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Abstract

In this thesis we explore three applications of chance constrained optimization in op-

erations management. We first investigate the effect of consumer demand estimation

error on new product production planning. An inventory model is proposed, whereby

demand is influenced by price and advertising. The effect of parameter misspecifi-

cation of the demand model is empirically examined in relation to profit and service

level feasibility, and conservative approaches to estimating their effect on consumer

demand is determined. We next consider optimization in Internet advertising by

introducing a chance constrained model for the fulfillment of guaranteed display In-

ternet advertising campaigns. Lower and upper bounds using Monte Carlo sampling

and convex approximations are presented, as well as a branching heuristic for sample

approximation lower bounds and an iterative algorithm for improved convex approx-

imation upper bounds. The final application is in risk management for parimutuel

horse racing wagering. We develop a methodology to limit potential losing streaks

with high probability to the given time horizon of a gambler. A proof of concept

was conducted using one season of historical race data, where losing streaks were

effectively contained within different time periods for superfecta betting.
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Chapter 1

Introduction

Chance constrained optimization is a branch of mathematical programming which

considers the uncertainty of input data. In order to accommodate this randomness,

affected constraints must be satisfied with a given probability. A general chance

constrained program can be formulated as

min f(x) (1.1)

s.t. P(F (x, ξ) ≤ 0) ≥ 1− α

x ∈ X

where α is an error tolerance, X is a deterministic feasible region and ξ is a random

vector. Chance constrained programs are in general difficult to solve due to their non-

convexity and the numerical integration required to evaluate the chance constraint,

see Pagnoncelli et al. [50]. Exceptions include joint chance constraints of the form

P(Tx ≥ ξ) ≥ 1 − α where ξ follows a log-concave distribution, which are convex,

and individual chance constraints with random data following a multivariate normal
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distribution of the form P(xT ξ ≤ 0) ≥ 1−α, which can be formulated as second order

conic constraints [53].

1.1 Approximation techniques

There are two general techniques for approximating (1.1): the sample approxima-

tion, using Monte Carlo sampling to generate an approximate mixed-integer program

(MIP), and convex approximations, which rely on probability inequalities to generate

convex regions which either restrict or relax the feasible region.

1.1.1 Sample approximations

(1.2) is a sample approximation of (1.1). N independent samples of ξ are gener-

ated, denoted as ξk for k = 1, ..., N . The first three constraints in (1.2) enforce that

F (x, ξ) ≤ 0 in at least (1− ε)N scenarios, which approximates the chance constraint

P(F (x, ξ) ≤ 0) ≥ 1− ε.

min f(x) (1.2)

s.t. F (x, ξk)zk ≤ 0 k = 1, ..., N

N∑
k=1

zk ≥ (1− ε)N

z ∈ {0, 1}N

x ∈ X

We can obtain lower and upper bounds with high probability by solving (1.2) with an

appropriate choice for N and ε. Luedtke and Ahmed [39] gave results for achieving a

2
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lower bound for general chance constrained programs and upper bounds under certain

conditions for the distribution of ξ and properties of F (x, ξ). Calafiore and Campi

[14] determined the number of samples required to calculate a feasible solution with

high probability with ε = 0, and an improved result allowing non-zero ε was given by

Campi and Garatti [15] under the assumption that (1.2) with ε = 0 is feasible for any

finite number of samples N .

1.1.2 Convex approximations

Pintér [51] first proposed using classic probability inequalities (e.g. Chebyshev, Bern-

stein, Hoeffding) to conservatively approximate chance constraints. Nemirovski and

Shapiro [48] further developed convex conservative approximations, resulting in a gen-

eral class of approximations, and what is called the Bernstein approximation assuming

the random variables are independent. Ahmed [2] developed a class of convex relax-

ations, resulting in lower bounds to (1.1) and the Bernstein relaxation, using a similar

technique.

1.2 Solution techniques

Assuming f(x) is a convex function and X is a convex region, convex approximations

result in convex optimization programs which can be efficiently solved using interior

point methods. Sample approximations result in MIPs which are challenging. Solution

techniques assuming ξ has a finite distribution (which includes sample approximations

of general chance constrained programs) have been developed, using valid inequalities

and branch-and-cut algorithms. Luedtke et al. [40] developed strong valid inequalities

assuming only a random right-hand side of the form P(Tx ≥ ξ) ≥ 1 − α, with a

deterministic matrix T . Some of the results of [40] were further developed into a

3
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specialized branch-and-cut algorithm in [38] to solve chance-constrained programs for

finite distributions with equal probabilities. Using a partial ordering of the set of

scenarios, a precedence constrained knapsack polyhedron was defined by Ruszczyński

in [55]. Valid inequalities were developed for general chance constrained programs

with a finite distribution and used in a branch-and-cut algorithm.

1.3 Thesis overview

The purpose of this thesis is to make contributions in modeling with chance con-

straints and their solution techniques, with a focus on applications in operations

management. In the next chapter, an inventory model is proposed where demand is

influenced by price and advertising, and the effect of consumer demand estimation

error on new product production planning is investigated. In Chapter 3, we introduce

a chance constrained optimization model for the fulfillment of guaranteed display In-

ternet advertising campaigns. We discuss and present theoretical and computational

features of the model via Monte Carlo sampling and convex approximations. This

work has been previously published in Omega: The International Journal of Man-

agement Science, see [21]. Chapter 4 considers risk management in parimutuel horse

racing wagering. Through the use of a chance constraint, we incorporate the time

horizon of the gambler, enforcing an upper bound on potential losing streaks with

high probability.

4



Chapter 2

Imperfect demand estimation for

new product production planning

2.1 Introduction

In this chapter we investigate the effect of model parameter estimation error to deter-

mine best practices when estimating the effect of price and advertising in relation to

inventory management [70] for new products. We consider a single period inventory

model with a minimum service level constraint [17], with the objective of maximizing

profit under consumer demand uncertainty.

The Bass model [5] is a differential equation which is widely used to forecast new prod-

uct adoption. Extensions have been made, such as the generalized Bass model [6],

which incorporates both price and advertising. For this paper we use an approxima-

tion of the piecewise-diffusion model (PDM) of Nui [49], which extends the original

Bass model by incorporating demand uncertainty, as well as price and advertising,

resulting in a superior fit compared to previous models in empirical testing.
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In the paper of Lim et al. [33], the misestimation of supply chain disruption prob-

abilities was investigated. It was found that overestimating disruption probabilities

reduces the expected cost when compared to underestimation. When faced with es-

timation uncertainty, this presents the managerial insight that having a bias towards

overestimation prevents excessive costs. In the problem setting of this paper, the esti-

mation uncertainty lies in the consumer demand model. It is unclear what the effect

of the estimation error of the consumer demand’s response to price and advertising is

on profit and service level feasibility, and when faced with uncertainty, what the con-

servative approach to estimation would be. In an attempt to answer these questions,

we conduct an empirical study, whereby the optimal solution is found for our inven-

tory model under what is considered to be the true consumer demand dynamics, after

which optimal solutions are found under biased responses to price and advertising to

determine the effect of misestimation.

We present an overview of the PDM and briefly trace its roots in Section 2.2. In

Section 2.3 the inventory optimization problem is presented as well as the formulation

of its approximation. Included are details of the calibration of the PDM, the problem

instances which we are interested in, as well as a justification of our approximation in

terms of confidence intervals of the error. Details of the computational experiments

are described in Section 2.4, with a commentary on the results. The conclusion is

summarized in Section 2.5, with the results of the experiment graphically presented

in the appendix in Section 2.6.

6
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2.2 Piecewise-diffusion model (PDM)

The Bass model proposes that the number of adopters through time, N(t), can be

modeled by the differential equation d
dt
N(t) = (m−N(t))(p+ q

m
N(t)), where m is the

market size, p is the coefficient of innovation, which is the consumer’s intrinsic desire to

purchase the product, and q is the coefficient of imitation, which models the influence

of existing adopters on the consumer, whose solution is N(t,m, p, q) = m 1−e−(p+q)t

1+(q/p)e−(p+q)t .

The stochastic Bass model (SBM) assumes that consumer adoption follows a pure

birth process, where Am(t) is the cumulative number of adopters by time t. The tran-

sition rate from adoption j to j + 1 is λmj = (m− j)(α+ β
m−1

j), where α and β, the

intrinsic adoption rate and the induction rate, can be interpreted in the same manner

as p and q in the Bass model. Let this be referred to as an SBM with specification

{m,α, β}. A central limit theorem is derived in [49], where it is proved that asm→∞,

Am(t)−N(t,m,α,β)√
ψ(t,m,α,β)

converges in distribution to a standard normal random variable, where

ψ(t,m, α, β) = m (1+β/α)e−2(α+β)t

[1+(β/α)e−(α+β)t]4
{e(α+β)t−1+2(β

α
)(α+β)t+(β

α
)2(1−e−(α+β)t)}, so that

for m sufficiently large, we can approximate Am(t) as normal with mean N(t,m, α, β)

and variance ψ(t,m, α, β).

The piecewise stochastic Bass model assumes a sequence of time intervals where adop-

tion levels are observed. Let a be the total number of adopters up to the present time.

