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Abstract

Energy storage systems with many Lithium Ion battery cells per string require sophis-

ticated balancing hardware due to individual cells having manufacturing inconsisten-

cies, different self discharge rates, internal resistances and temperature variations. For

capacity maximization, safe operation, and extended lifetime, battery balancing is re-

quired. Redistributive Non-Dissipative balancing further improves the pack capacity

and efficiency over a Dissipative approach where energy is wasted as heat across shunt

resistors. Redistribution techniques dynamically shuttle charge to and from weak cells

during operation such that all of the stored energy in the stack is utilized. This thesis

identifies and develops different balancing control methods. These methods include a

unconstrained optimization problem using a Linear Quadratic Regulator (LQR) and

a constrained optimization problem using Model Predictive Control (MPC). These

methods are benchmarked against traditional rule based (RB) balancing. The control

systems are developed using MATLAB/Simulink and validated experimentally on a

multiple transformer individual cell to stack topology. The implementation uses a

DC2100A Demo-board from Linear Technology with bi-directional flyback converters

to transfer the energy between the cells. The results of this thesis show that the MPC

control method has the highest balancing efficiency and minimum balancing time.

v





Acknowledgements

This research was undertaken, in part, thanks to funding from the Canada Excellence

Research Chairs Program. I would like to thank my supervisor Dr. Emadi for growing

my interest and passion for Electric Vehicles. Dr. Emadi’s inspiring words fueled

my ambitions and I am truly grateful for his guidance throughout this Masters. My

deepest gratitude goes to Dr. Matthias Preindl for co-supervising this thesis research.

His teaching ability and motivation consistently challenged my boundaries and pushed

me towards new goals. I would also like to thank my friends and colleagues for all of

their support and encouragement.

vii





List of abbreviations

Ah Ampere-hour
BEV Battery Electric Vehicle
BMS Battery Management System
C2C Cell to Cell
C2S Cell to Stack
CCS Code Composer Studio
COPM Constant Operating Point Modulation
DoD Depth of Discharge
EOL End of Life
EV Electric Vehicle
ESS Energy Storage System
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
Li-Ion Lithium Ion
LQR Linear Quadratic Regulator
MPC Model Predictive Control
NiMH Nickelmetal hydride
OCV Open Circuit Voltage
PHEV Plug-in Electric Vehicle
PWM Pulse Width Modulation
RB Rule Based
S2C Stack to Cell
SoC State-of-Charge
SoH State-of-Health
TMS Thermal Management System
V Volts
W Watt
Wh Watt-hour

ix





List of symbols
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

Electric Vehicles (EV) have gained significant attention due to elevated atmospheric

pollution, a spreading concern for the reliance on fossil fuels as well as harsher govern-

ment policies on carbon emissions and greenhouse gases. Without any formal change

in the policy, the International Energy Agency (IEA) predicts a 70% increase in oil

consumption and a 130% increase in CO2 emissions by 2050, raising the global aver-

age temperature by 6◦C [10,11]. Despite this, the sales of alternative fuel vehicles still

suffer due to consumer range anxiety, a lack of charging stations, high initial purchase

price and longer fueling times all compared to the conventional internal combustion

engine (ICE) vehicle [12,13].

These alternative fuel vehicles include Plug-in Hybrid Electric Vehicles (PHEV),

conventional Hybrid Electric Vehicles (HEV) and full Battery Electric Vehicles (BEV)
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that can all be classified under xEVs. The main components in any xEV powertrain

is the electric motor/generator, the Energy Storage System (ESS) and the power elec-

tronics associated with energy conversion and transfer between the electric machine

and Storage System [1, 14]. On-board a PHEV and HEV, another powertrain exists

to drive the wheels using a gasoline engine with a fuel tank. PHEVs are meant to

be plugged into external charging stations that recharges the battery pack. HEVs

uses the internal combustion engine and regenerative braking to recharge the battery

pack as it drives [1] and has no plug in capabilities. Examples on the market today

of PHEV are Cadillac ELR, Chevrolet Volt and Toyota Prius. Full BEVs use electric

power from the batteries to move the vehicle and has no ICE on-board. Examples of

full BEVs are Ford Focus Electric, Nissan Leaf and the Tesla Model S. Government

initiatives are using EVs in different ways such as in national parks, school campus

patrol and police departments. The United States Army even intends to replace 28000

vehicles with various types of xEVs [15].

However, wide adoption of EVs require improvements in the battery technologies

of today [11, 16]. The battery is often viewed as one of the major barriers for mass

marketing [11, 16]. There are different ways to improve upon existing battery packs

and increase pack capacity. The first method is through different battery chemistries

offering larger amounts of energy density. A set of specific goals have been established

by the U.S. Advanced Battery Consortium (USABC) to be reached by 2020 for full

electric vehicle battery packs. The goals are to have a single cells specific energy

reach 350 Wh/kg, a cycle life of 1000 cycles and a cost of $100/kWh at production

volumes of 100,000 45 kWh units. These reflect the direction of todays research

efforts in battery technology that is to increase specific energy and cycle life yet

2
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reduce cost [11].

Another way to improve battery packs is to increase the size of the pack by adding

more cells. The problem with this is that it not only increases the physical space and

weight of the vehicle but it will lead to a nearly exponential reduction in the battery

life as the number of cells increases [17]. This reduction of battery life is primarily

caused by cell imbalances that occur over time due to manufacturing inconsistencies,

different self discharge rates, internal resistances and temperature variations. The

use of Lithium Ion batteries in EVs has a broad application spectrum such as aircraft

e-taxis, hybrid diesel trains, electrified buses and electric vehicles. The reason why

Lithium Ion cells are typically used is because they have high energy density, low

self-discharge rates and high cell voltages [18, 19]. Other applications that use Li-

Ion batteries are electric bikes, smart grids, drones and consumer electronics such as

laptops.

A Battery Management System (BMS) is implemented to avoid the harmful ef-

fects of cell imbalances, improve the effective capacity of the pack and keep each cell

within a predefined operational safety region. A balancing system is used within the

BMS to keep each cells state-of-charge balanced i.e equal. The two types of balanc-

ing systems are categorized as either Dissipative or Non-Dissipative. The Dissipative

balancing approach draws excess energy from strong cells then dissipate this energy

as heat through external shunt resistors [20, 21]. This method, although inexpensive

is wasteful of energy that can be re-purposed elsewhere. The Non-dissipative redis-

tributive technique shuttles the excess energy from the strong cells into the weak

ones using power electronics [6, 22, 23]. Three approaches of achieving redistributive

balancing are cell to cell (C2C), cell to stack (C2S) and stack to cell (S2C). A C2C

3



M.A.Sc. Thesis - Lucas McCurlie McMaster - Electrical Engineering

approach transfers the excess energy between adjoining cells. A C2S approach trans-

fers the excess energy from strong cells then redistributes it back onto the battery

stack. Likewise, a S2C approach transfers the excess energy from the battery stack

to the weak cells. It is possible to achieve simultaneously charge and discharge of

individual cells by integrating a S2C with C2S.

Each method can use different types of strategies to control the battery currents

for individual cells. In this thesis, a redistributive non-dissipative battery balancing

system is developed using flyback converters for shuttling the energy simultaneous

to and from each cell in the pack. Different control strategies are implemented on

top of the hardware to compare performance variation and to help understand better

balancing practices. Furthermore, a model predictive control technique is developed

using performance metrics from [6], which balances the cells in minimum time. A

minimum time to balance control can be used in electric fleet vehicles where time

to balance is important. Other applications for redistributive control are further

explored.

1.2 Research Problem Definition

Electric fleet vehicles are becoming more common as companies are starting to realize

the advantage of lower operating and maintenance costs [15]. Transportation elec-

trification technologies have a signification impact for larger vehicles such as Pickup

trucks, SUVs, delivery trucks, school buses and transit buses [24]. Benefits in these

sectors are reduced road traffic noise, less noise polluted cities and more sustainable

transportation. Further improvements over ICEs are due to a reduction in mainte-

nance cost (as brakes do not wear as easily due to regenerative braking), fewer engine

4
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fluids and fewer moving parts [25]. By 2020, Fort Motor Company believes that 10%

to 25% of its global fleet will be electrified. Purolator is purchasing more electric

vehicles for delivery application; Ford and Frieghtliner will be selling full BEV utility

vehicles soon and Navistar intends to produce EVs as well [15].

Lithium Ion batteries require balancing due to individual cells having manufactur-

ing inconsistencies, different self discharge rates, internal resistances and temperature

variations [26]. The desired result of this research is to present a Non-dissipative re-

distributive balancing system to further improve on the pack capacity and balancing

efficiency over a active dissipative approach being deployed in most EVs. As batteries

are charged and discharges in a vehicle, they degrade over time [27]. Car manufac-

tures typically define the end-of-life (EOL) as 20% reduction in the battery capacity

from when it was first installed into the car. This degradation also increases the

resistance and reduces the amount of power the battery is able to deliver. However,

once a cell reaches this 20% reduction in battery capacity does not mean it cannot

be used for another purpose.

Redistributive Non-Dissipative balancing becomes useful in electric fleet vehicles

and second life battery applications. Delivery fleet vehicles would benefit from a

minimum time to balance implementation since this could mean more time on the

road. Public transit buses that contain large cells are also another promising field

for this type of balancing. Furthermore, battery second life applications use recycled

battery packs for stationary power systems with mismatched capacities and large

initial imbalances. Having optimization methods embedded in the balancing means

that weak capacity cells would have less of an impact on the overall system.

