
Channel and Server Scheduling for Energy-Fair

Mobile Computation Offloading

CHANNEL AND SERVER SCHEDULING FOR ENERGY-FAIR

MOBILE COMPUTATION OFFLOADING

BY

JONATHAN MOSCARDINI, B.Eng.Mgmt.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Jonathan Moscardini, August 2016

All Rights Reserved

Master of Applied Science (2016) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Channel and Server Scheduling for Energy-Fair Mobile

Computation Offloading

AUTHOR: Jonathan Moscardini

B.Eng.Mgmt. (Computer Engineering and Management)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Terence D. Todd

NUMBER OF PAGES: xiii, 62

ii

To my family, for their infinite love and support; and to my mom in particular, in

recognition of her own academic achievement

Abstract

This thesis investigates energy fairness in an environment where multiple mobile cloud

computing users are attempting to utilize both a shared channel and a shared server

to offload jobs to remote computation resources, a technique known as mobile com-

putation offloading. This offloading is done in an effort to reduce energy consumption

at the mobile device, which has been demonstrated to be highly effective in previous

work. However, insufficient resources are available for all mobile devices to offload

all generated jobs due to constraints at the shared channel and server. In addition

to these constraints, certain mobile devices are at a disadvantage relative to others

in their achievable offloading rate. Hence, the shared resources are not necessarily

shared fairly, and an effort must be made to do so.

A method for improving offloading fairness in terms of total energy is derived, in

which the state of the queue of jobs waiting for offloading is evaluated in an online

fashion, at each job arrival, in order to inform an offloading decision for that newest

arrival; no prior state or future predictions are used to determine the optimal decision.

This algorithm is evaluated by comparing it on several criteria to standard scheduling

methods, as well as to an optimal offline (i.e., non-causal) schedule derived from the

solution of a min-max energy integer linear program. Various results derived by

simulation demonstrate the improvements in energy fairness achieved.

iv

Acknowledgements

The conclusion of this thesis marks the end of a continuous 8 years of study at McMas-

ter for me; the end of such a lengthy stay in any one place is bound to evoke numerous

emotions. Chief among them here may be elation, immense relief, or perhaps a sense

of imminent freedom, but my departure also brings many fond recollections of my

time here and of the people who have helped me achieve what I have.

Above all else I give my sincere thanks to my supervisor, Dr. Terry Todd, for his

endless patience, encouragement, advice and direction as I navigated my first research

endeavour. This was at many points a difficult process for me and I would not have

seen its successful completion without his efforts, or his anecdotes. I also thank Dr.

Dongmei Zhao for her input and assistance over the past two years.

At times gratitude was not the emotion I wished to express to Dr. Steve Hranilovic,

also of the Electrical and Computer Engineering department at McMaster, for en-

couraging me to embark on this journey as I debated the merits of a graduate degree

two years ago. But it is certainly gratitude I express to him now, as without that

encouragement I would likely not be writing this thesis today.

I would of course like to thank my parents for their unwavering belief in my

abilities, their endless support and encouragement through the highs and the lows,

and their exceedingly affordable food service and rent. I would also like to thank my

v

cousin, Heather Ruhl, for her support in the completion of this thesis, taking time

out of her vacation to be interested in my efforts.

Finally I would like to thank the family, friends, fellow students, lab colleagues

past and present, and faculty who have helped me through nearly a decade of learning,

inside and outside of the classroom. I can only hope that the people I encounter on

my journey moving forward are as wonderful as you have been, because I couldn’t

have done it without you.

vi

Notation

M set of mobile device classes

M number of mobile device classes

J set of jobs

J number of jobs

λm arrival rate for job class m

T set of all time slots

Tm,j set of time slots usable for job m, j

T number of time slots

am,j arrival time of job (m, j)

Dm,j deadline of job m, j

zm,j,t channel time slot selection variable for job m, j at time slot t

ym,j,t server time slot selection variable for job m, j at time slot t

xm,j,p partition selection variable for partition p, job m, j

pm,j a partitioning option with index p for job m, j

Pm,j number of possible partitioning options

lm,j,p local processing units required for job m, j at partition pm,j

lm,j,1 local units required for local-only processing

vii

um,j,p transmission slots required for job m, j at partition pm,j

rm,j,p remote server time slots required for job m, j at partition pm,j

Um uploading rate for device class m

Rm remote processing rate for device class m

Q l
m,j,p local processing per-unit energy

Q r
m,j,p remote transmission per-unit energy

E lm,j,p local processing energy for job m, j at partition pm,j

Eum,j,p transmission energy for job m, j at partition pm,j

Em,j,p total processing energy for job m, j at partition pm,j

Em,j total processing energy for job m, j at the final selected partition

G users/classes with good channel conditions

B users/classes with poor channel conditions

uG upload rate for users with good channel conditions

uB/uG upload rate for users with poor channel conditions

λB/(λB + λG) arrival rate of users with poor channel conditions

Cq AQE queue size cutoff threshold

∆E difference in per-job energy between compared classes

viii

Abbreviations

AQE Average Queue Energy Prioritization

EDF Earliest Deadline First

FCFS First Come First Served

FGFS First Generated First Served

ILP Integer Linear Program

JIT just-in-time

MCC Mobile Cloud Computing

OS operating system

VM virtual machine

ix

Contents

Abstract iv

Acknowledgements v

Notation vii

Abbreviations ix

1 Introduction 1

1.1 Overview . 2

1.1.1 MCC for energy saving . 3

1.1.2 Challenges . 5

1.1.3 Application models . 7

1.2 Literature review . 10

1.2.1 Mobile cloud computing . 10

1.2.2 MCC and energy efficiency . 10

1.2.3 Computation offloading . 11

1.2.4 Job scheduling . 13

1.3 Thesis overview and organization . 14

x

2 System Model and Problem Formulation 16

2.1 Overview . 16

2.2 System model . 17

2.3 ILP formulation . 21

2.3.1 Complexity . 23

2.4 Summary . 25

3 Online Scheduling 26

3.1 Overview . 26

3.2 Determining queue state validity . 27

3.3 First Generated First Served . 29

3.4 Earliest Deadline First . 30

3.5 Average Queue Energy Prioritization 31

3.6 Summary . 37

4 Performance Results 38

4.1 Overview . 38

4.2 Algorithm performance . 39

4.2.1 Channel-constrained results 39

4.2.2 Channel- and server-constrained results 46

4.3 Summary . 51

5 Conclusions and Future Work 52

xi

List of Figures

2.1 Diagram representing the system model 17

4.1 Maximum user class energy vs. job generation rate 41

4.2 Average channel (left) and server (right) queue sizes 42

4.3 Comparison of online schedulers - Advantaged & disadvantaged user

energy . 43

4.4 Comparison of AQE against bound 44

4.5 Comparison of online schedulers - Average user energy 45

4.6 Advantaged vs. disadvantaged user energy - FGFS vs. AQE + FGFS 48

4.7 Energy with various values of Cq - 1/8 disadvantaged users 49

4.8 Energy with various values of Cq - 1/16 disadvantaged users 50

xii

List of Tables

4.1 Simulation parameter settings for online feasibility 40

4.2 Simulation parameter settings for AQE performance evaluation 46

xiii

Chapter 1

Introduction

Mobile devices, and smartphones in particular, are becoming increasingly ubiquitous.

The GSM Alliance expects the number of smartphones worldwide to increase to 5.6

billion, up from 3.2 billion in 2015 (George et al., 2016). As mobile device usage

grows, mobile device utilization of cloud computing grows with it; cloud applications

are expected to account for 90% of worldwide mobile data traffic by 2019 (Cisco,

2015). And with that growth, consumer interest in improved battery life remains

strong (Arthur, 2014).

This usage of cloud computing by mobile devices is known as mobile cloud comput-

ing (MCC). Sanaei et al. (2014) define it as “a rich mobile computing technology that

leverages... varied clouds and network technologies toward unrestricted functionality,

storage, and mobility to serve a multitude of mobile devices anywhere, anytime”. The

use of these resources can offer significant benefits in energy consumption, computing

performance, and storage capacity, as processing and data storage are shifted from

the mobile device to cloud servers with significantly greater resources.

1

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

1.1 Overview

To suggest offloading a task to a remote resource implies that the resource exists and is

available. Fortunately, there are many examples of cloud computing resources which

are available to mobile devices. These remote resources can take several forms, from

dedicated cloud computing infrastructure (Sanaei et al., 2014), to smaller infrastruc-

ture as part of an installation of mobile connection infrastructure (Satyanarayanan

et al., 2009), to local ad-hoc mini-clouds made up of other nearby hardware that would

otherwise not traditionally be considered cloud computing hardware (Huerta-Canepa

and Lee, 2010). The advantage of using dedicated cloud computing infrastructure

is its availability and reliability, while that availability and reliability come at the

increased cost of access as a utility, with billing for that access presenting additional

potential complications (Sanaei et al., 2014). Utilizing smaller cloud resources in-

tegrated with mobile connection infrastructure maintains some of those advantages

while reducing latency, by placing the remote cloud servers closer to the mobile de-

vices. Ad-hoc mini-clouds that utilize hardware that would otherwise be dormant

and is already owned by end users provides offloading capabilities at minimal cost,

but with less reliability, availability and less performance capability.

Numerous examples of commercialized applications that utilize MCC exist. There

are generally two categories of these applications on the market. The first, and

the simplest, contains those applications that provide access to much greater data

storage resources, such as Dropbox or Microsoft’s OneDrive, than would normally

be feasible in a mobile device. While not strictly mobile-specific cloud computing

implementations, these applications provide applications to ensure the synchronized

access to a user’s data from nearly any Internet-connected device the user might

2

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

choose to use, and often those mobile applications provide mobile-specific features

such as automatic photo backup.

The second category of applications is those that rely on cloud resources primarily

for processing. Voice recognition applications such as Apple’s Siri push the compu-

tational work off of the mobile device and onto a cloud server to reap a number of

advantages (Johnson, 2013). However, in offloading to the cloud, these applications

and others like them allow mobile devices to perform tasks which would otherwise

place too large a burden on the processing resources of the mobile device to complete

in a reasonable amount of time. This offloading of computation from mobile devices

can also have an additional effect in reducing the energy consumption of a mobile de-

vice (Zhang et al., 2015). In fact, this can be done even for jobs that would otherwise

be feasible on a mobile device (Ma et al., 2013).

1.1.1 MCC for energy saving

These gains are offset by increased energy consumption incurred during the transmis-

sion and reception of data required to support the use of these cloud resources. As

energy consumption is intimately connected to battery life, the cost-benefit trade-off

associated with utilizing cloud computing resources is of key importance.

