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Abstract
The nature of this paper is expository. The purpose is to present the fundamental mate-

rial concerning actions of infinite discrete groups on the n-sphere and pseudo-Riemannian

space forms Sp,q based on the works of Gehring and Martin [6], [26] and Kulkarni [20], [21],

[22] and provide appropriate examples. Actions on the n-sphere split Sn into ordinary and

limit sets. Assuming, additionally, that a group acting on Sn has a certain convergence prop-

erty, this thesis includes conditions for the existence of a homeomorphism between the limit

set and the set of Freudenthal ends, as well as topological and quasiconformal conjugacy

between convergence and Mobius groups. Actions on the Sp,q are assumed to be properly

discontinuous. Since Sp,q is diffeomorphic to Sp × Rq and has the sphere Sp+q as a com-

pactification, the work of Hambleton and Pedersen [9] gives conditions for the extension of

discrete co-compact group actions on Sp × Rq to actions on Sp+q. An example of such an

extension is described.
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Chapter 1

Discrete Group Actions

1.1 Introduction

Let G be a group and X be a set. A group action of G on X is defined by the function

φ : G×X → X which satisfies the following conditions for all x ∈ X:

• φ(e, x) = x, where e is the identity element of G;

• φ(g, φ(h, x)) = φ(gh, x) for all g, h ∈ G.

The study of group actions is a significant part of group theory, and although mathematicians

have spent many years investigating this topic, there are still many open problems. The pur-

pose of this thesis is to give the fundamental material concerning actions of infinite discrete

groups on the n-sphere and the pseudo-Riemannian space forms Sp,q based on the works of

Gehring and Martin [6], [26] and Kulkarni [20], [21], [22]. Actions on Sp,q are assumed to

be properly discontinuous, while actions on the n-sphere admit both ordinary and limit sets.

The construction of Sp,q space is the following: given n + 1 dimensional real space Rn+1,

and given a pair of nonnegative integers (p + 1, q) with p + q = n, we define Sp,q as the

component of the quadric {v ∈ Rn+1|Q(v) = 1} containing (1, 0...0), where

Q(x1...xp+1, y1...yq) =

p+1∑
i=1

xi
2 −

q∑
j=1

yj
2.
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It is known that Sp,q ∼= O(p+1, q)/O(p, q), where O(p+1, q) is a subgroup of the full group

of Q-orthogonal transformations which preserve Sp,q, and O(p, q) is its isotropy subgroup at

(1, 0...0).

Remark. We assume p ≥ 0 and q ≥ 1, otherwise, Sp,q = ∅ when p = −1 and Sp,q ∼= Sp

when q = 0.

Note that if x = (x1...xp+1) and y = (y1...yq), through the homeomorphism (x, y) →

( x
|x| , y), we get Sp,q ∼= Sp × Rq. Theorem 4.1.1 proves that Sp+q ∼= Sp × Rq ∪ Sq−1. There-

fore, one might compactify properly discontinuous actions on Sp,q to actions on Sp+q using

conditions given by Hambleton and Pedersen [9].

Remark. Sp,q ∼= Sp × Rq is a connected, locally compact, Hausdorff space.

An infinite discrete group G acting on the n-sphere is said to be a convergence group

if any family of elements of G contains a subsequence {gj}, for which there exist points

x, y ∈ Sn such that gj → x, respectively gj−1 → y locally uniformly on Sn\{y}, respectively

Sn\{x}.

In Chapter 1 we give definitions used in the study of convergence group actions on the

n-sphere. Moreover, we show properties of the limit set of convergence groups and give

conditions under which the limit set and the set of Freudenthal ends might be homeomorphic.

In Chapter 2 we define quasiconformal groups of the n-sphere, and prove that they are, in

fact, convergence groups. In addition, Chapter 2 includes an example given by Tukia in [32]

as a partial answer to the question of Gehring and Palka, first raised in [7]:

Is every quasiconformal group G acting on the n-sphere quasiconformal conjugate to a

Mobius group?

Tukia’s example gives a negative response for n ≥ 3. However, the statement is true

when n = 1 and n = 2, see [12] [24] [31] [37].

Further, in Chapter 2 we give results concerning a topological conjugacy of discrete con-

vergence groups of Sn to Mobius groups. Chapter 3 deals with conditions for the existence
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and non-existence of free, properly discontinuous and co-compact actions on Sp,q. Chapter 4

gives conditions for an extension of discrete co-compact group actions on Sp × Rq ∼= Sp,q to

actions on Sp+q, and provides an appropriate example.

1.2 Notations and definitions

We are going to start by providing definitions and notations which will be used further in this

paper. Most of the theorems and definitions in Chapter 1 are from Sections 1 and 2 of Martin

[26].

Definition 1.2.1. A subfamily F of Homeo(Sn), the homeomorphism group of the n-sphere,

has a convergence property if each infinite subset of F has a subsequence {fj}which satisfies

one of the following properties:

(i) there is an f ∈ Homeo(Sn) such that fj → f and fj−1 → f−1 uniformly,

(ii) there are points x, y ∈ Sn, not necessarily distinct, such that fj → x locally uniformly in

Sn − {y} and fj−1 → y locally uniformly in Sn − {x}.

Remark. Here, "fj → x locally uniformly in Sn − {y}" means that given an arbitrary point

z ∈ Sn\{y}, there exists a neighborhood V ⊂ Sn\{y} of z such that fj → x uniformly in V .

Definition 1.2.2. If a subgroup G of Homeo(Sn) has the convergence property, we call it a

convergence group.

A good example of a convergence group acting on Sn is a quasiconformal subgroup of

Homeo(Sn); the proof is given in Chapter 2, or see pages 333-334 in [6]. A metric defined in

Sn is induced by the chordal metric ρ(x, y) for any x, y ∈ Sn. For each f ∈ Homeo(Sn) and

x ∈ Sn define

U(x, r) = max(ρ(f(x), f(y)) : ρ(x, y) = r)

and

L(x, r) = min(ρ(f(x), f(y)) : ρ(x, y) = r).
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Then a homeomorhism f of Homeo(Sn) is said to be K-quasiconformal, if for each x ∈ Sn

lim sup
r→0

U(x, r)

L(x, r)
≤ K

for a finite K ≥ 1, and a subgroup G of Homeo(Sn) is called a quasiconformal group if there

exists a finite K ≥ 1 such that each element of G is K-quasiconformal.

Definition 1.2.3. A topological group G is discrete if its identity e is isolated, and then G is

a discrete convergence group if it has a convergence property.

Therefore, a discrete group never has the convergence property (i), otherwise fj → f

implies fjf−1j+1 → e uniformly, which contradicts the definition of a discrete group.

Definition 1.2.4. Let Ω be a region in Sn, possibly Ω = Sn, with x ∈ Ω and G be a subgroup

of Homeo(Sn). We say G acts discontinuously at x if there is a neighbourhood U of x in Ω

such that the set

ζG(U) = {g ∈ G : g(U) ∩ U 6= ∅}

has finitely many elements. We say G acts discontinuously in Ω if it acts discontinuously at

all x ∈ Ω.

We say G acts properly in Ω if, for every compact subset C in Ω, the set

ζG(C) = {g ∈ G : g(C) ∩ C 6= ∅}

is compact in G.

We say G acts properly discontinuously in Ω if, for every compact subset C in Ω, the set

ζG(C) = {g ∈ G : g(C) ∩ C 6= ∅}

has finitely many elements.
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Therefore, a properly discontinuous action takes place when the action is proper and G is

discrete. The rest of this section we assume that G is an infinite discrete convergence group

acting on Sn.

Definition 1.2.5. The set

Ω(G) = {x ∈ Sn : G acts discontinuously at x}

is called an ordinary set for G, or a domain of discontinuity of G, and the set

Λ(G) = Sn − Ω(G)

is called a limit set of G.

Theorem 1.2.6. An infinite discrete convergence group G acts properly discontinuously on

Ω(G).

The proof will be given later in Lemma 1.3.11.

Theorem 1.2.7. Both Ω and Λ are G-invariant.

Proof. It suffices to show that Ω is G-invariant. Suppose Ω is not G-invariant.

There exist x ∈ Ω and g0 ∈ G such that y = g0(x) /∈ Ω. Choose an arbitrary neigh-

borhood V of x in Ω. Since y /∈ Ω and g0(V ) = V0 is a neighborhood of y, we have

g(V0) ∩ V0 6= ∅ for infinitely many g ∈ G. Alternatively, g−10 g(V0) ∩ g−10 (V0) 6= ∅. Us-

ing g0(V ) = V0 we get g−10 gg0(V ) ∩ V 6= ∅ for infinitely many g ∈ G. Since the choice

of V was arbitrary, this contradicts the assumption x ∈ Ω. Therefore, g(x) ∈ Ω, and Ω is

G-invariant. �

Depending on the size of the limit set Λ(G), convergence groups have the following

classifications:
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Definition 1.2.8. An infinite discrete convergence group G is elementary if

card(Λ(G)) ≤ 2,

otherwise we say G is non-elementary.

Next definition demonstrates classifications of elements of an infinite discrete conver-

gence group G:

Definition 1.2.9. Let for each g ∈ G,

ord(g) = min{m > 0|gm = e}, fix(g) = {x ∈ X|g(x) = x}.

Then g is elliptic if ord(g) < ∞, or g is parabolic if ord(g) = ∞ and card(fix(g)) = 1, or

g is hyperbolic if ord(g) =∞ and card(fix(g)) = 2.

One may ask if it is possible to find an element g ∈ G of infinite order which fixes more

than two points. Next few steps will answer that question.

Clearly, if g ∈ G is an element of the infinite order then a group 〈g〉 generates an infinite

discrete convergence group.

Lemma 1.2.10. Let G be an infinite discrete convergence group, then card(fix(G))≤ 2.

Proof. Suppose that G fixes at least three distinct points, say x, y and z. Let {gj} be an

infinite family of elements in G. Then, by the convergence property, we can find points

x0, y0 ∈ Sn such that gj → y0 locally uniformly in Sn\{x0}. By relabelling if necessary,

x 6= x0 6= z, and so by the triangle inequality:

ρ(x, y0) ≤ lim
j→∞

(ρ(x, gj(x)) + ρ(gj(x), y0)) = lim
j→∞

ρ(gj(x), y0) = 0.

Therefore, x = y0, and similarly z = y0. ⇒ x = z, contradiction. �
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By this Lemma, since g ∈ G has the infinite order, then 〈g〉 has at most two fixed points.

Henceforth, g being the generator of 〈g〉 has at most two fixed points.

1.3 Limit set of an infinite discrete convergence group act-

ing on Sn

We assume throughout this section that G is an infinite discrete convergence group acting on

Sn. The convergence property for G implies next theorem, and the proof comes directly from

the Definitions 1.2.1 and 1.2.3:

Theorem 1.3.1. [6, p. 335] For each infinite subfamily of G there exist a subsequence {gj}

and points x0, y0 ∈ Sn such that

gj → y0 and gj
−1 → x0

locally uniformly in Sn\{x0} and Sn\{y0}, respectively.

Suppose there is a closed G-invariant set E ⊂ Sn with at least two points contained in.

Then for each x ∈ E\{x0}, points {gj(x)} are in E and therefore y0 ∈ E. Similarly, we

prove that x0 ∈ E. Hence, the following immediate consequence appears.

Corollary 1.3.2. Any G-invariant closed set E ⊂ Sn with card(E) ≥ 2 contains points x0

and y0 given in 1.3.1.

