}

, as defined in (6.16),

then Val(Σ) < Val(Σ), where Σ is the signature matrix of the resulting DAE.

Before proving this theorem, we illustrate the block ES method with (6.11), and

prove two related lemmas.

Example 6.5 This method finds first v̂ = [1, 1]T ∈ ker(J22). Then v = [0, 0, 1, 1, 0]T .

Note that v /∈ ker(J). Using (6.12), we have

J = J =
{
j | vj 6≡ 0

}
= { 2, 3 }, s = |J | = 2, M = { 2, 3 }, c = max

i∈M
ci = 0.

Since v is constant, J = J and the first condition in (6.13) holds. The second

condition holds also, as d4 − c = d5 − c = 0. We choose x4, whose column index in

the permuted Σ is l = 2 ∈ J . Then we introduce for x5, the other variable in block
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2 with column index j = 3, a new variable

y5 = x
(d5−c)
5 − v3

v2
· x(d4−c)4 = x5 − x4.

Correspondingly, we append 0 = g5 = −y5 + x5 − x4 and replace x5 by y5 + x4 in C

and A, the equations in block 2.

The resulting DAE has the following new equations

0 = A = x′′1 −
[
2c(x3)(x

′
1 + x′3)

2 + x′21 d(x3) + (2x3 − x2)
(
a(x3) + 2b(x3)

)
+ a(x3)y5

]

0 = C = x′′3 −
[
−2c(x3)(x

′
1 + x′3)

2 − x′21 d(x3) + (2x3 − x2)
(
a(x3)− 9b(x3)

)

− 2x′21 c(x3)− d(x3)
(
x′1 + x′3

)2 −
(
a(x3) + b(x3)

)
y5

]

0 = g5 = −y5 + x4 − x5.

Σ =

x4 x5 x2 y5 x1 x3 ci





g5 0• 0 0 0

B 0 0• 2 1 1 0

C 0• 0 1 2 2

A 0 0• 2 1 2

D 0• 0 4

E 0 0• 4

dj 0 0 2 2 4 4

J =

x4 x5 x′′2 y′′5 x
(4)
1 x

(4)
3






g5 −1 1

B a3 −a3 − 1 1

C
′′

a3 − 9b3 −a3 − b3 1

A
′′

a3 + 2b3 a3 1

D(4) ∂D
∂x1

∂D
∂x3

E(4) ∂E
∂x1

∂E
∂x3

Now the System Jacobian J is generically nonsingular. The SA reports the correct

index 5, and succeeds at any point where det(J) = 2(a23−3a3b3+b23) sinx3 6= 0. Again

Val(Σ) = 0 < 2 = Val(Σ).
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In [45, Example 6.1], Pryce fixed the SA’s failure on (6.11), and pointed out

that only the introduction of x4 − x5 as a separate variable is essential to his fix.

Example 6.5 verifies Pryce’s argument and shows that the block ES method finds his

reformulation in a systematic way.

To prove Theorem 6.4, we shall use the following two assumptions.

(a) Without loss of generality, we assume that the entries v̂j 6≡ 0 are in the first s

positions of v̂, that is, v̂ = [v̂1, . . . , v̂s, 0, . . . , 0]T . By (6.12),

J =

q−1∑

w=1

Nw + 1 :

q−1∑

w=1

Nw + s.

(b) We introduce one more variable yl = x
(dl−c)
l for the chosen l ∈ J , and append

correspondingly one more equation 0 = gl = −yl + x
(dl−c)
l .

We show first that the signature matrix Σ of the resulting DAE can be put in

the block structure as shown in Figure 6.1. Then we construct two (n + s)-vectors

c̃ and d̃ in (6.17), and prove in Lemma 6.6 that d̃j − c̃i > σij holds in the below

diagonal blocks, while d̃j − c̃i ≥ σij holds elsewhere. The proof of this lemma is

rather technical, so we present it in Appendix A.2. Lastly, we prove Theorem 6.4.

From the description of the ES conversion in Theorem 6.4, the substitutions (6.15)

only occur in equations fi with i ∈ Bq. Hence, in the resulting DAE, variables yj for

j ∈ J only appear in equations f i for i ∈M ⊆ Bq and equations gr for r ∈ J .

Considering the block structure of Σ in Figure 6.1, we elaborate on four cases for

a block submatrix Σw1w2 : (a) w1 6= q and w2 6= q, (b) w1 6= q and w2 = q, (c) w1 = q

and w2 6= q, and (d) w1 = w2 = q.

(a) w1 6= q and w2 6= q. In Σw1w2 , equations fi are of indices i ∈ B<q∪B>q. As noted
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Σ1,1 · · · Σ1,q−1 Σ1,q −∞N1×s Σ1,q+1 · · · Σ1,p

...
. . .

...
...

...
...

. . .
...

Σq−1,1 · · ·Σq−1,q−1 Σq−1,q −∞Nq−1×s Σq−1,q+1 · · ·Σq−1,p

Σq,1 · · · Σq,q−1

Σqq,11 Σqq,12 Σqq,13

Σq,q+1 · · · Σq,p
Σqq,21 Σqq,22 Σqq,23

Σq+1,1 · · ·Σq+1,q−1 Σq+1,q −∞Nq+1×s Σq+1,q+1 · · ·Σq+1,p

...
. . .

...
...

...
...

. . .
...

Σp,1 · · · Σp,q−1 Σp,q −∞Np×s Σp,q+1 · · · Σp,p








fi for i ∈ B<q

}
f i for i ∈ Bq}
gr for r ∈ J





fi for i ∈ B>q

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
xj for j ∈ B<q xj for j ∈ Bq yj for j ∈ J xj for j ∈ B>q

1

Figure 6.1: Block structure of Σ of the resulting DAE by the block ES method. The
notation B<q is short for ∪q−1w=1Bw, and B>q is short for ∪pw=q+1Bw.

in (6.12), the expression substitutions described in (6.15) only take place in fi′

with i′ ∈ M ⊆ Bq, so do not happen in such blocks Σw1w2 . Hence, each Σw1w2

remains unchanged in Σ, and

Σw1w2 = Σw1w2 for w1 6= q and w2 6= q.

(b) w1 6= q and w2 = q. In Σw1q, we include variables yj for j ∈ J as defined in

(6.14). By the same arguments as in (a), the expression substitutions do not

happen in these blocks. That is, yj for j ∈ J do not appear in equations fi for

i ∈ B<q ∪ B>q. Hence, we can obtain Σw1q by concatenating horizontally Σw1q

with an Nw1 × s matrix of −∞’s:

Σw1q =
[
Σw1q −∞Nw1×s

]
, w1 = 1, . . . , q − 1, q + 1, . . . , p.
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(c) w1 = q and w2 6= q. In Σqw2 , we include equations gr for r ∈ J as defined in (6.16).

Also, due to the expression substitutions (6.15) occurring in fi with i ∈M ⊆ Bq,

σ (xj, fi) and σ
(
xj, f i

)
may not be the same for i ∈ Bq and all j = 1 :n. Hence,

in contrast to cases (a) and (b), there are no obvious connections between Σw1w2

and Σw1w2 for w1 = q and w2 6= q.

(d) w1 = w2 = q. Σqq contains signature entries for equations f i and gr, where i ∈ Bq

and r ∈ J , in variables xj and yr, where j ∈ Bq and r ∈ J . Similar to Σ in the

basic ES method (cf. Figure 4.1 and (A.4) in Appendix A.1), Σqq in the block

ES method also has a (sub)block structure

Σqq =




Σqq,11 Σqq,12 Σqq,13

Σqq,21 Σqq,22 Σqq,23


 .

We shall use it in the proof of Lemma 6.6 in Appendix A.2.