The obvious scenario for examining this trade-off is that in which computation is

offloaded specifically for reduced mobile energy consumption. The goal in this case

is to minimize overall mobile device energy usage; if the device can save energy by

offloading while achieving its other goals, it should, and if it can’t it should perform

that processing locally.

The primary performance measure in mobile cloud computing problems is either

3

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

the total energy consumed by a mobile device or a set of mobile devices, or the total

power. The factors that make up this total energy consumption can be varied and

complex, but are often generalized to:

• Power (or in some cases energy) consumed for local job processing

• Power/energy consumed in transmitting and receiving data

• Power/energy consumed while idle waiting for remote job processing

Kumar and Lu (2010) formalize this simple analysis:

Pc (C
M

)− Pi (C
S

)− Ptr (D
B

)

where Pc, Pi and Ptr are the power components detailed above, C is the amount

of computation performed, M is the rate (in instructions per second) at which the

mobile device computes, S is the same for the cloud system, D is the amount of

data that must be exchanged to perform offloading, and B is the network bandwidth

available. If the net result of this equation is positive, offloading should occur; this is

essentially a simple mathematical expression of the trade-off described above.

Additionally, deadlines and execution time must enter the picture at some point

- often the most energy-efficient computing schedule is one that performs the least

amount of work as slowly as possible, but this is not a practical scheduling method

for obvious reasons. Execution time is often defined as the total amount of time (in

milliseconds or seconds) required to execute a task with the chosen combination of

execution resources, transmission resources, and power-consumption settings. Execu-

tion time is made up of equivalent factors to the power/energy consumption factors

above. These can also be subject to deadline constraints. Deadlines in cases where

mobile devices are locally executing tasks are sometimes ignored, especially in cases

4

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

where the focus is solely on scheduling remote tasks, such that only the remote/cloud

execution case is subject to a deadline constraint.

One of the primary conclusions of this analysis is that offloading is not always

power-efficient. While some applications are extremely computationally intensive

and perform those computations on relatively small amounts of data, certain appli-

cations can require significant amounts of energy to successfully offload their data to

the cloud, a requirement often driven by large amounts of data relative to the compu-

tational load generated by the application. In those cases, it can be very difficult to

justify computational offloading from an energy-efficiency perspective. Namboodiri

and Ghose (2012) demonstrate that in an example like the decoding of multimedia

files, the large amounts of data render the offloading process detrimental. This is one

way where an application that would be infeasible to process on a mobile device could

remain infeasible despite the existence of MCC.

1.1.2 Challenges

Despite the fact that mobile cloud computing is generally based on existing cloud

computing services (Sanaei et al., 2014), there are differences from non-mobile-specific

cloud computing applications, or even from existing uses of distributed computing.

Traditionally, optimizations of distributed computing have focused on throughput

in resource-constrained environments (Li et al., 2009), and resources are usually ex-

pended in a cost-efficient fashion (Khan et al., 2014). In MCC, the resources that

are constrained do not necessarily affect computational throughput, but instead in-

volve the availability and reliability of network connectivity, and the costs and energy

consumption related to its usage as detailed above.

5

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

One challenge in effective implementation of mobile cloud computing is the het-

erogeneity of mobile architectures and operating systems. Even between Android and

iOS, two popular mobile operating systems, there is little to no direct code reusability;

both platforms utilize different programming languages, APIs, and SDKs. Despite

ARM being generally accepted as the mobile architecture of choice, its use in server

applications - though possible - is limited due to the dominance of the x86 instruction

set, meaning that even MCC applications that target one specific platform could en-

counter difficulties. However, many of these issues are at least potentially avoidable

with the use of virtualization, to allow cloud servers to run code not directly built

for their architectures or operating systems; indeed, virtualization is considered a key

feature in cloud computing (Ma et al., 2013). Even still, this adds complexity and

overhead, which is only avoidable with specifically-targeted applications. To take

that route presents the trade-off of narrowing the usability of MCC and increasing

development complexity.

Another challenge unique to mobile cloud computing is the network connection.

While these assumptions do not hold true everywhere, it is usually safe to assume

in traditional cloud computing applications that an Internet connection is generally

available, fast, stable, and effectively cost-free (at least in terms of direct costs in-

curred for network connectivity for the application). However, none of these assump-

tions can be made about a mobile device using a wireless Internet connection. In

many cases, cellular data is significantly more expensive than a traditional fixed-wire

connection, and much of that cost comes from bandwidth metering which severely

limits the amount of data that a user can transfer affordably. Even with sufficient

connectivity, wireless connections often suffer lower performance - and less reliable

6

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

performance - than fixed-wire connections (Aguayo et al., 2004). On top of that,

a wireless connection can drop out and reappear frequently and without warning,

especially in areas with poor signal reception. And even a good wireless signal can

introduce additional connection latency compared to a fixed line. All of these diffi-

culties add up to scenarios where mobile devices can have a harder time offloading,

with fewer opportunities and less success, than traditional cloud computing applica-

tions. These difficulties must be accounted for when evaluating mobile-specific cloud

computing applications.

On top of these concerns, the existing concerns of security and privacy that are in-

herent in cloud computing continue to apply to MCC (Kumar and Lu, 2010). Private

data may be required to leave a user’s device and be transmitted across the Internet

to the remote resources being used. To protect that data, encryption may be applied,

but that places an additional computational burden on the mobile device, one that

is impossible to offload. It also requires the end user to ultimately trust the service

being implemented to handle the offloaded computation with their data, as even if the

mobile device encrypts it before transmission, it often needs to be decrypted by the

cloud server in order for it to be used. With that said, the broad adoption of cloud

storage services suggests that most are comfortable with the use of these services from

a privacy perspective for the time being.

1.1.3 Application models

A number of practical implementations of MCC have been developed for research

purposes, in order to demonstrate its viability and explore its strengths and limita-

tions. Khan et al. (2014) survey and categorize some of those implementations, some

7

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

of which are detailed below.

One way to examine the implementations that exist is through their primary

objective, whether it is to increase the performance available to mobile applications,

to reduce the energy consumption required for those applications, to maximize the

use of constrained resources, or to achieve a combination of these goals and perhaps

more. A few of these different model categories are visible in the selected examples

that follow. Several other models have been discussed and examined in various works,

however the primary theme of all of these models is that of computational offload for

the benefit of mobile devices.

Cuckoo (Kemp et al., 2010) provides an offloading framework specifically for

Android smartphones. This framework requires application developers to program

specifically for the Cuckoo framework, developing the remote implementations that

will replace local implementations when they are offloaded. While the authors lay

the groundwork for intelligent offloading, they do not do anything more sophisticated

in this paper than preferring remote execution when it is available; the model as it

stands is theoretically capable of prioritizing multiple objectives, but the implementa-

tion as described is limited to a performance-based objective only. Cuckoo is flexible

enough to be run on dedicated cloud infrastructure, cloudlets, or local ad-hoc clouds.

MAUI (Cuervo et al., 2010) solves the problem of burdening the programmer

with implementing offloading capabilities by automating the offloading and remote

execution processes; all a programmer needs to do is suggest to the implementation

what code sections are suitable for offloading. The limitation of MAUI’s approach

is that it is best served by managed code environments that are already inclined to

support automatic cross-architecture execution with just-in-time (JIT) compilation.

8

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

It does, however, make a point of determining which code is genuinely worth offloading

from both an energy and performance standpoint, making it an excellent example of

a multi-objective-based model for MCC, applied for energy savings as well as for

augmenting mobile resources.

ThinkAir (Kosta et al., 2012), also a multi-objective model, extends MAUI’s model

to include offloading jobs from multiple devices. The other models described in this

section focus solely on offloading from a given mobile device’s perspective, where

resource allocation is entirely out of the device’s control. ThinkAir adds system-

level control to manage server resources dynamically based on overall system load,

in addition to making intelligent offloading decisions based on data collected during

execution on the local devices.

CloneCloud (Chun et al., 2011) takes MAUI’s approach further in a different direc-

tion, by removing the need for any programmer input into offloading decisions what-

soever. It achieves this by implementing application-level virtual machines (VMs)

which clone the local device state for offloading purposes. The disadvantage to this

model is that it requires application processing to cease on the mobile device at time

of offload, only to resume on completion of the offloaded computation and receipt of

the results; this may be a tricky model to reconcile with the UI design principle of

application responsiveness.

9

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

1.2 Literature review

1.2.1 Mobile cloud computing

The review on literature related to the issues investigated with this thesis begins with

work relating to mobile cloud computing. Introductions to MCC are provided by

Kumar and Lu (2010) and Ma et al. (2013). A number of in-depth surveys of the

work done in this field have been conducted by Dinh et al. (2013), Khan et al. (2014),

Fernando et al. (2013), Rahimi et al. (2013), and others. Meanwhile, Sanaei et al.

(2014) present an evaluation and taxonomy of the heterogeneity of various aspects of

MCC and how those affect and distinguish MCC from traditional cloud computing.

Khan et al. (2013) evaluates the current state of security and privacy for MCC and

further describes those challenges.

Early work on computational offloading from mobile devices was performed by

Rudenko et al. (1998, 1999), with the first paper demonstrating the usefulness of

the concept and the second laying out the logistical challenges of a scheme with a

proposed framework for navigating them. Rong and Pedram (2003) furthers this work

by coupling the offloading decision-making process with information about the mobile

device’s active power state management, and Lin et al. (2015) produces further work

on this front with an effort towards energy reduction within minimal-delay schedules.

1.2.2 MCC and energy efficiency

Energy efficiency through MCC is primarily driven by the offloading of computation,

as is described above in Section 1.1.1. In that section, the model for calculating the

efficacy of that offloading proposed by Kumar and Lu (2010) is detailed. In that vein,

10

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Xian et al. (2007) describe a method for determining if offloading is worthwhile based

on a break-even measure of computational effort, simplifying the determination of

computational effort required by an application. Song et al. (2014) derive a more

detailed model than that of Kumar and Lu describing that tradeoff between the

energy consumed by offloading and by computation, and describe a method for using

that information to make offloading decisions accordingly. As well, Zhang et al.

(2013b; 2015) present several papers specifically pursuing optimal energy efficiency in

MCC, the first given here defining the conditions under which offloading should occur

within their system model, and the second going further into making energy-optimal

offloading decisions.

It is common for a mobile device to have access to a variety of wireless networks.

