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Abstract
Metagenomics is a culture-independent framework for deciphering the complexity of
biological communities, often with a focus on microbial communities in a specific en-
vironment. The applicability of this approach is widespread due to the ubiquity and
presence of unculturable microbes in many environments which can only be investi-
gated using culture-independent methods. With advances in DNA sequencing and the
introduction of high-throughput sequencing technologies, studying microbial life as
communities has become more accessible. However, the breadth of data generated dic-
tates that computational processing steps must be in place to analyze the data. Due to
the large diversity in computational and bioinformatic steps possible for metagenomic
data, differences in methods of analysis can lead to discordant interpretations of re-
sults. The performance of different metagenomics methods must therefore be assessed
to establish the effect on the interpretation of results. Taxonomic classification is an inte-
gral step in metagenomic analysis and many tools exist for this purpose. To determine
which tools are better suited for particular types of metagenomic data, a comparative
analysis of performance was conducted for numerous tools. The findings suggest that
hybrid programs may have the best performance and warrant further investigation.
Programs such as CLARK, KRAKEN, and MEGAN also performed well and are suit-
able for metagenomic analysis. Utilizing these methods, investigation into the bacterial
populations of four freshwater beaches was examined. Bacterial communities in beach
waters and sands were more distinct in terms of taxonomic composition than communi-
ties in different lakes. Functional capacity was stable between beach habitats, although
enrichment of anaerobic and stress related genes in the sand suggests that this is a rel-
atively harsh environment. The detection of sequences belonging to pathogens in the
sands of these beaches also has implications for public health and warrants changes in
water quality monitoring procedures.

iii



Acknowledgements
Firstly, I want to thank all the members of the Golding and Evans labs, past and

present, whom I have had the pleasure of meeting. I’ve learned a tremendous amount
from everyone, especially Wilson who I bugged almost daily when I first started. I also
have to thank Shahrokh, Caitlin, Daniella, and Nick who have made the long days in
the lab feel shorter and have indulged and joined me in complaining about LATEX and
its nonsensical error codes (but it makes up for that in every other way). You all have
been a big part of my enjoyment the lab and have been a great help whenever I had
questions.

I also want to acknowledge Dr. Schellhorn and the members of the Schellhorn lab
who I worked closely with, Mahi and Sakis, for providing excellent guidance, data, and
lots of interesting questions to address in my research; thank you. Importantly, I have to
thank my supervisor Brian - you have been a wonderful supervisor and really gave me
a strong passion for bioinformatics and computational biology. You made learning new
computational skills fun, challenging, and memorable. Your patience in working with
me, who had very little computational experience initially, has been much appreciated.
You have taught me a lot, and I appreciate your support in pursuing my interests both
in and out of the lab.

Lastly, I want to thank all my family and friends who have been extremely under-
standing and supportive. Thank you to my parents especially who have been support-
ive of my decisions and continue to motivate me to pursue my interests. Thank you to
Kerry for being so wonderful and for always being there for me. I would not have been
able to manage without the support of you all.

iv



Contents

Abstract iii

Acknowledgements iv

Declaration of Authorship ix

1 Introduction 1
1.1 Microbial Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Microbial Communities: Application of Metagenomics . . . . . . . . . . 2
1.3 Metagenomic Methods and Challenges . . . . . . . . . . . . . . . . . . . 5
1.4 Metagenomics in Aquatic Environments . . . . . . . . . . . . . . . . . . . 6

2 Comparative Analysis of Taxonomic Classification Programs 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Read Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Performance Quantification . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Microbial Characterization of Freshwater Beaches 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Library Preparation and Sequencing . . . . . . . . . . . . . . . . . 25
3.2.3 Bioinformatic Processing . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Sequence Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Richness and Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Taxonomic and Functional Composition . . . . . . . . . . . . . . . 39
3.3.4 Differential Abundance of Taxonomic and Functional Features . 49
3.3.5 Pathogens and Indicator Bacteria . . . . . . . . . . . . . . . . . . . 54

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Relavence to Public Health . . . . . . . . . . . . . . . . . . . . . . 61

v



A Chapter 2 Supplement 63
A.1 Sample Metagenomic Communities . . . . . . . . . . . . . . . . . . . . . 63

B Chapter 3 Supplement 65
B.1 Formulas and Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1.1 Alpha diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.1.2 Dissimilarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.1.3 Beta Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 78

vi



List of Tables

2.1 Taxonomic Classification Programs . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Sampling Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Read Metrics by Sample Environment . . . . . . . . . . . . . . . . . . . . 28
3.3 Analysis of Variance of Linear Model for Taxonomic Richness . . . . . . 31
3.4 Analysis of Variance of Linear Model for Taxonomic Diversity . . . . . . 33
3.5 Permutational MANOVA of Bray-Curtis Dissimilarity . . . . . . . . . . . 38
3.6 Phyla Unique to Habitat Type . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Actinobacteria Species Enriched Between Beach Environments . . . . . . 52
3.8 Frequency of Proteobacteria Orders of Species Enriched in Sand . . . . . 52
3.9 Pathogens and Indicator Bacteria Of Interest . . . . . . . . . . . . . . . . 56
3.10 Pathogen Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 Low Complexity Community . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Medium Complexity Community . . . . . . . . . . . . . . . . . . . . . . . 63
A.3 High Complexity Community . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 Sample Identification and Metadata . . . . . . . . . . . . . . . . . . . . . 70

vii



List of Figures

1.1 SSU rRNA accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Specificity of taxonomic classification programs . . . . . . . . . . . . . . 13
2.2 Sensitivity of taxonomic classification programs . . . . . . . . . . . . . . 14
2.3 Sensitivity decline in response to sequencing error . . . . . . . . . . . . . 15
2.4 Specificity of non-reference read assignments . . . . . . . . . . . . . . . . 16
2.5 Sensitivity of non-reference read assignments . . . . . . . . . . . . . . . . 17

3.1 Sampling sites and procedures . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Read processing statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Taxonomic and functional rarefaction curves . . . . . . . . . . . . . . . . 30
3.4 Taxonomic richness and diversity quantification . . . . . . . . . . . . . . 34
3.5 Functional richness and diversity . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Beach sand and water beta diversity . . . . . . . . . . . . . . . . . . . . . 37
3.7 Bacterial capture of microbial populations . . . . . . . . . . . . . . . . . . 40
3.8 Taxonomic profiles at the phylum level . . . . . . . . . . . . . . . . . . . 42
3.9 Mean proportions of dominant phyla in beach sands and waters . . . . . 43
3.10 Mean proportions of dominant families in beach sands and waters . . . 45
3.11 Functional profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.12 PCoA of taxonomic and functional profiles . . . . . . . . . . . . . . . . . 47
3.13 Proteobacterial composition . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.14 Differentially abundant phyla between beach environments . . . . . . . 50
3.15 Differentially abundant species between beach environments . . . . . . . 51
3.16 Differentially abundant functions between beach environments . . . . . 54
3.17 Reads assigned to pathogens are present in both beach environments . . 58

B.1 Taxonomic feature detection example . . . . . . . . . . . . . . . . . . . . 67
B.2 Species accumulation plots for (A) water and (B) sand groups. . . . . . . 68
B.3 Metadata and sequencing information . . . . . . . . . . . . . . . . . . . . 72
B.4 Taxonomic richness of all sites . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.5 Taxonomic diversity at all sites . . . . . . . . . . . . . . . . . . . . . . . . 74
B.6 Principal coordinates analysis of Bray-Curtis dissimilarities at varying

taxonomic ranks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Declaration of Authorship
I, Yasser SALAMA, declare that this thesis titled, “Methodology and Application of
Metagenomics for the Characterization of Bacterial Populations in Aquatic Environ-
ments” and the work presented in it are my own. My contributions to the work in the
main text are as follows:

• Chapter 1

– Research and writing

• Chapter 2

– Conception of research idea and methodology

– Execution of methods and development of results

– Analysis and discussion

• Chapter 3

– Development of research questions

– Methodology and computational processing

– Analysis and discussion

ix



Chapter 1

Introduction

1.1 Microbial Life

Microbial life is ubiquitous in every part of the biosphere. Prokaryotes alone are es-
timated to number 4–6× 1030 cells globally [1], and their inhabitance ranges from
nutrient-dense and optimal environments such as soils and aquatic habitats to extreme
geochemical and nutrient-deficient conditions such as hydrothermal vents [2], anoxic
marine sediments [3], and acidic mine drainages [4]. It is quite evident that the ubiq-
uity of these microscopic organisms in such contrasting environments is underpinned
by a large diversity of biochemical and metabolic processes that can mediate survival
and proliferation. The vast and complex biological repertoire microorganisms possess
facilitates their resilience, adaptability, and diversity in numerous environments. In
addition to the large genetic diversity harbored by microorganisms, their impact on
nutrient cycles and as symbionts in a multitude of ecosystems exemplifies their global
importance. Microorganisms harbor the largest pools of nitrogen and phosphorus of
any organisms, and harbor an estimated cellular carbon of 350–550 pg, of which the up-
per range is as much as the carbon stored in plants [1]. Microorganismal symbiotic re-
lationships with plants, such as the nitrogen-fixing rhizobial association with legumes,
also contribute largely to plant growth and nutrient uptake, and impact natural ecosys-
tems and agricultural processes [5]. From the beneficial microbiota of humans [6–8]
which can impact energy consumption and nutrient uptake [6], obesity and fat storage
[7], and other phenotypes [8], to the pathogenic and infective agents which cause dis-
ease, microorganisms and especially bacteria have a dramatic impact on human life as
well. Microorgainsms inhabit all regions of the human body and outnumber human
cells by an order of magnitude [8]. Bacteria have also been a significant source of an-
tibiotics and pharmacologically relevant compounds which are in use today, further
highlighting their importance [9]. The ubiquity and immense human and gloabl im-
pact of microbes is a major driver for understanding these organisms and warrants the
study and investigation of these organisms.
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1.2 Microbial Communities: Application of Metagenomics

Despite the best efforts of microbiologists to study and understand microorganisms, it
has become clear that studying single organisms in isolation for the purpose of under-
standing the complex microbial communities that exist in nearly every environment
does not allow for the full characterization of microbial interactions [10]. Traditional
culture-dependent methods which attempt to recreate optimal growth conditions of mi-
crobes and subsequent assessment of morphological, physiological, and genetic prop-
erties of microorganisms has provided insight into many aspect of microbial life and
process regulation. However, these methods have been deemed inadequate for de-
scribing the complex interactions which exist between numerous microbes in natural
environments, which are often the main concerns of microbial ecologists [11]. Addi-
tionally, it has become evident that investigating microbial populations as they exist in
the environment would be dependent on recognizing the large proportion of uncultur-
able microorganisms in these habitats. This was initially recognized due to the large
discrepancy between microscopically distinct morphologies observed and the number
of distinct colonies that could be grown on a nutrient rich medium [12]. This was a
sign that the standard conditions presented for culturing microorganisms was a major
bottleneck and that there is a distinct and large diversity of organisms that could not
be easily cultivated. This finding was verified in numerous habitats including soil [13],
sediments [14], and many aquatic habitats [14, 15], where up to 99% of microorganisms
can not be captured through culture-dependent methods [16].

The introduction of culture-independent methods has therefore been a major de-
velopment in studying microbial life. Culture-independent methods bypass the re-
quirement of simulating specific conditions to grow microbes and allow for the di-
rect assessment of microbes in their environment [16]. This approach circumvents
the hindrance imposed by traditional culture-dependent methods and has been ex-
tremely valuable in uncovering the previously underestimated diversity of microbial
life. Culture-independent methods targeting bacterial populations largely relied upon
the small subunit (SSU) ribosomal RNA (rRNA) initially [16]. Early methods used the
extraction of DNA from the environment in a non-selective fashion, and either direct
detection of 5S or 16S sequences using electrophoretic methods [17, 18] or shotgun
cloning into an appropriate vector [19], subsequent screening for rRNA sequences us-
ing probes of interest, and sequencing. Developments of these preliminary methods
involved the addition of PCR or reverse transcribing of target sequences to selectively
amplify the region of interest [16, 20]. This greatly simplified the process by permitting
the direct enrichment of 16S sequences from microbial DNA assemblages using primers
complementary to highly conserved regions of the gene and avoids the requirement of
cloning. Early studies which adopted this method had relatively good outcomes and
showed early signs of discovery of novel 16S sequences, supporting the notion of many
undiscovered organisms in different environments [20, 21].

2

http://www.mcmaster.ca/


M.Sc. Thesis – Yasser SALAMA; McMaster University – Biology

Methods which rely upon enrichment of 16S or other phylogenetically potent sig-
nals from DNA are termed amplicon sequencing. Amplicon sequencing can be applied
for bacterial [22] and archaeal identification using 16S sequences [23], and eukaryotic
identification by sequences such as the 18S SSU rRNA gene or the internal transcribed
spacer (ITS) region [24, 25]. However, the largest group targeted for analysis are bac-
teria, and this is reflected in the growth of bacterial SSU rRNA sequences in databases
(Figure 1.1) [26]. The selective amplification of different sequences is advantageous in
that different primers can be used to target these different populations (e.g. 16S primers
specific for bacteria or archaea), but also imposes a bias in the detection of the commu-
nity of interest. Although primer sets for PCR of 16S or other sequences have been
developed with the purpose of capturing different microbial populations, preferential
amplification of certain sequences can skew the capture of the community structure.
A contrasting approach to the amplicon sequencing method is one that utilizes whole
genome information from microbial communities. The whole genome shotgun (WGS)
metagenomic approach can therefore identify information beyond the taxonomic com-
position and also bypasses any biases that are introduced through amplification. Orig-
inally, metagenomic studies required the extraction of the collective microbial DNA
from an environment of interest followed by cloning into an appropriate vector and
then traditional Sanger sequencing. The use of metagenomics has yielded insight into
both the taxonomic and functional classification of microbial communities in numer-
ous environments. Early works investigated microbial communities in the Sargasso
sea [27], acidophilic biofilm [28], whale falls, acid mine drainages, and soils [29]. These
works were successful in identifying important and unique microbial features represen-
tative of the environments, and even the detection of novel genes (e.g. rhodopsin-like
photoreceptors in the Sargasso sea [27]).