Turning our attention to limit sets, we give the following important theorem which is

slightly similar to Theorem 1.3.1:

Theorem 1.3.3. [6, p. 338-339] For each point y1 ∈ Λ(G) there exist a point x1 ∈ Λ(G) (not

necessarily distinct) and a sequence {gj} in G such that

gj → y1 and gj
−1 → x1
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locally uniformly in Sn\{x1} and Sn\{y1}, respectively.

Proof. Let {rj} be a sequence of positive numbers converging to zero, then for each j =

1, 2, ..., let Vj = By1(rj) be a ball centered at y1 of the radius rj defined by the chordal metric

ρ. Since G is not discontinuous at y1, there is an infinite sequence {hj} in G such that for

all j, hj(Vj) ∩ Vj 6= ∅. By Theorem 1.3.1 there is a subsequence {fj} of {hj}, and points

x0, y0 ∈ Sn, such that

fj → y0 and fj
−1 → x0

locally uniformly in Sn\{x0} and Sn\{y0}, respectively.

If y1 = x0, we simply take x1 = y0 and gj = fj
−1. Otherwise, since hj(Vj) ∩ Vj 6= ∅,

for each j there is a point zj ∈ Vj with fj(zj) ∈ Vj , and so hj(zj) → y0 by Theorem 1.3.1.

Hence by the triangle inequality

ρ(y0, y1) ≤ lim
j→∞

(ρ(hj(zj), y0) + ρ(hj(zj), y1)) = 0,

i.e. y0 = y1, and we take x1 = x0, gj = fj .

To show that x1 ∈ Λ(G), let U be a neighbourhood of x1, and since gj−1(x)→ x1 we get

gj
−1(x) ∈ gj−1(U) ∩ U 6= ∅

for x ∈ U\{y1} and large j. That means x1 ∈ Λ(G). �

One feature to be noted is that Λ(G) is never empty, when G is an infinite discrete con-

vergence group. (see [6], Theorem 5.7):

Theorem 1.3.4. Λ(G) is an empty set if and only if G is a finite group of elliptic elements.

In fact, Λ(G) has either 1, 2 points, or else card(Λ(G)) ≥ 3 and Λ(G) is a perfect set (by

Martin in [26], Theorem 2.2 and Theorem 2.5):
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Theorem 1.3.5. (i) card(Λ(G)) = 1 with Λ(G) = {x0} if and only if G is an infinite group

consisting only of elliptic and parabolic elements which fix x0.

(ii) card(Λ(G)) = 2 with Λ(G) = {x0, y0} if and only if G is an infinite group consisting

only of elliptic and loxodromic elements which either fix or interchange x0 and y0.

(iii) If card(Λ(G)) ≥ 3 then Λ(G) is a perfect set.

To show that Λ(G) may have the cardinality≤ 2, we give the following examples, cf. [6]:

Example 1.3.6. card(Λ(G)) = 1.

Let t be an arbitrary nonzero vector in Rn, and let p : R̄n → Sn be a stereographic

projection from the extended plane Rn ∪ {∞} to the n-sphere:

p(x) = en+1 +
2(x,−1)

|x,−1|2
, x ∈ R̄n.

Consider g(x) = x + t and h(x) = −x, two self-homeomorphisms of R̄n. The group 〈g, h〉

acting on R̄n contains only elliptic and parabolic elements which fix∞, and so the limit set

of 〈g, h〉 contains only ∞. Since p is a homeomorphism, the maps π1 = p ◦ g ◦ p−1 and

π2 = p ◦ h ◦ p−1 are self-homeomorphisms of the n-sphere to itself. Therefore, we may

conclude that the group 〈π1, π2〉 acting on Sn consists of elliptic and parabolic elements only,

and Λ(〈π1, π2〉) = {(0, ..., 0, 1)}, i.e. card(Λ(G)) = 1 for G = 〈π1, π2〉.

Example 1.3.7. card(Λ(G)) = 2.

Let p : R̄n → Sn be as in Example 1. Consider an infinite discrete group 〈g, h〉 acting on

R̄n, where g(x) = 2x and h(x) = 1
x
. Note that 〈g, h〉 acting on R̄n contains only infinitely

many loxodromic elements fixing 0 and ∞ and infinitely many elliptic elements of order 2

interchanging points 0 and∞.

Therefore, the group 〈p◦g◦p−1, p◦h◦p−1〉 acting on Sn consists of infinitely many loxodromic

elements fixing (0, ..., 0, 1) and (0, ..., 0,−1) and infinitely many elliptic elements of order 2

interchanging these points, i.e. card(Λ(G)) = 2 for G = 〈p ◦ g ◦ p−1, p ◦ h ◦ p−1〉.
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Remark. Notice that definitions regarding a group G acting on R̄n come from Definitions

1.2.1-1.2.9 with Sn replaced by R̄n.

Points fixed by parabolic and loxodromic elements have one remarkable property:

Theorem 1.3.8. [6, p.345] Let g be a parabolic and h be a loxodromic elements in G. Then

lim
j→∞

gj = lim
j→∞

g−j = fix(g)

locally uniformly in Sn\{fix(g)}, and

lim
j→∞

hj = y0 and lim
j→∞

h−j = x0

locally uniformly in Sn\{x0} and Sn\{y0}, respectively. Here, fix(h) = {x0, y0}.

Kulkarni in [20], pages 255-256, first suggested a slightly different way to construct the

limit set of a group G acting on a locally compact Hausdorff space X , e.g. Sn, using the

notion of cluster points:

Definition 1.3.9. Let J be some infinite indexing set, and, for j running over J , let {Sj} be

a collection of subsets of Sn. The cluster point of {Sj} is a point x ∈ Sn such that for every

neighborhood U of x,

U ∩ Sj 6= ∅

for infinitely many j ∈ J .

Definition 1.3.10. Let L0(G) be the closure of the set of points with infinite isotropy group,

L1(G) be the closure of the set of cluster points of {g(y)}g∈G for y running over Sn−L0(G),

and L2(G) be the closure of the set of cluster points of {g(K)}g∈G for K running over

compact subsets of Sn − {L0(G) ∪ L1(G)}. Then, we call

Λ = L0(G) ∪ L1(G) ∪ L2(G)
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as a limit set of G.

Lemma 1.3.11. The sets Lj(G) are G-invariant for j = 0, 1, 2. Hence, both Λ and Ω are

G-invariant.

Moreover, G acts properly discontinuously on the set Ω = Sn − (L0 ∪ L1 ∪ L2).

Proof. Let x ∈ L0(G) be a point with infinite isotropy group Γ, and let g ∈ G be an arbitrary

element. Then g ◦ Γ ◦ g−1 is an infinite isotropy group of g(x), so L0(G) is G-invariant.

Similarly, we prove that L1(G) and L2(G) are G-invariant. Then Λ and Ω are G-invariant by

Definition 1.3.10.

Let K be a compact subset in Ω. If {g ∈ G : gK ∩ K 6= 0} is infinite, then K contains

a cluster point of {gK}g∈G and K ∩ L2 6= ∅, which is a contradiction. Therefore, G acts

properly discontinuously on Ω. �

Corollary 1.3.12. The set Λ is closed, and the set Ω is open.

Corollary 1.3.13. Definitions 1.2.5 and 1.3.10 coincide.

Proof. Let Ω1 and Λ1 be from Definition 1.2.5, and Ω2 and Λ2 be from Definition 1.3.10. By

the theorem above, G acts properly discontinuously on Ω2 ⇒ Ω2 ⊆ Ω1. Choose an arbitrary

point x ∈ Ω1, then there is a compact neighborhood K of x in Ω1 such that

{g ∈ G : g(K) ∩K 6= ∅}

has finitely many elements. ⇒ x /∈ L0.

Suppose x ∈ L1, then we can find a point x0 ∈ K which is a cluster point of {g(y)}g∈G

for some y ∈ Sn − L0. Since int(K) is a neighborhood of x0, there exists an infinite family

of distinct elements {gj}j∈N such that gj(y) ∈ K for all j. ⇒ y ∈ g1−1(K). Hence, gj(y) ∈

gjg1
−1(K), and

{gjg1−1 : j ∈ N} ⊆ {g ∈ G : g(K) ∩K 6= ∅}.



12 Chapter 1. Discrete Group Actions

This contradicts the assumption that x ∈ Ω1⇒ x /∈ L1.

If x ∈ L2, then we can find a point x0 ∈ K which is a cluster point of {g(C)}g∈G for some

compact C ⊂ Sn−{L0∪L1}. Since int(K) is the neighborhood of x0, there exists an infinite

family of distinct elements {gj}j∈N such that gj(C) ∩ K 6= ∅ for all j. Λ1 is G-invariant,

so C ′ = C − Λ1 6= ∅, and gj(C ′) ∩ K 6= ∅ for all j. Notice that the family F = {gj}j∈N

is infinite, so there is an infinite subfamily {gj′} and points x′, y′ ∈ Λ1 such that gj′ → y′

locally uniformly on Sn\{x′}. Therefore, if for C ′ ⊂ Sn\{x′} we have gj′(C ′) ∩K 6= ∅ for

all j′, then y′ ∈ K. This is a contradiction since y′ ∈ Λ1 and K ⊂ Ω1. ⇒ x /∈ L2.

From the above, Ω1 ⊆ Sn − {L0 ∪ L1 ∪ L2} = Ω2. ⇒ Ω1 = Ω2. �

A good example when L2\(L0 ∪ L1) 6= ∅ was given by Kulkarni in [20] for an action

on the Euclidean plane, and we slightly change it to get an action on the sphere. Consider

the Euclidean space R̄2 and the group action generated by the map g : (x, y) → (2x, 1
2
y).

We get L0 = {origin,∞}, L1 = {origin,∞} and L2 = {x − axis}. Let p : R̄2 → S2

be a stereographic projection. Then we get an action of p ◦ g ◦ p−1 on S2 with L0 =

{south and north poles}, L1 = {south and north poles} and L2 is a circle which is the in-

tersection of S2 and the xz-plane.

Remark. Let F be an infinite subfamily of 〈g〉 acting on R̄2 . Each element of F is a power

of g. Therefore, any infinite subsequence {gj = gjk} of F converges to∞ as jk →∞ on the

complement of 0. However, as jk → −∞, gjk → 0 on the x−axis and gjk → ∞ otherwise.

Therefore, 〈g〉 does not have the convergence property.

Proposition 1.3.14. If G is an infinite discrete convergence group acting on Sn, then L2 ⊆

L0 ∪ L1.

Proof. Suppose that L2 6⊆ L0 ∪ L1, then there exists x ∈ L2\(L0 ∪ L1) which is a cluster

point of {gK}g∈G for some compact K in Sn − (L0 ∪ L1). Since x ∈ Λ = L0 ∪ L1 ∪ L2,

there exist a subsequence {gj} in G and a point y ∈ Λ such that gj → x locally unifromly on

Sn\{y}.
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Let K − {y} 6= ∅. For any z ∈ K − {y} we have gj(z) → x, and so x ∈ L1. This is a

contradiction.

Let K − {y} = ∅, then x is a cluster point of {gK}g∈G = {gy}g∈G for y ∈ Sn − L0.

Therefore, x ∈ L1 and we get a contradiction. �

1.4 The end-compactification of Ω for Gy Sn

We remind that G is an infinite discrete convergence group acting on Sn. In this section we

show the connection between Λ and the set of ends which compactifies an ordinary set Ω,

and their properties. Theory of end-compactifications was first established by Freudenthal in

[4] and we start with constructions and fundamental definitions used in this theory.

