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Abstract 

Technical advances since 1970s in the areas of plant measurements and data archiving have 

enabled us to measure large number of process variables and record in the industrial plant 

historians.  Early stages of plant data analysis via charting have been replaced by methods 

which enable us to extract more useful information from plant data, thereby  providing 

valuable insight into plant operations.  Monitoring of plant operations needs enables us to 

assess whether production targets are met according to the schedule.  Both of these activities, 

monitoring and scheduling, are subject to uncertainties.  Uncertainty in the monitoring 

arises from the possibility that some measurements may not be accurate or that the process 

equipment has developed a fault.  Uncertainty in scheduling is caused by variations in the 

length of time required to complete individual tasks in the multi-step production system. 

This Thesis deals with both of the above aspect.  The first part introduces novel process 

monitoring and fault diagnosis methods which have been developed to extract useful 

information from highly correlated process variables.  The second part focuses on modeling 

and optimizing manufacturing processes impacted by many uncertainties, which necessitates 

statistical techniques. 

Multivariate statistical process monitoring (MSPM) techniques developed in this 

research extract useful information from a large number of highly correlated process 

variables and historical data sets. In order to capture the non-Gaussian features and 

relationships between input and output variables, a new quality relevant non-Gaussian latent 

subspace projection method is proposed by adopting the high-order statistics of mutual 

information for searching the latent directions within input and output spaces, respectively.  

Moreover, to monitor quality related operational performance of nonlinear batch processes, a 

novel multiway kernel based quality relevant non-Gaussian latent subspace projection 

method is developed.  Furthermore, a new probabilistic graphical model based network 

process monitoring has been developed for the identification of the root-cause variable. 

     Modeling of uncertainties in production times and scheduling under such uncertainties 

are subject of the research in the second part of this Thesis.  The Bayesian network models 

are proposed for accurate estimation of the production loads and the total production times in 

manufacturing processes.  The proposed models are applied to schedules for steelmaking 

continuous casting production.  Continuous casting scheduling is a difficult optimization 
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problem due to a large number of binary variables that are needed to represent exactly 

process characteristics in the optimization model.  To solve the scheduling problems, a new 

two-level algorithm and parallel simulated annealing methods are developed.  Moreover, the 

proposed algorithm is extended to a multi-objective evolutionary algorithm in order to 

optimize simultaneously multiple objectives.  Real life steel production process data have 

been used to examine the effectiveness of all the above proposed algorithms.  
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Chapter 1 Introduction 
Recently, the physical systems of manufacturing plants have become increasingly 

complex and large-scale due to the complex combination of a large number of different 

components.  Since these components are developed individually often by many different 

technicians, even for skilled persons it is extremely difficult to understand the behavior of 

such large and complex integrated systems.  Meanwhile, rapid development of measurement, 

automation, computing and database technologies have enabled many companies to record a 

huge number of process variables in industrial plant historians, which makes it possible to 

conduct data-driven approach for automatically extracting useful information from such big 

data.  In this thesis, several applications of data-driven methods in making sense of 

industrial process data are discussed. 

  The first part in this thesis focuses on process monitoring and fault diagnosis which 

have been developed to extract useful information from highly correlated process variables. 

Process monitoring and fault diagnosis techniques are becoming critically important in order 

to improve product quality, yields, energy efficiency, plant safety and eco sustainability 

[1][2].  The approaches to process monitoring, fault diagnosis and process analysis fall into 

the two categories, which are the model based and the data-driven techniques [3]. 

Model-based process monitoring methods may be applicable only if the accurate mechanistic 

models of processes can be developed [4][5].  However, those first-principle models require 

in-depth knowledge about processes and also it is difficult and time consuming to build 

precise mechanistic models for large-scale complex industrial plants. Conversely, the 

data-driven monitoring techniques have become increasingly attractive because they do not 

require in-depth fundamental knowledge and mechanistic models but instead depend on the 

historical process data only.  Traditionally, univariate statistical process control (SPC) has 

been applied for process monitoring.  Nevertheless, most SPC methods are based on control 

charts of individual or non-correlated process variables and thus the highly correlated process 

variables in industrial plants can cause the failure of conventional SPC methods.  

Multivariate statistical process monitoring (MSPM) techniques have been developed to 

extract useful information from a large number of highly correlated process variables and 

historical data sets.  Two widely used methods in MSPM fileds are principal component 

analysis (PCA) and partial least square (PLS).  These methods can identify the statistical 

model within the low-dimensional subspace that retains most of the variance or covariance 

structure.  Then the statistics such as T2 and SPE are developed for monitoring multivariate 
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process data [6].  These PCA/PLS-based process monitoring techniques are based on 

second-order statistics of covariance and thus they may not effectively extract the 

non-Gaussian process features that are characterized by the higher-order statistics.  In 

industrial processes, however, process data often obey non-Gaussian distribution so that the 

PCA/PLS-based process monitoring methods cannot efficiently extract the process features.  

In order to handle non-Gaussian processes, independent component analysis (ICA) has been 

applied to project multivariate process data into latent subspace of statistically independent 

component (IC).  Since ICs are assumed to be non-Gaussian, they retain the non-Gaussian 

process features that may not be effectively extracted in PCA/PLS methods.  Moreover, the 

ICA-based statistics like I2 and SPE are developed for monitoring non-Gaussian process data 

[7].  Nevertheless, if the variations in the process measurement variables are most influential 

on product quality variables, the ICA-based process monitoring methods may not be well 

suited because they do not take into consideration the quality variables in the PLS-based 

monitoring techniques. 

Once a fault is detected, all the above MSPM methods can make contribution plots to 

identify the major fault effect variables without process knowledge. However, the 

contribution methods are not able to detect the root causes of faulty operations, while they 

can find the variables which are affected by the root cause variables.  Therefore, in order to 

identify the cause-effect relationship and the direction of the fault effect, signed directed 

graph (SDG) and improved version of SDG have been developed [8][9][10].  However, 

these methods are able to identify candidate faults that the prior fault database includes and 

thus it is challenging to diagnosis faulty events that the prior fault database does not contain.  

More recently, Granger causality methods are proposed in order to identify the cause-effect 

relationship among process variables and capture the root cause of plant oscillation [11]. 

Nevertheless, it cannot explain whether the calculated Granger causality comes from process 

upset or not.  Alternatively, causal maps that are based on directed graphs are employed to 

identify the cause-effect relationships by using the Kullback-Leibner distance [12]. 

However, this method requires in-depth process knowledge to make the fault propagation and 

hence it may not work well when the propagation pathways are difficult to identify due to the 

lack of process knowledge.  Furthermore, the cross-correlation function [13] and the transfer 

entropy [14] are utilized to identify the fault propagation pathways.  While these two 

methods do not require any process knowledge, the cross-correlation and transfer entropy can 

express relationship between two process variables only and thus it cannot model more 

intricate dependencies including over three variables.  For these reasons mentioned above, it 
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is very challenging to identify the root-cause relationship and the fault propagation pathways 

without in-depth process knowledge. 

The second part in this thesis addresses the scheduling under uncertain production 

times.  Knowledge of the production times is crucial for optimal operations of real world 

industrial systems.  The approaches to predict the production times can fall into the two 

categories, which are based on mechanistic model or data-driven techniques.  Mechanistic 

models require in-depth process knowledge and cannot take into account uncertainties that 

exist in the process.  Meanwhile, data-driven approaches do not require in-depth knowledge 

about processes and they are able to deal with the process uncertainties.  While some 

advanced machine learning methods such as support vector regression and random forest 

regression may be able to predict the production time, these methods do not consider model 

uncertainties and cannot handle missing values and unobserved variables.  Furthermore, it is 

mandatory to have multiple specific models for specific purpose, e.g. for production planning 

or for scheduling.  In order to overcome these limitations, Bayesian network models are 

useful in terms of having single prediction model for predicting production time with 

uncertainties.  Bayesian network allows us to handle the complicated interaction among 

process variables and uncertainties.  However, real-world industrial production data often 

have large domain of discrete variables and continuous variables simultaneously, which 

makes it difficult to estimate probability distributions of the production time. In this paper, 

most likely steel-plate production times are computed via Bayesian network. 

In addition, the computed production times can be utilized to optimize the schedules 

for steelmaking continuous casting (SCC) production.  In general, SCC production 

scheduling problems should determine charge sequencing in each casting machine (first level 

scheduling) and timing of the charges on continuous casting machines (second level 

scheduling).  While the second level scheduling has been studied by several research groups, 

few studies have dealt with the first level scheduling since it is intractable to solve the first 

level scheduling of the SCC processes for a long time horizon.  Furthermore, scheduling of 

continuous casting requires simultaneously minimization of the contaminated cost between 

charges, tardiness with respect to the customer due dates and violation of process capacities.  

While various kinds of multi-objective optimization algorithms have been proposed, most of 

them are population based algorithms which may not be suitable for sequence optimization 

problems like SCC mainly because combinations of the solutions rarely generate better 

solutions particularly for sequence optimization problems. 
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1.1 Research outline 

The main objective of this thesis is to develop the date-driven methods for process 

monitoring, fault detection and scheduling. 

Chapter 2. The first achievement of this thesis is to propose a new Quality Relevant 

non-Gaussian Latent Subspace Projection (QNGLSP) method for industrial process 

monitoring and fault detection by taking into consideration both process measurement and 

quality variables.  In order to capture the non-Gaussian features and relationships between 

input and output variables, the developed QNGLSP method employs mutual information for 

searching the latent directions within input and output spaces, respectively.  The utility and 

performance of the new QNGLSP method are demonstrated through the application example 

of the Tennessee Eastman Chemical process.  This work has lead to the publication in 

AIChE Journal [15]. 

Chapter 3. The second contribution is to extend the QNGLSP method to nonlinear kernel 

feature space for monitoring quality related operational performance of nonlinear batch 

processes.  Since batch process data typically have three-dimensional structure of batches, 

sampling instances and measurement variables, they are unfolded into two-dimensional 

matrices through multi-way analysis for handling batch trajectories.  Then, the kernel 

principal components are extracted from the unfolded data sets to characterize the nonlinear 

process dynamics in the high-dimensional kernel feature space.  Finally, the multi 

dimensional latent directions in the kernel-principal-components subspaces are searched so 

that the mutual information between measurement and quality variables is maximized.  The 

proposed method is applied to the fed-batch Penicillin fermentation process.  This work has 

lead to the publication in Journal of Process Control [16]. 

Chapter 4. The next achievement of this work is the development of a data-driven structure 

learning algorithm that can construct the probabilistic graphical model for the identification 

of the fault propagation pathways and the root cause variables.  The proposed method does 

not require in-depth process knowledge. Instead, the most probable probabilistic graphical 

model is constructed from historical process data as well as the process measurement 

incidence matrix, which requires very little knowledge about the process.  First, the 

incidence matrix is created from the process flow diagram.  Based on the constructed 

incidence matrix, a set of monitored variables is broken into smaller subsets.  Then the 
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subgraph corresponding to each subset is searched from the historical process data both by 

maximizing Bayesian scores and by implementing the Markov chain Monte Carlo simulation.  

The proposed probabilistic graphical model based process monitoring method is applied to 

the Tennessee Eastman Chemical process.  This work has led to the publication in 
Computers and Chemical Engineering [17]. 

Chapter 5 and 6. In addition to process monitoring, fault detection and fault diagnosis, 

data-driven techniques for predicting the production times in manufacturing processes are 

developed.  Accurate estimation of the production times is essential ingredient for optimal 

production plants and schedules.  This work presents a new inference algorithm in Bayesian 

networks with large domain discrete variables that enables: 

1 Estimation of the probability distributions of production times in order to handle various 

sources of uncertainties. 

2 Dealing with unobservable variables, because it is desirable to have a single model and 

avoid multiple models that meet with specific problems. 

     The network inference algorithm presented in Chapter 4 is utilized to construct most 

likely structure of the Bayesian network representing a complex manufacturing process.  

Since Bayesian networks constructed in the real-world industrial processes often contain 

large domain discrete variables and continuous variables simultaneously, inference technique 

based on the decision-tree structured conditional probability tables (CPTs) is proposed.  

This work has led to a publication in Expert Systems With Applications [18] and Computers 

and Chemical Engineering [19]. 

Chapter 7. The next accomplishment is the development of the optimization algorithm for 

SCC scheduling of steel-plate production by making use of the most likely production times 

computed via Bayesian network mentioned in chapter 6.  The main difficulty to solve this 

scheduling problem is a large number of binary variables that are needed to represent 

accurately the process when a full space model mixed-integer linear programming (MILP) is 

used.  Therefore, I proposed a decomposition approach where the full space model is 

divided into two levels: (i) top level which determines the number of pots per grade for each 

day by solving the relaxed MILP that does not consider the sequence related penalties and (ii) 

lower level which optimizes the cast sequence by means of meta-heuristic methods.  This 
work has led to a publication in Computers and Chemical Engineering [20] 
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Chapter 8. The final accomplishment deals with multi-objective evolutional algorithms 

derived from non-dominated sorting genetic algorithm NSGA-II for steel-plate production 

schedules mentioned in chapter 7.  In order to generate a large diverse Pareto optimal set, 

the cut-and-paste and copy-and-paste tranposons are employed as genetic operators.  Real 

world steel production process data have been used to examine the effectiveness of the 

proposed algorithm.  This work is submitted to the AIChE journal for peer review. 

Chapter 9. Finally, the main conclusions of this work and future research suggestions are 

described in chapter 9. 
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Partial least-squares (PLS) method has been widely used in multivariate statistical process monitoring field. The goal of
traditional PLS is to find the multidimensional directions in the measurement-variable and quality-variable spaces that
have the maximum covariances. Therefore, PLS method relies on the second-order statistics of covariance only but does
not takes into account the higher-order statistics that may involve certain key features of non-Gaussian processes. More-
over, the derivations of control limits for T2 and squared prediction error (SPE) indices in PLS-based monitoring
method are based on the assumption that the process data follow a multivariate Gaussian distribution approximately.
Meanwhile, independent component analysis (ICA) approach has recently been developed for process monitoring, where
the goal is to find the independent components (ICs) that are assumed to be non-Gaussian and mutually independent by
means of maximizing the high-order statistics such as negentropy instead of the second-order statistics including var-
iance and covariance. Nevertheless, the IC directions do not take into account the contributions from quality variables
and, thus, ICA may not work well for process monitoring in the situations when the quality variables have strong influ-
ence on process operations. To capture the non-Gaussian relationships between process measurement and quality varia-
bles, a novel projection-based monitoring method termed as quality relevant non-Gaussian latent subspace projection
(QNGLSP) approach is proposed in this article. This new technique searches for the feature directions within the
measurement-variable and quality-variable spaces concurrently so that the two sets of feature directions or subspaces
have the maximized multidimensional mutual information. Further, the new monitoring indices including I2 and SPE sta-
tistics are developed for quality relevant fault detection of non-Gaussian processes. The proposed QNGLSP approach is
applied to the Tennessee Eastman Chemical process and the process monitoring results of the present method are dem-
onstrated to be superior to those of the PLS-based monitoring method. VC 2013 American Institute of Chemical Engi-

neers AIChE J, 60: 485–499, 2014

Keywords: quality relevant process monitoring, fault detection, non-Gaussian latent subspace projection, partial least
squares, independent component analysis, multidimensional mutual information

Introduction

Process monitoring, fault detection and diagnosis are gain-
ing significant attention for the rapid detection of abnormal
operation, process upsets, equipment malfunctions, sensor
failures, and other special events in industrial plants to
improve plant safety, product quality, energy efficiency, and
profit margin.1–3 Recently, owing to the fast development of
measurement, automation, and advanced computing technol-
ogies, a huge number of process variables can be frequently
measured and recorded in industrial plant historians, which
make it possible to conduct data-driven large-scale process
monitoring and fault diagnosis. Meanwhile, effective process
monitoring plays a critical role in ensuring product quality,
operation safety, and manufacturing sustainability.

The approaches to process monitoring, fault detection and
diagnosis fall into the two categories, which are the model-

based and the data-driven techniques.4 Model-based process
monitoring methods may be applicable only if the accurate
mechanistic models of processes can be developed.5–7 How-
ever, those first-principle models require in-depth knowledge
about processes and also it is difficult and time consuming
to build precise mechanistic models for large-scale complex
industrial plants. Conversely, the data-driven monitoring

techniques have become increasingly attractive because they

do not require in-depth fundamental knowledge and mecha-

nistic models but instead depend on historical process data

only. Traditionally, univariate statistical process control

(SPC) has been applied for process monitoring. Nevertheless,

most SPC methods are based on control charts of individual

or noncorrelated process variables and, thus, the highly cor-

related process variables in industrial plants can cause the

failure of conventional SPC methods.8

Multivariate statistical process monitoring (MSPM) techni-
ques have been developed to extract useful information from
large number of highly correlated process variables and his-
torical data sets.9–15 Two popular latent variables methods in
MSPM field are principal component analysis (PCA) and
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partial least squares or projection to latent structure
(PLS).16–24 The major advantages of these methods include
their strong capability to deal with the colinearity among dif-
ferent process variables and identify the statistical model
within a lower-dimensional latent subspace that well retains
the multivariable correlation structure. Then the statistics
such as T2 and squared prediction error (SPE) are proposed
for extracting the critical features of process data for fault
detection and diagnosis.25,26 Furthermore, the total projection
to latent structures (T-PLS) method is proposed for process
monitoring.27 Compared to conventional PLS method that is
based on regression models, T-PLS approach can separate
the orthogonal and correlated parts to the quality variable
and, thus, is proven to be more suitable for process monitor-
ing and fault detection. The conventional PCA/PLS-based
process monitoring techniques are based on the second-order
statistics of covariance only but do not take into account the
higher-order statistics. Hence, they may not effectively
extract the non-Gaussian process features that are character-
ized by the higher-order statistics, even though PCA and
PLS models do not require Gaussian distribution explicitly.
Moreover, the derivations of T2 and SPE control limits in
PCA/PLS-based process monitoring methods are based on
the assumption that the process data follow a multivariate
Gaussian distribution approximately.28 In industrial proc-
esses, however, operating condition shifts are often encoun-
tered due to the changes of various factors such as

feedstock, product specification, set points, and manufactur-

ing strategy.29 Such operating condition changes often result

in non-Gaussian probability distribution of process data. As

an alternative solution, eigenvalue decomposition on the

covariance matrices of process measurement variables is uti-

lized to determine the dissimilarity factor between the nor-

mal and the monitored data sets.30 Nevertheless, this method

suffers from the same issue as PCA/PLS-based monitoring

methods that only the second-order statistics are taken into

account and, thus, the non-Gaussian process features may

not be efficiently extracted.

To deal with non-Gaussian processes, independent compo-
nent analysis (ICA) has been applied to project multivariate
process data into latent subspace of statistically independent
components (IC).31–37 ICs are assumed to be non-Gaussian
and mutually independent based on high-order statistics and
they retain the non-Gaussian process features that may not
be effectively extracted in traditional PCA/PLS methods.
Moreover, the ICA-based statistics like I2 and SPE are devel-
oped for detecting faulty operation.38 More recently, multidi-
mensional mutual information is adopted to measure the
statistical independency between IC subspaces and further
determine the dissimilarity factors between the normal
benchmark and the monitored data sets for process monitor-
ing and fault detection.39 This method takes into considera-
tion not only the high-order statistics but also the time-
varying process dynamics. However, if the variations in the
process measurement variables are most influential on prod-
uct quality variables, the above ICA-based monitoring tech-
niques may not be well suited because only the process
measurement variables are utilized in the developed statisti-
cal models while the product quality variables are excluded.
In other words, they do not take into account the quality var-
iables as in the PLS-based monitoring methods. Another
non-Gaussian process monitoring technique is based on
Gaussian mixture models (GMM) that decompose the

process data into multiple Gaussian components with differ-
ent means and covariances corresponding to various opera-
tional conditions and modes.40 In this way, the globally non-
Gaussian process data can be characterized as mixture mod-
els of different Gaussian components and then the Bayesian
inference strategy can be developed to incorporate multiple
local models for fault detection.37 Furthermore, Gaussian
mixture model can be updated by adopting particle filter
strategy to take into account the dynamic changes of operat-
ing scenarios.41 In addition, an ensemble clustering-based
process pattern construction method and multiple ICA-PCA
model-based multimode process monitoring technique are
developed for operating mode identification and fault detec-
tion.42 Due to the clustering algorithm as well as the integra-
tion of PCA and ICA methods, both Gaussian and non-
Gaussian process features in the multimode operating data
can be captured. However, the non-Gaussian process moni-
toring methods still do not utilize output variables especially
product quality variables and, thus, the detected abnormal
operating events may not be relevant to any degradations of
product quality or losses of other operational objectives such
as energy efficiency and sustainability.

Alternately, supervised learning techniques such as Fisher
discriminant analysis (FDA) and support vector machine
(SVM) have been developed for chemical process monitor-
ing.43,44 FDA approach can identify multiple classes with
both maximized between-class separation and minimized
within-class scattering. FDA may become well suited only if
the subset of data in each class do not have significant
within-class multimodality. To overcome this limitation, the
localized Fisher discriminant analysis (LFDA) has recently
been proposed for process monitoring and fault detection.45

Nevertheless, the performance of LFDA depends on the way
of calculating a similarity matrix and, thus, the best selection
of similarity matrix in LFDA algorithm is very important.
Conversely, SVM can perform nonlinear classification by
maximizing separating margin between support vector hyper-
planes. However, all these methods are based on supervised
learning models and, thus, require known class labels of all
the training samples, which may not be realistic for indus-
trial applications. To overcome this limitation, support vector
clustering (SVC)-based probabilistic approach is proposed
for unsupervised process monitoring.46 Different from SVM,
SVC has ability to classify the unlabeled training samples
and, thus, known class labels are not needed in advance.
Nevertheless, the above supervised and unsupervised moni-
toring methods typically do not include the output quality
variables in the classification models and, thus, are not qual-
ity relevant either.

In this study, a novel output quality variable relevant non-
Gaussian latent subspace projection method is proposed to
monitor complex chemical processes that follow non-
Gaussian distributions. Both the process measurement and
product quality variables are used to extract the non-
Gaussian subspaces for monitoring the abnormal behaviors
in process operations that have significant influence on prod-
uct quality. The basic idea is to estimate the non-Gaussian
loading matrices of both process measurement and product
quality variables, respectively, so that the mutual information
between latent scores of measurement and quality variables
is maximized. In this way, the proposed method can identify
the feature directions in the measurement-variable and
quality-variable spaces concurrently to retain the maximized
statistical dependency between two latent subspaces. With
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the quality relevant non-Gaussian latent variable model, I2

and SPE indices are further proposed and compared for pro-
cess monitoring and fault detection. In contrast to PLS-based
monitoring methods, the proposed approach utilizes the
high-order statistics of mutual information instead of the
second-order statistics of covariance and, thus, can well
extract the non-Gaussian features from process data. Mean-
while, compared to ICA, GMM or supervised learning-based
monitoring approaches, both process measurement and out-
put quality variables are included in the non-Gaussian model
of the presented method so that the latent directions within
input and output spaces are concurrently searched for with
optimized mutual information.

The remainder of the article is organized as follows.
“Review of PLS and ICA-Based Process Monitoring Meth-
ods” section briefly reviews the PLS and ICA-based monitor-
ing technique and discusses the issues of these conventional
methods. “Quality Relevant non-Gaussian Latent Subspace
Projection Approach for Process Monitoring” section
describes the proposed quality relevant non-Gaussian latent
subspace projection (QNGLSP) approach and the corre-
sponding monitoring indices for capturing abnormal process
operations. “Application Example” section demonstrates the
utility and performance of the new process monitoring
approach through the application example of the Tennessee
Eastman Chemical process and its comparison to the PLS-
based monitoring method. Finally, the conclusions of this
work are summarized in “Conclusions” section.

Review of PLS and ICA-Based Process
Monitoring Methods

PLS-based process monitoring method

PLS handles high-dimensional correlated data by finding
the multidimensional latent directions in both the
measurement-variable and quality-variable spaces with the
maximum covariance. Given an input matrix
X5 x1; x2;…; xm½ � 2 <n3m consisting of n samples along m
process measurement variables and an output matrix
Y5 y1; y2;…; yk

� �
2 <n3k along k quality variables, they are

decomposed onto low-dimensional subspaces as follows

X5TPT1E (1)

Y5TQT1F (2)

where T5 t1; t2;…; td½ � 2 <n3d is the score matrix,
P5 p1; p2;…; pd½ � 2 <m3d is the loading matrix for X,
Q5 q1; q2;…; qd½ � 2 <k3d is the loading matrix for Y, E 2
<n3m denotes the residual matrix for X, F 2 <n3k represents
the residual matrix for Y, and d is the selected number of
latent variables in PLS model. The basic idea of PLS is to
determine the score matrix T and the loading matrices P and
Q from X and Y through the nonlinear iterative partial least-
squares (NIPALS) algorithm.47

Given a new test sample x, its corresponding prediction
and residual vectors are given as follows

Score : t5xP (3)

Prediction : x̂5xPPT (4)

Residual : e5x Im2PPT
� �

(5)

where Im is a m 3 m identity matrix. The following PLS-
based T2 and SPE statistics are used as the measures of

variations in the latent variable and residual subspaces for
process monitoring

T25t
1

n21
TTT

� �21

tT (6)

SPE 5eeT (7)

where the confidence limits for T2 and SPE statistics can be
estimated from F and v2 distributions, respectively.14

ICA-based process monitoring method

PLS is based on the covariance between the score vectors
of the measurement and quality variables, respectively. How-
ever, it does not take into account the high-order statistics
and, thus, may not be well suited in extracting the non-
Gaussian features from process data. In contrast, ICA is
developed for non-Gaussian process monitoring on the basis
of high-order statistics. It is essentially a multivariate statisti-
cal technique for computing ICs that are assumed to be non-
Gaussian and mutually independent.48 Given the input matrix
X5 x1; x2;…; xm½ � 2 <n3m, all the process measurement vari-
ables are assumed to be generated as linear combinations of
m unknown ICs

XT5AST (8)

where A5 a1; a2;…; ad½ � 2 <m3d is unknown mixing matrix
and S5 s1; s2;…; sd½ � 2 <n3d represents the IC matrix. The
solution is equivalent to finding a demixing matrix
W5 w1;w2;…;wd½ �T 2 <d3m as follows

ST5WXT (9)

where the ICs S5 s1; s2;…; sd½ � have the maximized statistical
independency in terms of negentropy among each other.49,50

Given a new test sample vector x, its corresponding IC
score, prediction, and residual vectors are given below

IC Score : y5xWT (10)

Prediction : x̂5xWTAT (11)

Residual : e5x Im2WTAT
� �

(12)

Further, the I2 and SPE statistics can be defined as follows
for process monitoring38

I25yyT (13)

SPE 5eeT (14)

where the confidence limits for I2 and SPE statistics can be
estimated through kernel density estimation (KDE).51

Quality Relevant Non-Gaussian Latent Subspace
Projection Approach for Process Monitoring

The basic idea of PLS approach is to optimize the loading
matrices P and Q from the input and output data matrices X

and Y by means of the NIPALS algorithm. The embedded
optimization problem in PLS is defined as

max w wPLS
i ; cpls

i

� 	
5cov tPLS

i ;uPLS
i

� �
5cov Xiw

PLS
i ;Yic

PLS
i

� �
s:t: jjwPLS

i jj51; jjcPLS
i jj51

(15)

where w wPLS
i ; cPLS

i

� �
is the objective function wPLS

i and cPLS
i

are the weighting vectors, and cov tPLS
i ;uPLS

i

� �
denotes the
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covariance between the score vectors tPLS
i and uPLS

i . It
should be noted that the weighting vector wPLS

i also corre-
sponds to the i-th eigenvector of the matrix XTYYTX.52 If
process data follow Gaussian distribution, the joint Gaussian
density function pG of v5 v1;…; vM½ � can be described as
follows

pG vð Þ5f vjl;Rð Þ5 1

2pð ÞM=2jRj1=2
exp 2

1

2
v2lð ÞTR21 v2lð Þ


 �

(16)

where v represents the combined input and output variables,
l denotes a M-dimensional mean vector, and R is a M3M
covariance matrix. As Eq. 16 indicates, if data are normal-
ized to zero-mean, pG vð Þ is parameterized by the second-
order statistic of covariance only. Therefore, PLS is able to
capture the characteristic relationship between process mea-
surement and quality variables if process data follow Gaus-
sian distribution approximately.

However, PLS-based monitoring methods may not be well
suited if process data follow significantly non-Gaussian dis-
tribution because the joint density function cannot be
adequately characterized by the second-order statistics of
covariance only. Specifically, the joint density function p vð Þ
of non-Gaussian data with up to fifth-order statistics can be
expressed through Edgeworth expansion as53

p vð Þ � pG vð Þ



11
1

3!

X
i;j;k

ji;j;khijk vð Þ1 1

4!

X
i;j;k;l

ji;j;k;lhijkl vð Þ

1
1

72

X
i;j;k;l;p;q

ji;j;kjl;p;qhijklpq vð Þ
�

(17)

where pG vð Þ denotes the Gaussian density function with the
same mean and covariance as p vð Þ, i; j; kð Þ, i; j; k; lð Þ, and
i; j; k; l; p; qð Þ 2 1;…;Mf g are the input dimensions, hijk, hijkl,

and hijklpq are the ijk-th, ijkl-th, and ijklpq-th Hermite poly-

nomials ji;j;k5 jijk

rirjrk
is the standardized cumulant with jijk

being the cumulant for input dimension i; j; kð Þ, and

ji;j;k;l5 jijkl

rirjrkrl
is the standardized cumulant with jijkl being

the cumulant for input dimension i; j; k; lð Þ. Since non-

Gaussian probability density function p vð Þ includes the

higher-order statistics instead of covariance only, PLS may

not efficiently extract the non-Gaussian process features of

measurement variables that contain sufficient information on

product quality variables. Thus, PLS-based monitoring meth-

ods may not be effective in detecting abnormal events of

non-Gaussian processes.
In ICA method, ICs are calculated by using the mutual

information between the measurement variables and the

high-order statistics are taken into account for extracting

non-Gaussian process features. However, it does not incorpo-

rate output quality variables in data analysis and, thus, may

not specifically isolate the abnormal variations of process

measurement variables that have significant influence on

product quality variables.
Due to the above technical challenges, the new QNGLSP

method is developed for non-Gaussian process monitoring

with output quality variables incorporated. The basic idea of

QNGLSP approach is to find the multidimensional latent

directions in the measurement-variable and quality-variable

spaces concurrently so that the maximized multidimensional

mutual information between measurement and quality spaces

is obtained. It should be noted that mutual information is a

quantitative measure of statistical dependency between two

random variables and can be estimated from information

entropy. Compared to covariance, it is essentially high-order

statistics and, thus, is able to extract the non-Gaussian pro-

cess features.
Given an input matrix X5 x1; x2;…; xm½ � 2 <n3m with n

samples and m process measurement variables and an output
matrix Y5 y1; y2;…; yk

� �
2 <n3k with k quality variables,

the data matrices are first normalized to zero-mean and unit-
variance and then decomposed onto low-dimensional subspa-
ces as follows

X5SPT 1 E (18)

Y5SQT 1 F (19)

where S5 s1; s2;…; sd½ � 2 <n3d denotes the score matrix,
P5 p1; p2;…; pd½ � 2 <m3d is the loading matrix for X,
Q5 q1; q2;…; qd½ � 2 <k3d is the loading matrix for Y, E 2
<n3m is the residual matrix for X, F 2 <n3k is the residual
matrix for Y, and d is the number of latent variables. The
initial objective in the proposed QNGLSP algorithm is to
find weighting vectors w and c from the deflated X and Y

for each pair of score vectors through the following con-
strained optimization problem

max I si; uið Þ5I Xiwi;Yicið Þ (20)

subject to jjwjji51; jjcjji51 (21)

where I si; uið Þ represents the mutual information between the
score vectors si and ui. The mutual information I si; uið Þ can
be expressed as

I si; uið Þ5H uið Þ2H uijsið Þ
5H sið Þ2H sijuið Þ
5H si; uið Þ2H uijsið Þ2H sijuið Þ (22)

where H uið Þ is the marginal entropy, H uijsið Þ is the condi-
tional entropy, and H si; uið Þ is the joint entropy defined as

H uið Þ52

ð
ui

f uð Þlog f uð Þdu (23)

H uijsið Þ52

ð
si

ð
ui

f s; uð Þlog
f ujsð Þ
f s; uð Þ dsdu (24)

H ui; sið Þ52

ð
si

ð
ui

f s; uð Þlog f u; sð Þdsdu (25)

The above complex integrals for mutual information are
difficult to calculate analytically. Therefore, a numerical
optimization method termed as Nelder–Mead algorithm is
instead adopted to solve this problem through nonconstraint
nonlinear heuristic optimization procedure.54 It should be
noted that the normalization step of wi and ci are added in
the numerical iterations to handle the constraints in Eq. 21.
Moreover, the objective function in the mutual information-
based optimization problem may have strong nonlinearity
and multipeak feature, which can potentially lead to local
optimal solution instead of global optimum. To overcome
this issue, the multistart optimization strategy is used.

After the extraction of the weighting vectors wi and ci, the
score vectors si and ui can be computed as follows

si5Xiwi (26)
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ui5Yici (27)

Then, loading vectors pi and qi are estimated as

pi5XT
i si=sT

i si (28)

qi5YT
i si=sT

i si (29)

With the obtained loading vectors, the matrices X and Y

can be deflated as follows

Xi115Xi2sip
T
i and Yi115Yi2siq

T
i (30)

However, wi does not relate si to the original input data
matrix X directly. Thus, a decomposition matrix R5 r1;½
r2;…; rd� is defined below

r15w1 (31)

and

ri5
Yi21

j51

Im2wjp
T
j

� 	
wi i � 2 (32)

Then, score matrix S can be computed from original input
matrix X as follows

S5XR (33)

The searching strategy of latent directions in the proposed
QNGLSP method is illustrated in Figure 1. It can be
observed that both the input and output data are projected
onto the first feature directions within the input and output
spaces to obtain the scores s1 and u1. Both directions are
searched in such a way that the marginal entropy H u1ð Þ that
equals the amount of information in u1 is maximized while
the conditional entropy that equals the amount of ambiguity
in u1 given s1 is minimized. Equivalently, the mutual infor-
mation I s1; u1ð Þ between the score vectors s1 and u1 is maxi-
mized. The remaining score vectors can be estimated in the
same fashion through iterative procedure.

After all the loading and score vectors are obtained, it is
necessary to sort the two sets of latent directions correspond-
ing to the input and output spaces, respectively. The marginal
entropies of score vectors are used to rearrange the column
vectors of the score and decomposition matrices S and R.
With all the sorted latent variables, the number of components
pi and qi for concurrent subspace projections needs to be
selected to achieve the best monitoring performance. If the
numbers of components are too small, the projected subspaces

Figure 1. Illustration of the proposed QNGLSP method.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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do not contain sufficient non-Gaussian features for quality rel-
evant fault detection. On the contrary, if too many components
are chosen, then the formed subspaces may include irrelevant
or redundant information that can degrade the sensitivity of
monitoring statistics to faults. In QNGLSP method, the num-
bers of latent variables d is chosen so that the first d column
vectors of the full score and decomposition matrices
S5 s1; s2;…; sm½ � and R5 r1; r2;…; rm½ � satisfy the following
marginal entropy-based criteriaXd

i51
H sið ÞXm

i51
H sið Þ

> � (34)

and Xd

i51
H rið ÞXm

i51
H rið Þ

> � (35)

where � is the predefined threshold value and set to 0.95 in
this work. Thus, the loading matrices P and Q, score matrix
S, and decomposition matrix R consisting of d latent varia-
bles can be extracted as

P5 p1; p2;…; pd½ � 2 <m3d (36)

Q5 q1; q2;…; qd½ � 2 <k3d (37)

R5 r1; r2;…; rd½ � 2 <m3d (38)

S5 s1; s2;…; sd½ � 2 <n3d (39)

Given a new test sample vector x, the corresponding

score, prediction, and residual vectors are computed as

follows

Score : s5xR (40)

Prediction : x̂5xRPT (41)

Residual : e5x I2RPT
� �

(42)

In multivariate statistical process monitoring, two types

of statistics are widely used for fault detection. One is the

D statistic for monitoring the systematic part of process

variations, whereas the other is the Q statistic for monitor-

ing the residual part of process variations. As described in

“Review of PLS and ICA-Based Process Monitoring Meth-

ods,” section PLS-based fault detection methods use T2

and SPE indices, whereas ICA-based methods adopt I2

and SPE statistics. In QNGLSP-based monitoring method,

I2 and SPE indices are proposed for quality relevant fault

detection as follows

I25sL21sT (43)

SPE 5eeT

5x I2RPT
� �

I2PRT
� �

xT (44)

where L is the diagonal matrix with the variances of differ-

ent column vectors of S being the diagonal entries.
As it is assumed that the latent variables may follow non-

Gaussian distribution, the control limits of the proposed indi-

ces are estimated from kernel density estimation strategy.51

Let D1;D2;…;Dnð Þ be a set of observations from an

unknown probability density function f. Then f can be esti-

mated by kernel density estimator as follows

f̂ Dð Þ5 1

nh

Xn

i51

K
D2Di

h

� �
(45)

where D represents the I2 or SPE index, h is the kernel win-
dow width, and K denotes the Gaussian kernel function

K uð Þ5 1ffiffiffiffiffiffi
2p
p e 21

2
u2ð Þ (46)

with u being an arbitrary data point. After a probability den-
sity function is estimated, the corresponding point with
cumulative density function value at 12a is the control limit
under the confidence level of 12að Þ3100%.

The step-by-step numerical procedure of the proposed
QNGLSP method is listed in Table 1, whereas the con-
strained nonlinear optimization algorithm for maximizing the
mutual information between input and output latent variables
is shown in Table 2.

Application Example

Tennessee Eastman chemical process

In this study, the Tennessee Eastman Chemical process is
used to examine the effectiveness of the proposed quality

Table 1. Step-by-Step Procedure of the Proposed Quality

Relevant Non-Gaussian Latent Subspace Projection Method

(1) Form X and Y by filling missing entries with zeros and then
scale X and Y to zero mean and unit variance.

(2) Set counter i ( 1
(3) Set Xi ( X and Yi ( Y

(4) Take random initial vectors wi and ci of unit norm
(5) Solve the following constrained nonlinear optimization problem

(Details of optimization algorithm are given in Table 2)

maximize I si; uið Þ5I Xiwi;Yicið Þ

subject to jjwjji51; jjcjji51

(6) Calculate si and ui

si 5Xiwi

ui 5Yici

(7) Calculate pi and qi

pi 5XT
i si=sT

i si

qi 5YT
i si=sT

i si

(8) Residual deflation for the available entries only:

Xi11 ( Xi2sip
T
i

Yi11 ( Yi2siq
T
i

(9) Set i ( i 1 1 and return to (4) until i5imax

(10) Calculate the decomposition vector ri

ri5w1 i51ð Þ

ri5
Yi21

j51

Im2wjp
T
j

� 	
wi i � 2ð Þ
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relevant non-Gaussian process monitoring method. The pro-
cess flow diagram of the Tennessee Eastman Chemical pro-
cess is shown in Figure 2 and this process includes five
major unit operations, which are a chemical reactor, a prod-
uct condenser, a vapor-liquid separator, a recycle compres-

sor, and a product stripper.55 This process produces two
liquid products, G and H, along with a byproduct of F from
four gaseous reactants A, C, D, and E. An inert B is fed into
the chemical reactor where G and H are formed. There are
total 41 measurement variables and 12 manipulated variables

Table 2. Step-by-Step Procedure of Constrained Nonlinear Optimization Algorithm for Searching Non-Gaussian Latent

Directions

(1) Set multi-loop counter l ( 1
(2) Make a simplex which is a special polytope of m1k11 vertices corresponding to

w
1ð Þ lð Þ

i w
2ð Þ lð Þ

i … w
vð Þ lð Þ

i … w
m1k11ð Þ lð Þ

i

c
1ð Þ lð Þ

i c
2ð Þ lð Þ

i … c
vð Þ lð Þ

i … c
m1k11ð Þ lð Þ

i

2
4

3
5

(3)

Normalize w
vð Þ lð Þ

i and c
vð Þ lð Þ

i

w
vð Þ lð Þ

i 5w
vð Þ lð Þ

i =jjw vð Þ lð Þ
i jj 8v

c
vð Þ lð Þ

i 5c
vð Þ lð Þ

i =jjc vð Þ lð Þ
i jj 8v(3)

Determine the updated vertex v0 and its steps Dw, Dc by the Nelder–Mead method
(4)

Update w
v0ð Þ lð Þ

i and c
v0ð Þ lð Þ

i

w
v0ð Þ lð Þ

i 5w
v0ð Þ lð Þ

i 1Dw

c
v0ð Þ lð Þ

i 5c
v0ð Þ lð Þ

i 1Dc(5)

Return to (3) until w
vð Þ lð Þ

i and c
vð Þ lð Þ

i are converged. If converged, set w
lð Þ

i 5w
vð Þ lð Þ

i , c
lð Þ

i 5c
vð Þ lð Þ

i and go to (6)
(6)

Set l ( l 1 1 and return to (2) until l5lmax

(7) Choose the optimal wi and ci as follows:

lopt 5 argmax l I Xiw
lð Þ

i ;Yic
lð Þ

i

� 	

wi 5wlopt

ci 5clopt

Figure 2. Process flow diagram of the Tennessee Eastman Chemical process.
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in the process. Moreover, there are 20 predefined abnormal
operating events and six different operating conditions in the
Tennessee Eastman Chemical process, as shown in Tables 5
and 6. The process involves a plant-wide decentralized con-
trol implementation with different feedback control loops.56

For process monitoring purpose, 22 continuous measure-
ment variables and nine manipulated variables are selected
as input variables, which are listed in Table 3. Meanwhile,
as listed in Table 4, 19 composition variables that are meas-
ured through either off-line lab analysis or on-line analyzers
are used as output quality variables in the process monitoring

framework. The sampling time of both input and output vari-
ables are set to 0.25 h. Two subsets of training data with
1440 normal samples in each set are generated from operat-
ing modes 1 and 3, respectively. Then the combined normal
data set of 2880 samples is used to build the QNGLSP
model for process monitoring and fault detection. In this
work, the normalized multivariate kurtosis of process data is
used to quantitatively measure process non-Gaussianity. The
value of normalized multivariate kurtosis of the training data
set generated from different operating modes is 747, which
is significantly larger than zero. Therefore, it can be inferred
that the process data generated from two different operating
modes follow a non-Gaussian probability distribution.

Furthermore, three test cases containing various types of
predefined process faults are designed to compare the moni-
toring performance of the PLS and the proposed QNGLSP
methods. It should be noted that the other existing techni-
ques such as PCA, ICA, GMM, and supervised classification
methods are not chosen for methodology comparison in the
application example because all these monitoring methods
do not include product quality variables as output variables
in model development and data analysis while PLS and
QNGLSP approaches take into account both process mea-
surement and product quality variables concurrently. The
detailed test scenarios are shown in Table 7 and all these

Table 3. Input Variables of the Tennessee Eastman Chemical

Process

Variable No. Variable Description

1 A Feed (stream 1)
2 D feed (stream 2)
3 E feed (stream 3)
4 A and C feed (stream 4)
5 Recycle flow (stream 8)
6 Reactor feed RATE (stream 6)
7 Reactor pressure
8 Reactor level
9 Reactor temperature
10 Purge rate (stream 9)
11 Product Sep Temp
12 Product Sep level
13 Product Sep pressure
14 Product Sep underflow (stream 10)
15 Stripper level
16 Stripper pressure
17 Stripper underflow (stream 11)
18 Stripper Temp
19 Stripper steam flow
20 Compressor work
21 Reactor coolant Temp
22 Separator coolant Temp
23 D feed flow (stream 2)
24 E feed flow (stream 3)
25 A feed flow (stream 1)
26 A and C feed flow (stream 4)
27 Purge value (stream 9)
28 Separator pot liquid flow (stream 10)
29 Stripper liquid product flow (stream 11)
30 Reactor cooling water flow
31 Condenser cooling water flow

Table 4. Output Quality Variables of the Tennessee Eastman

Chemical Process

Variable No. Variable Description

1 Component to A to reactor
2 Component to B to reactor
3 Component to C to reactor
4 Component to D to reactor
5 Component to E to reactor
6 Component to F to reactor
7 Component A in purge
8 Component B in purge
9 Component C in purge
10 Component D in purge
11 Component E in purge
12 Component F in purge
13 Component G in purge
14 Component H in purge
15 Component D in product
16 Component E in product
17 Component F in product
18 Component G in product
19 Component H in product

Table 5. Predefined Faults of the Tennessee Eastman Chemi-

cal Process

Fault ID. Fault Description

IDV(1) Step in A/C feed ratio, B composition constant
IDV(2) Step in B composition, A/C ratio constant
IDV(3) Step in D feed temperature (stream 2)
IDV(4) Step in reactor cooling water inlet temperature
IDV(5) Step in condenser cooling water inlet temperature
IDV(6) A feed loss (step change in stream 1)
IDV(7) C header pressure loss (step change in stream 4)
IDV(8) Random variation in A1C feed composition (stream 4)
IDV(9) Random variation in D feed temperature (stream 2)
IDV(10) Random variation in C feed temperature (stream 4)
IDV(11) Random variation in reactor cooling water

inlet temperature
IDV(12) Random variation in condenser cooling water

inlet temperature
IDV(13) Slow drift in reaction kinetics
IDV(14) Sticking reactor cooling water valve
IDV(15) Sticking condenser cooling water valve
IDV(16) Unknown disturbance
IDV(17) Unknown disturbance
IDV(18) Unknown disturbance
IDV(19) Unknown disturbance
IDV(20) Unknown disturbance

Table 6. Six Operation Modes of the Tennessee Eastman

Chemical Process

Operating
Mode

G/H
Mass
Ratio Production Rate (stream 11)

1 50/50 7038 kg/h G and 7038 kg/h H
2 10/90 1408 kg/h G and 12669 kg/h H
3 90/10 10,000 kg/h G and 1111 kg/h H
4 50/50 Maximum
5 10/90 Maximum
6 90/10 Maximum
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cases include both normal and different type of faulty opera-
tions. In the first test case, the process begins with normal
operating condition from the first through the 40-th samples.
Then the fault of C header pressure loss occurs at the 41-st
sample and remains until the 100-th sample, after which the
process returns to normal operation. From the 161-st sample,
the fault of increased random variation in condenser cooling
water inlet temperature takes place with the duration of 40
samples. For the second test scenario, the process fault of
step change in condenser cooling water inlet temperature
happens after the initial period of normal operation and lasts
45 samples. Then the process operation is back to normal

condition and remains for 30 samples before a new fault of
sticking valve of reactor cooling water flow occurs. In the
more complex third test case, the faulty operation of C
header pressure loss happens from the 71-st through 100-th
samples. Then the operational status returns to normal before
the second fault of increased random variations of condenser
cooling water inlet temperature takes place from the 141-st
through 200-th samples. After the process is operated under
normal condition for another 50 samples, the third fault of
sticking valve of reactor cooling water flow occurs between
the 251-st and 300-th samples. The proposed I2 and SPE
indices in the QNGLSP method are compared to the T2 and
SPE statistics of the PLS method for fault detection in the
three test cases.

Comparison of process monitoring results

After the QNGLSP model is built from normal training
data with both input and output variables, it is important to
select the number of non-Gaussian latent variables for input
and output subspace projections. In the proposed approach,
marginal entropy-based strategy is utilized to determine the
best number of latent directions to be retained. For the train-
ing set, the individual and cumulative percentages of the
marginal entropy of the sorted latent variables vs. the num-
ber of variables are shown Figure 4. Based on the proposed
selection criteria, total 13 latent variables that contain over
95% of the marginal entropy is chosen. As shown in Figure
3, total 5 variables that cover over 95% of the variance are
selected in PLS model. Figures 5 and 6 show the scatter
plots of process data along the first vs. the second and the
first vs. the third latent variables in the PLS and QNGLSP
methods. It can be readily observed that the process data do
not follow Gaussian distribution. In addition, as the training

Table 7. Three Test Cases of the Tennessee Eastman Chemi-

cal Process

Case No. Test Scenario

1 Normal operation from the 1-st to 40-th samples
C header pressure loss from the 41-st to 100-th samples
Normal operation from the 101-st to 160-th samples
Random variation in condenser cooling water inlet

temperature from the 161-st to 200-th samples
2 Normal operation from the 1-st to 55-th samples

Step change in condenser cooling water inlet temperature
from the 56-th to 100-th samples

Normal operation from the 101-st to 130-th samples
Sticking reactor cooling water valve from the

131-st to 200-th samples
3 Normal operation from the 1-st to 70-th samples

C header pressure loss from the 71-st to 100-th samples
Normal operation from the 101-st to 140-th samples
Random variation in condenser cooling water inlet

temperature from the 141-st to 200-th samples
Normal operation from the 201-st to 250-th samples
Sticking valve of reactor cooling water flow from

the 251-st to 300-th samples

Figure 3. Trend plot of the individual percentage (bar)
and cumulative percentage (solid line) of var-
iance of PLS-based latent variables.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 4. Trend plot of the individual percentage (bar)
and cumulative percentage (solid line) of
marginal entropy of QNGLSP-based latent
variables.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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data are generated from multimode process operation, most
of the variations of the training data are due to different
operating modes and captured by the first latent variable.
Therefore, the variances of the remaining latent variables
become significantly smaller than that of the first latent vari-
able, as shown in Figures 3 and 5.

In the first test case, the normal operation of the plant is
mixed with two different types of faults, which are C header
pressure loss from the 41-st to 100-th samples and increased
random variation in condenser cooling water inlet tempera-
ture from the 161-st to 200-th samples. The process monitor-

ing results of the proposed QNGLSP method including I2

and SPE indices and the PLS method including T2 and SPE
statistics are compared in Figure 7. Meanwhile, the fault
detection rates and false alarms rates of different indices in
the two methods are listed in Tables 8 and 9. It can be seen
that the QNGLSP-based I2 and SPE indices detect abnormal
operating events with fairly high fault detection rates of over
99.0% while low false alarm rates of only 1.25% and 0.50%,
respectively. In contrast, the PLS-based monitoring method
does not result in satisfactory performance as the T2 index
can capture only 39.75% of faulty samples, although the

Figure 5. Scatter plots of process data along (a) the first vs. the second and (b) the first vs. the third latent varia-
bles of the PLS method.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Scatter plots of process data along (a) the first vs. the second and (b) the first vs. the third latent varia-
bles of the proposed QNGLSP method.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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SPE index leads to 97.75% fault detection rate. Such results
reveal that the proposed QNGLSP method can well extract
non-Gaussian process features from measurement and quality
variables and, thus, the proposed I2 and SPE indices are able
to detect process faults accurately with minimum number of
false alarms triggered. The specific comparison between PLS
and QNGLSP monitoring results shows that the I2 index has

much higher fault detection accuracy than the T2 index while
the QNGLSP-based SPE statistic has a litter better fault
detection rate than the PLS-based SPE index. As for the
overall fault detection rates, both PLS and QNGLSP meth-
ods lead to the detection of over 99% of the abnormal opera-
tions with either T2 or SPE index exceeds the corresponding
control limit.