The shotgun metagenomic approach has been dramatically improved upon by the
introduction of high-throughput sequencing (HTS) and parallelization (e.g. 454 [30]
and Illumina [31]), which much like the progression of 16S sequencing approaches
with the introduction of PCR, avoids the cloning step and permits direct sequencing
of DNA extracted from an environment [32]. Although early work by Venter et al.
[27] and Tringe et al. [29] revealed significant gaps in our microbial understanding in
unique environments, the limited throughput of the cloning and traditional sequencing
narrowed the applicability of this method to low complexity microbial communities or
only permitted the investigation of the most abundant organisms in a given environ-
ment [33, 34]. HTS in combination with whole genome extraction of microbial commu-
nities has therefore provided an avenue for a much more comprehensive exploration
of microbial communities and the ability to examine taxonomic and metabolic proper-
ties of environmental microbial populations [34]. Although HTS approaches typically
produce sequence reads (reads) which are much shorter than traditional methods, Liu
et al. [35] showed that these reads are sufficient for investigating microbial communi-
ties. Additionally, with the observation that a greater number of short reads would be
more beneficial than less longer reads, even in 16S sequences, the integration of HTS in
amplicon-based and metagenomic analysis was further solidified [35].

3
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FIGURE 1.1 Accumulation of SSU rRNA sequences over time. This
figure is from work by Pace [26] and is data obtained from the SILVA
database of SSU rRNA sequences as of 2008. In (A), total, bacterial, eu-
karyotic, and archaeal sequences are plotted. In (B), bacterial sequences
obtained from culture and environmental settings are plotted. In (C), ar-
chaeal sequences obtained from culture and environmental settings are
plotted. In recent times, environmental sampling has provided a large
influx of new SSU rRNA sequences to light, and bacterial sequences are

the major driving force of this discovery.
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WGS metagenomic methods typically produce larger amounts of data than
amplicon-based methods and are more accurate in capturing bacterial populations [36].
Amplicon-based methods typically have lower taxonomic resolution than WGS meth-
ods [37] and are prone to amplification bias, potentially skewing the representation of
the community towards organisms with sequences more similar to the primers used
and underrepresenting taxa with more diverged sequences. Indeed, numerous studies
have identified gaps in microbial understanding based on amplicon-based methods,
especially for 16S-based analyses of bacterial communities. Work by Ranjan et al. [36]
on a human fecal sample identified a greater sensitivity in detecting organisms using
a shotgun approach compared to 16S sequencing, and therefore greater accuracy in
determining diversity [36]. Furthermore, Eloe-Fadrosh et al. [38] found that applying
commonly used primer sets for bacterial identification would not be able to identify at
least 9.6% of 16S sequences from metagenomic datasets, and this value increased up to
22% depending on the primers used [38]. Their analysis also suggests that combining
multiple primer sets to increase the bacterial capture does not alleviate this problem
and numerous SSU rRNA sequences could not be retrieved still. Their work identifies
members of a recently described group termed the Candidate Phyla Radiation (CPR)
[39] as being the most likely targets to be missed using 16S-based analysis. Brown et
al. [39] have determined that members of the CPR are a prominent group of bacteria,
making up more than 15% of all bacterial taxa and due to divergent 16S sequences, are
not easily detectable using 16S-based approaches [39]. The members of the CPR are
environmentally diverse and seem to harbor a unique genetic and biological makeup,
highlighting the importance and benefits of shotgun metagenomic approaches for the
discovery of rare or unknown organisms.

1.3 Metagenomic Methods and Challenges

Many challenges exist in culture-independent and metagenomic methods. Initial and
current applications of amplicon sequencing face the problem of biased amplification
due to many factors as mentioned before. The largest factor is likely the use of specific
primer sets which may preferentially amplify certain sequences over others [22]. This
can be used advantageously to selectively probe for bacterial, archaeal [23], or eukary-
otic sequences (e.g. 18S, ITS1) [24, 25], but also introduces the problem of not capturing
the microbial population of interest completely, since previously unknown organisms
may have sufficiently diverged sequences from the primers. As well, different sequenc-
ing platforms may give rise to different interpretations of the same datasets [36, 40], and
comparisons of 16S amplicon sequencing and WGS metagenome sequencing of bacte-
rial populations may be incongruent in some details, although general properties of the
communities are the same in both methods [41].

Although the aforementioned challenges associated with metagenomic methods are
not exhaustive, one important obstacle is the diversity of bioinformatic processing

5
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tools developed for metagenomic analysis [42]. WGS metagenomic approaches pro-
duce a large amount of data and are amenable to a variety of processing and analysis
steps. Therefore, processing of metagenomic data can vary greatly depending on the
goals of the researcher and the type of data available. For most datasets, adapter- and
quality-trimming are usually important first steps to remove erroneous sequences from
the reads. Read merging for paired-end reads may be a subsequent step for ampli-
con and metagenomic sequencing depending on the method of library preparation.
With sufficient coverage in metagenomic data, assembly is possible and can be used
to build genomes from environmental datasets, or even recover complete SSU rRNA
sequences. Importantly, however, taxonomic classification is a major step in some am-
plicon sequencing and metagenomic approaches. This is often a main goal of most
metagenomic studies. Further analysis of metagenomic data can include functional
annotation of sequences to characterize the functional capacity of the microbial com-
munity and downstream statistical analyses to assess patterns of ecologically relevant
metrics and changes in microbial community structures. The numerous steps that can
be undertaken in metagenomic data analysis is a challenge since it limits the efforts
of standardization of analysis. This poses a problem for the analysis and replicability
of experiments. To further the understanding of bioinformatic processing on metage-
nomic data and to push forward the standardization of methods, Chapter 2 will focus
on assessing performance of numerous taxonomic classification methods, an integral
step in metagenomic analysis.

1.4 Metagenomics in Aquatic Environments

Chapter 3 of this thesis will focus on metagenomic analysis within the context of aquatic
environments and, more specifically, of freshwater beaches. Freshwater beaches are
known to harbor complex microbial communities consisting of microbial eukaryotes
[43], archaea [44], bacteria, and viruses [45, 46]. Metagenomic analysis of microplank-
ton communities in a freshwater lake in the U.S. has revealed relatively stable functional
gene content over time, although the communities were phylogenetically distinct from
other environments such as soils and marine environments [47]. Analysis of harmful
cyanobacterial blooms in freshwater environments reveals again that functional capac-
ity is more stable than taxonomic changes between different blooms [48]. Metagenomic
analysis has also revealed the presence of highly abundant aquatic Actinobacteria in
freshwater and associated actinorhodopsin complexes [49, 50]. Metagenomics has also
been applied to understanding breakdown of the toxin microcystin in Lake Erie [51],
although there have been few metagenomic analyses of this lake or Lake Ontario as
well.

The focus of Chapter 3 will therefore be on characterizing microbial populations
in four freshwater beaches across both Lake Erie and Lake Ontario, and identifying
predominant bacterial taxa and their functions. This analysis will also serve to iden-
tify trends in bacterial populations between beach waters and sands. Since freshwater

6
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beaches are popular locations for recreational swimming, investigating these areas us-
ing a metagenomic approach is useful to understand the exposure of the public to the
microbial communities present in these regions.

7
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Chapter 2

Comparative Analysis of Taxonomic
Classification Programs

2.1 Introduction

A major step in understanding collective microbial populations and elucidating the mi-
crobial diversity of environmental populations through culture-independent metage-
nomic approaches requires the employment of sensitive, specific, and time-sensible
taxonomic classification methods [52]. Amplicon sequence based studies often may
not be concerned with determining the taxonomic origin of the reads obtained, and in-
stead focus solely on “binning” reads into clusters of similar sequences. This allows
for the investigation of read clusters as operational taxonomic units (OTUs), with each
OTU representing a distinct taxonomic unit. In these cases, taxonomic classification is
not required. Other amplicon based studies may perform binning, but also want to tax-
onomically classify these reads to label the OTUs. This type of analysis would require
the employment of taxonomic classification. Shotgun metagenomic studies do not have
the ability to cluster reads since sequences may originate from anywhere in the genome
(barring metagenomic islands due to abnormal sequence composition [53]), and there-
fore must rely on taxonomic classification of sequences. Taxonomic classification is
therefore an integral step of shotgun metagenomic analysis and is required for the la-
belling of sequence reads to provide information regarding the taxonomic constituents
of a sample. This chapter will focus on taxonomic classification within the context of
shotgun metagenomic analysis.

In general, taxonomic classification programs possess an underlying similarity-
based or composition-based algorithm, although some programs implement elements
of both into a hybrid method. Alignment-based methods rely on the alignment of reads
to reference sequences and using sequence similarity to assign a taxonomic classifi-
cation [54]. Composition-based methods exploit the phylogenetic signals present in
sequence composition information [55] such as GC content, codon usage, and oligonu-
cleotide (k-mer) patterns to classify metagenomic reads [56–60]. There have been few
studies examining the comparative efficiency of these classification methods. Addi-
tionally, there is a large range of programs that employ these methods with variations
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(e.g. incorporation of interpolated Markov models [58], taxonomy trees [54, 59, 60], and
support vector machines [56]). Furthermore, different classification programs may be
optimized for specific inputs [61], thus different sampling environments, community
complexities, or metagenome qualities also may demand different classification meth-
ods for optimal results.

To assess the comparative performance of alignment-based and similarity-based
classification methods and to determine the effect of different metagenome inputs on
performance, metagenomes were simulated under varying conditions and classifica-
tion performance was quantified. The programs for analysis were selected on the basis
of recency (release or update), citation and usage, and availability (Table 2.1).

TABLE 2.1 Taxonomic Classification Programs

Program Method Notes Reference

blastn + MEGAN Similarity Nucleotide alignment, LCA [54]
blastx + MEGAN Similarity Protein alignment, LCA [54]
Taxator-tk Similarity Nucleotide alignment [62]
Kraken Composition Taxonomy tree, k-mer, LCA [59]
LMAT Composition Taxonomy tree, k-mer, genome association [59]
CLARK Composition Unique k-mers [63]
Phymm Composition IMM [58]
PhymmBL Hybrid IMM, nucleotide alignment [58]

MEtaGenome ANalyzer (MEGAN) is a program commonly used for taxonomic clas-
sification [54]. Input is provided to MEGAN in the form of blast(N/X) output, and a
lowest common ancestor (LCA) algorithm is used to assign a read to a taxon which
encompasses a subset of taxa that a read significantly aligned with. Taxator-tk is an
alignment-based method which utilized nucleotide alignment followed by phyloge-
netic inference of the read origin based on subsegments of local alignment which are
weighed based on similarity. Kraken [59] and LMAT [60] are both compositional meth-
ods for taxonomic classification, and utilize k-mer content along with taxonomic trees
for assignment. LMAT extracts each k-mer in a read and maps it to a taxonomic tree
of reference genomes. Kraken finds all taxa which are the LCA of each k-mer and
weighs those taxa by the number of k-mers from a single read that map to it. These two
programs differ in database structure as LMAT records all genomes associated with
a k-mer, while Kraken records only the LCA for a k-mer. CLARK is similarly a k-mer
based method, however, k-mers that are common between target sequences (references)
are removed from the database and only unique k-mers are retained. Lastly, Phymm
is a compositional method which utilizes interpolated Markov models to characterize
nucleotide distributions of reference species [58]. Then, by comparing the nucleotide
distribution of the query, a score can be assigned to a taxa and a classification can be
made. PhymmBL supplements the IMM method of Phymm by incorporating BLASTN
results to assign a read [58].
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2.2 Methods

2.2.1 Read Simulations

Investigating performance of taxonomic classification programs requires the genera-
tion of simulated metagenomes so that the origins of reads are known and may be
compared to the classifications assigned by each program. Since the results from this
project were intended to be utilized for the analysis of aquatic environments, sim-
ulated metagenomes were generated with taxonomic profiles representative of pre-
viously analysed aquatic metagenomes (one Fifty Point, one Nickel Beach, and nine
Cootes Paradise samples, provided by Mohammad Mohiuddin). All bacterial species
identified from these previous samples were sorted by decreasing frequency of detec-
tion in the samples, and then by decreasing average relative abundance in the samples.
Scripts were then used to generate three taxonomic profiles representing low complex-
ity (one dominant species), medium complexity (multiple dominant species), and high
complexity (no dominant species) populations (as defined by Charuvaka and Rangwala
[64]). Dominant species were randomly selected from the top 5 of the list of species and
given a simulated relative abundance around 10. The rest of the species were randomly
selected from the top 250 species with even relative abundances yielding a total of 100
taxa in each taxon profile. MetaSim [18] was used to simulate 200,000 100 bp paired-
end Illumina reads using each of the three taxonomic profiles with high, realistic, and
no sequencing error, yielding nine metagenomes in total.

Metagenomes were also generated to simulate cases where reads originate from
non-reference sequences. The ability to classify reads to the correct taxonomic lineage
when a reference sequence is not present in the database is important to assess since
this is often the case in metagenomic datasets [16]. Non-reference sequences were gen-
erated using MetaSim’s “evolve” function. Three simulations were generated to act as
technical replicates and only differed in which species were selected for random read
extraction.