The model assumes that of the total available potential adopters m−a, only (m−a)π

are true prospects, where π is the participation fraction, and the remainder are dor-

mant. We can simulate the demand up to time t under this formulation as an SBM

with specification {(m− a)π, α̂, β̂}, where α̂ = α + β
m−1

a and β̂ = (m−a)π−1
m−1

β.

7
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The PDM incorporates the central limit theorem result, as well as an additional vari-

ance component δ2 to capture exogenous disturbance and model misspecification. The

demand over time t is approximated as normal with mean µ = N(t, (m − a)π, α̂, β̂)

and variance σ2 = ψ(t, (m−a)π, α̂, β̂) + δ2t. Using the PDM, we are able to influence

future demand by the choice of the product price p and advertising spending v. Their

effect is modeled by setting π = πm{1 − [(1 − πp
πm

)e−γpv]
( p
pref

)−η} and replacing β by

β[1 + γb(v0 + v)], where πm is the maximum possible participation fraction, πp is the

value of π when p = pref , which is a calibration reference price, η controls price sen-

sitivity, γp controls the impact of v, and γb scales the increase in influence of existing

adopters from the aid of the advertising over the product’s life.

The sales trajectory of room air conditioners from 1949-1961, Table 4.2 of the ap-

pendix, was used in the empirical study in [49], showcasing the superior fit of the

PDM compared to the Bass and generalized Bass models, with a reduction in the

sum of squared errors of 94.3% and 84.4% respectively. This dataset has been used

extensively in the literature, including the papers describing these two past models.

Its popularity stems from having a very generic pattern, with a sales trajectory fol-

lowing what is expected for new products. The PDM was fit to the historical data

using maximum likelihood estimation, while the latter two were fit using nonlinear-

least squares.1 In this paper we utilize the actual history parameterization, fit to this

dataset, which is in Table 2.2 of the appendix.

1For new products with no sales history, this process is not possible, which in part motivated this
research.

8
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2.3 Optimization model

We consider an inventory model with zero lead time, variable ordering cost c, and

salvage price s < c. At the beginning of the time period, we set the price p of

our product, we determine the amount of advertising spending v, a product order

o is placed and received, and then the consumer demand D is realized. We want

to maximize profit subject to satisfying D with probability 1 − θ. Our sales over

the period will be min{o,D}, with our excess supply equal to max{o − D, 0}. The

optimization problem is as follows.

max E(pmin{o,D}+ smax{o−D, 0} − co− v) (2.1)

s.t. P(o−D ≥ 0) ≥ 1− θ

p, v, o ≥ 0

2.3.1 Program formulation

We use a sample average approximation (SAA) to approximate the objective func-

tion [9]. We approximate the expected sales E(min{o,D}) as { 1
N

∑N
j=1 rj : rj ≤

o, rj ≤ µ + σzj}, where zj is a standard normal sample, and the expected excess

supply E(max{o−D, 0}) as {o− 1
N

∑N
j=1 rj}. The chance constraint can be written

as o ≥ µ+ σΦ−1(1− θ), where Φ−1 is the inverse cumulative distribution function of

the standard normal distribution [12]. The objective contains bilinear terms, but for

a fixed value of p, the objective becomes linear, so we only consider a finite number

9
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of values for p.

max
(p− s)
N

N∑
j=1

rj + (s− c)o− v (2.2)

s.t. o ≥ µ+ σΦ−1(1− θ)

rj ≤ o j = 1, ..., N

rj ≤ µ+ σzj j = 1, ..., N

o ≥ 0

pmin ≤ p ≤ pmax

0 ≤ v ≤ vmax

p ∈ Z.

Note that µ and σ are non-convex functions of p and v. We approximate µ and σ

as piecewise linear functions using the logarithmic disaggregated convex combination

(DLog) model of Vielma et al. [62]. A Delaunay triangulation is used to segment

the price and advertising domain into a set of triangles T . DLog requires dlog2|T |e

binary variables, enforcing a convex combination of the vertices of a single triangle to

represent the values of µ and σ.

2.3.2 Inventory scenarios and model calibration

We considered product costs of 60% and 80% of the historical 1949 price of a room air

conditioner, $410, c1 = $246 and c2 = $328, with pmin = $350, pmax = $450, vmax =

$100MM, and s = 0.1c. Our test instances consist of values of θ = {1, 0.5, 0.25, 0.05}.

Our piecewise linear approximation of µ and σ was constructed in the following man-

10
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ner. Beginning with the extreme points of our domain as vertices, we iteratively

added vertices by taking a Delaunay triangulation of the current vertex set and find-

ing the triangle with the centroid with the largest Euclidian norm of the percentage

error between µ and σ, and their piecewise approximations, µ̂ and σ̂. This error was

then compared to the error of the midpoint of each edge of the triangle, with the

point with the largest error added to the vertex set, with p rounded to the nearest

integer. The approximation was limited to the use of 10 binary variables. Taking

20,000 samples to construct empirical distribution functions of the percentage error

of µ̂ and σ̂, confidence intervals were found using the Dvoretzky-Keifer-Wolfowitz in-

equality [46]. For an empirical distribution function with n samples, Fn(x), and any

x ∈ R, P(Fn(x) − F (x) > ε) ≤ e−2nε2 for every ε ≥
√

1
2n

ln 2. This implies that

F (x) ≥ (Fn(x)− ε)(1− e−2nε2). Taking a value of ε = 0.014, confidence intervals were

found to be P(|µ−µ̂
µ
| ≤ 0.0024) ≥ 0.95 and P(|σ−σ̂

σ
| ≤ 0.00050) ≥ 0.95.

The SAA sample size, N = 15, 000, was chosen to ensure the sample problem optimal

objective z∗N is close to the true optimal objective value z∗ with high probability.

We consider the convergence of the most challenging problem, when c = c2 and

θ = 0.05. We are interested in bounding the error due to sampling, so let z(p, v, o) =

(p − s)(µ̂F (o) − σ̂2f(o)) + po(1 − F (o)) + soF (o) − co − v, which is the objective

value of (2.1) using µ̂ and σ̂, where F (x) and f(x) are the cumulative and probability

distribution functions of D ∼ N(µ̂, σ̂2). A confidence interval for the optimality

gap was calculated based on the technique of Mak et al. [44]. M = 20 instances of

(2.2) were solved with optimal values z∗iN and objective values of z(p∗i , v
∗
i , o
∗
i ). Let µ̂NZ

and σ̂NZ , and µ̂Z and σ̂Z , equal the sample mean and standard deviations of z∗iN and

z(p∗i , v
∗
i , o
∗
i ), respectively. When solving a single instance of (2.2) the 1−α confidence

interval of the optimality gap is estimated as [µ̂Z+tα
2
,M−1σ̂Z ≤ z∗ ≤ µ̂NZ +t1−α

2
,M−1σ̂

N
Z ],

11
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where tα
2
,M−1 is the α

2
-critical value of the t-distribution with M−1 degrees of freedom.

The percentage error optimality gap confidence interval with α = 0.05 was found to

be P(
z∗N−z(p,v,o)
z(p,v,o)

≤ 0.0183) ≥ 0.95. Virtually all of the error came from the z∗iN , as each

problem instance found the same optimal p∗i , v
∗
i and o∗i up to 15 significant digits.

2.4 Computational experiments

We are interested in the effect of parameter misspecification on profit and feasibility.

In particular, if the effect is asymmetrical, this gives guidance when having to estimate

consumer behaviour for new products with no prior history. We observe the effect

of underestimating and overestimating the influence of price, η, and the influence of

advertising, γb and γp, which we denote as the vector γ. Given what we consider

a true parameter value x0 from Table 2.2, we repeated the process described in the

previous section, estimating µ and σ by a piecewise linear function and solving (2.2)

for the optimal values p∗, v∗, and o∗ for x = {−0.6x0,−0.3x0, x0, 0.3x0, 0.6x0}, then

the expected profit and the feasibility assuming x0 was observed. All computing was

conducted on a Windows 7 Home Premium 64-bit, Intel Core i5-2320 3GHz processor

with 8 GB of RAM. The implementation was done in Matlab R2012a interfaced with

Gurobi 6.0 using YALMIP [37] dated November 27, 2014. The results are shown

graphically in Figures 1 to 4. Figure 1 displays the profit when optimizing over

different values of η. Figure 2 displays the optimal order quantity o∗ in relation to

the minimum order quantity m required for feasibility, presented as a percentage

difference, o∗−m
m
× 100. Figures 3 and 4 display the same for varying γ.

12
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2.4.1 Results

When η is underestimated, the price is increased to take advantage of the subdued

decrease in demand. As a result, too much is ordered, significantly decreasing profit.

When η is overestimated, price is decreased slightly with an assumed exaggerated in-

crease in demand, again resulting in an excessive order given the price. An interesting

observation is regardless of over or underestimating η, the solution is feasible. So with

the focus now only on profit, from Figure 1, we conclude that it is better to err on

the side of overestimating the effect of price on consumer demand, which decreases

profit at a lower rate than underestimating.

When γ is underestimated, the effect of advertising on demand is underestimated,

resulting in an insufficient quantity of product ordered and an infeasible solution.