Klein et al. (2010) propose a means by which a mobile device can select between

multiple available connections, using whatever measures of the quality of each avail-

able connection are relevant. Xu and Mao (2013) describe a similar energy model to

Zhang et al. while investigating the differences between different wireless technologies.

Barbera et al. (2013) study real-world applications for their usefulness in computa-

tional offloading, and the effects of using different wireless technologies on energy

efficiency, while Lei et al. (2013) additionally investigates using MCC on combined

heterogeneous networks.

1.2.3 Computation offloading

As described above, (Kemp et al., 2010), (Cuervo et al., 2010), (Kosta et al., 2012),

(Chun et al., 2011), and many others provide, implement and evaluate various ap-

plication models for computational offloading specifically in an MCC setting. Many

11

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

of these models work towards improving various aspects of the practical details of

implementing an MCC offloading system, including the logistics of implementing

an offloading system, handling the appropriate balance between offloading and local

processing, and managing jobs from multiple mobile devices, although they rarely

account for all of the obstacles which impede the implementation of a complete and

market-ready MCC system.

It is also discussed in the survey by Guan et al. (2011), who cover, among other

things, some of the existing arguments and methods for computational offloading

and dynamic partitioning. Valery et al. (2015) investigate the benefits of this partial

offloading with adaptive partitioning of jobs, focusing on increasing utilization and

reducing data transfer, the combination of which work towards energy efficiency as

previously discussed. Partial offloading is also investigated by Yang et al. (2013) with

a view towards maximizing throughput.

Yue et al. (2014) presents a model for partial offloading within a multiple-user en-

vironment sharing a constrained cloud server, in particular where some devices suffer

from poorer channel conditions than others. As well, Yue (2015) further refines the

approach used to encourage energy fairness, although with only the binary offload-

ing case. This thesis differs from this work by integrating the partitioned offloading

model with a system that has a single constrained, shared channel in addition to

the constrained, shared server. It also defines and implements a distinctly different

approach to improving energy fairness.

12

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

1.2.4 Job scheduling

In shared computing environments, it is likely that multiple jobs from multiple users

will arrive and expect to use the shared resource(s) simultaneously; in these situa-

tions methods for scheduling those jobs are required in order to make the necessary

decisions. This is the case for MCC as well, as demonstrated by Wan et al. (2015)

who provide both a justification and a method for using shared, constrained server

resources in support of mobile devices and MCC applications. The general efficacy

of basic scheduling methods are described in several articles, with a form of FGFS

being evaluated in Schwiegeishohn and Yahyapour (1998) and EDF being evaluated

in Kruk et al. (2004). Indeed, scheduling problems are an old and well-covered topic,

with numerous procedures detailed for optimizing schedules (one example is Adams

et al. (1988)). However, the combination of tandem queues, local processing, and en-

ergy fairness optimization, as used in the system model described in Chapter 2, cause

difficulties when attempting to fit this problem into an existing job shop scheduling

model.

Of significance is the work by Barbarossa et al. (2013), which investigates jointly

optimizing transmission and computation resources for minimizing energy consump-

tion. Their work differs from this thesis first by focusing primarily on modeling

channel conditions and handling fading and variability there, while also focusing on

minimizing overall energy across all users as opposed to encouraging fairness across

users.

Prior to their work on energy modeling and energy optimality, Zhang et al. (2013a)

present a scheduling policy for energy-efficient collaborative execution which forms a

part of that energy optimality work. As well, Li et al. (2014) describe a method for

13

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

managing job schedules in environments with unstable connections which may cause

offloading to fail.

Work has also been done regarding scheduling for MCC outside of energy effi-

ciency. Achary et al. (2015) provide an ant colony optimization-based model for

dynamically scheduling mobile cloud computing jobs for increased performance and

job throughput. Liu et al. (2009) suggest a genetic algorithm-based scheduling model

for MCC within a broader solution involving abstraction of heterogeneous distributed

systems.

Although not strictly a scheduling technique, Wang and Dey (2013) present an

interesting method for adaptively varying the job to be offloaded in an effort to

mitigate varying network conditions.

1.3 Thesis overview and organization

The approach taken in this thesis involves a common scheduler which attempts to

find a globally-optimum energy consumption across all considered mobile devices. It

does so by offloading tasks for which the maximum benefit is derived from offloading,

when not all otherwise-eligible tasks can be offloaded due to resource constraints.

This maximum benefit is characterized by an interest in energy fairness, i.e., the at-

tempt to ensure all devices have equal success in offloading data despite differences

in opportunities caused by poor data rates or higher energy consumption in trans-

mission.

The system model used throughout the remainder of the thesis defines the pa-

rameters and variables relevant to this scenario. This model is explored in Chapter

2. This system involves a shared channel used to upload jobs to a shared server,

14

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

creating two constrained resources in tandem that need to be shared between mobile

devices attempting to offload work to the cloud. These shared resources are divided

amongst users in discrete time slots assigned to specific jobs. As well, an integer

linear program (ILP) is defined to produce an optimal min-max offline schedule for a

given input function of jobs and arrival times. This optimization problem attempts

to minimize the largest device energy; a formulation is given for the joint channel and

server scheduling scenario and its complexity is analyzed. This formulation is used to

produce results which provide a lower bound and an example of optimal scheduling;

these results are used to compare the performance of the other scheduling methods

outlined in this thesis to that of the offline optimal schedule.

In Chapter 3, online scheduling methods are defined. In contrast to the offline

optimal scheduler, the schedulers outlined in Chapter 3 are online schedulers with

no information regarding future arrivals. In particular, the Average Queue Energy

Prioritization (AQE) scheduling algorithm is defined, introduced, and its complexity

analyzed. This scheduler makes scheduling decisions based on the information avail-

able to it from the jobs currently in the queue. Several other more basic methods are

also detailed to present additional points of comparison for AQE.

With those schedulers defined, Chapter 4 provides results generated from simula-

tions of those schedulers in order to evaluate and analyze them. Numerous aspects

of the performance of these schedulers, including average and minimum/maximum

energy performance, are compared. As well, the parameters relevant to AQE’s per-

formance are defined and a method for determining their optimal values proposed.

Finally, Chapter 5 presents the conclusions of this thesis, and suggests potential

future research derived from this work.

15

Chapter 2

System Model and Problem

Formulation

2.1 Overview

In this chapter, the system model used throughout this thesis is introduced. This

model describes the assumptions made about the mobile devices, channel, channel

conditions, and server parameters which form the environment in which the scheduling

methods described in Chapters 2 and 3 are evaluated. This model is derived from

that of Yue (2015), extended to cover the joint channel/server scheduling conditions

evaluated in this thesis, and generalized to a form of non-binary partial offloading in

a similar manner as Yue et al. (2014).

As well, a problem is formulated to provide optimum scheduling in a non-causal,

or offline, environment, for the system model described. This model is investigated

in detail to demonstrate its relevance to the system, and to the online algorithms to

be detailed in a later chapter.

16

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

2.2 System model

1

M
Base Station

Cloud Server

Figure 2.1: Diagram representing the system model

To start we assume a set of mobile device classesM, with each class m ∈ {1...M}.

The mobile devices within a given mobile device class m generate a set of jobs to be

processed, Jm, containing jobs that can either be offloaded, in full or in part, or

processed locally, with each job j ∈ {1...J}.

The processing of these jobs is modeled in discrete time, with each time slot

t ∈ {1...T} contained in the set of all time slots T . In addition, each job can be

divided into partitions, in which one portion of the job is offloaded and the remainder

is processed locally. The chosen partition is defined as pm,j ∈ {1...Pm,j}, i.e., there

are Pm,j ways in which a job can be divided between local and remote execution. The

possible partitions are in the set Pm,j. A special case pm,j = 1 is defined as local-only

execution, with no remote offloading.

When these jobs are fully processed locally, they require lm,j,1 units of processing

time on the local device. For offloading a job (m, j) at a given partition setting p, um,j,p

time slots are required to upload required data on the channel, and rm,j,p time slots

are required to process that data at the server. Without loss of generality we order

17

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

partitions such that larger partitions provide more offloading, i.e., rm,j,p1 > rm,j,p2

if p1 > p2. The rate of uploading and remote processing available to each device

is given as Um and Rm processing units per time slot, respectively. This results in

lm,j,1 − rm,j,p Rm processing units being required to process the local portion of the

selected partition locally. The energy involved in receiving data wirelessly is assumed

to be much lower than that of transmission (Miettinen and Nurminen, 2010), and so

can be ignored for the purposes of this model (Zhang et al., 2013b).

It is assumed that at least one device class experiences a disadvantage relative

to the other classes, which is a decreased transmission rate per channel, or to say it

another way, an increased number of channel time slots required to complete offloading

to the server. When discussing this disadvantage, parameters relating to advantaged

device classes (i.e., those with good channel conditions) are subscripted accordingly.

For example, in the case of two classes - one disadvantaged and one advantaged -

parameters relating to the advantaged class are subscripted with G, and those relating

to the disadvantaged device class with bad channel conditions are subscripted with

B. For example, it is common to refer to the relative arrival rate of disadvantaged to

advantaged users as λB/(λB + λG). From here, if multiple bad or good device classes

exist, they can be indexed, e.g. B1, B2, ...Bn. In general, channel rate differences

between the classes are expressed as a ratio, such as UB/UG.

All device classes are assumed to share the same channel, which is divided into a

set of Z channel time slots. These time slots are used by the scheduler as follows:

zm,j,t =


0 if channel time slot t is not assigned to mobile/job (m, j)

1 if channel time slot t is assigned to mobile/job (m, j)

(2.1)

18

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

As well, all device classes are assumed to share the same server, which is divided into

a set of Y server time slots. These time slots are used by the scheduler as follows:

ym,j,t =


0 if server time slot t is not assigned to mobile/job (m, j)

1 if server time slot t is assigned to mobile/job (m, j)

(2.2)

Finally, the scheduler must choose how much of a job is to be offloaded as part of

the scheduling decision. In order to account for partitioning decisions made, xm,j,p is

used to indicate whether or not a given partition pm,j is selected for a given mobile

device class and job:

xm,j,p =


0 if partition p is not selected for mobile/job (m, j)

1 if partition p is selected for mobile/job (m, j)

(2.3)

Each job arrives at the channel at time slot am,j; it is also assumed throughout

this thesis to have been generated by the mobile device at this time, although that is

not necessarily the case. The job must be completed in its entirety - including local

processing, transmission, and server processing - before a deadline Dm,j. (Note that

Dm,j is not subscripted with p, i.e., it is not dependent on the selected partition.)