Denote by Q =
∑q

w=1Nw the total number of equations (or variables) in the first

q blocks of Σ. Using a valid offset pair (c; d) of Σ, we construct two (n+ s)-vectors

c̃ and d̃, defined as

c̃i =





ci if i = 1 :Q

c if i = Q+ 1 :Q+ s

ci−s if i = Q+ s+ 1 :n+ s,

d̃j =





dj if j = 1 :Q

c if j = Q+ 1 :Q+ s

dj−s if j = Q+ s+ 1 :n+ s.

(6.17)

Then we have the following lemma.
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Lemma 6.6 In the block structure of Σ in Figure 6.1,

d̃j − c̃i





> σij if (i, j) is in a below diagonal block, and

≥ σij otherwise.

The proof of this lemma is in Appendix A.2. Using this lemma, we can now prove

Theorem 6.4.

Proof. Let T be a transversal of Σ. Using Lemma 6.6 and (6.17), we derive

Val(Σ) =
∑

(i,j)∈T

σij

≤
∑

(i,j)∈T

(d̃j − c̃i)

=
n+s∑

j=1

d̃j −
n+s∑

i=1

c̃i

=

(
Q∑

j=1

dj + sc+
n+s∑

j=Q+s+1

dj−s

)
−
(

Q∑

j=1

ci + sc+
n+s∑

i=Q+s+1

ci−s

)

=
n∑

j=1

dj −
n∑

i=1

ci = Val(Σ). (6.18)

Again, as in the proof of Theorem 6.1, we prove Val(Σ) < Val(Σ) by contradiction.

Assume Val(Σ) = Val(Σ). Obviously Val(Σ) ≥ 0. The vectors c̃ and d̃ in Lemma 6.6

satisfy conditions (i) and (ii) of Lemma 2.10. Also, Val(Σ) =
∑n+s

j d̃j −
∑n+s

i c̃i

satisfies condition (iii) of Lemma 2.10. It follows from this lemma that

(a) (c̃; d̃) is a valid offset pair of Σ.

(b) The Jacobian pattern S0, derived from Σ and (c̃; d̃), is in the p× p BTF shown

in Figure 6.1.
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(c) T is the union of HVTs Tw of all diagonal blocks Σ11, . . . ,Σpp of Σ.

We can consider block q of the original DAE as a sub-DAE, with signature ma-

trix Σqq and offset pair (cq; dq)—this follows from Lemma 2.11. The ES conversion

described in Theorem 6.4 can be regarded as an application of the basic ES method

to this sub-DAE, given that the basic ES conditions (4.18) hold due to the block ES

conditions (6.13). By Theorem 4.17 for the basic ES method, a conversion results

in Val(Σqq) < Val(Σqq). Also, since Σww = Σww for w 6= q, Val(Σww) = Val(Σww)

when w 6= q. Then a contradiction Val(Σ) < Val(Σ) follows, if we apply the same

arguments as in (6.10).

Hence, the assumption Val(Σ) = Val(Σ) is erroneous. By (6.18), only Val(Σ) <

Val(Σ) can hold.

Remark 6.7 For clarification, we revisit the three items (a)—(c) in the above proof

of Theorem 6.4. Since

Val(Σ) < Val(Σ) =
n+s∑

j=1

d̃j −
n+s∑

i=1

c̃i

by (6.17) and Theorem 6.4, an offset pair (c̃; d̃) cannot be valid for Σ, so (a) must not

hold. Regarding (b) and (c), it may be possible that a Jacobian pattern S0, derived

from Σ and its valid offset pair (c; d), is in the p×p BTF shown in Figure 6.1. In this

case, (b) holds and then (c) follows from it. However, in general, the block structure

in Figure 6.1 is not necessarily a BTF of the resulting DAE.



114 CHAPTER 6. BLOCK CONVERSION METHODS



Chapter 7

Examples of block conversion

methods

We illustrate the block conversion methods with two DAE problems originated from

electrical circuit analysis [30]. We discuss the transistor amplifier DAE in §7.1, and

discuss the ring modulator DAE in §7.2.

We also illustrate in §7.3 how to fix the index overestimation problem on the

family of DAEs by Reißig, for which SA produces a nonsingular System Jacobian but

overestimates the index. We apply a technique similar to the block LC method, and

then SA reports the correct index νS = 1.

Lastly, we summarize in §7.4 our treatments for the SA-unfriendly DAEs discussed

in this thesis.

115
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7.1 Transistor amplifier DAE

The transistor amplifier DAE is classified as a stiff index-1 DAE in [30]:

0 = f1 = C1(x
′
1 − x′2) +R−10 (x1 − Ue(t))

0 = f2 = −C1(x
′
1 − x′2)−R−12 Ub + x2

(
R−11 +R−12

)
− (α− 1)g(x2 − x3)

0 = f3 = C2x
′
3 − g(x2 − x3) +R−13 x3

0 = f4 = C3(x
′
4 − x′5) +R−14 (x4 − Ub) + αg(x2 − x3)

0 = f5 = −C3(x
′
4 − x′5)−R−10 Ub + x5

(
R−15 +R−16

)
− (α− 1)g(x5 − x6)

0 = f6 = C4x
′
6 − g(x5 − x6) +R−17 x6

0 = f7 = C5(x
′
7 − x′8) +R−18 (x7 − Ub) + αg(x5 − x6)

0 = f8 = −C5(x
′
7 − x′8) +R−19 x8,

(7.1)

where

g(y) = β
(
ey/UF − 1

)
Ub = 6.0 R0 = 1000

α = 0.99 UF = 0.026 Rk = 9000 k = 1 : 9

β = 10−6 Ue(t) = 0.1 sin(200πt) Ck = k × 10−6 k = 1 : 5.

The SA fails since det(J) ≡ 0. The fine BTF reveals that the three 2×2 sub-Jacobians

J11, J33, J55 are identically singular and have a similar structure. Each block receives

the same treatment when a conversion method is applied.
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Σ =

x1 x2 x3 x4 x5 x6 x7 x8 ci





f1 1• 1 0

f2 1 1• 0 0

f3 0 1• 0

f4 0 0 1• 1 0

f5 1 1• 0 0

f6 0 1• 0

f7 0 0 1• 1 0

f8 1 1• 0

dj 1 1 1 1 1 1 1 1

J =

x′1 x′2 x′3 x′4 x′5 x′6 x′7 x′8 ci





f1 C1 −C1 0

f2 −C1 C1 0

f3 C2 0

f4 C3 −C3 0

f5 −C3 C3 0

f6 C4 0

f7 C5 −C5 0

f8 −C5 C5 0



118 CHAPTER 7. EXAMPLES OF BLOCK CONVERSION METHODS

LC method. One can easily find û = [1, 1]T ∈ coker(J11), coker(J33), coker(J55).

We perform on each singular block a conversion, and choose to replace the first

equation in each such block.

block replace by

1 f1 f 1 = f1 + f2

3 f4 f 4 = f4 + f5

5 f7 f 7 = f7 + f8

The new equations in the resulting DAE are

0 = f 1 = R−10 (x1 − Ue(t))−R−12 Ub + x2
(
R−11 +R−12

)
− (α− 1)g(x2 − x3)

0 = f 4 = R−14 (x4 − Ub) + αg(x2 − x3)−R−15 Ub + x5
(
R−15 +R−16

)

− (α− 1)g(x5 − x6)

0 = f 7 = R−18 (x7 − Ub) + αg(x5 − x6) +R−19 x8.

The SA still reports index 1, and succeeds with a nonzero constant det(J):

det(J) = C1C2C3C4C5

(
R−10 +R−11 +R−12

) (
R−14 +R−15 +R−16

) (
R−18 +R−19

)
6= 0.