Figure 7. Monitoring results of PLS and QNGLSP methods in the first test case of the Tennessee Eastman Chemi-
cal process.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 8. Comparison of Fault Detection Rates (%) of Three Test Cases in the Tennessee Eastman Chemical Process

Method Fault Detection Rate (%)

PLS QNGLSP

Number of Latent Variables
5 (95% of Variance) 8 (99% of Variance) 13 (95% of Entropy)

Statistics T2 SPE T2 SPE I2 SPE

Case 1 39.75 97.75 41.25 87.50 99.75 99.75
Case 2 85.00 64.13 89.13 45.65 98.91 98.26
Case 3 64.64 83.57 71.79 78.39 98.57 96.79
Average 63.13 81.82 67.39 70.51 99.08 98.27
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In the second test case, the plant operation includes nor-
mal condition along with two different types of faults, which
are a step change in condenser cooling water inlet tempera-
ture from the 56-th to 100-th samples and increased random
variation in sticking valve of reactor cooling water flow
from the 131-st to 200-th samples. The process monitoring
results of PLS and QNGLSP methods are shown in Figure 8,
and Tables 8 and 9. It can be seen that the QNGLSP-based

I2 and SPE indices are able to accurately alarm the faulty
operations with the high fault detection rates of 98.91 and
98.26%, respectively. In comparison, the PLS-based T2 and
SPE statistics lead to the fault detection rates of only 85.00
and 64.13%, respectively. Therefore, the QNGLSP method
has significantly stronger capability to capture different types
of process faults than the PLS method. The main reason of
the superior performance of QNGLSP method is due to its

Table 9. Comparison of False Alarm Rates (%) of Three Test Cases in the Tennessee Eastman Chemical Process

Method Fault Detection Rate (%)

PLS QNGLSP

Number of Latent Variables
5 (95% of Variance) 8 (99% of Variance) 13 (95% of Entropy)

Statistics T2 SPE T2 SPE I2 SPE

Case 1 1.75 0.50 1.00 0.75 1.25 0.50
Case 2 0.59 0.59 0.29 1.17 1.17 0.59
Case 3 1.09 0.47 0.94 0.62 1.25 1.09
Average 1.14 0.52 0.74 0.85 1.01 0.73

Figure 8. Monitoring results of PLS and QNGLSP methods in the second test case of the Tennessee Eastman
Chemical process.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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mutual information rather than covariance-based objective
function in searching for the optimal latent directions. In this
way, the obtained latent subspace can efficiently extract and
retain the non-Gaussian features for enhanced fault detection
capacity. It should be noted that, compared to the first test
case, the PLS-based T2 statistic is more sensitive but the
SPE index is less sensitive to the fault in this case. It implies
that this fault affects the systematic part of process variations
more than the residual part in the PLS model while it affects
both the systematic and residual parts of process variations
in the proposed QNGLSP model. In addition, the overall
fault detection rate of the proposed QNGLSP method reaches
100.00% as either I2 or SPE index exceeds its corresponding
control limit, whereas the overall detection rate of PLS
method is only 89.78%.

The last test case includes a complex operating scenario
with three types of process faults that are mixed into normal
operation. The abnormal operating events are C header pres-
sure loss from the 71-st to the 100-th samples, increased ran-
dom variation in condenser cooling water inlet temperature
from the 141-st to 200-th samples and sticking valve of

reactor cooling water flow from the 251-st to 300-th sam-
ples. The fault detection results of the various statistics from
QNGLSP and PLS methods are shown in Figure 9. Mean-
while, the quantitative comparison of fault detection rates
and false alarm rates are given in Tables 8 and 9. One can
readily observe that the fault detection rate of T2 statistic of
PLS method is only 64.64%, which is lower than that of the
QNGLSP-based I2 index (98.57%). Meanwhile, the PLS-
based SPE index also yields lower fault detection rate
(83.57%) than that of the QNGLSP-based SPE statistic
(96.79%). These comparisons verify that the proposed
QNGLSP method has better monitoring performance and
fault detection capability than the conventional PLS method.
Furthermore, the overall fault detection rate of the PLS
method is only 85.36%, whereas the proposed QNGLSP
method leads to the overall detection rate of 99.11%, where
either I2 or SPE statistic exceeds its corresponding control
limit.

In the above comparison, five latent variables that contain
over 95% of the variance are selected in the PLS model. To
investigate the effectiveness of an increase of the number of

Figure 9. Monitoring results of PLS and QNGLSP methods in the third test case of the Tennessee Eastman Chemi-
cal process.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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latent variables in PLS model, eight latent variables that con-
tain over 99% of the variance are also selected and exam-
ined. The quantitative comparison of fault detection and
false alarm rates are shown in Tables 8 and 9. It can be seen
that the fault detection rates of T2 and SPE statistics of PLS
model that contains over 99% variance are still worse than
those of the proposed QNGLSP method in all test cases.

Conclusions

In this article, a new QNGLSP method is proposed for
chemical process monitoring and fault detection by taking
into account both process measurement and quality variables.
To capture the non-Gaussian features and relationships
between input and output variables, the proposed QNGLSP
method adopts the high-order statistics of mutual information
instead of the second-order statistics of covariance for
searching the latent directions within input and output
spaces, respectively. Then, the multistart optimization proce-
dure is designed to identify the optimal feature directions
iteratively with nonlinear multipeak function handling capa-
bility. Furthermore, I2 and SPE indices are developed to
detect process faults within non-Gaussian latent variable and
residual subspaces. Different from the PCA or ICA-based
monitoring techniques, the presented QNGLSP method has
the inherent model structure of combining process measure-
ment and quality variables. Meanwhile, this new approach
relies on mutual information-based objective function and,
thus, can effectively extract the non-Gaussian features in
latent subspaces, which cannot be achieved in the PLS-based
monitoring method.

The proposed QNGLSP method is compared to the con-
ventional PLS method in the three test cases of the Tennes-
see Eastman Chemical process with different operating
modes. The monitoring results demonstrate that the
QNGLSP-based I2 and SPE indices are superior to the PLS-
based T2 and SPE indices in terms of more accurate fault
detection. Future research will focus on extending the new
QNGLSP approach for nonlinear batch or semibatch proc-
esses monitoring as well as taking into account the dynamic
nature of process data.
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a  b  s  t  r  a  c  t

Multiway  kernel  partial  least  squares  method  (MKPLS)  has  recently  been  developed  for  monitoring  the
operational  performance  of  nonlinear  batch  or semi-batch  processes.  It  has  strong  capability  to  handle
batch  trajectories  and  nonlinear  process  dynamics,  which  cannot  be  effectively  dealt  with  by  traditional
multiway  partial  least  squares  (MPLS)  technique.  However,  MKPLS  method  may  not  be  effective  in captur-
ing  significant  non-Gaussian  features  of  batch  processes  because  only  the  second-order  statistics  instead
of  higher-order  statistics  are  taken  into  account  in  the underlying  model.  On  the  other  hand,  multiway  ker-
nel  independent  component  analysis  (MKICA)  has  been  proposed  for nonlinear  batch  process  monitoring
and  fault  detection.  Different  from  MKPLS,  MKICA  can  extract  not  only  nonlinear  but  also  non-Gaussian
features  through  maximizing  the  higher-order  statistic  of negentropy  instead  of  second-order  statistic
of  covariance  within  the  high-dimensional  kernel  space.  Nevertheless,  MKICA  based  process  monitoring
approaches  may  not  be well  suited  in many  batch  processes  because  only process  measurement  vari-
ables  are  utilized  while  quality  variables  are  not  considered  in  the multivariate  models.  In this  paper,
a  novel  multiway  kernel  based  quality  relevant  non-Gaussian  latent  subspace  projection  (MKQNGLSP)
approach  is proposed  in order  to monitor  the  operational  performance  of  batch  processes  with  nonlinear
and  non-Gaussian  dynamics  by combining  measurement  and  quality  variables.  First,  both  process  mea-
surement  and quality  variables  are  projected  onto  high-dimensional  nonlinear  kernel  feature  spaces,
respectively.  Then,  the  multidimensional  latent  directions  within  kernel  feature  subspaces  correspond-
ing  to measurement  and  quality  variables  are  concurrently  searched  for  so  that  the  maximized  mutual
information  between  the  measurement  and quality  spaces  is obtained.  The  I2 and  SPE monitoring  indices
within  the  extracted  latent  subspaces  are  further  defined  to capture  batch  process  faults  resulting  in
abnormal  product  quality.  The  proposed  MKQNGLSP  method  is  applied  to  a fed-batch  penicillin  fermen-
tation  process  and  the  operational  performance  monitoring  results  demonstrate  the  superiority  of  the
developed  method  as  apposed  to the MKPLS  based  process  monitoring  approach.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Batch and semi-batch processes have been widely used to
produce low-volume but high-value-added products in polymer,
pharmaceutical, semiconductor, materials, food, biotechnology,
and agricultural industries. In order to improve product qual-
ity, plant safety, energy efficiency, environmental sustainability
and economic profit, effective process performance monitoring is
becoming critically important and have received significant atten-
tion in academia and industry. During batch process operation,
even small process variations may  have substantial impact on the
final product quality, yields, production efficiency, environmental

∗ Corresponding author. Tel.: +1 9055259140x27702; fax: +1 9055211350.
E-mail  address: jieyu@mcmaster.ca (J. Yu).

sustainability, etc. While it is possible to detect defective products
in batch or semi-batch processes by tracking final product qual-
ity, it cannot prevent the abnormal operating events and avoid the
wasted batches. Therefore, it is highly desirable to conduct on-
line monitoring throughout batch operation so as to detect and
resolve process faults in early stage [50,9,49,43]. On the other hand,
nowadays most industrial plants are fully instrumented with large
number of sensors and analyzers, which enable data-driven process
performance monitoring and diagnosis.

The traditional process monitoring, fault detection and diagno-
sis methods are based on first-principle process models. However,
the reliability of monitoring approaches heavily depends on the
accuracy of the mechanistic models, which require in-depth pro-
cess knowledge and analysis. Moreover, it can be very tedious
and time-consuming to develop mechanistic models of complex
processes [33,3,13]. Alternately, multivariate statistical process
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monitoring (MSPM) techniques have been widely applied to both
continuous and batch processes with many successful applica-
tions. Typical MSPM approaches can capture variable correlations
and then transform the original process measurement space into
the latent-variable subspace based on historical operating data
[32,30,35,8,31,38,34,39–41].  Two popular MSPM methods, princi-
pal component analysis (PCA) and partial least squares (PLS), have
been intensively used to monitor and diagnose the performance
of different types of processes. Both methods can handle vari-
able collinearity and project process data onto lower-dimensional
latent subspace that retains most of the operational information
based on variance or covariance. Then the T2 and SPE indices are
utilized to isolate abnormal events from normal process opera-
tion [20,26,2,7,54]. Nevertheless, batch process data typically have
three-dimensional structure while the regular PCA and PLS meth-
ods can only handle two-dimensional data matrices. Therefore,
multiway principal component analysis (MPCA) and multiway
partial least squares (MPLS) techniques are developed to handle
three-dimensional batch process data [30,42,27,14]. Furthermore,
the dynamic model-based process monitoring technique is pro-
posed to characterize variable dynamics of batch processes [10].
This method filters process data through a multivariate autoregres-
sive model before performing PCA so as to capture the dynamic
behavior of process variables. However, batch and semi-batch pro-
cesses are often characterized with strong nonlinearity so that
MPCA/MPLS based process monitoring approaches may  not be
effective in detecting abnormal operations because both methods
are essentially based on multivariate linear models [51,44].

In  order to tackle process nonlinearity, kernel principal com-
ponent analysis (KPCA) is developed as an extension of regular
PCA method for nonlinear process monitoring and diagnosis
[21,22,25,28]. The high-dimensional kernel feature space enables
KPCA method with the capability of extracting nonlinear process
characteristics. Furthermore, multiway kernel partial least squares
(MKPLS) approach is developed for batch process monitoring by
capturing the covariance structure between measurement and
quality variables in high-dimensional kernel feature space [12].
Different from KPCA, KPLS has the inherent input–output model
structure through combining process measurement and quality
variables. Nevertheless, KPCA and KPLS techniques rely only on
second-order statistics within kernel feature space and thus may
not effectively extract all non-Gaussian features from batch pro-
cesses that are characterized by higher-order statistics such as
entropy and mutual information. Meanwhile, the validity of the sta-
tistical confidence limits of T2 and SPE indices in PLS model relies
on the assumption that the process data follow Gaussian distribu-
tion approximately. Such requirement may  not be satisfied when
the normal operating data are of significant non-Gaussianity.

Alternately, independent component analysis (ICA) method is
employed to project multivariate process data onto latent sub-
space consisting of statistically independent components (IC).
[18,1,23,6,11,15,17].  The basic idea of ICA is to maximize the higher-
order statistics such as negentropy, which can not only de-correlate
the process data but also reduce statistical dependencies among
the extracted latent variables. Thus, ICA can effectively capture
non-Gaussian process features [24]. Moreover, kernel indepen-
dent component analysis (KICA) method is developed to deal with
nonlinear dynamics for process monitoring [53]. First, principal
components are computed from process data in high-dimensional
kernel feature space by performing KPCA. Then, ICA is utilized
to search for the latent directions within the kernel-principal-
components subspace so as to identify process nonlinearity and
non-Gaussianity. KICA can be integrated with multiway analysis
to handle three-dimensional data set for batch process monitor-
ing and fault detection [36]. In addition, the kernel independent
scores from KICA model can be directly utilized as the inputs of

support  vector machine (SVM) in order to diagnosis process faults
[52]. However, the above ICA based techniques may  not be appro-
priate for quality-relevant batch process monitoring because the
underlying ICA models do not incorporate quality variables as
outputs. Thus, the detected abnormal operating events may  not
cause any product quality degradations during batch operation
and can trigger many unnecessary fault alarms in the monitor-
ing systems. More recently, multiway Gaussian mixture model
(MGMM)  is developed to characterize non-Gaussian features and
monitor operational performance of multi-phase batch processes
[48,55]. Gaussian mixture model consists of multiple Gaussian
components corresponding to different operating phases through-
out batch operation and can be applied to batch processes with
multiple phases and shifting dynamics [46,47]. Furthermore, the
Gaussian mixture model is extended to nonlinear kernel feature
space for monitoring complex processes that involve nonlinear
dynamics within each local operating mode or phase [45]. Nev-
ertheless, the above GMM  based process monitoring approaches
still do not take into consideration product quality variables and
thereby they may  not specifically identify abnormal operating
events that cause deteriorated product quality throughout batch
operation.

In this study, a novel multiway kernel based quality relevant
non-Gaussian latent subspace projection (MKQNGLSP) method is
developed to monitor quality related operational performance of
nonlinear batch processes. First, three-dimensional batch process
data are unfolded into two-dimensional matrices through multi-
way analysis for handling batch trajectories. Then, kernel principal
components of measurement and quality variables are extracted
to form high-dimensional feature spaces, respectively. The non-
Gaussian multidimensional latent directions corresponding to
measurement and quality variables within kernel-principal-
component subspaces are further estimated through maximizing
mutual information between measurement and quality variables.
Thus, the MKQNGLSP based SPE and I2 indices along with the cor-
responding confidence limits are derived to capture non-Gaussian
process abnormalities of nonlinear batch operation. Different from
MKPLS, the presented MKQNGLSP approach is based upon the
high-order statistic of mutual information instead of the second-
order statistic of covariance so that the non-Gaussian relationships
between measurement and quality variables can be well identified.
Moreover, the MKQNGLSP model includes measurement and qual-
ity variables so that the quality relevant process monitoring can
be conducted to detect faults with significant influences on final
product quality.

The  organization of the rest of the article is as follows. Sec-
tion 2 briefly reviews the multiway KPCA (MKPCA), multiway
KICA (MKICA), MKPLS based batch process monitoring techniques.
Section 3 describes the proposed multiway kernel based quality
relevant non-Gaussian latent subspace projection approach for
monitoring nonlinear batch processes. In 4, the presented method
is applied to the example of fed-batch penicillin fermentation pro-
cess and the superiority of the MKQNGLSP method as apposed to
MKPCA, MKICA and MKPLS approaches is demonstrated. Finally,
the conclusions are provided in Section 5.

2.  Preliminary

KPCA, KICA and KPLS methods can deal with the nonlinearly
correlated multi-dimensional data through the kernel projec-
tion of measurement data onto the high-dimensional feature
space. While the purpose of KPCA and KICA is to maximize the
second-order statistic of variance and higher-order statistic of
negentropy among the projected measurement variables, respec-
tively, KPLS aims to obtain the maximized covariance between
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the projected measurement and quality variables. Given b batches,
s sampling instants for each batch, vm measurement variables,
and vq quality variables, batch process data can be expressed as
three-dimensional matrices X ∈ Rb×vm×s and Y ∈ Rb×vq×s for mea-
surement and quality variables, respectively. Since KPCA, KICA and
KPLS can deal with two-dimensional data matrices only, the batch
process data need to be unfolded into two-dimensional matri-
ces X ∈ Rn×vm and Y ∈ Rn×vq with n = sb. Alternatively, the batch
process  data can also be unfolded into two-dimensional matrices
X′ ∈ Rb×vms and Y′ ∈ Rb×vqs [21]. For on-line monitoring, however,
the  alternate unfolding strategy requires that test data should be
completed until the end of each batch and hence variable trajec-
tory needs to be estimated. In addition, this method may  suffer
from computational difficulty because the number of batches, b,
is typically smaller than the product of the number of samples
and variables vms. Therefore, the unfolded matrices X ∈ Rn×vm and
Y ∈ Rn×vq are employed for KPCA, KICA, KPLS and the proposed
monitoring method in this study.

2.1. Multiway kernel PCA

X  can be mapped into high-dimensional feature space F through
a nonlinear function � ∈ Rm as follows

� : xj ∈ Rvm → �(xj) ∈ F (1)

where xj is the jth row vector of X. Then, the covariance matrix of
the mapped data can be expressed as follows

C = 1
n

n∑
j

�(xj)
T�(xj) (2)

where �(xj) is assumed to be mean-centered. Thus the principal
components in the kernel feature space can be computed by finding
eigenvectors of C. Instead of solving eigenvalue problem directly,
the following eigenvalue decomposition is applied

K�i = �in�i (3)

where �i = [˛i1 ˛i2. . .˛in]T ∈ Rn is the orthogonal eigenvector
corresponding to the ith largest positive eigenvalues �i and K ∈
Rn×n is the kernel gram matrix defined as

K = �(X)�(X)T (4)

with �(X) = [�(x1)T �(x2)T . . .�(xn)T ]
T ∈ Rn×m. Given a new

sample vector xnew, its corresponding score vector is computed as
follows

t(PCA)
new = knewA(PCA) (5)

where A(PCA) = [˛1 ˛2. . .˛a] ∈ Rn×a and knew = �(xnew)�(X)T ∈
Ra denotes the normalized kernel vector for the new sample. The
following MKPCA based T2 and SPE statistics are used as the meas-
ures of variations in the latent variable and residual subspace for
process monitoring purpose

T2
(PCA) = t(PCA)

new

{
1

n − 1
TT(PCA)T(PCA)

}−1
{t(PCA)
new }

T
(6)

SPE(PCA) = 1 − 2knewA(PCA){t(PCA)
new }

T + t(PCA)
new AT(PCA)KA(PCA){t(PCA)

new }
T

(7)

where T(PCA) = [t(PCA)
1 t(PCA)

2 . . .t(PCA)
a ] ∈ Rn×a and the confidence

limits of T2
(PCA) and SPE(PCA) can be estimated from F and �2 dis-

tribution, respectively.

2.2. Multiway kernel ICA

MKPCA  is based on the second-order statistic of variance
among the measurement variables. However, it does not take into
account the higher-order statistics and hence the non-Gaussian
process features may  not be efficiently extracted. In order to deal
with non-Gaussian processes, MKICA is developed for nonlinearly
projecting multivariate process data into latent subspace of statis-
tically independent components. KICA algorithm needs whitening
preprocessing by means of using KPCA [37]. The whitening data in
the feature space F can be obtained as follows

t(ICA) =
√
nknewA(ICA)�

−1 (8)

where � = diag(�1, �2, . . .,  �a) ∈ Ra×a. T(ICA) =
[t(ICA)

1 t(ICA)
2 . . .t(ICA)

a ] ∈ Rn×a is assumed to be generated as
linear  combinations of d(ICA) unknown independent components
as follows

T(ICA) = SAT(ICA) (9)

with A(ICA) ∈ Rd
(ICA)×a denoting the unknown mixing matrix and S =

[s1, s2, . . .,  sd(ICA)
] ∈ Rn×d(ICA) representing the independent compo-

nent  matrix. The purpose of KICA is to find a demixing matrix
W = [w1, w2, . . .,  wd(ICA)

] ∈ Ra×d
(ICA)

as follows

S = T(ICA)W (10)

where the independent components S have the maximized statis-
tical independency in terms of negentropy among each other [16].
Given a new sample vector xnew, its corresponding independent
component is expressed as

s(ICA)
new =

√
nknewA�−1W (11)

Further, the I2 and SPE statistics can be defined for process moni-
toring as follows

I2(ICA) = s(ICA)
new {s(ICA)

new }
T

(12)

SPE(ICA) = knewA�−1(I − WA(ICA)) (13)

where the confidence limits for above two statistics can be esti-
mated through kernel density estimation strategy [5].

2.3.  Multiway kernel PLS

In  MKICA method, independent components are calculated by
using high-order statistics such as negentropy among different
measurement variables. However, MKICA based process moni-
toring method may  not be well suited because only the process
measurement variables are incorporated in the MKICA model while
the product quality variables are excluded. In order to take into
account the nonlinear impact on output quality variables, MKPLS
technique is developed. X can be mapped into high-dimensional
feature space F through a nonlinear function � ∈ Rm as follows

� : xj ∈ Rvm → �(xj) ∈ F (14)

where xj is the jth row vector of X. The goal of KPLS is to construct
the PLS model in kernel feature space as follows

�(X) = TPT + E (15)

Y = TQT + F (16)

where �(X) = [�(x1)T , �(x2)T , . . .,  �(xn)T ]
T ∈ Rn×m, T =

[t1, t2, . . .,  td] ∈ Rn×d is the score matrix, P = [p1, p2, . . .,  pd] ∈
Rm×d is the loading matrix of �(X), Q = [q1, q2, . . .,  qd] ∈ Rvq×d

is the loading matrix of Y, E ∈ Rn×m is the residual matrix of
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�(X), and F ∈ Rn×vq is the residual matrix of Y. The nonlinear
iterative  partial least squares (NIPALS) algorithm can be performed
to determine the ith score vector ti and ui with the following
optimization problem

max  [cov(ti, ui)] = [cov(�(Xi)wi, Yiqi)] (17)

s.t.
∣∣∣∣ti∣∣∣∣ = 1,

∣∣∣∣ui∣∣∣∣ = 1 (18)

where cov(ti, ui) represents the covariance matrix between the
score vectors ti ∈ Rn and ui ∈ Rn, and wi ∈ Rm and qi ∈ Rvm denote
weighting vectors. �(Xi) and Yi are deflated matrices that can be
calculated as follows

�(Xi+1) = �(Xi) − tit
T
i �(Xi) (19)

Yi+1 = Yi − tit
T
i Yi (20)

The calculation of the inner products in the high-dimensional
feature space can be avoided by a kernel gram matrix Ki ∈ Rn×n

that is defined as follows

Ki = �(Xi)�(Xi)
T (21)

where the commonly used kernel function is the Gaussian kernel
function. After the extraction of the score vectors, the matrix Ki and
Yi are deflated in each iteration. Given a new sample vector xnew,
the corresponding new score vector is computed as follows

tnew = knewA(PLS) (22)

where knew = �(xnew)�(X)T ∈ Rn is a kernel vector for the new

sample,  A(PLS) = U(TTKU)
−1

with U = [u1, u2, . . .,  ud] ∈ Rn×d being
a score matrix of Y. The T2 and SPE statistics can then be defined as
follows

T2
(PLS) = tnew

{
1

n − 1
TTT
}−1

tTnew (23)

SPE(PLS) = 1 − 2knewA(PLS)t
T
new + tnewAT(PLS)KA(PLS)tTnew (24)

where the confidence limits of T2 and SPE can be estimated from a
�2 distribution approximately.

3.  Quality relevant nonlinear batch process monitoring
based on MKQNGLSP approach

Though MKPLS method can capture process nonlinearity from
the measurement and quality variables, it relies on the second-
order statistic of covariance only so that it may  not effectively
capture non-Gaussian process features. In this study, a novel mul-
tiway kernel based quality relevant non-Gaussian latent subspace
projection method is developed to overcome the challenges of
conventional MKPLS approach for nonlinear batch process moni-
toring. The basic idea of the presented method is to search for the
latent directions in high-dimensional kernel feature spaces so that
the statistical dependency in terms of multidimensional mutual
information between measurement and quality variables is max-
imized. Compared to MKPLS, MKQNGLSP takes into account the
higher-order statistic of mutual information and thus can effec-
tively extract the non-Gaussian features from batch process data.

Since batch processes often have unequal durations across dif-
ferent batches, the synchronization of batch trajectories may  be
needed to solve the issue of batch-to-batch variations. In order
to conduct batch trajectory alignment, the dynamic time warping
(DTW) technique can be utilized [19]. Then the three-dimensional
batch process data can be unfolded and scaled, as shown in Fig. 1.
Let X ∈ Rb×vm×s and Y ∈ Rb×vq×s be the process measurement and
quality data matrices with b batches, s sampling instants, vm mea-
surement variables, and vq quality variables. Batch-wise unfolding

is first performed to transform matrices X and Y into X ∈ Rb×svm
and Y ∈ Rb×svq . Then each column vectors of X and Y are normal-
ized to zero-mean and unit-variance so that the mean trajectory
of each batch can be eliminated. Further, the scaled matrices are
converted into new matrices X ∈ Rn×vm and Y ∈ Rn×vq with n = sb
through variable-wise unfolding, where different sampling instants
are stacked with various batches as row vectors.

After the above unfolded and scaled matrices are obtained, the
next step is to find latent directions in high-dimensional kernel
feature spaces so that the maximized mutual information between
measurement and quality variables is obtained. In order to reduce
the process nonlinearity, the measurement and quality variables
are nonlinearly mapped into high-dimensional feature spaces.
First, the measurement variables X can be mapped into high-
dimensional feature space F through nonlinear mapping function
� ∈ Rm as

� : xj ∈ Rvm → �(xj) ∈ F (25)

where xj is the jth row vector of X. The covariance matrix C in the
kernel feature space can be expressed as

C = 1
n

n∑
j

�(xj)
T�(xj) (26)

where �(xj) is assumed to be mean-centered. Then principal com-
ponents in the kernel feature space can be computed by solving the
following eigenvalue problem [5]

Cvi = �ivi (27)

where v1, v2, . . .,  vm are the eigenvectors of C ∈ Rm×m correspond-
ing  to the eigenvalues �1 ≥ �2 ≥ . . . ≥ �m. The eigenvalue �i satisfies

1
n

n∑
j

�(xj)
T {�(xj)vi} = �ivi (28)

while the eigenvector vi can be expressed as linear combination of
�(xj) as follows

vi =
n∑
j

˛ij�(xj)
T (29)

where ˛ij is the linear coefficient. From Eqs. (28) and (29), �i =
[˛i1, . . .,  ˛in]T ∈ Rn can be computed by solving the following
eigenvalue decomposition

K�i = �in�i (30)

where K is kernel gram matrix defined as

[K]ij = �(xi)�
T (xj) = K(xi, xj) (31)

and

K = �(X)�(X)T (32)

where K(xi, xj) is a kernel function and �(X) =
[�(x1)T , �(x2)T , . . .,  �(xn)T ]

T ∈ Rn×m. A commonly used ker-
nel function is the Gaussian radial basis function defined as

K(xi, xj) = exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2
c

)
(33)

where c is the Gaussian kernel width and its value can be deter-
mined by cross-validation strategy. The use of kernel function can
avoid the “dimensionality curse” due to the computations of all
pairs of inner products of nonlinear mapping functions. In order

PhD Thesis - Junichi Mori McMaster University - Chemical Engineering

28



J. Mori, J. Yu / Journal of Process Control 24 (2014) 57– 71 61

Sampling instants, s

Batches, b

Measurement
variables, v m

b

1 vm 2vm
svm

Batch-wise unfolding
and normalization

Variable-wise unfolding

b

1

2b

sb

vm

...

 . . 
.

Fig. 1. Unfoling of three-dimensional batch process data into two-dimensional data matrix.

to satisfy the assumption of mean-centered �(xj), mean centering
needs be conducted on the kernel gram matrix K as follows [5]

K = K − 1nnK − K1nn + 1nnK1nn (34)

where

1nn = 1
n

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ ∈ Rn×n (35)

With the mean-centered kernel gram matrix K, Eq. (3) can be
rewritten as

K�i = n�i�i (36)

After the eigenvalue decomposition is completed, the score matrix
Z = [z1, . . .,  zn] ∈ Rn×n can be obtained as

ZT = ATK (37)

where A = [˛1, . . .,  ˛n] ∈ Rn×n. In this work, the number of princi-
pal  components is determined according to the following criteria

�i∑n
i=1�i

≥� (38)

where � represents a user-specified threshold and set to 0.95 in this
work. Thus, A and Z can be extracted as

A = [�1, �2, . . .,  �a] ∈ Rn×a (39)

Z = [z1, z2, . . .,  za] ∈ Rn×a (40)

Similarly, principal components V ∈ Rn×e for quality variables in
the kernel feature space Y can be computed.

With the estimated kernel principal components for both
measurement and quality variables in high-dimensional feature
spaces, Z ∈ Rn×a and V ∈ Rn×e can be further projected onto lower-
dimensional latent subspaces as follows

Z = SPT + E (41)

V = SQT + F (42)

where S = [s1, s2, . . .,  sd] ∈ Rn×d is the score matrix,
P  = [p1, p2, . . .,  pd] ∈ Ra×d is the loading matrix of Z, Q =
[q1, q2, . . .,  qd] ∈ Re×d is the loading matrix of V, E ∈ Rn×a is
the  residual matrix of Z, F ∈ Rn×e is the residual matrix of V, and
d is a number of latent directions. Then the objective is to find
weighting vectors w and c from Z and V so that the mutual infor-
mation between the score vectors corresponding to measurement
and quality variables is maximized as follows

max  I(si; ui) = I(Ziwi; Vici) (43)

s.t.
∣∣∣∣wi

∣∣∣∣ = 1,
∣∣∣∣ci∣∣∣∣ = 1 (44)
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where I(si, ui) denotes the mutual information between the ith pair
of score vectors si and ui. The mutual information is defined as

I(si; ui) = H(ui) − H(ui|si) = −
∫

ui

f (u)logf (u)ds

+
∫

ui

∫
si

f (u, s)log
f (u|s)
f (u, s)

duds (45)

where H(ui) is the marginal entropy of ui, H(ui|si) is the conditional
entropy of ui given si, and f(·) represents a marginal or conditional
probability density function.

As Eq. (45) contains the complex integrals that are difficult to
calculate analytically, a numerical optimization method termed
as Nelder-Mead algorithm is adopted to solve the optimization
problem given in Eq. (43) [29]. However, this algorithm cannot
handle the constraints and thus wi and ci are normalized in the
each iteration to guarantee the constraint conditions. Furthermore,
the mutual information based optimization problem has strong
non-linearity and multi-peak feature, which may  easily lead the
local optimum. To overcome this issue, the multi-start optimization
strategy is utilized. First, lmax simplices each of which is a special
polytope with a + e + 1 vertices are formed through random initial-
ization. It should be noted that the number of initial points lmax

is a user-specified parameter and is set to 100 in this work. The
integrated matrix of all weighting vectors is formulated as⎡
⎣w(1)(l)

i
w(2)(l)
i

. . . w(v)(l)
i

. . . w(a+e+1)(l)
i

c(1)(l)
i

c(2)(l)
i

. . . c(v)(l)
i

. . . c(a+e+1)(l)
i

⎤
⎦ ∈ R(a+e)×(a+e+1) (46)

For all l = 1, 2, . . .,  lmax, compute w(l)
i

and c(l)
i

such that the locally
maximized mutual information can be obtained as many times as
possible. First, w(v)(l)

i
and c(v)(l)

i
are normalized as

w(v)(l)
i

= w(v)(l)
i∣∣∣∣∣∣w(v)(l)
i

∣∣∣∣∣∣ ∀v
c(v)(l)
i
= c(v)(l)

i∣∣∣∣∣∣c(v)(l)
i

∣∣∣∣∣∣ ∀v
(47)

On the basis of the computed mutual information of each pair of
normalized weighting vectors, the optimal step sizes and can be
estimated from Nelder–Mead algorithm and then the weighting
vectors are updated as

w(v)(l)
i

← w(v)(l)
i
+ �w

c(v)(l)
i

← c(v)(l)
i
+ �c

(48)

The above procedure is iterated until w(v)(l)
i

and c(v)(l)
i

are converged.

Then lth weighting vectors w(l)
i

and c(l)
i

are set as

w(l)
i
= w(v)(l)

i
, c(l)

i
= c(v)(l)

i
(49)

After computing w(l)
i

and c(l)
i

for all l = 1, 2, . . .,  lmax, the best wi and
ci are chosen as follows

lopt = argmax
l

I(Ziw
(l)
i

; Vic
(l)
i

) (50)

wi = wlopt
i (51)

ci = clopti (52)

Fig. 2. Illustration of the proposed MKQNGLSP approach.

With the obtained ith weighting vectors wi and ci, the score
vectors si and ui can be computed as

si = Ziwi (53)

ui = Vici (54)

Further, the ith loading vectors pi and qi are estimated as

pi =
ZTi si
sT
i
si

(55)

qi =
VTi si
sT
i
si

(56)

Thus, the matrices Zi and Vi are deflated as follows

Zi+1 = Zi − sip
T
i and Vi+1 = Vi − siq

T
i (57)

Since si cannot be calculated from Z directly by utilizing wi, the
decomposition matrix R = [r1, r2, . . .,  rd] is then defined as

r1 = w1 (58)

ri =
i−1∏
j=1

(Im − wjp
T
j )wi i≥2 (59)

where Im is m × m identity matrix. Therefore, the score matrix S can
be computed from the kernel principal components Z as follows

S = ZR (60)

After the MKQNGLSP model is built, it is important to select the
number of leading latent variables for process monitoring. In this
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Fig. 3. Schematic diagram of the proposed MKQNGLSP approach.

study, the column vectors of and S are sorted according to the nor-
malized mutual information between the corresponding column
vectors si and ui, which is defined as follows

I(si; ui) = I(si; ui)√
H(si)

√
H(ui)

(61)

After rearranging the column vectors of S, the number of latent
directions can then be determined. Too few latent directions may
lead to inadequate non-Gaussian features captured in latent sub-
space for fault detection, while too many latent variables can cause
redundant information and reduced sensitivity to process faults.
Therefore, the best number of latent directions d is chosen to satisfy

the  following criteria based on the normalized mutual information

∑d
i=1I(si; ui)∑a
i=1I(si; ui)

≥�̃ (62)

where �̃ is the user-specified threshold and set to 0.95 in this work.
Thus, and R can be extracted as

P = [p1, p2, . . .,  pd] ∈ Ra×d (63)

Q = [q1, q2, . . .,  qd] ∈ Re×d (64)

R = [r1, r2, . . .,  rd] ∈ Ra×d (65)
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Fig. 4. Process flow diagram of the fed-batch penicillin fermentation process.

The score matrix S is further estimated as

S = KAR (66)

The searching strategy for the non-Gaussian latent directions
within the nonlinear kernel feature space is illustrated in Fig. 2.
It can be seen that both input and output data are first mapped into
kernel feature spaces and then the latent directions are extracted.
The aim of searching for latent variables is to maximize the amount
of information of u1 in terms of the marginal entropy H(u1) while
minimizing the amount of ambiguity of u1 given s1 in terms of the
conditional entropy H(u1|s1). Such strategy is equivalent to maxi-
mize mutual information I(s1; u1) between the score vectors u1 and
s1 in the high-dimensional kernel feature space.

Table 1
Measurement and quality variables of the fed-batch penicillin fermentation process.

Variable no. Variable description Variable type

1 Dissolved aeration rate Process variable
2  Agitator power Process variable
3  Substrate feed temperature Process variable
4  Substrate concentration Quality variable
5  Dissolved oxygen concentration Quality variable
6  Biomass concentration Quality variable
7  Penicillin concentration Quality variable
8  Culture volume Process variable
9  Carbon dioxide concentration Process variable

10  pH Process variable
11  Fermenter temperature Process variable
12  Generated heat Process variable
13  Acid flow rate Process variable
14  Base flow rate Process  variable
15  Cooling water flow rate Process variable

Table 2
Three test cases of the fed-batch penicillin fermentation process.

Case no. Case description

1 Substrate feed rate is increased by 2.5% from the 200th
hour  to the end of batch operation

2 Agitator power is increased by 3% from the 250th hour to
the  end of batch operation

3  Substrate feed rate is linearly increased with a slope of
0.002  from the 60th hour to the end of batch operation

Given a new sample vector xnew, its corresponding score vector
is computed as follows

snew = knewAR (67)

where knew ∈ Rn denotes the normalized kernel vector for the new
sample and is computed below

knew = knew − 11nK − K1nn + 11nK1nn (68)

with

knew = �(xnew)�T (X) (69)

11n =
1
n

[ 1  · · · 1 ]  ∈ Rn (70)

where �(xnew) can be obtained by mapping xnew through a nonlin-
ear mapping function �. With the MKQNGLSP model, I2 and SPE
statistics can be derived for batch process monitoring and fault
detection. The I2 statistic aims to detect the process abnormalities
in the systematic part of the MKQNGLSP model while the SPE statis-
tic is designed to capture the abnormality in the residual part of the
model. In MKQNGLSP based monitoring method, the following I2

and SPE indices are proposed:

I2 = RTATk
T
newknewAR (71)

and

SPE =
∣∣∣∣∣∣�(xnew) − �̂(xnew)

∣∣∣∣∣∣2 = 1 − 2�(xnew)�̂
T
(xnew)

+ �̂(xnew)�̂
T
(xnew) = 1 − 2knewAT sTnew + snewPTKPsTnew

(72)

After the above monitoring indices are defined, appropriate con-
fidence limits need to be derived for isolating abnormal operating
regions from normal batch operation. In this work, the confidence
limits corresponding to I2 and SPE indices are obtained through ker-
nel density estimator [5]. Assume that a sequence of I2 or SPE index
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Fig. 5. Plot of the percentages of eigenvalues of kernel principal components of measurement variables.

values (ˇ1, ˇ2, . . .,  ˇn) are generated from an unknown probability
density function p(ˇ) as follows

p(ˇ) = 1
nD

n∑
i=1

K

{
ˇ − ˇi
D

}
(73)

where  ̌ denotes I2 or SPE statistic under consideration, D is the ker-
nel window width and K is a kernel function. The Gaussian kernel
function based kernel density estimator can be expressed as

p(ˇ) = 1
n

n∑
i=1

1√
2�D

exp

{
− (  ̌ − ˇi)

2

2D2

}
(74)

With the estimated probability density function and the specified
confidence level (1− �) × 100 %, the corresponding point with the
cumulative probability 1 − � represents the confidence limit value.

The step-by-step procedure of the presented MKQNGLSP
approach is listed below and the corresponding flowchart is shown
in Fig. 3.

1)  Collect training data from normal batch operation.
2) Convert both process measurement and quality data through

batch-wise unfolding.
3) Normalize unfolded data matrices to zero-mean and unit-

variance.
4)  Convert the scaled data matrices through variable-wise unfol-

ding.

5)  Conduct eigenvalue decomposition on the scaled kernel gram
matrices  for both measurement and quality variables.

6) Estimate kernel principal components for both measurement
and quality variables by extracting eigenvectors and eigenval-
ues.

7)  Compute the multidimensional latent directions in the kernel-
principal-components subspaces so that the two sets of latent
variables  have the maximized multidimensional mutual infor-
mation  between the measurement and quality variables.

8) Calculate I2 and SPE indices and estimate the confidence limits
of  these statistics through kernel density estimation.

9) For new batch process data, conduct unfolding and normaliza-
tion  by by using same means and variances from the training
data.

10) Compute a newly scaled kernel gram vector from the new batch
data.

11)  Estimate latent scores corresponding to measurement vari-
ables  for the new batch data.

12) Calculate the values of I2 and SPE statistics for the new batch
data.

4.  Application example

4.1.  Fed-batch penicillin fermentation process

In this work, a fed-batch penicillin fermentation process is uti-
lized to examine the performance of the proposed MKQNGLSP
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Table 3
Comparison of fault detection rates (%) of three test cases in the fed-batch penicillin fermentation process.

Case no. Fault detection rate (%)

MKPCA MKICA MKPLS MKQNGLSP

T2 SPE I2 SPE T2 SPE I2 SPE

1 47.13 54.86 84.04 24.19 4.74 17.71 91.77 91.27
2  91.69 27.91 28.90 1.99 68.77 65.12 97.67 86.71
3  82.23 80.62 93.98 73.57 58.59 68.58 96.92 96.92

Table 4
Comparison of false alarm rates (%) of three test cases in the fed-batch penicillin fermentation process.

Case no. False alarm rate (%)

MKPCA MKICA MKPLS MKQNGLSP

T2 SPE I2 SPE T2 SPE I2 SPE

1 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00
2  0.00 0.00 0.00 0.00 0.60 0.40 3.01 3.01
3  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

approach for nonlinear batch process monitoring [4]. The dia-
gram of the penicillin fermentation process is shown in Fig. 4.
The fermentation process starts with small amount of biomass
and substrate that are added to the bioreactor from the begin-
ning of the batch operation. After about 40 h, most of the initially
added substrate is consumed and then the process is switched from

batch to fed-batch operating mode. In the second stage, the sub-
strate of glucose is being fed into fermenter continuously under
open-loop condition. Meanwhile, in order to maintain the constant
temperature and pH values (25◦C and 5.0), two  proportional-
integral-derivative (PID) control loops are implemented in the
fermenter for manipulating the acid/base and hot/cold water flow
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Fig. 6. Plot of the percentages of eigenvalues of kernel principal components of quality variables.
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Fig. 7. Plot of the percentages and cumulative percentages of normalized mutual information of the extracted non-Gaussian latent variables.

ratios, respectively. The duration of each batch is 400 h, while the
sampling time of both measurement and quality variables are set to
0.5 h. There are total 11 measurement variables as input variables
X and 4 quality variables as output variables Y. All the process mea-
surement and quality variables are listed in Table 1. In our study,
the MKQNGLSP model is built from the training data set consist-
ing of 10 normal batches. Each batch has small variations in the
process variables. In order to compare the effectiveness of the pro-
posed MKQNGLSP approach with the MKPCA, MKICA and MKPLS
methods, three test cases are designed with different types of faulty
scenarios, as shown in Table 2. In the first test case, the fermenta-
tion process begins with normal operating conditions and then a
2.5% step increase on substrate feed rate occurs from the 200th
hour until the end of batch operation. For the second case, the nor-
mal  operation is followed by a fault of 3% step increase on agitator
power, which begins at the 250th hour and remains until the end of
batch duration. In the last test scenario, a drift error with the slope
of 0.002 l/h takes place on substrate feed rate from the 60th hour
until the end of batch operation.

4.2. Comparison of batch process monitoring result

After the KPCA model is obtained, the first 12 kernel princi-
pal components corresponding to measurement variables and 6
kernel principal components corresponding to quality variables

are  selected, as shown in Fig. 5. Then the MKQNGLSP model is
built from 12 kernel PCs for measurement variables and 6 ker-
nel PCs for quality variables. Typically, the selected number of
kernel principal components is larger than that of original pro-
cess variables, because KPCA extracts principal components from
the high-dimensional kernel feature space. Further, the number of
latent variables in the obtained MKQNGLSP model is determined
by the normalized mutual information criterion. The percentage
and the cumulative percentage of mutual information of different
latent variables of MKQNGLSP model are shown in Fig. 7. It can
be observed that the first 6 latent directions should be selected as
their corresponding cumulative percentage of normalized mutual
information is over 95%. For MKPCA, total 9 latent variables whose
cumulative percentage of eigenvalues is over 95% are selected. As
for MKICA, total 9 independent components are chosen because
their cumulative percentage of L2 norm of the demixing matrix is
over 95% [24]. For MKPLS model, total 11 latent variables with the
best monitoring performance of fault detection rate are selected
(Fig. 6).

In  the first test scenario, the step fault of substrate feed rate
occurs from the 200th hour. The increase of substrate feed rate
leads to the higher concentrations of biomass and penicillin than
those under normal operation. The process monitoring results of
the MKPCA, MKICA, MKPLS and proposed MKQNGLSP methods are
shown in Fig. 8. Meanwhile, the fault detection and false alarm rates
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Fig. 8. Monitoring results of MKPCA (the first row), MKICA (the second row), MKPLS (the third row) and MKQNGLSP (the fourth row) methods in the first test case of the
fed-batch penicillin fermentation process.

of different methods are listed in Tables 3 and 4, respectively. One
can readily see that the MKQNGLSP based I2 is able to accurately
detect faulty operations with the high fault detection rate of 91.77%
while the false alarm rate of 0.00%. In contrast, the MKPCA based
T2 index, the MKICA based I2 index and the MKPLS based T2 index
result in lower fault detection rates of 47.13% , 84.04 % and 4.74%,
respectively. Meanwhile, the MKQNGLSP based SPE index yields
the high fault detection rate of 91.27% along with the false alarm
rate of 0.00%. In comparison, the fault detection rates of MKPCA,
MKICA and MKPLS based SPE index are 54.86% , 24.19 % and 17.71%,
which are significantly lower than that of the MKQNGLSP based SPE
index. These results indicate that the proposed MKQNGLSP method
has strong capability to extract nonlinear and non-Gaussian pro-
cess features from batch process data. Although the MKICA method
takes into consideration nonlinear and non-Gaussian process fea-
tures, it does not incorporate quality variables in the model and
thus its performance is worse than that of MKQNGLSP method.
Furthermore, even though the MKPLS method is able to deal with

process  nonlinearity and its model also includes both measurement
and quality variables, it does not take into account the high-order
statistics for capturing non-Gaussian process features so that its
monitoring performance is not as satisfactory as that of the pro-
posed MKQNGLSP approach.

In the second test case, the process operation includes 3% step
increase of agitator power starting from the 250th hour. The process
monitoring results of the MKPCA, MKICA, MKPLS and MKQNGLSP
methods are compared in Fig. 9 as well as Tables 3 and 4. It
can be observed that the MKQNGLSP based I2 statistic can detect
abnormal operating conditions with the high fault detection rate
of 97.67% along with the low false alarm rate of 3.01%. Mean-
while, the MKPCA based T2 index, the MKICA based I2 index and
the MKPLS based T2 index can detect the faulty operation with
lower fault detection rates of 91.69% , 28.90 % and 68.77%, respec-
tively. On the other hand, the MKQNGLSP based SPE index is able
to trigger the alarms of faulty operation with the fault detection
rate of 86.71% and the false alarm rate of 3.01%. In comparison,
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Fig. 9. Monitoring results of MKPCA (the first row), MKICA (the second row), MKPLS (the third row) and MKQNGLSP (the fourth row) methods in the second test case of the
fed-batch penicillin fermentation process.

the MKPLS based SPE index can only detect 65.12% of faulty sam-
ples. For MKPCA and MKICA, their SPE indices result in much
lower fault detection rates of 27.91% and 1.99%, respectively. The
main reason why the MKPCA and MKICA show poor performance
is that only the process measurement variables are involved in
their models without any output quality variables. Moreover, the
superiority of the proposed MKQNGLSP method over the MKPLS
approach is due to the fact that the higher-order statistic of mutual
information rather than the second-order statistic of covariance
between the process measurement and product quality variables
is maximized while searching for the latent directions. In this way,
the non-Gaussian process features can be better extracted by the
proposed MKQNGLSP method for quality relevant process moni-
toring.

For the third test case, a drift error with the slope of 0.002 l/h is
added to the substrate feed rate starting from the 60th hour, which
makes biomass and penicillin concentrations grow faster than the
normal trajectories. The monitoring results of the MKPCA, MKICA,

MKPLS  and the proposed MKQNGLSP approaches are shown in
Fig. 10, while the quantitative comparison is given in Tables 3 and
4. One can easily see that the MKPCA based T2, MKICA based I2

and MKPLS based T2 indices lead to the fault detection rates of
82.23% , 93.98 % and 58.59%, respectively, which are lower than
that of the MKQNGLSP based T2 index (96.92%). Likewise, the
fault detection rates of the MKPCA, MKICA and MKPLS based SPE
indices are 80.62% , 73.57 % and 68.58%, respectively. In contrast,
the MKQNGLSP based SPE index leads to the fault detection rate of
96.92%, which is significant higher than those of the other methods.
These results further prove that the proposed MKQNGLSP approach
can effectively extract the non-Gaussian process features in qual-
ity relevant latent subspaces and thus has substantially improved
monitoring capability than the MKPCA, MKICA and MKPLS meth-
ods. All the above three test cases demonstrate that the proposed
MKQNGLSP method is able to capture abnormal batch operation
with higher fault sensitivity and detectability than the conventional
MKPCA, MKICA and MKPLS approaches.
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Fig. 10. Monitoring results of MKPCA (the first row), MKICA (the second row), MKPLS (the third row) and MKQNGLSP (the fourth row) methods in the third test case of the
fed-batch penicillin fermentation process.

5. Conclusions

In this paper, a multiway quality relevant non-Gaussian latent
subspace projection method is developed for nonlinear batch pro-
cess monitoring. The presented approach can identify nonlinear
dynamics and non-Gaussian relationships between measurement
and quality variables. First, the kernel principal components are
extracted from the unfolded and scaled measurement and quality
data sets and thus the nonlinear process dynamics can be char-
acterized in the high-dimensional kernel feature space. Secondly,
the multidimensional latent directions in the kernel-principal-
components subspaces corresponding to measurement and quality
variables are searched concurrently by maximizing the higher-
order statistic of mutual information instead of the second-order
statistic of covariance. Hence, the non-Gaussian features relating
measurement and quality variables can be well captured. Thirdly, a
set of new monitoring indices are developed to capture abnormal-
ities of batch process data within non-Gaussian latent subspace
and residual subspace. The proposed MKQNGLSP method incorpo-
rates both measurement and quality variables, the latter of which

are  not included in the MKPCA and MKICA models. Furthermore,
the MKQNGLSP model is characterized with the maximized mutual
information instead of covariance and thus can effectively capture
non-Gaussian process features that may  not be well handled by the
conventional MKPLS model.

The  presented MKQNGLSP method is applied to a fed-batch
Penicillin fermentation process, and the monitoring results demon-
strate that the new I2 and SPE indices outperform the MKPCA,
MKICA and MKPLS based statistics. The MKQNGLSP approach pro-
vides an effective solution for nonlinear and non-Gaussian quality
relevant batch process monitoring and fault detection. Future
research will focus on extending MKQNGLSP method for fault iso-
lation and diagnosis of nonlinear batch processes.
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a  b  s  t  r  a  c  t

Identification  of  faults  in process  systems  can  be based  purely  on measurement  (e.g.  PCA),  or  can  exploit
knowledge  of process  model  structure  to construct  a causal  network.  This  work  introduces  a method
to  identify  most  likely causal  network  in  cases  when  process  model  is  not  known.  An  incidence  matrix,
showing  location  of  measurements  in the  plant  network  structure,  and historical  process  data  are used
to  identify  the  optimal  causal  network  structure  by  means  of  maximizing  Bayesian  scores  for  alternative
causal  networks.  Causal  subnetworks,  corresponding  to subgraphs  of the  process  network,  are  identified
by  finding  the  most  probable  graph  based  on  highest  posterior  probability  of  graph  features  computed
via  Markov  Chain  Monte  Carlo  simulation.  Novel  Bayesian  contribution  indices  within  the  probabilistic
graphical  network  are  proposed  to  identify  the  potential  root-cause  variables.  Application  to  Tennessee
Eastman  Chemical  plant  demonstrates  that  the  presented  method  is  significantly  more  accurate  than  the
current  methods.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Process monitoring and fault diagnosis are gaining signifi-
cant attention in order to improve product quality, yields, energy
efficiency, plant safety, and eco-sustainability (Piovoso and Hoo,
2002; Venkatasurbramanian et al., 2003). Rapid development of
measurement, automation, advanced computing, and database
technologies has enabled many companies to record a huge num-
ber of process variables in industrial plant historians. Methods that
extract useful information from such a large number of the histor-
ical process data provide valuable insight into plant operation.

The  approaches to process monitoring, fault detection and fault
diagnosis analysis fall into two categories, which are: (i) model
based and (ii) data driven techniques (Gertler, 1988). Model-
based process monitoring methods may  be applicable only if
accurate mechanistic models of processes can be developed (Pons
et al., 1988; Doyle, 1998). However, these first-principle mod-
els require in-depth knowledge about processes and a significant
effort to build precise mechanistic models for large-scale complex
industrial plants. By contrast, data-driven monitoring techniques
have become increasingly attractive because they do not require

∗ Corresponding author. Tel.: +1 905 525 9140x26386.
E-mail  address: mahalec@mcmaster.ca (V. Mahalec).

in-depth fundamental knowledge and mechanistic models but
instead depend on the historical process data only.