The opposite effect occurs when γ is overestimated, resulting in an excessive, but

feasible order. With no regard to service levels, we observe from Figure 3 that it is

more profitable to underestimate rather than overestimate the value of γ, but given

a service level constraint, it is best to overestimate to ensure feasibility.

2.5 Conclusion and future research

This chapter has examined the effect of over and underestimating the influence of price

and advertising on consumer demand in the context of production planning. This is

of particular interest for new products with no prior sales history to aid in decision

making. From an empirical study, we have found that the error is asymmetrical,

and were able to determine prudent manners to estimation. We see the potential for

future work stemming from this research. We have focused on a single period model

in order to capture the relationship between demand factors and profit and feasibility

13
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as clearly as possible, but the extension to a multi-stage inventory model with service

level constraints would be interesting from a modeling and computational aspect. We

examined the two factors of consumer demand which we felt are of most interest

to business managers, but future research could examine the effect of misestimating

other factors, such as the maximum participation fraction πm, which is closely related

to the estimation of the market size.

2.6 Appendix

Year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

Sales (M) 96 195 238 365 1045 1230 1270 1828 1586 1673 1660 1580 1500
Price ($) 410 370 365 388 335 341 320 293 310 279 269 275 259
Advertising ($MM) 0 0.615 1.198 3.196 5.34 14.372 9.391 13.61 16.785 9.238 5.863 3.923 1.493

Table 2.1: Room air conditioner data from 1949-1961

m (103) a0 (103) πp α β δ η πm γp γb

53,291 744 0.005191 0 19.14 39.52 6.218 0.04195 0.009746 0.3704

Table 2.2: Actual history parameterization
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Figure 2.1: Expected profit when optimizing over different values of η.
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Figure 2.2: Percentage from minimum feasible order when optimizing over different
values of η.
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Figure 2.3: Expected profit when optimizing over different values of γ.
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Figure 2.4: Percentage from minimum feasible order when optimizing over different
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Chapter 3

Chance constrained optimization

for targeted Internet advertising

3.1 Introduction

Internet advertising has witnessed growth of 15% in 2012, reaching $36.6 billion in the

United States [26]. This field is markedly different from traditional media used by ad-

vertisers such as radio, television and newspaper. Information such as a user’s profile,

data input and past Internet activity allow marketers to display their advertisements

to targeted audiences, resulting in an efficient use of their advertising budget and an

improved experience for users.

Our work is interested in the planning of guaranteed display Internet advertising by

an ad network, which acts as an intermediary between website publishers and adver-

tisers. Advertisers purchase an advertising campaign from the ad network consisting

of a guaranteed campaign goal, which is the number of ads to be displayed, and a

set of viewer types, which describes who to show the campaign’s ads to. Guaranteed
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display advertising campaigns are typically for brand awareness where the industry

practice is for ad networks to maximize representativeness, which is accomplished by

displaying ads of each campaign as proportionally as possible to all targeted viewer

types, see Yang et al. [69].

Quadratic optimization programs for this problem have recently been developed by

Turner [61] and Yang et al. [69]. In particular, Turner showed that performance

metrics are maximized using a proposed allocation methodology assuming the viewer

supply follows a certain distribution. Our work addresses the uncertainty in viewer

supply using a chance constrained framework. Bharadwaj et al. [8] presented an ex-

tension to [69] tangential to our research, using a two-stage stochastic program with

recourse, with the second stage selling or purchasing ads on the spot market if the

realized supply is greater or less than expected. An alternative objective to spread ads

across campaigns is to maximize entropy, see Tomlin [60]. We pursue the quadratic

objective function approach motivated in part by the availability of advanced and

efficient solvers.

We introduce the model in Section 3.2 and formulate the joint chance constrained op-

timization program to solve the ad network’s problem. Section 3.3 discusses how lower

and upper bounds can be found through sample approximations. In Section 3.4, a

convex approximation program is presented which can be used to find lower and upper

bounds under different Internet viewer distribution assumptions. The results of a com-

putational substantiation of the introduced bounds is discussed in Section 3.5. The

conclusion and future research ideas can be found in Section 3.6 and a nomenclature

in Section 3.7. The appendix in Section 3.8 contains the results of the computational

substantiation.

18



Ph.D. Thesis - M. R. Metel McMaster University - Comp. Sci. and Eng.

3.2 Chance constrained optimization model

3.2.1 Definitions and notation

An online ad network is an aggregator of display ad slots, which it sells to advertis-

ers in partnership with website publishers. For each guaranteed display advertising

campaign, the ad network displays ads to a targeted set of viewers that fit certain

criteria, such as by demographic or interest. Advertisers are able to choose their tar-

geted set of viewers from the set V of viewer types, which partitions the publishers’

viewers by a predefined set of attributes. Namely, the supply of viewers is modeled as

a |V |-dimensional random variable with mean vector µ and covariance matrix Σ. Let

Sv denote the supply of incoming ad slots across all websites in the ad network loaded

by individuals of viewer type v ∈ V , with µv and σv being its mean and standard de-

viation respectively. Let K denote the set of advertising campaigns. For a campaign

k ∈ K, the campaign goal gk is the number of ads to be displayed to viewers, which

we assume is given. For research concerning optimal campaign goal sizes, see [1]. The

subset of viewer types Vk ⊆ V are the viewer types targeted by advertiser k. The

subset of campaigns Kv ⊆ K are the campaigns which target viewer type v.

This problem can be viewed as a stochastic transportation problem with each viewer

type as a source with random supply and each advertising campaign as a sink with

known demand. Each time a user loads a website affiliated with the ad network, a

decision must be made as to which advertisement to display. This paper focuses on

the high level planning stage at the beginning of each optimization time period, de-

termining what proportion of ads from each viewer type to allocate to each applicable

campaign. The decision variables of the ad network are pvk, the proportion of each

viewer type v’s supply allocated to each campaign k ∈ Kv. Another means of plan-
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ning, especially when dealing with campaigns over short time periods, is by allocating

ads to one minute time slots, whereby all visitors during each time period are shown

the same ads, see [20].

3.2.2 Chance constrained optimization program

We introduce an optimization program to find the proportion allocations, pvk, for all

viewer types and targeting campaigns, with an explanation following.

min
∑
k∈K

wk
|Vk|

∑
v∈Vk

(pvk − qk)2 (CC)

s.t.
∑
k∈Kv

pvk ≤ 1 ∀v ∈ V

P(
∑
v∈Vk

Svpvk ≥ gk, ∀k ∈ K) ≥ 1− α

qk =
1

|Vk|
∑
v∈Vk

pvk ∀k ∈ K

pvk ≥ 0 ∀k ∈ K, v ∈ Vk

The first constraint ensures that no more than 100% of a viewer type’s supply is al-

located. The second constraint models the idea of guaranteed campaign fulfillment,

which is interpreted as fulfillment with high probability. In particular, the second

constraint ensures that all campaigns are fulfilled with a probability of at least 1−α,

where α < 0.5 is the un-fulfillment tolerance. The fourth constraint ensures that

proportions are non-negative.

Chance constrained programming has been used in many different fields such as fi-

nance [32] and water resource management [64]. We model campaign fulfillment using

20



Ph.D. Thesis - M. R. Metel McMaster University - Comp. Sci. and Eng.

a chance constraint for two reasons. The first is that the success of an advertising

campaign is unlikely to change dramatically if gk ads or (1− ε)gk ads are displayed for

some small percentage ε, whereas strictly requiring the former may significantly limit

the number of advertising campaigns the ad network can accept. With the parameter

α, the ad network is able to balance advertiser satisfaction with the total number of

advertising campaigns executed. The second, more fundamental reason is that robust

solutions are unlikely to exist without making strong assumptions on the underlying

distribution of Internet viewers. P(∪k∈K{
∑

v∈Vk Sv < gk}) = 0 is a necessary con-

dition for the existence of a robust solution. For distribution assumptions of viewer

type supply where this condition does not hold, e.g., normal, Poisson, log-normal,

there exists a minimal α̂ > 0 such that α ≥ α̂ for (CC) to be a feasible program.

The objective of the ad network is to maximize representativeness by allocating each

campaign k’s ads across all v ∈ Vk proportionally to the supply, which is achieved by

having pvk = pv′k for all v, v′ ∈ Vk. Objectives of the following general form have been

proposed for guaranteed advertising campaigns, see [61, 69],

min
∑
k∈K

∑
v∈Vk

wvk(pvk −
gk
µ̄k

)2

where the wvk’s are weights, µ̄k =
∑

v∈Vk µv is the total expected supply from the

viewer types targeted by campaign k, and gk
µ̄k

is the target proportion. The objective

maximizes weighted representativeness of campaigns, assuming the ad network is

constrained to fulfill campaigns in expectation. Given the chance constraint, an ideal

feasible allocation is unknown a priori. We propose to minimize the variance of each

21



Ph.D. Thesis - M. R. Metel McMaster University - Comp. Sci. and Eng.

campaign’s allocation proportions. The objective is then

∑
k∈K

wk
|Vk|

∑
v∈Vk

(pvk − qk)2

where qk is the mean of the proportions allocated to campaign k from viewer types

in Vk, enforced in the third constraint, and the weights wk represent the campaign’s

priority to the ad network. For example, assume campaign k targets 5 viewer types,

and a feasible solution to (CC) includes the vector of proportions allocated to cam-

paign k, pk = [0.2, 0.3, 0.1, 0.4, 0]. Since qk = 0.2+0.3+0.1+0.4+0
5

= 0.2, the variance of pk

is then 1
5

∑5
v=1(pvk − 0.2)2 = 0.02. The objective attempts to set pk = [φ, φ, φ, φ, φ]

for some unknown φ, which would achieve perfect representativeness for campaign k,

with a variance of 0.