Now Val(Σ) = 5 < 8 = Val(Σ).
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Σ =

x7 x8 x4 x5 x6 x1 x2 x3 ci





f 7 0• 0 0 0 1

f8 1 1• 0

f 4 0• 0 0 0 0 1

f5 1 1• 0 0

f6 0 1• 0

f 1 0• 0 0 1

f2 1 1• 0 0

f3 0 1• 0

dj 1 1 1 1 1 1 1 1

J =

x′7 x′8 x′4 x′5 x′6 x′1 x′2 x′3






f
′
7 R−18 R−19

∂f7
∂x5

∂f7
∂x6

f8 −C5 C5

f
′
4 R−14 R−15 +R−16

∂f4
∂x6

∂f4
∂x2

∂f4
∂x3

f5 −C3 C3

f6 C4

f
′
1 R−10 R−11 +R−12

∂f1
∂x3

f2 −C1 C1

f3 C2



120 CHAPTER 7. EXAMPLES OF BLOCK CONVERSION METHODS

ES method. We can take v̂ = [1, 1]T ∈ ker(J11), ker(J33), ker(J55). We show how

to perform a conversion on block 1; block 3 and block 5 can be treated in the same

way.

For block 1, we construct the corresponding v = [1, 1,0T8 ]T . Using (6.12), we have

J = J =
{
j | vj 6≡ 0

}
= { 1, 2 }, s = |J | = 2, M = { 1, 2 }, and c = 0.

We choose l = 1 ∈ J , introduce for x2 a new variable y2 = x
(d2−c)
2 − v2

v1
·x(d1−c)1 = x′2−x′1,

and append correspondingly the equation 0 = h2 = −y2 + x′2 − x′1. Then we replace

x′2 by y2 + x′1 in f1, f2.

After we complete similar conversions on block 3 and block 5, the resulting DAE

has equations f3, f6 and the following equations:

0 = f 1 = −C1y2 +R−10 (x1 − Ue(t))

0 = f 2 = C1y2 −R−12 Ub + x2
(
R−11 +R−12

)
− (α− 1)g(x2 − x3)

0 = h2 = −y2 + x′2 − x′1

0 = f 4 = −C3y5 +R−14 (x4 − Ub) + αg(x2 − x3)

0 = f 5 = C3y5 −R−15 Ub + x5
(
R−15 +R−16

)
− (α− 1)g(x5 − x6)

0 = h5 = −y5 + x′5 − x′4

0 = f 7 = −C5y8 +R−18 (x7 − Ub) + αg(x5 − x6)

0 = f 8 = C5y8 +R−19 x8

0 = h8 = −y8 + x′8 − x′7.

The SA succeeds with a nonzero constant det(J) and Val(Σ) = 5 < 8 = Val(Σ).
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Σ =

x7 x8 y8 x4 x5 y5 x6 x1 x2 y2 x3 ci






h8 1• 1 0 0

f8 0• 0 1

f7 0 0• 0 0 1

h5 1• 1 0 0

f5 0• 0 0 1

f4 0 0• 0 0 1

f6 0 1• 0

h2 1• 1 0 0

f2 0• 0 0 1

f1 0 0• 1

f3 0 1• 0

dj 1 1 1 1 1 1 1 1 1 1 1

J =

x′7 x′8 y′8 x′4 x′5 y′5 x′6 x′1 x′2 y′2 x′3






h8 −1 1

f
′
8 R−19 C5

f
′
7 R−18 −C5

∂f7

∂x5

∂f7

∂x6

h5 −1 1

f
′
5

∂f5

∂x5
C3

∂f5

∂x6

f
′
4 R−14 −C3

∂f4

∂x2

∂f4

∂x3

f6 C4

h2 −1 1

f
′
2

∂f2

∂x2
C1

∂f2

∂x3

f
′
1 R−10 −C1

f3 C3
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7.2 Ring modulator DAE

We study the ring modulator problem from [30]. When Cs 6= 0, it is a stiff ODE

system of 15 nonlinear equations. Setting Cs = 0 gives a DAE of differentiation index

2, which consists of 11 differential and 4 algebraic equations:

0 = f1 = −x′1 + C−1
(
x8 − 0.5x10 + 0.5x11 + x14 −R−1x1

)

0 = f2 = −x′2 + C−1
(
x9 − 0.5x11 + 0.5x12 + x15 −R−1x2

)

0 = f3 = x10 − q(UD1) + q(UD4)

0 = f4 = −x11 + q(UD2)− q(UD3)

0 = f5 = x12 + q(UD1)− q(UD3)

0 = f6 = −x13 − q(UD2) + q(UD4)

0 = f7 = −x′7 + C−1p
(
−R−1p x7 + q(UD1) + q(UD2)− q(UD3)− q(UD4)

)

0 = f8 = −x′8 +−L−1h x1

0 = f9 = −x′9 +−L−1h x2

0 = f10 = −x′10 + L−1s2 (0.5x1 − x3 −Rg2x10)

0 = f11 = −x′11 + L−1s3 (−0.5x1 + x4 −Rg3x11)

0 = f12 = −x′12 + L−1s2 (0.5x2 − x5 −Rg2x12)

0 = f13 = −x′13 + L−1s3 (−0.5x2 + x6 −Rg3x13)

0 = f14 = −x′14 + L−1s1 (−x1 + Uin1(t)− (Ri +Rg1)x14)

0 = f15 = −x′15 + L−1s1 (−x2 − (Rc +Rg1)x15).

(7.2)
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Σ =

x1 x2 x7 x13 x11 x12 x10 x3 x4 x5 x6 x8 x9 x14 x15 ci





f1 1• 0 0 0 0 0

f2 1• 0 0 0 0 0

f7 1• 0 0 0 0 0

f13 0 1• 0 0

f11 0 1• 0 0

f12 0 1• 0 0

f10 0 1• 0 0

f3 0 0 0• 0 0 0

f4 0 0 0• 0 0 0

f5 0 0 0 0 0• 0

f6 0 0 0 0 0• 0

f8 0 1• 0

f9 0 1• 0

f14 0 1• 0

f15 0 1• 0

dj 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

The functions are

UD1 = x3 − x5 − x7 − Uin2(t) q(U) = γ(eδU − 1)

UD2 = −x4 + x6 − x7 − Uin2(t) Uin1(t) = 0.5 sin(2000πt)

UD3 = x4 + x5 + x7 + Uin2(t) Uin2(t) = 2 sin(20000πt)

UD4 = −x3 − x6 + x7 + Uin2(t).
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The parameters are

C = 1.6× 10−8 Lh = 4.45 Rg1 = 36.3

Cp = 10−8 Ls1 = 2× 10−3 Rg2 = 17.3

R = 25× 103 Ls2 = 5× 10−4 Rg3 = 17.3

Rp = 50 Ls3 = 5× 10−4 Ri = 5× 10

Rc = 6× 102 γ = 40.67286402× 10−9 δ = 17.7493332.

Each 1 × 1 block has a nonsingular Jacobian: Jqq = −1 for q = 1 : 7, 9 : 12, or

equivalently ∂fi/∂x
′
i = −1 for i = 1, 2, 7 : 15. SA fails with det(J) ≡ 0 because block

8 has an identically singular sub-Jacobian

J88 =

x3 x4 x5 x6






f3 −s1 − s4 s1 −s4
f4 −s2 − s3 −s3 s2

f5 s1 −s3 −s1 − s3
f6 −s4 s2 −s2 − s4

, where si = γδeδUDi .

This is a nonlinear block, since variables x3, x4, x5, x6 do not occur jointly linearly in

equations f3, f4, f5, f6. One can also see these variables appear in J88.