Multivariate statistical process monitoring (MSPM) techniques
have been developed to extract useful information from a large
number of highly correlated process variables (Nomikos and
MacGregor, 1995). Two widely used methods in the MSPM field
are principal component analysis (PCA) and partial least squares
or projection to latent structure (PLS). These methods can build
the data-driven models within the low-dimensional subspace that
retains most of the variance or covariance structure (Mejdell and
Skogestad, 1991; Kresta et al., 1994; Kosanovich et al., 1996; Zhang
and Lennox, 2004; Zamprogna et al., 2005; Lin et al., 2007). Then the
statistics such as T2 and SPE are proposed for extracting the critical
features of process data for fault detection and diagnosis. Further-
more, in order to handle non-Gaussian processes, independent
component analysis (ICA) has been applied to project multivari-
ate process data into latent subspace of statistically independent
components (IC) (Yan et al., 2004; Chen et al., 2005; Desai et al.,
2006; Kaneko et al., 2009; Yu, 2012b). ICs are assumed to be non-
Gaussian and mutually independent based on high-order statistics
and they retain the non-Gaussian process features that cannot be
extracted by traditional PCA/PLS methods. Similar to PCA/ICA based
monitoring methods, the ICA based statistics like I2 and SPE are
developed for detecting faulty operation (Lee et al., 2004). More
recently, the PLS method has been extended to the non-Gaussian
decomposition version called quality relevant non-Gaussian latent

http://dx.doi.org/10.1016/j.compchemeng.2014.07.022
0098-1354/© 2014 Elsevier Ltd. All rights reserved.
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Fig. 1. Neighbouring graphs.

subspace projection (QNGLSP) (Mori and Yu, 2014a, 2013) and its
non-linear decomposition version called multi-way kernel qual-
ity relevant non-Gaussian latent subspace projection (MKQNGLSP)
(Mori and Yu, 2014b). Once a fault is detected, all the above methods
are capable of generating contribution plots to identify the major
fault effect variables without prior process knowledge. Neverthe-
less, variable contribution methods are unable to identify the root
causes of faulty operations among the fault effect variables with-
out in-depth knowledge about processes because the abnormal
operational events can propagate throughout the process due to
the intricate variable interactions, process dynamics, closed-loop
control systems, etc.

In  order to identify the cause–effect relationship, signed
directed graph (SDG) approach for incipient fault diagnosis has
been proposed. SDG method has the possibility to identify the
cause–effect relationship and the direction of the fault effect
(Maurya et al., 2004). Moreover, qualitative trend analysis (QTA)
that incorporates data driven approach has been proposed in order
to reduce the number of spurious alarms (Maurya et al., 2007).
However, the above method identifies candidate faults that the
prior fault database contains and thus it can be challenging to
diagnose abnormal events that the prior fault database does not
include. In addition, these methods cannot trace the fault prop-
agation pathways and especially the root-cause variables. SDG is
also used in order to automatically interpret the PCA-based contrib-
utions (Vedam and Venkatasubramanian, 1999). If model equations
are available, this method is capable of detecting multiple root
causes. More recently, Granger causality methods are proposed
for revealing the root causes of plant oscillations (Yuan and Qin,
2014). Granger causality is based on linear prediction of time series
and can extract the cause effect relationship in terms of prediction
accuracy in autoregressive (AR) model. This method is very useful
to identify the cause–effect relationship among process variables
and capture the root cause of the plant oscillations that degrades
the prediction performance, but it cannot explain whether the
calculated Granger causality comes from abnormal operations or
not. Therefore, it may  not be effective in identifying the root-
cause variables that lead to the process upset. Alternatively, causal
maps that are graphs with directed arcs between nodes have been
employed to identify the cause and effect relationships among pro-
cess variables using the Kullback–Leibner distance (Chiang and
Braatz, 2003). However, the fault propagation is derived from in-
depth process knowledge and thus it is challenging to apply this
method to fault diagnosis when the propagation pathways are dif-
ficult to identify due to the lack of process knowledge. Moreover,
the cross-correlation function (CCF) is estimated from two time
series and its results are arranged in a causal matrix (Bauer and
Thornhill, 2008). The transfer entropy is also utilized to identify the
direction of disturbance propagation (Bauer et al., 2007). These two
approaches do not require any process knowledge, but the cross-
correlation function and transfer entropy can consider relationship
between two random variables only and hence it may  not model
more intricate dependencies containing over three variables. To

make matters worse, these methods require a large number of sam-
ples to identify the precise propagation pathways and hence the
small number of samples may  cause the poor indicator of causal
relationships.

Alternatively, pattern recognition algorithms play an important
role in process monitoring and analysis. For example, support vec-
tor machines (SVM), artificial neural networks (ANN) and Gaussian
mixture model (GMM)  methods have been developed for chemical
process monitoring (Sorsa and Koivo, 1993; Yélamos et al., 2009;
Yu and Qin, 2008; Yu, 2012a). However, they may  not be able to
isolate accurately the root-cause variables, particularly when the
fault propagation pathways include complex variable interactions
across different process units.

Instead of using purely probabilistic models, probabilistic
graphical models are highly advantageous for analyzing the
cause–effect relationship. The probabilistic graphical model con-
sists of a graphical structure and a probabilistic description of the
relationships among random variables under system uncertainty.
Bayesian network is one of the major class of graphical models
and has been applied to various fields including medical diagnos-
tics, gene modeling, cancer classification and reliability analysis
(Gevaert et al., 2006; Boudali and Dugan, 2005; Friedman et al.,
2000; Nikovski, 2000). Bayesian network based process diagnosis
techniques have been developed in the past decade. For instance,
Bayesian networks have been employed in order to identify the root
cause of process variations and give a probabilistic confidence level
of the diagnosis (Weidl et al., 2005; Dey and Stori, 2005). Bayesian
networks have also been applied for control loop performance
diagnosis and have made it possible to synthesize various exist-
ing monitoring methods (Huang, 2008). Furthermore, Bayesian
networks have been adopted for identifying the cause–effect rela-
tionship among process patterns, process information and possible
root causes (Alaeddini and Dogan, 2011). Nevertheless, all of the
above Bayesian network based process monitoring techniques can
deal with discrete variables only, and if there are continuous vari-
ables, these variables should be discretized. In addition, potential
root causes need to be specified and added to hidden nodes in
advance. The biggest problem with application of Bayesian network
based methods is that they require the in-depth process knowl-
edge to design the network structure for well-performed process
diagnosis.

In order to apply Bayesian networks to process monitoring with-
out descrtizing any process variables and specifying the potential
root causes in advance, more recently, Bayesian network based net-
worked process monitoring and diagnosis approach are proposed
to detect root-cause variables in dynamic processes without any
specifications of fault types (Yu and Rashid, 2013). This method
makes use of likelihood of each node to identify fault propaga-
tion pathways as well as root-cause variables. Similar to the other
existing methods, process knowledge is needed for the design of
the network structure. In addition, it can be time-consuming to
build precise graphical model for complex processes, and it is also
challenging to check the accuracy of the inferred structure. If the
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Fig. 2. Illustrative diagram of learning Bayesian network framework.

cause–effect relationships are difficult to identify due to the lack
of process knowledge or too intricate processes, data-driven tech-
niques are useful to design the network structure. The basic idea
of network structure learning is to find the graph so that the score
function representing likelihood is maximized. Since this compu-
tational task is a combinatorial optimization problem, which is
known as NP-hard (Chickering, 1996), it is challenging to compute
the precise network structure for industrial plants where there are
a large number of process variables and historical data set. The

standard  methodology to overcome this issue is to carry out a
heuristic search. Some powerful searching spaces such as equiv-
alence classes (Chickeringn, 2002), skeletons (Steck, 2000), and
orderings (Teyssier and Koller, 2005) have been proposed, but their
combinatorial problems remain NP-hard.

Motivated by the above consideration, we propose a novel data-
driven structure learning algorithm that is able to construct the
probabilistic graphical model for process monitoring, fault diag-
nosis, and process analysis without in-depth process knowledge.
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Fig. 3. Process flow diagram of the Tennessee Eastman Chemical process.

Table 1
Monitored variables of Tennessee Eastman Chemical process.

Variable no. Symbol Variable description

1 F1 A feed
2 F2 D feed
3 F3 E feed
4 F4 Total feed
5 F5 Recycle flow
6  F6 Reactor feed rate
7  P7 Reactor pressure
8  L8 Reactor level
9  T9 Reactor temperature
10  F10 Purge rate
11 T11 Separator temperature
12  L12 Separator level
13  P13 Separator pressure
14  F14 Separator underflow
15  L15 Stripper level
16  P16 Stripper pressure
17  F17 Stripper underflow
18  T18 Stripper temperature
19  F19 Stripper steam flow
20  J20 Compressor work
21  T21 Reactor coolant temperature
22  T22 Condenser coolant temperature

Table 2
Predefined faults of the Tennessee Eastman Chemical process.

Fault ID. Fault description

IDV(1) Step in A/C feed ratio, B composition constant
IDV(2) Step in B composition, A/C ratio constant
IDV(3) Step in D feed temperature (stream 2)
IDV(4) Step in reactor cooling water inlet temperature
IDV(5) Step in condenser cooling water inlet temperature
IDV(6) A feed loss (step change in stream 1)
IDV(7) C header pressure loss (step change in stream 4)
IDV(8) Random variation in A + C feed composition (stream 4)
IDV(9) Random variation in D feed temperature (stream 2)
IDV(10) Random variation in C feed temperature (stream 4)
IDV(11) Random variation in reactor cooling water inlet temperature
IDV(12) Random variation in condenser cooling water inlet temperature
IDV(13) Slow drift in reaction kinetics
IDV(14)  Sticking reactor cooling water valve
IDV(15) Sticking condenser cooling water valve

The summary of the proposed structure learning algorithm is listed
below:

1. Divide the set of measured variables into smaller subsets in
accordance  with modularity of the process flow diagram;

2. Compute the most reasonable sub-networks for all subsets;
3. Combine all determined sub-networks into one entire network;
4. Compute the network parameters including the conditional

probability density functions of all nodes.
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Table  3
Incidence matrix of the Tennessee Eastman Chemical process.

Unit F1 F2 F3 F5 F6 P7 L8 T9 T21 T22 T11 L12 P13 F14 F4 L15 P16 F17 T18 F19 F10 J20

Mixer 1 1 1 1 1
Reactor 1 1 1 1 1 1 1 1 1
Condenser 1 1
Separator 1 1 1 1 1 1 1 1
Stripper 1 1 1 1 1 1 1 1 1 1
Compressor  1 1 1 1 1 1

Table 4
Posterior probability of the graph edges in the mixer and reactor.

Child nodes

F1 F2 F3 F5 F6 P7 L8 T9 T21

F1 0 0 0 0 1 1 1 0.106 1
F2 0 0 0 0 1 0.024 0.998 0.18 0.086
F3 0 0 0 0 1 0.02 0.056 0.051 1
F5 0 0 0 0 1 1 1 1 1

Parent  nodes F6 0 0 0 0 0 1 0.93 1 1
P7 0 0 0 0 0 0 0 0 0
L8 0 0 0 0 0 1 0 0.002 0.026
T9 0 0 0 0 0 1 0.018 0 0.586
T21 0 0 0 0 0 1 0.974 0.414 0

Table 5
Root-cause (text in bold represents correct identification of root-cause variables).

Test case number PCA ICA Transfer entropy Proposed

T2 SPE I2 SPE
Rank of true
root-cause
variable

Rank of true
root-cause
variable

Rank of true
root-cause
variable

Rank of true
root-cause
variable

Potential
root-cause
variables
include true
one?  (Y/N)

Number of
potential
root-cause
variables (If Y)

Identify
root-cause
variable? (Y/N)

IDV(3) 16th 2nd – 4th N – Y
IDV(4)  2nd 10th 2nd 3rd N – Y
IDV(5)  3rd 1st 2nd 1st Y 7 Y
IDV(6)  1st 10th 1st 1st N – Y
IDV(7)  1st 2nd 2nd 3rd Y 6 N
IDV(9)  2nd 3rd 5th 16th N – Y
IDV(10)  1st 18th 1st 18th Y 6 N
IDV(11)  20th 14th 20th 14th N – N
IDV(12)  3rd 1st 2nd 3rd N – Y
IDV(13)  3rd 2nd 6th 3rd Y 4 Y
IDV(14)  1st 8th 1st 1st N – Y
IDV(15)  7th 1st 2nd 3rd N – Y

After the probabilistic graph is obtained, the likelihood based
monitoring indices are proposed for detecting faulty operations.
With the captured process abnormality, the Bayesian contribution
indices are developed to capture the potential root-cause variables.
Finally, the posterior probability of fault propagation pathways is
computed so as to identify the most probable fault propagation
pathway.

The organization of this article is as follows. Section 2 defines
the probabilistic graphical model used in this work and reviews
the existing structure learning algorithm. Section 3 describes the
proposed structure identification algorithm for probabilistic graph-
ical network. The proposed probabilistic graphical network based
process monitoring approach for fault detection and root-cause
diagnosis is proposed in Section 4. The presented method is applied
to the Tennessee Eastman Chemical process in Section 5. Finally, the
conclusions are drawn in Section 6.

2.  Probabilistic graphical model

2.1. Model definition

Probabilistic graphical models represent complex causal rela-
tionships among a set of random variables and their conditional

dependencies. A popular graphical model is a Bayesian network
which is essentially a directed acyclic graph (DAG) consisting of
hidden and observed nodes, each of which is connected to the var-
ious nodes. Nodes with arrows pointing toward them are termed
as child nodes while the ones with departing arrows are parent
nodes. Meanwhile, the nodes without any parent nodes are called
root nodes and the nodes without any child nodes are called leaf
nodes.

The structure of BN can be designed from prior knowledge
and then the qualitative causal reasoning is conducted within the
network models. Further, the conditional probability distributions
with model parameters �i ∈ � can be estimated from historical data
to infer the quantitative causal relationships among variables.

Given  all the multivariate measurements x = [x1, x2, . . .,  xI] ∈
RI with xi being the ith node, the joint distribution is expressed as

p(x) =
I∏
i=1

p(xi|pa(xi)) (1)

where  pa(xi) are the parent nodes of xi.
Once  the network structure is determined, model parameters

� can be identified by maximizing the likelihood. In the case
when some nodes are unobservable, expectation–maximization
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Fig. 4. Most probable network structure of the Tennessee Eastman Chemical pro-
cess.

(EM) algorithm can be used. The details on BN model learning
procedure can be found in literature (Bishop, 2006).

It  should be pointed out that in this paper each node of
the probabilistic graphical model represents a monitored pro-
cess variable and the data are assumed to be complete or fully
observed. Therefore, no inference is needed, which means the
proposed probabilistic graphical model does not have to be an
acyclic graph. In addition, the linear Gaussian model is employed
to parameterize variables. We  denote the monitored variables as
x = [x1, x2, . . .,  xI] ∈ RI . A single continuous random variables xi
has a Gaussian distribution and the mean of the distribution is com-
puted as a linear combination of the state of its parent nodes pa(xi)
of ith node as follows:

p(xi|pa(xi)) = P(xi|pa(xi); �i) = N(xi|
∑
j∈pa(xi)

wi,jxj + bi, �2
i ) (2)

where  wi,j and bi are parameters controlling the mean, �i repre-
sents the standard deviation of the conditional distribution for xi,
and �i = {wi,j, bi, �i} is the model parameters of ith node. Each
variable xi can be computed as

xi =
∑
j∈pa(xi)

wi,jxj + bj + �i�i (3)

where �i is a Gaussian random variable with a zero mean and unit
variance. By taking the expectation of Eq. (3), the following system
of linear equation is obtained:

E[xi] =
∑
j∈pa(xi)

wi,jE[xj] + bj (4)

where  E[•] represents the mathematical expectation operator. First,
when probabilistic network structure is already known, the param-
eter wi,j can be computed by solving the linear equation Eq. (4).
In the same way, from Eqs. (3) and (4) the parameters �i can be
obtained by solving the following equation:

cov[xi, xj] =
∑
k∈pa(xj)

wjkcov[xi, xk] + Iij�
2
j (5)

where  Iij is the i, j element of the identity matrix and cov[xixj] is
the covariance between xi and xj. In this way, all model parameters
� = {�1, . . .,  �I} can be computed (Bishop, 2006).

2.2. Structure learning

First  and the most important task for networked process mon-
itoring is to infer the precise network structure. The most straight
forward way  is to construct the network structure from process
knowledge. However, by-hand structure design requires in-depth
process knowledge because identification of cause–effect relation-
ships is needed to characterize the complex physical, chemical and
biological phenomena in systems. On the other hand, data-driven
based techniques such as score function based structure learning
is useful when there is lack of process knowledge or considered
processes are too complicated to analyze.

The goal of structure learning is to find a network structure G that
is a good estimator for the data x. The most common approach is
score-based structure learning, which defines the structure learning
problem as an optimization problem (Koller and Friedman, 2009).
A score function score(G : D)  that measures how well the network
model fits the observed data D  is defined. The computational task
is to solve the combinational optimization problem to finding the
network so that the highest score can be obtained.

Several kinds of scoring functions have been developed. Most of
them have the strong property where the score function is decom-
posable as follows:

score(G) =
I∑
i=1

score(xi, paG(xi)) (6)

where  paG(xi) are the parent nodes of xi given graph G. For instance,
the BIC score (for Bayesian information criterion) can be defined as

scoreBIC(G : D)  = �(�̂G : D)  − logM
2

Dim[G]  (7)

where �̂G represents the maximum likelihood parameters for a
graph G, �(�̂G : D)  denotes the logarithm of the likelihood function,
M is the number of samples, and Dim[G] is the model dimension.
Owing to the term of model dimension, the BIC score includes a
tradeoff between the likelihood and model complexity. The BIC
scores decompose as follows:

scoreBIC(G : D)  = M

N∑
i=1

I(xi; paG(xi)) − M

N∑
i=1

H(xi) − logM
2

Dim[G]

(8)

where I(xi; paG(xi)) is the mutual information between xi and
paG(xi), and H(xi) is the marginal entropy of xi. Since the linear
Gaussian model is employed in this work, the mutual information
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Fig. 5. Variable contribution plots of PCA based process monitoring in the case of IDV(4).

between two  multidimensional Gaussian variables X and Y, and the
entropy of X can be computed by:

I(X; Y) = 1
2

log
(

det(˙XX)det(˙YY)
det(˙)

)
(9)

and

H(X) = ln
(
�
√

(2�e)
)

(10)

with

 ̇ =
(
˙XX ˙XY

˙YX ˙YY

)
(11)

where � is a standard deviation of X, e is Napier’s Number, det(•)
represents the determinant of a matrix and ˙XY is the covariance
matrix between X and Y.

Score decomposability is important property because if the
decomposability is satisfied, a local change in the structure does
not change the score of other parts of the structure that remains
same. It also should be noted that the mutual information term
grows linearly in M while the model complexity term grows loga-
rithmically, and thus the larger M leads to the obtained graph which
better represents data (Koller and Friedman, 2009).

With the score function, the optimal graph G∗ can be computed
as follows:

G∗ = argmax
G

scoreBIC(G : D).  (12)

It should be noted that this combinational optimization problem is
known to be NP-hard (Chickering, 1996). Therefore, it is challenging
to obtain the optimal graph for industrial plants which often include
a large number of process variables.

3. Structure identification method

3.1. Incidence matrix based decomposition

In order to overcome the issue of computational cost as well as
explicitly incorporate relationships between the location of mea-
surements and the plant structure, the incidence matrix is utilized
to divide a large set of variables into smaller subsets. The incidence
matrix has one row for each of the units in the process under con-
sideration and one column for each of the measured variables. The
incidence matrix is a K × I matrix [bki] where K and I represent the
number of units and measured variables, respectively. Each entry
[bki] is  assigned 1 or 0 in accordance with the rule where bki = 1 if
the measured variable xi is monitored either in the unit k or in the
outlet stream of the unit k, and bki = 0 otherwise. Next, the entry is
set to be bki = 1 when the variable i monitored in the adjacent upper
unit k − 1 have an influence on the unit k under consideration. If the
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Fig. 6. Variable contribution plots of ICA based process monitoring in the case of IDV(4).

variable i monitored in the upper unit k − t, t ≥ 2 and the variables
monitored in the unit k are not conditionally independent given
variables monitored in units k − 1, k − 2, . . .,  k − t + 1, it is useful to
set the entry to be bki = 1 to avoid losing important information. It
is true that this procedure requires some process knowledge, but
it can be readily implemented from very basic understanding of
process diagram.

With  the generated incidence matrix, a large set of training data
is divided into smaller subsets Dk ∈ RK . Each subset corresponds to
a row of the incidence matrix and contains the monitored variables
whose entries are 1 in that row. Subsets of training data should
satisfy the following condition:

D1 ∪ . . . ∪ Dk ∪ · · · ∪ DK = D.  (13)

After defining the subsets from the incidence matrix, the follow-
ing combinational optimization problem is solved for each subset
Dk.

G∗k = argmax
G

scoreBIC(G : Dk) (14)

where G∗k is an optimal graph for subset Dk. Therefore, the total
number of computed subgraphs is equal to the number of units
under consideration. If the user likes to incorporate the process
knowledge into the network structure, any variables are allowed
to be set on the root nodes or the leaf nodes in subgraphs. A set of

Fig. 7. Causal map of transfer entropy method in the case of IDV(4).

these fixed root nodes and leaf nodes are denoted as Rk ∈ Dk and
Lk ∈ Dk respectively (Rk ∩ Lk = ∅).

Moreover, in order to restrict the solution space further, some
predetermined variable ordering ≺ over x is introduced. If the
ordering covers order relationships over all variables as x1 ≺ x2, . . .,
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Fig. 8. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(4).

xI and the maximum number of parents for each node set to be at
most d, the number of possible parent sets for xi is at most(
i − 1

d

)

rather than 2I−1 (Koller and Friedman, 2009). However, in general
these complete orderings are very difficult to set and they require
in-depth process knowledge to identify. Instead of setting com-
plete orderings, incomplete orderings are proposed here. Unlike the
complete ordering, the incomplete ordering does not cover order
relationships over all variables but restrict the ordering over sub-
sets of variables. The followings are the example of the incomplete
ordering.

{x1, x2, x3} ≺ {x4, x5, x6, x7} (15)

This incomplete ordering suggests that a computed network
should be consistent with the order relationships where x1, x2 and

x3 precede x4, x5, x6 and x7, but any constraints about orders within
each subset are not imposed. Similar to the fixed root nodes and
leaf nodes, the incomplete orderings are optional to set for the
structure learning, but they can further reduce the computational
cost because they make the combinational search space much
smaller. Fortunately, some incomplete orderings are almost auto-
matically determined from the process flow diagram. For instance,
the variables monitored in the upper units must precede the ones
monitored in the lower units.

9980.)( =→T9T21fP002

T21 P7

P13 P16

T22T9

0.) =→P13T22P(f

Fig. 9. Identified fault propagation pathway in the case of IDV(4).
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Fig. 10. Variable contribution plots of PCA based process monitoring in the case of IDV(6).

3.2. Optimization algorithm

For  optimization of subnetworks, the search space is restricted
to the neighbouring graphs that can be obtained by either adding
one edge, deleting one edge, or reversing the existing edge as
shown in Fig. 1 (Koller and Friedman, 2009). The tabu search algo-
rithm is adopted to decide whether the neighbouring graphs are
accepted (Glover, 1986). Tabu search employs a neighbour search
algorithm to move from one solution candidate to an improved
solution in the neighbourhood unless the termination criterion is
satisfied. In order to avoid local minima as much as possible, this
algorithm allows one solution candidate to move to a worse solu-
tion unless that tabu list includes that solution. Tabu list is a set of
solutions that have been visited over the last t iterations, where t
is termed as tabu size and should be specified in advance. In this
work, the tabu size is set to be 100. It should be noted that the
neighbouring graphs should satisfy the constraints including the
specified incomplete orderings. Therefore, the illegal graphs that
violate these constraints are removed from neighbouring solutions
during searching.

In  addition, we employ both the first admissible move strat-
egy and the best admissible move strategy to update the current
solution. In the first admissible move strategy, a current graph is
updated immediately after better one is found, while in the best
admissible move strategy, a graph is updated to the best graph
after searching all possible neighbouring solutions. The first admis-
sible move strategy can find passable solution very quickly but may

move slowly around the local minima. Meanwhile, the best admis-
sible move strategy can search deeply for the local minima but due
to the large size of search space, it takes a quite a lot of time to move
to passable solutions around the local minima. Therefore, the first
admissible move strategy is employed until the passable solution
is found, and then the strategy is changed to the best admissible
move strategy in order to find the optimal solution unless the ter-
mination criteria is satisfied. This enables discovery of the single
high-scoring subgraphs on all subsets.

3.3. Graph identification

It  is very common in structure learning that some networks
have similar scores as the optimal one. If we are interested in the
density estimation only and do not pay attention to the graph struc-
ture in itself, we  can ignore the networks that have similar scores.
However, our main purpose is to identify the cause–effect relation-
ships such as root-cause variables and propagation pathways that
describe process upsets, and hence we  are very interested in the
network structure rather than the density estimation. Therefore,
we should not ignore these high-scoring graphs. The proposed opti-
mization algorithm can find the single high-scoring subgraph for
all subsets of training data. Instead of identifying the one unique
highest-scoring graph, the posterior probabilities of correspond-
ing graph features are computed for all possible graphs and then
the most probable network structure is identified. Graph feature in
subset Dk is represented by the function f k

i→j(Gk) that returns 1 if
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Fig. 11. Variable contribution plots of ICA based process monitoring in the case of IDV(6).

ith node is a parent of jth node and otherwise 0. Our goal is to com-
pute the posterior probability of features f k

i→j(Gk) over all possible

graphs Gk given the training data Dk as follows:

P(f ki→j(Gk)|Dk) =
∑
Gk
f ki→j(Gk)P(Gk|Dk). (16)

It should be noted that Bayesian score of a graph Gk is equal to
its posterior probability P(G|Dk). Since the number of potential
graphs increases exponentially in the number of nodes, we cannot
directly compute the posterior probability P(f k

i→j(Gk)|Dk). Instead of
using the all possible graphs, graph samples are used for comput-
ing the posterior probability. If we can generate the graph samples
Gk1, . . .,  GkN that follow the true posterior distribution of Gk given Dk,
Eq. (16) can be approximated as follows:

P(f ki→j(Gk)|Dk) ≈ 1
N

N∑
n=1

f ki→j(Gkn). (17)

Since we do not know the true posterior distribution but can
compute the posterior probability P(Gk|Dk), Markov chain Monte
Carlo (MCMC) simulation can be utilized to obtain a sequence
of graph samples Gk1, . . .,  GkN . In order to construct the Markov
chain, a standard Metropolis algorithm is used (Metropolis et al.,
1953). Similar to the search space in the structure optimization,
three operations of adding edge, deleting edge and reversing edge

are considered to transform one structure to another. Then, we
assume that a proposal distribution TQ over these operations follow
uniform distribution. Finally, we  generate the graph samples in
accordance with the Markov chain over the space of structure by
accepting the graph sample G′k transformed from the current graph
Gk with the following probability (Friedman and Koller, 2003)

min

[
1,
P(G′k, Dk)TQ (G′k → Gk)
P(Gk, Dk)TQ (Gk → G′k)

]
. (18)

Markov chain is initialized from the structure G* found by structure
learning. Once the graph samples that follow the Markov chain over
the space of structure are generated, the posterior probability of
graph features P(f k

i→j(Gk)|Dk) is computed for all potential edges.
With the posterior probability of graph features, the following

statistical rules are introduced to identify the final probabilistic
graphical model. First, among all potential edges, the features sat-
isfying the following criteria are selected as the edge in the final
model.

P(f ki→j(Gk)|Dk) ≥  ̨ (19)

where  ̨ is the confidence limit. Next, bidirectional edges between
ith and jth nodes are selected in the final graph when the corre-
sponding posterior probabilities satisfies the following criteria:

P(f ki→j(Gk)|Dk) + P(f kj→i(Gk)|Dk) ≥  ̨ (20)
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Fig. 12. Causal map of transfer entropy method in the case of IDV(6).

and

P(f ki→j(Gk)|Dk) ≥  ̌ (21)

P(f kj→i(Gk)|Dk) ≥  ̌ (22)

with the confidence limit ˇ. In this work,  ̨ is set to be 0.9, which
is a common value of confidence limits. The confidence limit  ̌ is
set to be 0.1 since bidirectional edges that have less than 10% of
existence probability are assumed to be noise in this paper. After
obtaining the all subgraphs Gk, they are combined into one entire
graph in accordance with the incidence matrix.

4. Fault detection and root-cause
identification

4.1. Fault detection

Since  probabilistic graphical model has the ability to charac-
terize the stochastic processes using conditional probability, it is
possible to determine the operational status of processes, identify
the fault propagation pathways and diagnose the root causes of
abnormal event. After the model parameters are computed from
historical data, the log-likelihood function for the new observation
of the network nodes xnew = [xnew

1 , xnew
2 , . . .,  xnew

I ] can be defined
as  follows:

ln p(xnew
i ) = ln p(xnew

i |pa(xnew
i )). (23)

This equation represents the probability of each observable net-
work nodes under normal operational conditions. In other words,
the smaller the value of the log-likelihoods, the more probable is
that abnormal event has occurred. Index � is defined to identify the
abnormal operation on each node.

�(i) =
{

1 if 	(xnew
i

) > ci

0 else
(24)

where 	(xnew
i

) = −ln p(xnew
i

) is a minus of the log-likelihood of xnew
i

and ci is the corresponding confidence limit that can be estimated
from kernel density estimation (KDE) algorithm (Bishop, 2006).
Given T samples (	(x1

i
), 	(x2

i
), . . .,  	(xT

i
)) from unknown probabil-

ity distribution gi, gi can be estimated by Kernel density estimator
as follows:

gi(	) = 1
TW

T∑
t=1

k

{
	 − 	(xt

i
)

W

}
(25)

where 	 denotes the random variable under consideration, W rep-
resents the kernel window width and k is a kernel function. The
Gaussian kernel function is commonly used as follows

gi(	) = 1
T

T∑
t=1

1√
2�W

exp

{
− (	 − 	(xt

i
))2

2W2

}
(26)

After a probability density function is estimated, the correspond-
ing point with cumulative density function value at 1 − 
 is the
confidence limit under the confidence level of 
× 100 %. The new
example xnew is identified as faulty operation data when the fol-
lowing abnormal likelihood index (ALI) is one.

ALI =

⎧⎪⎨
⎪⎩

1 if
I∑
i

�(i) ≥ 1

0  else

(27)

4.2.  Root-cause diagnosis

With  the detected abnormal operation, it is desirable to identify
fault propagation pathways and diagnose root-cause variables in
order to prevent or fix the fault operations. In this study, a Bayesian
probability index (BPI) is developed from the conditional probabil-
ity function p(xnew

i
(t)|pa(xnew

i
(t))) of the ith node as follows:

�i(t) =
∫ x2

i
(t)

x1
i

(t)

p(xnew
i |pa(xnew

i (t)))dx (28)

where

x1
i (t) =

{
xnew
i

(t) (xnew
i

(t) < �i(t))

2�i − xnew
i

(t) (xnew
i

(t) ≥ �i(t))
(29)

x2
i (t) =

{
2�i − xnew

i
(t) (xnew

i
(t) < �i(t))

xnew
i

(t) (xnew
i

(t) ≥ �i(t))
(30)

with �i(t) =
∑

j∈pa(xnew
i

(t))wi,jx
new
j

(t) + bj . BPI is a type of cumula-

tive  distribution function and can be used to quantify the effect
of each monitored variable on the abnormal event by its parent
nodes in a probabilistic manner. With the BPI values, the following
Bayesian contribution index is defined to identify the root-cause
variables:

�i =
1
|T|
∑
t∈T

�i(t) (31)
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Fig. 13. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(6).

where T = [t0− t′, t0− t′ + 1, . . .,  t0 + t′ − 1, t0 + t′] is a sampling period
with the time t0 when the abnormal event is first detected and t′

should be specified by users. � i is the mean of BPI over T and named
Bayesian contribution index (BCI) and it represents the likelihood
of each process variable with significantly abnormal behaviour and
can be utilized as an indicator identifying the root causes due to pro-
cess faults. Then, a subset of potential root-cause variables, whose
BCI values are greater than the confidence limit �, is extracted as
follows:

Z = {
 : �
 ≥ �}. (32)

When only one variable is included in Z, it can be isolated as the
root-cause variable leading to process upset. On the other hand, in
the case when |Z| ≥ 2, the short paths that connect potential root-
cause variables in Z so that all of them are connected are selected
as the fault propagation pathways and then the root nodes of the
identified paths are isolated as the root-cause variable due to abnor-
mal  operations. However, this approach gives us the question of

how we identify the root-cause variables when more than 2 vari-
ables become the root-cause variables in the identified pathways.
Our approach is to select the pathways that have the largest poste-
rior probability given the faulty data Dnew,k =

{
x(t) : t ∈ T

}
among

them.  Similar to the approach for identification of the network
structure, the posterior probability of graph features fi→j given the
faulty data Dnew,k as follows:

P(f ki→j(Gnew,k)|Dnew,k) ≈ 1
N

N∑
n=1

f ki→j(G
new,k
n ) (33)

where graph sample G′new,k can be generated from Markov chain
where the new sample is accepted as the following probability:

min

[
1,
P(G′new,k, Dnew,k)TQ (G′new,k → Gnew,k)

P(Gnew,k, Dnew,k)TQ (Gnew,k → G′new,k)

]
. (34)
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Fig. 14. Variable contribution plots of PCA based process monitoring in the case of IDV(13).

A proposal distribution TQ over these operations assumes to be uni-
form distribution and Markov chain is initialized from the structure
G∗k found by structure learning. Then the edge that has the high-
est probability among competing edges is identified as the most
probable one below:

j∗ = argmax
j∈Z∩paG∗k (xi)

P(f ki→j(Gnew,k)|Dnew,k) (35)

The proposed structure learning framework for probabilistic
graphical network is illustrated in Fig. 2. Step-by-step procedure of
the presented networked process diagnosis methodology is listed
below:

(1) Create the (equipment, measured variables) incidence matrix
from  process flow diagram;

(2) Divide the set of measured process variables into smaller sub-
sets  in accordance with the incidence matrix;

(3)  Set root nodes Rk and leaf nodes Lk for all unit k = (1, 2, . . .,  K)
by  the user if necessary;

(4) Set incomplete ordering by the user if possible;
(5)  Solve the optimization problem (14) from the historical pro-

cess  data and obtain an optimal graphs G∗k for all k;
(6) Generate graph samples from the MCMC  simulation and com-

pute  the posterior probability over the structure;
(7) Determine the final sub-network structure based on the pos-

terior  probability over the structure;
(8)  Combine all subgraphs into one entire graph;

(9) Learn the parameters of linear Gaussian model from the his-
torical  process data by solving Eqs. (4) and (5);

(10) Compute the log-likelihood and determine the confidence
limits using kernel density estimation;

(11)  Calculate the values of ALI for new process data and determine
abnormal operation when ALI(i) = 1;

(12) Calculate the BCI values of the detected faulty samples for all
variable  nodes in the network and produce the corresponding
contribution plots;

(13) Identify the fault propagation pathways and root-cause vari-
able  using the BCI values and the posterior probability of edge
over  the potential graphs given the faulty operation data.

5. Application example

5.1.  Tennessee Eastman Chemical process

In this study, the Tennessee Eastman Chemical process is uti-
lized to examine the performance of the proposed networked
process monitoring method. The diagram of the Tennessee East-
man Chemical process is shown in Fig. 3. This process has six major
process units which are a feed mixer, a exothermic 2-phase reactor,
a product condenser, a vapor-liquid separator, a recycle compres-
sor and product stripper (Downs and Vogel, 1993). This process
produces two liquid products of G and H, along with a byproduct
of F from four gaseous reactants A, C, D and E. An inert B is fed
into the reactor which formed G and H. The process has total 22
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Fig. 15. Variable contribution plots of ICA based process monitoring in the case of IDV(13).

continuously measured variables, 16 sampled measured variables
and 12 manipulated variables. The process includes a plant-wide
decentralized control implementation with different feedback con-
trol loops.

For process monitoring purpose, 22 continuously measured
variables among the total 41 variables are selected, as shown in
Table 1. The variable symbols shown in the table are used later in
this section. The sampling time of process measurement variables
is set to 15 min. The training data set consisting of 1000 samples
generated under normal operations is used to learn both network
structure G and network parameters �.

Furthermore, 12 out of 15 predefined test cases are used to com-
pare the monitoring performance. All the predefined test scenarios
are shown in Table 2 (Downs and Vogel, 1993). The eliminated test
cases of IDV(1), IDV(2) and IDV(8) are considered non-applicable,
because all of three faulty operations are derived from the variation
of the feed composition ratio and no variable related to component
ratio is monitored, which means that it is difficult to select the most
significant root-cause variable among the measured ones. In addi-
tion all of these 12 cases include both normal and faulty operations.
In all the cases, the process begins with normal operating condition
from the first through the 300th samples. Then the faulty operation
occurs from the 301st through 400th samples.

As a comparison, the PCA and ICA based process monitoring
methods are used to examine the effectiveness of the proposed
algorithm. In both methods, the variable that has the largest value
of contribution index is considered to be root-cause one. For the

sake of fair comparison, the same diagnosis period |T| = 2[h] is used
in the PCA, ICA and proposed methods. As for the causal map
method (Chiang and Braatz, 2003), this method requires in-depth
process knowledge to design the causal maps and we assume that
the expert process knowledge is unavailable here, and hence this
approach is not used for the comparison in this paper. Instead,
purely data-driven causal matrix based process diagnosis method
(Bauer et al., 2007) is compared with the proposed method. This
method employs the transfer entropies to design the causal map in
order to find the direction of disturbance propagation pathways.
The diagnosis period T is set to be same value as the proposed
method. For the existing Bayesian network based process diagno-
sis methods, unlike the proposed method, all the methods (Weidl
et al., 2005; Dey and Stori, 2005; Huang, 2008; Alaeddini and Dogan,
2011) require the in-depth process knowledge to design the net-
work structure, and hence they are excluded from the comparison
in this paper.

5.2.  Network structure identification

The first task in the proposed approach is to generate the inci-
dence matrix from the process flow diagram and very superficial
knowledge about processes. As shown in Fig. 3, the process includes
6 major units of the mixer, reactor, condenser, separator, stripper,
and compressor, which correspond to the rows of the incidence
matrix. Columns of the incidence matrix correspond to the total 22
measurement variables and thus the incidence matrix is a 6 × 22
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Fig. 16. Causal map  of transfer entropy method in the case of IDV(13).

matrix. F1, F2, F3, F5 and F6 are measured in the mixer, P7, L8, T9
and T21 are measured in the reactor, T22 is monitored in condenser,
T11, L12, P13 and F14 are monitored in the separator, L15, P16, F17, T18
and F19 are measured in the stripper, and J20 is monitored in the

P7 P13

P16

J20

Fig. 18. Identified fault propagation pathway in the case of IDV(13).

compressor. Hence, the corresponding entries are 1 in the inci-
dence matrix. In addition, one can readily notice that variables
monitored in the mixer have an influence on the adjacent reac-
tor, so the corresponding entries in the row of reactor are 1.
Similarly, some entries of the other rows are assigned 1 accord-
ingly and finally the incidence matrix shown in Table 3 can be
obtained.
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Fig. 17. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(13).
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Fig. 19. Variable contribution plots of PCA based process monitoring in the case of IDV(3).

With the constructed incidence matrix, a set of all measured
variables is broken into smaller subsets as follows:

D1 = {F1, F2, F3, F5, F6}
D2 = {F1, F2, F3, F5, F6, P7, L8, T9, T21}
D3 = {T9, T22}
D4 = {P7, L8, T9, T22, T11, L12, P13, F14}
D5 = {T11, L12, P13, F14, F4, L15, P16, F17, T18, F19}
D6 = {F5, T11, L12, P13, F10, J20}.

The next step is to place any variables on root nodes or leaf nodes
as appropriate. In this example, it is clear from process diagram as
shown in Fig. 3 that A feed rate (F1), D feed (F2), E feed (F3), and
recycle flow (F5) should be placed on the root nodes in the mixer,
and total feed (F4) should be placed on the root node in the stripper
as follows:

R1 = {F1, F2, F3, F5}
R5 = {F4}.

In addition, the following incomplete orderings are also readily
identified from process flow diagram.

{F1, F2, F3, F5} ≺ F6

F6 ≺ {P7, L8, T9, T21}
T9 ≺ T22

{P7, L8, T9, T22} ≺ {T11, L12, P13, F14}
{T11, L12, P13, F14, F4} ≺ {L15, P16, F17, T18, F19}
{T11, L12, P13} ≺ F10 ≺ J20 ≺ F5.

After discovering the single high-scoring subgraphs, the posterior
probability of the graph features over graph structures given the
training data is computed for each subset. Table 4 shows the pos-
terior probability of the graph features over graph structure of the
reactor. In this table, for instance, the probability of the edge from
T21 to L8 is 0.974 while that of the reverse edge from L8 to T21 is
0.026. Since the confidence limit  ̨ and  ̌ is set to be 0.9 and 0.1
respectively, the final subgraph of the reactor is obtained as shown
in Fig. 4(b). In this way, all subgraphs are identified and then they
are combined into the entire graph as shown in Fig. 4.

5.3.  Comparison of process diagnosis results

Once network structure is obtained, the network parameters
denoting the conditional probability density function of all nodes
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Fig. 20. Variable contribution plots of ICA based process monitoring in the case of IDV(3).

are computed from the training data. With the network model con-
structed, the abnormal likelihood index values for new process data
are calculated for detecting the faulty operation. Once the abnormal
event is detected, the fault propagation pathway is searched and
the root-cause variable for the event is identified. As mentioned in
the previous section, 12 out of 15 predefined test scenarios, IDV(3),
IDV(4), IDV(5), IDV(6), IDV(7), IDV(9), IDV(10), IDV(11), IDV(12),
IDV(13), IDV(14) and IDV(15) are used to examine the performance
of the proposed method. In addition, the confidence limit � is set to
be 0.2, which means that the variables whose BCI value is greater
than 0.2 are considered candidates for the root-cause variables.
This value is determined from our experience. As for the trans-
fer entropy method, the prediction horizon is set to be 4, which
is recommended in the literature (Bauer et al., 2007). Furthermore,
the literature recommends that the significant level of causality
measures be greater than six sigma, but that value is too severe
to accept any causality measures and thus we have set it to three
sigma instead of six sigma in order to get reasonable causal maps
in the transfer entropy method.

We will present discussion of three test scenarios. The
remaining test scenarios are discussed in the supplementary mate-
rial which is available in Appendix A.

In the case of IDV(4), the abnormal operating event is the step
change of reactor cooling water inlet temperature from the 301st
to the 400th samples. The ALI trend plot and the BCI values are
shown in Fig. 8. One can readily see that the proposed method is

Fig. 21. Causal map of transfer entropy method in case 3.

able to accurately detect faulty operations. In addition, it can be
seen that reactor pressure (P7), reactor temperature (T9), separator
pressure (P13), stripper pressure (P16), reactor coolant water tem-
perature (T21), and condenser coolant temperature (T22) are greater
than the confidence level of 0.2. The identified fault propagation
pathways are shown in Fig. 9. Since the bidirectional edge between
T21 and T9 is included in the pathways, the posterior probability
of each directional edge is computed as P(fT21→T9 |Dnew) = 0.998
and P(fT9→T21 |Dnew) = 0.002. Therefore, it is concluded that reactor
coolant water temperature (T21) is located in the root node of the
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Fig. 22. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(3).

fault propagation pathways and accurately identified as the root
cause of the process fault because this process upset is induced by
the step change of the reactor coolant water temperature. Mean-
while, the PCA and ICA-based contribution plots are shown in
Figs. 5 and 6. In the PCA-based T2 contribution plot and the ICA-
based I2 one, it is true that both the contribution values of T21 are
large, but they are not large enough compared with the other high-
contribution variables and hence it is still challenging to identify
the actual root-cause variables of T21. As for both the ICA-based
and the PCA-based SPE contribution plots, the contribution values
of T21 are so small that it may  be impossible to extract the root-
cause variable based on these contribution plots. Furthermore, the
causal map  of the transfer entropy method is described in Fig. 7.
The causal map  indicates that F4, F5, L12 and F6 are the root nodes
of the identified network and they are the candidates of the root-
cause variable that causes the process upset. However, the actual
root-cause variable of T21 is not included among them, so the trans-
fer entropy method cannot capture the root-cause variable in this
test scenario. Meanwhile, the proposed method can well-isolate

Fig. 23. Identified fault propagation pathway in the case of IDV(3).

the plausible fault propagation pathways and the true root-cause
variable.

In the case of IDV(6), the process operation includes the A
feed loss starting from the 301st samples. The process monitor-
ing results of the ALI trend and BCI values are shown in Fig. 13. It is
obvious that the ALI value remains 0 for the first 300 samples and
then becomes 1 once the process fault of A feed loss takes place.
After the faulty operation is captured, the BPI values can be gener-
ated. The BPI values of A feed (F1) is far larger than that of any other
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Fig. 24. Variable contribution plots of PCA based process monitoring in the case of IDV(5).
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Fig. 25. Variable contribution plots of ICA based process monitoring in the case of IDV(5).
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Fig. 26. Causal map  of transfer entropy method in the case of IDV(5).

variable and this means that A feed rate (F1) is identified as the
root-cause variable, which is consistent with the actual root cause.
As a comparison, the PCA and ICA-based contribution plots shown
in Figs. 10 and 11 indicate that the contribution values except for
PCA-based SPE are so larger than that of other variables that they

Fig. 28. Identified fault propagation pathway in the case of IDV(5).

can be accurately identified as the root-cause variable. As for PCA-
based SPE, the contribution values do not reflect the true fault
causes. On the other hand, the causality map  is computed by the
transfer entropy method in order to capture the root-cause variable
and the fault propagation pathways. As this map  shows, the set of
potential root-cause variables of F3, T11 and T21 exclude the actual
root-cause variable of F1. In contrast, the proposed networked pro-
cess monitoring can capture the actual fault propagation pathway
due to its well described cause–effect relationship (Fig. 4).

In  the test case of IDV(13), the trend plot of the ALI and BCI-
based contribution plot are shown in Fig. 17. It is readily observed
that the ALI values remain zero and then jump to the one once the
slow drift of reaction kinetics takes place. Further, it can be seen
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Fig. 27. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(5).
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Fig. 29. Variable contribution plots of PCA based process monitoring in the case of IDV(7).

that four leading variables with higher BCI values than the confi-
dence level are reactor temperature (P7), separator pressure (P13),
stripper pressure (P16) and compressor work (J20). Since there are 4
potential root-cause variables, the fault propagation pathways are
analyzed based on the constructed network structure. The com-
puted pathways are described in Fig. 18. It is obvious that reactor
pressure (P7) is the root node of the identified pathways. Mean-
while, the variation of reaction kinetics is directly connected with
the reactor pressure, and thus the identified root-cause variable of
P7 is accurately placed on the root cause of the process upset. As
a comparison, the PCA and ICA-based variable contribution plots
are shown in Figs. 14 and 15. One can easily see that the lead-
ing variables that have large contribution values include reactor
pressure P7 in all contribution plots, but these plots are unable
to correctly point the faulty variable. Furthermore, the transfer
entropy method is used in order to compute the causal map  as
shown in Fig. 16. It can be observed that the root nodes of the
network are T22, P16, and P7, which include the actual root-cause
variable of P7, but cannot isolate it among the three potential root-
cause variables. In contrast, the proposed probabilistic networked
process monitoring approach can further identify the root-cause
variable.

Table 5 shows the root-cause identification results of the pro-
posed probabilistic graphical network based process monitoring,
PCA and ICA-based contribution plot methods and the transfer
entropy approach. It should be pointed out that the PCA and

ICA-based  contribution plots can accurately identify the most sig-
nificant variable that ranks 1st as the root-cause variable in 3 or 4
test cases. T2 contribution, for instance, can well-isolate the root-
cause variable in four test cases of IDV(6), IDV(7), IDV(10) and
IDV(14). As for the transfer entropy method, in 4 out of 12 test
cases the sets of the potential root-cause variables include the true
root-cause ones, but the number of the potential root-cause vari-
ables is between 4 and 6. This means that the transfer entropy
approach cannot well-isolate the actual root-cause variable. By
contrast, the proposed graphical network process monitoring
approach can identify the true root-cause variable in 9 out of 12 test
scenarios, which is the highest identification rate among all meth-
ods. Such comparison shows that the proposed approach has the
unique capability to locate the true root-cause variable due to the
complicated network structure based on both the historical data
and the structural information such as the incidence matrix.

6.  Conclusion

In this study, a novel probabilistic graphical model based net-
worked process monitoring is proposed for the identification of
the root-cause variable. The main contribution of this research is a
methodology to construct the most probable probabilistic graph-
ical model from historical process data as well as the process
measurement incidence matrix, and our approach requires very
little knowledge about the process. First, the incidence matrix is
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Fig. 30. Variable contribution plots of ICA based process monitoring in the case of IDV(7).

created from the process flow diagram. Then a set of monitored
variables is broken into smaller subsets in accordance with the
incidence matrix. Then subgraph corresponding to each subset is
optimized from the historical process data in terms of Bayesian
score that can take into account the trade-off between the like-
lihood and the model complexity. In general, several graphs have
similar scores as the optimal network, which means that it is impos-
sible to identify the true network structure from the historical data.
Therefore, instead of identifying the true network structure, the
most probable one is computed using graph samples generated
from the Markov chain Monte Carlo simulation. After combining
all the identified subgraphs into the one entire network, network
parameters including conditional probability density functions of
all different nodes are computed from the historical process data.
Moreover, an abnormality likelihood index is developed to cap-
ture the abnormal operating condition. Once the fault is detected,
Bayesian contribution indices are developed to capture the poten-
tial root-cause variables. In addition, for the further identification
of root-cause variable in the case when there are more than two
potential root-cause variables, the posterior probability of the edge
is computed to isolate the true root-cause variable among them. The
Tennessee Eastman Chemical process has been used to examine
the effectiveness of the proposed method. The results demonstrate
that the proposed method can accurately detect faults, identify

fault  propagation pathways and capture root-cause variable of pro-
cess faults. Since the proposed method may  not work well for
time-varying system, future work will focus on employing dynamic
Bayesian networks in order to take into account the dynamic nature
of process data. In addition, in order to detect multiple root-cause
variables, the current algorithm to identify fault propagation path-
ways will be modified in future work.

Fig. 31. Causal map  of transfer entropy method in the case of IDV(7).
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Fig. 32. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(7).

Appendix A. Remaining test scenarios

For the case of IDV(3), the trend plot of the abnormality likeli-
hood index and the Bayesian probability index based contribution
plot are shown in Fig. 22. It can be seen that most of the ALI
values are 0 during the normal operation and then become 1 with
very minimal delay once the process fault of a step change in D feed
temperature occurs at 301st samples. Please note that the feed
temperature is not measured. Hence, the fault detection algorithm
cannot identify it as the root cause, but it should be able to identify

Fig. 33. Identified fault propagation pathway in the case of IDV(7).

a measured variable which is directly impacted by the change
in feed temperature. After the fault is detected, it is obvious that
the five leading variables with the larger contribution values than
0.2 are reactor pressure (P7), separator pressure (P13), stripper
pressure (P16), compressor work (J20), and condenser coolant
temperature (T22). After finding the short paths in Fig. 23 so that
these all variables are connected, one can readily find that P7 and
T22 are the potential root-cause variables that lead process upset.
In order to identify the root-cause variable between them, the pos-
terior probability of each graph edge is computed and they turned
out to be P(fP7→P13 |Dnew) = 0.874 and P(fT22→P13 |Dnew) = 0.812.
Therefore, reactor pressure (P7) is more likely be associated with
the root cause of this process upset than P13. One should note that
the variations in D feed temperature directly affect the pressure
in the reactor because the stream of D feed is connected to the
reactor. Hence, the identified root cause is accurately consistent
with the actual root-cause variable. In contrast, the PCA and ICA
based variable contribution plots are shown in Figs. 19 and 20.
These contribution plots show the major affected process vari-
ables, but cannot identify the root-cause variable among them. As a
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Fig. 34. Variable contribution plots of PCA based process monitoring in the case of IDV(9).

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T1 1 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

2

4

6

8

10

12

14

16

18

20

C
on

tr
ib

ut
io

n(
I2

)

I2 Contribution

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T1 1 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

50

100

150

200

250

C
on

tr
ib

ut
io

n(
S

P
E

)

SPE contributio n

Fig. 35. Variable contribution plots of ICA based process monitoring in the case of IDV(9).
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Fig. 36. Causal map of transfer entropy method in the case of IDV(9).

comparison, the causal map  of the transfer entropy approach is
shown in Fig. 21. The root nodes of causal map  are T22, T11, P16 and
F17 that are the potential root causes, but the true root-cause vari-
ables cannot be identified among them without in-dept process

Fig. 38. Identified fault propagation pathway in the case of IDV(9).

knowledge. Conversely, the proposed networked process monitor-
ing taken into account more complicated cause–effect relationship
and further identify the major propagation pathway and root-cause
variable.