Suppose S is an open connected subset of the n-sphere. Let {Kj}j∈N be an increasing

sequence of compact subsets of S, Kj ⊂ int(Kj+1), such that S =
⋃∞
j=1Kj . A decreasing

nested sequence of components {Cj ⊂ S\int(Kj)}j∈N is defined to be a Freudenthal end.

We define the set of all Freudenthal ends by ε(S). Then the end-compactification of S is

SE = S ∪ ε(S).

By Theorem 1 in Peschke [30], a compact Hausdorff space SE and an inclusion map

S → SE must have following properties:

Property 1: S is homeomorphically embedded as a dense open subset of SE;

Property 2: SE − S is totally disconnected;

Property 3: every map φ : S → S ′ satisfying properties 1− 2 factors uniquely through SE .

Throughout this section we assume that Ω is an open connected subset of Sn, which

automatically implies that Ω 6= ∅.

First, we show examples of constructions of the Freudenthal ends.

Example 1.4.1. Let n = 1. Since Ω is an open connected subset of the unit circle, then Λ is

a point, say x. Let {Uj} be a decreasing nested sequence of connected neighborhoods of x in

S1 converging to x. Note that each Uj is separated to two disjoint neighborhoods, say Vj and
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Wj , by the point x. That is Uj = Vj ∪ {x} ∪Wj . By this construction {Kj = S1 − Uj} is an

increasing sequence of compact subsets of Ω. Then each of {Vj} and {Wj} is a decreasing

nested sequence of components which defines a Freudenthal end. Therefore, in this case, the

set of ends has the cardinality 2.

Example 1.4.2. Let n = 2. Assume that the limit set Λ of Sn is a curve λ, which is an

embedding of the closed unit interval. Let {Uj} be a decreasing nested sequence of connected

neighborhoods of λ converging to λ, that is {Kj = Sn − Uj} is an increasing sequence of

compact subsets of Ω required for the construction of Freudenthal ends. Therefore, we have

one component which constructs an end, and so the set ε(Ω) consists of one element.

Theorem 1.4.3. Let Ω̄ be a closure of Ω, then Ω̄ = Sn.

Proof. Choose an arbitrary point y0 ∈ Sn. Assume that y0 /∈ Ω, then y0 ∈ Λ. We can find

an infinite sequence {gj} in G and a point x0 ∈ Λ such that gj → y0 locally uniformly in

Sn\{x0}. Since Ω 6= ∅, this property, in fact, proves that y0 is a limit point of Ω. Therefore,

each point of Sn either belongs to Ω or is a limit point of Ω. �

Corollary 1.4.4. ∂Ω = Λ.

We define the equivalence relation R in Sn as follows: let x and y be arbitrary points in

Sn, then we say xRy if either x = y or x and y belong to the same component of Λ. Then let

Ω1 be a quotient space Ω1 = Ω̄/R.

By Theorem 2.1 in Kulkarni [22], one might obtain the following result for an open

connected subset Ω of Sn:

Theorem 1.4.5. Let ΩE and Ω1 be defined as above. If n > 1, then ΩE and Ω1 are homeo-

morphic.

To see that it does not hold for n = 1, consider the following example. Let G be group

acting on S1 with card(Λ)= 1. Then, the set ΩE −Ω has two points obtained by approaching
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the limit point from both sides, as it was proved in the example above. However, Ω1 − Ω

has only one point which is actually the limit point of G. Therefore, ΩE and Ω1 are not

homeomorphic.

To see the construction of the set of ends for n > 1, we use Theorem 4.1 from Kulkarni

[20]:

Theorem 1.4.6. If Ω is a connected subset of Sn, then ∂Ω = Λ has ≤ 2 components, or else

it is a perfect set with uncountably many components.

Combining this result with Theorem 1.4.5, we get

Corollary 1.4.7. For n > 1, the set of ends ε(Ω) has ≤ 2 points, or else it is a perfect set

with uncountably many points.

We finish this section by proving that G is a Kleinian group. Kulkarni in [22] gives the

following definition of Kleinian groups using the notion of G-accessible ends:

Definition 1.4.8. [22, p.899] An element of ε(Ω) is G-accessible if it is a cluster point of

{gp}g∈G for some point p ∈ Ω.

G is called Kleinian if it acts properly discontinuously on Ω and every element of ε(Ω) is

G-accessible.

Remark. In the classical case, a groupG acting on a compact spaceX is said to be a Kleinian

group if the domain of discontinuity ofG is nonempty. In our case,X = Sn and Ω is assumed

to be an open connected subset of the n-sphere, and so Ω 6= ∅. Therefore, G is a Kleinian

group.

We prove this result using Definition 1.4.8.

Theorem 1.4.9. Given an infinite discrete convergence group G acting on Sn. Given Ω a set

of discontinuity of G. Assume that ΩE = Sn. Then G is Kleinian.
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Proof. Remind that Ω is an open connected dense subset of Sn. Pick an arbitrary point

y ∈ ε(Ω). Then, there exists {Kj} an increasing sequence of compact subsets of Ω, and a de-

creasing nested sequence of components {Cj ⊂ Ω\int(Kj)} which define y as a Freudenthal

end. Hence, we can choose points yj ∈ Cj for all j, such that yj → y. Since Sn is compact,

y ∈ Sn and so y ∈ Λ. By Theorem 1.3.3, there exists an infinite sequence {gj} in G and a

point x ∈ Λ so that gj → y locally uniformly in Sn\x. Therefore, for any point z ∈ Ω, we

have gj(z) → y, and so y ∈ ε(Ω) is G-accessible. Since the choice of y was arbitrary, every

element of ε(Ω) is G-accessible. Combining this result with properly discontinuous action of

G on Ω, we get that G is a Kleinian group. �
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Chapter 2

Infinite Groups acting on Spheres

This chapter presents properties of infinite discrete group actions on the n-sphere. Useful

definitions for this chapter are :

Definition 2.0.1. The Mobius transformation acting in R̄n is a finite composition of reflec-

tions. The Mobius group M(n) is the full group of Mobius transformations acting on R̄n, and

a Fuchsian group is a discrete subgroup of the group of Mobius transformations of R̄2 with

invariant open unit disk int(D2), and an action on int(D2) is properly discontinuous.

In Section 2.2, one of theorems includes the notion of “restricted Fuchsian groups”, which

will denote the restriction of a Fuchsian group to S1. Sometimes we use the expression

“Mobius group of the n-sphere” which defines a group of Mobius transformations preserving

the n-sphere.

Definition 2.0.2. A group G acting on S1 is said to be quasisymmetric if there exists a qua-

siconformal group Ĝ of the closed unit disk which extends G.

2.1 Quasiconformal groups acting on Sn

The main purpose of this section is to show that a discrete quasiconformal group acting on Sn

is a convergence group. The detailed proof is given by Gehring and Martin in Theorem 3.2,
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[6], and we give the sketch of their proof. Next part of this section contains results/answers

to the question raised by Gehring and Palka in [7]:

Is every quasiconformal group G acting on the n-sphere quasiconformal conjugate to a

Mobius group?

We remind that a group G, a subgroup of Hom(Sn), is quasiconformal if there is a finite

K ≥ 1 such that each element g ∈ G is K-quasiconformal, i.e. for each x ∈ Sn

lim sup
r→0

U(x, r)

L(x, r)
≤ K,

where

U(x, r) = max(ρ(f(x), f(y)) : ρ(x, y) = r),

L(x, r) = min(ρ(f(x), f(y)) : ρ(x, y) = r)

and ρ is a chordal metric defined in Sn.

Theorem 2.1.1. [6] Let G be an infinite discrete quasiconformal group acting on Sn. Then

G has the convergence property.

Proof. Choose any infinite subfamily F of the group G. Suppose F is equicontinuous in Sn.

By Arzela-Ascoli theorem, there is a convergent subsequence {fj} in F , and fj → f locally

uniformly for some function f defined on the n-sphere. Using Theorems 21.1, 21.11 and 37.2

in [38], f is a K-quasiconformal element of Hom(Sn)⇒ f ∈ G. This gives a contradiction

since G is discrete and f should be isolated. Therefore, there is no infinite subfamily of

equicontinuous functions in G.

If F is not equicontinuous in Sn then, by Lemma 3.1 in [6], there exists a point x0 ∈ Sn

and an infinite subfamily F0 of F such that F0 is equicontinuous in Sn\x0. By Arzela-Ascoli

theorem, there is a convergent subsequence {fj} in F0, and fj → f locally uniformly in

Sn\x0 for some function f on the n-sphere. Using the Theorems 21.1 and 37.2 in [38], f
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is either a K-quasiconformal mapping of Sn\x0 or a constant. Since G is discrete, f is a

constant function⇒ fj → y0 locally uniformly in Sn\x0.

From the above, H = {f−1 : f ∈ F} has no infinite subfamily which is equicontinuous

in Sn, so there are points x1, y1 ∈ Sn and a subsequence {f−1j } of H such that f−1j → y1

locally uniformly in Sn\x1. It is not hard to show that y0 = x1 and x0 = y1, therefore {fj} is

the desired sequence. �

The natural way to construct a quasiconformal group acting on the n-sphere is to conju-

gate a Mobius group M of the n-sphere by a K-quasiconformal homeomorphism f of Sn.

The produced group f ◦M ◦ f−1 is a K2-quasiconformal group of the n-sphere.

Gehring and Palka in [7] first raised a problem:

Is every quasiconformal group G acting on the n-sphere quasiconformal conjugate to a

Mobius group?

Hinkkanen in [12] proved that the statement is true for elementary discrete quasisym-

metric groups acting on the circle (n = 1), and the result was extended for all discrete

quasisymmetric groups by Markovic in [24].

Sullivan in [31] and Tukia in [37] proved that the statement is true for n = 2.

However, the statement is no longer true for n ≥ 3. Tukia in [32] gives an example of

a quasiconformal group on Rn which is not quasiconformally conjugate to a Mobius group.

Martin in [25] gives a discrete example with similar property based on the Tukia’s work.

We show a way to construct the example of Tukia. Let J ′0, J
′
1, ... be arcs as below (pictures

are due to [25]):
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Then {J ′i} → J ′, where J ′ is a non-rectifiable quasiconformal arc. Let

J =
⋃
i≥0

3i(J ′ ∪ (−J ′)).

There is a natural map f ′ : [0, 1] → J ′, such that f ′(4ix) = 3if ′(x) for i ≥ 0 and 0 ≤ x ≤

4ix ≤ 1. We extend f ′ to f by f(±4ix) = ±3if ′(x) for x ∈ [0, 1] and i ≥ 0. Then, we get a

homeomorphism f : R→ J . One might prove that if α = log4 3, there is M ≥ 1 with

|x− y|α

M
≤ |f(x)− f(y)|≤M |x− y|α

for all x, y ∈ R. Therefore, given for all a, b, x ∈ R satisfying |a− x|≤ |b− x| we have:

|f(a)− f(x)|≤M |a− x|α≤M |b− x|α= M2 |b− x|α

M
≤M2|f(b)− f(x)|.

⇒ f is, so called, weakly-quasisymmetric with H = M2. Tukia in [34] proved that the

weakly-quasisymmetric f can be extended to a quasiconformal homeomorphism F ′ of R2.