LC method. We find a constant vector û = [1,−1, 1,−1]T ∈ coker(J88), which

satisfies the block LC condition (6.4). Then u = [0T7 , 1,−1, 1,−1,0T4 ]T . We use (6.3)

to derive

I =
{
i | ui 6≡ 0

}
= { 8, 9, 10, 11 }, c = 0, and L = L = { 8, 9, 10, 11 }.
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The row indices in L correspond to the equations f3, f4, f5, f6. We can pick any one

of them and replace it by

f = u1f3 + u2f4 + u3f5 + u4f6 = f3 − f4 + f5 − f6 = x10 + x11 + x12 + x13.

We choose f3 and replace it by f 3 = f . The resulting DAE has the following Σ with

Val(Σ) = 10 < 11 = Val(Σ).

Σ =

x1 x2 x7 x3 x4 x5 x6 x10 x11 x12 x13 x8 x9 x14 x15 ci





f1 1• 0 0 0 0 0

f2 1• 0 0 0 0 0

f7 1• 0 0 0 0 0

f10 0 0• 1 0

f5 0 0 0• 0 0 0

f4 0 0 0• 0 0 0

f6 0 0 0 0• 0 0

f3 0• 0 0 0 1

f11 0 0 1• 0

f12 0 0 1• 0

f13 0 0 1• 0

f8 0 1• 0

f9 0 1• 0

f14 0 1• 0

f15 0 1• 0

dj 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

Again, each 1× 1 block has a nonsingular Jacobian:

∂fi/∂x
′
i = −1 for i = 1, 2, 7, 8, 9, 14, 15.
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The sub-Jacobian of block 4 in the resulting DAE is

J44 =

x3 x4 x5 x6 x′10 x′11 x′12 x′13





f10 −L−1s2 −1

f5 s1 −s3 −s1 − s3
f4 −s2 − s3 −s3 s2

f6 −s4 s2 −s2 − s4
f
′
3 1 1 1 1

f11 L−1s3 −1

f12 −L−1s2 −1

f13 L−1s3 −1

,

whose determinant is

det(J44) = 2s1s2s3s4(s
−1
1 + s−12 + s−13 + s−14 )(L−1s2 + L−1s3 ).

The SA succeeds at any point where det(J44) 6= 0, and the DAE is of index 2.

The initial values given for solving this DAE are

xi = 0 for i = 1 : 15, and x′i = 0 for i = 1, 2, 7 : 15.

They satisfy all fi and f ′3, and hence are consistent. At this consistent point, det(J44) =

1.2040× 10−14 and cond(J44) = 4.9451× 1012. This large condition number is due to

equations f4, f5, f6 not being scaled properly. If we multiply each of these equations

by 107, then the determinant of the resulting sub-Jacobian is 1.2040 × 107 and the

condition number becomes 4.9456× 105.



7.2. RING MODULATOR DAE 127

ES method. Take v̂ = [−1, 1,−1, 1]T ∈ ker(J88). Then v = [0T7 ,−1, 1,−1, 1,0T4 ]T .

We use (6.12) to derive

J = J =
{
j | vj 6≡ 0

}
= { 8, 9, 10, 11 }, s = |J | = 4, M = J, and c = 0.

We choose column index l = 8 ∈ J in the permuted Σ. The variable of this

column is x3. The other variables in block 8 are x4, x5, x6, so we introduce for them,

respectively,

y4 = x4 −
v9
v8
· x3, y5 = x5 −

v10
v8
· x3, and y6 = x6 −

v11
v8
· x3.

Then we append the equations corresponding to these variables

0 = g4 = −y4 +x4 +x3, 0 = g5 = −y5 +x5−x3, and 0 = g6 = −y6 +x6 +x3.

The equations in block 8 are f3, f4, f5, f6. In these equations, we perform the following

substitutions.

replace by in

x4 y4 − x3 f4, f5, f6

x5 y5 + x3 f3, f4, f5

x6 y6 − x3 f3, f4, f6

The resulting index-2 DAE is of size 18, and we do not show its equations and SA

results. It has Val(Σ) = 10 < 11 = Val(Σ) and

det(J) = −2s1s2s3s4(s
−1
1 + s−12 + s−13 + s−14 )(L−1s2 + L−1s3 ).

The largest fine block is of size 12, and the other six fine blocks are of size 1. The SA

succeeds at any point where det(J) 6= 0.
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7.3 A family of DAEs by Reißig

Reißig et al. construct a family of DAEs of differentiation index 1 for which SA finds

an arbitrarily high structural index νS > 1 [52]. They are linear constant coefficient

DAEs, and each has the form

A · x′(t) + B · x(t)− q(t) = 0. (7.3)

The problem is of size n = 2k + 1 where k ∈ N+. The n× n mass matrix A has the

form

A =







0 1 1

1 1 0

0 1 1

1 1 0

0
. . . . . .

. . . . . . 0

0 1 1

1 1

0

,

and B is the n× n identity matrix. In other words, for i = 1 : k, equations f2i−1 and

f2i have the common expression x′2i + x′2i+1.
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In [46], Pryce applies the Σ-method on (7.3) with n = 5 and k = 2:

0 = f1 = x′2 + x′3+x1 − q1(t)

0 = f2 = x′2 + x′3+x2 − q2(t)

0 = f3 = x′4 + x′5+x3 − q3(t)

0 = f4 = x′4 + x′5+x4 − q4(t)

0 = f5 = x5 − q5(t).

(7.4)

Σ =

x1 x2 x3 x4 x5 ci





f1 0• 1 1 0

f2 1• 1 0

f3 0• 1 1 1

f4 1• 1 1

f5 0• 2

dj 0 1 1 2 2 Val(Σ) = 2

J =

x1 x′2 x′3 x′′4 x′′5





f1 1 1 1

f2 1 1

f ′3 1 1 1

f ′4 1 1

f ′′5 1

det(J) = 1

The method succeeds, but reports νS = 3 greater than νd = 1. Equivalent to the Σ-

method, Pantelides’s algorithm reports the same structural index as well. This index

overestimation is not favoured, as SA exaggerates the numerical difficulty of solving

(7.3). We illustrate below how to fix the index overestimation problem on (7.4).
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Although matrix A is structurally singular—that is, every transversal contains an

identically zero entry—we can permute A into the following structure

x2 x3 x4 x5 x1





f1 1 1

f2 1 1

f3 1 1

f4 1 1

f5

.

Note that this is not a BTF of A, as the last diagonal block is empty. However,

by observing this structure, we can replace f1 by f 1 = f1 − f2, and replace f3 by

f 3 = f3 − f4. The converted DAE has new equations

0 = f 1 = x1 − x2 − q1(t) + q2(t)

0 = f 3 = x3 − x4 − q3(t) + q4(t)

Σ =

x1 x2 x3 x4 x5 ci





f 1 0• 0 1

f2 1• 1 0

f 3 0• 0 1

f4 1• 1 0

f5 0• 1

dj 1 1 1 1 1 Val(Σ) = 2

J =

x′1 x′2 x′3 x′4 x′5





f
′
1 1 −1

f2 1 1

f
′
3 1 −1

f4 1 1

f ′5 1

det(J) = 1

Since no dj equals 0, SA reports index νS = maxi ci = 1. Notice that here we do
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not choose the canonical offset pair

(c; d) = (0, 0, 1, 0, 1; 0, 1, 1, 1, 1),

which still give an overestimated structural index νS = 2 as d1 = 0 and c3 = c5 = 1.

Consider for general case k ≥ 1. The DAE is

0 = f2i−1 = x′2i + x′2i+1+x2i−1 − q2i−1(t) i = 1 : k

0 = f2i = x′2i + x′2i+1+ x2i − q2i(t) i = 1 : k

0 =f2k+1 = x2k+1 − q2k+1(t).

SA succeeds but reports structural index νS = k + 1.

To remedy this index overestimation, we repeat the same strategy used above.