For the case of IDV(5), the step change of condenser coolant
water inlet temperature takes place after the 300 samples of nor-
mal  operation. As the trend plot of the abnormality likelihood index
shows in Fig. 27, they detect abnormal operating events immedi-
ately after the process fault occurs at 301st samples. Then, Bayesian
contribution index values are calculated to identify the variables
responsible for this abnormal event, as shown in Fig. 27. It is
obvious that the three leading variables with the largest contribu-
tion values are separator temperature (T11) stripper temperature
(T18) and condenser coolant temperature (T22). Because the process
abnormality occurs in separator coolant temperature, separator
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Fig. 37. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(9).

PhD Thesis - Junichi Mori McMaster University - Chemical Engineering

66



J. Mori et al. / Computers and Chemical Engineering 71 (2014) 171–209 197

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T11 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

5

10

15

20

25

30

35

40

C
on

tr
ib

ut
io

n(
T

2)

T2 Contribution

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T11 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

50

100

150

C
on

tr
ib

ut
io

n(
S

P
E

)

SPE contributio n

Fig. 39. Variable contribution plots of PCA based process monitoring in the case of IDV(10).
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Fig. 40. Variable contribution plots of ICA based process monitoring in the case of IDV(10).
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temperature (T11) and stripper temperature (T18) are consequently
affected due to the variable interaction. The identified fault prop-
agation pathways are shown in Fig. 28. The pathways include T11,
P13, F14, L15, P16, and T18, and the root nodes of T22 is accurately
identified  as the root-cause variable leading to the process varia-
tions. On the other hand, as shown in Figs. 24 and 25, the values
on T22 of both PCA-based and ICA-based SPE contribution are sig-
nificantly larger than that of any other variable and thus it can be
said that T22 are accurately identified as the root-cause variable.
Meanwhile, in the T2 and I2 contribution plots, many variables
including T22 have the large values of contribution, so it is chal-
lenging to extract the true root-cause variable without in-depth
knowledge about processes. As a comparison, causal map is com-
puted by the transfer entropy is shown in Fig. 26. According to
the causal map, F1, L15, T22, F19, F6, and P16 are identified as the
potential root-cause variables since they are placed on the root
nodes of the identified pathways. Although T22 is included among
these variables, we cannot identify the root-cause variable with-
out in-depth process knowledge. Conversely, since the proposed

Fig. 41. Causal map of transfer entropy method in the case of IDV(10).
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Fig. 42. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(10).
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Fig. 43. Identified fault propagation pathway in the case of IDV(10).

networked process monitoring takes into account more compli-
cated cause–effect relationship and structural information based on
the incidence matrix, it can further identify the major propagation
pathways and root-cause variable (see Figs. 27 and 28).

For  the case of IDV(7), C header pressure loss occurs from the
301st to 400th samples after normal operation. The process mon-
itoring results including the ALI trend and BCI plot are shown in
Fig. 32. ALI values accurately capture abnormal operating events
during C header pressure loss takes place. Then, Bayesian contribu-
tion index values are calculated to identify the potential root-cause
variables. The significant variables in terms of BCI values are P7,
P13, P16, T18 and T22. They include the actual root-cause variable
of stripper pressure P16 that should be directly affected by the
variation of the C header pressure because the stream of C feed is
connected to the stripper. In order to identify the root-cause vari-
able among them, the fault propagation pathways are identified
as shown in Fig. 33. Although the actual root-cause variable is P7,
the proposed method mistakenly identified reactor pressure of P7
as the root-cause variable. By contrast, the value on P16 in PCA-
based T2 contribution plot is large enough to be identified as the
root-cause variable that is consistent with the actual one. Mean-
while other contribution values such as PCA-based SPE, ICA-based

T2 and SPE do not conclude that P16 is the root-cause variable (see
Figs. 29 and 30). In comparison, the transfer entropy based causal
map is shown in Fig. 31 and its root nodes are P7, P13, P16, J20 and T11,
one of which is identified as the root-cause variable leading process
variations. Although these variables include the actual root-cause
one P7, it is not easy to identify it among these 5 potential variables
without in-depth process knowledge. Therefore, in this test sce-
nario, only PCA-based T2 contribution plot can accurately identify
the root-cause variable of faulty operation.

For the test case of IDV(9), the trend plot of the ALI and the BPI
values are shown in Fig. 37. It can be observed that all ALI values
are 0 during the normal operation and then become 1 with very
minimal delay once the process fault of a random variation in D
feed temperature happens at 301st samples. Furthermore, it can be
seen that in the BCI plot reactor pressure (P7), separator pressure
(P13), stripper pressure (P16), compressor work (J20), and condenser
coolant temperature (T22) are greater than the confidence limit of
0.2. Next step is to identify the root-cause variable among them.
According to the identified fault propagation pathways shown in
Fig. 38, there are two potential root-cause variables of P7 and T22.
Therefore, the posterior probability of each edge given the faulty
data is computed and compared. As a result it is found that the
probability of the edge from P7 to P13 is larger than the other and
then it is concluded that the root-cause variable is accurately iden-
tified as the reactor pressure P7, which leads the actual root-cause
variables because the D feed stream is connected to the reactor
and the variation of D feed temperature should directly affected
the pressure in the reactor. Meanwhile, Figs. 34 and 35 show the
contribution plots of the PCA-based and ICA-based contribution
plots. Although the actual root cause of P7 is included among the
variables having high-contribution values except in the ICA-based
SPE contribution plot, their contribution values are not the highest
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Fig. 44. Variable contribution plots of PCA based process monitoring in the case of IDV(11).

PhD Thesis - Junichi Mori McMaster University - Chemical Engineering

69



200 J. Mori et al. / Computers and Chemical Engineering 71 (2014) 171–209

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T1 1 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

5

10

15

C
on

tr
ib

ut
io

n(
I2

)

I2 Contribution

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T1 1 L1 2 P1 3 F1 4 L1 5 P1 6 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

50

100

150

200

250

300

C
on

tr
ib

ut
io

n(
S

P
E

)

SPE contributio n

Fig. 45. Variable contribution plots of ICA based process monitoring in the case of IDV(11).

of all variables and thus we cannot identify the root-cause variable
without in-depth process knowledge. Furthermore, the causal
map generated by the transfer entropy method suggests that the
number of potential root-cause variables are 6 as shown in Fig. 36,
but the true root-cause variable of P7 is excluded. By contrast,
the proposed method can capture the plausible fault propagation
pathways and identify the actual root-cause variable.

For the case of IDV(10), the fault detection results of the ALI
are shown in Fig. 42. It is obvious that the alert is triggered with
very minimal delay after process fault of random variation in C feed
temperature occurs. Once faulty event is detected, BCI values of all
the variables are further compared, as shown in Fig. 42. In addition,
networked process diagnosis results are shown in Fig. 43. Three
leading variables with the largest contribution values are reactor
pressure (P7), separator pressure (P13), stripper temperature (T18),
compressor work (J20) and separator coolant temperature (T22). It is
true that these potential root-cause variables include the true root-
cause one T18 that leads to the process upset, but the identified fault

Fig. 46. Causal map  of transfer entropy method in the case of IDV(11).

propagation suggests that the reactor pressure P7 is the measured
variable which is associated with the root cause in Fig. 43 and it can
be said that the identified one conflict with the actual root cause. On
the other hand, the PCA-based and ICA-based contribution plots are
shown in Figs. 39 and 40. Both T2 and I2 contribution plots can well-
isolate the root-cause variable of T18 that has far larger contribution
value than the other variable does. As for PCA-based and ICA-based
SPE contribution plots do not work well for identifying the root-
cause variable. Meanwhile, the transfer entropy method computes
the causal map in order to identify the root-cause variable and the
fault propagation pathways as shown in Fig. 41. Although one can
readily see that total 6 potential root nodes include the actual root-
cause variable of T18, it is still challenging to extract the true one
from these potential variables. In this test scenario, we found that
only T2 and I2 based contribution plots can accurately identify the
root-cause variable causing the faulty operation.

In the case of IDV(11), the random variation of the reactor cool-
ing water inlet temperature occurs from 301st to 400th samples.
The ALI trend and BCI values are shown in Fig. 47. These figures
indicate that the ALI values can detect the faulty operation with
the high detection rate but the set of variables that have high BCI
values excludes the actual root-cause variable of T11. Similarly, in
the PCA and ICA-based contribution plots shown in Figs. 44 and 45,
T11 is not taken into account significant variable that causes the pro-
cess upset and thus these results also conflict with the actual root
cause. As a comparison, the causal map  computed by the transfer
entropy method is shown in Fig. 46. Similar to the other meth-
ods, the root nodes of the identified causal map  do not include
the reactor cooling water of T11 that is the actual root-cause vari-
able leading to the process variation. In summary, all the methods
including the proposed one cannot identify the root-cause vari-
able of the reactor cooling water temperature T11 in this test
scenario.
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Fig. 47. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(11).

For the test case of IDV(12), the trend plot of the ALI and the BCI
values are shown in Fig. 52. One can readily see that the proposed
ALI is able to accurately detect faulty operations after the random
variation of the condenser cooling water inlet temperature takes
place. Once the faulty operation is captured, the Bayesian contribu-
tion index values are computed to identify the root-cause variable
for the process upset. It is obvious that the three variables with
the largest contribution values are separator temperature (T11),
stripper temperature (T18), and condenser coolant temperature

Fig. 48. Identified fault propagation pathway in the case of IDV(11).

(T22). Since there are three potential root-cause variables, the fault
propagation pathways are identified as shown in Fig. 53. The fault
propagation pathways show that process variation takes place in
separator coolant temperature (T22) and then T11, F14, L15, P16 and
T18 are consequently affected due to the variable interaction. The
identified fault propagation pathway is well consistent with the
actual faulty scenario and the separator coolant temperature (T22)
is accurately placed as the root-cause variable that leads to process
upset. On the other hand, the PCA and ICA-based contribution
plots that are shown in Figs. 49 and 50 can identify the fault
affected variables including true root-cause variables of separator
coolant temperature (T22). The SPE contribution value of T22 in the
PCA-based monitoring method is significantly large and hence it
can be said that T22 is accurately identified as the root-cause vari-
able. Meanwhile, the other contribution plot cannot well-isolate
the root-cause variable among high-contribution-value variables.
By contrast, the transfer entropy method is used to compute the
causal map  and identify the root-cause variable and the fault
propagation pathways. The identified causal map is shown in
Fig. 51. It can be seen that the identified fault propagation pathway
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Fig. 49. Variable contribution plots of PCA based process monitoring in the case of IDV(12).
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Fig. 50. Variable contribution plots of ICA based process monitoring in the case of IDV(12).
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Fig. 51. Causal map  of transfer entropy method in the case of IDV(12).

Fig. 53. Identified fault propagation pathway in the case of IDV(12).

excludes the actual root cause of separator coolant temperature
(T22). On the other hand, the fault propagation pathways and
root-cause variable identified by the proposed networked process
monitoring approach coincides well the actual fault propagation
pathways. These above all comparisons demonstrate that the
proposed networked process monitoring approach has the unique
capability to capture the major fault propagation pathways and
identify the root-cause variable due to the fact that the proposed
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Fig. 52. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(12).
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Fig. 54. Variable contribution plots of PCA based process monitoring in the case of IDV(14).

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T11 L1 2 P13 F1 4 L1 5 P16 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

10

20

30

40

50

C
on

tr
ib

ut
io

n(
I2

)

I2 Contribution

F1 F2 F3 F4 F5 F6 P7 L8 T9 F10 T11 L1 2 P13 F1 4 L1 5 P16 F1 7 T1 8 F1 9 J2 0 T2 1 T2 2
0

200

400

600

800

1000

1200

C
on

tr
ib

ut
io

n(
S

P
E

)

SPE contribution

Fig. 55. Variable contribution plots of ICA based process monitoring in the case of IDV(14).
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networked model takes into account more detailed relationship
and is capable of describing the complicated phenomena.

For the test case of IDV(14), the plant operation includes normal
condition along with sticking of the reactor cooling water valve.
Fig. 57 describes the ALI-based fault detection result and BCI-based
variable contribution plot. It is obvious that the alarm is accurately
triggered with a short delay. The variable with higher BCI value than
the confidence level is reactor cooling water temperature (T21) only
and thus T21 is turned out to be the identified root-cause variable.
Since the sticking of the reactor cooling water valve should has a
direct influence on T21, it can be said that the proposed method can
accurately isolate the true root-cause variable. As a comparison,
Figs. 54 and 55 show the PCA and ICA-based contribution plot. It is
obvious that except in PCA-based SPE contribution plot the contri-
bution values of T21 are so large that T21 can be correctly identified
as the root-cause variable. Meanwhile, the transfer entropy method
is also carried out to identify the root-cause variable. The causal
map computed by the transfer entropy method is shown in Fig. 56.
One can easily observe that the true root-cause variable of T21 is not Fig. 56. Causal map of transfer entropy method in the case of IDV(14).
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Fig. 57. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(14).
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Fig. 58. Variable contribution plots of PCA based process monitoring in the case of IDV(15).
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Fig. 59. Variable contribution plots of ICA based process monitoring in the case of IDV(15).
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Fig. 60. Causal map  of transfer entropy method in the case of IDV(15).
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Fig. 61. Trend plot of abnormal likelihood index (ALI) and Bayesian contribution index (BCI) plot in the case of IDV(15).
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Fig. 62. Identified fault propagation pathway in the case of IDV(15).

included in the identified causal map. Such comparison shows that
the proposed probabilistic graphical model approach and the PCA
and ICA-based contribution plot can accurately capture the root-
cause variable in this test case, while the transfer entropy method
does not well-work.

For  the last test case of IDV(15), sticking of condenser cooling
water valve occurs from 301st to 400th samples. The ALI trend
plot and BCI values are shown in Fig. 61. It can be seen that
the proposed ALI can correctly trigger the alarm with very min-
imal delay. Moreover, there is no false alarm triggered on the
normal samples. Further, it is obvious that five leading variables
with higher BCI values than the confidence level of 0.2 are reac-
tor temperature (P7), separator pressure (P13), stripper pressure
(P16), compressor work (J20) and condenser cooling water tem-
perature (T22). In order to isolate the root-cause variable among
these 4 potential root-cause variables, the fault propagation path-
ways are computed from the constructed network structure as
shown in Fig. 62. One can readily observe that reactor pressure
(P7) and reactor cooling water temperature (T22) are the root
nodes of the identified pathways. So as to identify the root-cause
variable between them, the posterior probability of each edge is
computed as P(fP7→P13 |Dnew) = 0.628 and P(fT22→P13 |Dnew) = 0.770
using  the MCMC  simulation technique. Finally, reactor cooling
water temperature (T22) is accurately place on the root-cause vari-
able that leads the process upset. As a comparison, the PCA and
ICA-based variable contribution plot are shown in Figs. 58 and 59.
While the ICA-based contribution plots identify T21 as the most
significant variable, the PCA-based ones cannot well-isolate T21
among the variables with high-contribution values. Meanwhile, the
causal map  based on the transfer entropy approach is computed
as shown in Fig. 60. It can be seen that the true root-cause vari-
able T21 is mistakenly located in the leaf nodes instead of the root
nodes.
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a b s t r a c t

Inference in Bayesian networks with large domain of discrete variables requires significant computational

effort. In order to reduce the computational effort, current approaches often assume that discrete variables

have some bounded number of values or are represented at an appropriate size of clusters. In this paper,

we introduce decision-tree structured conditional probability representations that can efficiently handle a

large domain of discrete and continuous variables. These representations can partition the large number of

values into some reasonable number of clusters and lead to more robust parameter estimation. Very rapid

computation and ability to treat both discrete and continuous variables are accomplished via modified belief

propagation algorithm. Being able to compute various types of reasoning from a single Bayesian network

eliminates development and maintenance issues associated with the use of distinct models for different types

of reasoning. Application to real-world steel production process data is presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This work has been motivated by the need to optimize production

of steel plates manufacturing. Steel plates manufacturing is a com-

plex, multi-stage process. A manufacturing plant often produces sev-

eral thousands of different steel plate SKUs. Each stage of the man-

ufacturing is not a fully deterministic process. Sometimes there may

be defects at some stage, which are then corrected by modifying the

manufacturing process. In other instances, a customer may order a

new steel plate, something that has not been manufactured yet. Due

to these circumstances, the exact times required to produce any spe-

cific SKU is not known. Production planning and scheduling mod-

els require that we estimate the production times for each grade of

steel plates. Such estimate can be made from a Bayesian network

representing the manufacturing plant and probabilities of process-

ing a steel plate at each stage of the manufacturing. Due to the com-

plexity of the steel manufacturing plant, it is not possible to use a

first-principle model of the plant to construct such Bayesian network.

In this paper we use Bayesian statistics to construct the most likely

Bayesian network for such complex manufacturing process. Having

constructed Bayesian network, we then proceed to estimate most

likely production times for each grade of steel plates. The challenging

∗ Corresponding author. Tel.: +1 905 525 9140 ext.26386.

E-mail addresses: mori.nn4.junichi@jp.nssmc.com (J. Mori), mahalec@mcmaster.ca

(V. Mahalec).

nature of the problem is magnified by the large number of different

grades of steel plates. This paper presents new inference algorithm in

Bayesian network with large domain discrete variables to enable us

to:

1. Estimate the probability distributions of production time from

historical data with large domain discrete variables and con-

tinuous variables.

2. Deal with unobservable (unavailable) variables such that we

have a single model and avoid multiple models that meet with

specific problems.

We present a new method for constructing most likely structure

of the Bayesian network representing a complex manufacturing pro-

cess, e.g. manufacturing of steel plates. Such networks contain a large

number of discrete variables and also contain continuous variables

parent nodes which have discrete variables children nodes. An ap-

plication to a steel plate manufacturing process, which produces a

large number of distinct steel plates and also has uncertain produc-

tion times at different manufacturing steps, demonstrates that the

proposed method can successfully compute inferences for very large

hybrid Bayesian networks.

In order to learn the tree structured CPTs, scores such as Bayesian

scores are often used as objective functions. However, greedy hill

climbing approach cannot be used since it can easily get stuck in a

local minimum at the early stage. Some kinds of approach to avoid lo-

cal minimum as much as possible are proposed, but they are compu-

tationally expensive. Therefore, we employ decision trees algorithm

http://dx.doi.org/10.1016/j.eswa.2015.11.019

0957-4174/© 2015 Elsevier Ltd. All rights reserved.
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(Breiman, Friedman, Olshen, & Stone, 1984) based on classification

trees in order to learn the tree structured CPTs. Classification trees

predict the dependent variables following decisions in the tree from

the root node down to the leaf node. Since the classification trees

group the values to capture important distinctions of continuous or

discrete variables, this method can be used to construct the context-

specific CPTs in the hybrid Bayesian networks. The classification tree

classifies discrete variables into a small number of subsets so that

the values of continuous or discrete child nodes can be distinguished

well. If Bayesian networks include continuous parent nodes with dis-

crete child nodes, the corresponding continuous variables can be dis-

cretized as finely as needed, because the domain size of discretized

variable does not increase the number of parameters in intermedi-

ate factors due to decision-tree structured CPTs. Since the classifica-

tion algorithms are typically greedy ones, the computational cost is

relatively small. Consequently, the intermediate factors can be de-

scribed compactly using a simple parametric representation called

the canonical form.

We also introduce the decision-tree structured CPT based infer-

ence algorithm in Bayesian network, which employs belief propa-

gation algorithm to deal with hybrid networks with large domain

discrete variables. In order for multiplying and marginalizing factors

during belief propagation, novel types of operations to dynamically

construct CPTs are introduced. In order to carry out other types of in-

ferences, such as causal, diagnostic, intercausal and mixed reasoning,

we employ the loopy belief propagation in the decision-tree struc-

tured CPT based Bayesian networks.

The organization of the article is as follows. Review of the related

prior work is presented in Section 2. Section 3 describes construction

of decision-tree structured CPTs for hybrid Bayesian networks with

large domain discrete variables. Section 4 describes the detailed infer-

ence algorithm including operations of product and marginalization

of factors. The presented method is applied to the steel production

processes data in Section 5. Finally, the conclusions are presented in

Section 6.

2. Review of prior related works

In this section we review prior related works and discuss the lim-

itations with respect the size of the problem and complexity of com-

putation.

Let us first review prior related works and discuss the capabilities

of the proposed methods with respect the size of the problem and

complexity of computation.

Probabilistic graphical models are popular for representing con-

ditional independencies among random variables under system un-

certainty. Such models are comprised of nodes representing random

variables and the links between the nodes which express probabilis-

tic relationships among the corresponding random variables. Two

major classes of graphical models are Bayesian networks and Markov

random fields. Bayesian networks are also called directed graphical

models since the links of the graphs represent direct dependence

among the variables and are described by arrows between links.

Markov random fields are also called undirected graphical models

since they provide a simple definition of independence among ran-

dom variables and do not have a particular directionality indicated by

arrows (Bishop, 2006; Pearl, 1988). Both graphical models are pop-

ular in the machine learning community and have been applied to

various fields including medical diagnostics, speech recognition, gene

modeling, cancer classification, target tracking, sensor validation, and

reliability analysis.

In particular, Bayesian network has been widely used for systems

including many uncertainties. For instance, scenario analysis under

changing conditions is implemented by means of Bayesian inference

techniques, since Bayesian network performs well in uncertainty

environment (Buyukozkan, Kayakutlu, & Karakadlar, 2015; Cai, Sun,

Si, & Yannou, 2011). Bayesian network is also applied to predicting

the risk of software development or maintenance projects, because

it is suitable for representing the knowledge of experts under un-

certainty of conditions (Melo & Sanchez, 2008; Perkusich & Soares,

2014). As these applications indicate, Bayesian network is a powerful

tool for knowledge representation and reasoning under uncertainties

since it can visually represents the probabilistic relationships among

measured and unmeasured variables.

Each node in a Bayesian network is associated with conditional

probability distributions (CPD). The most common representations

of CPDs are conditional probability tables (CPTs), which specify

marginal probability distributions for each combination of values

of its discrete parent nodes. The number of parameters required

to represent CPTs grows exponentially both with the number of

discrete variables and with the cardinality of discrete variables. In

order to reduce the number of parameters, context-specific inde-

pendence representations have been proposed (Boutilier, Friedman,

Goldszmidt, & Koller, 1996). Furthermore, an efficient inference al-

gorithm that exploits context-specified independence has also been

proposed (Poole & Zhang, 2003). As for identification of parame-

ters of context-specific independence, learning methods such as tree-

structured CPTs (Friedman & Goldszmidt, 1996) and graph-structured

CPTs (Chickering, Heckerman, & Meek, 1997) have been developed.

However, since learning structured CPTs is NP-hard problems, all of

these methods assume that all discrete variables have a bounded

number of values or that they are already grouped at an appropri-

ate level of domain size. In the real world problem, discrete vari-

ables often have large domains and the task of grouping discrete

values requires expert knowledge that enables us to identify a rea-

sonable set of groups that well distinguish the values of discrete

variables. In order to group the discrete values in a Bayesian net-

work learning, attribute− value hierarchies (AVHs) which capture

meaningful groupings of values in a particular domain are integrated

with the tree-structured CPTs (DesJardins & Rathod, 2008). However,

if large domain discrete variables do not contain hierarchal struc-

tures, AVHs cannot capture the useful abstracts of values in that do-

main. In addition, this model cannot handle the continuous vari-

ables without discretizing them. The authors, DesJardins and Rathod

(2008) also do not apply AVH-derived CPTs to inference in Bayesian

networks.

Sharma and Poole (2003) have proposed an inference method for

Bayesian Networks containing CPTs which are represented as deci-

sion trees. The inference algorithm is based on variable elimination

(VE) algorithm; the authors introduced operations for decision trees

computations, namely multiplying factors and summing out vari-

able from a factor. However, because the computational complex-

ity of the exact inference algorithm such as VE grows exponentially

with the size of the network, this method may not be appropriate for

Bayesian networks in real world. In addition, computational cost of

reconstructing decision trees as required to compute multiplication

and marginalization of factors makes this method too expensive to

apply to large decision trees. An alternative approach is to employ

algebraic decision diagrams (ADDs) for the purpose of inference in

Bayesian network with large domain discrete variables. For instance,

ADDs have been used to represent factors and their multiplying and

summing-out operations have been proposed (Chavira & Darwiche,

2007). In addition, structured message passing has been proposed to

utilize powerful approximate inference algorithms such as cluster-

graph Belief propagation (Gogate & Domingos, 2013). In the worst

case, ADDs have the same space complexity as CPTs. To make mat-

ters worse, the factor operations of multiplication and summing-out

are polynomial in time. It should be noted that all the above meth-

ods have not considered an application of decision-tree structured

CPTs to hybrid Bayesian networks, where both discrete and continu-

ous variables appear simultaneously.
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In hybrid Bayesian networks, the most commonly used model

that allows exact inference is the conditional linear Gaussian (CLG)

model (Lauritzen, 1992; Lauritzen & Jensen, 2001). The corresponding

graphical model does not allow discrete variables to have continuous

parents. To overcome this limitation, the CPDs of these nodes are typ-

ically modeled as softmax function. Since there is no exact inference

algorithm for such model, the inference is typically carried out by

means of approximate inference such as Monte Carlo method (Koller,

Lerner, & Angelov, 1999). One problem with the Monte Carlo method

is that the convergence can be quite slow especially when we deal

with the hybrid networks with large domain of discrete variables. An

alternative is to discretize all continuous variables in a network and

treat them as if they are discrete (Kozlov & Koller, 1997). However,

since the number of variables in intermediate factors can be quite

large, it is typically impossible to discretize the continuous variables

as finely as required to obtain reasonable solutions. This discretiza-

tion leads to a trade-off between accuracy of the approximation and

the cost of computation.

An alternative approach is the mixture of truncated exponen-

tial (MTE) model to represent the hybrid Bayesian networks (Moral,

Rumi, & Salmern, 2001). MTE models approximate arbitrary probabil-

ity distribution functions (PDFs) using exponential terms and allow

implementation of inference in hybrid Bayesian networks. The main

advantage of this method is that standard propagation algorithm

can be used. Parameter estimation and propagation algorithms for

MTE models have been extensively studied (Cobb, Rumi, & Salmeron,

2007; Rumi & Salmeron, 2007). This method is also limited to rela-

tively modest size models, since the number of regression coefficients

in exponential functions linearly grows in the domain size of discrete

variables. Hence, MTE model may not work well in the large Bayesian

networks that contain large domain of discrete variables. Extended

probability trees for probabilistic graphical models are also proposed

(Cano, Gómez-Olmedo, Moral, & Pérez-Ariza, 2014). These trees al-

low the representation of multiplicative and additive factorization.

However, similar idea as MTE is employed to operate with discrete

distributions and thus this algorithm is also limited to modest size

models.

3. Decision-tree structured CPT for large domain of discrete and

continuous variables

A hybrid Bayesian network represents a probability distribution

over random variables in which each node is either discrete or con-

tinuous. X = � ∪� represents sets of random variables ,where � de-

notes the continuous variables and � represents the discrete vari-

ables. We denote random discrete variables by upper case letters

from the beginning of the alphabet (e.g. A, B, A1) while continuous

variables are represented by upper case letters near the end (e.g.

X,Y, X1). Their actual values are represented by the lower case letters

(e.g. x). We denote sets of variables by bold upper case letters (e.g. X)

and the assignments of those sets by the bold lower case letters (e.g.

x). Val(X) is used to represent the set of values that a random variable

X can take.

The most widely used representation of hybrid Bayesian networks

is the conditional linear Gaussian (CLG) model. Let X⊆� be a contin-

uous node, A⊆pa(X)∩� be its discrete parent nodes and Y1, . . . ,Yk ⊆
pa(X ) ∩ � be its continuous parent nodes where pa(X) denotes a state

of parent nodes of X. X has a Gaussian distribution and the mean of

the distribution is computed as a linear combination of the state of

its parent nodes pa(X) for every instantiation a ∈ Val(A) as follows:

p(X|pa(X )) = P(X|pa(X );�a ) = N

(
X

∣∣∣∣∣
k∑
j

wa, jy j + ba, σ
2
a

)
(1)

where wa, j and ba are parameters controlling the mean, σ a repre-

sents the standard deviation of the conditional distribution for X, and

Fig. 1. Bayesian network that contains continuous child node.

�a = {wa, j, ba, σa} is the set of model parameters of instantiation a.

Since this representation is not Gaussian but a conditional distribu-

tion, canonical form is used as a more general representation. In the

canonical table representation, a factor C(X; Ka, ha, ga) which is a

function over a set of variables is defined as (Lauritzen & Wermuth,

1989):

C(X;Ka, ha, ga) = exp

(
−1

2
XT KaX+ hT

a X+ ga

)
(2)

where Ka, ha and ga represent parameters of ath instantiation in

canonical table representations. The canonical table representation

can express both the canonical form used in continuous networks and

the table factors used in discrete networks. When A = ∅, only a sin-

gle canonical form (a = 1) is obtained. Meanwhile, when X = ∅, pa-

rameters of Ka and ha are vacuous and only a canonical form exp(ga)

remains for each instantiation a.

Unfortunately, the canonical table representation cannot repre-

sent the dependence of a discrete child node with continuous par-

ent nodes. The simplest approach to resolve this issue is to discretize

the variables of continuous parent nodes. As discussed in the intro-

duction section, there is a trade-off between the accuracy of the ap-

proximation and the domain size of discretized variables. However,

the decision-tree structured CPDs proposed in this paper can handle

unbounded number of values in discrete variables and we can ignore

this issue.

In order to compute the parameters of canonical table, one first

needs to define the instantiations of the set of discrete variables. The

simplest way is to use conditional probability tables. However, the

number of parameters required to describe a Bayesian network in-

creases exponentially with the domain size. In the case when a dis-

crete node A has discrete parent nodes pa(A), the number of condi-

tional probabilities is |A| × |pa(A)| and it is impossible to specify all

the parameters of the large domain of discrete variables. This is the

case particularly when we discretize very finely the continuous par-

ent nodes in order to get an accurate approximation, since the domain

size of the discretized variables becomes large. To exploit conditional

independence that holds only in certain contexts in the Bayesian net-

works, several works about structured CPTs have been done to cap-

ture this independence (Boutilier et al., 1996; Poole & Zhang, 2003).

However, since learning structured CPTs is an NP-hard problem, all

of these methods assume either that all discrete variables have a

bounded number of values or that they are already grouped at an

appropriate level of domain size.

To overcome these limitations of the existing methods, we employ

decision tree algorithms such as classification trees and regression

trees for learning structured CPTs. Classification trees give the pre-

diction of the dependent variables by following decisions in the tree

from the root node down to the leaf node. The classification trees can

predict the discrete and continuous variables and the trees are iden-

tified by choosing a split based on the some statistical measures such

as Gini impurity for the classification trees and mean square error for

the regression trees.

Let us first consider a factor that contains both continuous nodes X

and discrete nodes D with continuous child node Y as shown in Fig. 1.
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Fig. 2. Decision tree of a factor that contains continuous child node.

Continuous variables are shown as rectangles while discrete vari-

ables are ovals. The classification tree f classifies the discrete variable

set D into a small number of subsets A = {a1, a2, . . . , aL} as a = f (d)

where L is the number of the leaves in the decision tree f. An example

of the constructed decision tree is given in Fig. 2.

For instance, the decision tree indicates that if D1 ∈ {1, 2, 3}, D2 ∈
{2, 3} and D3 ∈ {1, 2, 3}, then the corresponding records are assigned

the instantiation a1. Since the domain size of each discrete variable is

6, the number of parameters required to describe the CPT of discrete

variables D is |Val(D1)| × |Val(D2)| × |Val(D3)| = 216. On the other

hand, the decision tree representation requires only |Val(A)| = 6 pa-

rameters to describe the behavior of Y, instead of 216 in the CPT

representation. Therefore, the decision-tree representation requires

smaller training data to learn the conditional probability distribution

and leads to much more robust estimation than the traditional CPT

representation.

After giving instantiation ai ∈ A to all records in the training data,

parameters of the canonical table representation can be computed as

follows:

Kai
= �−1

i

hai
= �−1

i
μi

gai
= −1

2
μT

i �i
−1μi − log

(
(2π)n/2|�i|1/2

)
(3)

with

�i = cov[Zi] (4)

μi =mean[Zi] (5)

where Z = X ∪ Y, Zi = {z : f (d) = ai} and cov[Zi] and mean[Zi] are

the covariance matrix and mean vector of Zi, respectively. Tree struc-

tured CPTs induce refined independence that holds only in certain

contexts, which cannot be achieved by the table representation. In

the example shown in Fig. 2, if the evidence D1 = 4 ,5 or 6 is given,

we immediately know that the continuous variables Z = X ∪ Y fol-

low the distribution either C(Z;Ka5
, ha5

, ga5
) or C(Z;Ka6

, ha6
, ga6

), re-

gardless of the value of D2. Thus, we can conclude that D2 and Y are

contextually independent given the evidence D1 = {4, 5, 6} denoted

(D2⊥cY |D1 = {4, 5, 6}) , which is described as follows:

P(D2|Y, D1 = {4, 5, 6}) = P(D2|D1 = {4, 5, 6}) . (6)

Next, let us consider the case when a factor contains discrete

nodes D with discrete child node B as shown in Fig. 3.

The classification tree classifies discrete variables D into a small

number of subsets A = {a1, a2, . . . , aL} as a = f (d) with L being the

number of leaves so that the values of a discrete child node B can

be categorized well. The decision tree can categorize well the dis-

crete parent variables D, but a discrete child variable B (which is used

Fig. 3. Bayesian network that contains discrete child node.

Fig. 4. Decision tree of a factor that contains discrete child node.

as a dependent variable in the classification tree algorithm) is not

included in the nodes of the decision tree. Therefore, the obtained

decision tree classifies only the discrete parent variables D only and

excludes a discrete child variable B from its branching nodes. In or-

der to use all discrete variables (including a discrete child variable) as

the brunching nodes, the discrete child variable is placed at all leaf

nodes to continue categorizing discrete variables by using their val-

ues. Therefore, all values of a discrete child variable b1 . . . bL ∈ B are

used as categorical splits and thus the number of branches at each

leaf node in the original tree is same as the domain size of Val(B) = L.

As a result, the total number of instantiations assigned in the final de-

cision tree is Val(B) times as many as the number of leaves in the orig-

inal decision tree. Fig. 4 shows the example of a decision tree where

a factor contains a discrete child node.

The decision tree indicates that if D1 ∈ {1, 2, 3}, D2 ∈ {2, 3}, D3

∈ {1, 2, 3} and B ∈ {1}, then the corresponding records are assigned

the instantiation a1. The number of instantiations are Val(B)× 6 =
6L rather than |Val(D1)| × |Val(D2)| × |Val(D3)| × |Val(B)| = 216L

which is the number of parameters required to describe the tradi-

tional CPT of discrete variables D∪B.

With assigned instantiations ai ∈ A, parameters gai
of the canoni-

cal table representation can be computed below:

gai
= log

1

Nai

∑
z

1( f (d) = ai) (7)

where 1 is an indicator function, Nai
is the number of samples belong-

ing to the instantiation ai and the other parameters Kai
and hai

are

vacuous. Similar to the previous case, tree structured CPTs hold con-

text specific independence. In the example shown in Fig. 4, if the evi-

dence D1 = 4, 5 or 6 is given, we compute each probability of Val(B),

regardless of the value of D2. Thus, it can be said that D2 and B are

contextually independent given the evidence D1 = {4, 5, 6} denoted

(D2⊥cB|D1 = {4, 5, 6}), which is described as follows:

P(D2|B, D1 = {4, 5, 6}) = P(D2|D1 = {4, 5, 6}). (8)
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Fig. 5. Example of two decision trees.

Since this implementation uses a binary tree algorithm to create

decision tree, the complexity is O(log N) with N being the number of

samples.

4. Inference

The computational task of inference in Bayesian network is to

answer the conditional probability query, P(X |E = e) where the ev-

idence E ⊆ X is a subset of random variables in the Bayesian net-

work and e ∈ Val(E) is the set of values given to these variables. For

causal reasoning, the sum-product algorithm is carried out from top

node factors to bottom node factors. Meanwhile, other types of infer-

ence such as diagnostic, intercausal and mixed reasoning do not have

monotonic logic based algorithm and the basic algorithm for exact

inference for these types of reasoning in graphical models is variable

elimination (VE). VE can be performed in a clique tree and each clique

in the clique tree is the factor in VE. The computational cost of the ex-

act inference such as clique tree algorithm exponentially grows with

the width of the network and thus the exact inference algorithms

are infeasible for large width networks. On the other hand, approx-

imate inference algorithms such as loopy belief propagation (BP) al-

gorithm are tractable for many real-world graphical models. All the

above inference techniques require computation of the multiplying

factors and marginalizing variables in factors. In this work, since the

factors are represented by using decision-tree structured CPTs as pro-

posed in the previous section, the operations of multiplication and

marginalization are described in the first parts of this section.

4.1. Multiplying factors and marginalizing over variables in factors

Initial potentials of factors are equal to the decision-tree struc-

tured CPTs while potentials of final and intermediate factors includ-

ing messages between clusters are computed by the operations of

multiplying and marginalizing factors. These operations require us

to divide the large domain discrete variables in accordance with

the decision-tree structure. For this purpose, in this section we de-

scribe three types of two main operations: multiplying factors and

marginalizing over variables in factors.

4.1.1. Full conditional probability table based operations

The simplest approach is to convert the tree structured CPTs into

conditional probability tables which can be analyzed by using stan-

dard multiplying and marginalizing techniques. We shall call this CPT

f ull conditional probability table (full CPT). Let us consider the simple

example of multiplying two factors described in Fig. 5. Domain size

of each discrete variable is 2 (Val(D1) = Val(D2) = Val(D3) = 2) and

the number of instantiations of each tree is 3 (a1, a2, a3).

First, a full CPT is designed in accordance with the decision-tree

structured CPTs as shown in Table 1 and using these full CPTs, a new

factor C of multiplying two factors is determined as shown in Table 3.

For instance, let us consider the case where D1 = 1, D2 = 2, D3 =
1. According to the full CPTs, the first row in the full CPT for factor A

shown in Table 1 and the second row in the full CPT for factor B shown

Table 1

Full CPT for factor A.

D1 D2 Probability

distribution

1 1 C(X;KA
a1

, hA
a1

, gA
a1

)

2 1 C(X;KA
a3

, hA
a3

, gA
a3

)

1 2 C(X;KA
a2

, hA
a2

, gA
a2

)

2 2 C(X;KA
a3

, hA
a3

, gA
a3

)

Table 2

Full CPT for factor B.

D2 D3 Probability

distribution

1 1 C(X;KB
a1

, hB
a1

, gB
a1

)

2 1 C(X;KB
a3

, hB
a3

, gB
a3

)

1 2 C(X;KB
a2

, hB
a2

, gB
a2

)

2 2 C(X;KB
a3

, hB
a3

, gB
a3

)

Table 3

Full CPT for factor C.

D1 D2 D3 Probability

distribution

1 1 1 C(X;KC
a1

, hC
a1

, gC
a1

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

2 1 1 C(X;KC
a2

, hC
a2

, gC
a2

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

1 2 1 C(X;KC
a3

, hC
a3

, gC
a3

) = C(X;KA
a2

, hA
a2

, gA
a2

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

2 2 1 C(X;KC
a4

, hC
a4

, gC
a4

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

1 1 2 C(X;KC
a5

, hC
a5

, gC
a5

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

2 1 2 C(X;KC
a6

, hC
a6

, gC
a6

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

1 2 2 C(X;KC
a7

, hC
a7

, gC
a7

) = C(X;KA
a2

, hA
a2

, gA
a2

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

2 2 2 C(X;KC
a8

, hC
a8

, gC
a8

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

in Table 2 are used for computing a new factor C(X;KC
a3

, hC
a3

, gC
a3

). The

canonical parameters of this new factor are computed as follows:

KC
a3
= KA

a2
+ KB

a3

hC
a3
= hA

a2
+ hB

a3

gC
a3
= gA

a2
+ gB

a3
. (9)

Since the scopes of two factors are different, we need to add zero

entries to the K matrices and h vectors of both factors so that their

scopes are consistent.

Next, let us consider summing out variables in factors. If we need

to marginalize factors that contain continuous variables by summing

out discrete variables, the resulting distribution is not a Gaussian but

a mixture of Gaussian distributions. Therefore, mixtures of Gaussians

model can be used to represent the factors and Monte Carlo integra-

tion are carried out to compute the marginalization (Yuan & Druzdzel,

2006). However, since the number of Gaussian components grow ev-

ery time after summing out the discrete variables, we typically ap-

proximate the mixture of Gaussian distributions by collapsing them

into a single Gaussian distribution. Similarly to multiplying the fac-

tors, first we convert the decision-tree structured CPTs into full con-

ditional probability tables. In practice since marginalization opera-

tions are needed only after multiplying operations, full conditional

probability tables are already obtained when marginalization is nec-

essary. Let us consider summing out variable D3 in the full CPT given

in Table 3.

The marginal distribution over D1 and D2 assigns probability

distributions to specific events such as P(D1 = 1, D2 = 1), P(D1 =
2, D2 = 1), P(D1 = 1, D2 = 2) and P(D1 = 2, D2 = 2). For instance,

the marginal probability distribution function P(D1 = 1, D2 = 1) can
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be computed as follows:

P(D1 = 1, D2 = 1) = C(X;KC
a1

, hC
a1

, gC
a1

)+C(X;KC
a5

, hC
a5

, gC
a5

). (10)

As mentioned before, however, this distribution is not a Gaussian

and thus it cannot be represented in a canonical form. Instead, we

employ the weak discrete marginalization where the summing op-

eration uses the collapsing operation (Koller & Friedman, 2009). The

collapsing operation approximates a mixture of k Gaussian distribu-

tion N (μi,�i) by a single Gaussian distribution N (μ j,� j). Its mean

vector μj and covariance matrix �j for new instantiation j are defined

as follows:

μ j =
k∑

i=1

p(i| j)μi (11)

� j =
k∑

i=1

p(i| j)�i +
k∑

i=1

p(i| j)(μi −μ)(μi −μ)T (12)

where p(i|j) is the conditional probability of the original instantia-

tion i given the new instantiation j and it satisfies
∑k

i=1 p(i| j) = 1.

Therefore, the parameters (Knew, hnew, gnew) of the canonical form

P(D1 = 1, D2 = 1) after summing out variable D3 can be computed as

follows:

Knew = �−1
new (13)

hnew = �−1
newμnew (14)

where

μnew = p(D3 = 1|D1 = 1, D2 = 1)KC−1
a1

hC
a1

+ p(D3 = 2|D1 = 1, D2 = 1)KC−1
a5

hC
a5

(15)

�new = p(D3 = 1|D1 = 1, D2 = 1)KC−1
a1

+ p(D3 = 2|D1 = 1, D2 = 1)KC−1
a5

+ p(D3 = 1|D1 = 1, D2 = 1)(KC−1
a1

hC
a1
−μnew)

× (KC−1
a1

hC
a1
−μnew)T + p(D3 = 2|D1 = 1, D2 = 1)

× (KC−1
a5

hC
a5
−μnew)(KC−1

a5
hC

a5
−μnew)T . (16)

After summing out discrete variables, the operation of continuous

marginalization is carried out if we need to integrate the continuous

variables Y. We assume that the canonical table consists of a set of

canonical forms C(X, Y;KC
ai

, hC
ai

, gC
ai
) indexed by ai after summing out

discrete variables where

Kai
=

[
KXX KXY

KYX KYY

]
(17)

hai
=

(
hX

hY

)
. (18)

If KYY is positive definite, then the integral over the variables Y

becomes a canonical form C(X;K′Cai
, h′Cai

, g′Cai
) computed as (Lauritzen,

1992):

K′Cai
= KXX − KXYK−1

YY KYX

h′Cai
= hX − KXYK−1

YY hY

g′Cai
= g+ 1

2

(
log|2πK−1

YY | + hT
YK−1

YY hY

)
. (19)

Above methodology enables accurate computation of multiplica-

tion and marginalization of factors using full CPTs. This method is

easy to carry out and computationally it is very fast. However, to de-

scribe the full CPT of a factor, the number of required rows grows

exponentially both with the size of domain and with the number of

discrete variables that a factor contains. For instance, let the size of

Fig. 6. Merging tree TA and tree TB .

Fig. 7. Pruning merged tree.

the domain be D and the number of child nodes be C, then the num-

ber of rows of full CPT is DC, which is too large for a large domain of

discrete variables. Therefore, this approach is not efficient in terms

of memory and it cannot work for large hybrid Bayesian networks

where factors contain a large number of discrete variables or a huge

domain of discrete variables. In addition, the complexity of multiply-

ing is O(D2C).

4.1.2. Tree structured CPT based operations

The full CPT based multiplying and marginalizing operations may

be impossible to carry out for a large scale real-world Bayesian net-

works due to the finite size of computer memory. Hence, we propose

another approach by making use of the decision-tree structure. In this

approach, we dynamically reconstruct the decision trees every time

after multiplying or marginalizing factors and thus full CPTs are not

needed. As an example, let us consider the product of factors using

the example from the previous section, Fig. 5. Two trees, named as TA

and TB, are combined to form a single tree so that all the distinctions

that are made both in tree TA and in tree TB are made. The scopes

of these trees are represented by CA = scope(TA) and CB = scope(TB).

Pval(j, D, T) is used to represent the set of possible combination of

values that a set of discrete variables D can have at the node j in the

tree T. First, the leaves of the tree TA are replaced by the tree TB as

shown in Fig. 6.

One can readily confirm that this merged tree can make all the

distinction that both trees TA and TB make, but it also contains redun-

dant sub-trees that are incompatible with its ancestors in the deci-

sion tree. For example, after branching at D1 = 1 and D2 = 1 the right

child node specifies D2 = 2 which conflicts with its ancestors. There-

fore, we prune the right child node and also remove its corresponding

node. This leads to the simplified tree as shown in Fig. 7.

After merging two trees, we can compute the canonical parame-

ters of the new factor. For example, the canonical parameters given
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Table 4

Algorithm 1. Merging Trees.

Procedure Merge-Trees (

Tree TA, TB // Decision trees

)

1 S = CA ∩ CB // Sepset of discrete variables among two factors

2 Tnew = TA

3 Let a1, . . . , aM be indices of leaf nodes in Tnew

4 for i = 1, ldots, M

5 T ′B = TB

6 if S 
= ∅
7 List = ∅ // List of next visiting nodes in TB

8 Add the top node of TB to List

9 while List 
= ∅
10 if node List(1) has child nodes

11 Let l and r be the left and right child nodes of the node List(1)

12 if Pval(ai, S, TA) ∩ Pval(List(l), S, TB) = ∅
and Pval(ai , S, TA)∩Pval(List(r), S, TB) 
= ∅

13 Replace current node List(1) with node r and remove node l

14 Add node r to the end of List

15 elseif Pval(ai , S, TA)∩Pval(List(l), S, TB) 
= ∅
and Pval(ai, S, TA) ∩ Pval(List(r), S, TB) = ∅

16 Replace current node List(1) with node l and remove node r

17 Add node l to the end of List

18 else

19 Add l and r to the end of List

20 Delete List(1)

21 Replace the nodes ai of tree Tnew with the new structure T ′B
22 return Tnew

{D1, D2, D3} = {1, 1, 1} are computed as follows:

KC = KA
a1
+ KB

a1

hC = hA
a1
+ hB

a1

gC = gA
a1
+ gB

a1
. (20)

The algorithm for merging two trees is presented in Table 4.

Next, let us consider summing out variables in decision trees. As

an example, we consider summing out discrete variables D1 and D2 in

the decision tree described in Fig. 2. We search for summed out vari-

ables D1 and D2 from the root node down to the leaf node. In this ex-

ample, it can be immediately found that the root node is the summed

out variable D1. Therefore, we divide the tree into two sub-trees at

the node D1, then two sub-trees are merged by using Merge-Trees al-

gorithm as shown in Fig. 8.

After that, we continue searching the summed out variables from

the root node down to the leaf node in the obtained new tree. We

find that the summed out variable D2 is placed on the root node of

the tree and then similar to the previous step, we divide the tree at

the node D2 into two sub-trees and combine them into one tree using

Merge-Trees algorithm as shown in Fig. 9. Since there is no summed

out variable in the current tree, marginalization step of discrete vari-

ables is achieved.

With the obtained new tree, weak marginalization is carried out

for summing out discrete variables. For instance, the mean vector and

covariance matrix of a canonical form P(D3 = 1) after summing out

variables D1 and D2 can be computed as follows:

μnew = w1K−1
a1

ha1
+w4K−1

a4
ha4
+ 2w6K−1

a6
ha6

(21)

�new = w1K−1
a1
+w4K−1

a4
+ 2w6K−1

a6

+w1(K−1
a1

ha1
−μnew)(K−1

a1
hC

a1
−μnew)T

+w4(K−1
a4

ha4
−μnew)(K−1

a4
hC

a4
−μnew)T

+2w6(K−1
a6

ha6
−μnew)(K−1

a6
hC

a6
−μnew)T (22)

with

w1 = p(D3 = 1|D1 = {1, 2, 3}, D2 = {2, 3})
w4 = p(D3 = 1|D1 = {1, 2, 3}, D2 = {1, 4, 5, 6})
w6 = p(D3 = 1|D1 = {4, 5, 6}). (23)

Fig. 8. Summing out D1.

Fig. 9. Summing out D2.

After summing out the discrete variables, continuous variables are

integrated out by using Eq. (19). The detailed algorithm for merging

two trees is shown in Table 5.

Above procedure enables us to multiply factors and marginalize

over both discrete and continuous variables through dynamically re-

constructing decision trees. This method can retain the tree struc-

ture since the number of operations and the memory size required

to multiply and marginalize factors are much smaller compared to

the full CPT based operations. It should be pointed out that the com-

putational cost of marginalization increases exponentially with the

number of discrete nodes that we need to sum out. At worst case,

the number of summed out nodes are increasing with O(N2) during

marginalization if we cannot prune the redundant nodes. Therefore,

depending on the situation, the algorithm may not converge in an
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Table 5

Algorithm 2. Summing out Tree.

Procedure Sum-Out-Tree (

Tree T // Decision tree

A set of discrete variables V // Summed out variables

)

1 Tnew = T

2 while scope(Tnew)∩V 
= ∅
3 Let i be the top node of scope(Tnew)∩V

4 Make sub-trees TA and TB whose root nodes are the child nodes of node i

5 Tnew =Merge-Trees (TA, TB)

6 return Tnew

Table 6

Compact CPT for factor A.

D1 D2 Probability

distribution

1 1 C(X;KA
a1

, hA
a1

, gA
a1

)

1 2 C(X;KA
a2

, hA
a3

, gA
a2

)

2 1,2 C(X;KA
a3

, hA
a2

, gA
a3

)

Table 7

Compact CPT for factor B.

D2 D3 Probability

distribution

1 1 C(X;KB
a1

, hB
a1

, gB
a1

)

1 2 C(X;KB
a2

, hB
a2

, gB
a2

)

2 1,2 C(X;KB
a3

, hB
a3

, gB
a3

)

Table 8

Combined compact CPT of factors A and B.

Factor A Factor B Probability

D1 D2 D2 D3 distribution

1 1 C(X;KC
a1

, hC
a1

, gC
a1

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

1 1 1 2 C(X;KC
a2

, hC
a2

, gC
a2

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

2 1,2 Inconsistent

1 1 Inconsistent

1 2 1 2 Inconsistent

2 1,2 C(X;KC
a3

, hC
a3

, gC
a3

) = C(X;KA
a2

, hA
a2

, gA
a2

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

1 1 C(X;KC
a4

, hC
a4

, gC
a4

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

2 1,2 1 2 C(X;KC
a5

, hC
a5

, gC
a5

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

2 1,2 C(X;KC
a6

, hC
a6

, gC
a6

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

acceptable length of time. Nevertheless, compared to the previous

approaches, the proposed method allows us to deal with larger do-

main of discrete variables.

4.1.3. Compact conditional probability table based operations

Last type of the operations for factor product and marginalization

is based on the set of possible combination of values that a set of

discrete variables D can take at each leaf node. Let us consider again

example in Fig. 5 used in the previous section. First we convert the

tree structured CPTs into conditional probability tables where each

row corresponds to each leaf node and each entry represents a prob-

ability distribution as shown in Tables 6 and 7.

This conditional probability table will be called compact

conditional probability table (compact CPT). Next, we combine two

compact CPTs into a single table in order to be able to make all dis-

tinctions that original two tables make. Therefore, the compact CPT

for factor B is combined with each row of the compact CPT for factor

A as shown in Table 8.