2.2.2 Classification

Classification was conducted using default settings for all programs. For MEGAN,
reads were subjected to blastn (version 2.2.29+) [65] against the nt database or DIA-
MOND blastx (version 0.7.8.57) [66] against the nr database. All other programs were
assessed against the RefSeq bacterial database. For programs with rank-flexible assign-
ments, classification was always chosen at the species level.
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2.2.3 Performance Quantification

In order to quantify performance of the taxonomic classification accuracies of each pro-
gram, measures of classification sensitivity and specificity were adapted from McHardy
et al. [56] and Baldi et al. [67] and used as follows:

specificity = (
N∑
i=1

ci
ai
)
1

N

sensitivity = (

N∑
i=1

ci
ti
)
1

N

where: ci is the number of correctly assigned reads to clade i

ai is the total number of reads assigned to clade i

ti is the number of reads truly belonging to clade i

N is the number of clades

ci is considered as the true positives for clade i, ai includes the true positives and
false positives wrongly assigned to clade i, and ti includes the true positives and false
negatives belonging to clade i but assigned to another clade. In general, sensitivity acts
as a measure of how many of the reads that belong to a specific taxon were captured.
This is an indication of how well a program is able to capture the taxonomic composi-
tion. A low sensitivity signals that many of the reads truly belonging to a specific clade
were not identified. In comparison, specificity measures the accuracy of classifications
made by looking at the proportion of classifications at a specific taxon that are correct.
A low specificity indicates that many of the reads assigned to a taxon were incorrectly
assigned. The measures of sensitivity and specificity were used for each program and
each metagenome at taxonomic levels ranging from phylum to species.

2.3 Results

Except for the composition-based Phymm program, all programs exhibited consistent
and almost perfect specificity across all taxonomic ranks when no sequencing error was
introduced (Figure 2.1). Specificity did not differ between community complexities,
and only slight variations in specificity were seen for PhymmBL at less specific taxo-
nomic ranks when sequencing error was introduced. This indicates that these programs
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are usually correct when they make a classification to a certain clade. However, taxo-
nomic classification programs varied in sensitivity in an error-dependent manner (Fig-
ure 2.2). All programs showed higher sensitivity at less specific taxonomic ranks, with
typically worsening sensitivity as ranks became more specific towards the species level.
Most programs had their lowest sensitivity at the species level, although PhymmBL,
Kraken, and CLARK maintained similar sensitivity at the species level as they did
across all other ranks. With no sequencing error, PhymmBL, Kraken, and CLARK per-
formed with perfect sensitivity at all taxonomic ranks. This was followed closely by
MEGAN using blastn, although slight decreases in sensitivity were seen when using
the RefSeq database in place of the nt database at the species level. LMAT performed
with relatively good sensitivity, but was worse than PhymmBL, Kraken, CLARK, and
Megan using blastn at all taxonomic ranks. MEGAN with blastx, Phymm, and Taxator-
tk exhibited poor sensitivity in cases with no sequencing error. Sensitivity did not seem
to vary clearly between community complexities as most programs retained equal sen-
sitivity across low, medium, and high complexity metagenomes. As sequencing error
increased however, sensitivity decreased for the majority of programs. However, even
with the introduction of sequencing errors, all composition-based programs had greater
than 80% sensitivity, which was matched only by MEGAN using blastn and PhymmBL.
The decrease in sensitivity can be visualized in Figure 2.3. Although MEGAN using
blastx had poor sensitivity with no sequencing error, an increase in error did not trans-
late to as large a decrease in sensitivity as the other programs. This was also true for
LMAT. The greatest declines in sensitivity were seen in Phymm, Taxator-tk, CLARK,
and Kraken, while MEGAN using blastn and Phymmbl had intermediate drops in sen-
sitivity.
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FIGURE 2.1 Specificiy of taxonomic classification programs. Specificity
of taxonomic classification programs was measured in triplicate at vary-
ing levels of community complexity and sequencing error. Specificity
was examined at six taxonomic levels. The database used as a reference,
the method, and the underlying algorithm governing each method are

indicated. Error bars indicate the standard deviation of the mean.
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FIGURE 2.2 Sensitivity of taxonomic classification programs. Sensitiv-
ity of taxonomic classification programs was measured in triplicate at
varying levels of community complexity and sequencing error. Sensitiv-
ity was examined at six taxonomic levels. The database used as a refer-
ence, the method, and the underlying algorithm governing each method

are indicated. Error bars indicate the standard deviation of the mean.
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FIGURE 2.3 Sensitivity declines in response to sequencing error. The
decline in sensitivity is defined as the difference between sensitivity
when no sequencing error and high rates of sequencing error are present.
The sensitivity across all community complexities was averaged to arrive
at a mean sensitivity for each rate of sequencing error. A larger magni-
tude indicates a greater decline in sensitivity. All measurements are in

triplicate and error bars indicate the standard deviation of the mean.

Testing classification efficiency when sequence reads are diverged from reference
sequence using “evolved” sequences revealed a decline in specificity for PhymmBL
only at less specific taxonomic ranks. Additionally, marked drops in sensitivity
were observed for most programs, although the compositional programs CLARK and
KRAKEN and similatiry-based MEGAN using blastn did not show a rank-dependent
drop in sensitivity (Figure 2.5). PhymmBL showed the highest sensitivity at the species
level when non-reference sequences were used, followed by MEGAN using blastn
and the nt database. A slight decrease in sensitivity was seen as the species level for
MEGAN using blastn with the RefSeq database, highlighting the potential effect of us-
ing a reduced database size in accurate detection at the species level. LMAT, CLARK,
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and Kraken had similar sensitivity at the species level, although LMAT exhibited better
performance at the genus or higher levels. MEGAN using blastx had comparable sensi-
tivity up to the order level with MEGAN using blastn, but sensitivity declined strongly
towards the species level.

●● ●● ●●●●●● ●●

0.0

0.2

0.4

0.6

0.8

1.0

P
hylum

C
lass

O
rder

Fam
ily

G
enus

S
pecies

Taxonomic Level

S
pe

ci
fic

ity

Database
● nt/nr

RefSeq

Method
●

●

●

●

●

●

●

●

MEGAN.BLASTN

MEGAN.BLASTX

PhymmBL.

Phymm.

Kraken.

CLARK.

LMAT.

TaxatorTK.

Algorithm
Similarity

Hybrid

Composition

FIGURE 2.4 Specificity of taxonomic classification programs when
reads are diverged from the reference sequences. Reads were obtained
from genomes which were diverged from the reference genome present
in the databases and specificity of taxonomic classification was measured
at six taxonomic levels in triplicate. The database used as a reference, the
method, and the underlying algorithm governing each method are indi-

cated.
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FIGURE 2.5 Sensitivity of taxonomic classification programs when
reads are diverged from the reference sequences. Reads were obtained
from genomes which were diverged from the reference genome present
in the databases and sensitivity of taxonomic classification was mea-
sured at six taxonomic levels in triplicate. The database used as a refer-
ence, the method, and the underlying algorithm governing each method

are indicated.

2.4 Discussion

The effects of different algorithms for taxonomic classification were explored by simu-
lating metagenomes with reads of known origin. The utility of specificity as a metric
did not seem to distinguish programs well, as most programs were correct when mak-
ing a classification. In an introduction to the long fragment taxonomic classification
program TACOA, Diaz et al. [68] found that specificity seemed to differ when ana-
lyzing varying fragment sizes, but even then variability was small. This finding, in
combination with the findings of our analysis, suggests that specificity might be more
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affected by analysis of taxonomic classification on different read sizes, but not between
different programs at the same read lengths. The discrepancy between programs was
more evident when sensitivity was examined. This indicated that there was varying
success between the programs in capturing all the reads belonging to each clade. The
variation in sensitivity also seemed to vary depending on the taxonomic rank and on
the sequencing error introduced. Certain programs such as MEGAN using blastn and
Taxator-tk showed a consistent drop in sensitivity as taxonomic ranks became more
specific, while others like LMAT showed a sensitivity decline only at the species level.
Sensitivity also declined as sequencing error increased, although MEGAN with blastx
and LMAT did not seem to have a significant decline in sensitivity due to sequencing
error. For blastx-based analysis, this is likely due to the redundant nature of codons
and the introduction of synonymous mutations which do not alter the translated se-
quence. For LMAT, this could be due to the use of multiple overlapping k-mers and
using an aggregated score to assign taxonomy. Since it is unlikely for most of the k-
mers in a read to have mutations, and k-mers are assigned to an LCA, the “correct”
k-mers will outnumber the k-mers with errors and a greater weight will be given to the
correct taxonomic lineage. This also means that sensitivity at the species level might be
impacted since classification will rely on k-mers associated with an LCA, and indeed,
LMAT does exhibit a drop in sensitivity at the species level. Overall, for instances where
reads contain reference sequences in the database, programs such as LMAT, CLARK,
Kraken, PhymmBL, and MEGAN with blastn showed high sensitivity and would likely
perform well in real analyses.

The effect of the database used as a reference was briefly explored by assessing
MEGAN and blastn/blastx using the nt/nr or RefSeq databases. The RefSeq database
is a subset of the nt/nr databases, yet for most purposes, it was sufficient in capturing
the taxonomic composition accurately. The only cases where it seemed to have an effect
was when the nt database was used with blastn at the species level. In this case, the nt
database performed better in terms of sensitivity, especially when non-reference reads
were tested. For blastx, using the nr database did not have any discernible effect. This
suggests that the computational performance boosts associated with implementing a
smaller database with the RefSeq database may outweigh the slight benefit in sensitiv-
ity when using the nt database for blastn analysis.

The lack of a clear trend between composition-based and similarity-based methods
suggests that specific algorithms are more likely to dictate performance rather than the
general type of methodology used. From the composition-based programs, LMAT per-
formed best, while MEGAN using blastn and the nt database had the overall highest
performance out of the similarity-based programs. PhymmBL, the hybrid program,
had the greatest sensitivity in almost all scenarios at all taxonomic ranks, and per-
formed the best when non-reference sequences were used. This suggests that hybrid
methods may be more robust to divergence of sequences from the reference, a common
occurrence in metagenomic studies. With the exception of the time-constraints imposed
by this hybrid method, it should be considered for such studies, and more time-sensible
hybrid methods should be developed.
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The use of non-reference sequences is a more realistic representation of metage-
nomic studies since often times, reads do not originate from reference genomes. In
this case, some studies implement the use of clade-exclusion as a means to test perfor-
mance classification of non-reference reads [69], while others may use random shuffling
of genomes to mimic the presence of unknown organisms in the dataset [70]. Clade ex-
clusion works on the basis of removing the reference sequence of all reads in a dataset
from the database. However, this might be biased towards several methods which im-
plement the use of a LCA algorithm. In the case where two closely related species are
in a metagenomic dataset, clade exclusion of both of those sequences from the database
limits the information available for classifying each species independently. By remov-
ing all clades which are in the simulated dataset from the database, much more infor-
mation from the database is removed than is needed to assess whether each species can
be classified if its reference sequence is not present. For LCA-based methods where
the use of closely related species is required to classify reads, this may reduce the per-
formance drastically. One way to bypass this drawback is to only select species for
simulation in the metagenomic dataset that are distantly related from one another so
that the LCA algorithm is not affected by the removal of all the species, or to perform
clade exclusion one at a time for each species. The former is hard to implement as this
is typically not representative of real metagenomic datasets since many organisms in-
habiting a given environment are typically closely related, and the latter is likely not
feasible for a large number of species as a separate database would be required for each
iterance of a clade exclusion (unless the program provides an option to temporarily re-
move a reference sequence, but almost all the programs tested do not have this option).
Therefore, I opted to use a different approach by using sequences which are diverged
enough from the reference sequences while maintaining the reference sequences in the
database. This approach allows one to assess performance of non-reference sequences
while not affecting the database, which is more representative of real world scenarios.

Using this method to assess performance of non-reference sequences, it was clear
that this resulted in marked drops in sensitivity for all programs. It also revealed that
all of the similarity-based programs performed equally well up to the order level, after
which performance varied. Composition-based methods seem to have consistent per-
formance at all taxonomic ranks, although sensitivity varied between programs and in
general was greatest for LMAT and PhymmBL, although at the species level, MEGAN
using blastn was also relatively highly sensitive.

Recent analysis conducted by Peabody et al. [69] and Lindgreen, Adair, and Gard-
ner [70] set out to evaluate whole genome shotgun metagenomic methods for taxo-
nomic classification. In the work conducted by Peabody et al. [69], the use of both in
silico and in vitro metagenomic datasets was employed to assess performance. Only 11
species were included in their in silico analysis and only 12 species were assessed in the
in vitro analysis. This is a major drawback of their assessment since this is not a realis-
tic number of taxa that are typically present in a metagenomic dataset. The inclusion
of such small numbers of taxa may affect the performance metrics obtained and may
show high variability between replicates. This is mentioned in their paper and they

19

http://www.mcmaster.ca/


M.Sc. Thesis – Yasser SALAMA; McMaster University – Biology

concede that “abnormal results from individual genomes could have a large impact on
the results”. In their analysis, replicates were not mentioned, and the small number of
species highlights some flaws in their experiments.

Their assessment of performance was based on sensitivity and precision metrics
which differed slightly from the metrics used in this work. Additionally, the programs
selected for analysis differed and they utilized 250 bp sequences, so direct comparisons
of results is slightly difficult, but general trends may be explored. Their findings sug-
gest that CLARK and Kraken have poor sensitivity and precision, although they also
note that very few reads were actually assigned for these two programs. This finding
is likely due to the use of clade exclusion, as work by Lindgreen, Adair, and Gard-
ner [70], which did not utilize clade exclusion, contrarily found CLARK and Kraken
to have very strong performance. However, the use of in vitro analysis by Peabody et
al. [69] did support their in silico findings. Peabody et al. [69] reported that MEGAN
had relatively good performance, although they implemented RAPSearch2 rather than
blastx and found that this outperformed MEGAN with blastn. This is in contrast to my
findings where blastn-based MEGAN performed better. It is unclear whether the use of
RAPSearch2 instead of blastx may be sufficient to increase performance sufficiently, but
it is a possibility. The work by Lindgreen, Adair, and Gardner [70] and Peabody et al.
[69] do not seem to be in agreement, however, the analysis by Lindgreen, Adair, and
Gardner [70] agrees most with the analysis presented in this work. CLARK, Kraken,
and LMAT performed well for taxonomic classification, while Taxator-tk was found in
both analyses to be inadequate in terms of sensitivity, especially at more specific taxo-
nomic levels. MEGAN using blastx performed worse than CLARK and Kraken in both
studies, but performed better than many other options as well. Neither study from
Peabody et al. [69] or Lindgreen, Adair, and Gardner [70] assessed the performance of
PhymmBL, which was found to be the most consistently high performing taxonomic
classification program in this analysis.