5
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1.3 Research Goals and Requirements

Different control approaches are simulated using MATLAB Simulink and are com-

pared to experimental results conducted on a small test bench lab setup. The three

control approaches being compared are Rule Based (RB), Linear Quadratic Regulator

(LQR) and Model Predictive Control (MPC).

In this thesis, a new performance metric is introduced for battery balancing. The

balancing hardware and control strategy have a associated balancing efficiency (ηB).

This balancing efficiency is defined as the overall effectiveness to redistribute the

energy between the series connected cells while balancing. This metric can be used

by any balancing hardware and control implementation. It is quantified by the total

amount of initial unbalanced energy compared to the total amount of lost energy

during balancing the cells. This metric is used to compare RB control, LQR and the

MPC in conjunction with balancing time to further understand more efficient use of

balancing control and implementation. The balancing efficiency ranges between zero

and one where the value of 0 corresponds to all the unbalanced energy being lost

i.e dissipative balancing and the value of 1 corresponds to perfect balancing with no

losses in the system.

Results show that MPC and LQR achieve a single point convergence of the state-

of-charge when compared against a common Rule Based algorithm. However, LQR

balances in less time due to saturation of the balancing currents. RB and MPC

balance in the same time but MPC has a higher balancing efficiency.

6
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Figure 1.1: Basic Battery Illustration [1].

1.4 Electric Vehicle Battery Technologies

A battery contains a number of electrically connected cells that convert stored chem-

ical energy into electric energy. Each cell is a combination of two electrodes arranged

so that an overall oxidation-reduction reaction produces an electromotive force. A

primary battery is one that is disposable and cannot be recharged. It has irreversible

chemical reactions inside the electrode to generate electricity. In the attempt to

recharge this type of battery, it would produce hazardous liquids that would eventu-

ally leak. For an example, a Alkaline Manganese cell known as the common household

battery is often found in smoke alarms and Television remotes. A secondary battery is

one that involves a reversible chemical reaction and can be recharged multiple times.

This type of battery is used in Electric Vehicles for obvious reasons but can also

be found in ICEs as Lead-acid batteries for starting the car. The components of a

secondary battery consist of a anode, cathode, separators, current collector and elec-

trolyte. The anode is the negative electrode and is where the electrons are generated.

The cathode is the positive electrode and is where the electrons return after doing

7
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work outside of the battery. The separator is the insulating divider and is physically

separated by the two electrodes. It helps move the ions from one electrode to the

other and also prevents any electrons from crossing over. The current collector is

placed on each of the electrodes and its primary function is to conduct electrons to

and from the external electrical circuit. The final component is the electrolyte. This

facilitates ions that are essential to support the electrochemical reactions. Due to

Figure 1.2: Ragone Plot of Battery Chemistries [2].

its superior performance, Li-Ion batteries are leading the EV market over Lead acid

batteries and NiMH batteries [11, 28, 29]. The anode (negative electrode) is made of

carbon and the cathode (positive electrode) consists of a metal oxide. The charg-

ing and discharging of the cell occurs by transferring Lithium ions between these

two electrodes across the solution and electrons through the current collectors. The

8
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Figure 1.3: Trade offs Among Lithium Ion Battery Technology [3].

separator will inhibit the flow of electrons but conduct ions. Fig. 1.1 shows dif-

ferent cell formats such (a) small cylindrical cell, (b) prismatic cell and (c) pouch

cell. Each format has an appropriate application and is up to the engineer to decide

what works best. A more detailed comparison between the different formats can be

found in [5]. Li-Ion batteries typically have a flat discharge curve that associates cell

capacity (Ah) to the cells open circuit voltage (OCV). Different curves for different

c-rates are provided by many battery manufacturing companies and can be shown

in Fig. 1.4. The advantage of having a flat discharge curve is that it simplifies the

design since the supply voltage stays relatively constant throughout discharge cycle.

However, it presents a bigger challenge when estimating the batteries SoC since a

small deviation in voltage results in a large capacity change. The ragone plot in Fig.

9
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Figure 1.4: Panasonic 18650 cell characteristics [4].

1.2 compares various electrochemical devices. Super capacitors (SC) are shown to

have a high power density but a limited storage capacity thus making them great

candidates for capturing regenerative braking energy in electrified vehicles. Fuel cells

have a higher energy density but lower power density which limits their applications

in Electric Vehicles. Lithium batteries are central to the two and provide the best

qualities of both. Fig. 1.3 shows the trade offs among Lithium ion battery types.

10
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1.5 Basic Battery Terms

In order to fully describe the state and properties of different battery cells, commonly

used terms are summarized in the following as a quick reference.

Cell, Module, Pack. A single cell has two electrodes, separator and electrolyte.

A module is a few cells in series or parallel with one another. The battery pack is

comprised of many modules to accommodate high voltages and large capacities. For

example, the Chevrolet Volt uses 96 Lithium Ion cells in its pack construction.

State-of-Charge (SoC). SoC is an expression that indicates the amount of bat-

tery capacity as a percentage of the maximum capacity. The state of charge x is

not measurable but can be estimated according to y = C(x) where y is the voltage

associated with the battery terminals and C is some nonlinear mapping [30,31]. Ad-

vanced methods for SoC estimation are Kalman filters [32, 33], neural networks [34],

electrochemical impedance spectroscopy [35] and fuzzy logic [36, 37]. If Ah capacity

is used, the change of SoC can be expressed as

∆SoC = SoC(t)− SoC(t0) =
1

Ah Capacity

∫ t

t0

u(t)dt (1.1)

State-of-Health (SoH). SoH is a ratio of the maximum charge capacity of an aged

battery to the maximum charge capacity when the battery was new. It can be ex-

pressed as

SoH =
Aged Energy Capacity

Nomincal Energy Capacity
(1.2)

11
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Terminal Cell Voltage (V). Terminal voltage (Vt) is measured between the battery

terminals with a load being applied. This changes with state-of-charge and applied

current.

Open Circuit Voltage (V). The voltage that is measured between the battery ter-

minals when no load is applied and sufficient rest is provided. OCV is a common

acronym.

Capacity (Ah). The capacity of a battery is the amount of current it can provide

for a certain amount of time. It is typically expressed in Amphours. For example,

the Panasonic 18650 cells shown in Fig. 1.4 has a nominal capacity of 3.07 Ah.

C-Rate. Typically used when describing how much current a type of battery cell

can discharge. A C-rate is a measure of the rate at which a battery can discharge

relative to its maximum capacity. A 1C rate means that the discharge current will

discharge the entire battery in 1 hour. For a battery with a capacity of 50 Amphours,

this equates to a discharge current of 50 Amps. A 5C rate for this battery would be

250 Amps, and a C/2 rate would be 25 Amps.

Cycle Life. Cycle life is the number of discharge-charge cycles before a battery fails

to meet specific performance criteria. Under specific charge and discharge conditions,

Cycle life can be estimated. The operating life is affected by the rate and depth of

cycles as well as temperature and humidity [38].

12
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Internal Resistance. Internal Resistance is the resistance within the battery. In

general, it is dependent on the cells state-of-charge and if its being charged or dis-

charged. The batteries efficiency decreases as the internal resistance increases.

Depth of Discharge (DoD). The percentage of battery capacity that has been dis-

charged expressed as a percentage of maximum capacity.

Stored Energy (Wh). The energy stored in a battery depends on its voltage and

capacity. A unit of Watthour is typically used.

Stored energy (Wh) = Voltage (V) x Capacity (Ah) (1.3)

Specific Energy. Specific energy is the quantity of energy stored in the battery for

every kilogram of mass. The specific energy is typically given in Wh/kg.

Specific Energy =
Stored Energy (Wh)

Battery Mass (kg)
(1.4)

Specific Power. Specific power is the amount of power obtained for each kilogram

of the battery and is measured in W/kg.

Specific Power =
Peak Power (W)

Battery Mass (kg)
(1.5)

Thermal Management System. TMS protects the battery pack from overheating.

Electric Vehicles with NiMH batteries use simple forced air cooling TMS. Liquid

cooling is required for Lithium ion batteries in EV applications [39].

13
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1.6 Battery Management System (BMS)

The Battery Management System (BMS) is a system used for the following tasks:

1. Monitoring

2. Protection

3. Estimation

4. Control

These four main functions are found in any BMS to ensure safe operation, high

performance and longer lifetime expectancy [26, 40, 41]. Protection of Lithium-ion

batteries experiencing over and under voltages is essential to maximizing the health

and safety of the cells [42]. If over voltage occurs, production of CO2, C2H4 and

other gases will increase the internal temperature and pressure causing severe battery

damage or an explosion [41]. If under voltage occurs, internal reactions cause the

cell to lose a large part of its capacity. The voltage of a battery cell is related to

its remaining energy (state-of-charge). Therefore, a weak cell is defined as one that

has a lower SoC than the others in the pack. Likewise a strong cell is one that has

a higher SoC. Without a on-board balancing system, the cells capacities would drift

apart causing weak cells to dominate discharging time and strong cells to dominate

charging time [26]. A Battery Management System (BMS) is implemented to avoid

the harmful effects of cell imbalances, improve the effective capacity of the pack and

keep each cell within a predefined operational safety region [18]. Fig. 1.5 shows a

high level conceptual view of voltage based battery balancing. Two major companies

that produce components for battery balancing and BMS type solutions are Linear

Technology and Freescale.

14
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Figure 1.5: Example Balancing Strategy [5].