Therefore the scheduler must select um,j,p channel time slots and rm,j,p server time

slots for the job, for the given selected partition pm,j, and for values of t ∈ Tm,j,

where Tm,j = {am,j, ..., Dm,j}. If there are not enough free time slots, the scheduler

must select a different value of pm,j for the given job (m, j) by setting the appropriate

values for xm,j,p, or otherwise reassign the time slots that are not free.

19

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Energy costs and fairness

Each unit of local processing, and each time slot assigned to a device for offloading on

the shared channel, incur an energy cost to the given mobile device. Ql
m is defined as

the energy required per time unit for local processing; therefore the energy required

for local processing of a given job (m, j) and selected partition pm,j is defined as

E lm,j,p = Ql
m lm,j,p. Likewise, Qu

m is defined as the energy required for mobile device

m to transmit on one time slot, which gives the energy required for offloading of a

given job (m, j) for the selected partition pm,j as Eum,j,p = Qu
m um,j,p. From there, the

total energy consumed by each device for each job, given as Em,j, is defined as:

Em,j =
∑
p

xm,j,p Em,j,p =
∑
p

xm,j,p (E lm,j,p + Eum,j,p) (2.4)

assuming
∑

p xm,j,p = 1, i.e., only one partition is selected.

Much of this thesis is focused on the concept of energy fairness. This is defined

for the purposes of this thesis as the minimization of the difference in average energy

consumption between two device classes. The average energy consumption for a given

class m can be defined as follows:

Em =

∑
j∈Jm Em,j
Jm

(2.5)

With that, the difference in average energy consumption between, for example, classes

1 and 2, can be defined as:

∆E = |E1 − E2| (2.6)

From there, in general the objective when attempting to achieve energy fairness is to

20

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

minimize ∆E .

In addition to this fairness objective, the schedulers used with this model are

intended to work towards an optimization objective:

min max
m

∑
j∈Jm

Em,j (2.7)

that is, the minimization of the maximum-energy device class, in order to achieve

fairness (or any other objective) in a way that minimizes the overall energy consumed

by all devices.

2.3 ILP formulation

This model is first used below to formulate an integer linear program (ILP) for finding

an optimal schedule, to be used as a bound on the performance of the online sched-

ulers discussed in Chapter 3. The formulation given below is derived from a similar

problem, in which only the server is constrained (Yue et al., 2014). It is extended

here to add the constraints relating to the shared channel, while making a few sim-

plifications. As in the original formulation, this ILP is given all inputs to the system

at the start, in an offline fashion, and allowed to derive an optimal energy schedule

from that complete information. The formulation is first defined, and then discussed.

21

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

minimize max
m

∑
m∈M

∑
j∈Jm

∑
p∈Pm,j

xm,j,p Em,j,p (2.8)

subject to ∑
p∈Pm,j

xm,j,p = 1,∀ m ∈M, j ∈ Jm (2.9)

∑
m∈M

∑
j∈Jm

ym,j,t ≤ 1,∀ t ∈ T (2.10)

∑
m∈M

∑
j∈Jm

zm,j,t ≤ 1,∀ t ∈ T (2.11)

∑
t∈Tm,j

ym,j,t ≥ xm,j,p rm,j,p, ∀ m ∈M, j ∈ Jm, p ∈ Pm,j (2.12)

∑
t∈Tm,j

zm,j,t ≥ um,j,p xm,j,p,∀ m ∈M, j ∈ Jm, p ∈ Pm,j (2.13)

1− ym,j,t ≥ max
τ

zm,j,τ ,∀ m ∈M, j ∈ Jm, t ∈ T , t ≤ τ ≤ T (2.14)

xm,j,p ∈ {0, 1},∀ m ∈M, j ∈ Jm, p ∈ Pm,j (2.15)

ym,j,t ∈ {0, 1}, ∀ m ∈M, j ∈ Jm, t ∈ T (2.16)

zm,j,t ∈ {0, 1},∀ m ∈M, j ∈ Jm, t ∈ T (2.17)

This formulation minimizes the largest device class energy out of all available device

classes, in effect finding the minimum fair energy for all devices. A number of the

constraints are from the original implementation from which this was derived, while

constraints for the channel are related to the server constraints.

Constraint 2.9 ensures only one of the possible partition selections is made, while

constraints 2.10 and 2.11 ensure that each of the time slot variables for channel and

server time slots are only assigned to one job at a time. Constraints 2.12 and 2.13

22

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

ensure that at least the required number of time slots for uploading and processing

are selected, for the given partition. It should be noted that constraints referring to

non-preemptive scheduling have been removed, as this system model is preemptive.

One of the most significant constraints added to this formulation is constraint

2.14, which ensures that the entire portion of data to be offloaded (as decided by

the selected partition) is uploaded to the server before server processing is allowed

to begin. It does so by effectively taking the sign of the sum of all assigned channel

slots forward of this time slot, since each value of zm,j is binary, and forcing sever

time slots to be zero until no future channel time slots are assigned. The impact of

this constraint is discussed in section 2.3.1.

Finally, constraints 2.15 through 2.17 provide binary selection variables for the

offloading partition selection for each job, as well as for the selection of channel and

server time slots for each job.

In producing the optimal offline min-max energy, this scheduler acts as a lower

bound on the online schedulers as far as the maximum-energy user class is concerned.

It does not, however, explicitly produce a lower bound on any class other than that

with the highest energy consumption in a given schedule, and it only produces a lower

bound for algorithms focused on energy fairness as opposed to average energy; this

should be kept in mind while reviewing the results in Chapter 4.

2.3.1 Complexity

Yue (2015) presents a proof that a formulation of a similar problem, related to the

one on which this optimum min-max optimization problem is based, is NP-complete.

As the formulation set out in that paper is merely a special case of the more general

23

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

formulation derived in this chapter, by extension this problem is also NP-complete.

NP-completeness does not necessarily mean intractability. However, one of the

subtle complexities in solving this ILP comes from constraint 2.14. (For clarity this

will be referred to as a constraint definition, from which all of the actual constraints

for a given input are derived.) While it is not immediately apparent, this equation

defines one new constraint for not just every time slot in a given system, but for every

channel time slot decision for every job and user.

The number of individual explicit constraints derived from this constraint defini-

tion grows roughly with the square of the number of jobs. This can be seen in the

derivation shown in equations 2.18 through 2.21, letting C be the number of explicit

constraints generated for the solver by constraint 2.14, and letting D represent the

average of Dm,j ∀ (m, j), i.e., the average of all job deadlines.

C = MT max Jm (2.18)

T ≈MDmax Jm (2.19)

C ≈ (max Jm)2M2D (2.20)

∴ C ∈ O(n2) (2.21)

This constraint definition is actually an improvement on the naive solution to con-

straining server processing to only occur after upload requirements are completely

fulfilled:

ym,j,τ ≤ 2− zm,j,t − xm,j,p,∀m ∈M, j ∈ Jm, p ∈ Pm,j, τ ≤ t (2.22)

This formulation of the constraint definition forces one new constraint for every time

slot prior to the current time t, which would allow the number of constraints required

24

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

to schedule a given input to grow with the square of the number of time slots.

Especially when deadlines and job sizes are set as they are for most of the results

in Chapter 4, the number of constraints grows rapidly, even with this improvement.

The issue of this growth in the number of constraints is compounded as this is an ILP,

and additional constraints rapidly increase the amount of time required for a branch-

and-bound solver to identify the optimum solution. This difficulty is the justification

for the simplifications made when solving this optimization problem for Chapter 4.

2.4 Summary

In this chapter, the parameters relevant to the system model used in this thesis have

now been defined. These parameters will be referred to throughout the remainder of

the thesis to define the scheduling methods outlined in Chapter 3, and to describe

and interpret the results demonstrated in Chapter 4. As well, the offline scheduling

min-max optimization problem was introduced and detailed. Some of the challenges

inherent in solving this optimization problem for the system model described were

also analyzed. Despite these challenges, this formulation will be used to provide a

lower bound to the online scheduling algorithms described in Chapter 3 when the

performance of those schedulers is discussed in Chapter 4.

25

Chapter 3

Online Scheduling

3.1 Overview

In this section, several online scheduling algorithms are introduced. In contrast to

the offline scheduling optimization problem previously set out in Chapter 2, these

schedulers do not receive any information about future job arrivals; they are required

to evaluate new jobs causally, as they arrive, in the context of previous arrivals only.

Prior to a discussion on scheduling algorithms, an algorithm is defined to deter-

mine offloading feasibility. Then, three scheduling methods are introduced: First

Generated First Served (FGFS), Earliest Deadline First (EDF), and Average Queue

Energy Prioritization (AQE). These algorithms are described in detail, including an

analysis of their complexity.

26

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

3.2 Determining queue state validity

Before discussing scheduling algorithms, it is necessary to describe the method in

which a cloud server identifies whether or not a given job can be offloaded. This

seems a trivial task on its face - examine all jobs in the queue ahead of the current

job, and if they complete before this job needs to finish being served, then this job can

be offloaded. The calculation is complicated, however, by the coupling of the shared

channel and server queues; a job can reach the server and begin being processed, but

then be pre-empted by a prior job which is earlier in the queue than the current job

on the server but required more time to offload, or arrived later, etc. In addition,

it may be that the channel and server queues are sorted differently. The completion

time of each job is dependent on the job ahead of it in each of the queues, meaning

that for any given job and any perturbation of the queues, all channel and server

completion times need to be carefully re-calculated, in the correct order.

It may also seem plausible to stop searching as soon as a job is reached in a queue

for which there are not enough time slots available to it before its deadline expires,

i.e. based solely on the number of remaining unassigned time slots. However, one of

the features of the AQE algorithm depends on the identification of jobs suitable for

removal from the queue, and so this algorithm identifies completion times for all jobs

that are waiting, and adds any that are no longer feasible given the current queue

state to F for further examination if necessary.