Finally, just as Lindgreen, Adair, and Gardner [70] allude to, although some pro-
grams outperformed others, the program of choice for metagenomic studies is depen-
dent on the needs of the researchers. The computational requirements, run time, pres-
ence of a graphical user interface (GUI), rank-flexible assignments, functional assess-
ment, and data visualization tools are all factors which can weigh on the decision of
a taxonomic classification program. Although some programs performed poorly and
would not be recommended for metagenomic analysis, the remainder of the programs
may be each be utilized usefully depending on the context of the study and the needs
of the researchers.
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Chapter 3

Microbial Characterization of
Freshwater Beaches

3.1 Introduction

Water quality monitoring of relevant aquatic environments is an important facet of pub-
lic health. Areas of fresh and marine waters which receive regular exposure from the
public are often monitored for their water quality to ensure the safety of those who
access these areas. Typical water quality monitoring programs across the world are es-
tablished with the intent of obtaining measures of chemically and biologically relevant
indicators of water quality [71, 72]. In this chapter, water quality monitoring in the
context of biologically relevant metrics and the application of metagenomics for this
purpose will be focused on.

Waterborne pathogens pose a significant human health risk due to the potential
for exposure of a large number of individuals. Exposure to and bathing in polluted
coastal waters is estimated to result in over 120 million incidences of gastrointestinal
illness globally [73]. Despite attempts by developed and developing nations alike to
control outbreaks and emergence of water-borne pathogens through pollution sources,
pathogens such as Vibrio cholerae, enteropathogenic Escherichia coli, and Campylobac-
ter spp. regularly persist in water bodies and sometimes result in waterborne out-
breaks [74]. The goal of monitoring water quality to detect such pathogens and con-
trolling public exposure to potential illness is challenged by the inability to effectively
detect these pathogens in a timely manner. Culture-dependent methods are often not
capable of recreating the delicate growth conditions of many pathogens [10, 16], and in
cases where it is possible, it may take many days to give rise to a quantifiable measure
of the pathogen load (e.g. culturing of Campylobacter spp. and many Legionella species
can take up to 5 days [75, 76]). Within the context of public health, the lag between the
upsurge of pathogens in a water body and the detection, quantification, and reporting
of that event must be minimized for effective health risk aversion.

Cases of bathing-associated gastrointestinal illness are often caused by a diverse
number of fecal pathogens that are introduced into the aquatic environments through
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wastewater treatment plants, sewer overflows into water bodies, urban and agricul-
tural runoff, and from local human and animal populations [77]. Species which serve
as indicators for these sources of pollution (e.g. fecal indicating bacteria (FIB)) can pro-
vide a predictive capability for the potential of illness in beach goers. The use of indi-
cator species as an indirect measure of the pathogenic load in a water body has there-
fore been a staple in water quality monitoring programs and has been shown to cor-
relate well with water quality and gastrointestinal illness in recreational waters [78].
Although culture-dependent methods are the predominant form used by water qual-
ity monitoring programs [79, 80], chromogenic substrate [81] and quantitative PCR
(qPCR) methods [78] are some alternate methods which have been utilized and also
validate the correlation of indicator bacteria and incidence of illness in swimmers of
recreational waters. Various indicator species have been established, and the incidence
of illness in recreational waters correlates strongly with indicators of human and an-
imal fecal contamination such as Escherichia coli, Enterococcus, and fecal and total col-
iform counts. However, these indicators typically show heterogeneity in their predic-
tive capacity between different water environments or sources of contamination. For
instance, while Enterococcus is an effective indicator in marine waters, its capacity as an
indicator in freshwater environments is not as effective, highlighting the environmental
dependency of Enterococcus as a water quality indicator [82]. In freshwater and inland
beaches where point sources of contamination are established, E. coli and fecal and to-
tal coliforms have been shown to be a strong indicator for gastrointestinal illness in
swimmers [80, 82]. However, in areas where non-point sources of fecal contamination
are predominant, these same indicators were shown to not be associated with health
risks [81].

Despite the heterogeneity in the capacity of various indicator bacteria to predict
health risk and illness, there is widespread use of these bacteria in water quality mon-
itoring programs due to the lack of a more comprehensive system for the detection of
pathogens. Although culture-independent methods for pathogen quantification such
as qPCR may circumvent the challenges of culturing, they are limited in their scope
of the number of pathogens that can be monitored simultaneously. Bypassing the use
of indicator organisms and directly probing environments for pathogenic bacteria as
they exist in the complete bacterial population would alleviate many of the challenges
and drawbacks that are associated with an indicator or single species based method
for water quality monitoring [83]. The use of DNA microarray technology has been
previously proposed, but no developments into this method have taken place for use
in water quality monitoring [83]. A metagenomic approach which can directly detect
numerous waterborne pathogens would therefore prove useful since a link between
indicators and pathogens is no longer required, and investigation into the complete
microbial community and all pathogens would be possible. This could provide a more
comprehensive assessment of the water quality and improve water quality monitoring
programs and the decisions they make.
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An additional aspect of water quality monitoring that is often overlooked is the pres-
ence of potential pathogenic microorganisms inhabiting sand environments of recre-
ational beaches. Previous studies have consistently shown the presence and persistence
of E. coli and Enterococcus in wave-washed sands, giving rise to the potential of micro-
bial pathogens in these environments [84–86]. Using culture-based methods, E. coli
and Enterococcus were found to be abundant in wet sands of freshwater beaches, and
showed up to 35 greater concentrations in the sand, suggesting that the sand at these
beaches could act as a reservoir for these organisms [87]. As well, source tracking of
E. coli in beach sands revealed that some of the E. coli strains were autochthonous and
were transmitted to the water column [88]. Additionally, the detection of Aeromonas
spp. [89], Campylobacter spp. [90, 91], Salmonella spp. [90, 91], and Vibrio spp. [92] in
various sand types of marine and freshwater beaches suggests that this environment
is inhabitated by numerous pathogens and has important public health impacts. De-
spite the notable exposure of the public to these pathogenic and pathogen indicating
microorganisms in beach sands, most monitoring programs do not survey these envi-
ronments. If there are distinct microbial differences between the sand and water envi-
ronments at the same beach, then solely monitoring the water may not be sufficient for
public health.

To further expand upon the findings regarding beach sands and indicator organ-
isms, as well as establish a more comprehensive methodology for the monitoring of
water quality, we employed a metagenomic approach to characterize microbial pop-
ulations in beach sands and waters. Since indicator microorganisms may not be con-
sistent in every environment and are not a direct measure of the potential pathogenic
load in an environment, a metagenomic approach that can directly probe for pathogens
would be extremely beneficial. Additionally, although differences in E. coli and Entero-
coccus exist between beach environments, a more comprehensive comparative analysis
of freshwater beach sand and water environments has not been conducted. In the in-
terest of public health, it is imperative that a comparative analysis of these microbial
communities is examined.

To address the issues which persist in the current standards for water quality mon-
itoring, and to build upon the sparse understanding of beach sands, a comprehensive
analysis of microbial communities of four freshwater beaches in the Niagara Region
was investigated. The Niagara region in Ontario, Canada is home to over 25 public
freshwater beaches open for recreational use across two of the five Great Lakes [93].
As a popular attraction for many residents of the area, water quality of these beaches is
regularly monitored using coliform counts of E. coli [93]. This region serves as a suitable
testbed for the development and potential implementation of a metagenomic approach
for monitoring of pathogens, and also allows for the investigation of important factors
which influence microbial populations.
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3.2 Methods

3.2.1 Sampling

Four beaches were selected for sampling based on their importance in the Niagara re-
gion watershed and geographic dispersion across two of the five Great Lakes; Lake Erie
and Lake Ontario. Long Beach and Nickel Beach of Lake Erie and Lakeside Beach and
Fifty Point Beach of Lake Ontario were sampled during the summer months of 2012
and 2013 and 16 pairs of samples were collected across all four locations (Table 3.1,
Figure 3.1a). Each pair was comprised of a sample corresponding to the beach water
and beach sand habitat. Water samples were collected in sterile 1.0L sampling bottles
(Nalgene) at the surface level of 1m-deep water. Sand habitats were sampled through
the generation of 30 cm3 sand pores 1m into the dry supratidal zone from the inter-
tidal zone and subsequent collection of the water which permeated through the sand
into the pore (Figure 3.1b). Sample collection was followed by storage on ice and pro-
cessing for extraction of DNA within 6 hours. 300ml of the water collected from each
sample was filtered through a 0.45µm membrane (Fisher Scientific) and the resulting
retentate was extracted as the bacterial fraction. DNA was extracted from the bacterial
fraction through the use of the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, CA,
USA) according to the suppliers standard extraction procedure.

TABLE 3.1 Sampling Sites

Beach Lake Years Sampled Samples

Long Beach Erie 2012 8
2013 10

Nickel Beach Erie 2012 2
Lakeside Ontario 2012 6

2013 4
Fifty Point Ontario 2012 2
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(A) Sampling Locations

(B) Sand Pore Sample

FIGURE 3.1 Sampling sites and procedures. 16 pairs of samples were
collected in total from four beaches throughout 2012 and 2013: Lakeside
Beach (yellow) and Fifty Point Beach (red) of Lake Ontario and Long
Beach (pink) and Nickel Beach (blue) from Lake Erie. Each pair of sam-
ples corresponds to one water sample and one sand pore sample as seen

in 3.1b.

3.2.2 Library Preparation and Sequencing

DNA extracted from the bacterial fractions was subjected to shotgun metagenomic se-
quencing. DNA was diluted to 0.2 ngµl−1 and prepared using the Nextera XT DNA
Library Preparation Kit (Illumina). Samples were sent to the Farncombe Metagenomics
Facility (McMaster University, Hamilton, Ontario, Canada) for 100 bp or 150 bp paired-
end sequencing on the Illumina HiSeq 2000 platform.

3.2.3 Bioinformatic Processing

Sequence reads obtained from Illumina HiSeq 2000 sequencing were processed for low
quality bases and adapter sequences using BBDuk (version 35.82) and quality-screened
using FastQC (version 0.11.3) (Figure 2). BBDuk processing parameters were set to
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right- and left-end quality trimming with right side adapter trimming using a kmer
size of 12 with the Nextera adapter sequences. Zhou et al. defined high quality bases as
having a quality score greater than 20, and this was therefore selected as the threshold
[94]. Default parameters implemented in the web-based metagenomic analysis soft-
ware MG-Rast set the quality threshold at 15, further justifying the use of 20 as the
threshold in BBDuk. A minimum length of 40 after trimming was also imposed. Reads
were trimmed in a paired-end fashion, however, singleton reads whose other pair was
discarded were retained for downstream analysis. All samples passed FastQC anal-
ysis after BBDuk processing and were retained for further analysis. Processed reads
were compared against the NCBI non-redundant protein database using DIAMOND
blastx (version 0.7.8.57) [66]. Reads obtained from BLAST comparison were parsed and
classification was assigned using MEGAN (version 5.10) [54] with default classification
parameters (minimum bit-score 50; max e-value 1e-3; top percent 10; min support 5).
MEGAN was used to perform classification for both taxonomic and functional annota-
tion, which utilizes the NCBI taxonomy [95] and SEED subsystems [96] databases for
assignment. Each member of a paired read was classified independently, and a cus-
tom Perl script was used to arrive at a consensus classification for a read pair using the
average bit score of the top 10% BLAST hits from each member of the pair.

For pathogen detection, reads were taxonomically assigned at the species level to
the bacterial RefSeq database using CLARK (v1.1.2) [63]. Paired reads were classified
jointly and singletons were appended to the classifications. A minimum count of 5 was
imposed for detection and a confidence score determined by CLARK of 95% was used
as a threshold for classification.

3.2.4 Statistical Analysis

All statistical analysis was conducted in R (version 3.2.3). Ecological diversity analy-
sis was accomplished with the vegan package (version 2.3-4). DESeq2 (version 1.10.1)
was used for statistical testing of differential abundance of taxonomic and functional
features. The model for statistical testing was implemented with sample pair informa-
tion, accounting for the pairing of the data.

More detailed information about specific statistical methods is included within the
results text and corresponding sections.

3.3 Results

3.3.1 Sequence Metrics

A major goal of this work is to compare the microbial communities inhabiting beach
waters and sands. It is therefore imperative that sampling, sequencing, and bioin-
formatic processing do not impose any form of bias on one of the two environments
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asymmetrically, which would otherwise hinder the interpretation of the downstream
results. To ensure that no such bias exists, the number and quality of reads present in
each sample was examined (Figure 3.2).
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FIGURE 3.2 Read processing statistics. All values are represented as
millions of paired reads. Post-trim values correspond to number of pairs
in addition to singleton reads whose partner did not survive quality con-
trol. Unassigned functional and unassigned taxonomic values represent
the number of post-trim reads minus the number of reads with a func-
tional or taxonomic assignment, respectively. The samples are grouped

by lake and year and separated by sample type.