We permute A into the structure

x2 x3 x4 x5 · · · x2k x2k+1 x1





f1 1 1

f2 1 1

f3 1 1

f4 1 1

...
. . .

f2k−1 1 1

f2k 1 1

f2k+1

.
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Σ =

x1 x2 x3 x4 x5 · · · x2k x2k+1 ci







f1 0• 1 1 0

f2 1• 1 0

f3 0• 1 1 1

f4 1• 1 1

... 0•
. . .

...

f2k−1
. . . 1 1 k − 1

f2k 1• 1 k − 1

f2k+1 0• k

dj 0 1 1 2 2 · · · k − 1 k Val(Σ) = k

J =

x1 x2 x3 x4 x5 · · · x2k x2k+1







f1 1 1 1

f2 1 1

f3 1 1 1

f4 1 1

...
. . .

. . .

f2k−1 1 1 1

f2k 1 1

f2k+1 1

det(J) = 1



7.3. A FAMILY OF DAES BY REISSIG 133

Then, for i = 1 : k, we replace f2i−1 by f 2i−1 = f2i−1− f2i. The converted DAE is

0 =f 2i−1 = x2i−1 − x2i − q2i−1(t) + q2i(t) i = 1 : k

0 = f2i = x′2i + x′2i+1 + x2i − q2i(t) i = 1 : k

0 =f2k+1 = x2k+1 − q2k+1(t).

(7.5)

Now SA reports the correct νS = 1 on the converted DAE (7.5). Again, we use a

non-canonical offset pair of Σ, while in the canonical case we would have d1 = c1 = 0

and the structural index 2.

Σ =

x1 x2 x3 x4 x5 · · · x2k x2k+1 ci







f1 0• 0 1

f2 1• 1 0

f3 0• 0 1

f4 1• 1 0

... 0•
. . .

...

f2k−1
. . . 0 1

f2k 1• 1 0

f2k+1 0• 1

dj 1 1 1 1 1 · · · 1 1 Val(Σ) = k
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J =

x1 x2 x3 x4 x5 · · · x2k x2k+1







f1 1 −1

f2 1 1

f3 1 −1

f4 1 1

...
. . .

. . .

f2k−1 1 −1

f2k 1 1

f2k+1 1

det(J) = 1

7.4 Summary of examples

We summarize in Table 7.1 the comparison between the basic conversion methods

and the block methods on five SA-unfriendly DAEs in this thesis: the introductory

example (6.2), the Campbell-Griepentrog robot arm DAE (6.11), the transistor ampli-

fier DAE (7.1), the ring modulator (7.2), and the Scholz-Steinbrecher linear constant

coefficient DAE (3.10).

We give several remarks on Table 7.1.

• The basic LC method and the block LC method give the same conversion(s) on

(3.10), (7.1), and (7.2). The basic ES method and the block ES method give

the same conversion on (6.2) and (7.1).
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• For (6.11) and (7.2), both the basic ES method and the block ES method find

J 6= ∅, so they give desirable conversions. However, the basic ES method

introduces more variables and appends more equations for fixing these DAEs.

• For (6.2), the basic LC method is not applicable, while the block LC method

finds a desirable conversion. For (6.11), the basic LC method finds a conversion

that is not desirable, while the block LC method finds a desirable conversion.

In Table 7.2, we summarize the comparisons between the SA-unfriendly DAEs

presented in this thesis and their SA-friendly formulations, in terms of differentiation

index νd, structural index νS, and value of signature matrix.



136 CHAPTER 7. EXAMPLES OF BLOCK CONVERSION METHODS

DAE Method Result

basic LC L = ∅, method not applicable

Introductory block LC L 6= ∅, desirable conversion

example (6.2) basic ES
Same conversion with J 6= ∅

block ES

basic LC L 6= ∅, L = ∅; available conversion not desirable

Campbell-Griepentrog block LC L 6= ∅; available conversion is desirable

robot arm (6.11) basic ES J 6= ∅, size increased by 2

block ES J 6= ∅, size increased by 1

Ring modulator (7.2)

basic LC
Same conversion with L 6= ∅

block LC

basic ES J 6= ∅, size increased by 7

block ES J 6= ∅, size increased by 3

Transistor amplifier (7.1)

basic LC
Same conversion with L 6= ∅

block LC

basic ES
Same conversion with J 6= ∅

block ES

Scholz-Steinbrecher

linear constant

coefficient DAE (3.10)

basic LC
Same conversions with L 6= ∅

block LC

basic ES Both become inapplicable in

the second iterationblock ES

Table 7.1: Comparison between the basic conversion methods and the block methods
on several DAEs presented in this thesis.
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DAE
SA-friendly / SA-unfriendly formulation

νd νS Val(Σ) / Val(Σ)

Example (4.5) for LC method 2 / 3 2 / 2 1 / 2

Modified pendulum A (4.12) 3 / 6 3 / 3 2 / 9

Example (4.13) for ES method 2 / 2 2 / 1 1 / 2

Scholz-Steinbrecher DAE (5.1) 2 / 3 2 / 1 0 / 2

Modified pendulum B (5.4) 3 / 3 3 / 2 2 / 4

Example (6.2) for block methods 1 / 2 1 / 2 1 / 2

Robot arm (6.11) 5 / 5 5 / 3 0 / 2

Transistor amplifier (7.1) 1 / 1 1 / 0 5 / 8

Ring modulator (7.2) 1 / 1 1 / 1 10 / 11

∗DAE (4.22) 1 / 1 1 / 0 1 / 2

∗Family of DAEs by Reißig 1 / 1 1 / n+1
2

n+1
2 / n+1

2

Table 7.2: Some characteristics (differentiation index, structural index, and value of
signature matrix) of the SA-unfriendly DAEs analyzed in this thesis, and the struc-
tural data of their corresponding SA-friendly formulations obtained by conversion
methods. Two items with “∗” are special cases: for (4.22) in Example 4.24, neither of
our conversion methods is applicable; for the differentiation index-1 DAEs by Reißig,
SA does not fail but gives a structural index linear in the problem size; see §7.3 and
the last paragraph in §1.3.
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Chapter 8

Conclusions

We identified in Chapter 3 two types of SA’s failure on a structurally well-posed DAE.

In the first type, the System Jacobian is structurally (and hence identically) singular.

The failure may attribute to hidden symbolic cancellations, which lead to overesti-

mations of signature entries and thence more identically zero entries in the System

Jacobian. Therefore, to handle this type of failure, we do symbolic simplifications on

some equations before performing SA.

We focused on dealing with the second type of failure, where a remedy for a failure

is less obvious. When SA fails on an SA-unfriendly DAE, the Jacobian is identically

but not structurally singular. In Chapter 4, we proposed two conversion methods, the

LC method and the ES method, which are the main contribution of this thesis. They

reformulate an SA-unfriendly DAE, with finite Val(Σ) and an identically singular

System Jacobian, into an equivalent DAE that is more likely to be SA-friendly with a

nonsingular System Jacobian. Our conversion methods enable SA to recognize better

the true structure of a DAE, and thus SA is more likely to succeed and report correct

structural information. Moreover, our methods provide insights into reasons for SA’s

139
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failures, which were not well understood before.

We summarize the ideas of these methods here. The LC method replaces an ex-

isting equation by a linear combination of some existing equations and derivatives

of them. The ES method appends new equations that define some newly introduced

variables, and replaces in the original equations some existing derivatives by a linear

combination of new variables and other existing derivatives. The conditions for apply-

ing these methods can be checked automatically, and the main result of a conversion

is Val(Σ) < Val(Σ), where Σ is the signature matrix of the resulting DAE.

