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Abstract
Inflation, the currently favoured solution to the grievous initial conditions problems of the
Big Bang model of the universe, is a very general framework that can be constructed from
any number of underlying theories. As inflation is meant to solve a problem of initial
conditions, it is generally preferred that it not introduce its own initial conditions problem.
The purpose of this thesis is to explore the sensitivity to initial conditions of solutions to
two toy models of inflation. The models in and of themselves are not intended to explain
inflation, but rather seek to begin to explore, in a controlled way, interesting properties that
a full inflationary theory might have.

The first model is one with a single scalar inflaton, but two compact extra dimensions.
We find this model has two inflationary solutions that can be well understood analytically.
These solutions are power laws in time. One is found to be marginally insensitive to its
initial conditions, and the other is found to be highly sensitive to its initial conditions. We
also find a solution to this model that exhibits 4D quasi-de Sitter space, but is difficult to
understand analytically, and its sensitivity to initial conditions is not yet well known.

The second model examines an n-scalar field Lagrangian that includes kinetic terms
first-order in the derivatives of the fields (similar to certain ferromagnetic Lagrangians). It
is found that this model can realize slow-roll inflation with arbitrarily steep potentials. A
solution is constructed that can realize an exact de Sitter equation of state without saying
anything about the slope of its potential. This solution is found to be marginally insensitive
to its initial conditions for a certain range of parameters. Corrections from higher order
terms in the Lagrangian are found to introduce a parameter space for which this solution
is in fact highly insensitive to its initial conditions.

We therefore make progress in understanding higher-dimensional inflation, slow-roll
inflation with steep potentials, and the sensitivity of solutions in both those cases to their
initial conditions.
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Introduction

This thesis aims to study the sensitivity to initial conditions of solutions to two distinct
inflationary toy models. The framework of inflation [3, 4] was introduced to solve prob-
lems of astonishingly precise initial conditions that inevitably arise in the standard Hot Big
Bang model of cosmology, so it is important that a successful inflationary model not itself
be plagued with a problem of initial conditions.

The Big Bang model is based on the observations that the universe (on the largest scales)
is homogeneous, isotropic, and expanding. However, one can use the Big Bang model to
compute the expected degree of homogeneity, isotropy, and flatness in the universe to-
day given some set of initial conditions, and doing so, one finds that the universe today
would have required an extremely precise set of initial conditions. Nowhere is this easier
to see than with the Cosmic Microwave Background Radiation (CMBR). This is the bath
of microwave radiation seen in all directions that is a relic of the epoch when the universe
first became transparent to light (the physical region corresponding to the source of the
radiation we are receiving today is referred to as the surface of last scattering), and it is ho-
mogeneous to one part in 105, after correcting for the Earth’s motion. It can be calculated
in the Big Bang model that every ∼ 2◦ of the CMBR corresponds to an area on the surface
of last scattering that should never have been in causal contact with the rest of the surface.
In particular, this means that every region of the CMBR larger than a few full moons had to
have started out with almost exactly the same initial conditions as every other such region.

It can be shown that this issue of initial conditions in the Big Bang model can be re-
solved if there had been an earlier, sufficiently long, period of accelerated expansion. In-
flation is the simplest suggestion that that period of acceleration was an almost de Sitter
geometry, which corresponds to a universe dominated by an approximately constant en-
ergy density. This is typically realized by introducing one or more scalar fields, arranged so
that there is a period when the potential energy of (at least one of) the fields dominates over
the kinetic energy, hence approximating a constant energy density (this is called slow-roll).
Given the origin of the idea of inflation, it is important how sensitive any model realizing
inflation is to its own initial conditions. It is all well and good to construct a model that can
produce an inflationary epoch , but if that model demands an even more restrictive set of
initial conditions than the Big Bang model alone, it hasn’t solved anything. To that end, in
this thesis we study two different toy models of inflation, and where possible analyze the
sensitivity of their solutions to perturbations in the initial conditions.

The first model we study is the standard single-field inflaton in a universe with two
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compact extra spatial dimensions. The main idea behind this toy model is to fully study an
extra-dimensional scenario that is more complicated than the well-explored co-dimension
1 models [5, 6, 7, 8](i.e., those with a single extra dimension), but still simple enough to be
analytically (and numerically) soluble. We compactify the extra dimensions onto a sphere
for simplicity (since it only adds one more degree of freedom, the radius), but in principle
one could also study more complicated geometries. This model has a couple of important
features. First, we find solutions for the full 6D Einstein equations, rather than an easier,
approximate 4D system. Secondly, and very importantly, we include a mechanism for
stabilizing the extra dimensions (flux-compactification), and find solutions that achieve
this stability. This is a key result because it is often neglected in higher dimensional models,
but is a necessary feature, since we do not seem to live in a world with macroscopic extra
dimensions.

Our analysis of this model is not exhaustive as there are many parameters to vary,
however we do uncover two classes of solutions. First, if the extra-dimensional radius
(which, from a 4D perspective, appears as an additional field, the radion), begins near its
minimum, then it quickly settles and the inflaton undergoes a period of slow-roll. For
this solution, we typically find the slow-roll parameters ε ∼ 0.009 (roughly, a measure
of the degree to which this geometry approximated de Sitter), and η ∼ 0.016 (roughly, a
measure of the rate of change of ε). These correspond to ns ∼ 0.975 (a measure of the scale
invariance of the primordial scalar power spectrum), and r ∼ 0.15 (a measure of the ratio
of tensor to scalar modes in the CMBR polarization), so are in tension with data from the
Planck satellite [9], assuming the usual perturbation analysis is applicable. This solution
has the distinct advantage that it comes by definition with radius stabilization. It is also,
however, difficult to understand analytically, and as a result, we do not study its sensitivity
to initial conditions in detail.