On average, there were 1,333,106 paired reads before processing and 1,295,650
paired reads after processing across all samples. This is an average loss of approxi-
mately 8.7% of reads due to processing, indicative of relatively high quality reads over-
all. After quailty and adapter trimming, average read qualities were above 32 for all
samples with standard deviations not exceeding 2.5. Between sample types (pore or
water), there was no significant difference in the number of reads prior to or after
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processing, suggesting that there was no bias in the sample collection or processing
between the two sampling environments (Table 3.2; t-test, p > 0.5). There were sig-
nificantly more reads in the 2012 processed samples than the 2013 processed samples,
however, this is attributed to a larger lane capacity per sample in the 2012 samples (t-
test, p = 8.67× 10−6, see metadata in B.3). Since pore and water samples are mixed well
between the two years due to the paired nature of the samples, the effect on the compar-
ison of the sand and water habitats is minimized. The proportions of reads unassigned
to a function or taxa were not different between environments (Table 3.2), suggesting
that there was no bias for classification during the bioinformatic processing in either
environment. In terms of read metrics, there does not seem to be a bias in quality or
classification as a result of the sampling environment, an important assessment which
allows for more conclusive and accurate comparisons between the two environments
using this data.

TABLE 3.2 Read Metrics by Sample Environment

Metric Sand Water Average

Paired Reads (pre-trim) 1,329,907 1,336,305 1,333,106
Paired Reads (post-trim) 1,290,357 1,300,942 1,295,650
Proportion Unassigned Functions 0.76 0.76 0.76
Proportion Unassigned Taxa 0.58 0.56 0.57

3.3.2 Richness and Diversity

Rarefaction curves are an established method for the determination of sampling satu-
ration and the effect of sampling depth on feature (taxonomic or functional) discovery
[97]. Determination of sampling saturation is important when attempting to make in-
ferences on differential presence or absence of taxonomic or functional features, and
also provides information about the nature of the sample and the adequacy of the se-
quencing depth. Samples whose rarefaction curves do not plateau indicate that the
sequencing depth was not enough as greater subsets of the data continuously reveal
new features. Rarefaction curves which do plateau suggest that sequencing depth was
adequate to capture the community composition as greater subsets of data do not reveal
new features. A disparity in saturation between conditions of a parameter of interest
may suggest that sequencing depth requirements differ between those conditions, and
inferences about presence or absence of features may become unclear since the lack of
presence of a feature in the data no longer necessarily corresponds with lack of pres-
ence in actuality. It is therefore important to establish the levels of sampling saturation
through the use of rarefaction curves prior to downstream analysis, especially within
the context of the comparative analysis of microbial communities between beach sands
and waters.
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Rarefaction curves are often applied to amplicon sequencing data (such as 16s rDNA
amplicon sequencing) since the number of unique 16s sequences directly correlates
with the number of unique taxonomic features. However, rarefaction curves applied
to shotgun metagenomic data can still be informative despite the loss of equivalence
of unique sequences and unique features. A caveat of rarefaction of shotgun metage-
nomic data is whether unclassified reads should be included in the subsetting process.
Excluding unclassified reads from the rarefaction curve means that subsetting only oc-
curs on classified reads. This would not be an accurate measure of sequencing depth,
but would still be informative about the nature of the feature discovery (i.e. increasing
or plateauing). Including unclassified reads in the subsetting process would provide
information on sequencing depth but would not be representative of the true unique
features since the unclassified reads could belong to as many unique features as there
are unclassified reads. This is due to the inability to distinguish unique features from
one another when reads are unclassified and can potentially originate from any part of
the genome. It is therefore important to assess how the inclusion of unclassified reads
affects the rarefaction patterns, if at all. Despite this, rarefaction curves did not differ in
the overall trends when excluding or including unclassified reads (Figure 3.3). Rarefac-
tion curves show similar trends in either case, and only the scale of the x-axis on which
the rarefaction is displayed differs.

Taxonomic rarefaction reveals that sampling is saturated in terms of discovery of
unique taxonomic features and the saturation is not biased between beach environ-
ments (Figures 3.3a, 3.3b). It is also interesting to note that for the majority of samples,
plateauing occurs at a relatively small number of reads, suggesting that detection of
the same taxonomic features could be accomplished with a smaller sequencing effort.
However, it is important to keep in mind that shotgun metagenomics is utilized for its
capacity to yield information about functional capacity. A smaller sequencing effort
may yield a similar capture of the taxonomic composition, but as seen in the functional
rarefaction curves (Figures 3.3c, 3.3d), it would result in a weaker capture of the func-
tional capacity of the communities since the functional rarefaction curves do not show
saturation and unique features are detected as larger subsets of the sample are incorpo-
rated.
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FIGURE 3.3 Taxonomic and functional rarefaction curves. Rarefaction
curves were generated for taxonomic and functional features by subset-
ting reads and counting the number of unique features detected at each
subset. All subsets were done with 10 replicates. The environment type
is indicated by the colour of the lines. (A) and (C) do not include unclas-

sified reads in the subsets, while (B) and (D) do.

Although most of the samples displayed taxonomic saturation, one water sample
from Lake Erie did not (Figure 3.3a). This corresponds to a 2013 Long Beach water
sample (Sample_72_BF17) and suggests that the taxonomic composition of this sample
was not fully captured since a greater sequencing depth would lead to the detection
of more unique taxonomic features. The corresponding paired sand sample did not
show the same trend, and other water samples from the same beach in the same year
also did not show this trend. This specific site did show a disproportionate deviation
in richness from other water communities and had the highest richness among them,
although diversity was not abnormal (see Figure B.4 in Appendix). The presence of
numerous low abundance taxa resulting in elevated richness is likely resulting in the
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rarefaction trend seen and is consistent with the lack of diversity increase. The removal
of low abundance taxa (taxa with less than 10 reads) results in the rarefaction curve
resembling that of the remaining samples, serving as further verification of the presence
of many low abundance taxa.

Another important trend gathered from the rarefaction curves is that there seems to
be a greater number of unique taxonomic features detected in the sand than in the wa-
ter (Figure 3.3a). This is further validated by examining taxonomic richness between
the sand and water habitats (Figure 3.4a). Unique taxonomic features were, on aver-
age, greater in the sand (667) than in the water (444) (paired t-test, p = 3.40× 10−5).
This was true for all pairs with the exception of the pair containing the site at which
taxonomic saturation was not reached. On average, richness was greater in samples
obtained in 2013 (655) than in 2012 (478) (t-test, p = 5.66× 10−3). Although there was
a significant difference in the total number of reads gathered between years, the pres-
ence of taxonomic saturation in samples from both years and the fact that the richness
is inverse to what is expected by read counts alone does not suggest that the difference
in taxonomic richness is a consequence of differences in sequencing depth but rather is
a result of true taxonomic differences. Additionally, there was not a significant differ-
ence in richness between lakes (t-test, p > 0.05). To investigate a potential interaction
effect of the sample type and year and to establish whether beach habitat differences
are temporally-dependent, a linear model was fitted to the data. The linear model con-
firms the previous findings and further indicates the absence of an interaction effect of
sample type and year as this term was not significant (Table 3.3). This finding suggests
that there was not a temporal dependency of the increase in taxonomic richness in the
sand and that the type effect was independent from year-to-year variations in richness.

TABLE 3.3 Analysis of Variance of Linear Model for Taxonomic Richness

Df Sum Sq Mean Sq F value Pr(>F)

Type 1 396940.50 396940.50 25.48 0.000027
Year 1 247646.00 247646.00 15.90 0.000458
Lake 1 7844.93 7844.93 0.50 0.483987
Type:Year 1 8534.67 8534.67 0.55 0.465554
Residuals 27 420559.89 15576.29

Since taxonomic classification was conducted with MEGAN’s LCA algorithm, it is
important to establish the effect of classifications which occur at a higher, less specific
taxonomic rank. The significant differences in the number of unique taxonomic features
between environments and years could be a consequence of disparity in the taxonomic
classification specificity between these variables. For instance, if many of the classifi-
cations in the water samples occurred at a higher taxonomic rank, then the number of
unique taxonomic features would be underestimated, leading to an artificially signifi-
cant enrichment of richness in the sand. To determine the effect of the LCA algorithm
on unique taxonomic feature detection, each taxonomic rank from ’Phylum’ to ’Species’
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was assigned a value from 1 to 6, respectively. Averaging these values for each sample
across reads assigned to unique taxonomic features, referred to here as the taxonomic
rank index, provides a measure of the average rank to which reads were assigned and
can address the effect of the LCA algorithm. Between sample types, there was a signifi-
cant difference in classification specificity (t-test, p = 5.94× 10−7; Figure 3.4b), with the
index being slightly higher in the water samples. This suggests that the greater richness
seen in the sand habitat was not an artifact of the LCA algorithm and contrarily sug-
gests that the number of unique taxonomic features in the sand may be underestimated
in comparison to the water habitat since classifications were on average less specific.
There was not a significant difference in classification specificity between years, again
suggesting that the differences in taxonomic richness are not an artifact of the classifi-
cation algorithm (t-test, p > 0.05; Figure 3.4b).

Across all samples, an average of 555 unique taxonomic features were detected. It is
likely that the use of the LCA algorithm severely underestimates the number of unique
taxonomic features since unique hits are relatively rare for blastx-based taxonomic anal-
ysis. Indeed, on average, only 10% of reads with a blast hit were unique hits, revealing
a large number of reads which exhibited similarity with potentially multiple species.
These reads would therefore be assigned to less specific taxonomic ranks and not be
considered unique. For instance, if a read showed similarity to a species not yet de-
tected in the sample, but also had hits to multiple other species, it may be assigned to
the ’Family’ classification common to all the species. If other reads have a classification
under that same family, then this read will not be considered unique. This scenario is
a drawback of the LCA algorithm is the likely cause for the relatively small number of
unique features detected.

Functional richness was examined by determining the number of unique SEED-
categorized functions detected within samples. Since functional saturation was not
reached and the number of reads in samples collected in 2012 was greater than in 2013,
it is expected that functional richness should be enriched in the 2012 samples. This
expectation was verified with strong significance (t-test, p = 3.41× 10−9; Figure 3.5a),
highlighting the impact of differential read metrics on interpretations of ecologically
relevant measures when saturation is not reached. Examination of functional richness
between sample types reveals a slight enrichment in the sand than in water (paired
t-test, p = 6.27e − 03; Figure 3.5a). This may suggest that the increase in taxonomic
richness in sand habitats translates to functional richness and may indicate that unique
taxa between the sand and water may harbor unique functions.

The greater taxonomic richness in the beach sands was also complemented with
significantly greater species diversity as assessed by the Shannon index measure of al-
pha diversity (paired t-test, p = 6.51× 10−4; Figure 3.4c). This pattern was consistent
across both Lake Erie and Lake Ontario. Similarly, samples from 2013 exhibited signif-
icantly greater taxonomic diversity, in line with the richness analysis, and this pattern
is again absent between lakes (Table 3.4). The alpha diversity complemented with the
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species richness analysis suggests that sample type and year are more important pre-
dictors of these measures than the lake where sampling was conducted. However, our
analysis is limited to two years and two lakes, so these findings should be extended to
a larger number of sampling locations and time points to further validate the conclu-
sions. Functional diversity was also enriched in beach sands, in line with the richness
analysis (p = 1× 10−3; 3.5b). This effect also extended between years more significantly
and is likely due to the discrepancy in sequencing depth between years (Figure 3.5b).

TABLE 3.4 Analysis of Variance of Linear Model for Taxonomic Diversity

Df Sum Sq Mean Sq F value Pr(>F)

Type 1 2.58 2.58 11.27 0.0024
Year 1 1.71 1.71 7.48 0.0109
Lake 1 0.01 0.01 0.04 0.8391
Type:Year 1 0.19 0.19 0.81 0.3763
Residuals 27 6.19 0.23
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FIGURE 3.4 Richness and diversity quantification of bacterial popula-
tions in beach sands and waters of the Niagara Region.
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FIGURE 3.5 Richness and diversity quantification of functional capacity
in beach sands and waters of the Niagara Region.

Measures of beta diversity are informative of regional differences of ecologically
relevant sites [98]. In this case, beta diversity can be applied to studying diversity of
sites within groups of interest, where the groups can be the sampling environment
(sand or water) and sites can be each sample within those environments. Although
several methods for the calculation of beta diversity have been established, most of
these measures typically rely on presence/absence data and regard beta diversity as
the ratio of the collective richness of a group of sites to the average richness of each site
within that group, where groups can be defined by any variable of interest [98]. Since
these indices rely on richness, there is an inherent loss of information because relative
abundance of the taxonomic constituents is not considered. Beta diversity measures
which utilize a dissimilarity index are informative of relative abundance of taxonomic
constituents and attempt to address this issue [99]. Anderson, Ellingsen, and McArdle
[99] have proposed a definition of beta diversity as the average distance, as determined
by a dissimilarity measure, of every site (e.g. sample) within a group (e.g. environment)
to the centroid of that group within multivariate space. Since a dissimilarity measure is
used, the abundance of taxonomic constituents can be accounted for. This multivariate
dispersion can then be used as a measure of beta diversity and allows for the ability to
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statistically test differences in beta diversity between groups of interest.