After combining two tables, we eliminate inconsistent rows. The

canonical table representation of a new factor C of multiplying two

factors is computed as shown in Table 9.

Table 9

Compact CPT for factor C.

D1 D2 D3 Probability

distribution

1 1 1 C(X;KC
a1

, hC
a1

, gC
a1

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

1 1 2 C(X;KC
a2

, hC
a2

, gC
a2

) = C(X;KA
a1

, hA
a1

, gA
a1

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

1 2 1,2 C(X;KC
a3

, hC
a3

, gC
a3

) = C(X;KA
a2

, hA
a2

, gA
a2

) ·C(X;KB
a3

, hB
a3

, gB
a3

)

2 1 1 C(X;KC
a4

, hC
a4

, gC
a4

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a1

, hB
a1

, gB
a1

)

2 1 2 C(X;KC
a5

, hC
a5

, gC
a5

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

2 2 1,2 C(X;KC
a6

, hC
a6

, gC
a6

) = C(X;KA
a3

, hA
a3

, gA
a3

) ·C(X;KB
a2

, hB
a2

, gB
a2

)

Fig. 10. Example of Bethe cluster graph.

Next, let us consider summing out discrete variables D1 in the

compact CPT described in Table 9. We sum up probability distribu-

tion to make all distinction except for D1 that original table makes.

For instance, since the first and forth rows of the table are assigned

same values of D2 = 1 and D3 = 1, the corresponding two canonical

forms are summed up by carrying out weak marginalization that we

discussed in the previous section. After summing out discrete vari-

ables, we integrate out continuous variables from Eq. (19).

By using compact CPTs, we can compute product and marginal-

ization of factors. Compared to the full CPT based operations, the

compact CPTs do not require large memory to carry out these opera-

tions. In contrast, the summing out operations need to create groups

of rows in the CPTs so that all rows in the each group have the same

values for all discrete variables except for summed out variables and

thus the computational cost of grouping grows with O(Nlog N). In

comparison to the tree structured CPT based operations, the com-

putational cost of the compact CPT based operations does not in-

crease exponentially. One possible drawback is that the compact CPT

based operations discard tree structures once they are multiplied

or marginalized and thus the decision tree structures are no longer

available.

4.2. Belief propagation algorithm

In this section, we apply the belie f propagation (BP) algorithm to

handle a large hybrid Bayesian network containing large domain of

discrete variables. The four major reasoning patterns in inference are

causal reasoning, diagnostic reasoning, intercausal reasoning and mixed

reasoning. The causal reasoning is to predict the downstream effects

of factors from top nodes to bottom nodes while the diagnostic rea-

soning is to predict the upstream causes of factors from bottom nodes

to top nodes. The intercausal reasoning is the inference where differ-

ent causes of the same effect can interact. The mixed inference is the

combination of two or more of the above reasoning.

4.2.1. Causal reasoning

The purpose of causal reasoning is to predict the conditional prob-

ability of downstream effects of factors given the evidence of their an-

cestor variables. Conditional probability can be calculated by a local

message passing algorithm known as sum-product algorithm. Since

our Bayesian network contains both discrete and continuous vari-

ables, a final potential P̃�(Ci) of factor Ci = Ai ∪ Xi is computed using
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Table 10

Algorithm 3. Hybrid loopy belief propagation algorithm.

Procedure Hybrid-LBP (

� // Set of factors

e // Evidence

Cgraph // Bethe cluster graph

)

1 Set E to be set of edges in Cgraph

2 Initialize all factors so that all of them are consistent with the evidence e

3 Initialize all messages as {Kai
, hai

, gai
} = {1, 0, 0} for each instantiation ai

4 while true

5 Select (i, j) ∈ E
6 if scope(ψi) = scope(e)

7 continue

8 Update message μi→ j from Eq. (26)

9 if all messages are converged

10 break

11 Compute final potential P̃�(Ci) from (27)

12 return P̃�(Ci)

Table 11

Prediction accuracies of BN, ANN and SVM for the simple system.

Known variables BN ANN SVM

[X1, X2, X3, Y1, Y2] (fully observed) 0.970 0.958 0.958

[X1, X2, X3] (partially observed) 0.838 0.734 0.734

sum and integral operators as follows:

P̃�(Ci) =
∫ ∑

Ai−Ai

ψi

∏
k∈pa(i)

P�(Ck)dx1dx2 . . . dxM (24)

where ψ i is the initial potential of Ci, P�(Ck) is the normalized final

potential of Ck, xm ∈ {Xi − Xi} are integrated variables and Xi or Ai is

the child node of the factor Ci (If the child node variable is continuous,

Ai = ∅, otherwise Xi = ∅).
Causal inference is carried out as follows. First, we create a factor

for each variable, so the number of factors is equal to the number of

nodes in Bayesian networks. A factor corresponding to the top root

node variable is a singleton factor that contains the corresponding

top root node variable only. Since singleton factors are given evidence

due to causal reasoning, cardinalities of their initial and final poten-

tials are set to be 1. Note that a factor corresponding to the variable

that is not placed on the top root node is a non-singleton factor that

contains the corresponding variable and its all parent node variables.

Therefore, the initial potentials for non-singleton factors are the con-

ditional probability distributions of its corresponding variable given

its parent node variables. After creating factors, the sum-product al-

gorithm is carried out to compute the final potentials of all factors.

We look for the non-singleton factor for which all parent nodes are

assigned final potentials and compute a final potential for the non-

singleton factor by using Eq. (24). Since the computed final poten-

tial P̃�(Ci) is not normalized, the normalized final potential P�(Ci) is

computed every time after computing final potentials. We continue

computing the final potentials using the sum-product algorithm until

the final potentials of all factors are computed. Because computation

of the final potentials is carried out from top node factors to bottom

node factors, the probability propagation directions are the same as

arcs in Bayesian networks.

4.2.2. Diagnostic and intercausal reasoning

Unlike the causal reasoning, conditional probability for diagnostic,

intercausal and mixed reasoning cannot be computed by monotonic

algorithms. However, the sum-product algorithm can also be utilized

for these inferences. Since the computational cost of exact inference

algorithm such as VE exponentially increases in the width of the net-

work, the loopy belief propagation (LBP) algorithm is employed in

this work. LBP schemes use a cluster graph rather than a clique tree

that is used for exact inference (Murphy, Weiss, & Jordan, 1999). Since

Table 12

System variables of steel production process.

Variable No. Variable description Domain size

1 Customer demand A 12

2 Customer demand B 2

3 Customer demand C 20

4 Customer demand D 20

5 Customer demand E 20

6 Customer demand F 10 (discritized)

7 Customer demand G 10 (discritized)

8 Customer demand H 10 (discritized)

9 Customer demand I 10 (discritized)

10 Operating condition A 5

11 Operating condition B 2

12 Operating condition C 2

13 Operating condition D 2

14 Operating condition E 2

15 Operating condition F 2

16 Operating condition G 2

17 Production load A 2

18 Production load B 2

19 Production load C 2

20 Production load D 2

21 Production load E 2

22 Production load F 2

23 Production load G 2

24 Production load H 2

25 Production load I 2

26 Process time Continuous

the constraints defining the clique tree are indispensable for exact in-

ference, the answer of message passing scheme is not correct in LBP.

LBP is carried out as follows: (i) create the singleton factors for all

nodes and intermediate factors for all conditional probability distri-

butions. Therefore, unlike in the causal reasoning, the number of fac-

tors is larger than the number of nodes in Bayesian networks. Given

the cluster graph, we assign each factor φk to a cluster Cα(k) so that

scope(φk)⊆Cα(k). (ii) Then, the initial potentials ψ i can be computed

as follows:

ψi =
∏

k:α(k)=i

φk (25)

(iii) Initialize all messages as {K, h, g} = {1, 0, 0}. A message from

cluster Ci = Ai ∪ Xi to another factor C j = A j ∪ X j is computed using

sum and integral operators as follows:

δi→ j =
∫ ∑

Ai−Si, j

ψi

∏
k∈Nbi−{ j}

δk→idx1dx2 . . . dxM (26)

where xm ∈ {Xi − S′i, j} are integrated variables, Si, j = Ai ∩ A j is the

subset of discrete variables, S′i, j = Xi ∩ X j is the subset of continuous

variables, and Nbi is the set of indices of factors that are neighbors

of Ci. (iv) The messages are updated by using Eq. (26) in accordance

with some message passing schedule until the canonical parameters

of all messages are converged. Once the factor receives all messages,

final potential P̃�(Ci) can be computed by multiplying them with its

initial potential as follows:

P̃�(Ci) = ψi

∏
k∈Nbi

δk→i. (27)

In order to carry out LBP, we need to create a cluster graph that

satisfies the family preservation property. For this purpose, the Bethe

cluster graph which is a bipartite graph and holds the family preser-

vation property can be used. The first layer of the Bethe cluster graph

consists of large clusters Ck = scope(φk) while the second layer con-

sists of a singleton cluster Xi for each random variable. Then edges

are placed between a large cluster Ck and a singleton cluster Xi if Xi

∈ Ck. Let us consider the Bethe cluster graph represented as shown in

Fig. 10. This Bethe cluster graph has 6 singleton clusters {A}, {B}, {C},
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{D}, {E}, {F} and 3 large clusters {A, B, D}, {B, C, E}, {D, E}. Because of

{B} ∈ {A, B, D} and {B} ∈ {B, C, E}, we place the edges between cluster

2 and 7 and between cluster 2 and 8.

4.2.3. Belief propagation with evidence

Factors need to be modified in accordance with the evidence. Let

us consider initializing the factor ψ i given the discrete evidence e ∈
E∩�. We delete all canonical parameters K, h, g in the factor ψ i that

are not consistent with the evidence e.

Next we consider initializing the factor ψ i given the continuous

evidence e ∈ E∩�. If the factor does not contain discrete variables, a

canonical form of the factor ψ i is reduced to a context representing

the evidence e. In Eq. (17), we set Y = y with y being the value of the

evidence e, then the new canonical form given continuous evidence

is described as follows (Lauritzen, 1992):

K′ = KXX

h′ = hX − KXYy

g′ = g+ hT
Yy− 1

2
yT KYYy. (28)

If the factor contains discrete variables and does not have a con-

tinuous variable except for scope(E), the canonical parameter gai
is

updated for each instantiation ai as follows:

gai
= −1

2
yKai

y+ hT
ai

y+ gai
. (29)

Since the new factor contains no continuous variable, the canon-

ical parameters Kai
, hai

become vacuous. If the factor contains both

discrete and continuous variables except for scope(E), the parameters

of the canonical form are computed for each instantiation ai using

Eq. (28). After modifying all factors so that all of them are consistent

with the evidence, the reasoning algorithms mentioned above can be

carried out.

We should note that, even if the compact CPT based operations are

employed for factor product and marginalization, the computational

task for multiplying incoming messages exponentially increases with

the number of incoming messages. This is the case when diagnostic,

intercausal or mixed inference is carried out since the LBP is an itera-

tive algorithm which requires a large number of calculation of factor

multiplication and marginalization. In order to reduce the computa-

tional cost during LBP, we make use of the property of Bethe cluster

graph. In the Bethe cluster graph, the scope of messages is always one

variable since there is no edge among any large clusters. If we give

the evidence to some variable Xi = e, the message departed from the

corresponding singleton cluster Ci never changes during iterations.

Therefore, we can fix the messages δi→ k as e and thus we can skip

the computation described by Eq. (26). Table 10 shows the loopy be-

lief propagation algorithm given evidence.

5. Application example

5.1. Comparison with SVM and ANN

A simulated example is used to evaluate the validity and perfor-

mance of the Bayesian networks under the assumption where single

model can be used even though we have to deal with any unobserv-

able variables. In this example, we use ANN and SVM for comparison

with the presented method. The input and output data are generated

from the simple network system where Y1 is a parent of X1 and X2, Y2

is a parent of X3 and Z is a parent of Y1 and Y2. All variables are linearly

Fig. 11. Bayesian network for steel production process.
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Fig. 12. Probability of the predicted production loads given customer demands and operating conditions in case 1.

dependent when they are connected with the arc. In this example [X1,

X2, X3, Y1, Y2] are input variables while Z is an output variable, all of

which are binarized and thus the domain size of each variable is two.

The radial basis kernel function is used for SVM and its parameters

are determined automatically by grid search algorithm. As for ANN,

the number of hidden variables is set to be 4, which is determined

from cross-validation.

Table 11 shows the computational results. When all variables

without output variables can be observed, the accuracies for test data

of BN, ANN and SVM are greater than 0.9. Therefore we can say that

all methods can accurately predict the output variables. Meanwhile

in the case when only input data are partially known, the accuracies

of both ANN and SVM are 0.734 and 0.734, respectively. On the other

hand, BN predicts the output variable with the high accuracy of 0.848

even when partial input data can be observed. These computational

results demonstrate that BN is superior to SVM and ANN in terms of

accuracy when input data are partially obtained.

5.2. Steel production process

In this study, the real-world steel production data are utilized to

examine the performance of the proposed hybrid inference method.

All case studies have been computed on a DELL Optiplex 990 (Intel(R)

Core(TM) i-7-2600 CPU, 3.40 GHz and 8.0 GB RAM). Steel production

is managed via two major tasks, production planning and production

scheduling. At the production planning stage, the sales department

receives orders from the customers and considers customer demand,

plant profit, production capacity, inventory and shipment dates. For
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Fig. 13. KL divergence between the predicted and true probability distributions of production loads given customer demands and operating conditions in case 1.

this purpose, the production planning task requires a model that

can predict production loads and processing times required to meet

the customer demands. Once orders are finalized, the manufactur-

ing department makes a production schedule that satisfies customer

deadlines and production capacity constraints. Similar to the produc-

tion planning task, this task also requires a model that can predict

the production load and process time. At the production schedul-

ing stage, additional information about operating conditions is also

known.

Due to complexity of the manufacturing operations, potential for

product defects which need to be rectified, and also the reality that

exact production times for new grades of steel plates (which have

not been produced before and need to be produced to meet a new

customer order), the exact production times are not known. We apply

the methodology described in the previous sections to construct the

most likely structure of the Bayesian network representing the steel

plates manufacturing process. This network is then used to estimate

most likely production time for each grade of steel plates. Once the

production times are known (estimated), one can proceed to plan and

schedule the production.

In this application example, we create the Bayesian network that

represents the relationship among system variables including cus-

tomer demands, operating conditions, production loads and a pro-

cess time. With the constructed Bayesian network, production loads

and a process time are estimated so that they are consistent with the

evidence such as customer demands or operating conditions.

To construct the Bayesian network, 21 discrete variables and 5

continuous variables are selected as shown in Table 12.
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Fig. 14. Mean, standard deviation and KL divergence between the predicted and true probability distributions of process time given customer demands and operating conditions

in case 1.

The variables related to the customer demands include continu-

ous variables such as size of plates and strength and they are con-

verted into discrete variables because each node of these variables

has a discrete child node and the canonical tables cannot represent

factors containing continuous nodes with a discrete child node. The

variables related to the operating condition are all discrete variables

such as heat and primer conditions. The variable corresponding to

each production load is an integer variable; if the corresponding pro-

duction process is not needed, it is 1, otherwise it is 2.

5.3. Inference results

First, we design the Bayesian network structure that represents

relationship among system variables from historical process data

shown in Fig. 11. The method to learn network structure from his-

torical dataset is described in Appendix A.

With the designed network structure, the decision-tree struc-

tured CPTs are computed from historical process data. The traditional

simple CPT method cannot be used in this application example for

the following reason. Let us consider the non-singleton factor that

contains variables of customer demand A, B, E, F, G, H, operating

condition A, and process A. Since the product of cardinalities of all

variables is ×12× 2× 20× 10× 10× 10× 10× 5× 2 = 48 million, it

would require a huge amount of training data to compute the appro-

priate parameters of all elements in the table. Among the proposed

three types of multiplying and marginalizing operations, we em-

ploy the compact CPTs based operations. That is because the full CPT

based operations would require a huge amount of memory and the
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Fig. 15. Probability of the predicted production loads given customer demands in case 2. (For interpretation of the references to color in this figure, the reader is referred to the

web version of this article.)

tree-structured CPT based operations needs a large execution time

for marginalization due to a size of decision tree. It should be pointed

out that since we use the compact CPTs, the decision-tree structure

of final potentials cannot be obtained.

5.3.1. Case 1: variables of both customer demands and operating

conditions are known and the variables of both production loads and

process time are unknown

In this case, we need to estimate the production loads and pro-

cess time given all evidence except for them. Such situation typi-

cally arises at the production scheduling stage. This types of infer-

ence is causal reasoning. The training data set consisting of 100, 000

steel plates is used to learn the decision-tree structured CPTs. The test

data set of other 100, 000 plates is used to evaluate prediction accu-

racy. We compute the true probability distributions for comparison

on each production group, which contains plates that have same cus-

tomer demands and operating conditions. We select the production

groups that have more than 200 plates for this purpose, while the re-

maining production groups are discarded because these production

groups do not have a sufficient number of plates to compute the ac-

tual probability distributions. Figs. 12 and 13 show the prediction re-

sults of the production loads.

It can be seen that there is little difference between predicted and

actual probability distributions in all production loads. Compared to

case 2, the prediction accuracy of production loads for process D, pro-

cess E, process F, process G, process H and process I is significantly
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Fig. 16. KL divergence between the predicted and true probability distributions of production loads given customer demands in case 2. (For interpretation of the references to color

in this figure, the reader is referred to the web version of this article.)

better. This is mainly due to the fact that we know the values of the

operating conditions which have a significant influence on these pro-

duction loads. Fig. 14 shows the means and variances of the inferred

and actual process time and KL divergences between them.

One can see that KL divergences are smaller than the second test

case. For further improvement, it may be desirable to add other vari-

ables such as the amount of in-process inventory, the number of

workers and the failure rate of each machine, which will have an im-

pact on the process time. However, these kinds of discussion are out-

side the scope of our research. The average execution time for the

inference in all production group is 9.60[s], which is almost same

as the second test scenario. This example demonstrates that, even

though our Bayesian network includes a large domain of discrete

variables, the causal reasoning can be carried out by using the pro-

posed decision-tree structured conditional probability table repre-

sentations.

5.3.2. Case 2: variables representing the customer demands are known

and the other variables are unknown

This situation arises typically when persons in the sales depart-

ment receive orders from customers and want to know the produc-

tion loads and the process times for these orders. Since the purpose of

this inference is to predict the effects of production loads and the pro-

cess time given the causes of the customer demands, this type of in-

ference is causal reasoning. Compared to case 1, there are more uncer-

tainties here, since the production loads are not known and one can
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Fig. 17. Mean, standard deviation and KL divergence between the predicted and true probability distributions of process time given customer demands in case 2.

expect reduced certainty of predictions. We use the same decision-

tree structured CPTs that was learned in case 1. The probabilities of

the values of production loads being 2 and their KL divergences be-

tween the predicted and actual probability distributions are shown

in Figs. 15 and 16.

The red solid lines represent the predicted values while the blue

dash lines denote the actual values. One can readily observe that

the probability distributions of process A, process B, process C and

process D are very close to actual ones. However, the results of the

other production loads such as process E, process F, process G, pro-

cess H and process I show the bad prediction performance. This is

most likely due to the fact that these production loads are signifi-

cantly affected by the operating conditions, which are assumed to be

unknown in this test case. In addition, the prediction results for the

process time are shown in Fig. 17.

It can be seen that the inferred probability distributions are largely

different from the true ones. That is because the process time is com-

puted from the final potentials of production loads and the proba-

bility distributions of some production loads are not accurately pre-

dicted. The average execution time for the inference in all production

group is 9.96[s].

Results of test cases 1 and 2 indicate that we can carry out the

most plausible reasoning from the values of known variables using

a single Bayesian network model. This is very useful particularly in

instances when available variables are different at different steps.

Having a single Bayesian network model avoids the need to have
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Fig. 18. Probability of operating conditions in case 3. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

multiple specific models tailored for specific purposes, which causes

model maintenance issues and lack of model consistency.

5.3.3. Case 3: customer demands and all production loads are known

while the operating conditions are unknown

This kind of is required when we want to decide which operating

conditions to use in production so that both the customer demands

and production capacity can be satisfied. Since this type of the infer-

ence is mixed reasoning, the proposed hybrid LBP algorithm is em-

ployed. Similarly to the previous two cases, we evaluate the predic-

tion accuracy for each production that contains steel plates that have

the same customer demands and production loads. We have selected

the production groups containing more than 100 plates to compute

the true probability distributions. The computed probability distri-

butions of production loads are shown in Fig. 18. Different colors of

the lines are used to represent different values of each variable while

the solid lines denote the predicted probabilities and the dashed lines

represent the actual probabilities. In addition, the KL divergences be-

tween the predicted and actual probability distributions are shown

in Fig. 19. It can be seen that most KL divergences are very small and

the proposed inference algorithm can accurately predict the proba-

bility distributions of unknown variables. Therefore, we can say that

the proposed inference method can carry out the mixed reasoning

even though this Bayesian network has a large domain of discrete

variables. The average execution time for the inference in all produc-

tion groups is 1.91[s].
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Fig. 19. KL divergence of operating conditions in case 3.

6. Conclusion

Complex multi-stage manufacturing processes, such as steel

plates manufacturing, have many manufacturing steps which are not

fully deterministic. Production planning and scheduling for such sys-

tems requires that probabilities of specific outcomes at each pro-

duction step be accounted for. Business decisions, e.g. committing to

deliver a specific order, scheduling production, or deciding on oper-

ating conditions, require different types of reasoning to conclude the

most likely outcomes. Instead of using different models for different

types of reasoning, we have used the same inference technique for all

decision making. The method employs decision-tree structured con-

ditional probability tables (CPTs) based hybrid inference technique

for the hybrid Bayesian network containing large domain discrete

variables. The main contribution of this research is a new method-

ology to construct the context-specific CPTs represented by decision

trees through classification tree algorithm. We have introduced three

new types of operators for computing multiplication and marginal-

ization of factors represented by decision-tree structure based CPTs.

These novel operations enable us to carry out inference by using be-

lief propagation algorithms. For causal reasoning, the direction of

probability propagation is downstream from the top node variables

to the bottom nodes variables. Since other types of reasoning cannot

be carried out using such monotonic logic based algorithm, we use

more complicated algorithm, i.e. the loopy belief propagation. In or-

der to reduce the computational cost, we fix the values of messages

that depart from the nodes given evidence and omit the computation

of these messages during iterations.
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Fig. A.20. Bayesian network.

In conclusion, our method is able to handle the large domain dis-

crete variables without increasing computational cost exponentially.

In addition, in our approach, we can discretize the continuous parents

as finely as needed, which does not increase the number of parame-

ters in intermediate factors due to decision-tree structured CPTs. We

assume that the continuous variables are Gaussian, which may limit

the applicability of the proposed method. If the domain of the dis-

crete child becomes extremely large (more than 100 domain cardinal-

ities), the factors become large which may make the tree-CPT sparse

because our approach cannot split the discrete child nodes. While this

is a limitation, the proposed method increases significantly the size

of the domain of discrete variables which can be used as a part of the

system model.

Real life steel production process data have been used to exam-

ine the effectiveness of the proposed inference algorithm. The results

demonstrate that the proposed algorithm accurately and very rapidly

predicts the probability distributions of unobserved variables in large

hybrid Bayesian networks.

Future work will focus on applying the presented Bayesian net-

work model to the scheduling and planning for steelmaking plants

such that both the profit and customer satisfaction are maximized.

Appendix A. Structure learning

The goal of structure learning is to find a network structure G
that is a good estimator for the data x. The most common approach

is score-based structure learning, which defines the structure learn-

ing problem as an optimization problem (Koller & Friedman, 2009).

A score function score(G : D) that measures how well the network

model fits the observed data D is defined. The computational task is

to solve the combinational optimization problem of finding the net-

work that has the highest score. In this paper, we employ BIC scores

described as follows:

scoreBIC(G : D) = M

N∑
i=1

I(xi;paG(xi))−M

N∑
i=1

H(xi)

− LogM

2
Dim[G] (A.1)

where paG (xi) are the parent nodes of xi given graph G, I(xi;paG (xi))

is the mutual information between xi and paG (xi), and H(xi) is the

marginal entropy of xi. With this score function, the optimal graph G∗
can be computed as follows:

G∗ = argmaxGscoreBIC(G : D). (A.2)

Since this combinational optimization problem is known to be

NP-hard (Chickering et al., 1997), it is difficult to compute the opti-

mal graph for industrial plants which often include a large number of

process variables.

In order to reduce the computational cost, we incorporate the

fundamental process knowledge into the network structure learn-

ing framework. One can easily noticed that the nodes of variables

belonging to the customer demands should be placed on the root

nodes in the Bayesian network while production loads are affected

by the customer demands, operating conditions or both and not vice

versa. Taking into account above considerations, we propose the type

of Bayesian networks as shown in Fig. A.20.
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a  b  s  t  r  a  c  t

Knowledge  of  the  production  loads  and  production  times  is an  essential  ingredient  for  making  successful
production  plans  and  schedules.  In steel  production,  the  production  loads  and  the  production  times
are  impacted  by  many  uncertainties,  which  necessitates  their  prediction  via  stochastic  models.  In order
to  avoid  having  separate  prediction  models  for planning  and  for scheduling,  it is  helpful  to  develop  a
single  prediction  model  that allows  us to predict  both  production  loads  and  production  times.  In this
work,  Bayesian  network  models  are  employed  to  predict  the  probability  distributions  of  these  variables.
First,  network  structure  is identified  by maximizing  the Bayesian  scores  that  include  the  likelihood  and
model  complexity.  In  order  to handle  large  domain  of  discrete  variables,  a novel  decision-tree  structured
conditional  probability  table  based  Bayesian  inference  algorithm  is developed.  We  present  results  for  real-
world  steel  production  data  and  show  that  the proposed  models  can  accurately  predict  the  probability
distributions.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Accurate estimation of the production loads and the total pro-
duction times in manufacturing processes is crucial for optimal
operations of real world industrial systems. In this paper, a produc-
tion load represents the number of times that a product is processed
in the corresponding process unit and a production time is defined
as the length of time from production start to completion. Produc-
tion planning and scheduling for short, medium and long term time
horizons employ various optimization models and algorithms that
require accurate knowledge of production loads and total produc-
tion times from information at each of the processing steps. The
approaches to predict the production loads and total production
times can be either based on mechanistic model or can employ
data-driven techniques. Model-based prediction methods may  be
applied only if accurate mechanistic models of the processes can
be developed. First principal models require in-depth knowledge
of the processes and still cannot take into consideration all uncer-
tainties that exist in the processes. Therefore, mechanistic models
may not work well for prediction of production loads and produc-
tion times of the real-world industrial processes. On the other hand,

∗ Corresponding author. Tel.: +1 905 525 9140.
E-mail  address: mahalec@mcmaster.ca (V. Mahalec).

data-driven approaches do not require in-depth process knowl-
edge and some advanced techniques can deal with the process
uncertainties.

The most straightforward approach is to use the classical sta-
tistical models (e.g. regression models) that estimate the values of
new production loads and a production time from the past values in
the historical process data. The relationships between the targeted
variables and other relevant variables are used to compute the sta-
tistical model that can predict the production loads and production
times. However, such models are too simple to predict the nonlin-
ear behavior and estimate the system uncertainties. An alternative
simple method is to compute the average of these values per each
production group that has similar production properties and then
utilize the average values of each production group as the predic-
tion (Ashayeria et al., 2006). In this case the prediction accuracy
significantly depends on the rules that govern creation of produc-
tion groups and it may  be challenging to find the appropriate rules
from process knowledge only. To overcome this limitation, super-
vised classification techniques such as artificial neural networks
(ANN), support vector machine, Fisher discriminant analysis and
K-nearest neighbors (KNN) may  be useful to design the rules to
make production groups from historical process data. However,
even though we can accurately classify the historical process data
into an appropriate number of production groups, these methods
do not consider model uncertainties and cannot handle missing

http://dx.doi.org/10.1016/j.compchemeng.2015.02.005
0098-1354/© 2015 Elsevier Ltd. All rights reserved.
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values and unobserved variables. In addition, we are typically
forced to have multiple specific models tailored for specific pur-
poses, e.g. for production planning or for scheduling, which causes
model maintenance issues and lack of model consistency.

Bayesian network (BN) models offer advantages of having a sin-
gle prediction model for predicting the production loads and total
process times in planning and scheduling. Bayesian networks are
also called directed graphical models where the links of the graphs
represent direct dependence among the variables and are described
by arrows between links (Pearl, 1988; Bishop, 2006). Bayesian
network models are popular for representing conditional inde-
pendencies among random variables under system uncertainty.
They are popular in the machine learning communities and have
been applied to various fields including medical diagnostics, speech
recognition, gene modeling, cancer classification, target tracking,
sensor validation, and reliability analysis.

The most common representations of conditional probability
distributions (CPDs) at each node in BNs are conditional probabil-
ity tables (CPTs), which specify marginal probability distributions
for each combination of values of its discrete parent nodes. Since
the real industrial plant data often include discrete variables which
have large discrete domains, the number of parameters becomes
too large to represent the relationships by the CPTs. In order to
reduce the number of parameters, context-specific independence
representations are useful to describe the CPTs (Boutilier et al.,
1996). Efficient inference algorithm that exploits context-specified
independence (Poole and Zhang, 2003) and the learning methods
for identification of parameters of context-specific independence
(Friedman and Goldszmidt, 1996; Chickering et al., 1997) have
been developed. The restriction of these methods is that all dis-
crete values must be already grouped at an appropriate level of
domain size since learning structured CPTs is NP-hard. However,
discrete process variables typically have large domains and the task
of identifying a reasonable set of groups that distinguish well the
values of discrete variables requires in-depth process knowledge.
To overcome this limitation, attribute – value hierarchies (AVHs) that
capture meaningful groupings of values in a particular domain are
integrated with the tree-structured CPTs (DesJardins and Rathod,
2008). Such approach is not applicable in general process systems,
since some discrete process variables do not contain hierarchal
structures and thus AVHs cannot capture the useful abstracts of
values in that domain. In addition, this model cannot handle the
continuous variables without discretizing them. Furthermore, the
authors do not describe how to apply AVH-derived CPTs to Bayesian
inference. Therefore, this method has difficulty predicting proba-
bility distributions of production loads and total process time from
observed process variables in the real-world industrial processes.
Efficient alternative inference methods in Bayesian Networks con-
taining CPTs that are represented as decision trees have been
developed (Sharma and Poole, 2003). The inference algorithm is
based on variable elimination (VE) algorithm. However, because the
computational complexity of the exact inference such as VE grows
exponentially with the size of the network, this method may  not
be appropriate for Bayesian networks for large scale industrial data
sets. In addition, the method does not deal with application of the
decision-tree structured CPTs to hybrid Bayesian networks, where
both discrete and continuous variables appear simultaneously.

In  hybrid Bayesian networks, the most commonly used model
that allows exact inference is the conditional linear Gaussian (CLG)
model (Lauritzen, 1992; Lauritzen and Jensen, 2001). However,
the proposed network model does not allow discrete variables to
have continuous parents. To overcome this limitation, the CPDs of
these nodes are typically modeled as softmax function, but there
is no exact inference algorithm. Although an approximate infer-
ence via Monte Carlo method has been proposed (Koller et al.,
1999), the convergence can be quite slow in Bayesian Networks

with  large domain of discrete variables. Another approach is to dis-
cretize all continuous variables in a network and treat them as if
they are discrete (Kozlov and Koller, 1997). Nevertheless, it is typ-
ically impossible to discretize the continuous variables as finely
as needed to obtain reasonable solutions and the discretization
leads to a trade-off between accuracy of the approximation and
cost of computation. As another alternative, the mixture of trun-
cated exponential (MTE) model has been introduced to handle the
hybrid Bayesian networks (Moral et al., 2001; Rumi and Salmeron,
2007; Cobb et al., 2007). MTE  models approximate arbitrary prob-
ability distribution functions (PDFs) using exponential terms and
allow implementation of inference in hybrid Bayesian networks.
The main advantage of this method is that standard propagation
algorithms can be used. However, since the number of regres-
sion coefficients in exponential functions linearly grows with the
domain size of discrete variables, MTE  model may  not work well
for the large Bayesian networks that are required to represent the
industrial processes.

Production planning and scheduling in the steel industry are
recognized as challenging problems. In particular, the steel plate
production is one of the most complicated processes because steel
plates are high-variety low-volume products manufactured on
order and they are used in many different applications. Although
there have been several studies on scheduling and planning prob-
lems in steel production, such as continuous casting (Tang et al.,
2000; Santos et al., 2003), smelting process (Harjunkoski and
Grossmann, 2001) and batch annealing (Moon and Hrymak, 1999),
few studies have dealt with steel plate production scheduling. Steel
rolling processes manufacture various size of plates from a wide
range of materials. Then, at the finishing and inspection processes,
malfunctions occurred in the upstream processes (e.g. smelting
processes) are repaired, and additional treatments such as heat
treatment and primer coating are applied such that the plates
satisfy the intended application needs and satisfy the demanded
properties. In order to obtain successful plans and schedules for
steel plate production, it is necessary to determine the production
starting times that meet both the customer shipping deadlines and
the production capacity. This requires prediction models that can
accurately predict the production loads of finishing and inspection
lines and the total process time. However, due to the complexity
and uncertainties that exist in the steel production processes, it is
difficult to build the precise prediction models. These difficulties
have been discussed in the literature (Nishioka et al., 2012).

In  our work, in order to handle the complicated interaction
among process variables and uncertainties, Bayesian networks are
employed for predicting of the production loads and prediction of
the total production time. Since the steel production data have large
domain of discrete variables, their CPDs are described by tree struc-
tured CPTs. In order to compute the tree structured CPTs, we use
decision trees algorithm (Breiman et al., 1984) that is able to group
the discrete values to capture important distinctions of continuous
or discrete variables. If Bayesian networks include continuous par-
ent nodes with a discrete child node, the corresponding continuous
variables can be discretized as finely as needed, because the domain
size of discretized variable does not increase the number of param-
eters in intermediate factors due to decision-tree structured CPTs.
Since the classification algorithms are typically greedy ones, the
computational task for learning the structured CPTs is not expen-
sive. Then, the intermediate factors can be described compactly
using a simple parametric representation called the canonical table
representation.

As for Bayesian network structure, if the cause–effect relation-
ship is clearly identified from process knowledge, knowledge based
network identification approach is well-suited. Such identification
of cause–effect relationships may  require in-depth knowledge of
the processes to characterize the complex physical, chemical and
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biological phenomena. In addition, it can be time-consuming to
build precise graphical model for complex processes, and it is also
challenging to verify the identified network structure. Therefore,
data-driven techniques are useful to systematically identify the
network structure from historical process data. The basic idea of
learning the network structure is to search for the network graph
so that the likelihood based score function is maximized. Since this
is a combinational optimization problem which is known as NP-
hard, it is challenging to compute the precise network structure
for industrial plants where there are a large number of process
variables and historical data sets. In order to restrict the solution
space, we fix the root and leaf nodes by considering the proper-
ties of the process variables. In addition, we take into account two
types of Bayesian network structures, which are: (i) a graph where a
node of the total production time is connected with all nodes of the
production loads and (ii) a graph where a node of the total produc-
tion time is connected with all nodes of the individual production
time on each production load and the nodes of these individual
process time are connected to the nodes of the total production
time. In the latter Bayesian network structure, the training data set
that contains each production period of all production processes is
needed in order to directly compute the parameters of conditional
probability distributions of each production period.

We  also propose the decision-tree structured CPT based
Bayesian inference algorithm, which employs belief propagation
algorithm to handle hybrid Bayesian networks with large domain
of discrete variables. In order to reduce the computational effort
required for multiplying and marginalizing factors during belief
propagation, the operations via dynamically construct structured
CPTs are proposed. Since the inference task is to predict the cause
of production loads and the total production time from the effect
of other process variables, we need the causal reasoning which can
be carried out by using the sum-product algorithm from top node
factors to bottom node factors. In addition, other types of inference
such as diagnostic and intercausal reasoning are also investigated
in the case when we need to infer some other process variables
such as operating conditions given production loads.

The  organization of this paper is as follows. Section 2 intro-
duces the plate steel production problem. Section 3 proposes the
structure identification algorithm for steel plate production pro-
cesses. Section 4 describes the proposed decision-tree structured
CPTs based Bayesian inference algorithm and Section 5 proposes
the inference algorithm. The presented method is applied to the

steel plate production process data in Section 6. Finally, the conclu-
sions are presented in Section 7. Appendix A describes algorithm
to find the network structure that maximizes the score function,
Appendix B describes computation of causal reasoning, Appendix
C deals with diagnostic and causal reasoning, and Appendix D
describes belief propagation with evidence.

2. Problem definition

The  plate steel mills studied in this paper consist of rolling
machines, finishing and inspection processes. The purpose of the
plate mills is to manufacture the steel plates, which are end prod-
ucts made from steel slabs via continuous casting processes. The
slabs are sent to the rolling machines which include roughing
mill, finishing mill and hot leveling machine through continu-
ous or batch reheating furnace. To manufacture the high-strength
steel plates, Accelerated Cooling (ACC) process which is based on
the combination of controlled rolling and controlled cooling is
used. After rolling or cooling, the plates are sent to the finishing
and inspection processes, where defects that have occurred in the
upstream processes such as smelting processes are repaired. Here,
additional treatments such as heat treatment and primer coating
are carried out as needed so that the plates have the properties
required for their intended usages. The process is illustrated in
Fig. 1.

One of the most important goals for production planning and
scheduling is to use in the best possible manner the subsystems
which are the bottlenecks, since the total plant capacity is deter-
mined by the bottleneck capacity. In the plate mills, bottlenecks
typically occur in the finishing and inspection lines. Therefore, an
effective way  to approach the planning and scheduling in the plate
mills is to determine the rolling starting time of each order in such
a manner that the limiting capacities are used to their maximum
and that the customer demanded shipment deadlines are satisfied.
For this purpose, when sales department staff receives orders from
the customers, they must take into account the plate mills capaci-
ties and production times to avoid creating supply bottlenecks and
to meet the customer deadlines. Similarly, the staff in the manu-
facturing department prepares the production plans and schedules
while considering the production capacities and production times.
However, due to the complicated and stochastic processes of the
finishing and inspection lines, there is no deterministic way to pre-
dict the production loads and production time that are required to

Fig. 1. The example process.

PhD Thesis - Junichi Mori McMaster University - Chemical Engineering

103



116 J. Mori, V. Mahalec / Computers and Chemical Engineering 79 (2015) 113–134

determine the production start times as required to avoid the bot-
tlenecks and meet the customer deadline. In this paper, production
loads represent the number of times that one plate or a set of total
plates per day is processed at the corresponding production process
unit. For instance, if 10 plates are processed at process A per day,
then the production load of process A is computed as 10 per day.
Production time for each plate or each customer order represents
the time required to manufacture a product, starting from slabs to
the finished products. In this paper, since the processing time in
the inspection and finishing lines is a large part of the production
time, the production time represents the period from production
start to completion as shown in Fig. 1.

When a steel plate manufacturer receives orders from a
customer, the product demand is known while the operating con-
ditions, which are required to manufacture this specific product
(order), are not available. On the other hand, at the manufactur-
ing stage, all information about customer demands and detailed
operating conditions is known.

Motivated by the above considerations, we can divide the tasks
in plate steel production planning and scheduling into two parts:
(i) accurate prediction of the production loads and production time
and (ii) optimization of the manufacturing plans and schedules
based on the production time prediction models. In this paper, we
focus on the development of the prediction model for production
loads and production time. The prediction model needs to enable:

1  Estimation of the probability distributions of production loads
and  production time, since the finishing and inspection lines
include  various sources of uncertainties and thus stochastic pre-
diction models are desirable.

2 Dealing with unobservable (unavailable) variables, because it is
desirable to have a single model and avoid multiple models that
meet  with specific problems.

Having a single model with above properties enables planning and
scheduling based on the same model which improves consistency
of decisions between planning and scheduling and also simplifies
model maintenance.

3.  Identification of Bayesian networks structure for steel
plate  production

In  order to build a model which has the properties mentioned
in the previous section, we develop the methods to compute prob-
ability distributions of unknown states of production loads and
production times by using Bayesian network. Methodology to build
the model will be illustrated by an example which has 21 discrete
variables and 5 continuous variables as shown in Table 1. Each pro-
duction load is assigned a binary variable having value of 1 if the
corresponding production process is not needed, otherwise it is 2.

In this section, we propose the knowledge based date-driven
structure learning algorithm to construct the Bayesian network
structure. In the subsequent sections, we will propose the param-
eter estimation and inference approaches with the constructed
Bayesian network structure.

The  computational task for structure learning is to find the
optimal graph such that the maximized Bayesian scores can be
obtained, which is known as NP-hard problem. In order to reduce
the computational effort, we allow some variables to be set at the
root nodes or the leaf nodes and also impose some constraints about
orders of subsets of system variables.

First and the most important task for Bayesian inference is to
synthesize the precise network structure. The most straightforward
method is to design the network structure from process knowl-
edge. However, by-hand structure design requires in-depth process

Table 1
System variables of steel production process.

Variable No. Variable description Domain size

1 Customer demand A 12
2 Customer demand B 2
3 Customer demand C 20
4 Customer demand D 20
5 Customer demand E 20
6 Customer demand F 10 (discretized)
7 Customer demand G 10 (discretized)
8 Customer demand H 10 (discretized)
9 Customer demand I 10 (discretized)

10 Operating condition A 5
11 Operating condition B 2
12 Operating condition C 2
13 Operating condition D 2
14 Operating condition E 2
15 Operating condition F 2
16 Operating condition G 2
17 Production load A 2
18 Production load B 2
19 Production load C 2
20 Production load D 2
21 Production load E 2
22 Production load F 2
23 Production load G 2
24 Production load H 2
25 Production load I 2
26 Process time Continuous

knowledge because identification of cause–effect relationships is
needed to characterize the complex physical, chemical and biolog-
ical phenomena in systems. On the other hand, data-driven based
techniques such as score function based structure learning are use-
ful when there is lack of process knowledge or considered processes
are too complicated to analyze.

The goal of structure learning is to find a network structure G that
is a good estimator for the data x. The most common approach is
score-based structure learning, which defines the structure learning
problem as an optimization problem (Koller and Friedman, 2009).
A score function score(G : D)  that measures how well the network
model fits the observed data D  is defined. The computational task is
to solve the combinational optimization problem of finding the net-
work that has the highest score. The detailed algorithm to find the
network structure that maximizes the score function is explained
in Appendix A. It should be noted that this combinational optimiza-
tion problem is known to be NP-hard (Chickering, 1996). Therefore,
it is challenging to obtain the optimal graph for industrial plants
which often include a large number of process variables.

In  order to reduce the computational cost, we incorporate
the fundamental process knowledge into the network structure
learning framework. As shown in the variable list of Table 1, all
of our system variables belong to either customer demands or
operating conditions or production loads or production time. One
can immediately notice that customer demands can be considered
“cause variables” of all system variables in the Bayesian network
and are never impacted by either operating conditions, production
loads or production time. Therefore, the nodes of variables belong-
ing to the customer demands should be placed on the root nodes in
the Bayesian network. Similarly, production loads are affected by
the customer demands, operating conditions or both and not vice
versa. Taking into account above considerations, we propose two
types of Bayesian networks as shown in Fig. 2. In both Bayesian
networks, the nodes related to the customer demands are placed
at the root nodes followed by operating conditions, production
loads and production time. The difference between two  structures
is that in the second BN structure, the nodes associated with the
production time at each production process are added between
the nodes of production loads and total production time while in
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Fig. 2. Two  types of Bayesian network structure.

the first BN structure, total production time is directly connected
to the production loads.

In  addition, we propose some predetermined variable ordering
≺ over x to reduce further the computational cost further. If the
ordering covers order relationships over all variables as x1 ≺ x2, . . .,
xI and the maximum number of parents for each node set to be at
most d, then the number of possible parent sets for xi is at most(
i − 1
d

)
rather than 2I−1 (Koller and Friedman, 2009). In practice,

nevertheless, these complete orderings are very difficult to iden-
tify from process knowledge. Instead of identification of complete
orderings, we proposed incomplete orderings that do not cover order
relationships over all variables but restrict the ordering over sub-
sets of variables. The following is an example of the incomplete
ordering.

{x1, x2} ≺ {x3, x4, x5} ≺ {x6, x7} (1)

This  incomplete ordering suggests that a computed network should
be consistent with the order relationships where x1 and x2 precede
x3, x4, x5, x6 and x7, but any constraints about orders within each
subset {x1, x2}, {x3, x4, x5} and {x6, x7} are not imposed. Although
the incomplete orderings are optional to set for the structure learn-
ing, they can further restrict the solution space because they make
the combinational search space much smaller. Therefore, our opti-
mization task is to search for the optimal edges between the nodes
of customer demands, operating conditions and production loads
so that the BIC scores are maximized and the computed network
is consistent with the fixed root and leaf nodes and the incomplete
orderings. Consequently, we can further reduce the computational
cost due to these constraints.

The  search space in our optimization is restricted to the neigh-
boring graphs that can be obtained by either adding one edge
or deleting one edge or reversing the existing edge. It should be
noted that the neighboring graphs should satisfy the constraints
including fixed root and leaf nodes and graph to be acyclic. There-
fore, the illegal graphs that violate these constraints are removed
from neighboring solutions during search. Tabu search algorithm
(Glover, 1986) is employed to make a decision whether the neigh-
boring graphs are accepted. This algorithm uses a neighborhood
search to move from one solution candidate to an improved solu-
tion in the search space unless the termination criterion is satisfied.
In order to avoid local optima as much as possible, a solution candi-
date is allowed to move to a worse solution unless that solution is
included in tabu list which is a set of solutions that have been visited
over the last t iterations, where t is termed as tabu size (set to be
100 in this work). The detailed algorithm for network identification
is presented in Table 2.

Table 2
Algorithm 1. Network identification algorithm.

Procedure Network-Identification (
D  // training data set
G0 // initial network structure
R // a set of fixed root nodes
L // a set of fixed leaf nodes
≺ // a set of incomplete orderings
global TabuList // tabu list
)

1  Tabulist← ∅
2  G ← Search(G0, R, L, ≺)
3 Gbest ← G
4  for i = 1, . . . until convergence
5  G ← Search(G, R, L, ≺)
6  if scoreBIC(G : D)  > scoreBIC(Gbest : D)
7 Gbest ← G
8  return Gbest

Procedure Search (
G  // network structure
R // a set of fixed root nodes
L // a set of fixed leaf nodes
≺ // a set of incomplete orderings
)

1 while new graph is not obtained
2  Select indices i and j (i /=  j) at random
3  if edge i → j exists in G
4 Delete edge i → j or reverse edge i → j at random and then get Gnew

5 else if edge j → i exists in G
6 Delete edge j → i, add new edge i → j and then get Gnew

7 else
8  Add new edge i → j and then get Gnew

9 if Gnew is cyclic
10  continue
11  if Gnew is in TabuList
12 continue
13  if Gnew conflicts either R or L or ≺
14 continue
15  Add Gnew to TabuList
16 return Gnew

4. Parameter estimation for Bayesian network with large
domain  of discrete variables

The  major issue that is encountered when applying the proposed
Bayesian networks is that some discrete variables have large dis-
crete domains, which causes less robust inference. Let us assume
that we have the conditional probability distribution of the node
of UST load whose parent nodes are customer demand A, B, C, D,
F, G, H, I, and operating condition A. Since the product of cardinal-
ities of all variables is 12 × 2 ×20 × 20 × 10 × 10 × 10 × 10 × 5 = 480
million, it requires a huge amount of training data to compute the
appropriate parameters for all elements in the table.
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In order to overcome this issue, we propose the decision tree
structured CPDs based Bayesian inference techniques that can
handle a large number of discrete values. As for second issue of
unobservable production time of each process, we  utilize the max-
imum log-likelihood strategies to estimate the parameters of the
probability distributions of each process time, as discussed in Sec-
tion 6.

The  network structures studied in this work include both con-
tinuous and discrete variable nodes, and hence are called hybrid
Bayesian networks. We  represents sets of random variables by
X  = � ∪ � where � denotes the continuous variables and � repre-
sents the discrete variables. Random discrete variables are denoted
by upper case letters from the beginning of the alphabet (A, B, A1)
while continuous variables are denoted by upper case letters near
the end of the alphabet (X, Y, X1). Their actual values are represented
by the lower case letters (e.g. a, x, etc.). We  denote sets of variables
by bold upper case letters (X) and the assignments of those sets by
the bold lower case letters (x). We  use Val(X) to represent the set
of values that a random variable X can take.

The conditional linear Gaussian (CLG) model is widely used for
representation of hybrid Bayesian networks. Let X ⊆ � be a contin-
uous node, A ∈ pa(X) ∩ � be its discrete parent nodes and Y1, . . .,
Yk ∈ pa(X) ∩ � be its continuous parent nodes where pa(X) denotes
a state of parent nodes of X. A Gaussian distribution of X for every
instantiation a ∈ Val(A) can be represented in moment form as:

p(X| pa(X)) = P(X| pa(X); �a) = N

⎛
⎝X| k∑

j

wa,jyj + ba, �2
a

⎞
⎠ (2)

where  wa,j and ba are parameters controlling the mean, �a is the
standard deviation of the conditional distribution for X, and �a =
{wa,j, ba, �a} is the set of model parameters for instantiation a. This
representation can also be rewritten in more convenient canonical
form as follows (Lauritzen and Wermuth, 1989):

C(X; Ka, ha, ga) = exp
(
−1

2
XTKaX + hTaX + ga

)
(3)

where  Ka, ha and ga represent parameters of ath instantiation in
canonical table representations. The canonical table representation
can express both the canonical form used in continuous networks
and the table factors used in discrete networks. Specifically, when
A =∅, only a single canonical form (a = 1) is obtained. Meanwhile,
when X =∅, parameters of Ka and ha are vacuous and only canonical
forms exp(ga) remain for every instantiation a.

The limitation of the canonical table representation is that
discrete child nodes cannot have continuous parents. For
Bayesian networks of the steel plates manufacturing process
(Figs. 10 and 11), since the variables related to size of plates such
as height, width, length and weight are continuous nodes with dis-
crete child nodes, they are converted into discrete variables. It is
true that there is a trade-off between the accuracy of the approx-
imation and the domain size of discretized variables, but due to
the proposed decision-tree structured CPTs, we  can deal with a
large number of values in discrete variables when they are the
root nodes in the Bayesian network. In steel plate manufacturing
Bayesian networks, although the variables of height, width, length
and weight are continuous ones with discrete child nodes, they do
not have the parent nodes and thus we can discretize them as finely
as we like.

Before computing the parameters of the canonical table, we
need to define the instantiations of the set of discrete variables.
The simplest approach is to use the traditional CPTs. However, the
number of parameters required to describe such CPTs exponen-
tially increases with the domain size. To overcome this limitation,
it is useful to capture conditional independence that holds only in

Fig. 3. Bayesian network that contains continuous child node.

Fig. 4. Decision tree of a factor that contains continuous child node.

certain contexts in the Bayesian networks. Although several works
about structured CPTs have been reported to capture this indepen-
dence (Boutilier et al., 1996; Poole and Zhang, 2003), all of these
methods assume that all discrete variables are already grouped at
an appropriate level of domain size.

In this work, classification trees algorithm (Breiman et al., 1984)
is employed to learn the structured CPTs. Classification trees can
predict the values of the target variables by following decisions in
the tree from the root nodes down to the leaf nodes. Their structures
are identified by choosing a split so that the minimized statistical
measures such as Gini impurity or entropy can be obtained.

First,  we  consider a factor that contains both continuous nodes
X and discrete nodes D with continuous child node Y as shown
in Fig. 3. Continuous variables are described as rectangles while
discrete variables are ovals. The classification tree T classifies the
discrete variable set D into a small number of subsets A = {a1, a2, . . .,
aL} in accordance with the decision a = T(d) where L is the number
of the leaves in the tree T. For example, the decision tree provided in
Fig. 4 means that if D1 ∈ {4, 5, 6}, D3 ∈ {4, 5}, then the corresponding
records are assigned the instantiation a5 regardless of the value of

Fig. 5. Bayesian network that contains discrete child node.
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Fig. 6. Decision tree of a factor that contains discrete child node.

D3. It should be noted that the tree representation requires only
|Val(A)| = 6 parameters to describe the behavior of target variable
Y. In the example, if the traditional CPTs are used, the number of
parameters becomes |Val(D1)| × |Val(D2)| × |Val(D3)| = 216, which is
much larger than that of the tree structured CPTs. Therefore, the
tree structured CPTs need much smaller number of training data
to learn the parameters of the conditional probability distributions
and also lead to more robust estimation compared to the traditional
CPT representation.