The second class of solutions for this model are of a power-law form, so that the fields
all scale as powers of time. This has the pleasant feature that η = 0 for free. It is also found
that the duration of inflation (measured in e-foldings) is directly related to how much the
extra dimensional radius inflates, Ne ∝ 2 ln(bf/b0) (where b(t) is the extra-dimensional
scale-factor). This is interesting because it is a direct relationship between an intuitive
4D property, and a fundamental property of the extra-dimensions. We find analytically
and numerically two examples of this power-law form. One solution we refer to as the
Attractor solution, since it is found to be marginally insensitive to initial conditions. This
Attractor solution is limited to ε ≥ 0.5, so is excluded if the standard perturbation analysis
is applicable. Nevertheless, it is of interest for the fact that the extra-dimensional radius
can still be stabilized in this solution. The other example of power-law we find is referred
to as the Slow-Roll solution, since it is possible to construct examples with arbitrary ε. This
solution suffers from high sensitivity to initial conditions.

Our second toy model studies an extension to n-scalar field inflation where we use
a kinetic energy that is dominated by terms of first-order in the derivatives of the fields
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(we refer to this model as “magnon” inflation, since the Lagrangian is similar to one used
to describe spin waves in a ferromagnet [10, 11]). This research was motivated by the
Chromo-Natural model of inflation described by [12], and seeks to understand the reason
why that model was able to achieve slow-roll inflation despite having steep potentials.
Indeed, we find that their inclusion of first-order derivatives was the culprit, as a key result
of ours is that field configurations which are orthogonal (in field space) to the gradient of
the potential generically produce ε = 0 to first order. As an example, we explicitly construct
such a model with two fields, and find conditions on its parameters necessary to ensure it
is relatively insensitive to perturbations in the initial conditions. This analysis is performed
both at the first- and second-order in the derivatives of the fields.

The rest of this thesis is laid out as follows. In chapter 1, we expand on the framework
of inflation by detailing the phenomena it hopes to explain, the mathematics, the canonical
example, and (briefly) how it could potentially be observed. In chapter 2, we explore the
extra-dimensional model of inflation, detail its solutions, and study the sensitivity of each
case to initial conditions. Finally, in chapter 3, we explore the magnon model, detail the
canonical two-field example, and study its sensitivity to initial conditions, to both first and
second order in the derivatives of the fields.

Throughout, we use the mostly plus signature for the metric, Weinberg’s conventions
for the curvature tensor, and units such that ~ = c = 1.
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Chapter 1

Inflation Background

As this thesis concerns the study of inflationary models, it is important to elaborate on the
idea of inflation, and establish the vocabulary and context for the following chapters. We
begin by describing the framework of large-scale cosmology and the Hot Big Bang model.
This is followed by a detailed treatment of perhaps the most uneasy drawback to the Big
Bang model, the near uniformity of the Universe despite the Big Bang prediction that it
should consist mainly of causally disconnected patches. It is subsequently shown that
an early period of accelerated expansion is capable of solving this problem by ensuring
the universe is covered by a single causal patch. The special case of quasi-de Sitter space
(inflation) is described as an example accelerating geometry, and the related parametersNe,
ε, and η are introduced. Finally, the single field inflaton is introduced as the quintessential
example of matter content that can give rise to quasi-de Sitter space, and it is used to
demonstrate how an inflationary model can be connected to observation by the imprint
quantum fluctuations of an inflaton field can leave on the CMBR.

1.1 Hot Big Bang Cosmology

Two observations have been the driving force for large-scale cosmology since its inception
(see e.g., [13]). First, on the largest scales (typically larger than a gigaparsec), the spatial
distribution of the Universe seems thoroughly isotropic and homogeneous. Second, we ob-
serve an almost linear relationship between the distance and recession velocity of objects
in the universe (this is the Hubble law [13]), so that more distant objects appear to be reced-
ing from us faster than closer objects. The first observation tells us that we can describe the
universe as R ×M3, where M3 is any of the three maximally symmetric 3-spaces, S3 (the
3-sphere, a closed geometry), R2 (Euclidean 3-space, a flat geometry), and H3 (hyperbolic
3-space, an open geometry). The second observation suggests that the radius of curvature
of M3 is time-dependent (and increasing), so ultimately, the universe is described by the
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metric

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
(1.1)

where dΩ2 is the angular metric dΩ2 = dθ2 + sin2(θ)dφ2, a(t) is the “scale-factor,” and κ
takes on the value 1, 0, or −1 for closed, flat, or open geometries (respectively). For the
purposes of this thesis, we take a to be real, continuous, and positive-definite. Observa-
tions suggest that the Universe has a flat geometry, so from here on we take κ = 1. The
spatial coordinates measure the physical separation of points at a fixed point in time where
a(t0) = 1. These spacial coordinates are called “co-moving” coordinates because they are
permanent labels, whereas the physical separation between points varies with a(t). Hub-
ble’s law can be extracted from this metric as follows. The recession velocity of a distant
object is:

v :=
d(D)

dt
=

d(a∆r)

dt
= ȧ∆r = HD, (1.2)

=⇒ v ∝ D,

where D is the proper distance from us to some object in space, ∆r is the corresponding
co-moving distance from us to that object, and

H :=
ȧ

a
(1.3)

is the Hubble parameter. Equation (1.2) is the Hubble law.