The Bray-Curtis dissimilarity measure was used to determine all pairwise dissim-
ilarities between samples on the basis of taxonomic constituents at the species level.
Although several dissimilarity measures are used in ecological studies, this dissimilar-
ity measure has been utilized in ecological contexts and metagenomic contexts with
strong robustness and provides an intrinsic normalization between different sample
sizes, making it a strong candidate for this analysis [98, 100]. The betadisper func-
tion from vegan was used to determine the multivariate dispersion between sample
types. Multivariate dispersion was not significantly different between sand and water
communities, suggesting that beta diversity and the collective diversity of these groups
does not differ from one another (Pr = 0.53; Figure 3.6). One sand sample seemed to
cluster strongly with the water samples and is closely associated with its corresponding
water sample. This was true in principal coordinates analysis (PCoA) at all taxonomic
levels as well (Figure B.6). This pair of samples is from Nickel Beach, and suggests
that either the environment type at this beach does not dictate bacterial composition
or the collection process did not accurately compartmentalize these two environments.
Removal of these two samples does not affect the significance of the multivariate dis-
persion measure (Pr = 0.93).
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FIGURE 3.6 Beta diversity quantification using multivariate dispersion
of beach sand and water bacterial populations.
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To explore further structures which may underly the taxonomic makeup of these
samples, permutational multivariate analysis of variance (MANOVA) was employed
[101]. Permutational MANOVA is a non-parametric method for determining sources
of variation within distance matrices. For taxonomic data, generating a distance ma-
trix using an appropriate measure followed by permutational MANOVA can reveal
what parameters are important for the distribution of samples within the multivariate
space. Essentially, distances between samples are regarded as response variables and
the covariates (parameters of interest) are the linear predictors. This technique is sim-
ilar to analysis of similatiry (ANOSIM), but it has been shown to be more robust and
less sensitive to dispersion effects [102]. Using the Bray-Curtis dissimilarity measure
again, permutational MANOVA reveals a similar trend to what was observed for the
richness and alpha diversity analysis (Table 3.5). The beach environment was the pa-
rameter that explained the most variation within sample distances, followed closely by
the year. However, this analysis also uncovers the significance of the lake parameter
and a type and year interaction, albeit these were small sources of variation relative
to sample type or year. Removal of the Nickel Beach samples did not alter the signifi-
cance of the permutational MANOVA test, although the percent of variance explained
by environment increases. This is expected since the Nickel Beach samples show high
similarity and would therefore result in an underestimation of the effect of this param-
eter. Overall, despite the spatial proximity of the paired sand and water samples, the
variation imposed by the beach environment explains more of the bacterial taxonomic
variance than samples from different lakes or even years.

TABLE 3.5 Permutational MANOVA of Bray-Curtis Dissimilarity

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Type 1 1.52 1.52 10.87 0.20 0.0001
Year 1 1.44 1.44 10.30 0.19 0.0001
Lake 1 0.44 0.44 3.15 0.06 0.0120
Type:Year 1 0.33 0.33 2.38 0.04 0.0404
Type:Lake 1 0.16 0.16 1.13 0.02 0.2966
Residuals 26 3.63 0.14 0.48
Total 31 7.52 1.00

So far, we have established through various means of diversity measures that sig-
nificant differences underly the bacterial communities between beach sands and water.
Although other effects may be in play, bacterial communities are more different be-
tween paired samples of water and sand than between lakes or years, suggesting that
the comparative analysis of the microbial communities between beach environments
is important. To extend this analysis, taxonomic and functional composition of the
bacterial communities was explored with an emphasis on differences between these
populations in the sand and water.
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3.3.3 Taxonomic and Functional Composition

Taxonomic composition was initially assessed at the superkingdom level to identify
the bacterial capture of the microbial communities. Although bacterial fractions were
extracted during processing, all samples contained a small fraction of reads assigned
to viral, eukaryotic, and archaic taxa as well (Figure 3.7). This is expected for com-
plex microbial communities because the filtration process will not completely exclude
non-bacterial taxa and free floating DNA from non-bacterial organisms. Furthermore,
bioinformatic processing may introduce false non-bacterial detection due to inaccurate
taxonomic classification, especially when utilizing protein sequences, which may ex-
hibit strong conservation between divergent taxa. This is expected to occur at quite
low levels however, and the large majority of samples were indeed comprised of a bac-
terial proportion of at least 90%. However, a subset of samples showed an enriched
eukaryotic fraction, which was not necessarily reflected in the paired sand environ-
ment, suggesting a water-specific effect (e.g. 2.5.2013.LB.ER and 2.3.2013.LB.ER). This
effect is also likely geographically and temporally isolated as the two samples with
large eukaryotic fractions were the only samples from that same beach on the same
day. The taxonomic constituents causing the eukaryotic enrichment were not a conse-
quence of human contamination as diatoms and eukaryotic algal species made up the
large majority of this enrichment. Since processing was conducted with bacterial char-
acterization in mind, all further compositional analysis will focus solely on the bacterial
constituents of these samples.
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FIGURE 3.7 Bacterial capture of microbial populations was effective.
Reads were aggregated to the superkingdom level to assess the propor-

tion of reads assigned which belong to a bacterial origin.

Phylum compositions were examined next (Figures 3.8, 3.9). In both environments, a
few phyla predominated the bacterial communities. In sand environments, Proteobac-
teria were the predominant phylum, although a large proportion of reads were also
assigned to unclassified phyla. Other predominant phyla include the Actinobacteria,
Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Planctomycetes. In
comparison, the phylum distribution in the water show slightly different trends with a
much more skewed and uneven distribution. Although Proteobacteria are the largest
group again, the cumulative proportion of the Proteobacteria, Actinobacteria, and Bac-
teroidetes comprise up to 80 - 90% of all phyla in most samples, with a much smaller
presence of the remaining phyla, indicating a decreased diversity of taxa at the phylum
level. The diversity at the phylum rank is indeed significantly greater in the sand than
in the water (paired t-test, p = 3.93× 10−4), which supports the observation that the
bacterial communities of these freshwater environments are dominated by fewer phyla
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than those in the sand and also agrees with the species level diversity. The diversity at
the phylum level further extends to unique phyla present in the sand but not the water
(Table 3.6). Phyla were considered unique to an environment if presence was detected
in at least 9 of the 16 samples from that environment but not detected in any samples
of the corresponding environment. Interestingly, all unique phyla were present only in
the sand, further providing evidence for an enriched diversity and richness of bacterial
communities in the sand than in the water. Further, many of these unique phyla cor-
respond to uncultured organisms or poorly characterized phyla grouped by organisms
detected solely through metagenomic methods, suggesting a plethora of unexplored
bacterial constituents present in the sand that are absent in the water. This corresponds
with the high detection of taxa which correspond to unclassified phyla in the sand as
well (Figure 3.8). The Aquificae were unique to the sand environment, and typically
exhibit persistence in thermophilic environmental conditions and optimal growth tem-
peratues at 65◦C or higher [103]. Although they are aerobic, they can employ anaer-
obic respiration through the use of thiosulfate or sulfur and are often found in sul-
fur pools [104]. The Aquificae detected in the sand all belonged to the Aquificaceae,
Desulfurobacteriaceae, and Hydrogenothermaceae families, and the taxonomic resolu-
tion was not specific enough to determine the species. The candidate division NC10 are
a known aquatic group of organisms initially detected through 16s rDNA sequencing,
and includes an anaerobic methane oxidizer [105]. The Latescibacteria are another re-
cently identified group with presence in anoxic conditions and sediment environments
[106]. The Latescibacteria additionally possess many functions relating to the process-
ing of organic polymers which arise from algal sources. Overall, many of these unique
phyla have not been detected in sand habitats previously, and possess niche functions
which may lend to the unique bacterial populations present in this environment.
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FIGURE 3.8 Phylum compositions of beach sand and water sites. Reads
assigned to bacterial taxa were aggregated to the phylum level and plot-
ted as proportions. Reads assigned to a bacterial taxa whose phylum
classification was unknown are aggregated and labelled as unclassified.

Sites are distinguished by beach environment.
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FIGURE 3.9 Mean phylum proportions of bacterial populations in
beach sands and water. The mean proportion of phyla in both sand
and water are plotted against each other with standard error of the mean
proportion indicated for each environment. The marginal histogram de-

scribes the frequency of phyla at the given proportions.

TABLE 3.6 Phyla Unique to Habitat Type

Number of Samples Total Reads

Phylum Sand Water Sand Water

Aquificae 14 0 1259 0
candidate division NC10 14 0 1244 0
Latescibacteria 13 0 1829 0
candidate division Zixibacteria 11 0 902 0
Candidatus Microgenomates 9 0 2868 0
Candidatus Aminicenantes 9 0 1343 0
Nitrospinae 9 0 737 0
Candidatus Hydrogenedentes 9 0 679 0
Deferribacteres 9 0 585 0
* Unique phyla determined by presence in at least 8 samples within one type and

absence in alternate type
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Interestingly, broad level variations in phylum composition did not translate to
similar variations in functional capacity as determined by the SEED subsystem clas-
sifications (Figures 3.11, 3.12). Between samples and environment types, the broad
level functional capacity does not exhibit much variation. Functions pertaining to
macromolecule processing and metabolism are detected with the greatest abundance
across all samples, with more specialized functions relating to element acquisition or
metabolism occurring in smaller abundances. This suggests that despite marked varia-
tions in phylum composition within and between environments, functional capacity is
maintained. However, it is possible that the hierarchical level used for SEED classifica-
tion was not specific enough to visualize variations between samples or environments.
Since classifications were aggregated to level two of the SEED subsystem, variation
between samples or sample types may be minimized due to a reduced resolution, caus-
ing an artificial homogeneity of functional capacity between samples. To ensure that
the lack of variation across samples was not a potential artifact of the methodology, a
non-related sample was put through the same pipeline of analysis as a control and func-
tional capacity was examined (see C (control) column in Figure 3.11). If this sample also
shows a similar functional profile, this would indicate that the level at which functional
capacity is being examined is not specific enough to detect variation. However, if the
functional profile is different, this would suggest that the lack of variation seen in the
beach environments is representative of the functional profiles. Although similar func-
tional categories were detected in the control dataset, the relative abundances of these
functions suggest a divergent functional profile compared to the beach samples. As
well, this is further confirmed via PCoA, which highlights the distance between the
beach samples and control sample as well as the lack of sample clustering based on en-
vironment (Figure 3.12b). This finding suggests that the level of the SEED subsystem is
still specific enough to detect variation between samples with different functional pro-
files, and that there exists a lack of variation in functional capacity between the sand
and water environments at this level.
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FIGURE 3.10 Mean proportions of bacterial taxa at the family level in
beach sands and water. The mean proportion of families in both sand
and water are plotted against each other with standard error of the mean
proportion indicated for each environment. The marginal histogram de-
scribes the frequency of phyla at the given proportions. Families labelled
as unclassified were removed prior to determining mean proportions

and are not plotted.
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FIGURE 3.11 Functional capacity is stable between samples and en-
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control shotgun metagnome of sputum sample from Cystic Fibrosis pa-

tient (accession: SRX1655756).

46

http://www.mcmaster.ca/


M.Sc. Thesis – Yasser SALAMA; McMaster University – Biology

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−
0.

15
−

0.
05

0.
05

PCoA 1

P
C

oA
 2

●

●

Sand
Water

(A) Taxonomic (Phylum)

●

●
● ●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

−0.05 0.00 0.05 0.10

−
0.

04
0.

00
0.

02
0.

04
0.

06

PCoA 1

P
C

oA
 2

●

●

●

Control
Sand
Water

(B) Functional (Level Two)
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A breakdown of the Proteobacteria was examined next because of their domi-
nance across all samples (Figure 3.13). Betaproteobacteria, Alphaproteobacteria, and
Gammaproteobacteria were the most dominant groups of Proteobacteria across both
environments. At the family level, Comamonadaceae belonging to the Betaproteobac-
teria occurred at the highest abundance and were seemingly more abundant in the wa-
ter (Figure 3.10). The Comamonadaceae are aerobic motile organisms and are therefore
expected to be more abundant in the water, although their relatively high abundance
in the sand suggests that bacterial transfer between the water and sand is occurring.
Other high abundance families include Flavobacteriaceae, Rhodobacteraceae, Strepto-
coccaceae, and Planctomycetaceae.
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FIGURE 3.13 Alpha diversity measured by the Shannon index between
the two sample types, sand and water. The diversity measure was cap-
tured at the species level and excludes taxa assigned to higher taxonomic

ranks. Standard error of the mean are represented by the error bars
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3.3.4 Differential Abundance of Taxonomic and Functional Features

Broad level compositional analysis is important for identifying general trends, but
higher resolution analysis is required to determine significantly important features be-
tween environments and for the application of this analysis to pathogen detection. Dif-
ferential abundance, a term analogous to differential expression in RNA-seq experi-
ments, was used to identify significant differences in taxonomic and functional features
between environments. An important first step in the detection of differentially abun-
dant features is count normalization, since sequencing depth is not equivalent across all
samples. Using proportions has been shown to lead to erroneous conclusions about dif-
ferential abundance (and expression), since it does not account for the heteroscedastic-
ity that is often present in microbiome and metagenomic data [100]. Therefore, models
which account for differences in library size and biological variance have been devel-
oped in an attempt to more accurately describe count data. Comparative analyses of
various models (as implemented in R packages) for microbiome data were conducted
by McMurdie and Holmes [100] and Weiss et al. [107] to investigate the sensitivity and
power of different statistical models. Although packages like DESeq2 and edgeR were
developed initially for RNA-seq experiments, both studies found that these packages
performed exceptionally well for the detection of differentially abundant features in
microbiome data, with DESeq2 having the strongest power [107]. metagenomeSeq is
a package specifically developed for microbiome data, however, it exhibited poorer
performance than other packages, and showed high rates of false positives, especially
with a small number of samples (< 50 samples per group) [107]. An additional method
for differential abundance is the use of non-parametric testing of differences in means
(Mann-Whitney U test), however, Weiss et al. [107] suggest the use of non-parametric
methods when the number of samples exceeds 50. Based on these studies, DESeq2 was
employed for testing differential abundance.