After giving instantiations ai ∈ A to all samples in the training
data by following the decision in the constructed tree, parame-
ters of the canonical for each instantiations si can be computed
as follows:

Kai = ˙−1
i

hai = ˙−1
i

�i

gai = −1
2

�T
i ˙i

−1�i − log((2�)n/2|˙i|1/2)

(4)

with

˙i = cov[Zi] (5)

�i = mean[Zi] (6)

where  Z = X ∪ Y, Zi = {z : T(d) = ai} and cov[Zi] and mean[Zi] are the
covariance matrix and mean vector of Zi respectively.

Next, let us consider the case when a factor contains discrete
nodes D with discrete child node B as shown in Fig. 5. The classi-
fication tree classifies discrete variables D into a small number of
subsets A = {a1, a2, . . .,  aL} by the following the rules a = T(d) with
L being the number of leaves so that the values of a discrete child
node B can be categorized well. While the decision tree can well
categorize the discrete parent variables D, a discrete child vari-
able B that is used as a dependent variable in the tree T is not
included in the nodes of the decision tree. As a result, the obtained
decision tree T can classify values of discrete parent variables D
only and it excludes a discrete child variable B from the branching
nodes in the tree T. Since we need to classify values of all dis-
crete variables that the factor includes, the discrete child node is
placed at all leaf nodes in the tree T to continue categorizing dis-
crete variables by using their values. Specifically, all values of a
discrete child variable b1 . . . bL ∈ B are used as categorical splits at

the  leaf nodes in the tree T and thus the number of branches at
each leaf node is same as the domain size of Val(B) = L. Therefore,
the total number of instantiations assigned in the new decision
tree Tnew is Val(B) times as large as the number of leaves in the
original tree T. Fig. 6 shows the example of a decision tree when
a factor contains a discrete child node. The decision tree gives us
the rule where if D1 ∈ {4, 5, 6}, D3 ∈ {4, 5} and B ∈ {1}, then the cor-
responding records are assigned the instantiation a4L+1 regardless
of the value of D2. The number of instantiations are Val(B) × 6 =6L
rather than |Val(D1)| × |Val(D2)| × |Val(D3)| × |Val(B)| = 216L which
is the number of parameters required to describe the traditional
CPT of discrete variables D ∪ B.

Using  the instantiations ai ∈ A assigned by following the decision
Tnew, parameters gai of the canonical table representation can be
computed as follows:

gai = log
1
Nai

∑
z

1(f (d) = ai) (7)

where  1 represents an indicator function, Nai is the number of
samples belonging to the instantiation ai. The other canonical
parameters Kai and hai are vacuous since the factor does not include
any continuous nodes.

5.  Inference in Bayesian network with large domain of
discrete  variables

5.1.  Types of reasoning

Bayesian  inference answers the conditional probability query,
P(X|E = e) where the evidence E ⊆ X is a subset of random vari-
ables in the Bayesian network and e ∈ Val(E) is the set of values
given to these variables. The four major reasoning patterns in
Bayesian inference are causal reasoning, diagnostic reasoning, inter-
causal reasoning and mixed reasoning. The causal reasoning predicts
the downstream effects of factors from top nodes to bottom nodes
while the diagnostic reasoning predicts the upstream causes of fac-
tors from bottom nodes to top nodes. The intercausal reasoning is
the inference where different causes of the same effect can interact.
The mixed inference is the combination of two or more of the above
reasoning. In order to implement the causal inference, the condi-
tional probability of effects for given causes is computed by means
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of the sum-product algorithm from top node factors to bottom node
factors.

Inferences other than causal reasoning, e.g. diagnostic, inter-
causal and mixed reasoning cannot be carried out in logic which is
monotonic. Therefore, the fundamental algorithm for exact infer-
ence for these reasons in graphical models is variable elimination
(VE). VE can be carried out in a clique tree and each clique in
the clique tree corresponds to the factors in VE. Since the com-
putational cost of the clique tree algorithm exponentially grows
with the width of the network, the inference cannot be achieved
in large width networks that represent many real-world industrial
problems. Hence, one needs to employ approximate inference algo-
rithms such as loopy belief propagation (LBP) algorithm, since they
are tractable for many real-world graphical models. Consequently,
we will employ LBP algorithm to infer the probability distributions
of unobserved variables, except for the causal reasoning. All of the
above inference techniques require the computation of multiplying
factors and marginalizing variables in factors.

Since our purpose for employing Bayesian inference is to esti-
mate the downstream effects of production loads and production
time from upstream causes of the customer demands or the oper-
ating conditions, we need to be able to carry out causal reasoning
computations. We  can carry out such Bayesian inference in the very
straightforward way by applying the sum-product algorithm from
top node factors to bottom node factors. However, it is also very
useful to estimate the probability distributions of operating con-
ditions given the customer demands and production loads in the
case when we need to find the best operating conditions that sat-
isfy both the customer demands and production capacities. Hence,
besides the causal reasoning, in this work we take into account the
other types of inference such as intercausal reasoning.

5.2. Multiplying factors and marginalizing over variables in
factors

In  order to compute potentials of final and intermediate factors
including messages between clusters, the operations of multiplying
and marginalizing factors are needed. These operations require us
to divide the large domain of discrete variables by following the
tree structure. In this section, we develop two main operations: (i)
multiplying factors and (ii) marginalizing over variables in factors.

The simplest approach is to convert the tree structured CPTs
into traditional conditional probability tables which can be ana-
lyzed by using standard multiplying and marginalizing techniques.
However, the number of rows in the converted traditional CPT of a
factor exponentially increases both with the domain size and with
the number of discrete variables that a factor includes. Therefore,
this approach easily runs out of available computer memory for
large Bayesian networks where factors contain a large number of
discrete variables (huge domain of discrete variables). Instead of

Fig. 7. Example of two decision trees.

Table 3
Compact CPT for factor A.

D1 D2 Probability distribution

1 1 C(X; KAa1
, hAa1

, gAa1
)

1  2 C(X; KAa2
, hAa3

, gAa2
)

2  1,2 C(X; KAa3
, hAa2

, gAa3
)

Table 4
Compact CPT for factor B.

D2 D3 Probability distribution

1 1 C(X; KBa1
, hBa1

, gBa1
)

1  2 C(X; KBa2
, hBa2

, gBa2
)

2  1,2 C(X; KBa3
, hBa3

, gBa3
)

converting to the traditional CPTs, we  propose more compact form
of conditional probability tables.

Let us consider the simple example of multiplying two fac-
tors described in Fig. 7. First we  convert the tree structured CPTs
into conditional probability tables where each row corresponds to
each instantiation in the tree and each entry represents a prob-
ability distribution in the corresponding instantiation as shown
in Tables 3 and 4. We  named this conditional probability table as
compact conditional probability table (compact CPT) since this rep-
resentation is more compact than the traditional one in terms of
the number of rows. We  combine the two  compact CPTs into a sin-
gle CPT to be able to make all distinctions that original two  CPTs
make. Therefore, the compact CPT for factor B is combined with
each row of the compact CPT for factor A as shown in Table 5. Since
the combined CPT contains redundant rows whose cardinalities
conflict each other, we  eliminate these inconsistent rows. Finally,
the canonical table representation of a new factor C after multi-
plying two  factors is shown in Table 6. The canonical parameters
of the probability distribution can be computed by following the

Table 5
Combined compact CPT of factors A and B.

Factor A Factor B Probability distribution

D1 D2 D2 D3

1 1 C(X; KCa1
, hCa1

, gCa1
) = C(X; KAa1

, hAa1
, gAa1

) · C(X; KBa1
, hBa1

, gBa1
)

1  1 1 2 C(X; KCa2
, hCa2

, gCa2
) = C(X; KAa1

, hAa1
, gAa1

) · C(X; KBa2
, hBa2

, gBa2
)

2  1,2 Inconsistent

1 1 Inconsistent
1 2 1 2 Inconsistent

2 1,2 C(X; KCa3
, hCa3

, gCa3
) = C(X; KAa2

, hAa2
, gAa2

) · C(X; KBa3
, hBa3

, gBa3
)

1  1 C(X; KCa4
, hCa4

, gCa4
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa1
, hBa1

, gBa1
)

2  1,2 1 2 C(X; KCa5
, hCa5

, gCa5
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa2
, hBa2

, gBa2
)

2  1,2 C(X; KCa6
, hCa6

, gCa6
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa2
, hBa2

, gBa2
)
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Table  6
Compact CPT for factor C.

D1 D2 D3 Probability distribution

1 1 1 C(X; KCa1
, hCa1

, gCa1
) = C(X; KAa1

, hAa1
, gAa1

) · C(X; KBa1
, hBa1

, gBa1
)

1  1 2 C(X; KCa2
, hCa2

, gCa2
) = C(X; KAa1

, hAa1
, gAa1

) · C(X; KBa2
, hBa2

, gBa2
)

1  2 1,2 C(X; KCa3
, hCa3

, gCa3
) = C(X; KAa2

, hAa2
, gAa2

) · C(X; KBa3
, hBa3

, gBa3
)

2  1 1 C(X; KCa4
, hCa4

, gCa4
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa1
, hBa1

, gBa1
)

2  1 2 C(X; KCa5
, hCa5

, gCa5
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa2
, hBa2

, gBa2
)

2  2 1,2 C(X; KCa6
, hCa6

, gCa6
) = C(X; KAa3

, hAa3
, gAa3

) · C(X; KBa2
, hBa2

, gBa2
)

obtained table. For instance, the canonical parameters with D1 = 1,
D2 = 2, D3 = 1 are computed as follows:

KCa1
= KAa1

+ KBa1

hCa1
= hAa1

+ hBa1

gCa1
= gAa1

+ gBa1
.

(8)

Next,  let us consider summing out discrete variables D3 in the
compact CPT described in Table 6. We  sum up probability distri-
bution to make all distinctions except for D3 that original table
makes. In this example, since D1 and D2 of the first and second
rows in the table take same values of D1 = 1 and D2 = 1, the corre-
sponding two canonical forms are summed up. Nevertheless, if we
need to marginalize factors that contain continuous variables by
summing out discrete variables, the resulting distribution is not a
Gaussian but a mixture of Gaussians. Therefore, a mixture of Gauss-
ians model should be used to represent the marginalized factors,
which can be achieved through Monte Carlo integration (Yuan and
Druzdzel, 2006). The problem with this approximation method is
that the number of Gaussian components grows with the number
of times discrete variables are summed out. In order to avoid such
a problem, the mixture of Gaussian is approximated by collapsing
it into a single Gaussian.

The  marginal distribution over D1 and D2 assigns probability
distributions to specific events such as P(D1 = 1, D2 = 1), P(D1 = 2,
D2 = 1), P(D1 = 1, D2 = 2) and P(D1 = 2, D2 = 2). For instance, the
marginal probability distribution function P(D1 = 1, D2 = 1) can be
computed as follows:

P(D1 = 1, D2 = 1) = C(X; KCa1
, hCa1

, gCa1
) + C(X; KCa2

, hCa2
, gCa2

). (9)

However,  as mentioned before, this distribution is not a Gaussian
but a mixture of Gaussian and thus it cannot be represented as a
canonical form. Instead, we employ the weak discrete marginaliza-
tion where the summing operation uses the collapsing operation
(Koller and Friedman, 2009). The collapsing operation approxi-
mates a mixture of k Gaussian distribution N(�i, ˙i) by a single
Gaussian distribution N(�j, ˙j). Its mean vector �j and covariance
matrix ˙j for new instantiation j are computed as follows:

�j =
k∑
i=1

p(i|j)�i (10)

˙j =
k∑
i=1

p(i|j)˙i +
k∑
i=1

p(i|j)(�i − �)(�i − �)T (11)

where p(i|j) is the conditional probability of the original instantia-
tion i given the new instantiation j and it satisfies

∑k
i=1p(i|j) = 1.

Therefore, the parameters (Knew, hnew, gnew) of a canonical form
P(D1 = 1, D2 = 1) which is summed out variable D3 can be computed
as follows:

K new = ˙−1
new (12)

h new = ˙−1
new� new (13)

where

� new = p(D3 = 1|D1 = 1, D2 = 1)KC−1
a1

hCa1

+ p(D3 = 2|D1 = 1, D2 = 1)KC−1
a2

hCa2
(14)

˙ new = p(D3 = 1|D1 = 1, D2 = 1)KC−1
a1

+ p(D3 = 2|D1 = 1, D2 = 1)KC−1
a2

+ p(D3 = 1|D1 = 1, D2 = 1)(KC−1
a1

hCa1
− � new)(KC−1

a1
hCa1
− � new)

T

+ p(D3 = 2|D1 = 1, D2 = 1)(KC−1
a2

hCa2
− � new)(KC−1

a2
hCa2
− � new)

T
.

(15)

In the case when a set of continuous variables Y needs to be
integrated out, continuous marginalization is carried out after sum-
ming out discrete variables. Let us assume that our canonical table
consists of a set of canonical forms C(X, Y; KCai , hCai , gCai ) indexed by
ai where:

Kai =
[
KXX KXY

KYX KYY

]
(16)

hai =
(

hX

hY

)
. (17)

The integral over the variables Y becomes a canonical form
C(X; K ′Cai , h′Cai , g′Cai ) computed as (Lauritzen, 1992):

K ′Cai = KXX − KXYK
−1
YY KYXh′Cai = hX − KXYK

−1
YY hY

g′Cai = g + 1
2

( log|2�K−1
YY | + hTYK

−1
YY hY)

(18)

where KYY should be positive definite since these equations include
the calculation of inverse matrix of KYY.

Above  methodology enables us to compute product and
marginalization of factors. Compared to the approach that converts
tree structure CPTs into the traditional large CPTs, the proposed
compact CPTs do not require large computer memory to carry out
these operations. Instead, the summing out operations group rows
in the CPTs so that all rows in the each group have the same discrete
values except for summed out variables and the computational cost
of grouping rows increases with O(n log n). One possible drawback
is that the decision tree structures are no longer available once fac-
tors are multiplied or marginalized because the compact CPT based
operations discard tree structures.

5.3. Belief propagation algorithm

In order to implement various kinds of reasoning, we apply the
belief propagation (BP) algorithm to handle a large hybrid Bayesian
network containing large domain of discrete variables. The detailed
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Fig. 8. Example of Bethe cluster graph.

Table 7
Algorithm 2. Hybrid loopy belief propagation algorithm.

Procedure Hybrid-LBP (
˚ // Set of factors
e  // Evidence
Gcluster // Bethe cluster graph
)

1 Set E to be set of edges in Gcluster

2 Initialize all factors so that all of them are consistent with the evidence e
3  Initialize all messages as {Kai , hai , gai } = {1, 0, 0} for each instantiation ai

4 while any one of messages are not converged
5 Select (i, j) ∈ E by following message schedule
6 if scope( i) = scope(e)
7 continue
8 Update message �i→j from Eq. (25)
9  Compute final potential P̃˚(Ci) from (26)
10 Normalize P̃˚(Ci) and get P˚(Ci)
11  return P˚(Ci)

algorithms of causal, diagnostic and intercausal reasoning are
described in Appendices B and C. When entering evidence into
Bayesian network, factors need to be modified so that they are
consistent with the evidence. The method of inference given the
evidence is shown in Appendix D.

It should be noted that the computational task for multiplying
incoming messages exponentially increases with the number of
incoming messages, when using the sum-product algorithm. This
is the case when the diagnostic, intercausal or mixed inferences are
carried out because the LBP requires a large number of calculations
for factor multiplication and marginalization. To reduce the com-
putational cost in LBP algorithm, we make use of the property of
Bethe cluster graph. In a Bethe cluster graph, the scope of messages
covers single variable since any large clusters are connected each
other. If we give the evidence to some variable Xi = e, the message
departed from the corresponding singleton cluster Ci remains the
same during iterations. In other word, we can peg the message ıi→k
to evidence e and thus we can skip the computation of Eq. (25). The
proposed loopy belief propagation algorithm is shown in Table 7.

6. Application example

6.1.  Comparison with SVM and ANN

A simulated example is used to evaluate the validity and per-
formance of the Bayesian networks compared to ANN and SVM.
The input and output data are generated from the simple sys-
tem described in Fig. 9. In this example, [X1, X2, X3, Y1, Y2] are

Fig. 9. Simple system.

Table 9
Results of BN, ANN and SVM for the simple system.

Known variables BN ANN SVM

[X1, X2, X3, Y1, Y2] (fully observed) 0.970 0.958 0.958
[X1, X2, X3] (partially observed) 0.838 0.734 0.734

input variables while Z is an output variable. Variables are linearly
dependent when they are connected with the arcs. Further, all vari-
ables are binarized and thus the domain size of each variable is
two.

The radial basis kernel function is used for SVM and its param-
eters are determined automatically using the heuristic method
described in the literature (Caputo et al., 2002). As for ANN, the
number of hidden variables is determined from cross-validation.
The classification accuracies, which are the proportion of true
results, along with the number of hidden variables are shown in
Table 8. It can be seen that accuracy remains the same even when
we increase the number of hidden variables. We  set the number of
hidden variables to be four for ANN.

The computational results are shown in Table 9. When all vari-
ables can be observed except for output variables, the accuracies for
test data of BN, ANN and SVM are greater than 0.9, which means all
methods can accurately predict the output variables. On  the other
hand, when input data are partially known, both ANN and SVM
predict the output variable for test data with lower accuracies of

Table 8
Results of the cross-validation (ANN).

The number of hidden variables 1 2 3 4 5 6 7 8 9 10

Accuracy 0.928 0.928 0.928 0.930 0.926 0.930 0.928 0.930 0.928 0.928
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Fig. 10. Identified first type of Bayesian network for steel production process.

Fig. 11. Identified second type of Bayesian network for steel production process.
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Fig. 12. Scatter plots of probability of production loads given customer demands in case 1.

0.734 and 0.734 respectively. Meanwhile, BN predicts the output
variable with the high accuracy of 0.848 even though only partial
input data can be observed. These computational results demon-
strate that BN is superior to SVM and ANN in terms of accuracy with
partially observed data.

It is true that SVM is known as one of the strongest classi-
fication machine and it works equally to or better than BNs for
classification problems with fully observed data. However, as the
computational results show, if only partial input data are observed,
BN performs better than SVM. In addition, if we need to predict
multiple variables, SVM requires multiple models which meet the
specific situations, while BN can work for any situations (e.g. fully or
partially observed) by using single model. Furthermore, SVM works
only for classification problems and thus it is not be able to predict
both continuous and discrete variables simultaneously.

6.2. Bayesian network model identification

The real-world plate steel production data are utilized to
examine the effectiveness of the proposed Bayesian network based
prediction models. All the case studies have been computed on a
DELL Optiplex 990 (Intel(R) Core(TM) i-7-2600 CPU, 3.40 GHz and
8.0 GB RAM). First, we use the training data set consisting of 10, 000

steel  plates to learn the network structure. The Bayesian network
structures are identified by maximizing BIC scores as shown in
Figs. 10 and 11. The execution time for the network identification
was 1, 353[s]. Then, we  use the training data set consisting of 100,
000 steel plates to learn the decision-tree structured CPTs while
we use the test data set of another 100, 000 plates to evaluate
prediction accuracy. The first and second Bayesian networks are
mainly different in the form of the conditional probability of total
production time.

6.3.  Prediction of production loads and total production time

In  the first test scenario, we  assume that the variables cor-
responding to the customer demands are known and the other
variables are unknown. This situation occurs when persons in the
sales department receive orders from customers, since the sales
planning staff need to know the production loads and the process
time of these orders as required to satisfy the customer demands
and within constraints of the production capacity. The task of
this inference is to predict the effects of production loads and a
process time given the causes of the customer demands, which
means that the type of inference is causal reasoning. In order to
compute the true probability distributions which are required
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Fig. 13. KL divergences between the predicted and true probability distributions of production loads given customer demands in case 1.
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Fig. 14. Scatter plots of mean and standard deviation of production time given customer demands using the first Bayesian network in case 1.
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Fig. 15. KL divergences between the predicted and true probability distributions of production time given customer demands using the first Bayesian network in case 1.
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Fig. 16. Scatter plots of mean and standard deviation of production time given customer demands using the second Bayesian network in case 1.
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Fig. 17. KL divergences between the predicted and true probability distributions of production time given customer demands using the second Bayesian network in case 1.
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Fig. 18. Scatter plots of probability of production loads given customer demands and operating conditions in case 2.

for comparison to the prediction, we classify the test data into
production groups which contain plates that have the same
customer specifications and operating conditions and then com-
pute the probability distribution for each production group. The
production groups containing more than 100 plates are chosen for
comparison while the other production groups are not selected
because we cannot compute the reliable probability distribu-
tions from a small number of samples. The total number of the
production groups that are used for comparison is 106.

First,  we predict the production loads and the production
time by using the first Bayesian network structure shown in
Fig. 10. Fig. 12 shows the scatter plots between the predicted
and true probabilities with production loads being 2. Further, the
Kullback–Leibler (KL) divergence, which measures the difference
between the predicted probability distributions and actual ones is
shown in Fig. 13. It can be observed that the difference between
the predicted and true probability distributions of the variables
of process A, process B, process C, process D, process E, process F
and process G are relatively small while the predicted probabilities
with process H and process I values being 2 are zero in all pro-
duction groups. Moreover, the scatter plots between the predicted
and true parameters of means and standard deviations of the pro-
duction time are shown in Fig. 14, and their KL divergences are

provided  in Fig. 15. It can be seen that the means of the predicted
distributions are relatively close to the true means but the vari-
ances of the predicted distributions largely differ from the actual
ones. Somewhat inaccurate prediction of the production loads of
process E, process F, process H and process I can be considered a
cause of these differences in the production time.

Next, the probability distributions of the production loads and
the production time are computed via the second type of Bayesian
network, shown in Fig. 11. The difference between the two  struc-
tures is that the nodes associated with the production time at each
production process are added between the nodes of production
loads and total production time in the second type on Bayesian
network. Similarly to the first model, we provide the scatter plots
of the predicted and true parameters of means and standard devi-
ations and their KL divergences in Figs. 16 and 17, respectively. It
can be observed that the prediction accuracy does not improve at
all from the first Bayesian network. The cause of inaccurate predic-
tion of the variances of the total production time is the low accurate
prediction of the production loads.

In the second test case, we consider the situation where the
variables associated with both customer demands and operating
conditions are known and the variables of both production loads
and process time are unknown. In this situation, we  want to predict
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Fig. 19. KL divergences between the predicted and true probability distributions of production loads given customer demands and operating conditions in case 2.
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Fig. 20. Scatter plots of mean and standard deviation of production time given customer demands and operating conditions using the first Bayesian network in case 2.
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Fig. 21. KL divergences between the predicted and true probability distributions of production time given customer demands and operating conditions using the first Bayesian
network in case 2.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
correlation=0.929
RMSE=0.125

Mean

Predicted probability

A
ct

ua
l p

ro
ba

bi
lit

y

0 0. 5 1 1. 5 2 2. 5
0

0.5

1

1.5

2

2.5
correlation=0.603
RMSE=0.493

Standard deviation

Predicted probability

A
ct

ua
l p

ro
ba

bi
lit

y

Fig. 22. Scatter plots of mean and standard deviation of production time given customer demands and operating conditions using the second Bayesian network in case 2.
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Fig. 23. KL divergences between the predicted and true probability distributions of production time given customer demands and operating conditions using the second
Bayesian network in case 2.
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Fig. 24. Scatter plots of probability of each cardinality of operating conditions given customer demands and production loads in case 3.

the probability distributions of the production loads and the pro-
cess time given all information except for these target variables.
Such situation often arises at the production scheduling stage.
Similarly to the previous test scenario, the types of inference is
causal reasoning and we make use of the same decision-tree struc-
tured CPTs as the previous test case. Fig. 18 shows the scatter
plots between the predicted and actual probability of the pro-
duction loads. In addition, their KL divergences are provided in

Fig.  19. It can be observed that the predicted and true probability
distributions are almost same. In particular, the accuracy of the
predicted distributions of loads of process D, process E, process F,
process G, process H and process I loads are significantly improved
compared to the first test scenario. All of their RMSEs are less than
0.1 and the correlations are also much higher than those in the first
test scenario. This is mainly because we know the additional values
of the operating conditions that are considered having a significant
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Fig. 25. KL divergences between the predicted and true probability distributions of operating conditions given customer demands and production loads in case 3.

influence on these production loads. However, in spite of the accu-
rate prediction of production loads, the means of the predicted
probability distributions of the production times are not improved
as shown in Figs. 20 and 21.

The second type of Bayesian network shown as Fig. 11 is also
used to predict the production time. The scatter plots between
the predicted and actual parameters of means and standard vari-
ances and their KL divergences are given in Figs. 22 and 23. One
can readily see that the KL divergences between the predicted and
actual probability distribution are smaller than all the above results.
In particular, the predicted means are very close to the actual ones.
As for the accuracy of the predicted standard variances, the sec-
ond Bayesian network model can accurately predict the standard
deviations in most production groups. In some production groups,
the differences between the predicted and actual standard devia-
tions are somewhat large. In order to improve further, it may  be
desirable to add other nodes of variables such as the amount of in-
process inventory, the number of workers and the failure rate of
each machine in Bayesian networks, which should have an impact
on the process time.

All  the results indicate that even though our Bayesian network
includes large domain of discrete variables, the causal reasoning
can be carried out by using the proposed decision-tree structured

conditional  probability table representations. Moreover, a single
Bayesian network model can carry out the most plausible reasoning
and its accuracy depends on using the values of known variables.
This means that we can avoid having multiple specific models
tailored for specific purposes. Therefore, the proposed Bayesian
network model satisfies the properties required for plate steel pro-
duction scheduling and planning.

6.4. Prediction of operating conditions

Up to now we have dealt with prediction of the probability dis-
tributions of the production loads and the total production time.
In this last test case, we assume that the values of the customer
demands and production loads are known while the operating
conditions are unknown. Such situation arises when we want to
analyze the relationship between the production loads and the
operating conditions, or we need to design the operating condi-
tions so that both the customer demands and production capacity
constraints can be satisfied. Unlike the previous test scenarios, the
type of the inference is mixed reasoning and thus the loopy belief
propagation algorithm is carried out. Similarly to the previous two
scenarios, we  evaluate the prediction accuracy for each production
of steel plates with the same customer demands and production
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Table  10
Average of execution time for inference (s).

Case No. Reasoning type First model Second model

1 Causal 4.33 0.85
2 Causal 4.06 0.56
3 Mixed 1.52

loads. We  select the production groups containing more than 100
plates to compute the true probability distributions, which are then
used for comparison with the predicted probability distributions.
The number of production groups that are used in this comparison
is 90. The probability of cardinality of the predicted and true operat-
ing conditions is shown in Fig. 24. In addition, their KL divergences
are shown in Fig. 25. One can readily see that most KL divergences
are small; hence, the proposed inference algorithm can accurately
predict the probability distributions of unknown variables in the
mixed reasoning. Above results demonstrate that the proposed
Bayesian inference method can carry out the mixed reasoning even
though Bayesian networks have large domain of discrete variables.

Average execution times for all the above test scenarios are pro-
vided in Table 10. Comparing the execution time of the first and
the second Bayesian networks, we note that the average execution
time of the second model is less than 1[s], which is much smaller
than that of the first Bayesian network model. That is because in
the first model, the node of total production time is connected to
the all nodes of the production loads as their child and thus we
need a large number of multiplication of factors to compute the
final potential of the production time, which leads to high compu-
tational effort since the computational cost of factor multiplication
increases with the number of variables contained in the factor. For
the mixed reasoning, the average execution time is less than 2[s],
which is small enough to use it in practical applications.

7. Conclusion

In this study, we propose the Bayesian network models for
prediction of the production loads and the production time in man-
ufacturing of steel plates. In order to identify the network structure
from historical process data, we search for the graph such that the
maximized Bayesian scores are obtained. Since the network con-
tains both continuous and discrete system variables and some of
discrete variables have large cardinalities, the decision-tree struc-
tured CPTs based hybrid Bayesian inference technique is proposed.
Once the Bayesian network structure is constructed, we compute
the context-specific conditional probability tables represented by
decision trees from historical process data set by using classifica-
tion tree algorithm. Then, operators for computing multiplication
and marginalization of factors represented by decision-tree struc-
ture based CPTs are developed. The Bayesian inference is carried
out using belief propagation algorithms with the proposed multi-
plying and marginalizing operators. The causal reasoning is carried
out by means of the sum-product algorithm whose direction is
downstream from the top node variables to the bottom nodes vari-
ables. Other types of reasoning are carried out by the loopy belief
propagation.

Real life steel production process data have been used to exam-
ine the effectiveness of the proposed inference algorithms. Even
though our Bayesian network contains large domain of discrete
variable nodes, the results show that the proposed algorithm can
be successfully applied to industrial scale Bayesian networks and
it can predict the probability distributions of unobserved variables
such as the production loads and the production times in the steel
plate production.

Results of this work will be applied to production planning and
scheduling in manufacturing of steel plates.

Appendix  A. Structure learning

Several kinds of scoring functions have been developed. Most of
them have a decomposable score function as follows:

score(G) =
I∑
i=1

score(xi, paG(xi)) (19)

where paG(xi) are the parent nodes of xi given graph G. Among vari-
ous kinds of score functions, the BIC score (for Bayesian information
criterion) is widely used; it is defined as

score BIC(G : D)  = �(	̂G : D)  − Log  M

2
Dim[G]  (20)

where 	̂G denotes the maximum likelihood parameters given a
graph G, �(	̂G : D)  denotes the logarithm of the likelihood function,
M is the number of samples, and Dim[G] is the model dimension
that is equal to the number of parent nodes. The term of model
dimension is introduced in the score function in order to handle a
tradeoff between the likelihood and model complexity. Since the
BIC scores are decomposable, they can be restated as follows:

score BIC(G : D) =  M

N∑
i=1

I(xi; paG(xi)) − M

N∑
i=1

H(xi)

− Log M

2
Dim[G]  (21)

where I(xi; paG(xi)) is the mutual information between xi and
paG(xi), and H(xi) is the marginal entropy of xi.

Score  decomposability is important property for network struc-
ture learning because if the decomposability is satisfied, a local
change such as adding, deleting or reversing an edge in the struc-
ture does not change the score of other parts of the structure that
remain same. It also should be pointed out that the mutual infor-
mation term grows linearly in M while the model complexity term
grows logarithmically, and thus the larger M leads to an obtained
graph which better represents data (Koller and Friedman, 2009).

With  the score function defined as above, the optimal graph G∗
can be computed as follows:

G∗ = argmaxG score BIC(G : D).  (22)

Appendix  B. Causal reasoning

The  computational task of causal reasoning is to estimate the
downstream effects of factors given the evidence of their ancestor
variables. In our example, causal reasoning predicts the proba-
bility distributions of production loads and total production time
from the evidence of customer demands, operating conditions or
both. Conditional probability can be computed through a local
message passing algorithm known as sum-product algorithm in
downstream direction from the root nodes to the leaf nodes. Since
our Bayesian network contains both discrete and continuous vari-
ables, a final potential P̃˚(Ci) of factor Ci = Ai ∪ Xi is computed using
sum and integral operators as follows:

P̃˚(Ci) =
∫ ∑

Ai−Ai

 i
∏
k∈ pa(i)

P˚(Ck)dx1dx2. . .dxM (23)

where:

•  i is the initial potential of Ci, P˚(Ck) is the normalized final
potential of Ck,
• xm ∈ {Xi− Xi} are variables that we  integrate out, and
• Xi or Ai is the child node of the factor Ci where if the child node

variable  is continuous, Ai =∅, otherwise Xi =∅.
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First, we compute the initial potentials  i for all factors. Each
node in the Bayesian network is assigned one factor and thus the
number of factors is equal to the number of nodes. A factor belong-
ing to a set of top root nodes is assigned a singleton factor that
contains a variable of the corresponding node. Since evidence is
given to all singleton factors in the causal reasoning, their initial
and final potentials have cardinality of one and their probabilities
are always 1. Note that a factor corresponding to a node that is
not placed on the top root node is assigned a non-singleton factor
that contains a variable of the corresponding node and its all parent
nodes. Therefore, the initial potentials for non-singleton factors are
equal to the conditional probability distributions of its correspond-
ing variable given its parent node variables. After computing initial
potentials of all factors, the sum-product algorithm proceeds in the
downstream direction from the top factors to the bottom factors in
order to compute the final potentials of all factors. The causal rea-
soning algorithm searches for the non-singleton factor for which all
parent nodes are assigned final potentials and then computes the
final potential for that non-singleton factor by using Eq. (23). Since
the final potential P̃˚(Ci) in Eq. (23) is not normalized, we need
to normalize it and obtain P˚(Ci) every time after computing the
final potentials. This algorithm continues computing final poten-
tials using the sum-product algorithm until final potentials of all
factors are computed. Since the computation of final potentials is
carried out from top node factors to bottom node factors, the prob-
ability propagation directions are the same as the arcs in Bayesian
networks. The computed final potentials P˚(Ck) are equal to the
conditional probability distributions of the corresponding variable
given the evidence.

Appendix C. Diagnostic and intercausal reasoning

While causal reasoning is carried out by simply applying
the sum-product algorithm from the top nodes to the bot-
tom nodes, conditional probability for diagnostic, intercausal and
mixed reasoning can be computed by iteratively carrying out the
sum-product algorithm until convergence in the loopy belief prop-
agation (LBP). LBP schemes use a cluster graph rather than a clique
tree that is used for VE (Murphy et al., 1999). Since the constraints
defining the clique tree are indispensable for exact inference, the
answers of message passing scheme are approximate queries in
LBP.

First, we create the singleton factors for all nodes and then each
singleton factor is assigned an initial potential of the prior probabil-
ity of the corresponding variable. Also, we create the intermediate
factors for all nodes that have parent nodes and then each factor
is assigned an initial potential of the conditional probability dis-
tribution of the corresponding variable given its parent variables.
Therefore, the number of factors is larger than the number of nodes.
Given the cluster graph, we assign each factor 
k to a cluster C˛(k)
so that scope(
k) ⊆ C˛(k). Then the initial potentials  i can be com-
puted as follows:

 i =
∏

k:˛(k)=i

k. (24)

In LBP, one factor communicates with another factor by passing
messages between them. The messages have canonical form rep-
resentation and their potentials are initialized as {K, h, g} = {1, 0,
0}. A message from cluster Ci = Ai ∪ Xi to another factor Cj = Aj ∪ Xj
is computed using sum and integral operators as follows:

ıi→j =
∫ ∑

Ai−Si,j

 i
∏

k∈ Nbi−{j}
ık→idx1dx2. . .dxM (25)

where:

• xm ∈ {Xi − S′i,j} are integrated variables,
• Si,j = Ai ∩ Aj is the sepset of discrete variables,
• S′i,j = Xi ∩ Xj is the sepset of continuous variables, and
• Nbi is the set of indices of factors that are neighbors of Ci.

The  messages are updated by using Eq. (25) in accordance with
some message passing schedule until the canonical parameters of
all messages are converged. Using all incoming messages, a final
potential P̃˚(Ci) can be computed by multiplying them with the
initial potential as follows:

P̃˚(Ci) =  i
∏
k∈ Nbi

ık→i. (26)

Similar to the causal reasoning, the final potential P̃˚(Ci) needs
normalization.

In order to carry out the LBP algorithm, we  have to create a
cluster graph in advance such that it satisfies the family preser-
vation property. For this purpose, the Bethe cluster graph which
is a bipartite graph and holds the family preservation property is
widely used. The first layer of the Bethe cluster graph consists of
large clusters Ck = scope(
k) while the second layer consists of sin-
gleton clusters Xi. Then, edges are placed between a large cluster Ck
and a singleton cluster Xi if Xi ∈ Ck. Fig. 8 shows an example of the
Bethe cluster graph. In this example, the Bethe cluster graph has 6
singleton clusters {A}, {B}, {C}, {D}, {E}, {F} and 3 large clusters {A,
B, D}, {B, C, E}, {D, E}. For instance, due to {B} ∈ {A, B, D} and {B} ∈ {B,
C, E}, the edges between cluster 2 and 7 and between cluster 2 and
8 are placed.

Appendix D. Belief propagation with evidence

When initializing the factor  i given the discrete evidence
e ∈ E ∩ �, we delete all sets of canonical parameters K, h, g in the
factor  i that conflict the evidence e.

Next, let us consider initializing the factor  i given the contin-
uous evidence e ∈ E ∩ � . If the factor does not have any discrete
variables, a canonical form of the factor  i is reduced to a context
representing the evidence e. In Eq. (16), we set Y = y with y being
the value of the evidence e, then the new canonical form given
continuous evidence is described as follows (Lauritzen, 1992):

K ′ = KXX

h′ = hX − KXYy

g′ = g + hTYy − 1
2
yTKYYy.

(27)

If the factor has discrete variables and does not have a continuous
variable except for scope(E), the canonical parameter gai is modified
for each instantiation ai as follows:

gai = −1
2
yKaiy + hTai y + gai . (28)

The canonical parameters Kai and hai become vacuous because the
new factor contains no continuous variable. If the factor contains
both discrete and continuous variables except for scope(E), the
parameters of the canonical form are computed for each instan-
tiation ai using Eq. (27). After modifying all factors so that all of
them are consistent with the evidence, the reasoning algorithms
mentioned above can be carried out.
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a  b  s  t  r  a  c  t

Production  planning  and  scheduling  in the  steel  industry  are  challenging  problems  due  to  large  number
of  products  being  produced.  This  work  deals  with  scheduling  of  the continuous  casting  of  steelmaking,  i.e.
determination  of  the  number  of  fixed  capacity  pots  of each  grade  of steel  and  the charge  sequence  in each
casting  machine.  Since  a huge  number  of  binary  variables  make  the full-space  model  mixed-integer  linear
programming  model  computationally  intractable,  we  propose  a  two-level  algorithm.  At  the  top  level,  we
solve  the  planning  problem  which  determines  the  number  of  pots  of  each  grade  for  every  planning
period  by  solving  the  relaxed  mixed  integer  linear  model.  At the  lower  level,  the  scheduling  problem
is  solved  by  an  algorithm  which  combines  ideas  from  parallel  simulated  annealing  and  shuffled  frog-
leaping  algorithm.  Real-world  steel-plate  production  data  are  utilized  to demonstrate  the effectiveness
of  the  proposed  algorithm.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Steel plates are high variety low-volume products manufactured
on order since they are used to produce thousands of different prod-
ucts, e.g. parts of car bodies, housing enclosures for machinery, etc.
Frequently a steel plant produces several hundred different SKUs
within one or two weeks. Such large number of different products
(SKUs) makes it difficult to compute schedules which will increase
profit, reduce production costs and material consumption, satisfy
the customer specifications and meet the shipping due dates. Sim-
plified process flow of the steel plates production is shown in Fig. 1.
A charge is the basic unit of steel making production and it consists
of the same steel grade. In the continuous casting machine, the
casting from charge to charge is carried out to transform molten
steel into solid. The first solid form of the steel produced in these
facilities is cut up into smaller solid form called slab. These slabs
are rolled and cut into plates of the correct thickness and proper-
ties. Finally, these plates are handled in the finishing and inspection
lines for satisfying the customer demands, and then they are sent
to the distribution warehouse.

There are many scheduling and planning tasks to be completed
in the successful production in steel mills. Among them, scheduling
of steelmaking continuous casting (SCC) of steel slabs followed by

∗ Corresponding author. Tel.: +1 905 525 9140x26386.
E-mail  address: mahalec@mcmaster.ca (V. Mahalec).

rolling to steel plate is one of the most important tasks. This is due
to the fact that SCC contributes the largest portion of the material
loss in production; in addition, downstream production schedules
such strongly depend on the schedules of the SCC process.

Schedules for steelmaking continuous casting (SCC) production
should meet the following criteria:

(1) Each plate is completed before its due date.
(2)  Amounts of leftover and contaminated steel which are total loss

are  minimized.
(3) Continuous casting utilization is maximized (i.e. the residual

capacity  at the continuous casting stage is minimized).
(4) Production constraints and inventory capacities at the down-

stream  production stage are satisfied.

At  the same time, scheduling of SCC must take into account
the performance of the downstream processes. Since it is imper-
ative to take into account the customer due date and production
capacity of downstream processes such as finishing and inspec-
tion lines, it is necessary to predict as accurately as possible the
production loads and production times and then to incorporate
these prediction models into the mathematical models for opti-
mization. In order to obtain the accurate knowledge of production
loads and production times, in the previous work we developed
Bayesian network based prediction models for estimation of prob-
ability distributions of production loads and process times from
the observed variables such as customer demands and operating

http://dx.doi.org/10.1016/j.compchemeng.2016.01.020
0098-1354/© 2016 Elsevier Ltd. All rights reserved.
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Nomenclature

Indices
I index of grades
U  index of casts
V  index of charges
K  index of time period (day)
L  index of finishing and inspection processes

Parameters
W cost coefficient in the objective function
Di,k demand of grade I on time period k
Ci,k contamination cost when grade i is assigned after

grade i′

P maximum amount of charges
MImax maximum inventory
MImin minimum inventory
Loadl,i,m production load of process unit l, grade i, and elapsed

day m
Loadmax

l
production capacity of process unit l

Binary variables
Yi,u,v,k binary variables to determine if grade i is assigned

in charge v of cast u on time period k
Zi,i′ ,u,v,k binary sequence variables between grade i is

assigned in charge v of cast u on time period k

Integer variables
Uri,k integer variables for the number of charges of grade

i on time period k

Continuous  variables
Xi,u,v,k continuous variables for amount of grade i, cast u,

charge v on time period k
Min
i,k

continuous variables for amount of grade i on time
period k

Mout
i,k

continuous variables for demand of grade i on time
period k

Mopen
i,k

continuous variables for opening volume of grade i
on time period k

Mclose
i,k

continuous variables for closing volume of grade i
on time period k

Ql,k continuous variables for production loads of process
unit l on time period

S1+
i,u,v,k positive slack variables for production capacity at

the continuous casting stage
S1−
i,u,v,k negative slack variables for production capacity at

the continuous casting stage
S3+
i,k

positive slack variables for maximum inventory
capacity

S3−
i,k

negative slack variables for minimum inventory
capacity

S4−
l,k

negative slack variables for production capacity at
the finishing and inspection processes

Xri,k continuous variables for amount of grade i on time
period k

Sr1+
i,k

positive slack variables for production capacity at
the continuous casting stage

Sr1−
i,k

negative slack variables for production capacity at
the continuous casting stage

S+pr,L3(j, n), S−pr,L3(j, n) positive and negative slack variables
for the product inventories

conditions (Mori and Mahalec, 2015). In this paper, we make use of
the most likely production times computed via Bayesian network
to optimize SCC scheduling of steel-plate production.

Since SCC process plays an important role in steelmaking
industries, many optimization models and approaches have been
proposed. In general, SCC production scheduling problems should
determine charge sequencing in each casting machine (first level
scheduling) and timing of the charges on continuous casting
machines (second level scheduling).

Second level scheduling has been a subject of work by several
research groups. Atighehchian et al. (2009) scheduled the second
level by an algorithm (HANO) which is a combination of ant colony
optimization (ACO) and non-linear optimization. Their objective
was to reach production continuity, to increase productivity, and
to cut down the total production costs. Just-In-Time (JIT) nonlinear
models which consider punctual delivery and production operation
continuity have also been proposed to eliminate the machine con-
flicts given cast sequences (Tang et al., 2000). Discrete-time mixed
integer linear programming (MILP) formulation for scheduling of
the SCC process has also been developed (Tang et al., 2002). Above
methods find optimal timing of the charges on continuous casting
machines while the charge sequence in each cast is assumed to be
known a prior and determined from first level scheduling.

Although the second level scheduling problems have been well
studied, few studies have dealt with the first level scheduling
because it is intractable to solve the first level scheduling of the
SCC process for a long time horizon (e.g. one week). Therefore, the
first level schedules are usually determined empirically by skillful
persons or computed based on the rule-based approaches.

One approach to solving the first level scheduling are decom-
position approaches. For instance, Harjunkoski and Grossmann
(2001) tackled the first level scheduling of a steel production using
mathematical programming methods based on a decomposition
scheme that generates smaller sub-problems. However, the pre-
sented method does not consider the individual charge which is a
unit of production consisting only one grade of steel. Therefore, the
method is not applicable for scheduling of general SCC processes.
In addition, all of the existing approaches which deal with both
the first and the second level scheduling methods do not take into
account the production capacities of the downstream processes
at all. As we discussed in the previous work (Mori and Mahalec,
2015), the production capacities of the downstream processes such
as finishing and inspection lines should be taken into account while
scheduling, because the downstream processes often create a bot-
tleneck for the entire steel-plate production.

In order to overcome these limitations, we propose a novel
approach to the first level scheduling of the SCC processes for
steel plate production. Most likely processing times and production
capacities for the steel plate manufacturing are first estimated from
the Bayesian network of the process. These are then used in the
scheduling of continuous casting. The remaining obstacle to solv-
ing this scheduling problem is a large number of binary variables
that are needed to represent accurately the process. Therefore, a
full space model mixed-integer linear programming (MILP) is not
feasible for industrial applications due to excessive computational
times and frequent failures to find even a single feasible solution
within reasonable execution times.

In order to overcome this limitation, we propose a decompo-
sition approach where the full-space model is divided into two
levels: (i) top level which determines the number of pots per
grade for each day by solving the relaxed mixed-integer linear
model (MILP) that does not take into consideration the sequence-
related penalties (e.g. contaminated steel) and (ii) lower level
which optimizes the cast sequencing while taking into consider-
ation the sequence penalties in the continuous casting machine by
using meta-heuristic methods. Relaxed MILP model is obtained by
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Fig. 1. Process flow of steel-plate production system.

disregarding the fact that switching from one grade of steel to
another causes mixing of these two grades at the boundary between
them, i.e. contamination of a part of the plate material. In order to
ensure that each pot is filled to capacity, since pots are of fixed
size, we formulate continuous constraints and penalize differences
between the amount of material in the pot and its capacity.

Since  meta-heuristic approaches are employed in this work, our
approach is not guaranteed to yield the global solutions, but they
assure computation of good schedules within reasonable execution
times even for very large problems. Our assumption is that in the
industrial practice schedules would be computed on a daily basis
for a fixed length of the scheduling horizon. The scheduling horizon
needs to be sufficiently long (e.g. one week) to avoid computation
of schedules which may  be optimal over e.g. two days but may  be
far from the optimum over longer horizons. For this reason we have
not used the rolling horizon approach where one would schedule,
e.g. two days, then move forward by two days and schedule them,
etc.

Many kinds of meta-heuristic approaches have been proposed.
The approaches fall into two categories, which are: single solution
and population-based approaches. The single solution approaches
such as simulated annealing (Aarts and Korst, 1989), tabu search
(Glover, 1986) and iterated local search (Lourenco et al., 2003)
focus on modifying and improving a single candidate solution.
Meanwhile, the population-based approaches such as genetic algo-
rithm (GA) (Lawrence, 1991), particle swarm optimization (PSO)
(Kennedy and Eberhart, 1995), ant colony optimization (ACO)
(Marco et al., 2006) and shuffled frog-leaping algorithm (Eusuff
et al., 2006) maintain and improve multiple-candidate solutions
and often generate new solutions by population characteristics. In
this work we introduce a new parallel meta-heuristic algorithm to
schedule continuous casting.

The  organization of this article is as follows. Section 2 provides
the problem statement while Section 3 describes a Bayesian net-
work based mixed-integer linear programming (MILP) model for
the scheduling of SCC. In Section 4 we introduce the two-level
scheduling approach that divides the original full space model into
two level scheduling models. In order to solve the lower level
scheduling problem efficiently, we propose the novel parallel SA
that can avoid local optima as much as possible by communicat-
ing states more effectively than the traditional parallel SA by using
concepts from shuffled frog algorithm. The presented methods are
applied to the real-world steel plate production data in Section 5.
Finally, the conclusions are presented in Section 6.

2.  Problem statement

We  assume that the steel plate manufacturing facility has
received orders for the next 5–10 days or more. Since the number

of  different steel plate SKU can run into hundreds or thousands,
we will group them into grades, based on the qualities of the steel
from which they are made of. The task is to determine the amount
of products in each charge of each continuous caster over period of
5–10 days, as well as the sequence of charges. This is called long term
scheduling. Once the amount of products in each charge is deter-
mined, each plate is assigned to one slab such that the leftover can
be minimized, which is called slab design problem (Schaus et al.,
2010; Dash et al., 2007). Finally, the second level scheduling com-
putes the timing of the charges on continuous casting machines
from the results obtained in the first level scheduling. Our paper
focuses on the first level scheduling. The diagram of the entire set
of scheduling tasks for steel-plate production is shown in Fig. 2.

Our  targeted scheduling problem of SCC for steel-plate produc-
tion is stated as follows:

Given:

1.  A scheduling horizon (e.g. one week).
2.  The number of charges per cast (e.g. 6 charges per cast).
3. The number of casts per day (e.g. 3 casts per day).
4. The maximum processing capacity of each finishing and inspec-

tion  process.
5. The size of charges (e.g. 200 tons).
6.  The contamination cost when switching grades between consec-

utive  charges.
7. A set of delivery orders for each grade along the scheduling hori-

zon  (e.g. demand profile).

Determine:

1. The amount of products on each charge of each continuous
caster.

2. Sequence of charges.
3. The amount of products that each finishing and inspection line

should  process each day.
4. The inventory profile of products at a distribution warehouse.

While minimizing:

1.  The cost of producing contaminated steel caused by the switch-
ing  grades between consecutive charges.

2.  The cost of leftover in each charge.
3.  The amount of inventory at a distribution warehouse.

Subject to:

1.  Only one steel grade can be used in a single charge. Once it begins
charging,  the same grade steel must be used and its amount
should always be equal to the size of the charge.
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Fig. 2. Illustrative diagram of SCC scheduling for steel-plate production.

2. Finishing and inspection processes can handle at most the same
amount  of steel as its processing capacity.

Assuming:

1.  There is only one casting machine for steel plates and it cannot
be  used for other kinds of products such as steel sheet.

2. Processing order of the finishing and inspection lines is fixed.
3. Variables associated with both customer demands and operating

conditions  are known.
4. Variables associated with both production loads and process

time  are unknown.
5. Production loads and process times follow probability distribu-

tions  are known (they are predicted by the Bayesian network
model  from variables associated with both customer demands
and  operating conditions.

3. Bayesian network based scheduling model

3.1. Bayesian network model

Model of the above production process deals with the alloca-
tion of grades to each charge such that each plate is completed by
its due date, the total leftover in charges and contaminated steel
in the continuous casting machine are minimized, and the produc-
tion and the inventory at the downstream production lines are less
than or equal to their capacities. In order to take into consideration
the customer due dates and production capacities of the finishing
and inspection processes, we need to predict the total production
time of each plate. This time will be used for determining its ideal
production starting time and the production loads of each plate for
each production unit.

Since  prediction of the probability distributions of production
times for all plates are necessary, we utilize the Bayesian network
based prediction model which has been developed in the previous
work (Mori and Mahalec, 2015). Based on the Bayesian network
model, the total demand Di,k of grade i on the ideal production
starting day k and the expectation of production load of grade i
at process unit l, elapsed day m can be computed.

Since  we  assume that the processing order of the finishing line
is fixed, without loss of generality the process ordering can be
described as {unit 1, unit 2, . . .,  unit L} with L being the number
of the finishing and inspection processes. Gaussian distribution is
appropriate for this manufacturing process, as described in part
I (Mori and Mahalec, 2015). The parameters of probability distri-
bution DistA(e; p, l) = N(t; �A

p,l
, �A
p,l

) of elapsed time e between the
times when plate p is started manufacturing and when it is arrived
unit l can be computed as follows:

�Ap,l = �Ap,l−1 + �p,l (1)

�Ap,l =
√
�A

2

p,l−1 + �2
p,l

(2)

with  �p,l and �p,l being means and standard deviations of produc-
tion time of plate p at unit l. It should be noted that both of them
can be estimated from variables related to the customer demands
and operating conditions using the constructed Bayesian network
model. The expectation of production load of plate p and unit l and
elapsed day m is described below:

Expectation(m; p, l) =
∫ m+1

m

Prob(p, l)DistA(e; p, l)de (3)

where  Prob(p,l) is a probability distribution of production load of
plate p at unit l. The probability distribution DistT(m,p) of total
production time from starting manufacturing to arriving at the
distribution warehouse can be computed as DistA(m;p, L + 1).