The process used by these algorithms is to determine the validity of the queue

as a whole after the insertion of a new job in the intended location. The scheduling

algorithm then decides what to do about an invalid queue state. To do this, we begin

by letting Qc represent the set of all jobs accepted by the cloud server waiting for

27

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Algorithm 1 Queue state validity

1: Sort Qc
2: for each job qcn in Qc: do
3: m, j are from the job designated by qcn
4: Sc = am,j
5: starting at t = Sc:
6: while xm,j,pum,j,p >

∑
t zm,j,t do

7: if
∑
∀m,j zm,j,t = 0 then

8: zm,j,t = 1
9: end if
10: t = t+ 1
11: end while
12: Channel completion time Cc

n = the final value of t
13: end for
14: Temporarily add Qc to Qs
15: Sort Qs
16: for each job qsn in Qs: do
17: m, j are from the job designated by qsn
18: Ss = Cc

n

19: starting at t = Ss:
20: while xm,j,prm,j,p >

∑
t ym,j,t do

21: if
∑
∀m,j ym,j,t = 0 then

22: ym,j,t = 1
23: end if
24: t = t+ 1
25: end while
26: Server completion time Cs

n = the final value of t
27: end for
28: for all job n in Qc or QS do
29: if Cs

n > Dm,j then
30: add n to F
31: end if
32: end for
33: if F = ∅ then
34: Queue state is valid
35: else
36: Queue state is invalid
37: end if
38: Remove Qc from Qs
39: Sort Qs

28

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

uploading, and Qs the set of all jobs that have been uploaded and are waiting for

processing (both include jobs partially uploaded or processed, and jobs currently being

uploaded or processed). For each job qcn in the channel queue, its earliest available

time slot Sc is determined based on its arrival time, as shown in line 4. It then is

assigned all free time slots forward of that slot in lines 6 through 11; those slots are

marked as assigned. The channel completion time Cc
n is stored in line 12 for use as

the earliest server time slot Ss, in line 18. Then all jobs from Qc are temporarily

added to Qs and the process is repeated there, as shown in lines 16 to 27.

Finally, at the end of this process, if any jobs violate a deadline constraint they

are added to F for later examination; this process appears in lines 28 to 32. The

queue state is determined in lines 33 to 37, simply by determining if the set of jobs

with failed deadlines F is empty. The jobs waiting for channel transmission are then

removed from Qs.

The complexity of this feasibility test is a critical portion of the complexity of the

algorithms that implement it. Fortunately, it is straightforward to determine. For

each job waiting, regardless of where it waits, it will require um,j,p time slots to be

selected out of Tm,j, followed by rm,j,p time slots. This is linear in the number of

time slots available to each job; therefore this process is linear in the number of jobs

waiting, or O(n).

3.3 First Generated First Served

This algorithm is a simple modification to the simple first-come, first-served method

of scheduling, namely that queueing decisions need to be made before a job enters

the queue, as opposed to at time of service (i.e. after uploading is complete). This is

29

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

related to the FGFS algorithm defined by Yue (2015), but is modified to accommodate

the shared channel in addition to the shared server. Upon job arrival, the new job

is inserted into the queue where it is automatically sorted to the back, as it is the

last job to arrive. The validity of the queue is determined using Algorithm 1. If the

queue is invalid with the new job arrival, pm,j is reduced and the process repeated

until either the queue state is valid, or pm,j = 0 and the job is not offloaded.

Algorithm 2 FGFS

1: A job (m, j) is generated at time tm,j.
2: Mobile m calculates p∗m,j = arg minp Em,j,p.
3: Mobile m sends an upload request to the cloud server.
4: The cloud server inserts the job into Qc and sorts it according to am,j
5: The cloud server determines queue state using Algorithm 1
6: if queue state is valid then
7: job is accepted at the current value of pm,j
8: else
9: while pm,j > 0 and queue state is invalid do
10: pm,j = pm,j − 1
11: The cloud server determines queue state using Algorithm 1
12: end while
13: end if
14: return pm,j

FGFS evaluates the queue validity a maximum of p∗m,j times; therefore, like the

queue validity function, FGFS is also linear in the number of jobs waiting, or O(n).

3.4 Earliest Deadline First

This algorithm is very similar to FGFS, however instead of sorting the arrival into

the queue based on its arrival rate, or am,j, it is sorted based on its deadline, or

Dm,j. It is included under the premise that jobs from disadvantaged users will have

30

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

a more difficult time meeting their deadline constraints, and so for jobs with shorter

constraints, they are prioritized and therefore hopefully have a greater opportunity

to successfully offload.

Algorithm 3 EDF

1: A job (m, j) is generated at time tm,j. Mobile m calculates p∗m,j.
2: Mobile m sends an upload request to the cloud server.
3: The cloud server inserts the job into Qc and sorts it according to Dm,j

4: Execute lines 5 to 13 in Algorithm 2
5: return pm,j

Like FGFS, EDF is linear in the number of jobs waiting, or O(n).

3.5 Average Queue Energy Prioritization

One of the major drawbacks to both FGFS and EDF scheduling is their lack of

knowledge of the energy performance of the users being serviced. Both algorithms

accept jobs primarily based on the feasibility of a new arrival based on the current

jobs in the queue and the intended position of the new job in the queue. This has

several inherent flaws:

1. Unless deadlines are the intended prioritization measure - which is not the case

when attempting to achieve energy fairness - neither FGFS nor EDF provide a

means to prioritize one job over another.

2. If a new job arrives and cannot be accepted at its intended location in the queue,

it is rejected outright, regardless of whether or not another permutation of the

queue would allow it to be offloaded feasibly.

31

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

3. If a new job arrives in the queue which the system would otherwise prefer over

an existing job for any reason, there is no mechanism to remove a job from

the queue in favour of the new arrival. While this can be solved pre-emptively

by flow control methods, such as the γ-modulated algorithms derived by Yue

(2015), those methods still have an opportunity to apply the wrong level of flow

control, and have little recourse against that once committed.

AQE attempts to solve all of these problems by evaluating multiple queue positions

at each arrival, allowing what will be referred to in this paper as soft revocation - the

ability to remove jobs from the queue when it is feasible to do so - to correct previous

decisions when new information is available, and to select the optimum prioritization

of new jobs based on the information available at the time.

Algorithm 4 describes the AQE process in detail, in particular lines 7 to 27. First,

for a given job (m, j), lines 2 to 4 first allow the base job insertion algorithm to insert

the job into its initial place in the job queue. At line 7, the search through the useful

offload partitions for valid queue states begins, while lines 9 to 25 search through the

possible queue positions forward of the sorted queue position, incrementing the cur-

rent job’s queue position by manipulating its “arrival time” at line 24. The algorithm

will continue to further prioritize the newly-arrived job, moving it further ahead in

the job queue until moving farther forward will violate a deadline that cannot be re-

solved within that queue arrangement. Finally, it will remove the job from the queue

and assume it will be processed entirely locally. This algorithm allows the maximum

opportunity for a new job to be placed in the queue while avoiding an exhaustive

search of all permutations of those jobs waiting for service.

32

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Algorithm 4 AQE

1: A job (m, j) is generated at time tm,j.
2: Mobile m calculates p∗m,j = arg minp Em,j,p.
3: Mobile m sends an upload request to the cloud server.
4: The cloud server inserts the job into Qc and sorts it according to am,j
5: if |Qs|+ |Qs| < Cq then
6: pm,j = p∗m,j.
7: while pm,j > 0 do
8: Define qcn as the nth position in the channel queue Qc
9: while qcn 6= qc1 do
10: The cloud server determines queue state using Algorithm 1
11: if queue state is valid then
12: ∆E = |

∑
EA −

∑
ED|

13: add the current queue state, job settings, and associated ∆E to V
14: else
15: if all jobs in F are in FV then
16: remove all jobs in F from Qc and Qs
17: ∆E = |

∑
EA −

∑
ED|

18: add the current queue state, job settings, and associated ∆E to V
19: else
20: exit the loop and go to line 26
21: end if
22: end if
23: let an−1 be the arrival rate of qcn−1, i.e. the next job ahead of this job in

the queue
24: am,j = an−1 − δ where δ is a small value placing this job only just ahead

of the next job in the queue
25: end while
26: pm,j = pm,j − 1
27: end while
28: else
29: Perform lines 5 to 13 from Algorithm 2 without modification.
30: end if
31: The selected queue state and pm,j are chosen from V according to min ∆E ; for

those states with equal ∆E , the arrival rate closest to the original am,j is selected
32: return pm,j

33

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

The measure AQE uses to make its decisions is the difference in average job energy

between the target user class (in the case of this paper, users who suffer additional

energy costs in offloading jobs) and the most-advantaged user class, a value referred to

here as the energy delta. The absolute value is taken to discourage over-prioritization

of the target class of users. This value is used as follows.

Let V be the set of all valid, found permutations of the newest job, and EA the

set of job energies from all advantaged jobs and ED that of disadvantaged users in

the queue. Additionally, let FV be the set of all jobs with failed deadlines that are

removable from the queue under the soft revocation rules described below.

At each of the valid queue positions examined (including the fully-local “position”)

the energy delta is calculated, the queue state is captured and the value is stored in set

V ; these steps are shown in lines 17 and 18. In line 31, at the conclusion of the above

process, the queue position providing the minimal energy delta is chosen. For queue

positions that share equal energy deltas, the position closest to the original insertion

position is chosen, to again avoid over-prioritization or other poor performance.

A version of this algorithm is also possible using an EDF-style queue sorting

approach instead of FGFS, as seen in Algorithm 5.

The AQE process addresses the prioritization and queue feasibility concerns set

out at the beginning of this section. To address the inability to correct previous

decisions based on new information, the aforementioned soft revocation method is

implemented. For any queue position, previously-accepted jobs can be removed from

the queue, although this is done if and only if the following restrictions are respected:

1. the newly-arrived job can meet its deadline constraint given its position in the

current queue order;

34

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

2. the newly-arrived job is from the target (or disadvantaged) user class;

3. none of the jobs to be removed from the queue are from the target user class.

4. none of the jobs to be removed from the queue have started the offloading

process; and

5. none of the jobs to be removed from the queue will fail their deadline constraint

if processed locally starting at the time of removal from the queue.

These restrictions do require some justification. Item 1 is a fairly obvious restriction.

Items 2 and 3 serve as a simple way to ensure the target user class is prioritized.

However, it is items 4 and 5 that give this revocation process its “softness”; jobs are

only removed from the list when removing them will not differ from never having

been selected for offloading at all (outside of the increased cost of local processing,

of course, which is arguably the point of removing them). In theory, jobs could be

removed even if those restrictions were violated, but that would complicate the case

for doing so and the argument to be made for that process is less clear.

Queue size threshold

One parameter of note in the given AQE algorithms is Cq, the queue size threshold,

utilized in line 5. Below this threshold, the AQE algorithm is not utilized and the

underlying algorithm (in this case either FGFS or EDF) is relied upon wholly. This

threshold is utilized to prevent the AQE algorithm from manipulating newly-arrived

jobs in the event that the queue does not contain a sufficient number of jobs on which

to reliably base an energy-optimal decision.