Let F = F ′ × id : Rn → Rn.

Let a ∈ Rn. Define a map ha of Rn by ha(z) = z + a for z ∈ Rn. Let G′0 = {ha : a =

(a1, 0, a3, ..., an), ai ∈ R}. Construct a new group G0 = FG′0F
−1.

Tukia in [32], page 157, proved that:

The groupG0 is a Lipschitz group of Rn such that for no quasiconformal homeomorphism

h of Rn is the conjugation hG0h
−1 a Mobius group.

Remark. G0 is a Lipschitz group on Rn if there is L ≥ 1 such that for every g ∈ G0 and for

all x, y ∈ Rn we get
|x− y|
L

≤ |g(x)− g(y)|≤ L|x− y|.
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Therefore, for any g ∈ G0 and arbitrary x ∈ Rn

lim sup
r→0

max(|g(x)− g(y)|: |x− y|= r)

min(|g(x)− g(y)|: |x− y|= r)
≤ Lr

r\L
= L2.

Hence, G0 is a quasiconformal group, and G0 is not a quasiconformal conjugate of a Mobius

group.

Martin in Theorem 3.8, [25] proved that every discrete subgroup of maximal rank in the

group G0 is not quasiconformal conjugate of a Mobius group.

Remark. To apply these result on the n-sphere, we extend actions on Rn to actions on R̄n

fixing∞, and conjugate them by a stereographic projection.

2.2 Topological conjugacy for discrete convergence groups

Based on the previous section one may ask whether discrete convergence groups are topolog-

ically conjugate to Mobius groups in dimension n, or not. The answer is positive for certain

groups acting on the unit circle by Theorem 6.B in Tukia, [35]:

Theorem 2.2.1. A discrete convergence group G of a circle is either topologically conjugate

to a Fuchsian group or has a semi-triangle group of finite index.

Definition 2.2.2. Given two elements f and g such that

fp = gq = (f ◦ g)−r

for some p, q, r > 1, and 〈f, g〉 is a discrete nonelementary convergence group. Then the

group 〈f, g〉 is called a semi-triangle group.

In [35], page 50, one can find some conditions when G does not have a semi-triangle

group of finite index, and so is topologically conjugate to a Mobuis group. The few of these

conditions are:
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• G is torsionless,

• G is isomorphic to a Fuchsian group,

• G contains a parabolic element,

• Λ(G) 6= S1,

• G is infinitely generated.

Tukia stated that it is difficult to find a case when G is not topologically conjugate to a

Fuchsian group, and it is likely to think about its non-existence. Independent works of Casson

- Jungreis in [2] and Gabai in [5] proved that, in fact, all discrete convergence groups of the

circle are topologically conjugate to a Fuchsian group. This, actually, disproves the existence

of semi-triangle groups of a finite index in a discrete convergence groups of the unit circle.

The original statement by Gabai in [5] is:

Theorem 2.2.3. [5, p. 395] G is a discrete convergence group of S1 if and only if G is

conjugate in Homeo(S1) to the restriction of a Fuchsian group.

However, it is not true for all discrete convergence groups acting on Sn with n ≥ 2 to be

conjugate to a group of Mobius transformations. Here we provide our example for n = 2,

and then we generalize it for higher dimensions n.

Example 2.2.4. Let G be a group acting on some Hausdorff compact set X , then G is non-

elementary if the limit set of G has more than 2 points, where the limit set of G is defined as

in Definition 1.2.5 with Sn replaced by X .

Let G be a nonelementary Fuchsian group acting on D2 = int(D2)∪∂D2, where ∂D2 =

S1. By the definition, G acts on int(D2) properly discontinuously, and so leaves it invariant.

Identify the boundary of the disk to a point x, then we get D2/S1 ∼= S2. Now, the group

G induces an action by homeomorphisms on the quotient S2. By the construction, G acts

properly discontinuously on the complement of the point x, thus G is a convergence group.
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Then the stabilizer of {x} is G. If G is conjugate to some Mobius group M , then M must fix

a point corresponding to x. But the stabilizer of a point in a Mobius group is virtually abelian

by Theorem 2.1 in [36], and this contradicts to our assumption that G is nonelementary (see

Theorem 2.2.5).

Now we generalize this example to all n > 2. LetG be a nonelementary discrete subgroup

of Mobius transformations of the closed n-dimensional ball Bn = int(Bn) ∪ ∂Bn acting

properly discontinuously on int(Bn). Identify the boundary of the ball to a point x, then

Bn/Sn−1 ∼= Sn, and we get a convergence group G acting properly discontinuously on the

complement of x. Continue the steps done above, and we get that G is not conjugate to a

Mobius group.

Theorem 5.15 in [6] proves that any abelian discrete convergence group is elementary.

Using this result we may get the following theorem for any virtually abelian discrete conver-

gence group:

Theorem 2.2.5. Any virtually abelian convergence group G acting on Sn is elementary.

Proof. Since G is a virtually abelian group, there exists an abelian subgroup H of G of finite

index. Clearly, Λ(H) ⊆ Λ(G). We will prove that, in fact, Λ(H) = Λ(G). This result is due

Tukia in [33].

Pick any point y0 ∈ Λ(G). There exist an infinite sequence {gj} ∈ G and a point x0 ∈

Λ(G) such that gj → y0 locally uniformly in Sn\{x0}. Since the number of cosets is finite,

we may pick a subsequence {gj = hjg} with {hj} ∈ H and some g ∈ G. Then hj → y0

locally uniformly in Sn\{g(x0)}, and so y0 is a limit point of H . Therefore, Λ(G) ⊆ Λ(H)

⇒ Λ(H) = Λ(G).

Now, since H is the abelian convergence group acting on Sn, by Theorem 5.15 in [6],

Λ(H) is elementary, and so Λ(G) is elementary. �

Definition 2.2.6. A homeomorphism g acting on Sn is standard if g is topologically conjugate

to a Mobius transfomation acting on R̄n.
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From Chapter 1 we know that given a discrete convergence group G of the circle then an

element g of G is either elliptic, parabolic or loxodromic. Clearly, g also generates a discrete

convergence group of the circle. Therefore, the following theorem proves that all elements of

a discrete convergence group of the circle are standard.

Theorem 2.2.7. [35, p.4-5] If g generates a convergence group of S1 then g is topologically

conjugate to a Mobius transformation.

Proof. Let g be a loxodromic element acting on the circle, then g fixes two points, say x and y.

If g is orientation preserving, then components of S1\{x, y} are g-invariant. We may assume

that there is a homeomorphism ĥ : S1 → R̄ such that h = ĥgĥ−1 is a self-homeomorphism

of the extended real line with fixed −∞, 0 and ∞. Since g has a convergence property we

may assume that

hk(x)→ 0 as k → −∞,

hk(x)→∞ as k →∞ and x > 0,

hk(x)→ −∞ as k →∞ and x < 0.

Let τ(x) = 2x for all x ∈ R. Pick any point x0 > 0. Let f0 : [x0, h(x0)] → [1, 2] be a

homeomorphism such that f0(x0) = 1 and f0(h(x0)) = 2. Extend f0 to a homeomorphism

f : (0,∞)→ (0,∞) by

f |[hk(x0),hk+1(x0)]= τ kf0h
−k for each k ∈ Z.

Choose any point x and assume that x ∈ [hk(x0), h
k+1(x0)] for some integer k. Then

fh(x) = f(h(x)) = τ k+1f0h
−k−1(h(x)) = τ k+1f0h

−k(x),

τf(x) = ττ kf0h
−k(x) = τ k+1f0h

−k(x).
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As a result, fh = τf on the interval (0,∞).

In order to get a conjugacy on (−∞, 0), let f0 : [h(−x0),−x0] → [−2,−1] be a homeo-

morphism such that f0(−x0) = −1 and f0(h(−x0)) = −2. Doing similar extension of f0 on

the negative line,

f |hk+1(−x0),hk(−x0)]= τ kf0h
−k for each k ∈ Z.

Then similarly we get fh = τf on the interval (−∞, 0).

To have a homeomorphism f : R→ R, we may assume f(0) = 0 and it suffices to prove

that

lim
x→0−

f(x) = lim
x→0+

f(x) = 0.

Given ε > 0, to show that limx→0+ f(x) = 0 we need to find a constant δ > 0 such that

|f(x)|< ε whenever 0 < x < δ. Choose an integer N > 0 so that 1
2k
< ε for all k ≥ N . Let

δ = h−N(x0). Choose any positive x < δ, then x ∈ [hk(x0), h
k+1(x0)] for some k < −N .

Therefore, since f0(x) for x ∈ [x0, h(x0)] is contained in the interval [1, 2], we get

0 < f(x) = τ kf0h
−k(x) =

f0(h
−k(x))

2|k|
≤ 1

2|k+1| ≤
1

2N
< ε.

Similarly, we prove that limx→0− f(x) = 0.

Therefore, f : R→ R is a homeomorphism. Since h = f−1τf = ĥgĥ−1 and both f and

ĥ are homeomorphisms, we get that g is conjugate to a Mobius transformation x 7→ 2x.

If g is orientation reversing, we may assume that there is a homeomorphism ĥ : S1 →

R̄ such that h = ĥgĥ−1 is a self homeomorphism of R̄ with fixed −∞, 0 and ∞. The

only difference from the orientation preserving case is that h : (−∞, 0] → [0,∞) and h :

[0,∞) → (−∞, 0]. For −h, similarly as above, we have that −h is conjugate to x 7→ 2x

Mobius transformation, and so one can easily prove that g is conjugate to x 7→ −2x.
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If g is a parabolic element, then g fixes one point. Using the same idea for constructions

of homeomorphisms, one can prove that g is conjugate to x 7→ x+ 1 translation.

Let g be elliptic. Pick any point x ∈ S1. Ax = {gk(x) : k ∈ Z} is finite. Then g permutes

the components of S1\Ax, and so g is conjugate to an elliptic Mobius transform. �

One might be interested if elements of discrete convergence groups of Sn are standard for

n ≥ 2. The answer to that question was given dy different authors, and we just mention their

results.

• Elliptic elements.

Brouwer - Kerekjarto - Eilenberg in [3] proved that each periodic element of Hom(S2)

is topologically conjugate to an orthogonal transformation.

Affirmative solution of the Smith conjecture in [29] implies that periodic diffeomor-

phisms of the 3-sphere with nonempty fixed points set are conjugate to orthogonal

transformations. Nothing is known for an empty fixed points set. However, there is

a self-homeomorphism of the 3-sphere of period 2 constructed by Montgomery and

Zippin in [28] with a wild knot set of fixed points which is not topologically conjugate

to an orthogonal transformations.

When n ≥ 4, Giffen in [8] shows that there exist quasiconformal periodic orientation-

preserving homeomorphisms of the n-sphere which are not conjugate to orthogonal

transformations.

• Parabolic elements.

The convergence property of parabolic elements in higher dimensions is known as

Sperner’s condition, and homeomorphisms of Sn satisfying Sperner’s conditions, i.e.

parabolic elements of a convergence group of Sn for n > 2, are called quasitranslations.

Kerekjarto in [17] proved that quasitranslations of S2 are topologically conjugate to

translation. However, they are not conjugate to translations in higher dimensions. The
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counter-examples are given by Kinoshita in [18] for dimension 3, and by Husch in [14]

in higher dimensions.

• Loxodromic elements.