Significant differences in many phyla are detected between beach sands and waters
(Figure 3.14). Eighteen phyla were enriched in the sand, but apart from Firmicutes,
were present in very low abundances in both environments. The marked enrichment
of Actinobacteria, Bacteroidetes, and Proteobacteria in the water is in contrast to the
enrichment of many low abundance phyla in the sand, adding support to the notion
of a more diverse bacterial population in the beach sands. The differences in phylum
composition extend down to significant differences at the species level, which seem to
align in proportion to the abundance of the phyla (most differentially abundant species
are Proteobacterial, followed by Actinobacteria etc.; Figure 3.15). The increase in Acti-
nobacteria seen in the water is peculiar because Actinobacteria were previously thought
to be typical soil-dwelling bacteria. However, the increase in Actinobacteria in the wa-
ter corresponds with the enrichment of fourteen Actinobacteria species which belong
to a group of planktonic organisms prevalent in freshwater environments (Table 3.7).
These organisms seem to be related to a highly abundant group of freshwater Acti-
nobacteria which show presence in many freshwater environments [108, 109].
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FIGURE 3.14 Many phyla are differentially abundant between beach
environments. Differential abundance of phyla was determined by DE-
Seq2 using a paired model. log2 fold changes are indicated on the left
with the associated adjusted p-values of significance (cutoff of 0.01). The
normalized counts for each phyla in each environment are plotted on the
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FIGURE 3.15 Differentially abundant species between beach environ-
ments. Differential abundance of species was determined by DESeq2
using a paired model. log2 fold changes (l2FC) are indicated, with nega-
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0.05.
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TABLE 3.7 Actinobacteria Species Enriched Between Beach Environ-
ments

Species Normalized Mean log2FoldChange lfcSE padj

actinobacterium SCGC AAA023-D18 3480.09 2.66 0.78 0.0045
SCGC AAA027-J17 1644.75 2.93 0.91 0.0076
acAcidi 1271.97 2.22 0.70 0.0087
SCGC AAA028-I14 1107.09 3.78 1.00 0.0013
SCGC AAA278-O22 940.37 3.69 0.97 0.0013
SCGC AAA027-M14 782.13 3.59 1.05 0.0042
SCGC AAA044-N04 508.78 3.71 1.13 0.0069
SCGC AAA024-D14 494.75 3.59 1.13 0.0090
SCGC AAA044-D11 377.80 3.65 1.10 0.0063
SCGC AAA027-D23 270.05 2.84 0.90 0.0094
SCGC AAA023-J06 155.01 4.88 1.26 0.0010
SCGC AAA028-A23 42.79 6.63 1.53 0.0002

Candidatus Aquiluna sp. IMCC13023 72.87 5.07 1.61 0.0095
uncultured actinobacterium 36.98 7.76 1.79 0.0002
Conexibacter woesei 33.85 -6.23 1.42 0.0002

A large number of the Proteobacteria species enriched in the sand belonged to the
sulfur- and sulfate-reducing Deltaproteobacteria (38 out of 56), and belong to genera
with functions associated with reduction of sulfur-containing compounds (Table 3.8).
The remaining species that were identified as enriched in the sand mostly belonged
to uncharacterized bacterium with non-informative identifiers (e.g. bacterium UASB14
and UASB270, identified previously in anaerobic sludge blankets through 16s rDNA
sequencing [110]) or taxa labelled as uncultured bacterium.

TABLE 3.8 Frequency of Proteobacteria Orders of Species Enriched in
Sand

Order Frequency

Bdellovibrionales 2
Burkholderiales 3
Chromatiales 1
Desulfarculales 1
Desulfobacterales 9
Desulfovibrionales 1
Desulfuromonadales 6
Gallionellales 1
Methylococcales 3
Myxococcales 6
Rhodocyclales 4
Sulfuricellales 1
Syntrophobacterales 7
Thiotrichales 1
Unclassified 10
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Although this analysis cannot make conclusions about the immediate response of
the bacterial communities to the environment by examining the expression of genes,
assessment of the functional capacities and functional enrichment of relevant functions
is possible by examining abundance of genes with relation to categorized functions.
This information can reveal what the communities have adapted to and what functions
are more prevalent due to changes in taxonomic constituents. Differential abundance in
many functions relating to metabolic process were detected (Figure 3.16). This supports
recent findings by [111] that species compositions vary in accordance to biochemical
metrics such as pH, salinity, and nutrient load/density. Importantly, functions pertain-
ing to capabilities expected in tough environmental conditions like those experienced
in the sand such as sporulation and spore coat genes, acid stress, and sigmaB stress reg-
ulation are enriched in this environment. The enrichment of flavohaemoglobin (nitric
oxide dioxygenase) and nitrosative stress genes in addition to nitrite reductase and ni-
trate/nitrite ammonification genes also suggests the abundance of nitrogen-containing
compounds and their potential cause of nutrient stress in the bacterial community. The
anoxic conditions of sands also seem to enrich growth of anaerobic bacteria and per-
sistence of genes associated with anaerobic functions such as anaerobic degradation
of aromatic compounds and sulfate reduction-associate complexes. The enrichment
of sulfate reduction-associated complexes in the sand also coincides with the enrich-
ment of the Deltaproteobacteria, and sulfur- and sulfate-reducing organisms enriched
in the sand. Enrichment of cytochrome c oxidase biogenesis in the water communities
also further lends support to the greater capacity of aerobic respiration in the water,
whereas anaerobic respiration likely dominates in the sand.
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FIGURE 3.16 Functions with differential capacity between beach envi-
ronments. Differential abundance of functions was determined by DE-
Seq2 using a paired model. log2 fold changes (l2FC) are indicated, with
negative l2FC signifying enrichment in the sand and positive l2FC signi-
fying enrichment in the water. Functions depicted are in level three of the
SEED subsystem hierarchy and are coloured by their broader level two
categorization and significance was determined at an adjusted p-value

of 0.01.

3.3.5 Pathogens and Indicator Bacteria

An important goal of this work is to establish the shotgun metagenomic approach as a
viable solution for the detection of pathogens and FIB within freshwater beach environ-
ments. Pathogens and FIB were selected based on their relevance and potential impact
to public health in recreational waters and previous detection in beach sands and waters
(Table 3.9). Many of the pathogens were selected from the work of Whitman et al. [112],
who discuss the prevalence of microbial pathogens in the sand of beaches. Since some
studies use molecular markers which could not identify at the species level, all species
belonging to that genera that were detected were examined. There was large variability
in the detection of various pathogens and FIB (Table 3.10). While some pathogens and
FIB such as Aeromonas spp., E. coli, Salmonella enterica, and Pseudomonas aeruginosa were
detected in almost all samples, others were not detected at all (e.g. many Campylobacter).
Additionally, although many reads were assigned to pathogenic species in the sand and
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water of the same site, there were many instances of asymmetric detection solely in one
environment of a beach and not the other (e.g. Vibrio spp. and Campylobacter lari). Many
of the Vibrio species examined were detected in both the beach water and sand or just
the beach water, but rarely detected solely in the sand at any given site. This was also
the case for Staphylococcus aureus.
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TABLE 3.9 Pathogens and Indicator Bacteria Of Interest

Taxa Pathogenicity Previous Detection in
Beach Environments

Reference

Aeromonas spp. Pathogen (GI) Marine beach
water
Foreshore sand

[89, 113]

Bacteroides spp. FIB / Opportunistic

Marine/Freshwater
beach water
Marine beach
sand

[82, 114–116]

Campylobacter spp. Pathogen (GI)
Freshwater beach water
Marine/Freshwater beach
sand

[90, 91, 117]

Clostridium perfringens Pathogen (GI; enterotoxins) Marine beach water
Marine beach sand

[113, 118, 119]

Escherichia coli FIB / Pathogenic strains

Marine/Freshwater beach
water
Marine/Freshwater beach
sand

Legionella pneumophila Pathogen Marine waters [120]

Pseudomonas aeruginosa Pathogen Marine beach water
Marine beach sand

[118]

Salmonella spp. Pathogen (GI (non-typhoidal) Marine beach sand [91]

Shigella spp. Pathogen (GI) Marine beach water
Marine beach sand

[121]

Staphylococcus aureus Pathogen
Marine/Freshwater beach
water
Marine beach sand

[118, 122]

Vibrio spp. Pathogen (GI) Marine beach water
Marine beach sand

[113, 123]
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TABLE 3.10 Pathogen Detection

Taxa Detection In
Both Sand Water

Aeromonas hydrophila 15 1 0
Aeromonas salmonicida 15 1 0
Aeromonas veronii 16 0 0
Bacteroides fragilis 8 2 2
Bacteroides helcogenes 14 0 1
Bacteroides salanitronis 3 3 3
Bacteroides thetaiotaomicron 1 4 0
Bacteroides vulgatus 5 2 5
Campylobacter coli 2 0 3
Campylobacter concisus 0 0 0
Campylobacter curvus 0 0 0
Campylobacter fetus 0 0 1
Campylobacter hominis 0 1 1
Campylobacter jejuni 0 3 4
Campylobacter lari 0 1 6
Clostridium perfringens 9 0 2
Escherichia coli 16 0 0
Legionella pneumophila 10 1 1
Pseudomonas aeruginosa 16 0 0
Salmonella bongori 0 1 3
Salmonella enterica 16 0 0
Shigella dysenteriae 0 1 1
Shigella sonnei 0 0 0
Staphylococcus aureus 3 1 4
Vibrio alginolyticus 0 0 0
Vibrio anguillarum 1 0 4
Vibrio antiquarius 0 1 3
Vibrio campbellii 9 2 4
Vibrio cholerae 5 1 5
Vibrio furnissii 4 0 8
Vibrio nigripulchritudo 1 2 6
Vibrio parahaemolyticus 3 1 7
Vibrio sp. EJY3 0 1 5
Vibrio tasmaniensis 2 0 6
Vibrio vulnificus 6 1 4

In addition to variation in detection of the numerous pathogens investigated, the
number of reads assigned to the various pathogens and FIB differed greatly (Figure
3.17). In the sand, Aeromonas veronii and E. coli were detected in the largest abundance.
Similarly, a large number of reads were assigned to E. coli in the water, however the
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assignment of reads to A. veronii was less than in the sand, but not significantly so
(p > 0.05). Vibrio spp. were detected in low abundances and most showed significant
enrichment in the water (p < 0.05). The sand had significantly higher counts of A.
hyrophila (p = 2.87× 10−2) and P. aeruginosa (p = 9.46× 10−4). Although S. enterica was
detected in all samples, the number of reads assigned was relatively low and was not
significantly different between the two beach environments (p > 0.05).
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FIGURE 3.17 Reads assigned to pathogens are present in both beach
environments. Reads were classified using CLARK as described in the
methods. Counts were normalized using DESeq2’s size factor estima-
tions and mean normalized counts for each environment were plotted
with the error bars indicated standard error of the mean. Significance
between environments was determined using DESeq2’s negative bino-

mial model testing.
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3.4 Discussion

This work extends the understanding of bacterial populations in freshwater beaches
and also provides insight into the similarities and differences of these populations be-
tween beach environments. To our knowledge, there are no other investigations of
freshwater beach environments which utilize a shotgun metagenomic approach, and
this work can serve as a preliminary investigation of these communities using this
method. Our findings suggest that the beach environment is an important parameter
which strongly influences ecological measures and taxonomic composition of bacterial
populations. Bacterial communities are more distinct between beach sands and wa-
ters than between years or lakes, and this effect was not dependent on different lakes
or years. However, since only two lakes and two years were examined, this analysis
would benefit from an expansion to more lakes and years to accurately assess the rela-
tive importance of the beach environment compared to large scale spatial or temporal
effects.

Previous work by Cui et al. [124] examined the spatial effects imposed by different
beach environments on the bacterial communities of marine beaches in Hawaii using
16s rDNA sequencing. Their work encompassed the analysis of beach water and three
beach sand environments; nearshore sand, foreshore sand, and backshore sand. The
backshore sand in their work is analogous to the location of the sand pores generated
in our work. Their investigation revealed similar trends to our findings. Mainly, rar-
efaction curves did not reveal differential saturation of bacterial constituents between
backshore sand and beach waters, and richness and diversity were significantly ele-
vated in backshore sands compared to beach waters. Additionally, ordination revealed
strong clustering of samples originating from backshore sands distinctly from beach
waters. In general, the findings described in this work seem to coincide well with pre-
vious analysis of beach sand and water bacterial populations, and also suggests that
these trends are valid in both marine and freshwater beaches. Their findings also sug-
gest that bacterial differences between beach waters and backshore sand do not apply
to sand which is wave-washed, and this also likely is true in freshwater environments,
although this would need to be verified by examining pore samples from varying sand
environments. Our results slightly differ, however, due to the detection of many more
taxonomic features using our methods. This could suggest that a shotgun metagenomic
approach is more sensitive in capturing the microbial populations, but could also be
due to a genuine depression in taxonomic richness in marine environments than fresh-
water environments. However, 16s analysis has been known to have crude taxonomic
resolution [37] and this might be the reason for a lower richness detected in the work
by Cui et al.

The use of sand pore samples in this work as a proxy for sand habitats was em-
ployed due to its standard use in municipal sampling in the Niagara Region. Cui et al.
used deionized water to release bacterial cells, while the use of sand pores works un-
der the assumption that water flowing through the sediment will release bacterial cells.
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Both similarly work on the same principle, and although the sand pore method has
been employed before and established in literature (e.g. [112]), there may be a poten-
tial bias imposed when the capture of one environment (the sand) is dependent on the
other (the water). This could potentially depress the distinction between the two envi-
ronments due to the dependency of the sand pore samples on the beach water and may
have impacted the comparative investigation of these two environments. For future
studies, it would be important to assess the validity of this method within the context
of comparing beach sand and water habitats.

Significant differences were seen between the beach sand and water in terms of
taxonomic composition at a broad level. These differences included the decreased di-
versity in the water as Proteobacteria and Actinobacteria exhibited greater abundance,
while decreased abundance of the predominant phyla in the sand permitted increased
abundance of less dominant phyla. Although Proteobacteria, Actinobacteria, and Bac-
teroidetes were enriched in the water, they were the dominant phyla along with the
Firmicutes detected in the sand, a finding which supports 16s rDNA analysis of beach
sands discussed by Whitman et al. [112]. However, Whitman et al. mention that the
most abundant families detected in the sand were Rhodobacteraceae, Flavobacteri-
aceae, Flammeovirgaceae, and Campylobacteraceae. In our work, high abundance was
also seen for Rhodobacteraceae and Flavobacteriaceae, but Comamonadaceae were the
most dominant family, in contrast to their findings. Their analysis consisted of two ma-
rine and one freshwater site however, and the inclusion of marine sand environments
may result in differential family abundances.