In the following section, we present results enabling the construction of sample approx-

imations which, when solved, achieve lower and upper bounds with high probability

for (CC).

3.3 Sample approximations

3.3.1 SA program

The following program, (SA), is a finite approximation to (CC). For i = 1, ..., N , the

S iv’s are independently sampled supply scenarios. The binary variable xi = 1 enforces

the fulfillment of all campaign goals in scenario i. The second and third constraints

require that all campaign goals are satisfied in at least d(1 − ξ)Ne scenarios, which
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approximates the joint chance constraint P(
∑

v∈Vk Svpvk ≥ gk, ∀k ∈ K) ≥ 1− ξ.

min
∑
k∈K

wk
|Vk|

∑
v∈Vk

(pvk − qk)2 (SA)

s.t.
∑
k∈Kv

pvk ≤ 1 ∀v ∈ V

∑
v∈Vk

S ivpvk ≥ xigk ∀k ∈ K, i = 1, ..., N

N∑
i=1

xi ≥ d(1− ξ)Ne

qk =
1

|Vk|
∑
v∈Vk

pvk ∀k ∈ K

pvk ≥ 0 ∀k ∈ K, v ∈ Vk

xi ∈ {0, 1} ∀i = 1, ..., N

We can obtain lower and upper bounds with high probability by solving (SA) with

an appropriate choice for N and ξ.

3.3.2 SA lower bound

Assume (CC) is a feasible program with optimal objective value z(CC)∗ and optimal

solution p
(CC)∗
vk . Property 1 determines the probability of p

(CC)∗
vk being feasible in

(SA), implying the optimal objective value of (SA), z(SA)∗ ≤ z(CC)∗. When (CC) is

not feasible, z(SA)∗ ≤ z(CC)∗, using the convention z(CC)∗ =∞.

Property 1 (Luedtke and Ahmed [39]). P(z(SA)∗ ≤ z(CC)∗) ≥
∑bξNc

i=0

(
N
i

)
αi(1−α)N−i.
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3.3.3 SA upper bound

Property 2 requires that the objective is convex, the deterministic feasible region is

convex and closed, and that the chance constraint mapping is closed and convex. Let

(RSA) be the robust version of (SA) with ξ = 0. This implies all xi = 1 converting

(SA) into a convex quadratic program. Property 2 gives the probability that z(RSA)∗ ≥

z(CC)∗.

Property 2 (Calafiore and Campi [14]).

P(z(RSA)∗ ≥ z(CC)∗) ≥ 1−
(
N
|VK |

)
(1− α)N−|VK |, where |VK | =

∑|K|
k=1 |Vk| is the number

of decision variables.

3.3.4 A branching scheme for the branch-and-bound algo-

rithm

In this subsection we discuss an aspect of the algorithm used to find sample approxi-

mation lower bounds, which enabled us to solve larger scale problems. Assuming we

are in the midst of solving (SA), we must solve the following program, (SAm), at node
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m of the Branch-and-Bound algorithm.

min
∑
k∈K

wk
|Vk|

∑
v∈Vk

(pvk − qk)2 (SAm)

s.t.
∑
k∈Kv

pvk ≤ 1 ∀v ∈ V

∑
v∈Vk

S ivpvk ≥ xigk ∀k ∈ K, i = 1, ..., N

N∑
i=1

xi = d(1− ξ)Ne

xTdiag(X1
m) = 1Tdiag(X1

m)

xTdiag(X0
m) = 0

qk =
1

|Vk|
∑
v∈Vk

pvk ∀k ∈ K

pvk ≥ 0 ∀k ∈ K, v ∈ Vk

xi ∈ [0, 1] ∀i = 1, ..., N

where X1
m and X0

m are binary vectors of length N which indicate the xi set to one

and zero at node m of the branching tree. We use an equality in the constraint∑N
i=1 xi = d(1− ξ)Ne, as for any integral optimal solution with excess x∗i ’s equal to 1

not enforced by X1
m can be set to 0 with no effect to the optimal solution or objective

value.

After solving (SAm), assume that p(SAm)∗ is not feasible in (SA) and the optimal

objective value, z(SAm)∗ is less than the current upper bound. Thus, we want to

branch on one of the xi for i ∈ {l : X1
m(l) = 0, X0

m(l) = 0}. We use the following

heuristic which finds the scenario j with the constraint which is the farthest from being
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satisfied on a percentage basis: j = argmin
i:X1

m(i)=0,X0
m(i)=0

min
k=1,...,|K|

∑
v∈Vk

Sivp
(SAm)∗
vk

gk
. For the

path with xj = 1, the branching tree can be effectively pruned as enforcing scenario j

will likely enforce other scenarios, and the path with xj = 0 will lead to near optimal

solutions as xj is a promising candidate for one of the bξNc scenarios to discard.

3.4 Convex approximations

In this section we present convex constraints which can replace the joint chance con-

straint in (CC) to achieve bounding convex programs. Let Sk be the vector of the

viewer types’ supply which campaign k targets, with µk being the |Vk|-dimensional

mean vector and Σk being the |Vk|× |Vk| covariance matrix. In addition, let pk be the

|Vk|-dimensional vector of proportions allocated to campaign k from viewer types in

Vk.

3.4.1 Distribution-free bounds

This subsection assumes that we only have estimates for the first two moments with

no knowledge of the underlying distribution. We present lower and upper bounds

based on classic probability inequalities.

Property 3 (Distribution-free Lower Bound). Any feasible solution of (CC) satisfies

the constraints pTk µk ≥ (1− α)gk for k ∈ K.

Proof. Assume there exists a k′ ∈ K with pTk′µk′ < (1−α)gk′ , then P(pTk Sk ≥ gk ∀k ∈

K) ≤ P(pTk′Sk′ ≥ gk′) ≤
pT
k′µk′

gk′
< 1 − α, where the second inequality follows from

Markov’s inequality.
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Property 4 (Distribution-free Upper Bound). The constraints

gk − pTk µk +

√
1− αk
αk

√
pTkΣkpk ≤ 0 ∀k ∈ K

where
∑

k∈K αk = α, αk > 0, form a conservative approximation of P(pTk Sk ≥ gk ∀k ∈

K) ≥ 1− α.

Proof. Following the reasoning in [48, Sec. 2], assume P(pTk Sk < gk) ≤ αk ∀k ∈ K,

then P(∪k∈K{pTk Sk < gk}) ≤
∑

k∈K P(pTk Sk < gk) ≤ α, implying P(pTk Sk ≥ gk ∀k ∈

K) ≥ 1−α. To show P(pTk Sk < gk) ≤ αk, we use the one-sided Chebyshev inequality,

P(Y ≤ E(Y )− b) ≤ Var(Y )
Var(Y )+b2

for a random variable Y and constant b > 0,

P(pTk Sk < gk) ≤ P(pTk Sk ≤ gk)

≤ pTkΣkpk
pTkΣkpk + (pTk µk − gk)2

≤ pTkΣkpk

pTkΣkpk + 1−αk
αk

pTkΣkpk

= αk.

3.4.2 Bounds assuming a normal distribution

The normal distribution has been proposed in the literature for modeling viewer type

supply, see [8]. This subsection presents convex approximations under the assumption

that Sk follows a multivariate normal distribution, so that pTk Sk ∼ N(pTk µk, p
T
kΣkpk).

Let Fk denote the cumulative distribution function of pTk Sk.
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3.4.2.1 Normal lower bound

Requiring each campaign’s probability of fulfillment to be at least 1− α is necessary

for feasibility in (CC), resulting in a convex relaxation. The chance constraint for

each campaign is equivalent to a second-order cone constraint [12],

P(pTk Sk ≥ gk) =1− Fk(gk) ≥ 1− α

Fk(gk) ≤ α

gk ≤ F−1
k (α)

gk ≤ pTk µk + nα

√
pTkΣkpk,

where nα is the α percentile of a standard normal random variable.

3.4.2.2 Normal upper bound

As in Property 4, an upper bound can be found by requiring P(pTk Sk ≤ gk) ≤ αk for

all k ∈ K. Assuming the viewer supply follows a normal distribution, we can then

use the constraints found in the previous subsection with α replaced by αk.