The metric (1.1) is referred to as the Friedmann-Robertson-Walker (FRW) metric, after
several of its discoverers. The field of large-scale cosmology is essentially the study of the
dynamics of the scale factor a(t), and how it reacts to, and interacts with, the matter content
of the Universe. Speaking of matter content, given the symmetries of our problem, the only
available stress-energy tensor is that of a fluid:

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

, (1.4)
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where ρ is the energy density, and p is the pressure of the matter-energy content of the
Universe, and both only depend on time. With that, the Einstein equations read

3M2
pH

2 = ρ, and
ä

a
+ 2H2 =

1

2M2
p

(ρ− p), (1.5)

The first of these equations is known as the Friedmann equation. Instead of the second
equation, it is common to pair the Friedmann equation with the local conservation of en-
ergy∇µTµν = 0 instead:

d

dt

(
ρa3
)

+ p
d

dt

(
a3
)

= 0. (1.6)

In what follows, it is very useful to be able to relate the scale-factor to an observable
quantity. As it happens, redshift is just such an observable quantity with a simple, direct
relationship to a(t). The redshift of light emitted from distant objects is simply the frac-
tional change in wavelength of that light between emission and observation:

z :=
λobs − λem

λem
. (1.7)

In a static Universe, light travelling from one static object to another would display
no redshift, but in a dynamic FRW universe, the physical size of the intermediate space
changes between the time of emission and observation of a ray of light, so even for locally
static emitters and observers, there is a redshift. If we define the co-moving wavelength
λco, then the physical wavelengths at emission and observation are λem = a(tem)λco, and
λobs = a(tobs)λco, so that we can cleanly write the redshift in terms of the scale-factor:

z =
a(tobs)λco − a(tem)λco

a(tem)λco
=
a(tobs)

a(tem)
− 1 =⇒ 1 + z =

a(tobs)

a(tem)
. (1.8)

We typically choose tobs to be now, and a(tobs) to be 1. What’s important for the history
of the Universe is tem, so we will take that as our dynamic variable, and just call it t. Even
then, (1.8) is typically difficult to invert, but we can at least use it to relate the differentials
dt and dz, since at least that way we can exchange them in integrals. Doing this, we find

dz = − 1

a2(t)
ȧ(t)dt = −(1 + z)Hdt. (1.9)

Another observable quantity of importance is temperature. The history of the Universe
can be fairly well segmented into epochs wherein the energy density of the universe is
dominated by matter content with different equations of state. For instance, there is an
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epoch for which the universe is dominated by relativistic matter (i.e., radiation) with equa-
tion of state p = ρ/3, and an epoch of non-relativistic matter domination with equation
of state p = 0 (today, we have just begun an epoch of vacuum-energy domination, where
p = −ρ). During these epochs, we consider the universe to be in thermal equilibrium, so we
characterize the evolution of the universe by the black-body temperature of the universe.
From the Stefan-Boltzmann law, this temperature scales as

T ∝ 1

a
(1.10)

when the Universe is radiation-dominated (this is a helpful relation in later calculations).
This is also the origin of the term “hot” in the Hot Big Bang model. In an expanding uni-
verse, 1/a is a decreasing function of time, so that even if the universe is currently very
cold today, it used to be very hot at early times.

To summarize, large-scale cosmology is essentially the study of the FRW metric (1.1),
and how the scale-factor a(t) evolves along with the energy-density and pressure of the
matter-energy content of the Universe. The Hot Big Bang model describes the history of
the universe in terms of an evolution through different epochs of matter content domi-
nation starting from an initial state with very small a, hence very high temperature. The
scale-factor itself can be related to the more common, observational quantities redshift and
temperature through (1.8) and (1.10), respectively. This model has been very successful,
for instance in explaining the existence of the CMBR, Hubble’s law, and the abundances of
light elements. However, alone it does lead to a couple of suspicious predictions, the most
grievous of which we describe next.

1.2 The Horizon Problem and Inflation

Using the FRW metric and our understanding of the Standard Model of particle physics,
we are able to predict many things about the history and the current state of the Universe.
Hubble’s law is a direct consequence of the form of the metric, the cosmic microwave
background is the relic radiation from the era when the universe cooled enough for neutral
(transparent) hydrogen to form, etc. We can also compute the expected degree of homo-
geneity in the universe today, and this is where we encounter the first major disagreement
between the standard Hot Big Bang model and observation. A calculation of the number
of causally connected patches in the universe predicts an enormous number of causally
disconnected patches. This is in disagreement with observation because as noted above, the
universe on the largest scales is very homogeneous, which strongly suggests that the uni-
verse as a whole was at one time in causal contact (so that every region could come to an
agreement on what density distribution and temperature to have). This issue is known as
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the “Horizon Problem,” and the resolution is to postulate an early period of accelerated
expansion. Inflation is one particularly simple example of an accelerating geometry that
can be described by the condition that H ∼ const.

The cosmic microwave background radiation gives us a two-dimensional snapshot of
the Universe at a relatively well understood point in its history, and makes an excellent
playground for us to use to perform this calculation. Every point on the surface of last scat-
tering has a corresponding causal volume within which interactions involving the point in
question could have occurred (essentially its past light-cone). The radius of this volume is
computed from the null geodesic equation which reads (setting the origin at the point in
question):

∆rcaus =

∫ trec

t0

dt′

a(t′)
. (1.11)

(note that we are using the co-moving distance here. The corresponding physical distance
at time t∗ is D = a(t∗)∆rcaus, but since we wish to compare this to another distance mea-
sured at the same time, it will also be multiplied by a(t∗), making the extra factor unneces-
sary).

Meanwhile, the co-moving distance from us to that point on the surface of last scatter-
ing is similarly given by:

∆rCMB =

∫ tnow

trec

dt′

a(t′)
. (1.12)

In terms of the physically observable quantity redshift, we can use (1.9) to write these
as:

∆rcaus =

∫ ∞
zCMB

dz
H(z)

and ∆rCMB =

∫ zCMB

0

dz
H(z)

, (1.13)

where we have taken t0 to correspond to very small a (i.e., approaching a ∼ 0) so that
z0 → ∞, and we again made the standard choice that a(tnow) = 1 so that znow = 0. Non-
relativistic matter has an energy-density that simply scales as the inverse of volume, while
radiation has an extra factor of inverse length from its non-trivial momentum. This means
that they respectively scale as

ρmat ∝ a−3 = (1 + z)3 and ρrad ∝ a−4 = (1 + z)4. (1.14)