The justification for this threshold comes from cases where there are two classes,

one with disadvantaged users and one with advantaged users, and the queue size

35

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Algorithm 5 AQE+EDF

1: A job (m, j) is generated at time tm,j. Mobile m calculates p∗m,j.
2: Mobile m sends an upload request to the cloud server.
3: The cloud server inserts the job into Qc and sorts it according to Dm,j

4: if |Qs|+ |Qs| < Cq then
5: while pm,j > 0 do
6: while qcn 6= qc1 do
7: The cloud server determines queue state using Algorithm 1
8: if queue state is valid then
9: ∆E = |

∑
EA −

∑
ED|

10: add the current queue state, job settings, and associated ∆E to V
11: else
12: if all jobs in F are in FV then
13: remove all jobs in F from Qc and Qs
14: ∆E = |

∑
EA −

∑
ED|

15: add the current queue state, job settings, and associated ∆E to V
16: else
17: exit the loop and go to line 23
18: end if
19: end if
20: let Dn−1 be the arrival rate of qcn−1, i.e. the next job ahead of this job in

the queue
21: Dm,j = Dn−1 − 1
22: end while
23: pm,j = pm,j − 1
24: end while
25: else
26: Perform lines 5 to 13 from Algorithm 2 without modification.
27: end if
28: The selected queue state and pm,j are chosen from V according to min ∆E ; for

those states with equal ∆E , the arrival rate closest to the original Dm,j is selected

29: return pm,j

36

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

is smaller than the ratio of bad arrivals, λB, to good arrivals, λG. In this event

it may appear that no bad arrivals have managed to enter the queue, even though

no bad arrivals have arrived recently enough to have even tried to enter the queue.

By ensuring the queue has sufficient length to provide the AQE algorithm with a

reasonable snapshot of the system, the algorithm performs significantly better. The

selection of this parameter is examined in Chapter 4.

Complexity

The complexity of this algorithm is as follows: the queue state validity check, which

is O(n), is executed up to n pm,j times. This algorithm is therefore quadratic in n

(the number of jobs waiting in the queue), i.e. O(n2).

3.6 Summary

In this chapter, a number of online scheduling options were introduced, in particular

the Average Queue Energy Prioritization method for increasing energy fairness, as

well as First Generated First Served and Earliest Deadline First for points of compar-

ison. These methods will serve as comparison points when discussing energy fairness

in Chapter 4.

37

Chapter 4

Performance Results

4.1 Overview

In this chapter, the performance of each online scheduler described in Chapter 3 is

compared to the others, in both energy fairness and overall energy performance. As

well, the performance of the schedulers for disadvantaged users is compared against

the solution of a comparable offline schedule based on the formulation described in

Chapter 2. These comparisons occur at a variety of parameters to demonstrate their

efficacy in a range of situations, as opposed to directly targeting specific applications.

In each comparison scenario, the relevant parameters used to generate those results

are given, followed by the results.

It is important to note several assumptions held throughout these results. First,

it is assumed these jobs arrive according to a Poisson arrival process, with arrival rate

λm for the mth device class. As well, it is assumed that each partition pm,j represents

processing a fraction of the units required for a fully-local or fully-offloaded job, with

38

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

pm,j = 1 as the fully-local case and pm,j = Pm,j as the fully-offloaded case, as follows:

lm,j,p = lm,j,1
Pm,j − pm,j
Pm,j − 1

(4.1)

rm,j,p = rm,j,Pm,j

pm,j − 1

Pm,j − 1
(4.2)

um,j,p = um,j,Pm,j

pm,j − 1

Pm,j − 1
(4.3)

Additionally, instead of manipulating the number of user classes present in these

results to vary the relative loads of advantaged and disadvantaged users, the relative

arrival rates of two classes are varied, one disadvantaged and one advantaged in

terms of the channel rate available to them. Accordingly, these results only contain

two user classes. The arrival rates are given as λB/(λB + λG), i.e., the fraction of the

overall arrival rate attributable to disadvantaged users. This scenario is comparable

to one with more than two user classes, still with one disadvantaged class and where

all advantaged classes are homogeneous in their channel rates, in which case the

denominator of the relative arrival rates is effectively equal to M . This change is

made to improve the clarity of the discussion of these results.

4.2 Algorithm performance

4.2.1 Channel-constrained results

These results demonstrate the feasibility of the online scheduling methods by com-

paring them to a solution of a comparable offline schedule, acting as a lower bound

on energy. This was generated by solving the formulation described in Chapter 2.

These results were generated with the parameters set out in Table 4.1.

39

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Simulation parameters

lm,j,1 267 time slots
uG 3 time slots

uB/uG 25
λB/(λB + λG) 1/8

Rm 1 time slot
Cq 10

Q l
m,j/Q

r
m,j 3

Pm,j 2

Table 4.1: Simulation parameter settings for online feasibility

For these results, deadline constraints were randomly generated such that Dm,j is

always between 1 and 1.5 times lm,j,1, so that the local processing case is always fea-

sible, but a variety of deadline constraints exist. This enables EDF to be productive,

and allows us to compare its performance to the AQE algorithm.

One parameter value to note is Rm, which is set to 1 time slot; to say it another

way, the server rate is set equal to the job size in units, resulting in a job only

ever requiring 1 time slot at the server. This server rate is 3 times higher than the

channel rate for advantaged users and more than 50 times faster than the channel

rate for disadvantaged users. This allows us to compute a simplified version of the

optimum offline schedule described in Chapter 2 by assuming the server is negligible

(an assumption validated by the average server queue length of zero shown in Figure

4.2) and therefore ignoring server time slots and their constraints entirely. This

simplification significantly reduces the overall number of constraints required to solve

the optimization problem, as explained in section 2.3.1. By making this simplification,

we have allowed the computation of that optimum offline schedule to become feasible

in a reasonable amount of time.

40

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

The table of parameters includes uB/uG, the ratio of upload rates between disad-

vantaged and advantaged users (the very metric that causes disadvantaged users to

be disadvantaged). As well, it provides λB/(λB + λG) as 1/8, which means approxi-

mately 1/8 of all jobs generated are from disadvantaged users. In these results, where

AQE is used, the channel queue cutoff is Cq = 10, for reasons described in section

4.2.2. Additionally, for these results maxPm,j = 2, i.e. only the binary offloading case

is considered; this is another simplification made to improve the feasibility of solving

the ILP, and cases with more partition options are evaluated in section 4.2.2.

Maximum device class energy

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
h
ig

h
e
s
t-

e
n
e
rg

y
 d

e
v
ic

e
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS

EDF

AQE + FGFS

AQE + EDF

ILP

Figure 4.1: Maximum user class energy vs. job generation rate

In Figure 4.1 it can be seen that the ideal online scheduler is AQE used with FGFS

41

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
v
e

ra
g

e
 c

h
a

n
n

e
l
q

u
e

u
e

 s
iz

e

0

10

20

30

40

50

60

70

FGFS

EDF

AQE + FGFS

AQE + EDF

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
v
e

ra
g

e
 s

e
rv

e
r

q
u

e
u

e
 s

iz
e

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FGFS

EDF

AQE + FGFS

AQE + EDF

Figure 4.2: Average channel (left) and server (right) queue sizes

as the backing queue sorting method at every arrival rate above 0.1; note that only

the energy of the user class with the highest per-job energy is compared here. Unlike

other prioritization schemes that work towards energy fairness, AQE achieves this

performance using only the information available from jobs currently in the queue, in

real-time.

At the lowest arrival rate shown, the optimal bound demonstrates that it is still

possible for disadvantaged users to have all jobs offloaded - while it may not be

immediately obvious, the energy value indicated here by the optimal bound is the

energy of offloading all units on the channel with no local processing at the parameters

given, although no online scheduler achieves this.

At lower arrival rates, the AQE algorithm over-corrects slightly. Figure 4.2 demon-

strates why, as the channel queue length at these arrival rates even without the AQE

algorithm enabled is rarely long enough for the algorithm to have sufficient informa-

tion to make an appropriate decision, and the parameters chosen have deliberately

pushed the server queue to 0. However, the cutoff threshold specified prevents the

AQE algorithm from performing significantly worse than doing nothing, and queue

42

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

sizes rapidly grow large enough to be meaningful. As demonstrated in section 4.2.2,

to increase the queue size threshold for improved performance at lower arrival rates

would negate the advantages of using the algorithm at higher arrival rates. A similar

effect explains the modest performance of AQE at all arrival rates when using EDF

as the backing queue sorting method.

Energy fairness

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
s
p
e
c
if
ie

d
 d

e
v
ic

e
 c

la
s
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS disadvantaged

FGFS advantaged

EDF disadvantaged

EDF advantaged

AQE + FGFS disadvantaged

AQE + FGFS advantaged

AQE + EDF disadvantaged

AQE + EDF advantaged

Figure 4.3: Comparison of online schedulers - Advantaged & disadvantaged user
energy

Figure 4.3 compares the disadvantaged users’ energy against the advantaged users’

energy. (The optimal offline scheduling value is omitted here for clarity.) AQE with

FGFS manages to reduce the difference in energy usage between advantaged and

disadvantaged users to a value less than the absolute offloading energy disadvantage

43

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

experienced by disadvantaged users, at all arrival rates. (This value is below 10% of

the lower value for most arrival rates.)

Energy fairness - AQE vs. bound

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
s
p
e
c
if
ie

d
 d

e
v
ic

e
 c

la
s
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS disadvantaged

FGFS advantaged

AQE + FGFS disadvantaged

AQE + FGFS advantaged

ILP disadvantaged

ILP advantaged

Figure 4.4: Comparison of AQE against bound

With the best online scheduler identified as AQE, the same plot as in Figure 4.3

is reproduced in Figure 4.4, this time with the redundant online schedulers removed,

and the optimal offline bound added.

While the ILP does not explicitly work towards perfect energy fairness, it achieves

something approaching fairness, and still serves as a lower bound on the individual

disadvantaged and advantaged curves for AQE. The advantage of having all informa-

tion about the system ahead of time is clear, although AQE still achieves a reasonably

44

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

close result. FGFS is included on this plot as a comparison point in contrast to the

algorithms that directly attempt to minimize the disparity between those two classes.

It is clear that AQE achieves significantly better fairness than FGFS alone.