A conversion by either method guarantees that the original DAE and the converted

one are equivalent, that is, they have the same solution (if any) over some time

interval. Considering the equivalence and simplicity of performing a conversion, we

presented in Table 4.1 our rationale for choosing the desirable conversion method

between the two.

In Chapter 6, we combined the block triangularization with the (simple) conversion

methods, and developed our block conversion methods. When J is identically singular

and the DAE has a nontrivial BTF, we can identify which diagonal blocks of the

Jacobian are identically singular, and then perform a conversion on each such block.

We base this strategy on the view that each diagonal block can be regarded as a

sub-DAE.

The computational cost of performing a conversion depends on the size of the

DAE, its sparsity, and intricacy of the equations involved in a conversion. In general,

this cost cannot be determined in advance, since deciding whether an expression is

identical to zero is unsolvable [54]. For example, given a solvable SA-friendly DAE

of equations f = 0, one can make the task of fixing Mf = 0 arbitrarily difficult by
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constructing any generically nonsingular dense n × n matrix M that contains any

expressions comprising derivatives of the xj’s, typically lower than the djth.

Fortunately, the Σ-method already provably succeeds on many DAEs, and fixing

those failure cases so far encountered in practice does not require much computational

effort. Also, since the block conversion methods work on a singular block only, which

can have a significantly smaller size compared to the whole DAE, they can reduce

the computational cost and improve the efficiency of finding a useful conversion for

fixing SA’s failure.

We combined Matlab’s Symbolic Math Toolbox [60] with our structural anal-

ysis software daesa [40, 49], and have built a prototype code that automates the

conversion process. We aim to incorporate them in a future version of daesa.

With our prototype code, we have applied our methods on numerous DAEs. They

are either arbitrarily constructed to be SA-failure cases for our investigations, or

borrowed from the existing literature. We have shown how to fix Scholz and Stein-

brecher’s linear constant coefficient DAE in §5.1, the Campbell-Griepentrog robot

arm DAE [7] in Examples 6.3 and 6.5, the transistor amplifier DAE in §7.1, and

the ring modulator DAE in §7.2. Our conversion methods succeed in fixing all these

solvable but SA-unfriendly DAEs. We believe that our assumptions and conditions

are reasonable for practical problems, and that these methods can help make the

Σ-method more reliable.

We briefly discussed another limitation of SA, the index overestimation problem.

On some DAEs, typically Reißig’s family of DAEs of differentiation index 1, SA

produces a nonsingular Jacobian (hence succeeds) but an unnecessarily high structural

index, while the differentiation index is low. This scenario is not favoured, as the
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numerical difficulty of solving these DAEs is exaggerated. In §7.3, we resolved the

index overestimation problem on Reißig’s DAEs, but did not develop a theory such

that the fix can be generalized in a systematic way. We conjecture that this problem

is due to the structure of the mass matrix ∂f/∂y′ and thus may be resolved by simply

taking a linear combination of the differential equations so that the mass matrix of

the remaining differential equations has full row rank.

We have shown in the example in §6.1 that the basic LC method does not apply

successfully, but the corresponding block method leads to a successful conversion.

However, we have not found an example where a basic method works but the corre-

sponding block method does not. Investigating further the connections between the

basic and block methods is left for future research.

Another research direction is combining the dummy derivative index reduction

method [29] with our conversion methods. When the conditions for applying them

are violated, appending some differentiated equations and replacing some “genuine”

derivatives by dummy derivatives (which are algebraic) may make a conversion pos-

sible.

We end this thesis with our main conjecture related to SA’s failure. In all our

experiments, when we transform an SA-unfriendly DAE to an equivalent SA-friendly

DAE, the value of a signature matrix always decreases. As Pryce points out in [45], the

solvability of a DAE lies within its inherent nature, not the way it is formulated nor

the method that analyzes it. Hence, we conjecture that an SA-friendly DAE should

always have a reasonable but never overestimated Val(Σ) that can be interpreted as

the DOF of this DAE; see (2.9). In other words, a DAE should not be formulated to

exhibit more degrees of freedom than the underlying problem has. However, based on
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our current knowledge, it appears difficult to show why overestimating the number

of degrees of freedom leads to an identically singular System Jacobian.
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Appendix A

Proofs for expression substitution

methods

A.1 Preliminary results and proof of Lemma 4.19

Let the notation be as at the start of §4.2. We give two preliminary lemmas prior to

the main proof of Lemma 4.19.

Lemma A.1 Let r ∈ J \
{
l
}

and

ω1 = yr +
vr
vl
· x(dl−c)l .

Then

σ (xj, ω1) =





< dj − c if j ∈ J \
{
l
}

≤ dj − c otherwise.

(A.1)
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Proof. Consider the case j = l ∈ J . Obviously σ (xl, ω1) = dl − c.

Now consider the case j 6= l. Since xj can occur only in vr and vl in ω1, we have

σ (xj, ω1) ≤ σ (xj,v). It follows from (4.18) and the case j = l that (A.1) holds.

Lemma A.2 Let r ∈ J \
{
l
}

, i ∈M , and

ω2 = ω
(c−ci)
1 =

(
yr +

vr
vl
· x(dl−c)l

)(c−ci)
. (A.2)

Then

σ (xj, ω2) =





< dj − ci if j ∈ J \
{
l
}

≤ dj − ci otherwise.

(A.3)

Proof. Since c = maxi∈M ci, c − ci ≥ 0 holds for all i ∈ M . From (A.2), connecting

σ (xj, ω2) = σ (xj, ω1) + (c− ci) to (A.1) immediately yields (A.3).

Using the two assumptions before Lemma 4.19, we prove it below.

Proof. Write Σ in Figure 4.1 into the following 2× 3 block form:

Σ =




Σ11 Σ12 Σ13

Σ21 Σ22 Σ23


 . (A.4)

We aim to verify below the relations between σij and d̃j − c̃i in each block.
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(a) Σ11 =

x1 · · · xl−1 xl xl+1 · · · xs c̃i






f 1 c1
... <

...

fn cn

d̃j d1 · · · dl−1 dl dl+1 · · · ds

Consider j, r ∈ J \
{
l
}

. By (4.16), we substitute ω2 in (A.2) for every x
(dr−ci)
r

in fi for all i = 1 :n. Using (A.3) gives σ (xj, ω2) < dj − ci for all i ∈ M . So these

expression substitutions do not introduce x
(dr−ci)
r , r ∈ J \

{
l
}

, in f i. Because of M

in (4.14), we have dj − ci > σij for all i /∈M and j ∈ J . Hence

σ
(
xj, f i

)
< dj − ci for j ∈ J \

{
l
}
, i = 1 :n. (A.5)

What remains to show is the case j = l. From (4.15), x
(dr−c)
r = yr+

vr
vl
·x(dl−c)l . Tak-

ing the partial derivatives of both sides with respect to x
(dl−c)
l and applying Griewank’s

Lemma (2.7) with w = x
(dr−c)
r and q = c− ci ≥ 0 for all i ∈M gives

vr
vl

=
∂x

(dr−c)
r

∂x
(dl−c)
l

=
∂x

(dr−c+c−ci)
r

∂x
(dl−c+c−ci)
l

=
∂x

(dr−ci)
r

∂x
(dl−ci)
l

, and then (A.6)

∂f i

∂x
(dl−ci)
l

=
∂fi

∂x
(dl−ci)
l

+
∑

r∈J\{l}

∂fi

∂x
(dr−ci)
r

· ∂x
(dr−ci)
r

∂x
(dl−ci)
l

by the chain rule

= Jil +
∑

r∈J\{l}
Jir ·

vr
vl

by (A.6)

=
1

vl

∑

r∈J
Jirvr =

1

vl
(Jv)i = 0 by Jv = 0.