3.4.3 Summary

The above convex approximations can be obtained by solving the following convex

approximation program (CA) with the proper choice of parameters uk and hk as

summarized in Table 3.1.
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min
∑
k∈K

wk
|Vk|

∑
v∈Vk

(pvk − qk)2 (CA)

s.t.
∑
k∈Kv

pvk ≤ 1 ∀v ∈ V

pTk µk − uk
√
pTkΣkpk ≥ hk ∀k ∈ K

qk =
1

|Vk|
∑
v∈Vk

pvk ∀k ∈ K

pvk ≥ 0 ∀k ∈ K, v ∈ Vk

Bound uk hk

Distribution-free lower bound 0 (1− α)gk

Distribution-free upper bound
√

1−αk
αk

gk

Normal lower bound −nα gk

Normal upper bound −nαk gk

Table 3.1: Parameter values for (CA)

(CA) was solved using a primal-dual interior point algorithm. The algorithm used

generalized logarithm barriers to solve for points on the central path, see [12, Ch. 11.6-

11.8]. To form the modified KKT conditions, the Jordan algebra for second-order

cones is used to express the complementary slackness conditions of the second-order

cone constraints, see [3]. The system of equations to solve for the Newton steps

was simplified so that only a system involving the step of p, ∆p, was required to be

solved, with closed form expressions for the remaining dual variable steps in terms of

their current value, p, and ∆p. In order to maintain stability, a universal step size

was found such that all variables remained feasible. The central path parameter t is

updated to equal a multiple of the reciprocal of the maximum error of the modified
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KKT conditions involving t. The algorithm quits when the maximum error of the

modified KKT conditions is less than or equal to a small ε times the current objective

function value. In order to find an initial feasible solution, we begin with a function

which spreads proportions relative to the campaign’s goal size to expected targeted

supply, while satisfying the first and fourth constraints of (CA). The Big M method

is then used to find an initial solution feasible in the second set of constraints.

3.4.4 Setting the αk’s

We now present an iterative method to calculate upper bounds. When finding a

distribution-free upper bound, (CA) is first solved with the αk’s set equal to α
|K| , as

proposed in [48, Sec. 2]. Letting p∗k be the optimal solution, with optimal objective

value z(CA)∗, the approximating constraint of Property 4 can be rearranged as αk ≥
p∗Tk Σkp

∗
k

p∗Tk Σkp
∗
k+(gk−p∗Tk µk)2

= α̂k. For any k for which this constraint is not tight, we can set

αk = α̂k. As these tighter constraints are valid for (CA), resolving the optimization

problem with the tighter constraints, (TCA), will result in an objective value z(TCA)∗ =

z(CA)∗. Assuming there was at least one constraint in (CA) which had slack,
∑

k αk <

α in (TCA). The total slack s = α −
∑

k αk can be added evenly to all αk’s of the

originally tight constraints in (CA). Solving this relaxation of (TCA), (RTCA), will

result in an objective value z(RTCA)∗ ≤ z(TCA)∗. This process of redistributing slack

among the αk’s is iterated until the improvement in the objective value becomes

sufficiently small. The same process is used for the normal upper bound, where for all

approximating constraints with slack, αk is updated to equal Fk(gk). The algorithm

for solving the distribution-free upper bound is presented below, with the necessary

changes to solve for the normal upper bound in the comments.
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Algorithm 1 Calculating the distribution-free upper bound

1: αk = α
|K| ∀k ∈ K

2: uk =
√

1−αk
αk
∀k ∈ K{uk = −nαk for the normal upper bound.}

3: [z∗, p∗] = CA(u, g)
4: z∗old =∞
5: I = 0|K|{Indicator vector with kth entry set to 1 when slack found in constraint

associated with campaign k.}
6: while z∗old − z∗ > 0 do
7: s = 0{Stores total slack across all constraints.}
8: for k=1:|K| do
9: if αk > α̂k then
10: s = s+ αk − α̂k{α̂k = Fk(gk) for the normal upper bound.}
11: αk = α̂k
12: Ik = 1
13: end if
14: end for
15: if s > 0 &

∑|K|
j=1 Ij < |K| then

16: for k=1:|K| do
17: if Ik = 0 then
18: αk = αk + s

|K|−
∑|K|
j=1 Ij

19: end if
20: end for
21: end if
22: z∗old = z∗

23: uk =
√

1−αk
αk
∀k ∈ K{uk = −nαk for the normal upper bound.}

24: [z∗, p∗] = CA(u, g)
25: end while
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3.5 Computational substantiation

In this section we compare the solutions of the sample and convex approximations.

All testing was conducted on a Windows 7 Home Premium 64-bit, Intel Core i5-

2320 3GHz processor with 8 GB of RAM. All coding was done in Matlab R2012a

interfaced with CPLEX 12.4 using YALMIP [37] dated 13-Feb-2013. Ten random

test problems were generated. For each test problem, the number of campaigns and

viewer types were chosen randomly between 5, ..., 10 and 10, ..., 20. Campaign target-

ing was achieved by generating a |K|× |V | matrix of Bernoulli random variables with

p = 0.5, with cell (i, j) = 1 indicating that campaign i targets viewer type j. If there

was a campaign or viewer type which was not assigned at least one viewer type or

campaign, then a random cell in the appropriate row or column was set to 1. A ran-

dom vector of viewer type means were generated, with each mean following a uniform

distribution between [1000,10000]. Given the mean, µv, σ
2
v was randomly generated

uniformly within [0.25, 0.5] × µv. A random correlation matrix was generated using

the random Gram matrix approach [25]. For each campaign, gk = U[0.5,0.75]

∑
v∈Vk

µv
|Kv | ,

where U[0.5,0.75] is uniform between [0.5, 0.75]. For all campaigns wk = 1.

The sample approximation parameters for each test problem were chosen so that the

optimal solution is between the bounds with a probability of at least 99%. For the first

five problems α = 0.1, with the lower bound parameters chosen as N = 108 and ε =

1.76α, and for the remaining five problems α = 0.05, with the lower bound parameters

chosen as N = 102 and ε = 2.16α. For both cases,
∑bξNc

i=0

(
N
i

)
αi(1 − α)N−i = 0.995.

The value of N for the upper bound is problem instance specific, and was set as the

minimum N such that 1 −
(
N
|VK |

)
(1 − α)N−|VK | ≥ 0.995. The average value of N was

1487 for α = 0.1, and 3371 for α = 0.5, and the average value of 1−
(
N
|VK |

)
(1−α)N−|VK |
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was 0.9952 over all 10 problem instances. We tested all bounds sampling the viewer

supply from a normal distribution.

Let the probability of fulfillment (PF) equal P(
∑

v∈Vk Svpvk ≥ gk, ∀k ∈ K). This

probability is estimated for all solutions by generating 100,000 supply scenarios. Indi-

cator variables, 1{∑v∈Vk
Sivpvk≥gk, ∀k∈K}, for each scenario i were generated and treated

as a Bernoulli sample. The 99% one-sided confidence interval of the probability of

fulfillment, P̂F , was then estimated, P(PF ≥ P̂F ) = 0.99.

Results for each test problem are displayed in the appendix. Objective values were

multiplied by 1000 for readability. For the sample approximation bounds, the lower

bound objective, the lower bound solution’s P̂F , the lower bound computation time

using the branching heuristic of Subsection 3.3.4, the lower bound computation time

solving directly with CPLEX, the upper bound objective, the upper bound solution’s

P̂F , and the upper bound computation time are presented from left to right in Table

3.2 . When computing the lower bound directly with CPLEX, a time limit of 20 ∗TH

was set, after which CPLEX would quit, where TH is the computation time using the

branching heuristic.

For the convex approximation bounds, the lower bound objective, the lower bound

solution’s P̂F , and the lower bound computation time comprise columns 2-4 of Tables

4.3 and 4.5. With αk = α
|K| , the upper bound objective, the upper bound solution’s

P̂F , and the computation time follow in columns 5-7. Using the algorithm of Sub-

section 3.4.4, the upper bound objective, the upper bound solution’s P̂F , and the

computation time are displayed in columns 8-10.
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The average optimality gap for the sample approximation bounds was 43%, with an

average computation time of 320 seconds using the heuristic. The heuristic required

on average 282 seconds to solve for the lower bound, with CPLEX requiring over an

order of magnitude more time on average.

The average optimality gap and computation time for the distribution-free bounds was

385% and 0.21 seconds using the algorithm. The large optimality gap for the convex

approximations is to be expected as we are finding bounds taking into account the

most extreme possible distributions. The average improvement of the distribution-

free upper bound using the algorithm was 16%. We see there is a trade-off between

time and solution quality when deciding between sample and convex approximations.

With specific knowledge of the distribution, much tighter bounds can be found. The

average optimality gap and computation time for the normal bounds was 11% and

0.15 seconds using the algorithm. Examining the normal upper bounds, we can see

these solutions are close to optimality, with P̂F in excess of 1−α on average by only

2.4%. The average improvement of the normal upper bound using the algorithm was

4%.

The sample approximation and distribution-free bounds are very conservative for our

problem data, with P̂F > 0.99 and P̂F = 0.99995 for all instances, respectively.

In practice, high quality solutions can be attained using the sample approximation

technique. Beginning with the theoretical upper bound value of N , (SA) can be

iteratively solved, decreasing the value of N until a near optimal solution is found

with P̂F sufficiently close to 1− α.
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3.6 Conclusion and future research

This paper presented a chance constrained optimization model for guaranteed dis-

played Internet advertising campaigns. A sample approximation program with a

branching heuristic was developed, as well as convex approximations under Normal

and distribution-free viewer supply assumptions, with an iterative method for improv-

ing feasible solutions. Log-normal and Poisson distributions have also been proposed

to model viewer supply, see [8, 22]. Convex approximations under these assumptions

is an area of potential future research.