Energy fairness vs. overall average energy

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
v
e
ra

g
e
 e

n
e
rg

y
 o

f
a
ll

d
e
v
ic

e
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS

EDF

AQE + FGFS

AQE + EDF

ILP

Figure 4.5: Comparison of online schedulers - Average user energy

Although it is the primary focus of this thesis, energy fairness is not the only cri-

terion relevant to scheduling; there is a trade-off to be made between energy fairness

and total average energy. Figure 4.5 demonstrates that where AQE (and even EDF)

manage to outperform FGFS in terms of energy fairness (the difference in per-job

energy between disadvantaged and advantaged user classes), this comes at the cost of

45

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

average energy for all users, where FGFS significantly outperforms the other sched-

ulers. The merits of choosing average energy versus energy fairness as scheduling

criteria are potentially application-specific and are not investigated in detail in this

thesis, but this plot shows that for online schedulers, one generally must be chosen

ahead of the other, as demonstrated by the large distance between FGFS and even

EDF.

Once again the bound produced by the ILP is only really a bound for the al-

gorithms that attempt to maximize fairness, but serves as a bound here for those

algorithms nonetheless.

4.2.2 Channel- and server-constrained results

With feasibility and efficacy established, it is worthwhile to further explore the AQE

algorithm, demonstrating how its parameters are best selected and further explor-

ing its strengths and weaknesses. The following results evaluate the performance of

AQE with FGFS against merely using FGFS. These results were generated with the

parameters listed in Table 4.2.

Simulation parameters

lm,j,1 267 time slots
uG 3 time slots

uB/uG 25
λB/(λB + λG) 1/8

Rm 5 time slots
Qm,j/Qm,j 3

Pm,j 5

Table 4.2: Simulation parameter settings for AQE performance evaluation

46

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

In this section, three significant changes to the parameters used in Section 4.2.1 are

made. Firstly, to demonstrate that AQE performance remains high when both chan-

nel and server resources are constrained, the server rate is reduced to 50 from 267 in

the previous section. This means the server is no longer negligible; unfortunately this

change renders the optimal offline scheduling extremely difficult to solve as described

in Chapter 2, so it has been omitted from these results. Secondly, partial offloading

of jobs is now allowed by setting max p = 5, which (as is also described in Chapter 2)

allows jobs to be split between local and remote processing in multiples of lm,j/max p.

This demonstrates that AQE is effective in more general offloading decision-making

situations, in addition to the binary decision case. Thirdly, deadlines constraints are

now fixed at Dm,j = 1.25. This is done to confirm that the advantage AQE obtains is

not attained through any effect related to variable deadline constraints. This change

renders EDF ineffective, as deadlines now differ solely based on arrival rate; however

the removal of EDF from these results is inconsequential as the AQE algorithm is

generally ineffective when used with it, as shown in previous results.

Energy fairness

Figure 4.6 demonstrates that AQE with FGFS remains highly effective, again keep-

ing the difference between disadvantaged and advantaged users below the offloading

energy disadvantage experienced by users with poor channel conditions, at all arrival

rates.

47

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
s
p
e
c
if
ie

d
 d

e
v
ic

e
 c

la
s
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS disadvantaged

FGFS advantaged

AQE + FGFS disadvantaged

AQE + FGFS advantaged

Figure 4.6: Advantaged vs. disadvantaged user energy - FGFS vs. AQE + FGFS

AQE queue size threshold

It is important to investigate the single configurable parameter related to the AQE

algorithm, Cq, which is the queue size cutoff. Using the parameters set out for this

section, Figure 4.7 demonstrates that the optimal queue size cutoff is somewhere

around 2 times the inverse of the fraction of users that are disadvantaged. Below this

point (represented by a cutoff of Cq = 5 on this graph) the algorithm will continue to

maintain approximate energy parity, but overall energy will begin to grow significantly

larger than even FGFS as altogether too many jobs are rejected. Alternately, above

the ideal cutoff point, minimal gains - mostly at lower arrival rates - can be achieved

by increasing the cutoff.

48

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Arrival rate

0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
s
p
e
c
if
ie

d
 d

e
v
ic

e
 c

la
s
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

700

FGFS disadvantaged

FGFS advantaged

AQE cutoff = 5 disadvantaged

AQE cutoff = 5 advantaged

AQE cutoff = 10 disadvantaged

AQE cutoff = 10 advantaged

AQE cutoff = 15 disadvantaged

AQE cutoff = 15 advantaged

AQE cutoff = 20 disadvantaged

AQE cutoff = 20 advantaged

Figure 4.7: Energy with various values of Cq - 1/8 disadvantaged users

Choosing a low multiple of the inverse of the fraction of users that are disadvan-

taged is a reasonable benchmark for choosing a queue size cutoff; a queue with fewer

than this number of jobs is much more likely to not contain any disadvantaged jobs

to start with, which strongly influences the algorithm to reject any advantaged job

arrivals until a disadvantaged job has been placed in the queue. If the threshold is

very low, the queue is likely at any given time to contain no jobs whatsoever, at which

point the algorithm erroneously determines that maintaining an empty queue is the

most energy-neutral option, as discussed in Chapter 3.

In order to demonstrate this connection, the parameters from section 4.2.2 were

used again, this time halving the frequency at which disadvantaged jobs are generated

relative to advantaged jobs. Figure 4.8 shows the results of varying the queue size

49

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

cutoff parameter Cq after making this modification.

Arrival rate

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
n
e
rg

y
 o

f
s
p
e
c
if
ie

d
 d

e
v
ic

e
 c

la
s
s
 (

p
e
r-

jo
b
)

0

100

200

300

400

500

600

FGFS disadvantaged

FGFS advantaged

AQE cutoff = 10 disadvantaged

AQE cutoff = 10 advantaged

AQE cutoff = 30 disadvantaged

AQE cutoff = 30 advantaged

AQE cutoff = 50 disadvantaged

AQE cutoff = 50 advantaged

Figure 4.8: Energy with various values of Cq - 1/16 disadvantaged users

With these parameters the trend is further demonstrated; where AQE works well,

its optimal queue size cutoff is somewhere around 2 times the inverse of the fraction

of users that are disadvantaged. With that inverse fraction equal to 16 as it is in that

figure, a queue size cutoff of Cq = 10 performs very poorly while a cutoff of Cq = 30

(roughly 2 times the inverse of the fraction) performs reasonably well. This figure

also demonstrates an upper limit on the queue size cutoff; with these parameters, by

a cutoff of Cq = 50, the algorithm is already significantly overcompensating at most

arrival rates.

50

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

4.3 Summary

In this section the efficacy of the AQE algorithm was demonstrated across several

combinations of parameters representing various scenarios, all of which demonstrated

that AQE achieves the best energy fairness out of the online scheduling algorithms ex-

amined. It achieves this by making decisions about job acceptance and prioritization

based only on the information available from the current job queue. This was demon-

strated against an optimal offline schedule as a lower bound on the online schedulers’

performance. The trade-off between energy fairness and average energy for all users

was also demonstrated. Finally, further work was done to explore the ideal queue

size cutoff for applying AQE, where it was shown the ideal value is connected to the

frequency of disadvantaged jobs relative to advantaged jobs.

51

Chapter 5

Conclusions and Future Work

This thesis began by introducing the area of mobile cloud computing, including its

advantages, disadvantages, challenges and potential. In particular, a volume of ex-

isting work in the field was described and evaluated to provide context to the rest of

the thesis.

Following this introduction, the system model used throughout the thesis was

introduced and detailed. This model provided a time slot-based implementation of a

constrained shared channel used to upload to a similarly-constrained shared server.

It defined the energy consumption required for processing jobs subject to deadline

constraints, within which a fixed amount of processing must be completed using some

combination of local and remote processing resources. The mechanisms for selecting

the amount of offloading to perform and the time slot schedules used to perform it

were also defined.

With the system model defined, an offline scheduler was implemented as an integer

linear optimization problem to provide an optimal offline min-max energy schedule

for a given set of jobs defined within that model. The constraints on this objective

52

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

were described in detail, and the complexity of the problem as NP-complete proven.

In addition to the optimal offline scheduler, several online scheduling algorithms

were also defined and implemented. Once a method was described for determining

the feasibility of offloading a given job, the schedulers were defined in terms of that

feasibility. In addition to First Generated First Served and Earliest Deadline First,

two algorithms based off of basic and traditional scheduling methods used exten-

sively, the Average Queue Energy Prioritization scheduling method was introduced

and described. The other online scheduling methods were used as comparison points

to demonstrate its features.

These scheduling methods were then compared using a variety of parameter set-

tings and in numerous ways, through solving of the offline optimization problem,

and through simulation of the online schedulers. These results demonstrated that

the AQE algorithm outperforms the other online scheduling algorithms evaluated, by

coming closest to the energy fairness of the offline schedules generated by the solu-

tion of the offline optimization problem. It achieves this using nothing more than the

information available from the jobs currently accepted and waiting for processing in

the queue.

There exist several opportunities to expand on this work in the future. Extending

this model further, to include multiple shared channels and/or servers, may provide

a number of potential avenues for interesting work; such work could include multiple

shared channels which are available to all devices but have different characteristics,

or a similar scenario involving the shared servers, for which an energy-fair allocation

of the users accessing those resources is still a primary concern.

53

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Another potential avenue for such future exploration is the addition of non-

negligible download requirements following server processing. It is assumed through-

out this thesis that upload requirements are far greater than download requirements,

making download requirements negligible; in an additional extension of this model,

it could be the case that download requirements are large enough to impact over-

all energy and offloading feasibility. These additional download requirements might

be processed by a separate download channel, either shared or unshared, or poten-

tially would need to be fulfilled by using time slots from the shared upload channel,

further complicating the system model and providing additional constraints on the

schedulers.

An additional opportunity for further investigation is in scenarios where some

users experience unreliable connections which prevent successful offloading even when

offloading would be feasible and desirable. Mitigation strategies, including anticipa-

tion of poor channel conditions, acceptance of the partial offloading achieved before

connection failure, and preemptive simultaneous local and remote processing, are

potential candidates for extensions of this work.

54

Bibliography

Achary, R., Vityanathan, V., Raj, P., and Nagarajan, S. (2015). Dynamic Job

Scheduling Using Ant Colony Optimization for Mobile Cloud Computing. In

R. Buyya and S. M. Thampi, editors, Intelligent Distributed Computing, num-

ber 321 in Advances in Intelligent Systems and Computing, pages 71–82. Springer

International Publishing. DOI: 10.1007/978-3-319-11227-5 7.

Adams, J., Balas, E., and Zawack, D. (1988). The Shifting Bottleneck Procedure for

Job Shop Scheduling. Management Science, 34(3), 391–401.

Aguayo, D., Bicket, J., Biswas, S., Judd, G., and Morris, R. (2004). Link-level Mea-

surements from an 802.11b Mesh Network. In Proceedings of the 2004 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, SIGCOMM ’04, pages 121–132, New York, NY, USA. ACM.