The loxodromic homeomorphisms of Sn are called topological dilations. It has been

proved that orientation-preserving topological dilations are conjugate to the standard

dilations x → 2x. The proof for n = 2 is given by Kerekjarto in [16], for n = 3 by

Homma and Kinoshita in [13] and by Husch in [15] for all n ≥ 6.

We finish this section with alternative definition of a discrete convergence group acting

on Sn (including n = 1).

Definition 2.2.8. Let Tn = Sn × Sn × Sn − ∆, where ∆ = {(x, y, z) : x = y or x =

z or y = z}.

Given a group G of homeomorphisms of Sn, then for all α = (x, y, z) ∈ Tn we define a

map

φ(g)(α) = (g(x), g(y), g(z))

which is, in fact, a homeomorphism embedding G in Hom(Tn). Then we get the following

definition which we can introduce as a theorem, see also [27].

Theorem 2.2.9. A subgroup G of Hom(Sn) is an infinite discrete convergence group if and

only if φ(G) acts properly discontinuously on Tn.

Proof. The “only if” part: Let G be a discrete convergence group of Sn, and suppose the

action of G on Tn is not properly discontinuous. Then, one can find a compact subset K of

Tn and an infinite sequence {gj} such that

φ(gj)(K) ∩K 6= 0 for all j.
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Therefore, there exists a sequence (xj, yj, zj) ∈ K such that φ(gj)(xj, yj, zj) ∈ K for all j.

Since K is compact, there exist convergent subsequences xj → x, yj → y, zj → z such that

gj(xj)→ x′, gj(yj)→ y′ and gj(zj)→ z′, and so (x′, y′, z′) ∈ K ⊂ Tn.

On the other hand, the convergence property ofG implies that for a given infinite sequence

{gj} there exist points a, b ∈ Sn such that gj → a locally uniformly in Sn\{b}. Since

(xj, yj, zj)→ (x, y, z) ∈ Tn, we may assume that x 6= b 6= y. Hence,

gj(xj)→ a and gj(yj)→ a ⇒ x′ = a = y′.

This contradicts to (x′, y′, z′) ∈ Tn, and so φ(G) acts properly discontinuously on Tn.

The “if” part: Let φ(G) act properly discontinuously on Tn. Let {gj} be an infinite

sequence in G converging to some g ∈ G. Then for an arbitrary (x, y, z) ∈ Tn, the set

K =
(

(x, y, z), (gjx, gjy, gjz), (gx, gy, gz)
)

is compact in Tn and gjK ∩ K 6= ∅ for all j.

This contradicts to properly discontinuous actions of φ(G) on Tn. Therefore, G is discrete.

Given an infinite family F = {gj} in G. Pick an arbitrary (x, y, z) ∈ Tn. There exists

an infinite subsequence F ′ = {gj} of F such that gjx → x0, gjy → y0 and gjz → z0. If all

x0, y0 and z0 are distinct then (x0, y0, z0) ∈ Tn, and the properly discontinuous property fails

for the compact set K =
(

(x, y, z), (gjx, gjy, gjz), (x0, y0, z0)
)

. Hence, x0, y0 and z0 are not

all distinct, and we can assume that

gjx→ a, gjy → a and gjz → b

for some a, b ∈ Sn. We claim that gj → a locally uniformly in Sn\{z}.

Since for any point w ∈ Sn\{z} there exists an infinite subsequence {gj} of F ′ such

that {gjw} converges, we assume, for simplicity, that F ′(w) = {gjw} converges for all

w ∈ Sn\{z}.
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Choose any point w ∈ Sn\{z}. If gjw → c /∈ {a, b} then the properly discontinu-

ous property fails for the compact set K =
(

(x, z, w), (gjx, gjz, gjw), (a, b, c)
)

. Therefore,

gjw → {a, b}.

• a 6= b.

Suppose gjw → b. Take any c ∈ Sn\{a, b}. Let uj = g−1j c, and by reducing

to its subsequence we get that uj → u. Since x, y, z, w are all distinct, by rela-

belling if necessary, one might assume that (x, z, u) ∈ Tn. Then for the compact set

K =
(

(x, z, uj), (x, z, u), (gjx, gjz, gjuj), (a, b, c)
)
⊂ Tn the properly discontinuous

property fails. Hence gjw → a. The choice of w was arbitrary, so gj → a pointwise in

Sn\{z}.

Since the n-sphere is locally compact space, the locally uniform convergence on Sn\{z}

is equivalent to uniform convergence on compact sets of Sn\{z}.

Suppose that gj → a convergence is not locally uniform on Sn\{z}, then there exists

a compact set K ⊂ Sn\{z} and a sequence {wj} ∈ K such that gjwj → c 6= a. If

c 6= b, the properly discontinuous property does not hold for the compact set K ′ =

{(x, z, wj), (gjx, gjz, gjwj), (a, b, c)}. Therefore, gjwj → b. Using similar argument

with uj = g−1j d for some a 6= d 6= b as we did above, we would get a contradiction.

Henceforth, the convergence is locally compact.

• a = b.

Take any c ∈ Sn\{a}. Let wj = g−1j c. The proof goes similarly to the previous case:

first, one can show that the convergence is pointwise, and then prove that gj → a

locally uniformly on Sn\{a} for both j → −∞ and j →∞.

�
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Chapter 3

Pseudo-Riemannian Space forms

In this chapter we consider an action of subgroups of O(p+ 1, q) on the space Sp,q defined in

Chapter 1. Our main goal is to show conditions when

• infinite discrete subgroups Γ of O(p+ 1, q) act properly discontinuously on Sp,q,

• and the orbit space Γ\Sp,q is compact.

We remind that Q is the quadratic form in Rn+1 of type (p+ 1, q) with p+ q = n and

Q(x1, ..., xp+1, y1, ..., yq) =

p+1∑
j=1

x2j −
q∑
j=1

y2j .

Then Sp,q is the component of {v ∈ Rn+1 : Q(v) = 1} containing (1, 0, ..., 0) andO(p+1, q)

is the group of Q-orthogonal transformations which preserve Sp,q. The Q-orthogonality is

defined by preserving the bilinear form bpq(s, t) for any s, t ∈ Sp,q, s = (s1, ..., sn+1) and

t = (t1, ..., tn+1) where

bpq(s, t) = s1t1 + ...+ sp+1tp+1 − sp+2tp+2 − ...− sn+1tn+1.

That is g ∈ O(p+ 1, q) if for any two points s, t ∈ Sp,q we have

bpq(s, t) = bpq(gs, gt).
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Further, for simplicity, (x, y) ∈ Sp,q denotes a point (x1, ...xp+1, y1, ..., yq) ∈ Sp,q with x =

(x1, ..., xp+1) and y = (y1, ..., yq).

Let all definitions used in this chapter be similar to definitions from Chapter 1, replacing

Sn by Sp,q and no confusion should occur.

3.1 Existence/non-existence of properly discontinuous ac-

tions on Sp,q

Kulkarni and Wolf answered to the question raised above:

are there infinite discrete subgroups Γ of O(p + 1, q) acting properly discontinuously on

Sp,q?

Theorem 3.1.1. [39, p.78-79] There is no infinite subgroups of O(p + 1, q) acting properly

discontinuously on Sp,q when p ≥ q.

Proof. Let Γ be an infinite subgroup of O(p + 1, q) acting properly discontinuously on Sp,q.

Let Sp be a subspace of Sp,q such that if (x, y) ∈ Sp then yj = 0 for j = 1, ..., q. For an

arbitrary non-singular linear transformation g of Rn+1 we have:

dim(Sp + gSp) = dim(Sp) + dim(gSp)− dim(Sp ∩ gSp).

The nature of g implies

dim(Sp) = dim(gSp).

dim(Rn+1) = n+ 1⇒ dim(Sp + gSp) ≤ n+ 1, and noting that p ≥ q we get

dim(Sp ∩ gSp) ≥ 2 · dim(Sp)− (n+ 1) > 0.

That is gSp meets Sp.
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Since Γ is infinite and Sp is compact (because Sp is a kind of the sphere in Sp,q), there

is a sequence {gj} of distinct elements of Γ and a sequence {sj} of points in Sp such that

{gj(sj)} → s for some point s ∈ Sp. There is a convergent subsequence of {sj}, which will

be denoted as {sj} again, such that {sj} → s′ ∈ Sp. ⇒ there is an element h ∈ Γ with

h(s′) = s, so {h−1gj(sj)} → h−1(s) = s′. Thus, for each neighborhood U of s′ there is an

integer n such that sj ∈ U and h−1gj(sj) ∈ U for all j > n. As a result,

{h−1gj}j>n ⊂ {g ∈ Γ : gU ∩ U 6= ∅}

and, since all gj are distinct, the set {h−1gj}j>n is infinite. This contradicts to the fact that

the action of Γ on Sp,q is properly discontinuous. ⇒ Γ is not infinite. �

Remark. Assume p > 1 and let Γ be, in addition, a free action on Sp,q. The quotient

map α : Sp,q → Γ\Sp,q is a regular cover, and since Sp,q ∼= Sp × Rq we have, in fact, α

is the universal cover for p > 1. Henceforth, Γ is a group of deck transformations of the

covering and, so, is isomorphic to the fundamental group π1(Γ\Sp,q). Theorem 3.1.1 gives

us the statement from [39]: Γ\Sp,q has a finite fundamental group when the action is free and

properly discontinuous and p ≥ q.

However, this is no longer true when p < q. Kulkarni in [21] proved the following

theorem:

Theorem 3.1.2. [21, p. 27-28] If p < q there exist infinite subgroups of O(p + 1, q) acting

properly discontinuously on Sp,q.

The idea of the proof of this theorem is to find a subgroupG ofO(p+1, q) acting properly

on Sp,q, and then to construct its discrete subgroup Γ which obviously will act properly

discontinuously by the definition.

First, we introduce a useful lemma which is used as a simplification in the study of proper

actions on Sp,q.
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Lemma 3.1.3. [21, p.20-21] Let G be a subgroup of O(p + 1, q) and Rn+1 = V1 ⊕ V2 be

a Q-orthogonal decomposition into G-invariant proper subspaces. Let Sj = Vj ∩ Sp,q for

j = 1, 2. Then G acts properly on Sp,q if and only if it acts properly on each Sj .

Proof. The “only if” part is obvious. So we restrict our attention to the “if” part.

Suppose G acts properly on each Sj . Let Qj = Q|Vj . Note that each v ∈ Rn+1 is v =

v1 + v2, where vj is a projection of v in Vj . Therefore, v = (x1, ..., xp+1, y1, ..., yq) ∈ Rn+1 is

equal to the sum of vj = (x1,j, ..., xp+1,j, y1,j, ..., yq,j) ∈ Vj for j = 1, 2. That implies

(3.1)

Q(v) = Q(x1, ..., xp+1, y1, ..., yq)

=

p+1∑
j=1

x2j −
q∑
j=1

y2j

=

p+1∑
j=1

(xj,1 + xj,2)
2 −

q∑
j=1

(yj,1 + yj,2)
2

=

p+1∑
j=1

x2j,1 −
q∑
j=1

y2j,1 +

p+1∑
j=1

x2j,2 −
q∑
j=1

y2j,2 + 2

p+1∑
j=1

xj,1xj,2 − 2

q∑
j=1

yj,1yj,2

Let Qi(vi) =
∑p+1

j=1 x
2
j,i −

∑q
j=1 y

2
j,i and note that Q-orthogonal decomposition Rn+1 =

V1⊕ V2 gives bpq(v1, v2) =
∑p+1

j=1 xj,1xj,2−
∑q

j=1 yj,1yj,2 = 0, so it follows Q(v) = Q1(v1) +

Q2(v2).