3.7 Nomenclature

α Campaign un-fulfillment tolerance.

µ Mean vector of viewer type supply.

µk Mean vector of the viewer types’ supply which campaign k targets.

µv Mean supply from viewer type v.

Sk Vector of the viewer types’ supply which campaign k targets.

Sv Supply of viewer type v.

Σ Covariance matrix of viewer type supply.

Σk Covariance matrix of the viewer types’ supply which campaign k targets.

σv Standard deviation of viewer type v’s supply.

ξ Campaign un-fulfillment tolerance for (SA).

gk Campaign goal of campaign k.
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K Set of advertising campaigns.

Kv Set of campaigns which target viewer type v.

N Number of viewer type supply scenarios for (SA).

pk Vector of proportions allocated to campaign k from viewer types in Vk.

pvk Proportion of viewer type v’s supply allocated to campaign k ∈ Kv.

V Set of viewer types.

Vk Set of viewer types targeted by campaign k.

wk Campaign k’s priority weighting.

3.8 Appendix

Sample Approximation Bounds

#
LB UB

z P̂F TH (s) TC (s) z P̂F T (s)
1 0.08656 0.67382 394.12189 7885.28954 0.29815 0.99883 36.11891
2 38.47802 0.83258 271.55118 5432.76618 43.57778 0.99931 12.98950
3 1.39652 0.72996 118.50722 2372.77228 1.98864 0.99448 20.11220
4 147.26848 0.78323 642.50342 5631.70639 159.05476 0.99384 12.74514
5 1.55731 0.76499 228.41868 4570.70080 2.91692 0.99728 20.72935
6 100.38367 0.76192 139.77481 1454.69702 117.07098 0.99687 43.10787
7 209.21887 0.78952 375.03623 3746.96343 219.04089 0.99844 65.37173
8 29.24341 0.83597 69.03840 1128.23085 32.06909 0.99838 73.24367
9 0.00000 0.99995 0.45513 1.50496 0.00000 0.99995 36.52844

10 313.32316 0.80525 578.03043 9679.22504 338.78909 0.99755 57.58939

Table 3.2: Results for Sample Approximation Bounds
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Distribution-free Bounds

#
LB UB α

|K|
UBALG

z P̂F T (s) z P̂F T (s) z P̂F T (s)
1 0.02433 0.10208 0.04318 1.56683 0.99995 0.13366 0.70294 0.99995 0.33721
2 35.11906 0.16493 0.00708 51.48740 0.99995 0.01638 49.67440 0.99995 0.19283
3 1.07339 0.11786 0.00652 4.90718 0.99995 0.02245 3.27246 0.99995 0.27213
4 134.91058 0.05268 0.00575 199.83478 0.99995 0.01840 194.25912 0.99995 0.17045
5 0.91310 0.17005 0.00610 9.19147 0.99995 0.01769 4.96429 0.99995 0.24479
6 88.71204 0.09186 0.00600 219.27627 0.99995 0.01562 198.94794 0.99995 0.24656
7 200.41163 0.01049 0.00738 276.35676 0.99995 0.02342 266.59733 0.99995 0.20504
8 26.67377 0.10453 0.00721 54.57600 0.99995 0.02209 52.12026 0.99995 0.24255
9 0.00000 0.99995 0.01565 0.00000 0.99995 0.01508 0.00000 0.99995 0.02982

10 290.49479 0.05637 0.00673 503.95350 0.99995 0.01890 503.95350 0.99995 0.03657

Table 3.3: Results for Distribution-free Bounds

Normal Bounds

#
LB UB α

|K|
UBALG

z P̂F T (s) z P̂F T (s) z P̂F T (s)
1 0.08488 0.68915 0.13207 0.16233 0.96111 0.02831 0.13225 0.90751 0.11698
2 37.80323 0.72256 0.04230 39.48617 0.93148 0.01569 39.27912 0.91504 0.04832
3 1.41510 0.70816 0.02301 1.71973 0.96048 0.01950 1.61711 0.91542 0.21837
4 144.25999 0.61781 0.01768 150.74349 0.92082 0.01747 150.16448 0.90605 0.05213
5 1.53287 0.74523 0.01855 2.11183 0.96274 0.01825 1.85374 0.90628 0.05421
6 100.78383 0.80557 0.01657 107.56587 0.96945 0.02045 106.72161 0.96050 0.06145
7 208.52184 0.73829 0.02060 213.06374 0.96324 0.01995 212.60627 0.95321 0.21879
8 29.15067 0.83168 0.02237 30.56063 0.97911 0.02198 30.08620 0.95146 0.07682
9 0.00000 0.99995 0.01484 0.00000 0.99995 0.01449 0.00000 0.99995 0.02862

10 311.30318 0.73201 0.02364 323.19042 0.95818 0.02235 323.18883 0.95787 0.24979

Table 3.4: Results for Normal Bounds
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Chapter 4

Managing losses in exotic horse

race wagering

Since the mid 1980’s, horse racing has witnessed the rise of betting syndicates akin

to hedge funds profiting from statistical techniques similar to high frequency traders

in stock exchanges [30]. This is possible as parimutuel wagering is employed at race-

tracks, where money is pooled for each bet type, the racetrack takes a percentage,

and the remainder is disbursed to the winners in proportion to the amount wagered.

Research on horse racing stems in large part due to the fact that it can be viewed

as a simplified financial market. Research on important economic concepts such as

utility theory [65], the efficient market hypothesis [4], and rational choice theory [54]

can be conducted in a straight forward manner, given horse racing’s discrete nature,

fixed short term contract lengths and attainable sets of historical data for empirical

study.

Optimization in the horse racing literature can be traced back to Isaacs [27] deriving
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a closed form solution for the optimal win bets when maximizing expected profit.

Hausch et al. [24] utilized an optimization framework to show inefficiencies in the

place and show betting pools using win bet odds to estimate race outcomes. In

particular, they used the Kelly criterion [31], maximizing the expected log utility of

wealth, and found profitability when limiting betting to when the expected return was

greater than a fixed percentage. More recently, Smoczynski and Tomkins [56] derived

a simple procedure for optimal win bets under the Kelly criterion through analysis of

the Karush-Kuhn-Tucker optimality conditions.

Having found a favourable opportunity in a gambling setting, such as betting on

the outcome of flipping a biased coin, the Kelly criterion answers the question of

how much to wager. For example, if the probability of heads is P(H) = 0.6 and

we have an initial wealth w, we can determine how much to wager, x, by solving

max 0.6 log(w + x) + 0.4 log(w − x), which tells us to bet x∗ = 0.2w. Kelly style

betting is widely recognized both in academia [42] and in practise, being used pro-

fessionally in blackjack [16], general sports betting [67], and in particular horse race

betting [66]. Positive aspects of the Kelly criterion are that it asymptotically maxi-

mizes the rate of return of one’s wealth, and assuming one can wager any fraction of

money, it never risks ruin. The volatility of wealth through time is too large for most

though, as P(wt ≤ w0

n
|t > 0) ≈ 1

n
[58], e.g. there’s approximately a 10% chance your

wealth in the future will be 10% of what it currently is using the Kelly criterion. As a

result, many professional investors choose to employ a fractional Kelly criterion [59],

which has been shown to possess favourable risk-return properties by MacLean et al.

[43], with betting half the Kelly amount being popular among gamblers [52].

There are several different types of wagers one can place on horses, including what
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are known as exotic wagers, which include the exactor, triactor and superfecta, which

require the bettor to pick the first two, three and four finishers in order, respectively.

The exotic wagers are popular among professional gamblers, as superior knowledge

of the outcome of a race is better rewarded, and the more exotic the bet, the higher

the advantage one can attain [7]. For this reason we focus on the superfecta bet, the

most exotic wager placed on a single race.

4.1 Time horizon

In recognition of the similarities between parimutuel horse race betting and financial

markets, we see superfecta betting being most similar to the purchase of deep out of

the money options, with the general trend of a successful strategy being small steady

losses through time with infrequent large gains. Speaking of his experience as a key

member of a Hong Kong horse racing gambling syndicate, C. X. Wong [66] states

that investing in horse racing is more stressful than in the stock market, and that for

professional groups wagering in exotic pools it is normal not to have a winning wager

once in three months. Once the losing streak terminates a large profit is achieved, but

in the interim, there will be various sources of pressure. Doubt in the system may set

in leading to the potential for irrational decisions to be made, based not on statistical

findings but emotion.

It would be ideal to have a mechanism to control losing streaks, not only to avoid

failure but to determine if a losing streak is in range with the current strategy or if an

investigation into the system is warranted. As this is a form of risk management, we

consider such methods from stock portfolio management. The most famous frame-

work is mean-variance portfolio optimization based on the work of Markowitz [45],
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where one maximizes the expected return subject to a constraint which limits the

variance in portfolio returns. One of the criticisms of this model is that the use of

variance as a measure of risk penalizes both positive and negative deviations in the

same manner. Given the expected positive skewness of superfecta returns this would

be particularly problematic for our application.