This gives σ
(
xl, f i

)
< dl − ci for all i = 1 :n. Together with (A.5) we have proved

the “<” part in Σ11.
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(b) Σ12 =

xs+1 · · · xn c̃i






f 1 c1
... ≤ ...

fn cn

d̃j ds+1 · · · dn

The substitutions do not affect xj, for all j /∈ L. By (A.3), such an xj occurs in

every ω2 of order ≤ dj − ci, i ∈M . Hence also

σ
(
xj, f i

)
≤ dj − ci for all i = 1 :n and j /∈ L.

(c) Σ13 =

y1 · · · yl−1 yl yl+1 · · · ys c̃i






f 1 −∞ c1
... ≤ −... ≤ ...

fn −∞ cn

d̃j c · · · c c c · · · c

Consider r ∈ J \
{
l
}

. For an i ∈ M , yr occurs of order c − ci in ω2 in (A.2).

For all i = 1 :n, if a substitution occurs for an x
(dr−ci)
r in fi, then σ

(
yr, f i

)
= c− ci;

otherwise σ
(
yr, f i

)
= −∞. In either case σ

(
yr, f i

)
≤ c− ci.
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(d) Σ21 =

x1 · · · xl−1 xl xl+1 · · · xs c̃i





g1 =
<

=

<

c

...
. . .

...
...

gl = c

... <
...

. . .
...

gs =

<

= c

d̃j d1 · · · dl−1 dl dl+1 · · · ds

Equalities hold on the diagonal and in the lth column, as y
(dr−c)
r and y

(dl−c)
l occur

in gl, where r ∈ J . What remains to show is the “<” part. Assume that j, r, l ∈ J

are distinct. Then, by (4.15) and (4.18),

σ (xj, gr) = σ

(
xj, yr − x(dr−c)r +

vr
vl
· x(dl−c)l

)
≤ σ (xj,v) < dj − c. (A.7)

(e) Σ22 =

xs+1 · · · xn c̃i





g1 ≤ c

...
...

gl −∞· · · −∞ c

... ≤
...

gs c

d̃j ds+1 · · · dn

Assume again that j, r, l are distinct, where r ∈ J and j = s+1 :n Then replacing

the “<” in (A.7) by “≤” proves the “≤” part in Σ22.
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(f) Σ23 =

y1 · · · yl−1 yl yl+1 · · · ys





fn+1 g1 0 c

...
...

. . . −∞ ...

fn+l gl 0 c

...
... −∞ . . .

...

fn+s gs 0 c

d̃j c · · · c c c · · · c

Consider r, j ∈ J . By 0 = gl = −yl + x
(dl−c)
l and (4.15), yj occurs in gr only if

j = r, and σ (yj, gj) = 0. Hence, on the diagonal lie zeros, and everywhere else is

filled with −∞.

Also worth noting is that in the yl column is only one finite entry σn+l,n+l = 0,

and that in the gl row are only two finite entries σn+l,n+l = 0 and σn+l,l = dl − c.

Recall (4.19) for the formulas of c̃i and d̃j of Σ. The above verifies the relations

between σij and d̃j − c̃i, for all i, j = 1 :n+ s, in Σ in Figure 4.1.

A.2 Proof of Lemma 6.6

For Σ = (σij) in the block structure in Figure 6.1, we write the block sizes in the

array

N = (N1, N2, . . . , Nq−1, Nq + s,Nq+1, . . . , Np), (A.8)

and also write the block sizes of Σ in the array

N = (N1, N2, . . . , Nq−1, Nq, Nq+1, . . . , Np). (A.9)
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Let blockOf(i) denote the block number of a row or column index i in Σ. From (A.8)

and (A.9), it is not difficult to show that

blockOf(j) < q ⇔ 1 ≤ j ≤
q−1∑

w=1

Nw ⇔ blockOf(j) < q and (A.10)

blockOf(j + s) > q ⇔
q∑

w=1

Nw + s+ 1 ≤ j + s

⇔
q∑

w=1

Nw + 1 ≤ j ≤ n ⇔ blockOf(j) > q. (A.11)

Recall the construction of the two vectors c̃ and d̃ in (6.17):

c̃i =





ci if i = 1 :Q

c if i = Q+ 1 :Q+ s

ci−s if i = Q+ s+ 1 :n+ s,

d̃j =





dj if j = 1 :Q

c if j = Q+ 1 :Q+ s

dj−s if j = Q+ s+ 1 :n+ s,

(A.12)

where Q =
∑q

w=1Nw. From this construction, each variable xj for j = 1 :n has

the same “variable offset” in Σ as xj has in Σ. Also, each equation f i for i = 1 :n

has the same “equation offset” in Σ as fi has in Σ. Quotation marks are used here

because (c̃; d̃) is not a valid offset pair of Σ; this vector pair is merely used for proving

Val(Σ) < Val(Σ) in Theorem 6.4.

We aim to show that

d̃j − c̃i





> σij if blockOf(j) < blockOf(i)

≥ σij if blockOf(j) ≥ blockOf(i).

(A.13)
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For the block structure of Σ in Figure 6.1, we have shown on page 110 that

Σw1w2 =





Σw1w2 if w1 6= q and w2 6= q

[
Σw1q −∞Nw1×s

]
if w1 6= q and w2 = q.

(A.14)

Hence, provided w1 6= q, Σw1w2 is below [resp. above] the block diagonal of Σ, if

Σw1w2 is below [resp. above] the block diagonal of Σ. By (6.1), the inequalities in

(A.13) hold for i with blockOf(i) 6= q.

What remains to show is the inequalities in (A.13) for i with blockOf(i) = q.

These inequalities are for the signature entries in Σqw2 , the blocks that are affected

by the expression substitutions. We consider three cases for Σqw2 : it is (a) below the

block diagonal, with w2 < q, (b) above the block diagonal, with w2 > q, or (c) the

diagonal block Σqq, with w2 = q.

(a) Σqw2 with w2 < q. An entry (i, j) in this block satisfies blockOf(j) <

blockOf(i) = q. By (A.10), blockOf(j) < q and hence j /∈ Bq.

Recall from (6.15) that, in each fi with i ∈M ⊆ Bq, we

replace each x(σir)r with dr − ci = σir and r ∈ J \
{
l
}
⊂ Bq

by
(
yr +

vr
vl
· x(dl−c)l

)(c−ci)
.

For a j /∈ Bq ⊃ J \
{
l
}

, the corresponding derivatives x
(dj−ci)
j are not replaced in the

ES conversion, and for r ∈ J \
{
l
}

(so j, r, l are distinct),

σ

(
xj,
(
yr +

vr
vl
· x(dl−c)l

)(c−ci))
= σ

(
xj,
(vr
vl

)(c−ci))
≤ σ

(
xj,v

(c−ci)) . (A.15)

By (6.13), σ (xj,v) < dj − c. Using (6.1) and (A.15), we derive
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σ
(
xj, f i

)
≤ max

{
σ (xj, fi) , max

r∈J\{l}
σ

(
xj,
(
yr +

vr
vl
· x(dl−c)l

)(c−ci))}

≤ max
{
σ (xj, fi) , σ

(
xj,v

(c−ci))}

= max {σij, σ (xj,v) + (c− ci)}

< max {dj − ci, (dj − c) + (c− ci)}

= dj − ci for i ∈M ⊆ Bq. (A.16)

From the ES conversion described in Theorem 6.4, we have

σ
(
xj, f i

)
= σ (xj, fi) < dj − ci for i ∈ Bq \M and (A.17)

σ (xj, gr) ≤ σ (xj, v) < dj − c for r ∈ J. (A.18)

Since blocks Σqw2 with w2 < q contain signature entries σij for equations f i and gr,

where i ∈ Bq and r ∈ J , in variables xj with blockOf(j) < q, by taking together the

inequalities in (A.16)-(A.18), we have

σij <




dj − ci if blockOf(j) < q and i ∈ Bq

dj − c if blockOf(j) < q and i ∈ Q+ 1 :Q+ s;

recall Q =
∑q

w=1Nw. Using (A.10) and the construction of c̃ and d̃ in (A.12), we

have

σij < d̃j − c̃i for blockOf(j) < blockOf(i) = q. (A.19)

(q is the block number of both the original and enlarged diagonal blocks.)