Arthur, C. (2014). Your smartphone’s best app? Battery life, say 89% of Britons.

The Guardian.

Barbarossa, S., Sardellitti, S., and Lorenzo, P. D. (2013). Joint allocation of compu-

tation and communication resources in multiuser mobile cloud computing. In 2013

55

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

IEEE 14th Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), pages 26–30.

Barbera, M. V., Kosta, S., Mei, A., and Stefa, J. (2013). To offload or not to offload?

The bandwidth and energy costs of mobile cloud computing. In 2013 Proceedings

IEEE INFOCOM, pages 1285–1293.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011). CloneCloud:

elastic execution between mobile device and cloud. In Proceedings of the sixth

conference on Computer systems, pages 301–314. ACM.

Cisco (2015). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2014–2019 - Cisco-Visual-Networking-Index-Global-Mobile-Data-Traffic-

Forecast-Update-2014–2019.pdf.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,

and Bahl, P. (2010). MAUI: making smartphones last longer with code offload.

In Proceedings of the 8th international conference on Mobile systems, applications,

and services, pages 49–62. ACM.

Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A survey of mobile cloud

computing: architecture, applications, and approaches. Wireless Communications

and Mobile Computing, 13(18), 1587–1611.

Fernando, N., Loke, S. W., and Rahayu, W. (2013). Mobile cloud computing: A

survey. Future Generation Computer Systems, 29(1), 84–106.

George, D., Stryjak, J., Meloán, M., and Castells, P. (2016). The Mobile Economy

2016. Technical report, GSMA Intelligence.

56

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Guan, L., Ke, X., Song, M., and Song, J. (2011). A Survey of Research on Mobile

Cloud Computing. In 2011 IEEE/ACIS 10th International Conference on Com-

puter and Information Science (ICIS), pages 387–392.

Huerta-Canepa, G. and Lee, D. (2010). A Virtual Cloud Computing Provider for Mo-

bile Devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing

& Services: Social Networks and Beyond, MCS ’10, pages 6:1–6:5, New York, NY,

USA. ACM.

Johnson, B. (2013). How Siri Works.

http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/siri.htm, page 3.

Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2010). Cuckoo: a computa-

tion offloading framework for smartphones. In International Conference on Mobile

Computing, Applications, and Services, pages 59–79. Springer.

Khan, A. N., Mat Kiah, M. L., Khan, S. U., and Madani, S. A. (2013). Towards

secure mobile cloud computing: A survey. Future Generation Computer Systems,

29(5), 1278–1299.

Khan, A. U. R., Othman, M., Madani, S. A., and Khan, S. U. (2014). A Survey of

Mobile Cloud Computing Application Models. IEEE Communications Surveys &

Tutorials, 16(1), 393–413.

Klein, A., Mannweiler, C., Schneider, J., and Schotten, H. D. (2010). Access Schemes

for Mobile Cloud Computing. In 2010 Eleventh International Conference on Mobile

Data Management, pages 387–392.

57

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Kosta, S., Aucinas, A., Hui, P., Mortier, R., and Zhang, X. (2012). ThinkAir: Dy-

namic resource allocation and parallel execution in the cloud for mobile code of-

floading. In INFOCOM, 2012 Proceedings IEEE, pages 945–953. IEEE.

Kruk, L., Lehoczky, J., Shreve, S., and Yeung, S.-N. (2004). Earliest-deadline-first

service in heavy-traffic acyclic networks. The Annals of Applied Probability, 14(3),

1306–1352.

Kumar, K. and Lu, Y.-H. (2010). Cloud Computing for Mobile Users: Can Offloading

Computation Save Energy? Computer, 43(4), 51–56.

Lei, L., Zhong, Z., Zheng, K., Chen, J., and Meng, H. (2013). Challenges on wireless

heterogeneous networks for mobile cloud computing. IEEE Wireless Communica-

tions, 20(3), 34–44.

Li, B., Li, J., Huai, J., Wo, T., Li, Q., and Zhong, L. (2009). EnaCloud: An Energy-

Saving Application Live Placement Approach for Cloud Computing Environments.

In IEEE International Conference on Cloud Computing, 2009. CLOUD ’09, pages

17–24.

Li, B., Liu, Z., Pei, Y., and Wu, H. (2014). Mobility Prediction Based Oppor-

tunistic Computational Offloading for Mobile Device Cloud. In 2014 IEEE 17th

International Conference on Computational Science and Engineering (CSE), pages

786–792.

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task Scheduling with Dynamic

Voltage and Frequency Scaling for Energy Minimization in the Mobile Cloud Com-

puting Environment. IEEE Transactions on Services Computing, 8(2), 175–186.

58

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Liu, Q., Jian, X., Hu, J., Zhao, H., and Zhang, S. (2009). An Optimized Solution

for Mobile Environment Using Mobile Cloud Computing. In 2009 5th Interna-

tional Conference on Wireless Communications, Networking and Mobile Comput-

ing, pages 1–5.

Ma, X., Zhao, Y., Zhang, L., Wang, H., and Peng, L. (2013). When mobile terminals

meet the cloud: computation offloading as the bridge. IEEE Network, 27(5), 28–33.

Miettinen, A. P. and Nurminen, J. K. (2010). Energy Efficiency of Mobile Clients in

Cloud Computing. HotCloud, 10, 4–4.

Namboodiri, V. and Ghose, T. (2012). To cloud or not to cloud: A mobile device

perspective on energy consumption of applications. In World of Wireless, Mobile

and Multimedia Networks (WoWMoM), 2012 IEEE International Symposium on

a, pages 1–9.

Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., and Venkatasubramanian, N.

(2013). Mobile Cloud Computing: A Survey, State of Art and Future Directions.

Mobile Networks and Applications, 19(2), 133–143.

Rong, P. and Pedram, M. (2003). Extending the Lifetime of a Network of Battery-

powered Mobile Devices by Remote Processing: A Markovian Decision-based Ap-

proach. In Proceedings of the 40th Annual Design Automation Conference, DAC

’03, pages 906–911, New York, NY, USA. ACM.

Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. (1998). Saving Portable

Computer Battery Power Through Remote Process Execution. SIGMOBILE Mob.

Comput. Commun. Rev., 2(1), 19–26.

59

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. (1999). The Remote

Processing Framework for Portable Computer Power Saving. In Proceedings of the

1999 ACM Symposium on Applied Computing, SAC ’99, pages 365–372, New York,

NY, USA. ACM.

Sanaei, Z., Abolfazli, S., Gani, A., and Buyya, R. (2014). Heterogeneity in Mo-

bile Cloud Computing: Taxonomy and Open Challenges. IEEE Communications

Surveys & Tutorials, 16(1), 369–392.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The Case for VM-

Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4), 14–23.

Schwiegeishohn, U. and Yahyapour, R. (1998). Improving first-come-first-serve

job scheduling by gang scheduling. In D. G. Feitelson and L. Rudolph, edi-

tors, Job Scheduling Strategies for Parallel Processing, number 1459 in Lecture

Notes in Computer Science, pages 180–198. Springer Berlin Heidelberg. DOI:

10.1007/BFb0053987.

Song, J., Cui, Y., Li, M., Qiu, J., and Buyya, R. (2014). Energy-traffic tradeoff co-

operative offloading for mobile cloud computing. In 2014 IEEE 22nd International

Symposium of Quality of Service (IWQoS), pages 284–289.

Valery, O., Chou, J. C., Tsao, Y., Liu, P., and Wu, J. J. (2015). A Partial Workload

Offloading Framework in a Mobile Cloud Computing Context. In 2015 IEEE 8th In-

ternational Conference on Service-Oriented Computing and Applications (SOCA),

pages 43–50.

Wan, Z., Wu, J., and Zheng, H. (2015). Utility-Based Uploading Strategy in Cloud

60

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Scenarios. In 2015 24th International Conference on Computer Communication

and Networks (ICCCN), pages 1–8.

Wang, S. and Dey, S. (2013). Adaptive Mobile Cloud Computing to Enable Rich

Mobile Multimedia Applications. IEEE Transactions on Multimedia, 15(4), 870–

883.

Xian, C., Lu, Y.-H., and Li, Z. (2007). Adaptive computation offloading for energy

conservation on battery-powered systems. In 2007 International Conference on

Parallel and Distributed Systems, volume 2, pages 1–8.

Xu, Y. and Mao, S. (2013). A survey of mobile cloud computing for rich media

applications. IEEE Wireless Commun., 20(3), 1–0.

Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., and Chan, A. (2013). A Framework for

Partitioning and Execution of Data Stream Applications in Mobile Cloud Comput-

ing. SIGMETRICS Perform. Eval. Rev., 40(4), 23–32.

Yue, J. (2015). Energy Fair Cloud Server Scheduling in Mobile Computation Offload-

ing. Master’s thesis, McMaster University.

Yue, J., Zhao, D., and Todd, T. (2014). Cloud server job selection and scheduling in

mobile computation offloading. In 2014 IEEE Global Communications Conference

(GLOBECOM), pages 4990–4995.

Zhang, W., Wen, Y., and Wu, D. O. (2013a). Energy-efficient scheduling policy

for collaborative execution in mobile cloud computing. In 2013 Proceedings IEEE

INFOCOM, pages 190–194.

61

M.A.Sc. Thesis - Jonathan Moscardini McMaster - Electrical Engineering

Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., and Wu, D. O. (2013b). Energy-

Optimal Mobile Cloud Computing under Stochastic Wireless Channel. IEEE

Transactions on Wireless Communications, 12(9), 4569–4581.

Zhang, W., Wen, Y., and Wu, D. (2015). Collaborative Task Execution in Mobile

Cloud Computing Under a Stochastic Wireless Channel. IEEE Transactions on

Wireless Communications, 14(1), 81–93.

62

	Abstract
	Acknowledgements
	Notation
	Abbreviations
	Introduction
	Overview
	MCC for energy saving
	Challenges
	Application models

	Literature review
	Mobile cloud computing
	MCC and energy efficiency
	Computation offloading
	Job scheduling

	Thesis overview and organization

	System Model and Problem Formulation
	Overview
	System model
	ILP formulation
	Complexity

	Summary

	Online Scheduling
	Overview
	Determining queue state validity
	First Generated First Served
	Earliest Deadline First
	Average Queue Energy Prioritization
	Summary

	Performance Results
	Overview
	Algorithm performance
	Channel-constrained results
	Channel- and server-constrained results

	Summary

	Conclusions and Future Work