1.7 Thesis Outline

This thesis is organized as follows: Balancing methods including balancing hardware

topologies are described in Chapter 2. The power electronics used for redistributive

non-dissipative battery balancing are explained in Chapter 3. Development and anal-

ysis of different control techniques are presented in Chapter 4. The implementation

details for an experimental test bench are described in Chapter 5. Then in Chapter

6, a comparison between all control methods is conducted and discussed. Finally,

conclusion remarks are at the end of this thesis in Chapter 7.
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Chapter 2

Balancing Methods

Electric Vehicles are rapidly shifting towards drivetrains with high-power electric

machines and inverters. The battery system therefore needs to be high voltage, high

efficiency and have long lifetime [29,43–45]. The battery cells are connected in series

to achieve high voltage levels which will lead to a nearly exponential reduction in

the battery life as the number of cells increases [17]. A significant reason for reduced

lifetime is charge imbalances of the cells which only degrades even further with time.

Cell imbalances arise due to internal effects such as manufacturing inconsistencies,

different self-discharge rates and internal resistance as well as external effects such as

temperature variations. To avoid damages, correct any imbalances and improve the

effective capacity of the pack, an energy balancing system is required [18].

The two types of battery balancing hardware is dissipative and non-dissipative.

A dissipative approach draws excess charge from the cells with a higher state-of-

charge and dissipates it through resistors. A non-dissipative approach uses power

electronics to transfer excess charge between cells [6, 22, 23, 46]. Balancing simply

means equalizing all cells state-of-charge in a series connected string. If a unbalanced
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string remains as such, the effective capacity of the pack is low. As mentioned before,

Lithium Ion battery cells are typically used in EVs because of their superior energy

density, self discharge rate and cycle life. However, Li-ion cells have more safety

precautions than lead-acid and NiMH [5]. This means while discharging the stack,

operation must halt once the weakest cell is completely empty, even if the stronger

cells still contain energy. Redistribution is defined as dynamically shuttling charge

to the weak cells from the stronger cells during operation such that all of the stored

energy in the stack can be utilized [11,47].

Redistributive techniques and various hardware topologies have been studied and

applied in industry [22] [23] [6]. Three approaches of achieving redistributive balanc-

ing are cell to cell (C2C), cell to stack (C2S) and stack to cell (S2C). A C2C approach

transfers the excess energy between adjoining cells. A C2S approach transfers the

excess energy from strong cells then redistributes it back onto the battery stack. Like-

wise, a S2C approach transfers the excess energy from the battery stack to the weak

cells. By Combining the last two methods, it is possible to simultaneously charge

and discharge individual cells. Both classifications can further be divided into passive

balancing and active balancing. Passive balancing relies on system properties and

does not require a controller. Faster balancing can be achieved using active balancing

systems which use a high level controller to direct the charge and discharge currents

per cell. Due to high voltage battery packs being configured in a modular fashion,

balancing is required at both the module and cell level [48]. This thesis validates

control concepts on a cell level but the general idea can be applied to modules.

18
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2.1 Dissipative Balancing Topologies

A true passive dissipative balancing topology is shown in Fig. 2.1. This topology

permanently connects shunt resistors in parallel to each cell during balancing. The

way in which this balances is that the cells with the higher voltage will discharge more

than the lower voltages. True passive dissipative balancing removes charge from all the

cells state-of-charge. This method for balancing can only be used with Lead-acid and

NiMH type batteries because these types of cells can be overcharged without severe

consequences [23,46]. However, this requires a much larger amount of balancing time.

By combining the same topology with a control method and additional hardware i.e

switches, a active dissipative balancing topology is formed.

Figure 2.1: Passive Dissipative Balancing using Resisters.
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Most balancing schemes being used today by Car Manufacturers and other vendors

are unidirectional active dissipative balancers. This method operates by switching a

path from the battery to a parallel resistor for cells with higher voltages. No charge is

recovered and the energy is essentially wasted as heat through the resistive element.

The time for balancing is reduced when compared with its passive counterpart, but

still remains high due to small bleeding currents (≈ 20mA). The switched resistor

Figure 2.2: Active Dissipative Balancing using Switched Resistors.

method for active dissipated balancing is shown in Fig. 2.2. As a side note, resistor

values are typically chosen such that the current is small or less than 10mA/Ahr

capacity. This translates into each cell roughly being balanced at a rate of 1% per

hour [46]. However, if this technique was used during the full operational cycle of the

battery (not just charging), it would drain the entire pack in just a few days [46].
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2.2 Non-Dissipative Balancing Topologies

The general idea behind non-dissipative active balancing is using external circuits to

transfer energy among the cells in order to balance them. The word active will be

dropped for simplicity, as all non-dissipative topologies discussed in this thesis are

active. The three major categories for non-dissipative balancing are shunting, shut-

tling and energy converters. Different circuit topologies lead to the three categories.

Shunting methods remove excess energy from neighboring cells to make higher volt-

age cells wait for the lower voltage cells to catch up. This is similar to the active

Cell1

Celln-1

Cell2

Cell3

Celln

Balancing 
Circuit

Figure 2.3: Non-dissipative (Shunting) Current Divider.

dissipative method but the energy is captured and put back onto the cells instead of

being wasted. For example, a shunt topology known as a current divider from [49] is

shown in Fig. 2.3. More topologies of similar nature are PWM Controlled Shunting,
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Resonant Converter, Boost Shunting and Complete Shunting [23,46].

The second class of non-dissipative balancing are shuttling techniques. These

methods utilize external energy storage devices (capacitors and inductors) to shuttle

the energy amongst the cells in order to balance them. The two main shuttling

topologies are switched capacitor (SC) and single switched capacitor (SSC) [50]. A

single switched capacitor topology is shown in Fig. 2.4. This topology uses a capacitor

to store energy and move it between several series connected cells.

Figure 2.4: Non-dissipative (Shuttling) Single Switched Capacitor.

The final class of cell balancing are grouped together as energy converter topolo-

gies. The converters all require isolation such that the input and output side have

isolated grounds. These are often referred to as cell to stack topologies as the charge

is removed from one cell then distributed equally among all the cells in the stack [6].

Charge can also be drawn equally from all the cells then added to a single cell using

bi-directional DC-to-DC converters. Many topologies exist such as step-up converter,
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multi-winding transformer, ramp converter, multiple transformers, switched trans-

former found in [23, 46, 50]. These topologies can also be classified as inductive or

capacitive. For example, a shared transformer topology is shown in Fig. 2.5. It uses

a single magnetic core with secondary taps for each corresponding cell. Current from

the cell stack is switched into the transformer primary and induces currents in each

of the secondary. The secondary with the least reactance will have the most induced

current [23].

Figure 2.5: Non-dissipative (Energy Converter) Shared Transformer.

In [6], two performance metrics are defined for evaluating the performance of seven

different balancing hardware topologies shown in Fig. 2.6. The two metrics that are

defined and analyzed are time required to balanced and energy dissipated during

balancing. The results from [6] are shown in Fig. 2.7. Shunting topologies have time

to balance that grows linearly with the number of cells and the energy dissipated to
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Dissipative (a); Line shunting (b); Ring shunting (c); Inductive storage element (d); Capacitive storage element (e); 
individual cell to stack (f); Common cell to stack (g)

Figure 2.6: Balance Hardware Topologies [6].

balance grows exponentially with the number of cells. Shunting topologies therefore

have poor time to balance and energy dissipation. Converter based topologies, more

specifically the individual cell to stack topology shows time to balance and energy

dissipated as constant and independent of the number of cells. For this reason, this

thesis uses the individual cell to stack topology i.e a multiple transformer topology

that implements bi-directional flyback converters to realize the balancing currents.

A - Dissipative, B - Line shunting, C - Ring shunting, D - Inductive storage element, E - Capacitive storage element, 
F - Common cell to stack, G - individual cell to stack 
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Figure 2.7: Performance Metrics; T2B (a), E2B (b) [6].
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Chapter 3

Power Electronics used for

Redistributive Battery Balancing

3.1 Overview of Power Electronics

Power electronics is a way of controlling and converting electric power. More specif-

ically, it is the study of switching electronic circuits for the purpose of controlling

energy flow. Different classifications are made depending on the type of input and

output power requirements. A rectifier converts alternating current (AC) to direct

current (DC) and is found in many consumer products such as Televisions and Per-

sonal computers. Contrast to the rectifier is a power inverter which converts DC to

AC. System design includes parameters such as input voltage, output voltage, fre-

quency and power requirements. Many inverter applications exist such as the use in

solar panels. An AC-to-AC converter is one that converts a AC line input to AC

inverter output. A very common example of this is used in Variable frequency drives

found in electro-mechanical drive systems to control AC motor speed and torque.

25



M.A.Sc. Thesis - Lucas McCurlie McMaster - Electrical Engineering

3.2 DC-to-DC Converters

The final class in power electronics is DC-to-DC converters which convert one DC

voltage level to another. The power levels can range from very low such as in small

battery applications, to very high such as in high-voltage power transmission. Low

power level applications can be found in cell phones and laptop computers (5 - 10V).

High power level applications are Electric vehicles(300V+). In many electrical de-

vices, a large number of sub-circuits exist that require different voltage levels. Instead

of using many batteries with different input voltages, a single source is typically used

in conjunction with switched DC-to-DC converters to either increase or decrease the

voltage levels for their sub-circuits. Many different DC-to-DC converters exist but

the general form is shown Fig. 3.1.

DC 
Supply

DC 
Load

DC 

DC 

DC-to-DC
Converter

V1 V2

Figure 3.1: General Form of a DC-to-DC Converter.

3.2.1 Buck-Boost Converter

The buck-boost converter shown in Fig. 3.2a, is a common type of DC-to-DC converter

that can either have a output voltage greater than or less than the input voltage. This

converter combines a buck (step-down) converter with a boost (step-up) converter.