Choose any compact subset C of Sp,q. For each j = 1, 2 define Cj = {v ∈ C : Qj(vj) ≥
1
2
}. Since Q(v) = Q1(v1) +Q2(v2) = 1 we get C = C1 ∪C2. Let g be an element of G such

that gv ∈ C for some v ∈ C, i.e. g ∈ ζG(C) (we remind that ζG(C) is given in Definition

1.2.4). Then v ∈ Cj implies gv ∈ Cj . ⇒ ζG(C) = ζG(C1) ∪ ζG(C2).

Let pj : Rn+1 → Vj be the Q-orthogonal projection, then pj(Cj) is compact and ζG(Cj)

is a closed subset of ζG(pj(Cj)). Since the action of G on Sj is proper, the set ζG(pj(Cj))

is compact ⇒ ζG(Cj) is compact. The result is true for both j = 1 and j = 2, and since

ζG(C) = ζG(C1) ∪ ζG(C2), we get compact ζG(C), i.e. proper action of G on Sp,q. �

Remark. All of Sp,q, V1 and V2 in Lemma 3.1.3 are G-invariant, so both S1 and S2 are

G-invariant.
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Using Lemma 3.1.3 one can prove that:

Theorem 3.1.4. [21, p. 27-28] If p < q then there exists a subgroupG,G ∼= R, ofO(p+1, q)

acting properly on Sp,q.

Proof. Let Rn+1 = W⊕{⊕jVj} be an orthogonal direct sum, where 1 ≤ j ≤ p+1, dim(Vj)=

2 and dim(W )= q − p − 1. If v = (x1, ..., xp+1, y1, ..., yq) ∈ Rn+1 and v = w +
∑p+1

j=1 vj

with w ∈ W , vj ∈ Vj , then vj = (0, ..., 0, xj, 0, ..., 0, yj, 0, ..., 0) (for simplicity, we say

vj = (xj, yj)) and w = (0, ..., 0, yp+2, ..., yq). Therefore,

Q|Vj(v) = x2j − y2j and Q|W (v) = −y2p+2 − ...− y2q .

Rearrange the coordinates in v so that v = (x1, y1, x2, y2, ..., xp+1, yp+1, yp+2, ..., yq), then we

get vtAv = Q(v) for

A = diag(1,−1, ...., 1,−1︸ ︷︷ ︸
2p+2 entries

,−1, ....,−1).

Let xj =
aj+bj

2
and yj =

aj−bj
2

be a change of variables for each vj , then we get

Q|Vj(v) = ajbj.

Let R∗+ ∼= R be a multiplicative group of positive reals. For each t ∈ R∗+ let

At = diag(t,
1

t
, ...., t,

1

t︸ ︷︷ ︸
2p+2 entries

, 1, ...., 1).

Then At acts trivially on W and throught the map (aj, bj) → (taj,
bj
t
) on Vj . This defines a

subgroup G = {At : t ∈ R∗+} of O(p + 1, q), G ∼= R, acting properly on Sp,q ∩W = ∅ and

each Sj = Sp,q∩Vj for j = 1, ..., p+1. Using Lemma 3.1.3, this implies that G acts properly

on Sp,q �
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Remark. The group G from Theorem 3.1.4 is not discrete. To obtain a discrete subgroup of

G take

G′ = {At : t = 2n for all n ∈ Z}.

Then, G′ ⊂ O(p+ 1, q) acts properly discontinuously on Sp,q.

In addition to Theorem 3.1.4, Kulkarni in [21], Thm.5.7(b) shows the following result:

Theorem 3.1.5. If p + 1 < q or p + 1 = q is even, then there exists a subgroup of G of

O(p+ 1, q), locally isomorphic to SL(2,R), acting properly on Sp,q.

3.2 Properly discontinuous, free, co-compact actions on Sp,q

Definition 3.2.1. Let Γ be a subgroup of O(p + 1, q) acting freely and properly discontinu-

ously on Sp,q. Then the orbit space Γ\Sp,q is called a space form of Γ, or we simply call it as

a space form so that no confusion should appear.

We show conditions for the existence and non-existence of subgroups ofO(p+1, q) acting

on Sn properly discontinuously with a compact space form, and their properties.

Definition 3.2.2. Let Γ be a group acting freely and properly discontinuously on Sp,q. We

denote BΓ = K(Γ, 1), where K(Γ, 1) is the Eilenberg-Maclane space with a contractible

universal covering space and π1(K(Γ, 1)) ∼= Γ.

Let R be a commutative ring with 1 6= 0. Let hdRΓ be a homological dimension of Γ

over R. Let vhdRΓ be a virtual homological dimension of Γ over R, that is vhdRΓ = d if

hdRΓ′ = d for some subgroup Γ′ of Γ of finite index.

First, we give a homological restriction for the existence of compact space forms, see

Theorem 2.1 by Kulkarni in [21]:
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Theorem 3.2.3. Let G be a group acting freely and properly discontinuously on Sp,q. Let

R be a commutative ring with 1 6= 0. Let M = Γ\Sp,q. Suppose vhdRΓ < ∞. Then

vhdRΓ ≤ q, and the equality holds if and only if M is compact.

Example 3.2.4. As an example we can consider the action of G ∼= Zr on Sp × Rq ∼= Sp,q

for r ≤ q. That is given a space Sp × Rq, let r ≤ q and G be a group generated by r

transformations g1, g2, ..., gr of Sp × Rq where each transformation gj acts on Sp × Rq by

x 7→ x + 1 translation of only one copy of R. Notice that any two transfomations gi and gj

with i 6= j translate different copies of R in Sp × Rq. So, we get an action of Zr on Sp × Rq

which is clearly free and properly discontinuous.

Notice that the r-dimesional torus Tr is K(Zr, 1) with Hr(Tr,Z) 6= 0, and so hdG <∞.

Now, for r < q, the quotient Sp × Rq/Zr ∼= Sp × Tr × Rq−r is not compact. However, when

r = q we get Sp × Rq/Zq ∼= Sp × Tq which is compact.

More possible restrictions for the existence of the compact space forms were given by

Kobayashi and Yoshino in [19], pages 619-620:

Conjecture: There exists an infinite discrete subgroup Γ of O(p + 1, q) acting freely and

properly discontinuousy on Sp,q with compact space form if and only if (p, q) pair has one of

the following forms:

• (p, q) = (r, 0) for any r ∈ N;

• (p, q) = (0, r) for any r ∈ N;

• (p, q) = (1, 2r) for any r ∈ N;

• (p, q) = (3, 4r) for any r ∈ N;

• (p, q) = (7, 8).

The best known results for the “only if” part is that there is no infinite discrete subgroups

of O(p + 1, q) acting freely, properly discontinuously and co-compactly on Sp,q when (p, q)

pair satisfies to either p ≥ q > 0, p+ 1 = q = odd, or pq = odd.
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However, the “if” part of this Conjecture is true:

• (p, q) = (r, 0) with r ∈ N.

Then Sp,q ∼= Sp is compact, and so is Γ\Sp,q. That is because the projection map

Sp,q → Γ\Sp,q is continuous and surjective, the continuous image of compact space is

compact.

• (p, q) = (0, r) for any r ∈ N.

Then Sp,q ∼= Rq is a Riemannian symmetric space and, by [1], it admits compact space

form.

• (p, q) = (1, 2r) for any r ∈ N.

Then Q is a non-degenerate quadratic form in R2r+2 of type (2, 2r). Let W be a C-

vector space of dimension r + 1 and H be a non-degenerate hermitian form of type

(1, r) for C.

If w = (x1 + ix2, y11 + iy21, ..., y1r + iy2r) ∈ W , then

H(w,w) = (x1+ix2)(x1−ix2)−(y11+iy21)(y11−iy21)− ...−(y1r+iy2r)(y1r−iy2r).

Clearly,

Re(H(w,w)) = x21 + x22 −
r∑
j=1

(y21j + y22j) = Q(v, v)

for v = (x1, x2, y11, y21, ..., y1r, y2r) ∈ R2r+2. Therefore, denoting the underlying real

vector space of W as WR, we get that (WR, Re(H)) may be identified with (R2r+2, Q).

We define an H-isometry to be a bijection f : R2r+2 → R2r+2 with H(f(v), f(v)) =

H(v, v) for all v ∈ R2r+2. Let U(H) be a group of H-isometries. Since (WR, Re(H))

may be identified with (R2r+2, Q) and U(H) acts on R2r+2 then U(H) ⊆ O(2, 2r).
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Kulkarni in Theorem 6.1, [21] proves that there exist a discrete, co-compact torsion-

free subgroup of U(H) acting freely and properly discontinuously on S2,2r with com-

pact space form.

Kobayashi and Yoshino in [19] also give a proof using the Lie theory.

• (p, q) = (3, 4r) for any r ∈ N.

The proof is given by Kulkarni in Theorem 6.1, [21] which is similar to (p, q) = (1, 2r)

case using the real quaternions space instead of complex plane C.

Kobayashi and Yoshino in [19] also give a proof using the Lie theory.

• (p, q) = (7, 8)

The proof is given by Kobayashi and Yoshino in [19].

3.3 Some properties of O(2, 1) group

One of the results of Conjecture given above is that there is no discrete subgroups of O(p +

1, q) acting freely, properly discontinuously and co-compactly on Sp,q when pq = odd.

Hence, this statement holds for p = q = 1, and the next proposition might be considered

as a particular corollary.

Proposition 3.3.1. Let (p, q) = (1, 1). Let Γ be a group generated by two homeomorphisms

of S1 × R1, that is Γ = 〈a, b〉 where

• a : S1 × R1 → S1 × R1 is a homeomorphism such that a(x, y) = (−x,−y) for any

(x, y) ∈ S1 × R1. In other words, the map a acts on S1 as the antipodal map, and acts

on R1 as a reflection with respect to a point 0.

• b : S1 × R1 → S1 × R1 is a homeomorphism such that b(x, y) = (−x, 2 − y) for any

(x, y) ∈ S1 × R1. In other words, the map b acts on S1 as the antipodal map, and acts

on R1 as a reflection with respect to a point 1.
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Then the action of Γ on S1 × R1 is free and properly discontinuous, and Γ\S1 × R1

is compact. Moreover, since S1,1 ∼= S1 × R1, the group α−1 ◦ Γ ◦ α acting on S1,1 is

not a subgroup of O(2, 1), where α : S1,1 → S1 × R1 is a homeomorphism defined by

(x, y)→
(
x
|x| , y

)
.

Proof. Notice that both generators of Γ are of finite order 2. Therefore, any element g ∈ Γ is

a finite combination of elements a and b such that any two consecutive maps inside g are of

different types, i.e. we define g = aαba...abaβ where α and β are either 0 or 1, and no two

adjacent elements are equal. This construction of g is of reduced form, and the length of g is

a number of a’s and b’s in the reduced form of g. Γ is clearly discrete since if gj → g then g

must be an element of the infinite length, which, in fact, is not an element of Γ.

First, we show that the action of Γ is free. Let g be an arbitrary element of Γ, and choose

an arbitrary point (x, y) ∈ S1×R1. Suppose that the action of g starts with the element a, i.e.

g(x, y) = aba...ba(x, y) or g(x, y) = bab...ba(x, y).

a(x, y) = (−x,−y) and ba(x, y) = b(−x,−y) = (x, 2 + y). Therefore, the action of a

map the point x to −x, and the point x returns back to itself only after the action of type ba.