From the Friedmann equation 3M2
pH

2 = ρ, this means that the integrandH−1 falls as z−3/2

for matter, but z−2 for radiation, which meansH−1 is dominated by the matter contribution
for smaller z (neglecting the very recent transition to vacuum energy domination). It can
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be calculated that radiation and matter energy densities are of the same order around z ≈
3000. Since the surface of last scattering is at zCMB ≈ 1100 (computable given known TCMB

today and Trec the temperature of recombination), it is a reasonable approximation to use
ρmat for both integrals. With this, we can compute

∆rcaus =

∫ ∞
zCMB

dzH−10 (1 + z)−3/2 = −2H−10 (1 + z)−1/2
∣∣∣∣∞
1100

≈ 2H−10√
1100

, (1.15)

and

∆rCMB =

∫ zCMB

∞
dzH−10 (1 + z)−3/2 = −2H−10 (1 + z)−1/2

∣∣∣∣1100
0

≈ 2H−10 . (1.16)

In other words, looking at the CMBR from Earth, a causally connected patch has an
angular diameter of roughly

θ ≈ ∆rcaus

∆rCMB
≈ 2H−10 /

√
1100

2H−10

∼ 1.7◦. (1.17)

Hence, from the Big Bang model alone, we would expect about every 1.7◦ of the CMBR
to never have been in causal contact with the rest, so we should expect it to be replete with
O(1) variations in temperature, when in reality it is measured to only vary by around one
part in 105 (after accounting for our peculiar motion, which induces a dipole of order one
part in 103). Moreover, the CMBR is almost a perfect blackbody (see figure 1.1 from the
FIRAS experiment on the COBE satellite), which is a property that strongly suggests the
Universe was in thermal equilibrium at the surface of last scattering—a thermal equilib-
rium that should only have been attainable within a single causal horizon. This is the gist
of the “Horizon Problem.”

There are two possible solutions to the Horizon Problem as presented. First, there could
be no problem. We could just accept that an entire Universe that has never been in causal
contact miraculously agreed on an entire blackbody spectrum. For anyone who finds that
a bit too much to accept, however, there is the second solution: the postulate of at least one
period of time in the early universe when the scale-factor had a positive acceleration. We
now explore this latter solution in more detail.

The mathematical derivation is a bit technical, so it is relegated to appendix A, however
the main point is shown schematically in figure 1.2. Conceptually, if the form of H−1 for
known matter falls off too fast for our tastes, then we must propose an early period of new
physics that sufficiently alters the form of H−1. The result of appendix A is to add some
precision to that statement. Assuming FRW geometry is valid even at early times, and
assuming H−1 is a continuous function, it is found that a necessary condition for solving
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FIG. 4.ÈUniform spectrum and Ðt to Planck blackbody (T ). Uncertainties are a small fraction of the line thickness.

of the spectra derived from the DIRBE templates in the
principal Ðt, and Ðt for their intensities at each pixel.g

k

(l),
The CMBR temperature assumes a Planck spectrum. These
spectra were chosen to match the shape of the spectrum in
the data. This yields maps of the CMBR temperature and
dust intensities. A monopole plus three dipole components
are then Ðtted to the resulting temperature map.

The vector sum of the dipole coefficients points in the
direction (l, b) consistent\ (264¡.14 ^ 0.15, 48¡.26 ^ 0.15),
with the direction from the DMR results. Data for
o b o \ 10¡ were excluded from the dipole Ðt because of the
potential inaccuracy of the model of the Galaxy. The direc-
tion is particularly sensitive to the Galaxy because it is
almost orthogonal to the direction of the Galactic center.
Galactic variations in spectral shape as a function of longi-
tude couple into the angle directly, while for the Ðxed angle
case, they come in as second-order terms for the same
reason.

6. THE COSMIC SPECTRUM

The monopole spectrum from (see isequation (2) Fig. 4)
well Ðtted by a Planck blackbody spectrum, and deviations
are small, consistent with the earlier FIRAS results within
their larger uncertainties et al.(Shafer 1991 ; Cheng 1992 ;

et al. To determine or constrain any devi-Mather 1994).
ations from a blackbody, let us consider a generic cosmo-
logical model where p is some cosmic parameterS

c

(l ; p),
quantifying the deviation from a blackbody, such as the
Kompaneets y parameter for Comptonized spectra or the
dimensionless chemical potential k for a Bose-Einstein
photon distribution. Because the deviation is small, a linear
Ðt

I
0
(l) \ Bl(T0

) ] *T
LBl
LT

] G
0
g(l) ] p

LS
c

Lp
(3)

can be performed on the unknown parameters p, andG
0
,

*T . The Ðrst two terms are the Planck blackbody spectrum,
with the temperature It is important to have theT

0
] *T .

second term in order to properly estimate the uncertainty
since the *T is strongly correlated with the resulting p (95%
in the case of the Bose-Einstein distortion). The third term
allows for Galactic contamination to remain in the mono-
pole spectrum. The Ðnal term is the modeled deviation. We
Ðt either the Kompaneets parameter or the chemical poten-
tial, but the two are too similar to Ðt simultaneously. The
uncertainties are propagated from the template Ðts, and the
correlation between the g(l) and increases the uncer-LS

c

/Lp
tainty of and p.G

0

6.1. Galactic Contamination
Most of the Galactic emission has been removed, but

there is a small residual contamination. We use either the
derived from the all-sky data set (see or the;

k

g
k

(l) ° 4)
and we Ðt a temperature and an emissivity. Thel2Bl(T ),

model with a temperature of 9 K produces a lowerl2Bl(T )
s2, and we use this model for the analysis in TheTable 4.
problem is to Ðt the emission missed by the DIRBE maps,
not the total Galactic dust. One possible interpretation of
this Ðt is a 9 K Galactic halo or a cosmic background
(uniform component) with a spectrum similar to the Galac-
tic spectrum. One must be cautious, however, since subtle
variations in dust temperature or emissivity can produce
similar e†ects.