The magnitude of the output voltage is based on the duty ratio of the switching
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device. The main components in the buck-boost converter is a power metal-oxide

semiconductor field-effect transistor (MOSFET) S, a diode D and an inductor L.

For simplicity, the MOSFET is represented by an ideal switch in Fig. 3.2. The basic

principle of the buck-boost has two main topological operational states. The first

state, shown in Fig. 3.2b.1, is when the MOSFET S is closed. The voltage across the

inductor L becomes the input voltage E. The inductor current ramps up at a rate

that is proportional to E. The accumulating energy in the inductor is

VL = E = L
diL
dt
. (3.1)

The second state, shown in Fig. 3.2b.2, is when the MOSFET S is open. The diode D

is forward-biased and the inductor current ramps down at a rate proportional to Eo.

The Energy is transfered from the inductor to the load. For steady-state operation,

the difference in the inductor current must be zero over period T thus

(∆iL)open + (∆iL)closed = 0, (3.2)

Etc
L

+
Eota
L

= 0. (3.3)

The voltage conversion ratio of the inverting buck-boost in CCM is expressed as

Eo
E

= − D

1−D
(3.4)

where D = tc
T

shown in Fig. 3.3. The magnitude (3.4) of the output voltage is either

higher (if D > 0.5) or lower (if D < 0.5) than the input voltage. Fig. 3.3 shows

typical voltage and current waveforms in continuous conduction mode (CCM).
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Figure 3.2: Buck-Boost Converter.
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Figure 3.3: Buck-Boost Converter Waveforms (CCM).
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3.2.2 Flyback Converter

To achieve galvanic isolation, safety, and enhanced noise immunity, the secondary

side is electrically isolated from the primary side in a isolated DC/DC converter.

This isolation is typically used in EVs to keep the power rating of the switches low

[6]. The Flyback converter provides a simple implementation for the redistributive

non-dissipated balancing system and has similar inter workings as the buck-boost

converter.

The Flyback is commonly used at 50-100W power range but still functions as high

voltage power supplies for televisions and computer monitors. Its main advantage is

in a low number of components [51] when compared to other isolated topologies.

These converter can operate in either Continuous Conduction Mode (CCM) or Dis-

continuous Conduction Mode (DCM). For the multiple transformer topology in the

redistributive non-dissipative balancer, they will be operated in Discontinuous Con-

duction Mode (DCM) because it requires a smaller transformer, reducing system

costs than its Continuous Conduction Mode (CCM) counterpart [7]. Additional volt-

age on the primary side transformer may be viewed due to ringing associated with

the transformer leakage inductance. A snubber circuit is typically required to clamp

the magnitude of this ringing voltage to a safe level that is within the peak voltage

rating of the transistor [51].

The Flyback converter shown in Fig. 3.5a, is derived from the buck-boost shown

in Fig. 3.2a. The main components in the flyback converter is a MOSFET S, a

diode D and a isolated transformer that can be modeled by an ideal transformer in

parallel with a magnetizing inductance [51]. Again, for simplicity, the MOSFET is

represented by an ideal switch in Fig. 3.5. The basic principle of the flyback has two
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main topological operational states. The first state, shown in Fig. 3.2b.1, when the

primary switch is closed S, the diode D is reverse biased due to the winding polarities

and the inductor voltage V1 = E. The transformer (main inductance) stores energy

during this on-time of the MOSFET. The current during the on-time of the primary

switch is

Lp
di

dt
= V1 = E ⇒ IM1

DT
=

E

Lp
, (3.5)

where D is the duty cycle, T switching period, V1 = E is the cells voltage for battery

balancing and Vo is the stack voltage. The second state, shown in Fig. 3.2b.2, is

when the primary switch is opened. In DCM, all the energy stored in the core of

the transformer is transfered to the secondary winding, forward biasing the diode

and supplying the load. Fig. 3.6 shows the typical voltage and current waveforms in

Discontinuous Conduction mode (DCM).

In practice, during the off time of the MOSFET, a high voltage spike due to

the transformers leakage inductance can occur. This high voltage spike can cause

serious damage to the MOSFET. Therefore, a snubber circuit is used in the Flyback

converter to clamp any voltage spike to a safe level. Two clamping circuits are shown

in Fig. 3.4. For bi-directional power flow, a second MOSFET replaces the secondary

diode.

Dclamp

Zclamp

(a) Diode-Zener Clamp

D

Rclamp

(b) RCD Clamp

Cclamp

Figure 3.4: Voltage Clamping [7].
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Figure 3.5: Flyback Converter.
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Figure 3.6: Flyback Converter Waveforms (DCM).
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Chapter 4

Control Techniques, Analysis and

Design

High level cell balancing can be achieved using either voltage based input or state-of-

charge based input. Voltage based methods use simple hardware thus making their

implementation easier, but suffer from slower balancing speeds and possibly introduc-

ing further imbalances due to distortions from impedance differences [52]. SoC based

methods are much more complicated but are more accurate and faster to balance [52].

In this thesis, a top level controller balances the cells state-of-charge using actuating

currents in the links. The state-of-charge x is not measurable but can be estimated

according to y = C(x) where y is the voltage associated with the battery terminals

and C is some nonlinear mapping [30]. Common modeling techniques for lithium-ion

batteries are categorized into equivalent circuit model (ECM), empirical model, and

electrochemical-based model [53]. Each with different levels of computational com-

plexity and accuracy of the dynamic processes and aging effects inside a battery [53].

This Chapter assumes SoC is constructed with sufficient precision. In this Chapter,
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different balancing control methods are identified and developed. These methods

include a unconstrained optimization problem using a Linear Quadratic Regulator

(LQR) and finally a constrained optimization problem using Model Predictive Con-

trol (MPC). These methods are benchmarked against traditional rule based (RB)

balancing.

4.1 Battery System Description

A description for the overall system must first be defined before developing the con-

trol algorithms. The redistributive non-dissipative balancing system known as the

Multiple Transformer topology is shown in Fig. 4.1. The battery pack is defined by n

series connected battery cells with m number of links. Each cell is described by the

amount of remaining charge via Qx ∈ Rn. The matrix

Q =



Ĉ1 0 . . . 0

0 Ĉ2 . . . 0

...
...

...

0 0 . . . Ĉn


∈ Rnxn

is a diagonal matrix that defines each cells maximum charge capacities (Ĉ in Ah) and

x is the state-of-charge vector

x =

[
x1 x2 . . . xn

]>
∈ Rn.

Each element in the SoC vector ranges between zero and one where the value of 0

corresponds to a completely empty cell and the value of 1 corresponds to a fully
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charged cell. For the system to become balanced, charge is moved between m links.

The balancing current being transfered through the links is Au ∈ Rm where u is a

vector containing the normalized balancing currents and

A =



Î1 0 . . . 0

0 Î2 . . . 0

...
...

...

0 0 . . . Îm


∈ Rm×m

defines a diagonal matrix containing the maximum current (Î in Amps) each link can

handle.

The connection between n cells and m links is defined by a topology matrix

T ∈ Rnxm. It describes how the balancing charge is transfered (from and to each

cell). For the bi-directional multiple transformer topology shown in Fig. 4.1, T is

defined in [6] as

T =



1

n
− 1

1

n
. . .

1

n
1

n

1

n
− 1 . . .

1

n
...

...
...

1

n

1

n
. . .

1

n
− 1


∈ Rn×m.

For this topology, charge is removed from one cell and distributed equally amongst

all the cells in the stack (C2S). Likewise, the charge can be removed from the entire

stack then added to a single cell (S2C). Each cell has its own unique link to the stack

that allows for simultaneous movement of charge to and from multiple cells. Thus,
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the charge stored in a battery cell is modeled using simple continuous time integrator

dynamics as

Qẋ(t) = TAu(t), (4.1)

where the topology matrix T relates the normalized balancing currents u(t) with the

SoC x(t). A sign convention of u(t) > 0 indicates a flow of charge from the cell to

the stack and u(t) < 0 indicates a flow of charge from the stack the cell. Since T, A,

Q are all constants, the system dynamics can be simplified to

ẋ(t) = Bu(t), (4.2)

where B = Q−1TA. With the addition of the topology matrix T, equation 4.2 is

identical to equation 1.1 but has been expanded for multiple cells. The maximum

rated link current limits the applied balancing current. These balancing currents are

subject to polyhedral constraints that depend on the topology [6] [54]. The inequality

constraint is based on the maximum amount of current through each link |u(t)| ≤ 1.

From Proposition 1 [6] there exists a constant input trajectory u(t) = ū. Thus, the

state-of-charge is further simplified to just

x+ = x+ TsBū, (4.3)

where Ts is the sampling period and ū is the normalized balancing currents found by

each control method.
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4.2 Linear Quadratic Regulator

This method is first described in [18] but is expanded upon in this Thesis. The

constraints for the system are written as Hū ≤ K for the inequality constraint and

Heqū = Keq for the equality constraint. For the LQR control to function, the equality

constraint on the system dynamics is defined by transforming (4.3) into a regulation

problem using the transformation matrix

L =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

...
...

...
...

...

0 0 0 . . . 1 −1


∈ R(n−1)×n.