Since x 6= −x for any point x ∈ S1, g(x, y) = (x, y) might happen only when g = bab...ba.

However, each next action of b moves the point (x, y) further and further from itself in R1

line, that is g(x, y) 6= (x, y) for all g ∈ Γ, g = bab..ba. Similarly we can prove this for all

g = aba...ab ∈ Γ. The difference in these proofs is that in the first case the point (x, y) moves

to the right in R1, while in the second case the point moves to the left. One can assume that

g ∈ Γ is of type g = aba...ba or g = bab...ab. But, in that cases, g does not return the point

x ∈ Sn to itself. So we conclude that the action of Γ is free.

It is not hard to see, that the action of Γ on S1 × R1 is also properly discontinuous. This

can be easily seen by the fact that b function moves each point further and further from itself

in the y-coordinate.



40 Chapter 3. Pseudo-Riemannian Space forms

Therefore, we get an infinite discrete group Γ acting freely and properly discontinuously

on S1 × R1. Note that Γ\S1 × R1 ∼= S1 × [0, 1] which is compact. This contradicts to the

non-existence of the compact space form for (p, q) = (1, 1), therefore α−1 ◦ Γ ◦ α is not a

subgroup of O(2, 1), where α is a homeomorphism from S1,1 to S1 × R1 and so α−1 ◦ Γ ◦ α

is a homeomorphism of S1,1.

The generators of Γ′ = α−1 ◦Γ ◦α are a′ = α−1 ◦ a ◦α and b′ = α−1 ◦ b ◦α. Remind that

α : S1,1 → S1 × R1,

(x, y) 7→
( x
|x|
, y
)
.

Therefore,

α−1 : S1 × R1 → S1,1,

(s, t) 7→ (s
√

1 + t2, t).

As a result, a′ acts on (x, y) ∈ S1,1 in the following way:

(x, y) 7→
( x
|x|
, y
)
7→
(
− x

|x|
,−y

)
7→
(
− x

|x|
√

1 + y2,−y
)
,

and b′ acts on (x, y) ∈ S1,1 via

(x, y) 7→
( x
|x|
, y
)
7→
(
− x

|x|
, 2− y

)
7→
(
− x

|x|
√

1 + (2− y)2, 2− y
)
.

To see if a′ and b′ are elements ofO(2, 1) we need to check whether they areQ-orthogonal.

That is for any z, z′ ∈ S1,1 the bilinear form must be preserved, i.e. b11(z, z
′) = b11(a

′(z), a′(z′)) =

b11(b
′(z), b′(z′)). Since z = (x1, x2, x3), z

′ = (y1, y2, y3) ∈ R3 we get

a′(x1, x2, x3) =
(
− x1√

x21 + x22

√
1 + x23,−

x2√
x21 + x22

√
1 + x23,−x3

)
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b′(x1, x2, x3) =
(
− x1√

x21 + x22

√
1 + (2− x3)2,−

x2√
x21 + x22

√
1 + (2− x3)2, 2− x3

)
Therefore, the bilinear forms are:

b11(z, z
′) = x1y1 + x2y2 − x3y3,

b11(a
′(z), a′(z′)) = (x1y1 + x2y2)

√
1 + x23

√
1 + y23√

x21 + x22
√
y21 + y22

− x3y3

Since x21 + x22 − x23 = 1 and y21 + y22 − y23 = 1, we get

√
1 + x23

√
1 + y23√

x21 + x22
√
y21 + y22

= 1,

and so b11(a
′(z), a′(z′)) = b11(z, z

′).

The bilinear form for b′ is:

b11(b
′(z), b′(z′)) = (x1y1 + x2y2)

√
1 + (2− x3)2

√
1 + (2− y3)2√

x21 + x22
√
y21 + y22

− (2− x3)(2− y3).

Let z = (x1, x2, x3) = (1, 2, 2) and z′ = (y1, y2, y3) = (2, 1, 2), then b11(z, z
′) = 8 6= 4

5
=

b11(b
′(z), b′(z′)). ⇒ b′ /∈ O(2, 1), and so Γ′ is not a subgroup of O(2, 1). �

One might be interested in the construction of elements of O(2, 1) group.

Each element ofO(2, 1) is represented by some 3×3 matrix in GL(3,R). Let λ ∈ O(2, 1)

be an arbitrary element with corresponding matrix A =


a b c

d e f

g h i

.

Pick a point p = (x, y, z) ∈ S1,1. That is x2 + y2 − z2 = 1. The action of λ on p moves

the point to

λ(p) = Apt =


a b c

d e f

g h i



x

y

z

 =


ax+ by + cz

dx+ ey + fz

gx+ hy + iz

 .
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Since λ(p) ∈ S1,1, then

(ax+ by + cz)2 + (dx+ ey + fz)2 − (gx+ hy + iz)2 = 1.

Expanding brackets we get:

(a2 + d2 − g2)x2 + (b2 + e2 − h2)y2 + (c2 + f 2 − i2)z2+

+2xy(ab+ de− gh) + 2xz(ac+ df − gi) + 2yz(bc+ ef − hi) = 1.

Notice that points (1, 0, 0), (0, 1, 0) and (1/
√

2, 1/
√

2, 0) are in S1,1. The action of λ on

these point preserves them in S1,1, so substituting them instead of x, y and z in the previous

expansion, we get:

a2 + d2 − g2 = b2 + e2 − h2 = 1 and ab+ de− gh = 0.

Therefore, the general equation now is

x2 + y2 + (c2 + f 2 − i2)z2 + 2xz(ac+ df − gi) + 2yz(bc+ ef − hi) = 1.

Since x2 + y2 − z2 = 1, we get

(−c2 − f 2 + i2 − 1)z2 = 2xz(ac+ df − gi) + 2yz(bc+ ef − hi).

Since z 6= 0 and the matrix A has constant real entries, we get the linear equation

(−c2 − f 2 + i2 − 1)z = 2x(ac+ df − gi) + 2y(bc+ ef − hi)
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which must be true for all points (x, y, z) ∈ S1,1. Therefore

c2 + f 2 − i2 = −1 and ac+ df − gi = bc+ ef − hi = 0.

One may ask if the bilinear form is preserved in this case. Suppose we given two points

p1 = (x, y, z) and p2 = (u, v, w) in S1,1. Then b11(p1, p2) = xu + yv − zw. After the action

of λ we get

b11(λ(p1), λ(p2)) = (ax+by+cz)(au+bv+cw)+(dx+ey+fz)(du+ev+fw)−(gx+hy+iz)(gu+hv+iw).

By expanding the brackets we can see that a coefficient of each of xv, xw, yu, yw, zu, zv is

either (ab + de − gh), (ac + df − gi) or bc + ef − hi which are zero. So, the bilinear form

of (λ(p1), λ(p2)) is

b11(λ(p1), λ(p2)) = (a2 +d2− g2)xu+ (b2 + e2−h2)yv− (c2 + f 2− i2)zw = xu+ yv− zw.

As a result, b11(λ(p1), λ(p2)) = b11(p1, p2).

Corollary 3.3.2. Any Q-orthogonal transformation preserving S1,1 might be represented by

matrix 
a b c

d e f

g h i


with real entries satisfying

a2 + d2 − g2 = b2 + e2 − h2 = i2 − f 2 − c2 = 1,

ab+ de− gh = ac+ df − gi = bc+ ef − hi = 0.

Corollary 3.3.3. O(2, 1) = {A ∈ GL(3,R) : AtQA = Q}, where Q = diag(1, 1,−1).
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Remark. In fact, this is true in general:

O(p+ 1, q) = {A ∈ GL(p+ q + 1,R) : AtQA = Q},

where Q = diag( 1, ..., 1︸ ︷︷ ︸
p+1 numbers

,−1, ...,−1). Therefore, det(A) = ±1 for A ∈ O(2, 1).

Any point (x, y, z) ∈ S1,1 satisfies x2 + y2 − z2 = 1, and so z2 − x2 − y2 = −1 is also

true. Rearrange the coordinates in S1,1 such that (z, x, y) ∈ S1,1 with z2 − x2 − y2 = −1.

Then one might check

O(2, 1) = {A ∈ GL(3,R) : AtQA = Q},

where Q = diag(1,−1,−1).

For such constructions of S1,1 and O(2, 1) elements of O(2, 1) might be defined as fol-

lows:

Lemma 3.3.4. [23, p.124]

For each A ∈ O(2, 1) = {A ∈ GL(3,R) : AtQA = Q where Q = diag(1,−1,−1)}

with det(A) = +1, there exist α, β, γ, δ ∈ R such that αδ − βγ = 1 and

A =


1
2
(α2 + β2 + γ2 + δ2) αβ + γδ 1

2
(α2 − β2 + γ2 − δ2)

αγ + βδ αδ + βγ αγ − βδ
1
2
(α2 + β2 − γ2 − δ2) αβ − γδ 1

2
(α2 − β2 − γ2 + δ2)


Each element A ∈ O(2, 1) with det(A) = −1 is represented in similar form with opposite

signed entries.

This lemma helps to prove the following results:

Theorem 3.3.5. There are infinitely many elements of O(2, 1) isomorphic to Z2.
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Proof. Using Lemma 3.3.4 one may find subgroups of O(2, 1) of order 2. Let A be an

element of O(2, 1) with det(A) = +1 and A2 = I . Then row 2 - column 2 entry of A2 = I is

(αγ + βδ)(αβ + γδ) + (αδ + γβ)2 + (αγ − βδ)(αβ − γδ) = 1.

After simplifications using βγ = αδ − 1 we get

(α2 + δ2)(αδ − 1) = −2αδ(αδ − 1)

which implies that

either αδ = 1⇒ βγ = 0 or α + δ = 0. (3.2)

The row 1 - column 1 entry of A2 = I implies that

α4 + δ4 + α2(β + γ)2 + δ2(β + γ)2 + 2αδ(β2 + γ2) + 2β2γ2 = 2.

The row 3 - column 3 entry of A2 = I implies that

α4 + δ4 − α2(β − γ)2 − δ2(β − γ)2 − 2αδ(β2 + γ2) + 2β2γ2 = 2.

The last two equations are both equal to 2, so we equalize them and simplify:

(α + δ)2(β2 + γ2) = 0. (3.3)

Equation 3.2 implies that either αδ = 1 or α + δ = 0 is true. Note that they can not be true

simultaneously.

• αδ = 1.
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Then α + δ 6= 0, and so by Equation 3.3 we have β = γ = 0. Hence,

A =


1
2
(α2 + δ2) 0 1

2
(α2 − δ2)

0 αδ 0

1
2
(α2 − δ2) 0 1

2
(α2 + δ2)


Since non-diagonal entries of A2 = I are equal to 0, we get that α2 = δ2. Therefore,

αδ = 1 implies that α2 = δ2 = 1, and

A =


1 0 0

0 1 0

0 0 1


• α + δ = 0.

Then α2 = δ2, and using this equation Lemma 3.3.4 implies that

A =


1
2
(2α2 + β2 + γ2) α(β − γ) 1

2
(−β2 + γ2)

α(γ − β) −α2 + βγ α(γ + β)

1
2
(β2 − γ2) α(β + γ) 1

2
(2α2 − β2 − γ2)


with βγ = −α2 − 1. One might check that such matrix A is an element of O(2, 1)

isomorphic to Z2.