The determination of g(l) is dominated by low Galactic
latitude emission, and there is some variation from this
form at higher latitudes. We vary the Galactic latitude
cuto† used in deriving in in order to testI

0
(l) equation (3)

the e†ect of variations in the Galactic spectrum from g(l).
Variations greater than the statistical uncertainty in any
derived parameters, such as the cosmological term p, would
most likely be due to an inadequacy in our Galactic model.

FIGURE 1.1: The CMBR blackbody curve as measured by the FIRAS exper-
iment on the COBE satellite (reproduced from [14]). The data points and
blackbody fit overlap exactly on this plot, with experimental error on the

data points too small to be seen on this scale.

the Horizon Problem is for there to exist at least one sufficiently long period for which

ε := − Ḣ

H2
≤ 1. (A.4)

which is equivalent to the condition that

ä > 0. (1.18)

This is a general statement, and is satisfied by any number of conceivable solutions
(such as the schematic example in figure 1.2). Inflation is a particular realization of this
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condition that also satisfies

H ≈ const. (1.19)
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FIGURE 1.2: The Horizon Problem. Left: The prediction of the Big Bang
model alone. The area under the curve (i.e., the shaded region) to the left
of zCMB is approximately the radius of the surface of last scattering, and the
(invisible) area under the curve to the right of zCMB is approximately the ra-
dius of a causal horizon on the surface of last scattering. Right: The Horizon
Problem is solved by modifying the form of H−1(z) at large z so that the
radius of a causal horizon on the surface of last scattering (the shaded area
under the curve to the right of zCMB) is roughly the same as the radius of the

surface itself.

IfH ∼ const., then a ∼ exp{Ht}. When these relations are exact, the geometry is known
as de Sitter space, and when they are only approximate it is known as quasi-de Sitter space
(the degree of approximation it requires depends on the problem to be solved). Quasi-de
Sitter space is a very useful solution as it arises from an equation of state that is consistent
with vacuum energy, p = −ρ = const., and can be approximated in a dynamic way (we
explore this in the next section).

In the quasi-de Sitter case, we can even make a general statement about how much of
this inflation would need to occur. Suppose the transition to this period occurs at some z∗
for which Hubble radius isH−1∗ . If inflation started at zi, then the inflationary epoch would
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contribute to ∆rcaus an amount

∆rinf ≈ H−1∗ (zi − z∗). (1.20)

Assuming z∗ � zeq, the redshift of radiation-matter equality, we can find H−1∗ ≈ H−10 (1 +
z∗)
−2 (we will see shortly that this is a good approximation). Using this, we can write

∆rinf ≈ H−10

zi − z∗
(1 + z∗)

2 . (1.21)

In order to solve the Horizon Problem, ∆rinf needs to be of order ∆rCMB ∼ H−10 , which
implies

zi − z∗
(1 + z∗)

2 ∼ 1,

=⇒ zi
z∗
∼ z∗,

a∗
ai
∼ a0
a∗
, (1.22)

where in the second and third lines, we used that z∗, zi � 1, and a0 = 1.
In an effort to preempt the large numbers that will soon arrive, we now define the

quantity “e-foldings” N by dN := d ln a = Hdt. This way, we can write a∗/ai = exp(Ne),
with Ne := N∗ −Ni. This way, we have that inflation must last long enough to satisfy the
condition:

Ne ∼ ln

(
a0
a∗

)
. (1.23)

To get a sense of the size of this number, we need an estimate for a∗. First, we note
that zeq ≈ 3000 is of order zCMB ≈ 1000, so it is at roughly the same temperature scale,
TCMB ∼ 10−1eV. Thanks to the Large Hadron Collider, and other wonderful experiments,
we have a good understanding of physics below roughly the TeV scale. As a result, any
new physics to drive inflation must have occurred when the Universe was at a temperature
of at least a TeV, which means that z∗ � zeq, and it is not unreasonable to approximate
the universe as radiation dominated from znow = 0 to z∗. Moreover, in that regime, we
have from (1.10) that T ∼ 1/a. Taking the temperature of the universe today to be the
temperature of the CMBR today, T0 ∼ 10−4eV [9], we find the numerical estimate

Ne > ln

(
T∗
T0

)
∼ ln

(
1012

10−4

)
∼ 37. (1.24)

Concisely, one of the greatest sources of unease about the highly successful Big Bang
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Model is the Horizon Problem, that vast regions of clearly equilibrated space should never
have been in causal contact. Any active solution to this problem must involve at least one
period of time when the expansion of space was accelerating, i.e., ä > 0, or equivalently,
ε < 1. Inflation is one geometry that achieves this acceleration. It does so by approximating
the de Sitter geometry defined by the condition H ∼ const., and physically realized in a
Universe dominated by an approximately constant energy-density. In this scenario, it can
be calculated that there needs to be a bare minimum of roughlyNe ∼ 40 e-foldings, defined
by dN := d ln a. The task is now to construct a physical model that meets all of these
requirements, and in the next section, we explore the simplest toy model that can be made
to do so.

1.3 Canonical Example (Single Field Slow-Roll)

The basic premise of inflation is that an epoch whenH ∼ const. would have an accelerating
geometry, so could solve the Horizon Problem, but would also correspond to a predom-
inantly constant energy-density. The importance of this particular form for the energy-
density is that there are known means of producing such an equation of state. Obviously
the simplest way is just to have a vacuum energy (aka a cosmological constant), but since
the inflationary epoch needs to end, there needs to be a dynamic means of transitioning
into a radiation-dominated epoch. The next simplest trick is for the energy-density to be
tied up in the potential of some dynamical degree of freedom, so that in a period when this
potential is much greater than the kinetic energy, the total energy-density appears constant.
That the kinetic energy in this scenario must be negligible with respect to the potential en-
ergy is the origin of the term “Slow-Roll.” Here we use a single scalar field to demonstrate
this technique in practice.