This matrix L leaves the difference in SoC between neighboring cells. Thus the

regulation problem uses x̄ = Lx and the balanced state is when x̄ = 0. The equality

constraint is removed using the transformation

ū = Fu′ + u0, (4.4)

where F is the nullspace of Heq, such that FHeq ≡ 0 and u0 is any solution of Hequ0 =

Keq. This will yield the system

x̄+ = x̄+ B̄u′ + LBu0, (4.5)

where B̄ = LBF. The component LBu0 is a non-zero offset value in general that

can be removed by integration. However, LBu0 ≡ 0 for all topologies studied in [6].
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The updated system (4.5) is linear, thus a discrete, infinite-time Linear Quadratic

Regulator (LQR) that minimizes the cost function J =
∑∞

k=0(x̄
T
kQx̄k + ūTkRūk) is

used.

The LQR problem is solved by a regular feedback controller defined as

u′ = −Klqrx̄, (4.6)

where Klqr is found by solving the discrete time Riccati equation. However, the con-

troller input may not satisfy the inequality constraints. Thus, the input is saturated

such that it satisfies the inequality constrains according to

H̄ū ≤ K̄, (4.7)

where H̄ = HF and K̄ = K −Hu0. The result is transformed into a control input

for the original system with (4.4). The saturation (4.7) ensures that the inequality

constraints are satisfied and the transformation (4.4) ensures that the equality con-

straints are met. Meaning that the resulting back-transformed ū is feasible. Also,

the resulting closed loop system is stable according to [55] [56]. The LQR now has a

control input ū that defines the balancing currents in each link as

Aū = [ic1 , ic2 , ic3 ...icm ]. (4.8)
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4.3 Model Predictive Control

In [6] performance metrics have been developed to evaluate hardware. This thesis

uses the minimum time to balance (t2b) metric as a balancing control. Defining this

control is not as straight forward as LQR because it not only has to determine the

normalized balancing currents, but must do so such that the balancing occurs in the

minimum amount of time τ . Thus, a battery cells state-of-charge in terms of a control

input at the final balancing time τ , is

x(τ) = x(0) + B

∫ τ

0

u(t)dt. (4.9)

From Proposition 1 [6] there exists a constant input trajectory u(t) = ū such that

x(τ) = x(0) + Būτ. (4.10)

Much like the LQR method, the constraints for the system are written as Hū ≤ K for

the inequality constraint and Heqū = Keq for the equality constraint. The equality

constraint on the system dynamics is defined by transforming (4.10) into a regulation

problem. However, with MPC the transformation matrix is

L = I− J, (4.11)

where I ∈ Rnxn is the identity matrix and J ∈ Rnxn is a matrix containing all 1/n

elements. This removes the average SoC and leaves the unbalanced SoC. The equality
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constraint now becomes

Lx(0) + LBūτ = Lx(τ) = 0. (4.12)

The constraints for the system are written as Hū ≤ K for the inequality constraint

and Heqū = Keq for the equality constraint. The constrained linear optimization

problem is formally expressed as

τ ?(x) = minimize
τ≥0

τ (4.13a)

subject to Lx+ LBūτ = 0 (4.13b)

Hūτ −Kτ ≤ 0 (4.13c)

To efficiently solve (4.13a) using popular Linear programming solver packages such

as LPSOLVE, CPLEX or MOSEK, it is worth reproducing the problem in standard

form. This is achieved by defining a new column vector containing both variables

z =

 v

τ

 ,
where v = ūτ . It is important to realize that Lx is a parameter and is treated as a

constant. The minimum time to balance problem (4.13a) in standard form becomes

z? = minimize g′z (4.14a)

subject to Aeqz = beq (4.14b)

Az ≤ b (4.14c)
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where Aeq = [LB 0], beq = [−Lx 0], A = [H− k], b = 0.

Many simple solvers are more efficient when dealing without equality constraints

such as qpOASES. This is not mandatory but by removing the equality constraint

from (4.14a), the dimensions of the optimization problem are reduced.

To do this, the following linear transformation is used

z = Fz̄ + z0 (4.15)

where F is the nullspace of Aeq, such that FAeq ≡ 0 and z0 is any solution of Aeqz0 =

beq. Equation (4.15) is substituted into (4.14a) to ensure that the equality constraint

is still satisfied but is now removed from the problem. Thus, a formal definition for

the minimum time to balance problem in standard form with the removed equality

constraint is

z̄? = minimize g′z̄ (4.16a)

subject to Āz̄ ≤ b̄ (4.16b)

where Ā = AF, b̄ = b−Azo.

The performance metric is now used to define a model predictive controller. To

adapt this into a discrete time MPC controller, equation (4.16a) is solved for the

optimal τ ∗ and ū∗ at each sampling time instant kTs using the discrete time dynamics

Lx+ LBūτ = 0. (4.17)

Then a scaling factor ν is introduced to scale down the control if τ ∗ is smaller than the
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sampling period Ts such that the process leads to the following closed loop dynamics

x[k + 1] = x[k] + νTsBū
∗[k], (4.18)

where

ν =


τ∗

Ts
for τ ∗ ≤ Ts

1 for τ ∗ > Ts

(4.19)

This sequence is repeated for each sampling instant until the system becomes bal-

anced, i.e Lx[k] = 0.

4.4 Rule Based Control

Rule based control methods use a set of rules to manipulate some form of outcome

in a system. Examples of RB in other EV applications are found in [57–59]. For a

bi-directional (C2S/S2C) system, the average state-of-charge is defined as

x̄ =
||x||1
n

, (4.20)

where x is a vector containing state-of-charge and n is number of cells. If a cells x is

higher than the average x̄ then it is discharged onto the stack i.e ū = 1. Likewise, if a

cells x is lower than the average x̄ then it is charged by the stack i.e ū = −1. As a side

note, this could easily be changed for a uni-directional active dissipative approach by

balancing towards the minimum SoC. This simple control method uses the maximum

link current available i.e each cell is always charging or discharging until all cells SoC

45



M.A.Sc. Thesis - Lucas McCurlie McMaster - Electrical Engineering

fall within a ”balanced region” Bz. A transformation matrix is used

L = I− J, (4.21)

where I ∈ Rnxn is the identity matrix and J ∈ Rnxn is a matrix containing all 1/n

elements. This removes the average SoC and leaves the unbalanced SoC. Thus the

balanced region Bz is defined as 5% or when

||Lx||1 < 0.05. (4.22)

The set of simple rules for redistributive non-dissipative balancing are summarized as

ū =


1(Discharge) if x > x̄

−1(Charge) if x < x̄

0 if ||Lx||1 < 0.05

(4.23)
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Chapter 5

Implementation Details

5.1 Linear Technology DC2100A Hardware

At the outset of this thesis, implementing control strategies and obtaining experi-

mental data as such was most important. For rapid prototyping and implementation,

the hardware for experimental data was built upon an existing Linear Technology

DC2100A Demonstration board [60]. This application hardware is developed for bi-

directional cell balancing of up to 12 Lithium ion cells. By monitoring the cell voltage

and protecting against over charge and under charge conditions, algorithms for State-

of-charge estimation can be embedded onto a daughter board (PIC18F47J53). This

microcontroller communicates to the LTC3300-1 and LTC6804 integrated circuits

through SPI communication.

Off the shelf this board had bi-directional flyback converters that were all con-

trolled with a convenient graphical user interface. The original Code Communication

Diagram in Fig. 5.1 shows the flow of communication such that any new software

communicates with the boot firmware through the HID windows driver. The GUI
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Figure 5.1: DC2100A Code Communication Diagram [8].

software communicates with the Application Firmware through the WinUSB win-

dows driver. The App FW passes commands and responds to the GUI SW. The App

FW must also provide communication to the ICs and general inputs and outputs.

The main ICs on the DC2100A are the LTC6820, LTC6804-2 and LTC3300-1. The

LTC6820 IC converts SPI into isoSPI for the monitoring ICs on the DC2100A. The

LTC6804-2 IC measures battery voltage as well as passes I2C and SPI communication

to the balancing chips. The LTC3300-1 IC provides active balancing commands to

the bi-directional converters.

On the surface this board seemed to have what was required for conducting the ex-

periments with little to no modifications. However, during the initial stages of testing,

it became clear that the on-board PIC microcontroller did not have sufficient stor-

age space for any additional algorithms. Luckily, the designers at Linear Technology
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made it possible to disconnect the PIC from the system then connect an alternative

solution to monitor and control the DC2100A hardware. This is done through the

JP7 header seen in the original communication diagram (Fig. 5.1). The JP7 header

is a 6 row pin configuration that interfaces with alternative microcontrollers via SPI

and has a pinout as follows: pin 1 - LTC6820 ENABLE, pin 2 - SPI MOSI, pin 3 -

SPI MISO, pin 4 - SPI SCK, pin 5 - SPI CS, pin 6 - GND.

5.2 Texas Instruments F28377D Controller

The alternative microcontroller that was selected for this thesis was a Texas Instru-

ments (TI) TMS320F28377D microcontroller. The reason this was the chosen one

was because it boasts dual core architecture with two 32-bit CPUs operating at 200

Mhz. It also had a lot more storage than the original PIC controller with 1 MB of

Flash and 204 KB of RAM. However, all new software was required to proceed for the

F28377D to function as the main balancing controller. All communication was done

via SPI, therefore integrating this software was paramount to the success of operating

the balancing controller. Fig. 5.2 Shows the waveforms measured by the oscilloscope

for SPI communication.

Other important functions that were ported over from the PIC to the main balanc-

ing controller (F28377D) were monitoring voltage cells via a read voltages command,

clearing any data stored on the registers such that clean messaged could be sent as

well obtaining over voltage and under voltage flags that were important for safety.

Furthermore, the added algorithms for balancing control were added onto the second

core of the DSP. Other important software modifications was in a state-of-charge

estimation lookup table based on the cells OCV.
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Figure 5.2: Oscilloscope SPI protocol with TMS320F28377D and DC2100A.
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18 cm 28 cm

Figure 5.3: Battery Test Harness - 3D Design.