(b) Σqw2 with w2 > q. An entry (i, j + s) in this block satisfies blockOf(j + s) >

blockOf(i) = q. By (A.11), blockOf(j) > q and hence j /∈ Bq ⊃ J \
{
l
}

. By the same
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arguments as in (a), the corresponding derivatives x
(dj−ci)
j are not replaced in the ES

conversion.

By (6.13), σ (xj,v) ≤ dj − c. Then by the same derivations as (A.16–A.18) in (a),

we have

σ
(
xj, f i

)
≤ dj − ci for i ∈M ⊆ Bq, (A.20)

σ
(
xj, f i

)
= σ (xj, fi) ≤ dj − ci for i ∈ Bq \M , and (A.21)

σ (xj, gr) ≤ σ (xj,v) ≤ dj − c for r ∈ J. (A.22)

Since blocks Σqw2 with w2 > q contain signature entries σi,j+s for equations f i and

gr, where i ∈ Bq and r ∈ J , in variables xj with blockOf(j) > q, the inequalities

(A.20–A.22) yield

σi,j+s ≤




dj − ci if blockOf(j) > q and i ∈ Bq

dj − c if blockOf(j) > q and i ∈ Q+ 1 :Q+ s.

Using (A.11) and the construction of c̃ and d̃ in (A.12), we have

σi,j+s ≤ d̃j+s − c̃i for blockOf(j + s) > blockOf(i) = q,

with j = Q+ 1 :n. We can rewrite this inequality as

σij ≤ d̃j − c̃i for blockOf(j) > blockOf(i) = q, (A.23)

with j = Q+ 1 + s :n+ s.

For the inequalities in (A.13), so far we have proved the case blockOf(i) 6= q in

(A.14) and the case blockOf(j) 6= blockOf(i) = q in (A.19) and (A.23). For the
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last case blockOf(j) = blockOf(i) = q, we use the results from the ES method in

Appendix A.1.

(c) Σqw2 is Σqq, with w2 = q. An entry (i, j) in Σqq satisfies blockOf(j) =

blockOf(i) = q. We view block q of the original DAE as a sub-DAE, with a signature

matrix Σqq of size Nq and an offset pair (cq; dq). Given that the ES conditions

are satisfied by (6.13), performing the ES conversion as described in Theorem 6.4 is

equivalent to applying the basic ES method to this sub-DAE. After a conversion, the

resulting enlarged signature matrix Σqq of size Nq + s has the form

Σqq =




Σqq,11 Σqq,12 Σqq,13

Σqq,21 Σqq,22 Σqq,23


 ;

cf. (A.4) in Appendix A.1, Figure 4.1, and Figure 6.1. The two block rows of Σqq

correspond to f i for i ∈ Bq and gj for j ∈ J , respectively. The three block columns

of Σqq correspond to xj for j ∈ J , xj for j ∈ Bq \ J , and yj for j ∈ J , respectively. If

we apply the same arguments in the proof of Lemma 4.19 (in Appendix A.1) for the

basic ES method, then we have d̃j − c̃i ≥ σij for all entries in Σqq.
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Appendix B

Alternative proof of Theorem 6.1

Let the notation be as at the start of §6.2. This proof is based on the following lemma.

Lemma B.1 Assume that Σ has a finite Val(Σ), (c; d) is a valid offset pair, and

S0, derived from Σ and (c; d), is in a p × p BTF. Given a row index l ∈ Bq, where

q ∈ 1 : p, if we replace the entries σlj in this row by

σlj





< dj − cl if blockOf(j) ≤ q

≤ dj − cl if blockOf(j) > q,

(B.1)

then Val(Σ) < Val(Σ), where Σ = (σij) is the resulting signature matrix.

Proof. Let T be a HVT of Σ, and let T be a HVT of Σ. By (B.1),

Val(Σ) =
∑

(i,j)∈T

σij ≤
∑

(i,j)∈T

(dj − ci) =
n∑

j=1

dj −
n∑

i=1

ci = Val(Σ). (B.2)

We show by contradiction that an equality in “≤” of (B.2) cannot be achieved. We

157
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first outline the steps of the proof. (a) Assuming Val(Σ) = Val(Σ), we show that a

valid (c; d) of Σ is also valid for Σ. (b) Using Lemma 2.10, we show that the Jacobian

patterns S0, derived from Σ and (c; d), and S0, derived from Σ and (c; d), are in the

same p × p BTF. Then we can write T = T 1 ∪ · · · ∪ T p, where Tw is an HVT of a

diagonal block Σww, w = 1 : p. (c) Finally we show that a contradiction occurs at the

intersection of row l in Σ with the HVT T q of diagonal block Σqq.

Now we elaborate on each step.

(a) We start off by assuming Val(Σ) =
∑

(i,j)∈T σij = Val(Σ) =
∑

j dj−
∑

i ci ≥ 0.

In this case, each entry σij on T is finite. Also, since dj − ci ≥ σij holds everywhere

by the construction of Σ, an equality dj − ci = σij holds for each (i, j) ∈ T . Hence

(c; d) is a valid offset pair of Σ.

(b) Since S0 is in a BTF, dj − cl > σlj if blockOf(j) < q and dj − cl ≥ σlj if

blockOf(j) ≥ q. Also by (B.1), dj − ci > σij holds in the below diagonal blocks of

Σ. Given that dj − ci ≥ σij holds elsewhere and that Val(Σ) =
∑

j dj −
∑

i ci, by

Lemma 2.10, the Jacobian pattern S0, derived from Σ and (c; d), is in the same p×p

BTF as is S0, derived from Σ and (c; d). Hence, T is the union of HVTs Tw of

diagonal blocks Σww of Σ, w = 1 : p.

(c) If we intersect row l in Σ with an HVT T q of Σqq, then we obtain a position

(l, r) ∈ T q ⊆ T with l ∈ Bq, r ∈ Bq, and dr − cl = σlr. However, this equality

contradicts (B.1) that requires dr−cl > σlr. That is, the assumption Val(Σ) = Val(Σ)

leads to a contradiction, so Val(Σ) < Val(Σ).

Using Lemma B.1, we give the alternative proof of Theorem 6.1.

Proof. We verify below that Σ = (σij) satisfies (B.1). Then by Lemma B.1, Val(Σ) <

Val(Σ).
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Obviously, we only replace fl by f l = f in an LC conversion, so σij = σij for all

i 6= l and all j. We consider three cases: (l, j) is (a) below the block diagonal, (b)

above the block diagonal, or (c) in diagonal block q.

Recall that, in the proof of Lemma 6.2, we have proved the cases (a) and (b) in

(B.1). What remains to show is σlj < dj − cl for blockOf(j) = q.

For j ∈ Bq, we derive

∂f l

∂x
(dj−c)
j

=
∂
(∑

i∈I uif
(ci−c)
i

)

∂x
(dj−c)
j

=
∑

i∈I
ui
∂f

(ci−c)
i

∂x
(dj−c)
j

using (6.4) and (6.5)

=
∑

i∈I
ui

∂fi

∂x
(dj−ci)
j

=
∑

i∈I
uiJij using Lemma 4.2

= 0 using û ∈ coker(Jqq).

Hence σlj = σ
(
xj, f l

)
< dj − c = dj − cl for all j ∈ Bq.
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