Consider, as a toy model, a Universe containing only Einstein gravity (i.e., General
Relativity) and a single scalar field φ. We impose that this model satisfy the symmetries of
our universe (homogeneity and isotropy), so we make the ansatz that the metric is FRW,
and the scalar field only depends on time. The action for this universe is:

S = −
∫

d4x
√
−g
(

1

2κ
R+

1

2
(∂φ)2 + V (φ)

)
, (1.25)

where g is the metric determinant, R is the Ricci curvature scalar R = gµνRµν , κ is the
gravitational constant κ = 1/M2

p , and (∂φ)2 := gµν∂µφ∂νφ. The relevant field equations
for this model are the Friedmann equation

3M2
pH

2 =
1

2
φ̇2 + V, (1.26)
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and the Klein-Gordon equation

�φ− V,φ = φ̈+ 3Hφ̇+ V,φ = 0, (1.27)

where commas denote differentiation with respect to the following symbol (e.g., V,φ :=
∂φV ), and the d’Alembertian operator � is defined as � := gµν∇µ∇ν . The parameter ε
(typically referred to as a slow-roll parameter) is found to be:

ε = − Ḣ

H2
=

φ̇2

2M2
pH

2
. (1.28)

Equation (1.28) is the mathematical expression for the quasi-de Sitter condition de-
scribed above; if φ̇ is sufficiently small (i.e., φ̇2 � V (φ)), then ε � 1 is satisfied, and
the geometry is almost de Sitter. We can do better than this though, and turn this into a
more precise statement on the form of the potential for the scalar field.

If φ̇ is to be sufficiently small long enough for inflation to make its mark, then we should
politely request that its fractional rate of change be small—i.e.,

∣∣∣∆φ̇∣∣∣ < ∣∣∣φ̇∣∣∣. We can also
write this as: ∣∣∣∆φ̇∣∣∣ =

∣∣∣∣∫ t

ti

dt′φ̈
∣∣∣∣ < ∣∣∣φ̇∣∣∣,
<

∣∣∣φ̇∣∣∣
∆t

∆t. (1.29)

It is then straightforward to show that

∣∣∣φ̈∣∣∣ <
∣∣∣φ̇∣∣∣
∆t
≈

∣∣∣φ̇∣∣∣H
N

. (1.30)

We are interested in scales for which 0 < N ∼ O(10), so throughout the slow-roll regime,
we should have

∣∣∣φ̈∣∣∣ � H
∣∣∣φ̇∣∣∣. With these approximations in play, the equations of motion

now look like:

3M2
pH

2 ≈ V, (1.31)

and

3Hφ̇ ≈ −V,φ. (1.32)
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Equations (1.31) and (1.32) can then be substituted into ε := −Ḣ/H2 to find

ε ≈
M2
p

2

(
V,φ
V

)2

� 1, (1.33)

which imposes a fairly strict condition on the slope of the scalar potential. Furthermore,
taking the derivative of (1.32), we find

φ̈ ≈ −
φ̇ V,φφ

3H
. (1.34)

Substituting this into the condition (1.30) that
∣∣∣φ̈∣∣∣� H

∣∣∣φ̇∣∣∣, we find an even more stringent
condition:

|ηV| := M2
p

∣∣∣∣V,φφV
∣∣∣∣� 1. (1.35)

ηV is another frequently-quoted slow-roll parameter. The subscript V is to distinguish
this definition from another common definition derived by demanding ε remain small for
sufficiently long. For situations when |ε| � 1, following similar steps to (1.29) and (1.30)
brings one to define

|η| :=
∣∣∣∣ ε̇Hε

∣∣∣∣� 1. (1.36)

We can therefore conclude that, given a suitably chosen potential (one that satisfies
both conditions (1.33) and (1.35)), this toy model is capable of plunging a toy Universe
into a temporary epoch of quasi-de Sitter space. There are many reasons why such a field-
theoretic approach is attractive. For one, we have just demonstrated that it is technically
feasible. Moreover, as already stated, an inflationary epoch would need to take place at
temperatures higher than we have probed in the lab. In such high energy regimes, there
are many theories of new physics that offer innumerable candidates (see e.g. [15]) for this
scalar field (which, when quantized, is referred to as the inflaton), or possibly even fields
of higher spin. Even more than as a playground for speculative models of high energy
physics, a successful quantum field-theoretic mechanism for inflation would be exciting
for the fact that it would be the only known case where quantum field theory in a curved
background had had an effect on scales large enough to be observed (i.e., solving the Hori-
zon Problem, as well as shaping the CMBR in ways we describe in the following section).
We now conclude with a short foray into the observational predictions of our toy model.
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1.4 Connection to Observations

The scalar field toy model studied in section 1.3 demonstrates how a field theory can ex-
plain the Horizon Problem, a classical observation. However, as noted above, inflation
would have to take place at high energies, so such a field theoretic realization must have
non-negligible quantum effects, and therein lies the potential for predictability in an infla-
tionary theory. A quantum field is subject to quantum uncertainty, so the spatially homo-
geneous inflaton field φ(t) is subject to small perturbations δφ(t,x) that are not necessarily
spatially homogeneous. This amounts to small variations in the energy density across
space, which naturally corresponds to variations in the gravitational response—variations
that can leave an imprint on the evolution of the Universe.

In fact, we already see fluctuations in the gravitational response to the content of the
Universe. We see small clumps of matter distributed throughout the universe in the form of
galaxies and large-scale structures, and we see temperature variations in the CMBR corre-
sponding to density fluctuations (via the Sachs-Wolfe effect, where photons are redshifted
when escaping from gravitational wells). It is a remarkable fact that inflation, introduced
simply as a means of solving a causal conundrum, is also a natural candidate for explaining
the origin of structure in our universe via inescapable quantum fluctuations.