5.3 Pack Harness

A battery pack test harness was first designed in Altium then assembled in house.

It was specifically designed for Lithium-ion 18650 type cells with known dimensions.

This pack harness is capable to housing up to 6 modules in series, each module can

contain up to 4 cells in parallel. The layout of the harness was chosen based on

ease of access to each cell. It is strictly used for demonstration purposes and pack

verification. A 3D simulated model is shown in Fig. 5.3 and the PCB trace layout in

Fig. 5.4.
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Figure 5.4: Battery Test Harness - Altium PCB Trace Layout.

5.4 Full Test Bench

To showcase the redistributive non-dissipative balancing approach, experiments are

conducted on the test bench shown in Fig. 5.5. To summarize the full test bench, the

first component in the system is a modified DC2100A demo board from Linear Tech-

nology. On this board is a LTC-6804 monitoring chip that measures the cells voltages.

It has internal over/under voltage protection and conveys the information via SPI to

the control DSP. It also features a LTC-3300 chip that controls the MOSFET for the

Flybacks converters. Each flyback module operates in critical mode utilizing a pulse

frequency modulation (PFM) strategy descried in [18]. How this works is when the

primary switch for a module is closed while discharging a cell, it measures the instan-

taneous primary current until a maximum peak current is reached. It then opens the
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(Panasonic 18650)

Control Board
(TI F28377D)

Bi-Directional 
Flyback Converters

(DC2100A)

Figure 5.5: Test bench.

primary switch and closes the secondary switch to allow the instantaneous secondary

current to be released back onto the stack. From the LTC 3300 data sheet available

online [9], the waveforms are shown in Fig. 5.6.

The second component is a custom built test harness which houses the battery

pack using Panasonic NCR 18650 cells. The battery pack consists of 6 modules con-

nected in series. Each module has 2 Lithium Ion battery cells connected in parallel.

The last component in the system is a Texas Instruments F28377D dual core mi-

crocontroller (DSP). The primary function of core one is to solve for the optimal

normalized balancing current based on the cells state-of-charge for the MPC control

method. The solver was written in MATLAB as functions blocks, then code compiled

into C files using MATLAB Coder. This way of working allows for fast prototyping
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Figure 5.6: Synchronous Flyback Balancing Example [9].

and comparison between a simulated and experimental environment. The second core

handles all Battery Management type activities and is connected through SPI to the

DC2100A demo board. Its main tasks are to read cell voltage, determine SoC, control

the on time for each MOSFET, and to send information to core 1.

5.5 Low Level Control

To actuate the desired current from control method i.e RB, LQR and MPC, an

upper level, low frequency control strategy referred to as constant operating point

modulation (COPM) must be utilized [18]. The actuation can be applied by keeping

a constant operating point in low level control. The implemented Flyback converter
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Figure 5.7: Low Level Control Switching Waveforms.

is either on transferring a given current or off. This type of operation is suitable for

battery balancing but requires a high level PWM. The actuator applies an average

current by keeping the DC/DC converter on for a certain amount of time and turns

it off for the rest. COPM is implemented strictly due to how the LTC-3300 IC

from Linear Technology performs its low level control. This strategy can be better

understood by looking at Fig. 5.7.

The high level controller (RB, LQR, MPC) uses a smaller current due to this

on/off type of low level control. In reality, the hardware is operating with a higher

current of Ma but only for a maximum time of Ta. The relationship between what

the high level control thinks the batteries are operating with (ic = Î ū) and what is

actually being delivered to the batteries (Ma) is

ÎL =
MaTa
Ts

. (5.1)
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At each kTs time step, ic is translated into an effective current that works with the

COPM strategy. This is shown in Fig. 5.7. Since the LTC-DC2100A did not come

equipped with average link current sensors, estimated current equations provide a

close approximation of the average link current through each flyback converter [18].

While a cell is being discharged, the estimated current through the link is

ĩd =
IMVs

2(Vs +NrVc)
. (5.2)

While a cell is being charged, the estimated current through the link is

ĩc =
ISNrVs

2(Vs +NrVc)
. (5.3)

The values of the estimated currents are then scaled with the maximum operating

link current Ma. These calculations are performed by the DSP in order to control

how long each switch is on for Tb to achieve the same effective current the fast MPC

controller requires. This on-time is calculated as

Tb =



ūMaTa

ĩd
for ū > 0

−ūMaTa

ĩc
for ū < 0

0 for ū = 0

(5.4)

As a proof of concept test in [18] for the estimation equations 5.2 and 5.3, a constant

discharge test was conducted on the first cell in the stack as shown by Fig. 5.8. At

the beginning of discharge, the measured current is 3.697A which was obtained using

a ammeter in the direct path of the first link. The estimated current for that link
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was 3.685A. At the end of discharge, the measured current is 3.851A. The estimated

current for that link was 3.853A.
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Figure 5.8: Measured vs. Estimated Link Currents.

5.6 Test Procedure and Graphical User Interface

For many microcontrollers available from Texas Instruments, a Simulink Coder (For-

merly Real-Time Workshop) can be used to generate and execute C and C++ code

from Simulink diagrams and MATLAB functions automatically. However, at the time

of writing this thesis, the TI DSP (F28377D) was not a working target for this method

of programming. Thus, skills were developed in Code Composer Studio (CCS) by

reading forums, data sheets and developing workshops. For the integration between

the F28377D and DC2100A, low level software was programmed directly in CCS
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Figure 5.9: Programming with MATLAB Coder for DSP.

such as SPI communication, PWM signals and ADC inputs. However, for the more

complicated high level RB, LQR and MPC balancing algorithms, scripts were devel-

oped in MATLAB then flashed onto the DSP using embedded MATLAB (MATLAB

Coder) to generate C-code. This process is shown in Fig. 5.9 and is fundamentally

different and more challenging than using Simulink Coder. The MATLAB scripts

had to essentially be open functions for parsing or solving data. A timer and clock

was used for a rudimentary scheduler of tasks such as monitoring voltage, estimating

SoC, turning balancing on and off as well as halting if any flags were triggered.

For each control method, the 6 series connected battery cells are charged inde-

pendently using a Lithium-Ion charger until they reached an arbitrary deviation in

voltage. The cells are then rested for 2 hours and a open circuit voltage is measured

for the start of balancing sequence. This process was repeated until the cells starting

SoCs and OCVs were close to one another for each test. To fully encapsulate the

balancing efficiency, the system was turned off after balancing and rested for 1 day.

The open circuit voltages and State-of-charge values were then recorded representing

a final balanced system. A graphical user interface was coded and designed in Code

composer studio GUI. This was written in Java to send and receive commands to the

DSP in real time. It also recorded any error flags, cells measured voltages, estimated

state-of-charge as well as estimated link currents and is shown in Fig. 5.10.
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Chapter 6

Simulation Results and

Experimental Validation

For this thesis, different battery balancing control methods have been simulated us-

ing MATLAB. The simulation scripts for each control method can be found in the

Appendix of this Thesis. The closed loop system is compared with that of an exper-

imental one. An evaluation of the controller and balancing hardware for a system

containing 6 cells in series, each with a rated capacity of Ĉ = 6.14Ah and each link

with a maximum of Î = 0.875A. The balancing hardware is carried out using flyback

converters between each cell connecting to the stack of batteries in a individual cell

to stack topology. The control methods being compared (defined earlier) are Rule

based control (RB), Linear Quadratic Regulator Control (LQR) and Model Predictive

Control (MPC). Each method has advantages and disadvantages alike and have an as-

sociated time to balance. The linear state-of-charge battery model used in simulation
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is represented as

x[k + 1] = x[k] + TsBū, (6.1)

where k is the discrete time step, B relates max link current with battery capacity

and ū are the normalized balancing currents defined by each control method. A sign

convention of ū > 0 indicates a flow of charge from the cell to the stack (discharge)

and ū < 0 indicates a flow of charge from the stack the cell (charge).

Similarly, experimental results are obtained using the experimental test bench in

Fig. 5.5. This test bench is comprised of a LTC DC2100A Demo board equipped

with bi-directional flyback converters and a custom built battery pack using Panasonic

NCR 18650 cells. Six modules are placed in series making the pack (two cells per

module). SoC is assumed to be reconstructed with sufficient precision but in reality

a OCV Vs. SoC Lookup table is used. According to [61], a specification of balanced

is defined when all battery cells state-of-charge are within a 3% margin. This margin

will also be adapted for this research but it must be noted that SoC is more difficult

to estimate with a high precision, which is not the focus of this thesis. At the end

of balancing, a 1 day rest period is given to allow relaxation of the cells and more

accurate balancing deviation can be captured and verified against the 3% margin.

Moreover, a new performance metric is introduced for battery balancing. The

balancing hardware and control strategies have a associated balancing efficiency (ηB).

This efficiency is attributed to the amount of unbalanced energy and the lost energy

while balancing. If the DC-to-DC converters operated with 100% efficiency and there

were zero losses due to the battery and connections, then the balancing efficiency

would equal to one.
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Figure 6.1: RB Simulation and Experimental Results.

6.1 Rule Based Control Results

Rule based control methods compare the average SoC to each cells SoC in the stack.

During the balancing time, the current flowing through each cell is always the max-

imum. Balancing is stopped when all cells reach a predefined balancing zone. The

RB controller described in Chapter 4 is simulated in MATLAB, then implemented

on the experimental test bench. This high level balancing controller balances the

state-of-charge using the normalized balancing currents shown in Fig. 6.1.
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Figure 6.2: LQR Simulation and Experimental Results.