Since βγ = −α2 − 1 has infinitely many real solutions, there are infinitely many

matrices A ∈ O(2, 1) isomorphic to Z2.

�

Theorem 3.3.6. There is no subgroup of O(2, 1), isomorphic to Z2 ∗Z2, which acts properly

discontinuously on S1,1.
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Proof. Let a, b ∈ O(2, 1) be elements generating a subgroup of O(2, 1) isomorhic to Z2 ∗Z2.

Therefore, a2 = b2 = e and ab is an element of O(2, 1) with the infinite order. For simplicity,

we assume that γ = ab, and so ord(γ)=∞. The proof might easily follow by Theorem 3.1.1

proved by Wolf. However, we use a different way to prove this result.

Recall that (x, y, z) ∈ S1,1 satisfies x2 + y2 − z2 = 1. Let m ∈ Z be an arbitrary integer.

Consider the compact set K = {(x, y, z) ∈ S1,1 : −1 ≤ z ≤ 1} ⊂ S1,1. Pick any nonzero

point ρ ∈ K. There are two possible cases for γm(ρ):

• the z-coordinate of γm(ρ) is 0.

Then γm(ρ) is a point of the unit circle {(x, y, 0) ∈ S1,1 : x2 + y2 = 1} ⊂ K. ⇒

γm(ρ) ∈ K. Since ρ ∈ K, we get

γm(K) ∩K 6= ∅.

• the z-coordinate of γm(ρ) is nonzero.

Then γm(ρ) = (x0, y0, z0) ∈ S1,1 with z0 6= 0. Notice that ρ ∈ K implies −ρ ∈ K,

and γm(−ρ) = (−x0,−y0,−z0). Since γm ∈ O(2, 1) and K is path-connected, then

γm(K) is also path-connected. Hence, there exists a path between points γm(ρ) and

γm(−ρ) contained in γm(K). Since z-coordinates of these points are opposite signed,

by Intermediate Value theorem the path goes through the unit circle {(x, y, 0) ∈ S1,1 :

x2 + y2 = 1} ⊂ K. Therefore,

γm(K) ∩K 6= ∅.

In both cases, γm(K)∩K 6= ∅. Since the choice of m was arbitrary, this result is true for

all m ∈ Z. Therefore, 〈a, b〉 ∼= Z2 ∗ Z2 does not act properly discontinuously on S1,1.

�
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Remark. Theorem 3.3.6 might be generalized for all subgroups of O(p+ 1, 1) isomorhic to

Z2 ∗Z2. The proof will go the same way for the compact set K = {(x1, ..., xp+1, y1) ∈ Sp,1 :

−1 ≤ y1 ≤ 1} ⊂ S1,1, and Intermediate Value theorem guarantees that

γm(K) ∩K 6= ∅

for all m ∈ Z.
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Chapter 4

Compactifying Infinite Group Actions

4.1 Extension of infinite group actions on Sp×Rq to actions

on Sp+q

Theorem 4.1.1. Sp+q ∼= Sp × Rq ∪ Sq−1

Proof. Let ∗ denote the topological join. Then it is known that Sp ∗ Sq−1 ∼= Sp+q. A direct

way to show this homeomorphism is to use the map Sp ∗ Sq−1 → Sp+q given by

(x, t, y) 7→ (x cos(tπ/2), y sin(tπ/2))

where (x, t, y) ∈ Sp × [0, 1]× Sq−1.

Remove a collapsed copy of Sq−1 from the construction of the join Sp ∗Sq−1. Then we are

left with a collapsed copy of Sp and open intervals, one for each point of this Sp copy. That

is, given a point x in the collapsed copy of Sp, we get the open interval {x} × (0, 1)× Sq−1.

Notice that each such open interval is homeomorphic to Sq−1 × (0,∞), which together with

the point {x} ∈ Sp gives Rq space.

Therefore, Sp+q\Sq−1 ∼= Sp × Rq. �

The connection given by Theorem 4.1.1 might be used for an extension of infinite discrete

group actions on Sp × Rq to the actions on Sp+q.
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Hambleton and Pedersen in [9] give conditions under which infinite discrete co-compact

groups acting properly discontinuously on Sp × Rq extend to actions on Sp+q. To state crite-

rions for that extension we need, first, to introduce some necessary definitions.

Let Γ be a group acting properly discontinuously on the space Sp × Rq. Let Γ0 be a

torsion-free subgroup of Γ. Remind that BΓ0 = K(Γ0, 1) is the Eilenberg-Maclane space

with a contractible universal covering space EΓ0.

Definition 4.1.2. Given metric spacesX and Y . A metric space is proper if any closed metric

ball is compact. A map f : X → Y is a proper map if the inverse image of any compact set

is compact.

We call f to be Lipschitz if there exist constants K > 0 such that d(f(x), f(x′)) ≤

Kd(x, x′) for all x, x′ ∈ X .

Let X and Y be proper metric spaces. Let f0, f1 : X → Y be proper Lipschitz maps.

f0 and f1 are Lipschitz homotopy equivalent, f0 ∼=Lip f1, if one can find a proper Lipschitz

map H : X × R→ Y × R and a continuous function φ : X → [0,∞) such that

• H(x, t) = (ht(x), t),

• ht(x) = f1(x) if t ≥ φ(x),

• ht(x) = f0(x) if t ≤ 0,

• there is a proper map ϕ : {(x, t) : 0 ≤ t ≤ φ(x)} → Y such that the following diagram

commutes for H : {(x, t) : 0 ≤ t ≤ φ(x)} → Y × R and the projection Y × R→ Y

{(x, t) : 0 ≤ t ≤ φ(x)}

))

// Y × R

��

Y



4.1. Extension of infinite group actions on Sp × Rq to actions on Sp+q 51

Proper metric spaces X and Y are Lipschitz homotopy equivalent, X ∼=Lip Y , if there

exist proper Lipschitz maps f : X → Y and g : Y → X such that g ◦ f ∼=Lip idX and

f ◦ g ∼=Lip idY .

Let Γ be a group acting on a topological space X . We say that the topological action

(X,Γ) is continuously controlled at a Γ-invariant subset A of X if, given a compact subset

K in X − A, for each neighborhood U of x ∈ A, one can find a neighborhood V of x in U

such that whenever gK ∩ V 6= ∅, for some g ∈ Γ, we get gK ⊂ U .

Recall that Γ0 is the torsion-free subgroup of Γ, and suppose Γ acts onEΓ0 by isometries.

Let (EΓ0,Γ) be a Γ-equivariant compactification of (EΓ0,Γ). Here, EΓ0 is supposed to be

a compact, contractible topological space containing EΓ0 as a dense open subset. Then

the action is called eventually small at infinity if (EΓ0,Γ) is continuously controlled at

∂EΓ0 = EΓ0 − EΓ0.

The group Γ is said to be eventually (α, k)-euclidean if its virtual cohomological di-

mension vcd(Γ) is finite and it has the torsion-free normal subgroup Γ0 of finite index with

compact BΓ0, such that

• Γ acts on EΓ0 by isometries extending the Γ0 action properly discontinuously, co-

compactly and with finite isotropy,

• EΓ0 is Lipschitz homotopy equivalent to Rq, EΓ0
∼=Lip Rq,

• EΓ0 has a Γ-equivariant compactification (EΓ0,Γ) = (Dq,Γ) where the action is

eventually small at infinity,

• the action of Γ restricted to the boundary of Dq is given by a homomorphism α : Γ→

Homeo(Sq−1).

The following theorem gives the conditions under which discrete co-compact group ac-

tions on Sp × Rq extend to actions on Sp+q:
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Theorem 4.1.3. [9, p.2] Let Γ be an eventually (α, k)-euclidean group. If Γ acts freely,

properly discontinuously and co-compactly on Sp × Rq then one can find a compactification

(Sp+q,Γ) such that

(i) there is a Γ-invariant linear subsphere Sq−1 in Sp × Rq,

(ii) the action on Sp+q\Sq−1 = Sp×Rq is topologically conjugate to the given action, and

(iii) the Γ action on Sq−1 is given by α.

A good example was proposed by Hambleton and Pedersen in [9]. Consider a group

Γ = Zq oα G with a finite group G. The map α : G → GL(q,Z) is a homomorphism, and

for each g ∈ G and z ∈ Zq

zα(g) = gzg−1.

Suppose that the action is free, co-compact and properly discontinuous. The example of

such action is given by [10] and [11]:

Theorem 4.1.4. [11, p.124] The group Zr oα Dt acts freely, properly, and co-compactly on

Sp × Rq if and only if p = 3(mod4), r = q, and α considered as a real representation has at

least two R− summands. Here, Dt is a finite dihedral group with an odd prime t.

In order to compactify Γ action using Theorem 4.1.3 one needs to check that the group

Γ = Zq oα G is, indeed, eventually (α, k)-euclidean:

• let Γ0 = Zq be a torsion-free subgroup of Γ. Then BΓ0 = Tq is compact and EΓ0 =

Rq;

• vcd(Γ) = q <∞ where Γ0 is a subgroup of Γ with a finite index;

• EΓ0 is Lipschitz homotopy equivalent to Rq, since EΓ0 = Rq;

• the action on Sq−1 is given by a homomorhism α̂ : G → Oq(R) which is similar to

α : G→ GL(q,Z) as a real representation. Here GL(q,Z) extends to GL(q,R) which

contains Oq(R) as a subgroup;
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• to show that Γ acts onEΓ0 = Rq we need to check two axioms of group actions. Notice

that any element of Γ = Zq oα G is of type zg, where z ∈ Zq is represented by an

isometry (translation) of Rq using the map Zq → Isom(Rq), and g ∈ G is represented

by an orthogonal transformation α̂(g). Now, we check the axioms:

(i) let e be the identity of Γ, then e.x = x for all x ∈ Rq,

(ii) suppose z1g1, z2g2 ∈ Γ with zj ∈ Zq and gj ∈ G for j = 1, 2. Then for all x ∈ Rq

using the associativity of groups we have

z1g1(z2g2.x) = z1g1z2g1
−1g1z2

−1(z2g2.x) = z1z2
α(g1)(g1z2

−1z2g2.x)

= z1z2
α(g1)(g1g2.x) = z1z2

α(g1)g1g2.x = z1g1z2g1
−1g1g2.x = (z1g1z2g2).x

Therefore, Γ acts on EΓ0. Both Zq and G are isometries on EΓ0 = Rq,so Γ acts on

EΓ0 by isometries. Since G is a finite group and Zq acts on Rq by translations, the

action of Γ on Rq is properly discontinuous, co-compact and with finite isotropy.

• let θ : R̄q → Dq be a homeomorphism. Given some γ ∈ Γ = Zq oα G, and pick

any point x ∈ R̄q. Since γ acts by an orthogonal transformation and a translation,

and the map θ only changes the “scale”, one might check that γθ(x) = θγ(x), i.e.

(R̄q,Γ) = (Dq,Γ) is a Γ-equivariant compactification.

Pick any point x ∈ Sq−1 and let U be an arbitrary neighborhood of x. Choose any

compact subset K of Dq\Sq−1. Since g ∈ G is represented by an orthogonal transfor-

mation, the image of K under Γ moves towards x only under translations generated by

Zq. When the image moves closer to x, the size of K decreases radially. This, actu-

ally, guarantees the existence of a neighborhood V of x satisfying “eventually small at

infinity” condition.
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