The proposed methodology for predicting the elapsed time from
the start manufacturing is illustrated in Fig. 3. In this example, we
assume that there are three units whose process ordering is Unit 1,
Unit 2, Unit 3, and a distribution warehouse. First we  need to derive
the Bayesian network model that can predict probability distribu-
tions of the production time. We  learn both the network structure
and the model parameters from the historical process data. The
detailed algorithms are described in the previous work (Mori and
Mahalec, 2015). With the constructed Bayesian network model, we
infer the probability distirbution of the production times of all units
for each plate by using the information of customer demands and
operating conditions. Then, we  compute the elapsed time for each
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Fig. 3. Illustrative diagram of predicting the elapsed time when arriving at each unit.

unit between the times when the plate manufacturing is started
and when it arrives at the corresponding unit. Finally, the total
production time DistT(m,p), which is same as the time from start
manufacturing to arriving at the warehouse, can be computed from
the probability distribution of both the elapsed time so far and the
production time of Unit 3.

Given customer due date tcp which is given for each plate p as
demand profiles, an ideal production starting day at the confidence
level of  ̨ can be obtained below:

tsp = tcp − rp (4)

where  rp is the estimated production time satisfying below:

 ̨ = DistT(m ≤ rp; p) (5)

Finally,  the total demand Di,k of grade i on the ideal production
starting day k and the expectation of production load of grade i at
process unit l, elapsed day m can be written as follows:

Di,k =
∑

p ∈ grade(i),tsp=k
weightp (6)

Loadl,i,m =
1
Ni

∑
p ∈ grade(i)

Expectation(m; p, l)weightp (7)

where  weightp represents the weight of plate p, grade(i) is the set
of plates whose grade is i and Ni is the total weight of all plates
belonging to the steel grade i computed as follows:

Ni =
∑

p ∈ grade(i)
weightp (8)

3.2.  Full space model MILP

The  allocation of grades on each charge can be formulated as
follows. The objective function Eq. (9) minimizes the total left-
over in charges (f +1 ), the amount of molten steel that violates cast

capacity  (f −1 ), the amount of contaminated steel (f2), the amount of
steel-plate inventory (f3), the amount of steel plates which violate
maximum inventory capacity (f +3 ), the amount of steel plates which
violate the minimum inventory capacity (f −3 ), and the amount of
steel plates which violate the capacities of production unit (f −4 ). The
values of the coefficients (W+1 , W−1 , W2, W3, W+3 , W−3 , W−4 ) depend
on the problem, but generally W−1 , W−4 are set to be much greater
than the other coefficients to ensure that the final solution satisfies
the capacity constraints (if a physical feasible solution exists).

min  W+1 f
+
1 + W−1 f

−
1 + W2f2 + W3f3 + W+3 f

+
3 + W−3 f

−
3 + W−4 f

−
4 (9)

All  constraints considered in the full space MILP are presented
below.

The indices, parameters and variables used in this work are
shown in the Nomenclature section. In order to take into account
the capacity of charge P and penalty of contaminated steel, two
binary variables Yi,u,v,k and Zi,i′ ,u,v,k are required. Yi,u,v,k is equal to
one if grade i is assigned to charge v of cast u on time period k, and
otherwise 0. Defining Xi,u,v,k as the variables for the amount of steel
of grade i assigned to charge v of cast i on time period k and slack
variables S1+

i,u,v,k and S1−
i,u,v,k, we  can derive Eqs. (10)–(12) which

represent the relation among these variables.

Xi,u,v,k + S1+
i,u,v,k − S1−

i,u,v,k = PYi,u,v,k ∀i, u, v, k (10)

Zi,i′,u,v,k ≥ Yi,u,v,k + Yi′,u,v−1,k − 1 ∀i, u, k, v ≥ 2 (11)∑
i

Yi,u,v,k = 1 ∀u, k, v (12)

S1+
i,u,v,k is equal to the amount of the leftover in charges while

S1−
i,u,v,k becomes positive if the amount of steel products of the cor-

responding charge is greater than the size of charge, which means
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that there are no physical infeasible solutions. Then, the objective
functions f +1 , f −1 and f2 are presented below:

f +1 =
∑
i

∑
u

∑
v

∑
k

S1+
i,u,v,k (13)

f −1 =
∑
i

∑
u

∑
v

∑
k

S1−
i,u,v,k (14)

f2 =
∑
i

∑
i′

∑
u

∑
v

∑
k

Ci,i′Zi,i′,u,v,k (15)

where Ci,i′ is the contamination cost when grade i is assigned after
grade i′ and its diagonal elements are always zero. Although the
variables Zi,i′,u,v,k are binary variables, they can be treated as con-
tinuous variables because the left-hand side of Eq. (11) must be
either −1, 0 or 1 and Zi,i′,u,v,k is a positive variable.

The  following constraints define the inventory balance for each
time period. Eq. (16) means that the amount of input inventory
Min
i,k

is equal to the sum of amount of production Xi,u,v,k in the same
time period. Eq. (17) simply states that the total demand Di,k of
grade i and ideal production time k is equal to the output inventory
Mout
i,k

. Eq. (18) defines that the closing inventory MIclose
i,k

should be

equal to the opening inventory MIopen
i,k+1 on the next time period. Eq.

(19) considers that the sum of input inventory Min
i,k

and opening

inventory MIopen
i,k

should be equal to the sum of Mout
i,k

and MIclose
i,k

.

Mini,k −
∑
u

∑
v

Xi,u,v,k = 0 ∀i, k (16)

Mouti,k − Di,k = 0 ∀i, k (17)

MIopen
i,k+1 − MIclosei,k = 0 ∀i, k (18)

Mini,k + MIopen
i,k
− Mouti,k − MIclosei,k = 0 ∀i, k (19)

In order to avoid infeasible solutions, we define slack variables
S3+
i,k

and S3−
i,k

which enables us to state the maximum and mini-
mum inventory constraints as follows:

MImax − MIclosei,k + S3+
i,k
≥ 0 ∀i, k (20)

MImin − MIclosei,k − S3−
i,k
≤ 0 (21)

S3+
i,k

is equal to the amount of the inventory of grade i and time

period k, while S3−
i,k

is zero if there is no delivery delay, otherwise

positive. The objective functions f3, f +3 and f −3 are described by Eq.
(22)–(24).

f3 =
∑
i

∑
k

MIclosei,k (22)

f +3 =
∑
i

∑
k

S3+
i,k

(23)

f −3 =
∑
i

∑
k

S3−
i,k

(24)

The last two constraints consider the production capacity of fin-
ishing and inspection processes. Eq. (25) states that sum of the
product of the expectation of production load Loadl,i,m defined in Eq.
(7) and the amount of production Xi,u,v,k′ over grade i, cast u, charge
v and time period k′ satisfying k′ + m = k is equal to the production
load Ql,k of process l on the time period k. Eq. (26) considers that
the production load Ql,k should be less than the production capacity
Loadmax

l
.∑

i

∑
u

∑
v

∑
k′,m:k′+m−1=k

Xi,u,v,kLoadl,i,m − Ql,k = 0 ∀l, k (25)

Ql,k − S4−
l,k
≤ Loadmax

l ∀l, k (26)

where S4−
i,k

is a slack variable and becomes positive value if the total
amount of products that should be handed in the unit l and time
period k is greater than the corresponding production capacity. The
objective function f −4 is shown in Eq. (27):

f =
∑
l

∑
k

S4−
i,k

(27)

The full space model given above includes a very large number
of integer variables and thus it is tractable only for a small number
of grades or a short planning horizon, as shown in Section 5.

4.  Long term scheduling of steel plates production by two
level  algorithm

Due  to a large number of binary variables using the full space
MILP approach described in section requires an expensive compu-
tational effort, even for a scheduling problem with only one day of
period. In order to be able to compute good scheduling solutions
within acceptable execution times, we decompose the problem in
two levels (see Fig. 4):

• Top  level determines the number of pots per grade for each day.
The  main purpose of this level is to assign products to charges
so  that the customer due dates, capacity constraints and inven-
tory  constraints are met. At this level we  generate a relaxed
integer formulation that does not take into account the sequenc-
ing  penalty due to contaminated steel between different grades.
Therefore,  we  call the top level production planning. Although
there  are still integer variables in the relaxed formulation, this
planning  problem is much easier to solve than the original full
space  straightforward formulation.
• At  the lower level we  optimize the sequence of these charges

while  taking into account the sequence penalty. We  call the lower
level  production scheduling.

4.1. Planning model

Since  the sequence penalty is not considered in the relaxed
mixed integer linear model that will be described in this section,
we introduce a new continuous variable Xri,k and an integer vari-
able Uri,k instead of Xi,u,v,k and Yi,u,v,k. Xri,k represents the amount of
production steel of grade i in the time period k, while Uri,k denotes
the number of charges of grade i in the time period k. Eq. (28) states
that the total amount of products per grade for each day should be
equal to the pot size. To ensure there is always a numerical solution,

Top Level (Production Planning )
▪ To determine grades which sh ould be produce d in every ti me period to satisfy 

the customer due dates and production  ca pac ities

1st day      3 pots  of grade A, 5 pot s of grade B, 4 pots of grade C
2nd day      1 pots of grade A, 4 pots of grade B, 7 po ts of grade C
…

Lowe r Level (Producti on Scheduling)
▪ To determine the best sequence of charges from the initial solutions generated 

at the planning stage. 

1st day        AABB CC       ABBBC C
2nd day       BBBBCC       ACCCCC
…

Move to schedulin g

Fig. 4. Two level algorithm for steel plate production scheduling.
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we introduce slack variables Sr1+
i,k

and Sr1−
i,k

, where Sr1+
i,k

is equal
to the amount of the leftover of grade i and time period k, while
Sr1−

i,k
becomes positive if the amount of steel products of grade i

and time period k is greater than the total amount of all charges,
which means that there are no physically feasible solutions.

Xri,k + Sr1+
i,k
− Sr1−

i,k
= PUri,k ∀i, k (28)

Eq. (29) constraints the number of pots for each day so that it is
equal to the product of the number of pots per cast and the number
of casts per day as shown below:∑
i

Uri,k = UV ∀k (29)

with U and V being the number of casts per day and the number of
charges per cast, respectively. Then, instead of f +1 and f −1 , we  define
new functions fr+1 and fr−1 which represent the total leftover and
the degree of violation of the pot capacity, respectively, as follows:

fr+1 =
∑
i

∑
k

Sr1+
i,k

(30)

fr−1 =
∑
i

∑
k

Sr1−
i,k

(31)

If a physical solution is infeasible related to the total production
capacity, fr−1 becomes positive, otherwise it is zero. If all charges
are equal to the pot size, then fr−1 is zero. Moreover, since Eqs. (16)
and (25) include Xi,u,v,k, we can rewrite these equations as follows:

Mini,k − Xri,k = 0 ∀i, k (32)∑
i

∑
k′,m:k′+m−1=k

Xri,kLoadl,i,m − Ql,k = 0 ∀l, k (33)

Eq. (33) imposes the constraint that makes the amount of pro-
duction Xri,k′ over grade i with k′ satisfying k′ + �m = k equal to
the production load Ql,k of process l on the time period k. With
these relaxations, the relaxed mixed integer model is rewritten as
follows:

min  W+1 fr
+
1 + W−1 fr

−
1 + W3f3 + W+3 f

+
3 + W−3 f

−
3 + W−4 f

−
4

s.t. (10)–(24), (17)–(33)
(34)

4.2.  Meta-heuristic approach to charge sequence optimization

4.2.1.  Solution representation
One  of the most widely used representations for sequence prob-

lem is job-to-position representation (Rahimi-Vahed and Mirzaei,
2007). Since the number of charges for each grade is fixed, we can
use job-to-position representation by letting grade of charge be
equal to “job”, and the order of charge be equal to “position”. The
value of the first element represents a grade scheduled in the first
charge. The second value shows a grade scheduled in the second
charge and so on. Table 1 shows an example of solution represen-
tation. This example means that the first four charges are filled with
products of grade A, and the following two charges are grade B. In
the second cast, the first three charges are grade C, the next two
charges are grade B and the last charge is grade D.

Table 1
Solution representation.

Cast First cast Second cast

Location 1 2 3 4 5 6 7 8 9 10 11 12
Grade A A A A B B C C C B B D

4.2.2. Simulated annealing
In  this work, we  use simulated annealing (SA) in order to solve

the scheduling problems. SA is a general meta-heuristic approach
to combinatorial optimization (Aarts and Korst, 1989) and employs
a neighbor search algorithm to move from one solution candidate to
an improved solution in the neighborhood. Since the obtained solu-
tions may  be local optima, simulated annealing allows the objective
value to worsen occasionally with a certain decreasing probability
in order to avoid local minima as much as possible. That prob-
ability is specified by an acceptance probability function P(f(x),
f(x′), T) that depends on the two  neighboring solutions x and x′

and temperature T with f being the objective value. If f(x′) ≤ f(x),
we accept the solution x′, otherwise we  accept it with the proba-
bility of exp((f(x′) − f(x))/T). T is decreased at each step following
some annealing schedules such as T ← T × TFactor with TFactor being
a temperature factor. In this way, SA employs stochastic decision
elements to search for global optimal solution as much as possi-
ble. Another possible approach is a Bayesian heuristic algorithm
which also employs stochastic decision so that selecting neighbor-
ing solutions can achieve the better value of objective function.
The neighboring solutions are selected at some probability which
is computed by Bayesian method (Mockus and Reklaitis, 1999). The
key difference with respect to the Bayesian approach is to learn
the parameters which control the probability. However, for par-
allel computing, the solution diversity is important factor to get
better solutions and thus randomness is needed rather than learn-
ing parameters. Therefore, in this paper we  employ SA method to
solve the cast scheduling problems.

Since a reasonable solution is obtained from the relaxed MILP
method, it is useful to use it as an initial state in the SA search. In
order to obtain wide range of solutions, our search space is within
the neighboring sequences that can be obtained by swapping two
sets of charges not by swapping two single charges. Meanwhile, in
order to avoid inefficient search as much as possible, we restrict the
swapping as follows: (i) if two sets are swapped among different
casts, their lengths are same; (ii) if swapped within the same cast,
lengths of both sets are allowed to be different.

4.2.3. Initial solution
Since  a reasonable solution is obtained from the relaxed MILP

method, it is useful to use it as an initial state in the SA search.
The solutions obtained from the relaxed MILP method denote the
number of charges for each grade and each day and thus they
do not represent the cast sequences. Therefore, we  need to trans-
form these solutions into the form of solutions that represent the
sequence of charges. For this purpose, we  optimize the sequence of
charges for each day independently, and then all the obtained cast
sequences are employed as an initial solution in the SA search as
shown in Fig. 5.

4.2.4.  Swapping operator
In  order to obtain wide range of solutions, our search space is

within the neighboring sequences that can be obtained by swap-
ping two  sets of charges not by swapping two single charges.
Meanwhile, in order to avoid inefficient search as much as possible,
we restrict the swapping as: (i) if two sets are swapped among dif-
ferent casts, their lengths are same; (ii) if swapped within the same
cast, lengths of both sets are allowed to be different. Therefore our
searching spaces are restricted the two operations as described in
Fig. 6.

4.2.5. Evaluation of objective values in the SA search
It is computationally expensive to compute the value of the

whole objective function every time after swapping sets of charges.
Therefore, we  re-compute only a part of objective values related
to casts that are changed by a swapping operator, while the other
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Time period

Grade 1st day 2nd day 3rd day …

A 4 0 12 …

B 5 0 0 …

C 3 9 0 …

D 0 3 0 …

A

A

A

A

C

C

C

B

B

B

B

B

C

C

C

C

C

C

D

D

D

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

Optimize the sequence of charges

within each day

Top level (Approx imate schedu ling)  solution

Fig. 5. Generation of an initial solution.

A C B C C C B C C C C C

A C B C C C B C C C C C

swap among casts

swap wit hin a cast

swapping op erator  I

swapping op erator  II

Fig. 6. Swapping operators.

objective values remain same. Table 2 shows the values of variables
that should be re-computed after the swapping operator.

4.2.6.  A novel parallel simulated annealing
Parallel simulated annealing has been introduced as a method

for improving the search for optimum solution. Several researches
have explored how to parallelize SA search (Ferreiro et al., 2013;
Lee and Lee, 1996). The most straight-forward parallelization is to
carry out SA on each worker independently and then to communi-
cate their state at the end of process. This type of parallelization
is called asynchronous approach. On the other hand, the syn-
chronous approaches communicate states of all workers and states
are exchanged among processors. It should be noted that the term

“worker”  represents a computational thread and has no physical
meaning.

In this work, we  improve the synchronous parallel SA in a man-
ner that avoids local optima as much as possible by communicating
states more effectively. The basic idea of this new version of paral-
lel SA is that when the SA is converged in a worker, the new initial
state is generated from a combination of the best solution among all
workers and the solution in the corresponding worker. The new ini-
tial states are computed by using the regeneration idea employed in
the shuffled-frog leaping algorithm. The shuffled frog leaping algo-
rithm is a memetic meta-heuristic that is based on the evolution of
memes  carried by individual and a global exchange of information
among the population (Eusuff et al., 2006). We  use this evolution-
ary procedure in order to replace a local optimal solution with new
one in each worker.

Let  PB be the best solution and PC(w) be the current solution of
worker w, step size S is computed as follows:

S = min{int  [rand(PB − PC (w))], Smax} for a positive step (35)

S = min{int  [rand(PB − PC (w))], Smax} for negative step (36)

where Smax denotes the maximum step which should be equal to
the number of grades, rand is a random number in the range [0,1]
and int returns the nearest integer. The new state is then computed
by

PnewC (w) = PC (w) + S (37)

Fig.  7 shows a diagram of the proposed parallel simulated
annealing method. First, we  define K types of initial temperature
and temperature factor and then assign them to each worker. K is
the number of CPUs we  can use. Then, the new solutions are com-
puted by implementing the user specified number of steps (e.g.
2 or 3) of SA for each processor. Each processor performs the SA
process asynchronously. In order to increase the diversity along
with the searching, all the solutions that are not improved take
part in the evolution. If a new solution is better than the previous
one, then accept the new solution. Otherwise, generate a solu-
tion using Eqs. (35)–(37). In this example, the solution PC(2) is not
improved in Worker 2 after implementing SA; it is replaced with
the new state obtained by adding the step size S2,3 which is com-
puted from Eq. (37) using the current state PC(2) and the global
state PC(3). Similarly the unimproved solution of PC(K) is replaced
with the new state by adding the computed step size. Since the
other solutions such as PC(1) and PC(3) are improved, they remain
the same at this step. Using this procedure we  update the solu-
tions in each worker synchronously unless all the solutions are
not improved or execution time becomes larger than the specified
time.

The new position itself does not represent a sequence because
the elements are continuous values. Therefore, it is necessary
to construct a sequence of grades from the new position. We
employ the rule (Jarboui et al., 2008; Liu et al., 2007) where the

Table 2
Indices of the objective values that should be recomputed after a swapping operator.

Swapping within same cast;
time period = k1
cast = u1

Swapping among casts whose
time periods are the same;
time  period = k1
casts = u1, u2

Swapping among different casts
whose time periods are different;
time period = k1, k2
casts = u1, u2

Min
i,k

∀i, period k1 ∀i, cast u1 and u2 ∀i, cast u1 and u2
Sr1+

i,k
∀i, cast u1 ∀i, cast u1 and u2 ∀i, cast u1 and u2

Sr1−
i,k

∀i, cast u1 ∀i, cast u1 and u2 ∀i, cast u1 and u2
MIopen

i,k
∀i, period k1 ∀i, period k1 ∀i, from period k1 to k2

MIclose
i,k

∀i, period k1 ∀i, period k1 ∀i, from period k1 to k2
Sr3+

i,k
∀i, period k1 ∀i, period k1 ∀i, from period k1 to k2

Sr3−
i,k

∀i, period k1 ∀i, period k1 ∀i, from period k1 to k2
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Proposed Parallel Simulat ed Ann ealing
Worker 1 Worker 2 Worker 3 Worker K

…

Run SA (Nst step)
Not

imp roved

( )1,1, FactorTT ( )2,2 , FactorTT ( )3,3, FactorTT ( )KFactorK TT ,,

1,11 FactorTTT ×←

3,2)2()2( SPP += CC

Global best

2,22 FactorTTT ×← 3,33 FactorTTT ×← KFactorKK TTT ,×←

)1(CP )2(CP )3(CP )(KCP
Compute

step  size  S2,3

Set initia l 

temperat ure

Modify the 

curr ent solutions

Update 

temperat ure

Run SA (2nd step)

… … … …

3,)()( K
CC KK SPP +=

Compute
step  size  S2,3

Not
imp roved

Not
imp roved

Fig. 7. Illustrative diagram of the proposed parallel simulated annealing.

Table 3
Solution generation (A: 3 charges, B: 4 charges, C: 2 charges).

Location 1 2 3 4 5 6 7 8 9
New solution

(continuous
value)

2.2  2.2 1.6 2 2 2 1.4 1.8 1.8

New solution
(grade)

C  C A B B B A A B

smallest position value of a charge is first picked and assigned
grade A. Then, the second smallest position value of a charge is
picked and assigned grade A if grade A is still available, otherwise
assigned grade B, and so on. This procedure converts the position
information into a sequence of grades (Table 3).

4.2.7. Convergence criteria
We have employed two types of convergence criteria. First one

is that if current best solution among all workers is not improved
after implementing SA on each worker, the algorithm stops (con-
vergence criterion I). Second one is that if all current solutions of
each worker are not improved after implementing SA, algorithm
stops (convergence criterion II). Compared to the convergence cri-
terion I, the second criterion forces search for new solutions to
be deeper than the search carried out to meet criterion I; conse-
quently, the computation times for criterion II and greater than the
computational times for criterion I as shown by the case studies
below.

The step-by-step procedure of the presented optimization
approach is listed below.

(1)  Build the Bayesian network model that can predict the proba-
bility  distributions of the production loads and process times
from  historical process data.

(2) Estimate the probability distribution of production loads and
process  time for each order (plate) by means of Bayesian
inference method based on the constructed Bayesian network
model.

(3) Compute the total demand of each grade on the ideal produc-
tion  starting day and the expectation of production load of
each  grade at each process unit and each elapsed day.

(4) Determine grades which should be produced in every time
period  to satisfy the customer due dates and production capac-
ities  by solving the relaxed mixed integer problem at the
planning stage through the commercial solver such as Gurobi.

(5) Set the initial sequence using the solution generated in step
(4).

(6)  Define K types of initial temperature and temperature factor
and  assign them to each worker with K being the number of
CPU  we can use.

(7) Find the sequence of charges from the current sequence by
implementing specific number of steps of SA for each proces-
sor  which performs a SA process asynchronously.

(8)  If a new solution (sequence) is better than the previous one,
then  accept new solution. Otherwise, generate a solution
based on the idea of frog flip leaping algorithm.

(9)  Discretize the new solution (see last paragraph of Section
4.2.6).

(10)  If all workers do not improve their solutions, then the algo-
rithm  is terminated. Otherwise, return to step 7).

5. Case studies

In  this section, the results obtained by the proposed parallel SA
with frog leaping are presented. All the case studies have been com-
puted on a windows 2007 Professional (Intel® Core(TM) i7-4930
CPU @ 3.40 GHz and 16.0 Gb RAM). The full space and the top level
production planning models were solved using Gurobi 5.6.3.

5.1.  Small test problems

Three  small test problems are used to see how far from the true
optimum are the solutions obtained from our algorithm for the
smaller size problems. The optimum is computed by solving the
full space MILP model. Table 4 shows the size of full-space MILP
model.

Table 5 compares the results from the full space model MILP, the
single SA and the parallel SA methods and the proposed parallel SA
with shuffled frog leaping algorithm. In these examples, the opti-
mality gaps obtained from full space MILP models are 0% and the

Table 4
Size  of three small test problems.

Example Horizon
(days)

Total term
(days)

# Casts # Grades Full space MILP
model

# Conts # Bins

1 7 10 7 3 526 126
2 5 7 5 7 1537 210
3 6 8 6 7 1857 252

Horizon = length of days for which the production scheduling are made, total
term  = length of days for which the production scheduling deals with the orders,
#  Casts = number of casts, # Grades = number of grades, # Conts = number of contin-
uous variables, and # Bins = number of binary variables.
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Table 5
Results comparison between solution algorithms for small test problems.

Test sets Algorithm CPU time (s) Obj. func. values Lower bound Gap (%)

1 Full space MILP 4 700.00 700.00 0.0
Single SAa 19 700.00 – –
Parallel SA 13 700.00 – –
Single SAa (two level algorithm) 22 700.00 – –
Parallel SA with leaping algorithmConvergence Criterion I (two level algorithm) 97 700.00 – –

2 Full  space MILP 466 300.00 300.00 0.0
Single SAa 16 500.00 – –
Parallel SA 14 500.00 – –
Single SAa (two level algorithm) 11 400.00 – –
Parallel SA with leaping algorithmConvergence Criterion I (two level algorithm) 89 300.00 – –

3 Full  space MILP 99,172 348.03 348.03 0.0
Single SAa 29 400.00 – –
Parallel SA 20 400.00 – –
Single SAa (two level algorithm) 22 400.00 – –
Parallel SA with leaping algorithmConvergence Criterion I (two level algorithm) 227 348.03 – –

a Initial temperature T = 0.8 and temperature factor TFactor is set to be the best value among [0.5, 0.6, 0.7, 0.8, 0.9].

Table 6
Process capacity.

Mill Processes Production capacity

Steel making mills # Casts 3 casts per day
#  Charges 6 charges per cast
Size of a charge 200 tons/charge

Steel  plate making mills Process A 350 tons/day
Process B 700 tons/day
Process C 1200 tons/day
Process D 500 tons/day
Process E 400 tons/day
Process F 100 tons/day
Process G 1500 tons/day
Process H 150 tons/day
Process I 100 tons/day

# casts = number of casts and # charges = number of charges.

objective function values of both full space MILP and the proposed
parallel SA with shuffled frog leaping algorithms are same. In exam-
ple 1, the execution time required by the full space MILP algorithm
is smaller than the proposed method. However, SA the problem
size increases, the proposed algorithm becomes much faster than
the full space MILP, as shown by examples 2 and 3.

5.2.  Real-world steel-plate production scheduling problems

The  real-world steel-plate production data are utilized to exam-
ine the effectiveness of the proposed optimization algorithm. The
two test sets we consider are based on one week plan of a steel-plate
production and the number of grades being 23 and 36, respectively.

Table 7
Size  of two  industrial test problems.

Test
sets

Horizon
(days)

Total
term

# Casts # Grades Full space MILP
model

# Conts # Bins

1 7 13 21 23 59, 270 2898
2 7 13 21 36 141, 866 4536

Horizon = length of days for which the production scheduling are made, total
term  = length of days for which the production scheduling deals with the orders,
#  Casts = number of casts, # Grades = number of grades, # Conts = number of contin-
uous variables, and # Bins = number of binary variables.

The production capacities and the size of full space MILP models are
shown in Tables 6 and 7, respectively.

Two-level algorithm both with single SA and the proposed par-
allel SA are used to compute solutions. As a comparison, the full
space model MILP, the single SA, and the parallel SA methods are
also carried out to compute the solutions. As for parallel computing
in parallel SA and MILP, 12 parallel workers are used.

5.2.1. Test set #1
Test  set #1 problem computes the first level SCC schedule for 23

kinds of steel grades and the scheduling horizon is one week. Table 8
compares the results from full space model MILP, single SA, parallel
SA, two-level algorithm with single SA, and two-level algorithm
with the new parallel SA. It can be seen that the full space model
algorithm computes the worst objective values even though the
computation time is set to be 24 h (86,400[s]). That is because the
problem is NP-hard; clearly, the full space model MILP algorithm
does not work for industrial-scale problems.

Table 8
Comparison of solution algorithms for real steel-plate production scheduling problems.

Test sets Algorithm Execution time (s) Obj. func. values Lower bound Gap (%)

1 Full  space MILP 86,400 5979.24 0 >100
Single  SAa 429 5152.06 – –
Parallel  SA 399 4508.39 – –
Single  SAa (two level algorithm) 466 4615.08 – –
Parallel  SA with leaping algorithm Convergence Criterion I (two level algorithm) 393 3831.97 – –
Parallel  SA with leaping algorithmConvergence Criterion II (two level algorithm) 1905 3715.21 – –

2 Full  space MILP 86,400 21,201.46 0 >100
Single  SAa 368 18,619.67 – –
Parallel  SA 628 18,376.50 – –
Single  SAa (two level algorithm) 313 18,179.84 – –
Parallel  SA with leaping algorithm Convergence Criterion I (two level algorithm) 508 17,540.18 – –
Parallel  SA with leaping algorithmConvergence Criterion II (two level algorithm) 2951 17,463.44 – –

a Initial temperature T = 0.8 and temperature factor TFactor is set to be the best value among [0.5, 0.6, 0.7, 0.8, 0.9].
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Fig. 8. Cast schedule computed by two-level algorithm with the proposed parallel SA for test set #1.

Fig. 9. Trend plots of inventory computed by two-level algorithm with the proposed parallel SA for test set #1. (For interpretation of the references to color in this sentence,
the reader is referred to the web version of the article.)

On the other hand, meta-heuristic approaches give us much
better solutions in terms of both values of objective function and
execution times as shown in Table 8. For instance, the single SA
method shows lower objective values and its computational time
is much less than the solution of the full-space model MILP. Fur-
ther, objective values of the proposed two-level algorithm with
single SA are even better than those of the simple SA approach,
since the relaxed model, which takes into account all the objective
functions except for the sequence penalty, gives good initial solu-
tions for the SA search. This comparison shows that the proposed

two-level  algorithm with single SA has ability to find better solu-
tions than both the full space model MILP approach and the single
SA method.

As for the parallel computing methods, we have investigated
the effectiveness of the previously published parallel SA (Ferreiro
et al., 2013), where all workers start from random initial solutions
so that each worker runs independently SA until reaching the next
level of temperature. The objective value of the parallel SA is bet-
ter than all the above methods due to multi-initial solutions. The
proposed two-level algorithm with a new parallel SA at the lower
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level has the elapsed time of 393 s when the convergence criterion
I is satisfied; the objective value is 3813.97 (Table 8), which means
that both objective value and execution time are less than all the
above methods. In addition, when the convergence criterion II is
used, the elapsed time is 1905 s elapsed and the objective value
becomes 3715.21. This is the lowest among all algorithms evalu-
ated in this work. The proposed two-level algorithm with the new
parallel SA with leaping has the best performance in terms of both
the objective value and the execution time.

The scheduling results obtained from the proposed parallel SA
with frog leaping algorithm are shown in Figs. 8–10. Fig. 8 shows the
cast scheduling where horizontal axis represents the time period
and the vertical axis denotes the grade index. Each number repre-
sents a grade (e.g. 1 means grade A, 2 means grade B and so on). Fig. 9
shows the trend plots of inventories for each grade. In Fig. 9 the
trend plots of production loads of finishing lines and their produc-
tion capacities are drawn by blue solid lines and red dashed lines,
respectively. It should be pointed out that all production loads are
less than their production capacity for the entire planning period
and almost all of inventory levels are greater than zero.

5.2.2.  Test set #2
Test  set #2 is different from test set #1 only in the number of

grades which need to be scheduled, as shown in Table 7. The results
from the full space model MILP, the single SA, the parallel SA, the
two-level algorithm with single SA, and the two-level algorithm
with the new parallel SA with frog leaping are shown in Table 8.
Similarly to test set #1, the objective value of the full space model
MILP is the worst among all the above methods even though its
maximum execution time is set to be 24 h (86,400[s]).

As  for meta-heuristic approaches, the objective value and the
execution time of single SA are much lower than those of the full
space model MILP approach. In addition, the proposed two-level
algorithm with single SA performs better than those of the simple
SA approach in terms of both objective value and its execution time
than the single SA due to the same reason mentioned in the test set
#1. This confirms the effectiveness of the two-level algorithm due

Fig. 10. Trend plots of production loads by two-level algorithm with the proposed
parallel  SA for test set #1.

to the relaxed model MILP creating good initial solutions for SA
search.

The parallelization of SA given random initial solution set for
each worker gives us slightly lower objective values than the sin-
gle SA while its computational time is about twice as long as
single SA. When applied within the two-level, parallel methods
yield results shown in Table 8. When the convergence criterion
I is satisfied at the time of 508 s, the solution obtained has the
objective value of 17,540.18, which is the lower than the above
methods. Furthermore, when the convergence criterion II applied,

Fig. 11. Cast schedule computed by two-level algorithm with the proposed parallel SA for test set #2.
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Fig. 12. Trend plots of inventory computed by two-level algorithm with new parallel SA for test set #2.

Fig. 13. Trend plots of production loads computed by two-level algorithm with new
parallel SA for test set #2.

the objective function value becomes 17,463.44, which is the small-
est in our experiments for test set #2. It should be noted that the
proposed two-level algorithm with the new parallel SA with leap-
ing provides the best scheduling performance in terms of both
the objective value and the execution time. The scheduling results

implemented  by the two-level algorithm via new parallel SA are
shown in Figs. 11–13. Similarly to the test set #1, the inventories
are greater than zero and the production loads are less than their
capacities for the whole planning horizon.

6. Conclusions

This work proposes a new optimization algorithm which can
assign and sequence a large number of different grades of steel
plates into a continuous casting machine for steel plate production.
In order to consider the production loads of downstream pro-
cesses and production times, Bayesian inference method is utilized
to predict their probability distributions from customer demands
and operating conditions. Bayesian inference is derived from the
Bayesian network model developed from the historical process data
as described in our preceding work. Continuous casting scheduling
is a difficult optimization problem due to a large number of binary
variables which are needed to represent exactly process character-
istics in the optimization model. In order to reduce compute high
quality schedules, we propose a new two-level algorithm.

At  the top level, we solve a multi-period production planning (it
can be considered as approximate scheduling) which is a mixed-
integer linear model that does not take into account sequence
penalties. Solution of this problem is guaranteed to be feasible at the
period boundaries and it is easy to compute via present days MILP
solvers. The lower level is tasked with computing the sequencing of
charges such that there are a minimum number of switches. This is
accomplished by permuting the sequences within the constraints
of the top level solution.

We  have tested several different variations of the two  level
algorithm. They differ with respect to implementation of the
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sequencing at the lower level. One version employs simulated
annealing, while the other employ modified parallel simulated
annealing combined with the idea of leaping from shuffled frog-
leaping algorithm (we do not use shuffled frog-leaping algorithm;
instead, we adopt the idea of leaping and implement it in the mod-
ified parallel simulated annealing). Simulated annealing has been
selected to solve this sequence optimization problem because of
its strong capability to avoid local optimal solutions as much as
possible by allowing the objective values to worsen occasionally.

Proposed new parallelization approach to SA search aims to fur-
ther improve the ability of SA to avoid local optimal solutions. The
main concept of the proposed parallel SA is that unimproved solu-
tions on each SA step are replaced with new solutions which are
computed from the current solution in the corresponding worker
and a global best solution among all workers. During the compu-
tation of the new solutions, we incorporate into the parallel SA the
ideas that have been proposed in the shuffled-frog leaping algo-
rithm.

For small scale test problems, which can be solved to 0.0%
optimality gap via full space MILP model, the proposed algorithm
computes the global optimum.

Real  world steel production data have been used to examine
the effectiveness of the presented optimization approach on large
problems which arise in industrial practice. The computational
results demonstrate that the proposed two-level algorithm gener-
ates better solutions and within shorter execution times than both
the single SA and the existing parallel SA. Convergence Criterion
II is recommended to be used, since it ensures deeper search and
leads to better results. Even though the proposed meta-heuristic
optimization method is not guaranteed to yield global optimal solu-
tions, it can generate the much better solutions within practical
execution times than the rigorous full-space MILP method over
much longer execution times.

Industrial application of the proposed algorithm would have to
include model maintenance and data preprocessing as needed for
the algorithm. Bayesian network for computation of most likely
production times would have to be updated (model maintenance)
if there is a significant change in some production step (change
which would impact the production time by an amount greater
than e.g. two standard deviations of the corresponding produc-
tion time). During preprocessing of data, orders would have to
be grouped into plates made of same material, in order to reduce
the size of the problem. Since customer orders change very fre-
quently (daily, sometimes hourly), the schedule would have to be

recomputed every time when there is a significant change in prod-
uct orders or when shipment time changes due to a customer
request. Proposed algorithm is sufficiently fast to use it on a daily
basis for computation of steel plate continuous casting process.
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Abstract 

This work introduces a two-step approach to optimization of schedules for continuous casting of 

steel plates production.  In step one, a mixed integer relaxation of the scheduling problem 

computes how much of each grade of steel to produce in each period of a multi-period model of 

the production.  The second step employs new variants of the non-dominated sorting genetic 

algorithm (NSGA-II) with jumping gene modification to multi-objective scheduling of the 

continuous casting.   We modify traditional genetic algorithm operators so that only the feasible 

sequences of operations are examined and combine NSGA-II with jumping gene operations and 

local search.  Initial population for the algorithm is generated via perturbations of the solutions of 

a weighted sum single objective schedule optimization (Mori and Mahalec, 2016).   Comparison 

with a widely used shuffled frog leaping algorithm shows that the proposed algorithm produces 

significantly more non-dominated solutions, thereby enabling much better understanding of 

multi-objective trade-offs.  

 

1. Introduction 

Production of steel plates is a multi-step process (see Fig. 1) where slabs of different 

grades of steel are produced via continuous casting where charges of specific grades of steel are 

poured into the casting machine and then solidified into slabs.  The slabs are then rolled into 

large plates, cut into required plate sizes and sent to the finishing and inspection lines.  

Scheduling of continuous casting determines the amount of each grade and the sequence of 

switching between the grades.  It is desirable to minimize the number of switches between the 

grades, since mixing of different grades materials takes place at the interface, which leads to a 

loss of material.  In addition, one needs to minimize tardiness with respect to the customer due 

dates.  If the product demand cannot be met on by their target dates for all customers, then it is 

desirable to meet the orders by them most important customers first and deal with the remainder 

of the orders when there is available capacity.   
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Fig. 1 Process flow of steel-plate production system 

 One approach to scheduling of continuous casting is to employ a single objective 

function which combines multiple objectives. Such approach leads to a high quality single 

solution point, which does not provide an insight into trade-offs between various objectives.  

This work introduces an algorithm for optimization of multiple objectives, without having to 

combine them into a single objective function, thereby enabling  better understanding of the 

trade-offs between different objective.  The algorithm combines non-dominated sorting genetic 

algorithm NSGA-II with ideas from jumping gene genetic algorithm and local search to optimize 

scheduling of manufacturing operations such as continuous casting, i.e. operations which 

produce many different distinct products while striving to minimize switching for one product 

grade to another and meet the customer due dates. 

Without loss of generality, the multi-objective optimization problem (MOP) can be 

mathematically formulated as: 

min )}(),...,(),({)( 21 xxxf Mfffx         (1) 

s.t. 0)(,0)(  xhxg          (2) 

where Ωx is the vector of decision variables, Ω  is the decision space and M
Ff  consists of M 

objective functions Rf i Ω: . The functions g  and h  denote the sets of inequality and equality 

constraints.  The objectives in Eq. (1) often conflict with each other and improvement of one 

objective may cause deterioration of another objective. Therefore, there is no single solution that 
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can optimize all the objectives.  There are three relationships among the solutions as follows 

(Goh and Tan, 2009): 

Definition 1.1 Weak Dominance: 
M

Ff 1  is said to weakly dominate 
M

Ff 2 , denoted as 

     , iff 
ii ff ,2,1  , },...,1{ Mi . 

Definition 1.2 Strong Dominance: 
M

Ff 1  is said to strongly dominate 
M

Ff 2 , denoted as 

21 ff  , iff 
ii ff ,2,1  , },...,1{ Mi  and 

jj ff ,2,1  , },...,1{ Mj . 

Definition 1.3 Incomparable: 
M

Ff 1  is said to incomparable with 
M

Ff 2 , denoted as 21 ~ ff , 

iff 
ii ff ,2,1  , 

jj ff ,2,1  , },...,1{ Mi  and 
jj ff ,2,1  , },...,1{ Mj . 

The sets of all the best trade-off solutions called Pareto optimal set are desirable for decision 

makers. This concept, which was first proposed by Pareto (Stadler, 1979) are described as: 

Definition 1.4 Pareto Optimal Solution: A feasible solution Ωx *  is called a Pareto optimal 

solution, iif             , 
M

j Fxf )( . 

Definition 1.5 Pareto Optimal Set: The Pareto optimal set, denoted as *PS  , is the set of non-

dominated solutions such that                               . 

Definition 1.6 Pareto Optimal Front: The pareto optimal set, denoted as *PF  , is the set of 

non-dominated solutions in the objective space such that                 . 

Without any clear decision maker’s preference, the goal of multi-objective optimization is to 

discover as many non-dominated solutions as possible within the limits of the computational 

resources. In other words, the aim of multi-objective optimization is to minimize the distance to 

*PS  and to maximize the diversity within the approximation of *PS . 

The organization of this article is as follows.  Review of prior work on multi-objective 

optimization is presented in Section 2.  Section 3 provides the problem statement.  Since non-

dominated sorting genetic algorithm II, NSGA-II, is the basis for the algorithm we propose, the 

overview of NSGA-II algorithm is presented in Section 4.  The proposed multi-objective 

optimization algorithm is presented in Section 5.  It is comprised of NSGA-II modified by the 

jumping gene operators and by a local search.  The presented methods are applied to the real-

world steel plate production data in section 6.  Finally, the conclusions are presented in section7. 
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2. Review of prior work on multi-objective optimization 

Literature on multi-objective optimization abounds with various approaches to solve 

these difficult problems.  There are two basic approaches: (i) mathematical programming and (ii) 

evolutionary optimization.  We review briefly the prior work on both approaches, while focusing 

on multi-objective optimization.  Since evolutionary optimization methods have received less 

attention in the process systems community, we will provide somewhat more extensive review of 

such methods.   

The most straightforward approach to solve deterministic MOPs is the weighted sum 

method, The method combines all of the objectives into an aggregated single objective by using 

a weight vector.  The objective function in Eq. (1) is transformed to the following form: 

min )(...)()()( 2211 xxxx MM fwfwfwf  .      (3) 

The weight vector is usually normalized such that  1iw  and 1iw .  The weighted sum 

method changes weights systematically and each single objective optimization determines one 

particular optimal solution on the Pareto front.  Although this method is simple and easy to use, 

there are some inherent problems (Das and Dennis, 1997). Firstly, the weighted sum is a convex 

combination of objectives and the performance of the method depends on the shape of Pareto 

optimal front. As a result, it cannot find all the optimal solutions for problems whose Pareto 

optimal front is nonconvex.  Secondly, it is typically difficult to select the weights such that the 

optimal solution distribution is uniform since the objectives usually have different magnitudes.  

To overcome the difficulty of nonconvexity,  -constraint method has been proposed (Chankong 

and Haimes, 1983) and has been applied in some industries e.g. (Liu and Pistikopoulos, 2009; 

Subramanyana et al., 2011).  In this method, only one objective is optimized while the other 

objectives are transformed into constraints.  The parameter vector   is used as the boundary for 

all of the objectives and thus different    leads to a different optimal solution. Although this 

method can reduce the issues associated with nonconvexity, the performance of this method is 

highly dependent on    since a bad choice of    will lead to infeasible solutions. 
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 In order to overcome these limitations, the adaptive weighted sum (AWS) method was 

proposed for bi-objective optimization (Kim and Weck, 2005).  AWS carries out the typical 

weighted-sum multi-objective optimization only in the specific region which is designated as a 

feasible region for sub-optimization by imposing inequality constraints in the objective space.  

This method has been extended to the multi-objective optimization problems with more than two 

objective functions (Kim and Weck, 2005).  An alternative method is Normal Boundary 

Intersection (NBI) developed (Das and Dennis, 1998).  The basic idea of NBI is to find the 

Pareto frontier using the set of all convex combinations of the individual global minima of the 

objective functions as a starting point.  NBI can produce a uniformly distributed PFA in non-

convex regions, which the weighed sum method lacks. 

 The methods described above (i.e. weighted-sum method,   -constraint method, AWS 

and NBI) have a drawback that only one Pareto optimal solution can be obtained by solving one 

optimization problem.  They become computationally expensive with an increase in the number 

of variables and constraints.  More recently, the NBI algorithm was modified so that Pareto 

frontiers were obtained by solving only a single optimization problem (Siddiqui et al., 2012).  In 

this algorithm, the optimization problem is solved by using a quasi-Newton method and its 

calculation history is used to obtain the Pareto frontier.   

Extensive review of mathematical programming applications in steel plants was 

presented by Dutta and Fourer (2001).  In addition, Tang et al (2001) presented a review of 

various production planning and scheduling techniques for steel production.  Hence, we will 

mention selected papers published since then. Harjunkoski and Grossmann (2001) presented a 

decomposition approach to scheduling of steel plates production.  They employed a single 

objective function which combined the makespan, in-process times, and the positive slack-

variables representing hold-time variations.  They assigned the weights in a manner which 

ensures that the hold-time violations are minimized.   Bellabdaoui and Teghem (2006) presented 

a mixed integer model linear programming model for continuous cast scheduling where they 

minimize total completion time for a given sequence of production.  More references for single 

objective function scheduling of steel plates production are reviewed in our previous publication 

(Mori and Mahalec, 2016). 
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 Mathematical programming approaches, as those described above, guarantee that a global 

optimum is found, provided that the problems do not become too large for the state of the art 

MILP solvers to solve in a reasonable time the underlying MILP models.  If execution times 

become too large, one has to develop alternative approaches, such as multi-objective 

evolutionary optimization algorithms, MOEAs.    

  MOEAs have been developed to solve multi-objective optimization problems in various 

aspects of chemical engineering e.g. (Alam et al., 2013; Sharma and Rangaiah, 2013).  MOEA is 

based on a population of solution candidates and the reproduction process which is able to 

combine existing solutions to generate new solutions.   

 Vector Evaluation Genetic Algorithm (VEGA) (Schaffer, 1985) selects the candidates 

solutions for each of M objectives separately.  Thus M sub-problems of size N/M are generated 

assuming a total population size of N. These sub-problems are shuffled together and 

recombination and mutation are performed as normal MOEAs.  The algorithm is simple and easy 

to implement. Since it employs proportional fitness assignment,  its selection scheme is opposed 

to the concept of Pareto dominance and good compromise solution for all the objectives will be 

discarded. Fonseca and Fleming introduced a variation of multi-objective genetic algorithm 

(MOGA) where fitness assignment is performed based on a Pareto-based ranking procedure 

(Fonseca and Fleming, 2003).  In Pareto ranking, for each individuals    ,  its rank         

              is calculated.  A raw fitness is assigned to individuals by interpolating from the 

best (r(    ) to the worst (r(    ).  Then, the fitness of individuals with the same rank are 

averaged and shared.  While this method is efficient, the performance of the method depends on 

the sharing factor. 

 The nondominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994), niched-

Pareto genetic algorithm (NPGA) (Horn and Nafpliotis, 1993), strength Pareto evolutionary 

algorithm (SPEA) (Zitzler and Thiele, 1998), Pareto archived evolution strategy (PAES) 

(Knowles and Corne, 2000) and Pareto envelope-based selection algorithm (PESA) (Corne etal., 

2000) use a tournament selection scheme. 

In NSGA, all non-dominated solutions belong to the first level of non-domination in the 

population.  Then, these solutions are temporary removed in order to find the solutions belonging 

to the second non-dominated front and the procedure is repeated until all solutions are assigned a 



PhD Thesis – Junichi Mori  McMaster University – Chemical Engineering 

145 
 

level of non-domination.  The fitness is assigned to each individuals based on its non-domination 

level.  To maximize the diversity of the solutions, fitness sharing is done in decision space.  In 

addition, an extended version of NSGA, called NSGA-II, has been proposed in order to keep 

diversity without specifying a sharing parameter (Deb et al., 2002). 

 An alternative approach is niched Pareto genetic algorithm (NPGA) (Horn and Nafpliotis, 

1993).  The basic idea of NPGA is to combine the tournament selection and the concept of 

Pareto dominance.  Two random competitors Pji , are selected and compared against a subset

PP dom .  If i is non-dominated with respect to domP  and j is not, then i is the winner. If j is non-

dominated regarding to domP  and i is not, then j is the winner. When both i and j are either 

dominated or non-dominated, the winner is decided by fitness sharing, using niche counts as 

calculated in the objective space.  Similar to NSGA-II, a revised version of NPGA, called 

NPGA-II, was  developed (Erickson et al., 2001).  This method uses tournament selection based 

on the Pareto ranking in order to determine tournament winners. Like NPGA, tournament ties are 

solved by fitness sharing. 

 Strength Pareto evolutionary algorithm (SPEA) uses a mixture of established techniques 

and new techniques (Zitzler and Thiele, 1998).  This method uses an external set P  including 

non-dominated solutions found.  A strength value is computed for each individual Pi  and it is 

used for computing the fitness of each individual Pj .  Then, Pareto-based niching method is 

utilized in order to keep diversity in the population.  An improved version of SPEA was 

proposed (Zitzler et al., 2001). This method incorporates a fine grained fitness assignment 

strategy, a density estimation technique, and an enhanced archive truncation method in order to 

improve convergence and diversity. 

 Pareto archived evolutionary algorithm (PAES) is a (1 + 1) evolution strategy in which a 

single parent generates a single offspring (Knowles and Corne, 2000).  It adopts local search in 

combination with a reference archive of solutions previously found in order to identify the Pareto 

dominance ranking.  Each objective is divided into d2  equal divisions with d representing the 

number of bisections of the space and thus the entire search space is divided into dM2  grids.  

Each solution is placed in a certain grid location based on the value of its objective. If the 
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offspring belongs to a less crowded grid than the parent, the offspring becomes the parent in the 

next generation.  Otherwise, the parent solution continues to be the parent. 

 Pareto envelope-based selection algorithm (PESA) (Corne et al., 2000) incorporates ideas 

from SPEA and PAES.  Similar to SPEA, PESA uses an external set that stores the current 

approximation to the Pareto front. Like PAES, PESA maintains diversity which consists of a 

crowding procedure that divides objective space.  Zitzler et al. (2003) proposed a quality 

measure of Pareto front algorithm (PFA), the   -indicator which gives the factor by which an 

approximation set is worse than another in terms of all objectives is proposed.  They developed 

the   -indicator based evolutionary algorithm (IBEA). 

 As another MOEA, differential evolution (DE) has been developed for solving MOPs. 

The Pareto differential evolution (PDE) algorithm has been proposed for multi-objective 

optimization (Abbass et al., 2001).  Since DE algorithm is sensitive to the parameter values 

including crossover and mutation rates, a self-adaptive Pareto differential evolution (SPDE) was 

also proposed (Abbass, 2002).  While SPDE adopts the nearest neighbor distance function for 

preserving the diversity of the population, adaptive Pareto differential evolution (APDE) uses the 

population variance based functions (Zaharie and Petcu, 2003).  In addition, vector evaluated 

differential evolution (VEDE) was proposed, which is a multi-population differential evolution 

approach inspired by VEGA (Parsopoulos et al., 2004).  Similar to VEGA, selection is conducted 

for each of objectives separately and does not consider the diversity of the population.  Since DE 

is not efficient for fine-grain optimization, rough sets theory was adopted in order to improve the 

spread of the non-dominated solutions produced by a DE based MOEA (Hernandez-Daz et al., 

2006).  MOEA based on   -dominance concept and efficient parent and archive update strategies 

was proposed by Deb and coworkers (Deb et al., 2003; Cai et al., 2007). Because the   -

dominance does not allow two solutions with a small difference in the objective space to be non-

dominated to each other, it maintains the diversity of the populations automatically.  Furthermore, 

a multi-objective evolutionary algorithm based on decomposition (MOEA/D) was developed 

(Zhang and Li, 2007). This method decomposes a MOP into a number of scalar optimization sub 

problems and solves them simultaneously by DE in order to reduce the computational 

complexity. 
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 An alternative to PDE algorithm is differential evolution for multi-objective optimization 

(DEMO) method has been intrduced (Robič and Filipič, 2005). DEMO replaces the parent 

individuals with the candidate that dominates it for convergence to the true Pareto front.  In 

addition, DEMO uses non-dominated sorting and crowding distance in truncation of the 

extended populations for maintaining the diversity.  Similarly to SPDE, the self-adaption 

mechanism was incorporated with DEMO algorithm (Chow and Tsui, 2004). Sequential 

quadratic programming (SQP) has also been used in order to improve candidate solutions 

produced by DE (Zamuda et al., 2009). 

  Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) has been modified for  

multi-objective optimization.  The most common approach for MOPs is to use the weighted 

aggregation in which all the objectives are summed to a weighted as in Eq. (3). If iw  is fixed, the 

optimization has to be repeated many times to obtain a desired number of Pareto optimal 

solutions.  Bang-Bang weighted aggregation (BWA) approach is used in order to ensure that the 

solutions move along the Pareto front (Parsopoulos and Vrahatis, 2002).   

 Multi-objective particle swarm optimization (MOPSO) algorithms use external archives 

and store the non-dominated solutions among the population and external archive.  The velocity 

and position of each particle are updated using information of both the population and external 

archive (Coello and Lechuga, 2002).  The main drawback of this method is that the 

computational cost increases rapidly with the number of objectives, population size and archive 

size become large.  To solve this issue, the concept of   -domination is employed instead of 

Pareto domination when updating the external archive (Mostaghim and Teich, 2003).  If large 

values of   is used, computational cost can be reduced. However, this method is theoretically 

able to cover the approximated Pareto front only if using small values of  , which can be 

computationally expensive.  To overcome this limitation, a covering method is used for MOPSO 

(Mostaghim and Teich, 2004).  First, the MOPSO runs with a restricted archive size that can be 

obtained   -dominance strategy.  After obtaining the initial solutions, the particles in the 

population are divided into sub swarms around each non-dominated solution. Then, the best local 

solutions in sub swarms are found. 

 Another variation is non-dominated sorting particle swarm optimizer (NSPSO) developed 

by Li (Li, 2003).  NSPSO compares all particles’ personal bests and their offspring in the entire 
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population, instead of basing the comparison  solely on a particle's personal best with its 

offspring.  The concept of Pareto dominance has also been used for improving MOPSO (Pulido 

and Coello Coello, 2004; Sierra and Coello, 2005).  In order to reduce the computational times, a 

correlation of the objective functions has been used (Chow and Tsui, 2004).   Techniques which 

are able to deal with constraints or discrete decision variables were developed by (Tseng and 

Liao, 2008) and by (Venter and Haftka, 2010).  Fuzzy clustering has been utilized to prune the 

size of the non-dominated set (Agrawal et al., 2008).  More recently, strength Pareto approach 

was combined with MOPSO in order to maintain the diversity of the Pareto front (Elhossini et al., 

2010).  A comparison of MOPSO and MODE was published recently (Dominguez and Pulido, 

2011).  This work concludes that even though MOPSO searches solutions more aggressively 

than MODE, MODE generate better distributed PFA that leads to better Pareto fronts. 

 While various kinds of MOEA have been developed, all of them are population based 

algorithms which may not be suitable for sequence optimization problem such as scheduling of 

continuous casting. That is mainly because combinations of the solutions rarely create better 

solutions especially for sequence optimization problems.  Single solution approaches such as 

simulated annealing (Aarts & Korst, 1989), tabu search (Glover, 1986) and iterated local search 

(Lourenco et al., 2003) work better since they focus on modifying and improving a single 

candidate solution. However, these single solution approaches are not able to compute Pareto 

optimal front by means of solving a single optimization problem. In this work, we develop a 

novel MOEA algorithm for sequence optimization.  In our approach, we first we solve a set of 

single optimization problems described in Eq. (3) to compute a couple of solutions using a single 

solution approach such as parallel simulated annealing with frog leaping algorithm (Mori & 

Mahalec, 2015) in accordance with the weight vector w . Then, we start multi-objective 

optimization by using these solutions as initial population.  In order to explore the entire Pareto 

optimal set, it is very important to assign good fitness of an individual such that diversity is 

maintained.  For this purpose, we employ the idea of NSGA-II algorithms to compute the fitness 

and select the parents’ chromosomes. Furthermore in addition to the traditional genetic 

operations, we employ the idea of jumping gene operations (Tang et al., 2011) as well as shuffle 

frog leaping algorithm (Li et al., 2012) to enhance the searching ability.   Since GA crossover of 

two feasible solutions does not result in a feasible solution in many cases, we introduce the 

operation that makes infeasible solutions into feasible ones.   Finally, we optimize the charge 
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sequence within each cast; optimization is carried out every time after jumping gene operations 

to avoid generating useless populations as much as possible.  

Since steel plate scheduling leads to very large problems, in this work we have developed 

new version of MOEAs.  In order to have reassurance about the quality of the solutions obtain by 

the proposed algorithms, we first solve small scale problems by using mathematical 

programming approach and also solve the same small scale problems by using the proposed 

algorithms. Then we apply the proposed algorithms to large scale steel scheduling problems 

which cannot be solved in a reasonable time by using state of the art MILP solvers. 

Our prior work (Mori and Mahalec, 2016) was based on a single objective function 

approach, which enabled computation of a high quality, single solution.  That solution does not 

provide an insight into trade-offs between different objectives.  For that reason, this work 

pursues multi-objective scheduling of the steel plates production. 

 

3. Problem formulation 

 

In this study we assume that the steel plate manufacturing facility has received orders for 

the next 5 to 10 days and thus the number of received orders can run into tens of thousands. 

Therefore we will group the received orders into grades, based on the qualities of the steel from 

which they are made of.   Our task is to determine the sequence of charges over period of 5 to 10 

days, which is called Long Term Scheduling.  The targeted scheduling problem of SCC for steel-

plate production is stated as follows: 

Given: 

1. A scheduling period (e.g. 1 week). 

2. The number of charges per cast (e.g. 6 charges per cast). 

3. The number of casts per day (e.g. 3 casts per day). 

4. The maximum processing capacity of each finishing and inspection process. 

5. The size of charges (e.g. 200[ton]). 

6. The contamination cost when switching grades between consecutive charges. 

7. A set of delivery orders for each grade along the scheduling horizon (e.g. demand profile). 

Determine: 
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1. The amount of steel for each grade on each charge of each continuous caster. 

2. Sequence of charges 

3. The amount of products that each finishing and inspection line should process each day. 

4. The inventory profile of products at a distribution warehouse. 

While Minimizing: 

1. The cost of producing contaminated steel caused by the switching grades between 

consecutive charges. 

2. The amount by which the utilization of the production capacity may exceed the actual 

capacity available. 

Note that we included this as a term in the objective function and not as a 

constraint, since the amount of steel which is not produced in a given period can 

be produced in one of the subsequent periods, if there is available plant capacity.  

If there is no available plant capacity in the subsequent periods, it means that 

some of the requested product cannot be delivered and the plant needs to decide 

which customer orders to decline. 

3. Delay in delivery of products to the customers at the time beyond customer due date. 

This objective can be reformulated as the amount of steel plates below the 

required minimum, since insufficient amount of steel plates means that some 

customers will not receive their products on time. 

Subject to: 

1. Only one steel grade can be used in a single charge. Once it begins charging, the same 

grade steel must be used and its amount should always be equal to the size of a charge. 

2. Finishing and inspection processes can handle at most the same amount of steel as its 

processing capacity. 

Assuming: 

1. After optimizing the sequence of charges, orders can be assigned to each charge 

permuted within the time prior to the deadline so that each charge contains the same 

grade. 

2. There is only one casting machine for steel plates and it cannot be used for other kinds of 

products such as steel sheet. 

3. Processing order of the finishing and inspection lines is fixed. 
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4. Variables associated with both customer demands and operating conditions are known. 

5. Variables associated with both production loads and process time are unknown. 

6. Probability distributions of production loads and process times are known (they are 

predicted by the Bayesian network model from variables associated with both customer 

demands and operating conditions). 

   Mori and Mahalec (2015) proposed a two level algorithm to solve continuous cast 

scheduling with a single objective function. The top level is a multi-period linear programming 

(LP) model.  Length of each period is set in a manner which relates it to the production.  In this 

work, length of a period equals to one day. Solution from the top level determines how many 

pots of each grade of steel need to be produced each period so that the customer due dates, 

capacity demand and inventory constraints are met.  At the lower level they employ modified 

parallel simulated annealing to optimize the sequence of the pot charges while taking into 

account the sequence penalty.   

In this study we solve multi-objective scheduling of continuous casting.  We also employ 

a two level algorithm, where the top level is the same as on Mori and Mahalec (2015), while the 

lower level computes Pareto optimal solutions for the following three objectives:   

 

Minimize material contamination due to switching 

min  
k u v

vukvukf grade)).1,,(Charge grade,).,,((ChargeC1    (4) 

where C is the cost of switching between two grades. 

 

Minimize amount of steel plate inventory below specified minimum 

min 
i k

kiSf ,2 2          (5) 

where S2 is max(0, the difference between the actual and minimum amount of steel). 

  

Minimize amount of production capacity utilization above the production capacity 

min 
l k

klSf ,3 3          (6) 

where S3 is max(0, the difference between max capacity and capacity required to produce the 

amounts required to meet the demands). 
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Equation  (4) minimizes the amount of contaminated steel ( 1f ) due to switching from one grade 

to another, where ),(C ji  is a quality loss matrix which returns the amount of contaminated steel 

between grade i and j.  “ grade).,,(Charge vuk ” term is a grade of charge allocated at v-th position 

of u-the cast of time period k.  The objective given by function Eq. (5) minimizes the amount of 

steel plates which violate the minimum inventory capacity ( 2f ) where 
kiS ,2  is a slack variable 

which ensure that the following constraint is satisfied: 

 

02 ,,min  ki

close

ki SMIMI  ki,         (7) 

 

where minMI  is the minimum inventory and 
close

kiMI ,  is the closing inventory of grade i at time 

period k.  If the 
kiS ,2  is positive, the corresponding steel plates cannot be delivered to the 

customers by the due date.   The objective function described by  Eq. (6) minimizes the amount 

of steel plates which violate the capacities of production unit ( 3f ) where  


klS ,3 satisfies the 

following constraint: 

 

max

,, 3 lklkl LoadSQ  
 kl,          (8) 

 

where 
klQ ,

 is the production load of process l on the time period k and


klS ,3  is a slack variable 

which becomes positive if the total amount of products that should be handled by the unit l and 

time period k is greater than the corresponding production capacity max

lLoad .  In other words, the 

materials corresponding to 


klS ,3   can be produced on the following day (k+1) or later. Detailed 

formulation can be found in our previous work (Mori & Mahalec, 2016). 
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4. Non-Dominated Sorting Genetic Algorithm with Jumping-Gene 

Transposition Operation 

 

In this section we will describe NSGA-II (Deb et al., 2002) and then in the subsequent 

section we describe a modified version which we have developed in this work. 

 

Non-Dominated Sort and Crowding Distance 

The first step if to initialize the decision variables for each individual p in population P 

and then initial objective values of each individual p are computed.  The second step is to sort the 

initialized population based on non-domination.  Members which are not dominated by any other 

individuals are assigned rank 1. Rank denotes the level of non-dominance. Then the rank 1 

solutions are temporarily disregarded and the non-dominated solutions are assigned rank 2. This 

procedure is continued till all solutions are assigned a level of non-dominance.  Once the non-

dominated sort is complete, the crowding distance is assigned to each individual. Crowding 

distance is assigned front wise and comparing the crowding distance within same level of non-

dominance.  Table 1 shows the procedure for computation of crowding distance. 

 

Table 1 Procedure for computing crowding distance 

 Procedure  Compute Crowding Distance 

1 Initialize the distance Dr,j to be zero for all individuals, where j corresponds to  the j-th  

 individual in rank r-th front 

2 for each objective function i  

3 Sort the individuals in r-th rank front in terms of i-th objective values. 

4 Assign infinite distance to boundary values so that boundary points are always  

 selected. i.e. inf1, rD , inf, 
rNrD where rN  is the number of individuals in r-th  

 rank front. 

5 for  k=2 to  1rN  

6 )/())obj(.)obj(.( minmax

1,1,,, iijrjrjrjr ffiDiDDD    where )obj(.1, iD jr 
 is 

  the i-th objective values of j-th individuals of i-th rank front. 

 

Selection 

After all the individuals are sorted and assigned crowding distance, the binary tournament 

strategy is implemented to select parent individuals as follow: 



PhD Thesis – Junichi Mori  McMaster University – Chemical Engineering 

154 
 

Step 1: Select two individuals p and q at random 

Step 2: If a rank p is smaller than that of q, then p is winner.  Else if a rank of q is smaller than 

that of p, then q is winner. If rank(p) = rank(q),  then the individual that has bigger 

crowding distance than the other is winner. 

Typically a size of parent individuals is set to be a half of a population size. 

 

Traditional Genetic Operators 

 Once the parent individuals are selected, children c1 and c2 are generated from randomly 

selected two individuals p1 and p2.  In traditional NSGA-II algorithm typically use Simulated 

Binary Crossover (SBX).  SBX generates new individuals c1 and c2 with a specified probability 

as follows: 

 

 211 )1()1(
2

1
ppc   ,    212 )1()1(

2

1
ppc       (9) 

 

where   is a random value.  Furthermore, Polynomial mutation is implemented with a specified 

probability as follows: 

 

)( lu
pppc            (10) 

 

where c is a child, 
u

p  and 
l

p  are upper and lower bounds on the parent component and  is a 

small variation. 

 As an additional operation, Jumping-Gene (JG) transposition operator, is applied to 

Multi-objective optimization (Chan et al., 2008).  There exist two types of transposons: 1) cut-

and-paste transposon and 2) copy-and-paste transposon, as shown in Fig. 2 and 3, respectively.  

Cut and paste transopson, the element cut from an original position, is  pasted into a new position 

of a chromosome, and the original chromosome remains same.  Copy-and-paste operation (Fig. 

3) replaces parts of the chromosome by the transoposon. 
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(a) Same chromosome 

  

(b) Different chromosome 

Fig. 2 Cut-and-Paste transposition 
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(a) Same chromosome 

  

(b) Different chromosome 

Fig. 3 Copy-and-Paste transposition 

 

Recombination and Selection 

 The offspring population is combined with the current population and then the objective 

values of each individual are computed.  Then, the rank assignment and selection are performed 

again to set the individuals of the next generation. 

5. Modified non-dominated sorting genetic algorithm and modified 

jumping-gene shuffled frog leaping algorithm for cast sequence 

optimization, NSGA-II-JG 
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In order to apply the MOEA such as NSGA-II to the cast sequence optimization problem, 

first we need to represent sequence optimization problems. In this work, job-to-position 

representation is employed to represent the sequence problem (Rahimi-Vahed and Mirzaei, 

2007). The value of the first element represents a grade scheduled in the first charge. The second 

value denotes a grade scheduled in the second charge and so on. Table 2 shows an example of 

solution representation.  In this example, the first four charges are filled with products of grade A, 

and the following two charges are grade B. In the second cast, the first three charges are grade C, 

the next two charges are grade B and the last charge is grade D. 

 

Table 2 Solution representation 

Cast First cast Second cast 

Location 1 2 3 4 5 6 7 8 9 10 11 12 

Grade A A A A B B C C C B B D 

 

Initialized Population with the solution set computed from the Parallel SA method 

Instead of initializing the decision variables for each individual p, the optimal solutions 

that can be obtained by using the weighted sum method is employed as some initial individuals. 

Therefore, first we minimize the following objective function by changing the weight vector

],,[ 321 wwww : 

 

min 332211 fwfwfwf  .        (11) 

 

In order to maximize the diversity of initial solutions as much as possible, we set the weight 

vectors in Table 3 based on the sample weight vector pattern which is specified by user. 

 

Table 3 Setting weight vector for weighted sum method 

Weight vector pattern w1 w2 w3 

1 (user specified) balancedw1  
balancedw2  

balancedw3
 

2 balancedw110  
balancedw2  

balancedw3
 

3 balancedw1  
balancedw210  

balancedw3
 

4 balancedw1  
balancedw2  

balancedw310  
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The weight sum method cannot find all the optimal solutions since it becomes 

computationally prohibitive with an increase in the number of optimal solutions that we need. In 

addition, the weight sum method cannot find Pareto optimal front for problems whose Pareto 

optimal front is nonconvex.  Therefore in this work, initial solutions of problems #1, #2, # 3 and 

#4 are computed by solving weight sum optimization problems from Eq. (11), while the 

remaining individuals are initialized by JG transposition operation such as cut-and-paste 

operations or copy-and-paste operations (see Table 4). 

 

Table 4 Computation of Initial Population 

Individuals Computation Strategy for Initial solutions 

1  Minimize Eq. (11) with weight vector ],,[ 321

balancedbalancedbalanced wwww  

2 Minimize Eq. (11) with weight vector ],,10[ 321

balancedbalancedbalanced wwww  

3 Minimize Eq. (11) with weight vector ],10,[ 321

balancedbalancedbalanced wwww  

4 Minimize Eq. (11) with weight vector ]10,,[ 321

balancedbalancedbalanced wwww  

5 Do cut-and-paste or copy-and-paste operation from individuals #1 to #4 

6 Do cut-and-paste or copy-and-paste operation from individuals #1 to #4 

7 Do cut-and-paste or copy-and-paste operation from individuals #1 to #4 

… … 

 

Modified Traditional Genetic Operation for Sequence Optimization 

 After the traditional genetic operations are implemented in Eqs (9) and (10), the new 

position itself does not represent a sequence because the elements are continuous values. 

Similarly to our previous work (Mori and Mahalec, 2016), we employ the rule where the 

smallest position value of a charge is first selected and assigned grade A. Then, the second 

smallest position value of a charge is picked and assigned grade A if grade A is still available, 

otherwise assigned grade B, and so on.   This procedure converts the position information into a 

sequence of grades. 

 

Modified Jumping Gene Operation for Sequence Optimization 

 One of the major problems associated with using genetic operation for the sequence 

optimization problem is that solutions after genetic operations often do not meet the hard 

constraints.  This is illustrated by the fact that GA has been very slow to gain acceptance for 

sequencing of operations since genetic operation involving one or two solutions very often does 
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not result in a feasible solutions.   Let us consider the very small scheduling problem as shown in 

Fig. 3(a). Now we have 1 charge of grade A, 1 charge of grade B and 4 charges of grade C and 

the current cast sequence is ACBCCC. After the copy and paste operation, we get the new cast 

sequence of ACCCCC. New cast sequence contains 1 charge of grade A, no charge of grade B 

and 5 charges of grade, which conflicts the number of charges for each grade we have.  The 

simplest way to avoid infeasible solution is to discard the infeasible solution and then recompute 

a new chromosome after random reselection of a position of transposon.  However, the 

regeneration of a new chromosome until obtaining feasible solution makes GA much slower and 

thus we should not do this approach for cast sequence optimization problem.  To overcome this 

limitation, we propose a new method that makes chromosomes feasible by adding uniform 

random noise to all elements of solutions and deciding grades in accordance with the rule 

introduced by  (Jarboui et al., 2008; Liu et al.,2007). 

 We will explain the algorithm by using the small example described by Fig. 2(b).  In this 

example, we assume that we have 2 charges of grade A, 2 charges of grade B and 8 charges of 

grade C and the current sequence of two casts is ACBCCC and ABCCCC.  After cut-and-paste 

transposition operation among these two casts, we obtain a new cast sequence of ACBCCC and 

ABCCAC.  It is obvious that the new cast sequence violates the constraints since, for example, 

the new cast sequence includes 3 charges of grade A while we have only 2 charges of that grade.  

In order to avoid infeasible solutions, first we add uniform random noise [0 1] to each gene 

which may yield the following: 

 

(1, 3, 2, 3, 3, 3, 3) and (1, 2, 3, 3, 1, 3)  

  (1.23, 3.33, 2.57, 3.15, 3.72, 3.31) and (1.24, 2.26, 3.32, 3.69, 1.41, 3.85)  (12) 

 

Then the smallest value of a gene (1.23) is first picked and assigned grade A.  After that, the 

second smallest gene (1.24) of a charge is selected and assigned grade A if grade A is still 

available.  Once grade A is exhausted, the smallest value of the remaining genes is selected 

(1.41) and assigned grade B if available, and so on.  In this example, we finally obtain the new 

cast sequence ACCCCC and ABCCBC. 

 

Local Search 
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Population based approaches such as MOEA give us useful information such as how 

many charges of each grade we should make for each cast, while the cast sequence is not optimal 

in many cases. Let us consider the example in Fig. 2 (b).  After the cut-and-paste transposition 

operation, the new cast sequence becomes BCCBCC and ACCCAA, which is not a good 

sequence in terms of cast contamination cost, since same grade of charges should be 

continuously produced to reduce the amount of contaminated steel between different grades.  As 

a result, solutions after genetic operators rarely become non-dominated solutions.  In order to 

enhance the ability of genetic operation, a local search procedure is introduced after genetic 

operations.  In the proposed algorithm, we optimize the sequence of charges within each cast 

such that contaminated steel is minimized. Although this optimization does not consider the 

other objectives, such as the minimum inventory capacity penalty and process capacity penalty, 

the change of charge sequence within same cast does not affect these objective values. 

Traditional NSGA-II is shown in Fig. 4.  Local search modifications to NSGA-II are 

depicted by Fig. 5.  We designate as NSGA-II GO the algorithm obtained by adding local search 

to NSGA-II. The same ideas of local search can be included in other types of evolutionary 

algorithms, e.g.   they can be applied to multi-objective shuffled frog leaping algorithm (Li et al., 

2012) as shown in Fig. 6. 
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Fig. 4 Flowchart of the proposed NSGA-II for a cast sequence problem (Algorithm 1, NSGA-II 

GO)) 
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Fig. 5 Flowchart of the proposed NSGA-II with JG transposition operation for a cast sequence 

problem (Algorithm 2, NSGA-II JP) 
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Fig. 6 Flowchart of the proposed multi-objective shuffled frog leaping algorithm for a cast 

sequence problem (Algorithm 3, MOSFL) 
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6. Case Studies 

 

In this section, we compare the results of the three algorithms presented in Figures  4, 5, 

and 6: (i) NSGA-II with local search, i.e. NSGA-II GO,   (ii) NSGAS-II with gene transposition 

operation, i.e. NSGA-II-JG, and (iii) multi-objective shuffle frog leaping algorithm with local 

search (named MOSFL), respectively.  All the case studies have been computed on a machine 

running Windows 2007 Professional (Intel® Core(TM) i7-4930 CPU @ 3.40GHz and 16.0 Gb 

RAM). All three algorithms use initial solutions which are obtained by solving 4 single 

optimization problems as shown in Table 4.  Furthermore, as described in the previous section, 

the local search procedure which optimizes the sequence of charges within each cast is included 

in these three algorithms.  The number of generations and populations size are set to be 300 and 

300 respectively for all test examples we considered in this study. 

All problems considered in this paper, including both small test problems and real-steel 

production scheduling problem, were solved by weighted sum methods in our previous paper 

(Mori & Mahalec, 2015). 

 

6.1 Small test problems 

 

The small test problems are used to compare three algorithms of NSGA-II-GO, MOSHL 

and NSGA-II-JG by investigating each solution one by one.    Table 5 shows the size of full-

space MILP model and Table 6 show the quality loss matrix ),(C ji . 

 

Table 5 Size of three small test problems 

Example Horizon 

[days] 

Total 

Term [days] 

# Casts # Grades Full space MILP model 

# Conts # Bins 

1 7 10 7 3 526 126 

2 5 7 5 7 1,537 210 

3 6 8 6 7 1,857 252 

Horizon=length of days for which the production scheduling are made, total term=length of days for which the 

production scheduling deals with the orders, #Casts = number of casts, #Grades = number of casts, #Conts = number 

of continuous variables, and #Bins = number of binary variables 
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Table 6 Quality loss matrix ),(C ji  

(a) Example #1 

Grade 1 2 3 

1 0 1 2 

2 2 0 2 

3 1 3 0 

 

(b) Example #2 and #3 

Grade 1 2 3 4 5 6 7 

1 0 1 2 1 3 1 1 

2 2 0 1 1 2 2 3 

3 2 1 0 1 1 1 1 

4 1 2 2 0 1 2 1 

5 1 1 1 2 0 1 2 

6 1 2 1 2 2 0 2 

7 2 2 1 1 3 2 0 

 

(c) Example #4 

Grade 1 2 3 ... 21 22 23 

1 0 1 1 ... 1 1 1 

2 2 0 1 ... 1 1 1 

3 2 2 0 ... 1 1 1 

... ...  ... ... .. ... ... ... 

21 2 2 2 ... 0 1 1 

22 2 2 2 ... 2 0 1 

23 2 2 2 ... 2 2 0 

 

(c) Example #5 

Grade 1 2 3 ... 34 35 36 

1 0 1 1 ... 1 1 1 

2 2 0 1 ... 1 1 1 

3 2 2 0 ... 1 1 1 

... ...  ... ... .. ... ... ... 

34 2 2 2 ... 0 1 1 

35 2 2 2 ... 2 0 1 

36 2 2 2 ... 2 2 0 

 

Example #1 

 



PhD Thesis – Junichi Mori  McMaster University – Chemical Engineering 

166 
 

 Non-dominated solutions computed by NSGA-II-GO, MOSHL and NSGA-II-JG are 

shown in Table 7 to 9 respectively.  Further, these non-dominated solutions are plotted in Figs. 7 

and 8. It can be seen that NSGA-II-JG computes much better Pareto optimal frontier than the 

other two methods in terms of the number of non-dominated solutions and the solution diversity. 

 

Table 7 Non-dominated solutions computed by NSGA-II-GO for example #1 

No 
1f  2f  3f  Initial Sol ? 

1 3 180 50 Yes 

2 3 720 20  

3 4 180 40  

4 4 220 30  

5 4 580 20  

6 4 2070 10  

7 5 60 0 Yes 

8 6 0 10 Yes 

9 7 0 0 Yes 

 

Table 8 Non-dominated solutions computed by MOSFL for example #1 

No 
1f  2f  3f  Initial Sol ? 

1 3 180 50 Yes 

2 5 60 0 Yes 

3 6 0 10 Yes 

4 7 0 0 Yes 
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Table 9 Non-dominated solutions computed by NSGA-II- JG for example #1 

No 
1f  2f  3f  Initial Sol ? 

1 1 640 100  

2 1 940 40  

3 2 320 110  

4 2 420 100  

5 2 440 20  

6 2 1040 10  

7 2 1890 0  

8 3 180 50 Yes 

9 3 240 30  

10 3 640 10  

11 

12 

3 710 0  

12 4 120 40  

13 4 210 30  

14 4 320 0  

15 5 60 0 Yes 

16 6 0 10 Yes 

17 7 0 0 Yes 

 

 

Fig. 7 3D-plot comparison of non-dominated solutions for example #1 
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Fig. 8 2D-plot comparison of non-dominated solutions for example #1 

 

 When comparing NSGA-II-GO and NSGA-II-JG transposition operation, some non-

dominated solutions in NSGA-II-GO are dominated by the solutions in NSGA-II-JG. For 

instance, #2 solution in NSGA-II-GO is dominated by #10 and #11 solutions.  #3 solution in 

NSGA-II-GO is also dominated by #12 solution.   These results mean that the NSGA-II-GO 

cannot find richer non-dominated solutions in terms of optimality while NSGA-II-JG can find 

better non-dominate solutions. 

 As for MOSFL, the number of non-dominated solutions is quite small.  In fact, all non-

dominated solutions are initial solutions computed by solving problems described in Table 4. 

Therefore, in this example MOSFL does not work at all. 

 In order to check the robustness of our proposed algorithm against random number 

generator, NSGA-II-GO, MOSHL and NSGA-II-JG are implemented with using different 

random seed.  The results are shown in Fig. 9 and 10.  As these figures indicate, the random 

number generator does not have much effect on the quality of the Pareto optimal solutions.  
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Fig. 9 3D-plot comparison of non-dominated solutions for example #1 (random seed = 2) 

 

 
Fig. 10 2D-plot comparison of non-dominated solutions for example #1 (random seed = 2) 

 

 Sets of non-dominated solutions computed from above three algorithms with randomized 

initial solutions are plotted in Figs. 11 and 12.  It can be seen that without good initial solutions 

the computed non-dominated solutions become worse.  These results also indicate that NSGA-II-

JG performs much better than the traditional genetic operation.  In addition, it is clear that 

MOSFL is not able to find rich non-dominated solutions set compared with NSGA-II-GO and 

NSGA-II-JG for sequence optimization problems in terms of optimality.  We also note that 

NSGA-II-JG also computes one solution which exactly equals to the result of the solutions 

obtained by using the parallel SA with shuffle frog leaping algorithm in our work with single 

objective function optimization (Mori & Mahalec, 2015). 
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Fig. 11 3D-plot comparison of non-dominated solutions with randomized initial solutions for 

example #1 

 

Fig. 12 2D-plot comparison of non-dominated solutions with randomized initial solutions for 

example #1 

 

 

Example #2 

   

 Shown in Tables 10 to 12 are non-dominated solution obtained by NSGA-II-GO, 

MOSFL and NSGA-II-JG ; these non-dominated solutions are plotted in Figs. 13 and 14. It can 

be seen that all of these three methods are able to find 2 non-dominated solutions.  That is 

because the number of non-dominated solutions in this example is very small. For example, in 

Table 4, 1f of #2 solution is 3 while the other objective function values are zero. It means that the 

there are no non-dominated solutions whose 1f  is greater than 3.  
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Table 10 Non-dominated solutions computed by NSGA-II –GO for example #2 

No 
1f  2f  3f  Initial Sol ? 

1 2 162.69 0 Yes 

2 3 0 0 Yes 

 

Table 11 Non-dominated solutions computed by MOSFL for example #2 

No 
1f  2f  3f  Initial Sol ? 

1 2 162.69 0 Yes 

2 3 0 0 Yes 

 

Table 12 Non-dominated solutions computed by NSGA-II-JG for example #2 

No 
1f  2f  3f  Initial Sol ? 

1 2 162.69 0 Yes 

2 3 0 0 Yes 

 

 

Fig. 13 3D-plot comparison of non-dominated solutions for example #2 
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Fig. 14 2D-plot comparison of non-dominated solutions for example #2 

 

Example #3 

   

 Non-dominated solutions computed by NSGA-II-GO, MOSFL and NSGA-II-JG are 

shown in Tables 13 to 15, respectively.  Corresponding plots of these non-dominated solutions 

are presented in Figs. 15 and 16. Similarly to the previous test case, all three methods find two 

non-dominated solutions due to the same reasons as for example #2. 

 

Table 13 Non-dominated solutions computed by NSGA-II-GO for example #3 

No 
1f  2f  3f  Initial Sol ? 

1 3 4.8029 0 Yes 

2 4 0 0 Yes 

 

Table 14 Non-dominated solutions computed by MOSFL for example #3 

No 
1f  2f  3f  Initial Sol ? 

1 3 4.8029 0 Yes 

2 4 0 0 Yes 

 

Table 15 Non-dominated solutions computed by NSGA-II-JG for example #3 

No 
1f  2f  3f  Initial Sol ? 

1 3 4.8029 0 Yes 

2 4 0 0 Yes 
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Fig. 15 3D-plot comparison of non-dominated solutions for example #3 

 
Fig. 16 2D-plot comparison of non-dominated solutions for example #3 

 

 CPU times and the number of non-dominated solutions for all the above small examples 

are provided in Table 16.  There is no large difference in CPU times among three algorithms; the 

CPU times are from approximately 700 seconds to approximately 1000 seconds, which is much 

smaller than the times required by the weighted sum methods to obtain the same number of non-

dominated solutions. 
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Table 16 Comparison of CPU time and number of non-dominated solutions for small examples  

Example Algorithm CPU time [s] # Non-

Dominated 

Solutions 
Computation of 

Initial solution 

MOEA Total 

 

1 

(random seed = 1) 

NSGA-II-GO  

97 

817 914 9 

MOSFL 834 931 4 

NSGA-II-JG 746 843 17 

1 

(random seed = 2) 

NSGA-II-GO  

97 

938 1035 6 

MOSFL 1085 1182 4 

NSGA-II-JG 887 984 21 

2 

(random seed = 1) 

NSGA-II-GO  

89 

701 790 2 

MOSFL 721 810 2 

NSGA-II-JG 678 767 2 

3 

(random seed = 1) 

NSGA-II-GO  

227 

784 1011 2 

MOSFL 1,028 1255 2 

NSGA-II-JG 803 1030 2 
  #Non-Domi Sol = number of non dominated solutions. 

 

 

6.2 Industrial scale steel-plate production scheduling problems 

 

The real-world steel-plate production data have been used to examine the effectiveness of 

the proposed optimization algorithms.  Data used in the following two examples have been 

derived from the industrial data in order to protect the proprietary data while maintaining the 

structure of the original data.  We will present two examples of scheduling one week of a steel-

plate production having 23 and 36 steel grades, respectively.  The production capacities and the 

size of full space MILP models are shown in Table 17 and 18 respectively.  The number of pots 

per cast is 6, the size of the pot is 200 ton.  The plan operates at full capacity of 3600 ton per day, 

therefore the number of casts per day is 3. 
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Table 17 Process capacity 

Mill Processes Production Capacity 
Steel making mills # casts 3[casts per day] 

# charges 6[charges per cast] 

Size of a Charge  200[ton/charge] 

Steel plate making mills Process A 350[ton/day] 

Process B 700[ton/day] 

Process C 1,200[ton/day] 

Process D 500[ton/day] 

Process E 400[ton/day] 

Process F 100[ton/day] 

Process G 1,500[ton/day] 

Process H 150[ton/day] 

Process I 100[ton/day] 
#casts = number of casts and  #charges = number of charge 

 

Table 18 Size of two industrial test problems 

Test 

problem 

Horizon 

[days] 
Total 

term 

# Casts # Grades Full space MILP model 

# Cont. 

Var. 

# Binary 

Var. 

4 7 13 21 23 59,270 2,898 

5 7 13 21 36 141,866 4,536 
Horizon=length of days for which the production scheduling are made, total term=length of days for which the 

production scheduling deals with the orders, #Casts = number of casts, #Grades = number of casts, #Conts = number 

of continuous variables, and #Bins = number of binary variables 

 

Example #4 

  

Example #4 determines the cast schedule for 23 grades of steel for one week scheduling 

horizon.  Solution from the top level LP model is presented in Fig. 17, where each distinctly 

colored quadrangle corresponds to a specific pot of some grade of steel.  Further, in Fig 18 we 

show the cast schedule of the initial solution where  ],,[ 321

balancedbalancedbalanced wwww . 
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Fig. 17 Top level LP solution (Approximate scheduling)  

 

Fig. 18 Cast schedule computed by two-level algorithm with the modified parallel SA for 

example #4 ( ],,[ 321

balancedbalancedbalanced wwww ) 

 

Scheduling task is to optimize the sequencing of these pots with respect to the three 

objective functions, Equations 4, 5 and 6. 

During initialization, modified parallel simulated annealing modified with shuffled frog 

leaping algorithm (Mori and Mahalec, 2016) is employed to solve four single-objective 

optimization problems described in Table 4.  These solutions are employed as initial solutions 
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for the proposed multi-objective evolutionary algorithms for cast sequence problems, i.e.NSGA-

II-GO, MOSFL and NSGA-II-JG.  It should be noted that such initialization is essential for good 

performance in solving the multi-objective scheduling problem.    

The non-dominated solutions from above three algorithms are plotted in Figs. 19 and 20.  

It can be observed that NSGA-II-JG is able to obtain a wide range of non-dominated solutions 

while the non-dominated solutions of NSGA-II-GO are distributed in the area with low cast 

sequence penalty and high customer due date penalty. 

 

Fig. 19 3D-plot comparison of non-dominated solutions for example #4 

 
Fig. 20 2D-plot comparison of non-dominated solutions for example #4 

 

CPU times and the number of non-dominated solutions are shown in Table 19.   We note 

that 18 out of 45 solutions of NSGA-II-GO are dominated by NSGA-II-JG and thus NSGA-II-

GO obtained only 27 non-dominated solutions which are non-dominated with the solution 
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obtained by NSGA-II-JG.  Meanwhile, since any solutions of NSGA-II-JG are not dominated by 

NSGA-II-GO, 163 solutions from NSGA-II-JG are non-dominated with the solution from 

NSGA-II with GO.  

 

Table 19 Comparison of CPU time and number of non-dominated solutions for industrial 

examples 

Test 

set 

Algorithm CPU time [s] # of Non-

Dominated 

Solutions 
Computation of 

Initial solution 

MOEA  Total 

4 NSGA-II-GO  

1905 

2647 4552 43 

MOSFL 1362 3267 5 

NSGA-II-JG 2072 3977 163 

5 NSGA-II-GO  

 

2951 

2356 5307 79 

MOSFL 1239 4190 6 

NSGA-II-JG 2044 4995 173 

NSGA-II-GO & 

NSGA-II-JG 

- - 250 

 

Finally, let’s note that the solution obtained by for the weighted sum single objective via 

parallel simulated annealing modified by shuffled frog algorithm (Mori and Mahalec, 2016) is 

one of the non-dominated solutions. 

 

Example #5 

 

 Example #5 has 36 grades of steel which need to be scheduled, which increase the 

computational difficulties in comparison to test example #4. Similarly to example #4, we employ 

parallel simulated annealing with shuffle frog leaping algorithm in order to obtain rich initial 

solutions described in Table 4.  Then, these initial solutions are employed for NSGA-II-GO, 

MOSFL and NSGA-II-JG.  Figs. 21 and 22 show the non-dominated solutions from above three 

algorithms.  The number of non-dominated solutions is provided in Table 20.  It can be observed 

that NSGA-II-GO and NSGA-II-JG are able to obtain richer non-dominated solutions than 

MOSFL. Comparing the results from NSGA-II-GO and NSGA-II-JG, 23 out of 79 solutions of 

NSGA-II-GO are dominated by the solutions of NSGA-II-JG and thus NSGA-II-JG obtained 56 

non-dominated solutions which are non-dominated by the solution obtained by NSGA-II-JG.  

Since only 6 solutions of NSGA-II-JG are dominated by NSGA-II-GO, we see that 167 solutions 
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from NSGA-II-JG are non-dominated by the solutions from NSGA-II with GO operations.   

These results show that NSGA-II-JG obtains significantly richer set of non-dominated solutions 

than NSGA-II-GO.  It should be noted that NSGA-II-JG cannot find some non-dominated 

solutions which can be obtained by NSGA-II-GO.  In fact, NSGA-II-GO is able to find the 

solutions whose objective value 1f  is smaller than any solutions obtained by NSGA-II-JG.  In 

this case, we can easily combine these two sets of non-dominated solutions and run non-

domination sorting of the combined solution sets.  The combined solutions (total of 250) 

produced by NSGA-II-GO and NSGA-II-JG are plotted in Figs. 23 and 24 while CPU times and 

the number of non-dominated solutions are shown in Table 20.   Once again, the solution 

obtained by for the weighted sum single objective via parallel simulated annealing modified by 

modified shuffled frog algorithm is one of the non-dominated solutions. 

 

Fig. 21 3D-plot Comparison of non-dominated solutions for example #5 
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Fig. 22 2D-plot Comparison of non-dominated solutions for example #5 

 

Fig. 23 3D-plot of non-dominated solutions computed by NSGA-II-GO & NSGA-II-JG for 

example #5 

 

Fig. 24 2D-plot of non-dominated solutions computed by NSGA-II-GO & NSGA-II-JG for 

example #5 
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7. Conclusions 

 Continuous casting of steel plates produces a large number of different grades of steel 

which are rolled into plates per customer orders.  Each grade of steel is produced in fixed size 

(pot size) batches.  In order to eliminate contamination at the interface of two steel grades, it is 

desirable to continue producing the same grade of steel as long as possible.  Production should 

meet desired delivery dates and also maintain inventories of steel plates above some minimum 

levels.  Our previous work (Mori and Mahalec, 2016) has shown that the scheduling problem 

considered here cannot be solved for industrial scale problems by using MILP solvers.  

Moreover, further reflection on our prior work has lead us to conclude that a scheduler needs to 

understand the trade-offs between various scheduling objectives.  Considerations of the trade-off 

between the cast sequence penalty, customer due date penalty and production capacity penalty is 

enabled via non-dominated set of solutions of the multi-objective formulation of the schedule 

optimization.  Similarly to the single objective version, the multi-objective version of the 

industrial scale problem cannot be solved by MILP solvers.  Hence, we have introduced in this 

work two new multi-objective evolutionary algorithms (MOEA) for solving the multi-objective 

scheduling of the steel plates scheduling:  

 (i) NSGA-II GO is non-dominated sorting genetic algorithm NSGA-II modified by 

including the local search, and  

(ii) NSGA-II-JG is a non-dominated sorting genetic algorithm NSGA-II modified by 

including the local search and jumping gene transposons.  

In order to apply the population based MOEA, job-to-position representation is employed 

to represent the sequence.  In order to generate a large diverse Pareto optimal set, instead of 

using the traditional genetic operators such as SBX, we employ the cut-and-paste and copy-and-

paste transposons.  In addition, local search procedure within a cast is used after genetic 

operations in order to improve exploration of the neighboring solutions.  Since good initialization 

is important for large scale problems, we have employed the modified parallel simulated 

annealing with shuffled frog leaping to generate the initial solutions (Mori and Mahalec, 2016).   

 Real life steel production process data have been used to examine the effectiveness of all 

three multi-objective scheduling algorithms. The computational results demonstrate that the 

proposed NSGA-II-JG algorithm finds the largest set of non-dominated solutions.  NSGA-II GO 

algorithm finds a smaller set of non-dominated solutions, while MOSFL exhibits significantly 
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worse performance than both NSGO-II GO and NSGA-II-JG.  Our computational results show 

that both NSGA-II-JG and NSGA-II GO perform much better than the widely used multi-

objective shuffled frog leaping algorithm and can solve problems of the size not tractable by the 

MILP solvers.  Since some of the non-dominated solutions computed by NSGA-II GO are 

different that those computed by NSGA-II JG, the best approach is to compute the schedules by 

using both of these new algorithms and  combine their sets of non-dominated solutions. 

 Proposed approach is able to compute a large set of non-dominated solution of the 

industrial scale multi-objective scheduling of steel plates production, thereby enabling good 

understanding of the trade-offs between different objectives.  

 . 
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Chapter 9 Additions based on Comments during Defense 

9.1 Tennessee Eastman Chemical process data generations 

In chapter 2 and 4, the Tennessee Eastman Chemical process is used to examine the 

effectiveness of the proposed methods [1].  This process has six major unit operations in this 

process including a feed mixer, a exothermic 2-phase reactor, a product condenser, a 

vapor-liquid separator, a recycle compressor and a product stripper.  Two liquid products, G 

and H, are produced from four gaseous reactants A, C, D and E along with a byproduct of F.  

An inert B is fed into the reactor where G and H are formed.  The reactor product stream 

passes through a partial condenser to cool the reactor product and then the product is fed to a 

vapor-liquid separator.  While non-condensed components are recycled to the reactor feed 

stream through a compressor, condensed components are fed to a stripper to remove 

remaining reactants.  The problem statement defines operational process constraints that the 

control system should respect, 20 types of process disturbances and six operating modes at 

different G/H mass ratios in the product stream.  Mode 1 (basic operating mode) of 50/50 

G/H mass ratio is used in chapter 2 and 4, while mode 3 of 90/10 G/H mass ratio is used in 

chapter 4. 

There are 41 measurements variables and 12 manipulated variables in the process.  A 

decentralized control strategy is adopted to 1) maintain process variables at desired values, 2) 

keep process operating constraints, 3) minimize variability of product rate and quality in the 

product stream during disturbance, 4) minimize movement of values which affect other 

processes and 5) recover from disturbances such as production rate changes or product mix 

changes.  As for process operating constraints, reactor pressure, reactor level, reactor 

temperature, product separator level and base level are controlled to keep them within normal 

operating ranges.  Although high and low shutdown limits are employed to shutdown the 

process when the process conditions become out of control, in all test cases in this thesis, 

even after disturbances are added, all process variables never get out of their shutdown limits 

and they are controlled to keep themselves within normal operating ranges. 

9.2 Information of Nelder-Mead algorithm 
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Since the complex integrals Eq. (23)-(25) in chapter 2 for mutual information are difficult to 

calculate analytically, a numerical optimization method termed as Nelder-Mead algorithm is 

adopted to compute a decomposition matrix [2].  In the Nelder-Mead algorithm, the worst 

vertex    is 1) reflected, 2) reflected and expanded or 3) contracted to the new point      

as below: 

                       (1) 

where    is the centroid of the best side which is the one opposite the worst vertex    and 

  is a user-specified parameter.  The last operation is that 4) all the points except for the 

best point shrink to the best point as below: 

                         (1) 

where        is a new vertex corresponding to the j-th vertex    and    is the best vertex.  

In this thesis, the parameters   are set as shown in Table 1. 

Table 1: Parameters of Nelder-Mead algorithm in chapter 2 

Operator Reflect Reflect and expand Contract Shrink 

Parameter   2.0 0.5 -0.5 0.5 

Further, since the objective function in the mutual information based optimization 

problem may have strong nonlinearity and multi-peak feature, the multi-start optimization 

strategy is used.  The number of initial solutions is set to be 50 and thus 50 runs of 

Nelder-Mead algorithm are carried out to compute a decomposition matrix.  The CPU time 

for each worker is about 5s to 20s. 

9.3 References 

[1] Downs JJ, Vogel EF, Plant-wide industrial process control problem. Comput Chem Eng. 

1993;17:245-255 

[2] Nelder A, Mead R. A simplex method for function minimization. Comput J. 

1965;7(4):308-313 
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Chapter 10 Conclusions and Future Work 

10.1 Conclusions 

In this thesis, several statistical methods of process systems are developed for process 

monitoring, fault diagnosis and planning and scheduling.  In chapter 2, a novel QNGLSP 

method is proposed for industrial process monitoring and fault detection by taking into 

account both measurement and quality variables.  In order to retain the non-Gaussian 

features and relationships between measurement and quality variables, the developed 

decomposition algorithm employs the higher-order statistics of mutual information as the 

objective function when searching latent directions.  After decomposition, I
2
 and SPE 

indices are developed to detect process faults within non-Gaussian latent subspaces.  

Compared to the PLS-based monitoring method, the presented QNGLSP method adopts 

mutual information-based objective function and hence it can effectively extract the 

non-Gaussian relationship between measurement and quality variables.  Even though the 

ICA-based process monitoring method can extract non-Gaussian features, it cannot take into 

account the relationship between measurement and quality variables, which can be achieved 

in the proposed QNGLSP-based monitoring method.  The Tennessee Eastman Chemical 

process has been used to examine the effectiveness of the proposed method.  The result 

demonstrates that the proposed method is superior to the PLS-based monitoring method. 

In chapter 3, the QNGLSP approach is extended for nonlinear batch process monitoring.  

In order to identify nonlinear dynamics, the kernel principal components are extracted from 

unfolded and scaled measurement and quality data sets.  Then, the QNGLSP method is 

implemented in the high-dimensional kernel feature space.  Finally, a set of new monitoring 

indices is developed to capture abnormal behavior of batch process within non-Gaussian 

latent subspace.  In this way, this new method can identify nonlinear dynamics and 

non-Gaussian relationships between measurement and quality variables.  The proposed 

approach is applied to the fed-batch penicillin fermentation process and the process 

monitoring results of the presented method are demonstrated to be superior to those of the 

MKPCA, MKICA and MKPLS based process monitoring approaches. 

In chapter 4, the new probabilistic graphical model based networked process 

monitoring is proposed for the identification of the fault propagation pathways and root-cause 

variables.  The most probable probabilistic graphical model is constructed from historical 
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process data and incidence matrix which does not require in-depth process knowledge. A set 

of monitored variables is broken into smaller subsets in accordance with the incidence matrix 

which is created from the process flow diagram.  Then the most probable subgraph 

corresponding to each subset is computed by using graph samples generated from the Markov 

chain Monte Carlo simulation.  After combination of all the computed subgraphs into the 

one entire network, network parameters are calculated from the historical process data.  

Furthermore, an abnormal likelihood index is developed to detect the faulty operating 

condition.  For the identification of root-cause variables as well as fault propagation 

pathways, the posterior probability of the edge is computed.  The proposed method is 

compared to the PCA/ICA based process monitoring and causal map of transfer entropy 

method in the 12 test cases of the Tennessee Eastman Chemical process.  The results 

demonstrate that the proposed method is superior to the other methods in terms of accurate 

identification of fault propagation pathways and root-cause variable of process upset. 

In chapter 5 and 6, the decision-tree structure CPTs based hybrid Bayesian inference 

technique is developed in order to deal with the network containing both continuous and 

discrete variables, some of which have large cardinalities.  The context-specific CPTs are 

computed by using classification tree algorithm.  Then, operators for computing 

multiplication and marginalization of factors represented by decision-tree structured based 

CPTs are developed.  Belief propagation algorithm with the proposed operators is used for 

the inference in hybrid Bayesian networks.  The proposed algorithm is applied to estimation 

of production times in the steel plate production.  Even though the constructed Bayesian 

network contains large domain discrete nodes, the results show that the proposed algorithm 

can predict the probability distribution of the production times. 

In chapter 7, the results of chapter 6 are applied to production planning and scheduling 

in manufacturing of steel plates.  Concretely, the probability distributions of the production 

loads of downstream processes and production times are utilized to construct the scheduling 

model of the continuous casting.  Since this problem is difficult to solve due to a large 

number of binary variables which are needed to represent exactly process characteristics.  

Therefore, a new two-level algorithm is proposed to reduce the computational cost.  At the 

top level, a multi-period production planning problem is solved.  Since this problem is 

formulated as a mixed integer linear model that does not consider sequence penalties, it is 

much easier to solve than the original full-space MILP model. Then at the lower level, the 

task is to determine the sequences of charges such that there are a minimum number of 
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switched by using parallel SA search.  In order to improve the ability of parallel SA 

algorithm to avoid local optimal solution, this algorithm is combined with the idea of leaping 

from shuffled frog-leaping algorithm.  Real life steel production data have been used to 

examine the effectiveness of the proposed two-level algorithm.  The computational results 

show that the proposed optimization algorithm is sufficiently fast and generates reasonable 

solutions for computation of steel plate continuous casting process. 

In chapter 8, a new multi-objective evolutionary algorithm for the continuous casting 

scheduling problems mentioned in chapter 7 is developed.  The set of solutions that is 

generated by means of the algorithm presented in chapter 7 is used as initial solutions of 

MOEA.  The developed algorithm, NSGA-II JG is a non-dominated sorting algorithm 

NSGA-II that is modified by including local search and jumping gene transpons.  Real 

world steel production data have been used to examine the effectiveness of the proposed 

algorithm.  The computational results demonstrate that the proposed NSGA-II JG is the 

preferred choice for solving large scale multi-objective scheduling of continuous casting. 

10.2 Future work  

Process monitoring and diagnosis methods are proposed in chapters 2, 3 and 4.  The 

process fault can be detected and the root-cause variables can be identified by using the 

models which are constructed from the normal process data.  When applying the proposed 

models to real-world industrial processes, the accuracy and precision of those models should 

be verified regularly and then the models should be rebuilt from recent historical process data 

if necessary.  However, it takes time and effort for process engineers to maintain the model 

accuracy.  Therefore, maintenance free models are strongly desired in industrial practice.  

Future research may focus on development of the sequential and online learning algorithm in 

order to avoid the maintenance of the models.  In addition, the proposed method will be 

applied to real industrial process data, especially for process monitoring of blast furnace 

operations in steel plants, which has been studied for years but are still very difficult to detect 

fault operations and isolate the root-cause variables. 

Inference algorithm in hybrid Bayesian networks with large discrete and continuous 

domains is developed and applied for prediction of the process times and the production 

loads in steel plants.  To handle Bayesian networks which include continuous parent nodes 

with discrete child nodes, the corresponding continuous variables are discretized as finely as 
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needed, which can be achieved because the domain size of discretized variable does not 

increase the number of parameters due to the proposed decision-tree structured CPTs.  

While discretization of variables captures rough characteristics of the distribution of 

continuous variables, it can be efficiently used for probabilistic inference.  A set of threshold 

values that partitions continuous variables into a finite number of intervals has strong effect 

on inference performance.  However, in this thesis, continuous variables are partitioned at 

equal intervals in accordance with the user-specified number of intervals.  Therefore, it is 

desirable to choose the threshold values that can enhance the inference performance in 

Bayesian networks.  

In the present work of planning and scheduling of steel plate production, near optimal 

solutions can be obtained by decomposing the original problem into two levels.  At the 

lower level, the sequence of charges is optimized using meta-heuristic approach with 

job-to-position representation.  Meanwhile, if the lower level problem can be formulated as 

the travelling salesman problem (TSP), this sequence optimization problem may be solved 

much faster than the proposed algorithm since heuristic algorithms for TSP such as greedy, 

2-opt, 3-opt, genetic algorithms and neural network approach have been well studied for 

years and some of them show good performance.  In addition, future research may also 

focus on the multi-objective TSP for which the aim is to obtain the set of efficient solutions. 