6.2 Linear Quadratic Regulator Results

The LQR control method uses Linear transformations to rewrite the balancing prob-

lem as a regulation problem that can be solved by saturating the solution. The

LQR controller described in Chapter 4 is simulated in MATLAB, then implemented

on the experimental test bench. This high level balancing controller balances the

state-of-charge using the normalized balancing currents shown in Fig. 6.2.
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Figure 6.3: MPC Simulation and Experimental Results.

6.3 Model Predictive Control Results

The MPC optimization problem uses performance metrics from [6] to balance the

SoC in the battery pack using constant current trajectories in minimum time. The

MPC controller described in Chapter 4 is simulated in MATLAB, then implemented

on the experimental test bench. This high level balancing controller balances the

state-of-charge using the normalized balancing currents shown in Fig. 6.3.
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Figure 6.4: Dissipative Simulation Results.

6.4 Dissipative Topology for Comparison

A dissipative topology is shown for comparison. It utilizes a modified RB control

method that dissipates excess energy from strong cells. The current flowing through

each cell is dictated by the parallel resistance value. This topology is simulated in

MATLAB. This high level balancing controller balances the state-of-charge using the

normalized balancing currents shown in Fig. 6.4.
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6.5 Balancing Efficiency

For a battery pack with n series connected cells with m number of links, the amount

of initial charge stored in the battery cells is Qx0 ∈ Rn. The diagonal matrix

Q =



Ĉ1 0 . . . 0

0 Ĉ2 . . . 0

...
...

...

0 0 . . . Ĉn


∈ Rnxn

defines each cells maximum charge capacities (Ĉ in Ah), and the initial state of

charge vector x0 is the amount of initial stored charge normalized by the total charge

capacity. Each element in the x0 vector ranges between zero and one where the value

of 0 corresponds to a completely empty cell and the value of 1 corresponds to a fully

charged cell. Furthermore, the matrix

V0 ∈ Rnxn,

defines another diagonal matrix containing the initial measured voltages (V) for each

cell.

A balanced point about the initial average SoC is the column vector

x̄0 = Jx0 ∈ Rn,

where J ∈ Rnxn is a matrix containing all 1/n elements. The difference in SoC each
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cell is from this average is ẋ = x0 − x̄0. Thus, the total initial unbalanced energy is

EU = ||Mẋ||1

where M = V0Q. Similarly, the final SoC vector is defined as x(τ) where τ represents

the time at which the system is balanced. Again, a diagonal matrix Vτ ∈ Rnxn defines

the final measured voltages (V) for each cell. The difference in SoC each cell is from

the initial average, ẋτ = x(τ) − x̄0, dictates how much total energy has been lost in

the system. Thus, the total energy lost is

EL = ||Mτ ẋτ ||1

where Mτ = VτQ.

A balancing efficiency performance metric is the overall effectiveness to redis-

tribute the energy between the series connected cells while balancing. This metric

can be used by any balancing hardware and control implementation. It is used in

this thesis to compare the experimental results obtained in Fig. 6.1, Fig. 6.2 and

Fig. 6.3. It can be described in words as the total amount of final additional energy

EA divided by the total amount of initial unbalanced energy EU . It is now formally

defined as

ηB =
EA
EU

=
EU − EL
EU

where EL is the energy lost due to balancing. Most of this loss can be attributed

to the power electronic energy conversion efficiency [17, 62, 63] and the battery cells

coulombic efficiency [11, 64]. The balancing efficiency ranges between zero and one

where the value of 0 corresponds to all the unbalanced energy being lost i.e dissipative
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balancing and the value of 1 corresponds to perfect balancing with no losses in the

system.

6.6 Discussion and Summary

According to [61], a specification of balanced is defined when all battery cells SoC is

within a 3% margin. This thesis will try to define a more aggressive margin set of

2% difference between all SoC values. It must be noted that with a more accurate

SoC estimation strategy and low level control strategy, this value margin will decrease

substantially. The Rule Based experimental test originally started with an arbitrary
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Figure 6.5: RB Unbalanced(a); Balanced(b) State-of-Charge.

unbalance of 40% difference in maximum and minimum SoC (∆x0) and 331mV in

starting voltages (∆V0). At the end of balancing and after the predefined rest period,

this system had a ending set of start-of-charge values (∆xτ ) and voltage levels (∆Vτ )

shown in TABLE 6.1. Fig. 6.5 shows a 2% difference in maximum and minimum

SoC was achieved with 18.9mV difference in final voltages. According to the balance
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margin, RB was able to successfully balance the cells state-of-charge. However, the

balancing efficiency for the RB method was calculated to be just 0.36, due to the lost

energy of the intermediate cells being charge and discharged until the end.
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Figure 6.6: LQR Unbalanced(a); Balanced(b) State-of-Charge.

The LQR experimental test originally started with an arbitrary unbalance of 36%

difference in maximum and minimum SoC and 291mV in starting voltages. At the

end of balancing and after the predefined rest period, this system had a ending set of

start-of-charge values and voltage levels shown in TABLE 6.2. Fig. 6.6 shows a 1%

difference in maximum and minimum SoC was achieved with 5mV difference in final

voltages. According to the balance margin, LQR was able to successfully balance the

cells state-of-charge. The balancing efficiency for the LQR method was calculated to

be 0.61. The main issue with this type of control method is that battery balancing

almost exclusively operates at the balancing limits. Saturating the balancing currents

after obtaining an unconstrained solution does not give the best results i.e extra loss

will accumulate due to non-minimum time execution.

The MPC experimental test originally started with an arbitrary unbalance of 43%
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difference in maximum and minimum SoC and 351mV in starting voltages. At the

end of balancing and after the predefined rest period, this system had a ending set of

start-of-charge values and voltage levels shown in TABLE 6.3. Fig. 6.7 shows a 1%

difference in maximum and minimum SoC was achieved with 9mV difference in final

voltages. According to the balance margin, MPC was able to successfully balance the

cells state-of-charge. The balancing efficiency for the MPC method was calculated to

be the highest out of the three controllers at 0.71. This is because the intermediate

cells have more constant current trajectories and is balanced in the minimum time as

both the strongest and weakest cells are operated with the maximum link currents. A

final remark about these results is that this shows a clear motivation behind adopting

a MPC approach which is to apply more of a constant current that results in higher

balancing efficiency and minimum time to balance.
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Figure 6.7: MPC Unbalanced(a); Balanced(b) State-of-Charge.
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Table 6.1: Rule Based Control Experimental Results
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

x0 0.82 0.59 0.63 0.42 0.70 0.55
xτ 0.56 0.55 0.56 0.54 0.56 0.55
V0 3.9023 3.695 3.7294 3.5712 3.7968 3.6595
Vτ 3.6703 3.6581 3.6645 3.6514 3.6691 3.6610

∆x0 40% ∆xτ 2% ∆V0 331 mV ∆Vτ 18.9 mV
Balancing Time 88 min

Balancing Efficiency 0.36
Complexity Low

Speed High
Performance Low

Table 6.2: Linear Quadratic Regulator Experimental Results
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

x0 0.77 0.64 0.58 0.52 0.60 0.41
xτ 0.56 0.55 0.55 0.55 0.55 0.55
V0 3.8582 3.7393 3.6841 3.6409 3.6933 3.567
Vτ 3.6640 3.6629 3.6628 3.6613 3.6628 3.6590

∆x0 36% ∆xτ 1% ∆V0 291 mV ∆Vτ 5 mV
Balancing Time 109 min

Balancing Efficiency 0.61
Complexity Medium

Speed Low
Performance Medium

Table 6.3: Model Predictive Control Experimental Results
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

x0 0.82 0.46 0.79 0.39 0.43 0.60
xτ 0.54 0.53 0.54 0.53 0.53 0.54
V0 3.9098 3.5991 3.8724 3.5575 3.5764 3.6991
Vτ 3.6531 3.6447 3.6520 3.6434 3.6432 3.6509

∆x0 43% ∆xτ 1% ∆V0 351 mV ∆Vτ 9 mV
Balancing Time 88 min

Balancing Efficiency 0.71
Complexity High

Speed High
Performance High
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Chapter 7

Conclusions

Many cells in a pack configured in both series and parallel orientations introduce

monitoring and management difficulties. The capacity and the lifetime of the battery

pack are determined by the weakest cell. Each cell must be properly monitored to

prevent overcharge and over discharge of Lithium-ion cells. The differences in state-of-

charge will cause further variations between each cell that only grow with time. To use

the entire effective pack capacity, balancing the individual cells needs to occur. This

thesis shows varies balancing topologies found in literature and implements a multiple

transformer individual cell to stack topology for redistributive non-dissipative battery

balancing. This was the chosen topology because in [6], the time to balance and energy

dissipated remained constant as the number of cells increased.

Furthermore, three high level control strategies were designed to balance, i.e.

equalize the state-of-charge of n number of series connected cells with m links. The

control methods are rule based (RB) control, Linear Quadratic Regulator (LQR)

control and Model Predictive Control (MPC). For comparison, a typical active dis-

sipated topology using switched resistors [23, 46] was used with a rule based control
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that drives the higher SoCs to the minimum SoC. If resistor values are chosen such

that the current is small or less than 10mA/Ahr capacity, then each cell roughly can

balance at a rate of 1% per hour [46]. However, if trying to employ the redistribu-

tive technique i.e operating all the time not just during charging then this technique

could drain the entire battery pack in a few days [46]. Furthermore, it has a balancing

efficiency of zero because the total initial unbalanced energy is lost i.e EU = EL.