A popular risk measure proposed to replace variance is the value at risk (VaR) [13],

which estimates the maximum amount a portfolio could lose over a given time period

at a given confidence level 1 − α. Maximizing the Kelly criterion subject to a VaR

constraint has been considered previously by MacLean et al. [41] in the context of

allocating investment capital to stocks, bonds and cash over time. Let S represent

the set of top four horse finishers with each s ∈ S corresponding to a sequence of 4

horses, with x = {xs} being our decision variables dictating how much to wager on

each outcome s, and P (x) being the random payout given our decision vector x. Let

the outcome probability of s be denoted as πs, with πx =
∑

s∈S πs1{xs>0} being the

probability of having a winning bet. We can now limit our betting strategy’s VaR to be

no greater than v by enforcing the chance constraint P(P (x)−
∑

s∈S xs ≥ −v) ≥ 1−α.

VaR calculations typically use a small α, being concerned with large potential losses

near the tail of the distribution. Tail risk is not a concern in our setting as the most

that could possibly be lost is the amount we wager, which we expect to occur most of

the time, in fact, a VaR constraint with v > 0 in our setting corresponds to a betting

limit for α < 1− πx.

Though risk measures concerning tail losses seem unapplicable, a VaR constraint with

v = 0 enables the control of losing streaks. Let τ be the gambler’s time horizon, for
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which we desire to set as the limit for potential losing streaks with high probability.

For a betting decision x, let π̃x = P(P (x) −
∑

s∈S xs ≥ 0) and Bx ∼ binomial(τ, π̃x)

be the random number of times money is not lost repeating the race τ times with

the same wager x. In order to enforce the gambler’s time horizon, we require that

P(Bx ≥ 1) ≥ 1 − α, which implies π̃x ≥ 1 − α
1
τ . Assuming independence between

races, limiting betting decisions to those which have a VaR of 0 with confidence of at

least 1−α 1
τ ensures that a non-negative return on a race will occur with a probability

of at least 1− α over the next τ races.

4.2 Optimization model

A conceptual optimization model is displayed below. Using the Kelly criterion, the

objective is to maximize the expected log of wealth, where w is the current wealth of

the gambler.

max E log(P (x) + w −
∑
s∈S

xs)

s.t.
∑
s∈S

xs ≤ w

P(P (x)−
∑
s∈S

xs ≥ 0) ≥ 1− α
1
τ

xs ≥ 0 s ∈ S

4.3 Case study

The optimization model was tested using historical race data from the 2013-2014

season at Flamboro Downs, Hamilton, Ontario, Canada. This amounted to a total
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of 1,168 races. Race results, including the payouts, pool sizes, and final win bet odds

were collected from TrackIT [57]. Handicapping data, generated by CompuBet [18],

was collected from HorsePlayer Interactive [68]. The first 70% of the race dataset was

used to calibrate the race outcome probabilities and payout model, with the remaining

30% of races used for out of sample testing.

4.3.1 Estimating outcome probabilities and payouts

The multinomial logistic model, first proposed by Bolton and Chapman [10], is the

most widely used method of estimating the probability of each horse winning a race.

Given a vector of handicapping data on each horse h, vh, the horses are given a value

Vh = βTvh, and assigned winning probabilities πh = eVh∑n
i=1 e

Vi
. A three factor model

was used, including the log of the public’s implied win probabilities from the win bet

odds, log πph, and the log of two CompuBet factors, which were all found to be statis-

tically significant at the α = 0.05 level. The analysis was performed using the mlogit

package [19] in R. Details of the handicapping data and the statistical estimation can

be found in the subsection Estimating win probabilities in the appendix.

The Harville model [23] assumes the probability that a horse finishes mth equals the

probability that it wins against the horses that didn’t finish 1st, ..,m− 1th. The condi-

tional probabilities are πij|i =
πj

1−πi , πijk|ij = πk
1−πi−πj , and πijkl|ijk = πl

1−πi−πj−πk
, where

for example, πijk|ij is the probability estimate of horses i, j, and k finishing first, sec-

ond, third, given horses i and j finished first and second. Multiplying together with πi,

πijkl =
πiπjπkπl

(1−πi)(1−πi−πj)(1−πi−πj−πk)
. This model was found to be biased towards favourite

horses by Lo [34] and Lo and Bacon-Shone [35]. We use the improved approximation

derived by Lo and Bacon-Shone [36], πijkl = πi
π
λ1
j∑

s6=i π
λ1
s

π
λ2
k∑

s6=i,j π
λ2
s

π
λ3
l∑

s6=i,j,k π
λ3
s

, where λ1,
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λ2 and λ3 are calibrated to the historical race data. As the log-likelihood is separable,

optimal λi’s were determined individually using multinomial logistic regression. The

results of the statistical estimation can be found in the subsection Estimating super-

fecta probabilities in the appendix.

The superfecta payout function for sequence s is approximately Ps(x) = xs
(Q+

∑
u∈S xu)(1−t)
Qs+xs

,

where Q is the superfecta pool size, Qs is the amount wagered on sequence s by other

gamblers, and t = 24.7% is the track take at Flamboro Downs. The payout per dollar

wagered is rounded down to the nearest nickel, termed breakage, but this is unlikely

to be significant and is omitted from the formula. The only information available to

bettors is the value of Q. The approach taken to estimate Qs is motivated by the work

of Kanto and Renqvist [29] who fit the win probabilities of the Harville model to the

money wagered on quinella bets using multinomial maximum likelihood estimation.

The minimum superfecta bet allowed in practice is $0.2 with $0.2 increments. The

amount wagered on sequence s is Qs = Q(1−t)
Ps

, where Ps is the amount paid on a $1 wa-

ger. Let n = 5Qs be the number of bets placed on s out of N = 5Q, which we assume

follows a binomial distribution. We model the public’s estimate of superfecta outcome

probabilities using a discount model with the public’s implied win probabilities, so for

s = {i, j, k, l}, πps =
(πpi )θ1∑
(πph)θ1

(πpj )θ2∑
h 6=i(π

p
h)θ2

(πpk)θ3∑
h 6=i,j(π

p
h)θ3

(πpl )θ4∑
h 6=i,j,k(πph)θ4

. Let πps,u and πps,l repre-

sent the numerator and denominator of πps . The likelihood function, using data from R

historical races assumed to be independent, with wr being the winning sequence in race

r, is L(θ) ∝ ΠR
r=1(πpwr)

nr(1 − πpwr)
Nr−nr . The log-likelihood is a difference of concave

functions, logL(θ) ∝
∑R

r=1 nr log(πpwr,u) + (Nr − nr) log(πpwr,l − π
p
wr,u)−Nr log(πpwr,l).

This function was minimized twice using fminunc in Matlab, the first with an initial

guess that the public uses the Harville model, θi = 1, the second assuming that the

public believes superfecta outcomes are purely random, θi = 0, with both resulting in
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the same optimal solution. Statistical estimation results can be found in the subsec-

tion Estimating public’s superfecta probabilities in the appendix. Given our estimate

of the public’s estimate of the probability of outcome s, πps , we take Qs = πpsQ, the

expected amount wagered on s.

4.3.2 Optimization formulation

We now formulate the optimization program as it will be solved. Given its success

in practice, we wager (approximately) half the Kelly amount. This is accomplished

by first dividing the optimal solution in half, then rounding each bet to the closest

multiple of $0.2 to generate a valid wager. The chance constraint is implemented

using binary variables, zs, which indicate that a bet will be placed on outcome s by

equalling 1 when xs ≥ 0.4, which can be implemented by the constraint 0.4zs ≤ xs.

We then enforce the chance constraint by
∑

s∈S πszs ≥ 1 − α 1
τ . Note that given the

expected large superfecta payouts, π̃x ≈ πx, and so we have made the simplification

of replacing π̃x, requiring simply that πx ≥ 1− α 1
τ .

max
∑
s∈S

πs log(xs
(Q+

∑
u∈S xu)(1− t)
Qs + xs

+ w −
∑
u∈S

xu) (4.1)

s.t.
∑
s∈S

xs ≤ w

∑
s∈S

πszs ≥ 1− α
1
τ(

Qs + 0.4

Qs

)zs
≤ Qs + xs

Qs

s ∈ S

zs ∈ {0, 1} s ∈ S

xs ≥ 0 s ∈ S
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The objective function of (4.1) is not concave. We use the 1 to 1 mapping proposed

by Kallberg and Ziemba [28], ys = log(xs + Qs), resulting in the following program

which is convex after relaxing the binary constraints on zs. We have written the

constraints 0.4zs ≤ xs equivalently above as
(
Qs+0.4
Qs

)zs
≤ Qs+xs

Qs
in order to achieve

convex constraints after the change of variable.

max
∑
s∈S

πs log(Q+ w − (t+ (1− t)Qse
−ys)

∑
u

eyu) (4.2)

s.t.
∑
s∈S

eys ≤ w +Q

∑
s∈S

πszs ≥ (1− α
1
τ )

zs ln

(
Qs + 0.4

Qs

)
≤ ys − logQs ∀s ∈ S

zs ∈ {0, 1} ∀s ∈ S

ys ≥ log(Qs) ∀s ∈ S

4.3.3 Implementation

All computation was conducted on a Windows 7 Home Premium 64-bit, Intel Core

i5-2320 3GHz processor with 8 GB of RAM, in Matlab R2016a using OPTI toolbox

v2.16. For each race, IPOPT [63] was first used to solve (4.2) without the time horizon

constraint. If
∑

s∈S xs = 0, we do not bet on the current race and if
∑

s∈S πszs ≥ 1−α 1
τ

we take this as the solution. If
∑

s∈S xs > 0 but
∑

s∈S πszs < 1 − α 1
τ , we proceed to

solve the full problem using Bonmin’s [11] B-Hyb algorithm. None of the default stop-

ping criteria was altered in OPTI’s optimization settings, so the maximum execution

time was limited to 1000 seconds, the maximum number of iterations to 1500 and
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the maximum function evaluations to 10000. With these settings it was not always

guaranteed that the optimal solution was found. In order to improve convergence and

solution quality, cuts were added as described in the following paragraph.