The full analysis of these perturbations is highly detailed and can easily fill a textbook
or two (for an excellent treatment, see [16]). It is also only tangentially related to this
thesis, so we only highlight two key relations that connect the properties of the single-field
inflaton model from section 1.3 to observations.

Scalar quantum fluctuations of the inflaton and the metric during inflation can be de-
scribed in terms of the density-density correlation function:

〈
δ(r′ + r)δ(r′)

〉
=

∫
d3k

(2π)3
P (k)eik·r/a, (1.37)

where the average is over r′, and P (k) is the power spectrum, a function to be determined
by the physics of inflation. When the angular integral is carried out, this can be written

〈
δ(r′ + r)δ(r′)

〉
=

∫
dk
k

∆2(k)
sin(kr/a)

kr/a
, (1.38)

where ∆2 is called the dimensionless power spectrum. The deviation of this spectrum from
scale-invariance is parameterized by the spectral index ns:

∆2(k) ∼ kns−1, (1.39)
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so that ns = 1 indicates exactly de Sitter space during inflation. It can be shown, with some
work, that in the single-field slow-roll model above, this parameter is given by

ns = 1− 2ε− η. (1.40)

The power spectrum (1.38) can be directly measured with surveys of large-scale structure
(see e.g. the Sloan Digital Sky Survey [17]). The spectral index itself can be more precisely
measured in the CMBR.

The CMBR has its own power-spectrum which is usually written as a Legendre series:〈
δT

T
(n)

δT

T
(n′)

〉
=

1

4π

∑
(2l + 1)ClPl(cos(θ)), (1.41)

where the average is over all n, n′ satisfying n ·n′ = cos(θ). The coefficients Cl make up the
CMBR power spectrum, and come equipped with a factor of lns−1, so the relative heights
of peaks in the CMBR power spectrum can tell us about the slow-roll parameters through
(1.40). The current measurement of the spectral index from the Planck satellite [9] is:

ns = 0.968± 0.006. (1.42)

Secondly, information can be gleaned from the polarization of the CMBR. Light from
the surface of last scattering can become polarized by matter and space on its long journey
to us. The matter density perturbations caused by scalar perturbations during inflation can
only polarize light in a curl-free way (so-called “E modes”, referring to∇×E = 0 from the
static Maxwell equations). Meanwhile, tensor perturbations of the metric during inflation
correspond to gravitational waves which can polarize light in a divergence-free way (so-
called “B modes”, referring to ∇ · B = 0 from Maxwell’s equations). So a measure of the
ratio of these modes in the CMBR is a measure of the ratio of the tensor to scalar power
spectra, which can be related to the slow-roll parameter ε.

r :=
∆2
T (k)

∆2
S(k)

= 16ε. (1.43)

The current bound on r from combined Planck, Keck Array, and BICEP2 data [18] is

r < 0.07 at 95% CL. (1.44)

It should be clear then, that since quantum fluctuations provide a natural source for
remnant perturbations in the Universe (e.g., large-scale structure), it is possible to measure,
or at least constrain, properties of inflation with precision observations. See figure 1.3 for a
plot of exactly such constraints prepared by the Planck collaboration.
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FIGURE 1.3: A plot showing inflationary predictions of several models as
compared to observations. Reproduced from [9].

1.5 Summary

Thus we see that the highly successful Big Bang model of the evolution of the Universe
is plagued with a problem of initial conditions. The Horizon problem that a universe full
of causally disconnected regions manages to agree on a high degree of homogeneity either
says that the universe began with an incredibly precise set of initial conditions, or that there
exists an early period of new physics. Inflation is a particular class of candidates for the
latter.

Inflation is characterized by an epoch when the geometry of space is quasi-de Sitter,
and can be realized dynamically with a field theory. Something as simple a single scalar
field can realize a temporary quasi-de Sitter equation of state p ≈ −ρ if its velocity is very
small compared to its potential, so that it is approximately static (or “rolling slowly”). One
can verify that one’s model is indeed inflating by checking that it satisfies the bound (A.4),
and one can check that it should last long enough with the bound (1.36). A successful
inflationary model needs to last for safely longer than 40 e-foldings.

That inflation is a solution to an initial conditions problem means it is best if it not
introduce its own initial conditions problem. Therefore in this thesis, we test and classify
the sensitivity to initial conditions of our novel inflationary scenarios. The motivation and
terminology thus laid out, we proceed with the meat of the thesis.
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Chapter 2

High Definition Inflation

Extra dimensions have a number of motivating factors that make them worthy of study.
A major contributor is that String Theory, a leading candidate for a theory of quantum
gravity, predicts the existence of many extra dimensions [19]. It is also simply the case that
extra dimensions up to ∼ 1µm in size have not been excluded by experiment [20], and
thus need to be considered when studying physics at higher energies. If indeed there exist
extra dimensions, it is important to ask how they would behave during inflation. Indeed,
perhaps it is even the case that inflation tells us why the extra dimensions are the size that
they are today. Having said that, it is also typically very difficult to solve the field equations
in a geometry with many extra dimensions. As the complexity of the metric increases, so
too does the number and complexity of Einstein’s equations. Here, we take the approach
of working our way up the extra-dimensional ladder, one complication at a time.

The case of a single extra dimension has been explored in some detail in the litera-
ture [5, 6, 7, 8], so in this chapter, we construct a toy model with two extra dimensions,
but compactify them on a sphere, for simplicity. In order to have a hope of stabilizing the
extra dimensions at the end of inflation, we also include in our model a Maxwell field re-
stricted to the extra dimensions, which acts as another energy-density that can compete
with gravity. Lastly, we include a single scalar inflaton field to drive inflation.