Enrichment in the sand of many Deltaproteobacteria which contain known sulfur-
and sulfate-reducing organisms, in addition to the enrichment of genes associated
with these functions and other anaerobic processing functions suggests the presence
of anoxic conditions in the sand. As well, enrichment of functions relating to sporula-
tion, nitrosative stress, acid stress, and flavohaemoglobin indicates harsh environmen-
tal conditions requiring specific functions for suitability in this environment. Analysis
into the geochemical properties of the beach sands examined may reveal interesting
patterns regarding various elemental and nutrient loads which may explain the enrich-
ment of these organisms and functions.

Future analysis would benefit from deeper sequencing efforts with the intention of
examining functional capacity more precisely. The lack of functional saturation sug-
gests that the functional profiles are not complete, and introduces difficulty when at-
tempting to assess the comparative functional capacity of these environments. Deeper
sequencing could reveal unique metabolic features as many metagenomic sequencing
datasets have done before (e.g. see [125, 126]). Deeper sequencing efforts may also be
beneficial for extracting information regarding what taxa provide which functions. Al-
though taxonomic and functional assignments can be traced back to individual reads
in our dataset, the overlap of reads assigned to both a taxa and function were mini-
mal, making it difficult to assess whether functional capacities coincide directly with
taxonomic diversity. With deeper sequencing, changes in sulfur-reduction associated
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genes may be directly correlated with changes in Deltaproteobacteria abundance, for
instance.

3.4.1 Relavence to Public Health

This work has served as a means of introducing the potential use of shotgun metage-
nomics for implementation in water quality monitoring programs. The high confidence
in detection of reads originating from various pathogens suggests that this method may
be important in heading towards a more comprehensive means of water quality mon-
itoring. Using CLARK and the unique k-mer principle for taxonomic classification,
reads were assigned with high confidence. Manual nucleotide blast of random reads
assigned to E. coli revealed 100% sequence identity to the E. coli and no other species
(results not shown). A drawback however, is that many pathogens are specific strains
of species, and these metagenomic methods have not advanced enough for the detec-
tion of pathogenic strains. Manual curation of the nucleotide blast results revealed
that many of the genomic regions were non-discriminatory between various strains of
species. With deeper sequencing, capturing genomic regions which are differ between
specific strains may be possible, and may overcome this drawback. Taxonomic classifi-
cation methods must also be developed for this analysis to be feasible, but in the interest
of performance gains, even the newest classification programs may consider strains of
species as redundant and omit the variability seen between strains [127]. Therefore,
with increased sequencing depth and classification programs specifically developed
for this purpose, strain identification may be possible, although the feasibility may be
questioned.

Additionally, for adequate assessment of pathogen presence in these environments,
further analysis is required to establish a correlation between the detection of reads
in a metagenomic dataset and the true abundance. Standardization of sampling, pro-
cessing, and sequencing must be developed and correlated with traditional methods
before metagenomic methods may be implemented to monitor the pathogen loads of
these beaches. This idea has been discussed previously by Jones et al. [128] within the
context of human microbiome analysis and whole genome shotgun metagenomic se-
quencing, but should be extended to metagenomic analysis of environmental samples
as well. Their findings also suggest that spike-in controls provide an adequate means of
organism quantification in clinical samples. Spike-ins of Shewanella oneidensis in known
concentrations to stool samples and quantification via qPCR correlated strongly with
the relative abundance detected via metagenomic methods. This idea can be extended
to water quality monitoring programs, and in conjunction with the comprehensive cap-
ture of the microbial populations using a shotgun metagenomic approach, may be a
useful advance in water quality monitoring methods.

A call for more comprehensive and unified methods of pathogen detection in water
bodies is not a new idea, but seems to have stagnated in the literature [83]. The employ-
ment of a metagenomic approach seems to be a viable answer to the issues surrounding
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culture-based methods of water quality monitoring. With advances in sequencing tech-
nologies to reduce time and costs, increased sensitivity in the detection of pathogens,
and adequate quantification standards, this approach could be utilized in water quality
monitoring programs.
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A.1 Sample Metagenomic Communities

TABLE A.1 Low Complexity Community

Rel. Ab. Species Taxon ID

9 Polaromonas naphthalenivorans CJ2 365044
1.0 Sulfuricella denitrificans skB26 1163617
1.0 Acidithiobacillus ferrivorans SS3 743299
0.8 Xanthobacter autotrophicus Py2 78245
1.0 Methylotenera versatilis 301 666681
0.8 Clostridium beijerinckii NCIMB 8052 290402
1.0 Dechloromonas aromatica RCB 159087

...
...

...
1.0 Enterobacter asburiae LF7a 640513

TABLE A.2 Medium Complexity Community

Rel. Ab. Species Taxon ID

8 Comamonas testosteroni CNB-2 688245
8 Aeromonas veronii B565 998088
9 Flavobacterium johnsoniae UW101 376686
5 Rhodoferax ferrireducens T118 338969

1.03 Cellvibrio japonicus Ueda107 498211
1.15 Lachnoclostridium phytofermentans ISDg 357809
1.16 Allochromatium vinosum DSM 180 572477

...
...

...
1.07 Pseudomonas fluorescens SBW25 216595
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TABLE A.3 High Complexity Community

Rel. Ab. Species Taxon ID

1 Aeromonas veronii B565 998088
1.1 Alistipes shahii WAL 8301 717959
1.1 Acidithiobacillus ferrivorans SS3 743299
1.1 Cellulomonas flavigena DSM 20109 446466
1.0 Polynucleobacter necessarius 312153
1.1 Variovorax paradoxus EPS 595537
0.8 Herbaspirillum seropedicae SmR1 757424

...
...

...
1.1 Sphingomonas wittichii RW1 392499
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B.1 Formulas and Explanations

B.1.1 Alpha diversity

Alpha diversity was measured with the vegan package using the Shannon (H) [129]
and Simpson (D) [130] diversity indices defined as follows:

H = −
n∑

i=1

pi ln pi

D =
1

n∑
i=1

pi2

where: n is the number of features (taxa or functions)
pi is the proportion of reads assigned to a feature out of all features

Alpha diversity was measured using the leaves of the taxonomic tree generated from
MEGAN. Since not all assignments will be made at the species level, using the leaves
allows for detection of genera or less specific taxonomic groups to be factored into the
diversity calculation. If only species level diversity was considered, alpha diversity
might be underestimated since some taxonomic groups may only have been detected
at a lower resolution and would not be factored in. An example of a simple scenario is
outlined in Figure B.1. Calculation of alpha diversity was measured using the species
level as well and did in fact underestimate diversity, although the same pattern was
still observed. Additionally, unclassified reads were removed for alpha diversity cal-
culations. For functional diversity, counts were used at the most specific level of SEED
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classifications (level four). Only the Shannon diversity index was included in the main
text, but the same pattern of diversity is seen with the Simpson index.

B.1.2 Dissimilarity Measure

For principal coordinates analysis and multivariate dispersion, a pairwise distance ma-
trix was generated between all sites. The Bray-Curtis dissimilarity measure [131] be-
tween samples j and sample k with n taxa was used as follows:

d =

n∑
i=1
|xij − xik|

n∑
i=1

xij + xik

where: x is the number of read assigned to taxa i

B.1.3 Beta Diversity

Beta diversity was measured using a definition proposed by Anderson, Ellingsen, and
McArdle [99]. Their definition states that the dispersion of samples around a centroid
or spatial median in multivariate space can be used to determine the beta diversity of
that group of samples. Beta diversity in general is the ratio of the collective diversity of
a group of sites to the average diversity within each site. In a simple measure of beta
diversity which examines presence-absence data, a high beta diversity would indicate
that in a group of sites, the collective number of species present is much higher than the
number of species detected within any one given site. If the beta diversity is low, then
this means that most of the sites in the group have the same species present, and the
collective grouping of species is not larger than any one site. This can also be visualized
in a species accumulation plot (Figure B.2). As more sites are included in a group, the
more species are detected. The greater this increase is, the greater the beta diversity.
Between the sand and water samples, the slopes do not robustly suggest that there is a
difference in species accumulation between the two groups of samples. This was also
verified through the multivariate dispersion method, described below and reported in
the main text.
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FIGURE B.1 Visualization of why taxonomic leaves were used for diver-
sity calculations. In both samples, A is a clade at the family level. B - G
are genera, and U - Z are species. In Sample A then, 6 different species are
detected from two different genera. In Sample B, only 2 species are de-
tected, but 6 other genera were detected at the genus level due to LCA. In
the case where diversity calculations only look at the species level, Sam-
ple A would be seen as much more diverse since Sample B only detected
two species at this clade. However, we know that each of the genera C -
H detected in Sample B correspond in reality to at least one species. By
using the leaves of the taxonomy tree, rather than only the species level,
we can account for reads which were assigned at a non-species level, and
arrive at the more realistic representation that Sample B is more diverse
than Sample A. This can occur at any taxonomic level, not just the genus
level (e.g. any taxa detected only at the family level would still be con-

sidered in diversity calculations).
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(A) Species accumulation plot for all water samples. As more
sites are introduced, the cumulative number of species de-
tected increases. Deviations are indicated and are represen-

tative of 100 permutations.
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(B) Species accumulation plot for all sand samples. As more
sites are introduced, the cumulative number of species de-
tected increases. Deviations are indicated and are represen-

tative of 100 permutations.

FIGURE B.2 Species accumulation plots for (A) water and (B) sand
groups.
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An expansion of the simple presence-absence measurement of beta diversity is the
use of multivariate data that is not simply binary. By including relative abundance (pro-
portional) information, the cumulative differences can be measured for a group of sites.
This is what multivariate dispersion attempts to achieve. By plotting sites/samples
in multivariate space, the dispersion of these sites around a centroid can serve as a
measurement for how different each site is from the mean of group of sites (similar to
the proportion of the number of species in all sites divided by the average number of
species per site in the presence-absence example). By averaging the distance of sites to
the centroid, a value is obtained which serves as the measure of beta diversity, and can
be compared between groups. This is the multivariate dispersion method used in the
main text for beta diversity.

Anderson, Ellingsen, and McArdle [99] also introduce a dissimilarity measure for
use with their multivariate dispersion method (a modified Gower dissimilarity). How-
ever, since I could not find a study establishing the efficacy of this measurement in com-
parison to other dissimilarity measures, the Bray-Curtis dissimilarity measure, which
has been shown to perform well in combination with proportional normalization for
metagenomic data, was used [100].
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B.2 Supplementary Tables

TABLE B.1 Sample Identification and Metadata

Sample Name Identifier Year Beach Lake Site Type Replicate Pair

Sample_56_BF1 1.3.2013.LS.ON 2013 LS ON 3 Water 1 A
Sample_58_BF3 1.3.2013.LS.ON 2013 LS ON 3 Sand 1 A
Sample_61_BF6 1.3.2013.LB.ER 2013 LB ER 3 Water 1 B
Sample_63_BF8 1.3.2013.LB.ER 2013 LB ER 3 Sand 1 B
Sample_62_BF7 1.5.2013.LB.ER 2013 LB ER 5 Water 1 C
Sample_64_BF9 1.5.2013.LB.ER 2013 LB ER 5 Sand 1 C
Sample_66_BF11 1.1.2013.LS.ON 2013 LS ON 1 Water 1 D
Sample_67_BF12 1.1.2013.LS.ON 2013 LS ON 1 Sand 1 D
Sample_68_BF13 1.S.2013.LB.ER 2013 LB ER S Water 1 E
Sample_69_BF14 1.S.2013.LB.ER 2013 LB ER S Sand 1 E
Sample_70_BF15 2.5.2013.LB.ER 2013 LB ER 5 Water 2 F
Sample_71_BF16 2.5.2013.LB.ER 2013 LB ER 5 Sand 2 F
Sample_72_BF17 2.3.2013.LB.ER 2013 LB ER 3 Water 2 G
Sample_73_BF18 2.3.2013.LB.ER 2013 LB ER 3 Sand 2 G
Sample_FP-1P 1.1.2012.FP.ON 2012 FP ON 1 Sand 1 H
Sample_FP-1W 1.1.2012.FP.ON 2012 FP ON 1 Water 1 H
Sample_LB-1P 1.1.2012.LB.ER 2012 LB ER 1 Sand 1 I
Sample_LB-1W 1.1.2012.LB.ER 2012 LB ER 1 Water 1 I
Sample_LB-3P 1.3.2012.LB.ER 2012 LB ER 3 Sand 1 J
Sample_LB-3W 1.3.2012.LB.ER 2012 LB ER 3 Water 1 J
Sample_LB-5P 1.5.2012.LB.ER 2012 LB ER 5 Sand 1 K
Sample_LB-5W 1.5.2012.LB.ER 2012 LB ER 5 Water 1 K
Sample_LCE-1P 1.C.2012.LB.ER 2012 LB ER C Sand 1 L
Sample_LCE-1W 1.C.2012.LB.ER 2012 LB ER C Water 1 L
Sample_LS-1P 1.1.2012.LS.ON 2012 LS ON 1 Sand 1 M
Sample_LS-1W 1.1.2012.LS.ON 2012 LS ON 1 Water 1 M
Sample_LS-3P 1.3.2012.LS.ON 2012 LS ON 3 Sand 1 N
Sample_LS-3W 1.3.2012.LS.ON 2012 LS ON 3 Water 1 N
Sample_LS-5P 1.5.2012.LS.ON 2012 LS ON 5 Sand 1 O
Sample_LS-5W 1.5.2012.LS.ON 2012 LS ON 5 Water 1 O
Sample_NB-1P 1.1.2012.NB.ER 2012 NB ER 1 Sand 1 P
Sample_NB-1W 1.1.2012.NB.ER 2012 NB ER 1 Water 1 P
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B.3 Supplementary Figures
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FIGURE B.3 Metadata and sequencing information of samples analyzed.
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FIGURE B.4 Taxonomic richness across all sites examined. Richness was
measured as the number of unique taxonomic features detected.
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FIGURE B.5 Taxonomic diversity across all sites examined. Taxonomic
diversity was measured using the Shannon index.
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