If πj > πi and Qj ≤ Qi or πj ≥ πi and Qj < Qi we say that sj dominates si and we

will have zj ≥ zi in the optimal solution. Likewise, if πj < πi and Qj ≥ Qi or πj ≤ πi

and Qj > Qi we say that sj is dominated by si and we will have zj ≤ zi. Let Dj

be the set of outcomes which sj dominates and let Bj be the set of outcomes which

dominate sj. In order to maintain a manageable set of constraints, the constraints

zj ≥ zi i ∈ Dj are added together to form the single constraint, zj ≥ 1
|Dj |
∑

i∈Dj zi,

as are the constraints zj ≤ zi i ∈ Bj, to form the single constraint zj ≤ 1
|Bj |
∑

i∈Bj zi.

These cuts were added to the above formulation for all outcomes.

4.3.4 Results

Testing was done on a total of 350 races. Given our optimal betting solution, the

realized payout was calculated by adjusting the published payout to account for our

wagers and breakage. Four simulations were done with the gambler’s initial wealth

set to $5,000. The wealth through time for all are plotted in Figure 4.1, with statistics

displayed in Table 4.1. A preliminary simulation was done with τ =∞. The longest

losing streak was found to be 55 races. Given this number, simulations were done

with τ = 40, 30 and 20, with α = 0.05.
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Figure 4.1: Wealth over the course of 350 races at Flamboro Downs.

τ Tot ret (%) σ (×10−3) Races bet BPR Loss streak Num wins
∞ 12.65 10.0 232 11.7974 55 14
40 5.77 9.8 148 19.0189 34 15
30 3.72 9.8 130 21.5646 26 17
20 5.29 9.5 105 25.3048 17 14

Table 4.1: Optimization results

Examining Table 4.1, Tot ret is the total return over the 350 races, σ is the standard

deviation in race returns, Races bet is the total number of races actually bet on, BPR

is the average bet per race, Loss streak is the maximum losing streak over races bet

on and Num wins is the total number of races for which a profit was made. Through

the use of a chance constraint, the length of losing streaks were successfully limited

to the chosen time horizon, but we can see there is a trade off between risk and

return, resulting in a reduction in profit using the chance constrained model. We also
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note that σ decreases with τ . An increase in σ using the chance constrained model

would make it clearly undesirable given its inferior return, so we take this as positive

evidence towards the soundness of this methodology.

4.4 Conclusion and future research

We have developed a methodology for limiting losing streaks given a gambler’s time

horizon through the use of chance constrained optimization, exemplified in exotic

horse race wagering. Initial results using one season of historical racing data have

been presented which show the viability of the method by effectively limiting losing

streaks for different chosen time horizons. Certain approximations were used which

could be addressed in future research. Point estimates of outcome probabilities, πs, as

well as the amount wagered on each outcome by the public, Qs, were utilized. Taking

into account the uncertainty of these estimates could improve results. Though the

focus of this work has been on horse racing, we feel this general methodology is

applicable for any gambling or investing setting which have low probability outcomes

with high payouts, such as for investing in deep out of the money options.

4.5 Appendix

4.5.1 Estimating win probabilities

A number of factors and their logarithms were considered, displayed in Table 4.2

below. The domain of each factor is listed in brackets, but all were normalized to be

between 0 and 1 for statistical use. The first six factors are from Compubet, with the

other two from the race program and result.
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Factor description
Post Starting position of the horse (1-9).
Pre The quality of the data available for each horse (30-100).
Form The overall success of this horse in recent starts (10-130).
Class The horse’s performance relative to the class of its competition

in recent races (52.8-95).
Speed An adjusted speed rating using complex statistical analysis, the

daily track variant, track condition, and the track-to-track speed
variant (113.3-128.1 seconds).

Driver Points The driver’s rating (4-39).
πML
h The winning probability implied by the morning line odds.
πmh The winning probability implied by the final winning bet odds.

Table 4.2: Win probability considered factors.

Systematically removing the least significant factor with a significance α > 0.05 re-

sulted in the parameter estimation in Table 4.3.

πh Coefficients

Coefficient Estimate P-Value

log(πmh ) 1.08318 < 2.2e− 16

log(Pre) 0.42104 0.02577

log(Class) 0.72842 0.01093

Table 4.3: Win Probability Coefficients

The McFadden [47] R2 goodness of fit measure was used to compare the public’s im-

plied winning probabilities to the model’s, where R2 = 1 implies perfect predictive

ability and R2 = 0 means predictability is no better than random guessing. Using the

last 30% of the racing data, R2
πh

= 0.218077 and R2
πmh

= 0.214455. We see the model

has a small positive ”edge” of ∆R2 = R2
πh
−R2

πmh
= 0.0036 over the general public.
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4.5.2 Estimating superfecta probabilities

Below are the results of estimating the λi parameters.

Superfecta probability parameters

Coefficient Estimate P-Value

λ1 0.600548 < 2.2e− 16

λ2 0.384509 < 2.2e− 16

λ3 0.26239 7.767e− 13

Table 4.4: Superfecta probability parameters

4.5.3 Estimating public’s superfecta probabilities

Below are the results of estimating the θi parameters.

Superfecta probability parameters

Coefficient Estimate P-Value

θ1 1.2058 < 2.2e− 16

θ2 0.8215 < 2.2e− 16

θ3 0.5312 < 2.2e− 16

θ4 0.4146 < 2.2e− 16

Table 4.5: Superfecta probability parameters

The p-values were found using the estimated Hessian at the optimal solution supplied

by fminunc to calculate the observed Fisher information.
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Chapter 5

Conclusion

There are many possible applications for chance constraints, with varying roles within

optimization problems. In this thesis we have investigated three applications of chance

constrained optimization in operations management. In Chapter 2, chance constraints

served as a form of quality control, ensuring a certain level of consumer demand is sat-

isfied with high probability. We examined the effect of over and underestimating the

influence of price and advertising on demand for new product production planning,

and from an empirical study, we were able to determine prudent methods of estima-

tion. Chance constraints can be of necessity to capture realities of the problem. In

Chapter 3, we examined chance constrained optimization for guaranteed display In-

ternet advertising campaigns, where the randomness of Internet viewer supply hinders

our ability to satisfy campaigns with certainty. Sample approximations were devel-

oped, with a branching heuristic accelerating lower bound computation time by over

an order of magnitude, as well as convex approximations, with an iterative algorithm

which effectively tightened upper bounds. Chapter 4 focused on risk management in

exotic horse race wagering, with chance constraints enabling the consideration of the

time horizon of a gambler. A proof of concept showing its viability was conducted
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using one season of historical race data, where the length of losing streaks were suc-

cessfully limited for different time periods. It is quite rare when faced with managerial

decisions to have all required information with certainty. This thesis has shown that

with chance constraints, we are able to incorporate the reality of uncertainty into

decision making.
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[63] A. Wächter and L. T. Biegler. On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57, 2006.

[64] S. Wang and G. H. Huang. An Integrated Approach for Water Resources De-

cision Making Under Interactive and Compound Uncertainties. Omega: The

International Journal of Management Science, 44:32–40, 2014.

[65] M. Weitzman. Utility Analysis and Group Behavior: An Empirical Study. Jour-

nal of Political Economy, February, 1965.

[66] C. X. Wong. Precision: Statistical and Mathematical Methods in Horse Racing.

Outskirts Press, Inc., Denver, Colorado, 2011.

[67] Stanford Wong. Sharp Sports Betting. Pi Yee Press, 2009.

[68] Woodbine Entertainment Group. Horseplayer Interactive. http://www.

horseplayerinteractive.com. Accessed: 2014-06-02.

[69] J. Yang, E. Vee, S. Vassilvitskii, J. A. Tomlin, J. Shanmugasundaram, and

T. Anastasakos. Inventory Allocation for Online Graphical Display Advertis-

ing. Proceedings of the 1st International Conference on Operations Research and

Enterprise Systems, 2012.

[70] Paul Herbert Zipkin. Foundations of Inventory Management. McGraw-Hill New

York, 2000.

61