The high level controllers are based on a general battery pack model that can be

adopted for cells with different capacities since each cell is modeled by its capacity and

state-of-charge. Also, it can be combined with various battery balancing topologies

that are modeled by a topology matrix defined in [6] and the maximum current in

each link. In practice, isolated DC/DC converters actuate the average balancing

current defined by the high level controller. For the high level LQR controller, Linear

transformations are used to transform the control into a regulation problem and to

ensure that the control input is feasible. The main issue with this type of control

method is that battery balancing almost exclusively operates at the balancing limits.

By constraining the balancing currents after getting an unconstrained solution does

not give the best results i.e not minimum time with extra loss. This result is validated

by having a worse balancing efficiency than MPC of 0.61. The fast MPC controller

is developed based on the minimum time to balance performance metric in [6]. The

fast MPC controller applies the maximum input ū if τ > Ts. If τ ≤ Ts then the input

is scaled by a τ
Ts

factor. The MPC approach is compared to a rule based strategy

and shows that constant current will result in a single point of converge of the SoCs.

This reduces any micro-cycles between charging and discharging of the intermediate

battery cells [65] and improves the balancing efficiency.
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7.1 Future Work

Much is still unknown about the long term benefits and behavior of redistributive

non-dissipative balancing techniques in real life scenarios. A lot of possibilities arise

for future work in this field. Improvements can be made on the existing multiple

transformer individual cell to stack topology which uses isolated bi-directional flyback

converters. The end goal would be to increase the pack capacity utilization using

redistributive methods by reducing the cost using less components, smaller footprint

and achieving greater balancing efficiency. Expansion of this research can be made

for designs that integrate both redistributive non-dissipative balancing of modules as

well as dissipative balancing for individual cells on experimental setups. In the future,

a cost analysis should be compared against energy saved over long periods of time

for different topologies and control implementations. More practical experiments are

necessary for a complete pack utilization with larger number of cells.
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A Linear Quadratic Regulator MATLAB Script

%% Define Parameters
N = 6; % Number of cells
Cmax = 3.07*2; % Nominal capacity for all cells (Ah)
Imax = 0.85; % Maximum current through each link
Ts = 120; % DSP Switching period
x0 = [0.1,0.2,0.3,0.4,0.5,0.6]'; %Example initial SoC Set
NL = N; % Number of links
T = ones(N)/N - eye(N); % Define network Topology matrix
Q = eye(N)*Cmax*3600; % Charge capacities
I = eye(NL)*Imax; % Max Currents
B = [inv(Q)*T*I, -inv(Q)*T*I]; % B Matrix
B = inv(Q)*T*I;

%% Defining Constraints
Hup = [eye(NL);-eye(NL)];
Kup = [ones(NL,1);zeros(NL,1)];
Hum = [eye(NL);-eye(NL)];
Kum = [ones(NL,1);zeros(NL,1)];
Hu = [Hup,zeros(2*NL,NL);zeros(2*NL,NL),Hum];
Ku = [Kup;Kum];
go = [zeros(2*NL, 1); 1];

%% Transformation Matrix (L - differences between neighboring cells)
L = [eye(N-1),zeros(N-1,1)] + [zeros(N-1,1),-eye(N-1)];
H = go*go';
g = zeros(2*NL + 1,1);

%% Equality constraint
Heq = [zeros(1,NL),-zeros(1,NL)];
Keq = 0;

%% Linear Transformation
F = null(Heq);
u0 = pinv(Heq)*Keq;
H = Hu*F;
K = Ku - Hu*u0;

%% Regulation Problem
X bar = L*x0;
B bar = L*B*F;
zeroValueOffset = L*B*u0;

%% LQR Problem
A bar = eye(N-1,N-1);

1
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Q = 1e9*eye(N-1,N-1);
R = eye(2*N);
k lqr = dlqr(A bar, Ts*B bar, Q, R); %Discrete LQR

%% SCRIPT Simulation
Nsim = 59; %Number of k-time steps
tk = (0:Nsim-1);
xk = zeros(N,Nsim);
uk = zeros(N,Nsim);
tau d = zeros(1,Nsim);
xk(:,1) = x0;

for i = 1 : Nsim-1
%% LQR Control
X bar = L*xk(:,i);
u prime = k lqr*X bar;
if min(u prime) < 0

u prime = u prime + abs(min(u prime));
end
for id=1:length(K)

if H(id,:)*u prime > K(id)
u prime = u prime *K(id)/(H(id,:)*u prime);

end
end
upm = F*u prime + u0;
uk(:,i) = upm(1:N) - upm(N+1:2*N);

%% LQR Linear Battery Model
xk(:,i+1) = xk(:,i) - Ts*B *uk(:,i);

end

%% Plot State-of-Charge
figure(1);
plot(tk'*Ts/60, xk);

%% Plot Normalized Balancing Currents
figure(2);
plot(tk'*Ts/60, uk);

2
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B Model Predictive Control MATLAB Script

clc;
clear all;
close all;

%% Define Parameters
N = 6; % Number of cells
Cmax = 3.07*2; % Nominal capacity for all cells (Ah)
Imax = 0.85; % Maximum current through each link
Ts = 120; % DSP Switching period
x0 = [0.1,0.2,0.3,0.4,0.5,0.6]'; %Example initial SoC Set
NL = N; % Number of links
T = ones(N)/N - eye(N); % Define network Topology matrix
Q = eye(N)*Cmax*3600; % Charge capacities
I = eye(NL)*Imax; % Max Currents
B = [inv(Q)*T*I, -inv(Q)*T*I]; % B Matrix
B = inv(Q)*T*I;

%% Defining Constraints
Hup = [eye(NL);-eye(NL)];
Kup = [ones(NL,1);zeros(NL,1)];
Hum = [eye(NL);-eye(NL)];
Kum = [ones(NL,1);zeros(NL,1)];
Hu = [Hup,zeros(2*NL,NL);zeros(2*NL,NL),Hum];
Ku = [Kup;Kum];
go = [zeros(2*NL, 1); 1];

%% Transformation Matrix (L - removes average SoC and leaves unbalanced SoC)
L = eye(N)-ones(N)/N;
H = go*go';
g = zeros(2*NL + 1,1);

%Constraints Formulated
Aineq = [Hu, -Ku; zeros(1,2*NL), -1];
bineq = [zeros(4*NL,1);0];
Aeq = [L*B, zeros(size(L*B,1),1)];

n = size(Aineq,2);
m = size(Aineq,1);
Hn = zeros(n +m );
Hn(1:n ,1:n ) = H;
gn = [g;zeros(m ,1)];
An = [Aeq,zeros(size(Aeq,1),m );Aineq,eye(m )];
bn = [-L*x0; bineq];

1
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%% SCRIPT Simulation
Nsim = 59; %Number of k-time steps
tk = (0:Nsim-1);
xk = zeros(N,Nsim);
uk = zeros(N,Nsim);
tau d = zeros(1,Nsim);
xk(:,1) = x0;

for i = 1 : Nsim-1
%% MPC Control
bn = [-L*xk(:,i); bineq];
% Substitute MPC SOLVER with stnd solvers such as CPLEX & qpOASES
[x micro, exitflag] = MPC SOLVER(Hn, gn, An, bn);

%% Post Process x micro
tau = max(x micro(2*N+1),1e-12);
vpm = x micro(1:2*N);
if tau > Ts

upm out = vpm/tau ;
else

if tau > 0
upm out = vpm/Ts;

else
upm out = zeros(2*6,1);

end
end
u = (upm out(1:N) -upm out(N+1:2*N));

%% MPC Linear Battery Model
xk(:,i+1) = xk(:,i) + Ts*B *uk(:,i);

end

%% Plot State-of-Charge
figure(1);
plot(tk'*Ts/60, xk);

%% Plot Normalized Balancing Currents
figure(2);
plot(tk'*Ts/60, uk);

2
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C Rule Based MATLAB Script

%Define Parameters
N = 6; % Number of cells
Cmax = 3.07*2; % Nominal capacity for all cells (Ah)
Imax = 0.85; % Maximum current through each link
Ts = 120; % DSP Switching period
x0 = [0.1,0.2,0.3,0.4,0.5,0.6]'; %Example initial SoC Set
NL = N; % Number of links
T = ones(N)/N - eye(N); % Define network Topology matrix
Q = eye(N)*Cmax*3600; % Charge capacities
I = eye(NL)*Imax; % Max Currents
B = [inv(Q)*T*I, -inv(Q)*T*I]; % B Matrix
B = inv(Q)*T*I;
L = eye(N)-ones(N)/N;
Nsim = 59; %Number of k-time steps
tk = (0:Nsim-1);
xk = zeros(N,Nsim);
uk = zeros(N,Nsim);
tau d = zeros(1,Nsim);
xk(:,1) = x0;

for i = 1 : Nsim-1
%% Rule based control
soc average = sum(xk(:,i))/N;
tdL = norm(L*xk(:,i),1);
for iL = 1:N

if(tdL > 0.005)
if (xk(iL,i) >= soc average ) % If above average, discharge.

upm1(iL) = 1;
upm2(iL) = 0;

elseif (xk(iL,i) < soc average ) % If below average, charge.
upm1(iL) = 0;
upm2(iL) = -1;

end
end
uk(iL,i) = upm1(iL) + upm2(iL);

end
%% Linear Plant Model
xk(:,i+1) = xk(:,i) + Ts*B *uk(:,i);

end

figure(1); %% Plot State-of-Charge
plot(tk'*Ts/60, xk);
figure(2); %% Plot Normalized Balancing Currents
plot(tk'*Ts/60, uk);

1
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