In this chapter, we study this system numerically and analytically. We begin by deriving
the full 6D Einstein equations, and subsequently develop a 4D system that is equivalent to
the full 6D system. This allows for a more intuitive understanding of the dynamics as a
whole, since we are 4D creatures, and tend to think with a 4D bias. The resulting system
has a large parameter space. We perform an initial search numerically, and find two classes
of solutions (however, our search is not exhaustive, and there may well be more classes
of solutions yet to uncover). These classes are: 1) a “Cradle” scenario, where the extra-
dimensional radius is trapped almost immediately, after which the inflaton goes through
a period of familiar slow-roll, and 2) scaling solutions, where the fields scale as powers of
time.

The properties of our solutions are as follows. The Cradle scenario typically yields
ε ∼ 0.009, and η ∼ 0.016, so that ns ∼ 0.975 and r ∼ 0.15, which is in tension with
recent observations, if the standard perturbative analysis applies (we do not perform a full
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6D perturbations analysis from scratch). On the bright side, this solution easily stabilizes
the extra dimensions. The analytic description of this scenario is not well understood at
this time, so a full study of its sensitivity to initial conditions is not known. Numerically,
there does appear to be some range of acceptable initial conditions, but its relation to the
parameters of the theory is unknown.

Finally, the scaling solutions have the properties that η = 0 exactly, andNe ∝ 2 ln(bf/b0),
where b(t) is the radius of the extra dimensions. Moreover, we find numerical examples
of two particular scaling solutions, which demonstrate the extremes of sensitivity to initial
conditions. On the one hand, we have one solution we refer to as the Attractor, which is
marginally insensitive to initial conditions. It has the advantage that it is possible in that
solution to stabilize the extra dimensions, however it also has the disadvantage that it is
restricted to ε ≥ 0.5. On the other hand, we have a solution we refer to as the Slow-Roll
solution, which is highly sensitive to the choice of initial conditions. Its name reflects the
fact that for this solution, ε is free, however it does also have the disadvantage that it is
impossible to trap the extra dimensions in this solution.

In the end, we find for this toy model one clean example of a solution that is thoroughly
generic and insensitive to initial conditions, one solution that is highly particular, and very
sensitive to initial conditions, and one solution whose sensitivity to initial conditions is not
fully known.

2.1 Action and Field Equations

We begin our study of extra-dimensional inflation with the “Einstein-Maxwell-Scalar” the-
ory described above. The action for this theory is:

S = −
∫

d6x
√
−g(6)

(
1

2κ2
R+

1

4
FMNF

MN +
1

2
∂Mφ∂

Mφ+ V (φ)

)
, (2.1)

where FMN = ∂MAN − ∂NAM is the Maxwell field strength tensor, while g(6) is the determi-
nant of the 6D metric, andR = gMNRMN is the 6D Ricci scalar.

For the inflaton potential, we choose

V (φ) = V0

(
e−β1φ − e−β2φ

)
+ Λ , (2.2)

V0, βi > 0 ,

which is convenient when we integrate out the extra dimensions (when we do so, we per-
form field redefinitions on the extra-dimensional radius and the 4D metric to arrange for
the equivalent 4D Lagrangian to have a standard form. Propagating those redefinitions is
easiest if they are exponentials, so the end result is a Lagrangian populated with several
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exponential terms). This potential is minimized at

φ? =
1

β2 − β1
ln

(
β2
β1

)
. (2.3)

We fix the 6D cosmological constant Λ so that 4D space is Minkowski when (and if) the
inflaton and the extra-dimensional radius are both stabilized (as they would have to be
today).

We choose a FRW form for our metric:

dŝ2 = ĝµν dx̂µdx̂ν + gmn dymdyn

= −dt̂2 + â2(t̂ ) δij dx̂i dx̂j + b2(t̂ )γmn(y) dymdyn , (2.4)

where γmn represents the standard metric on the two-sphere, while â and b are the scale-
factors for the regular 4D and the extra 2D, respectively. The hats are used to distinguish
6D coordinates from the 4D coordinates we use later. Lastly, we choose the scalar field to
be independent of spatial coordinates.

Since there is only one linearly-independent two-form in two-dimensions, we can also
write Fmn = f εmn, where εmn is the Levi-Civita tensor on the extra-dimensional two-
sphere. To be explicit, this is εmn = g(2) ε̃mn = b2 γ ε̃mn, where ε̃mn is the simple Levi-Civita
symbol in two dimensions. This action and these ansätze lead to the following equations of
motion.

• φ EOM:

�φ− dV (φ)

dφ
= φ′′ +

(
3Ĥ + 2H

)
φ′ +

∂V

∂φ
= 0 , (2.5)

• Maxwell’s Equations:

∇MF
MN = ∂mf = 0 , (2.6)

• Einstein Equations:

GMN + κ2TMN = 0 , (2.7)

where Ĥ := â′/â,H := b′/b and primes denote d/dt̂ (we use over-dots later for derivatives
with respect to 4D time). GMN = RMN− 1

2 R gMN is the Einstein tensor, and the stress-energy
tensor is

TMN = ∂Mφ∂Nφ+ FMPF
P

N − gMN

(
1

4
FMNF

MN +
1

2
∂Mφ∂

Mφ+ V (φ)

)
. (2.8)
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Given our ansätze, the Einstein equations take on the fairly simple form (see appendix
B for details):

3

(
â′

â

)2

+

(
b′

b

)2

+ 6

(
â′b′

âb

)
+

1

b2
= κ2

{
1

2

[(
φ′
)2

+
f2

b4

]
+ V

}
2

(
â′′

â
+
b′′

b

)
+

(
â′

â

)2

+

(
b′

b

)2

+ 4

(
â′b′

âb

)
+

1

b2
= κ2

{
1

2

[
−
(
φ′
)2

+
f2

b4

]
+ V

}
(2.9)

b′′

b
+ 3

[
â′′

â
+

(
â′

â

)2
]

+ 3

(
â′b′

âb

)
= κ2

{
−1

2

[(
φ′
)2

+
f2

b4

]
+ V

}
.

The Maxwell field also satisfies the Bianchi identity, as usual,

dF =
d

dt̂

(
fb2
)

= 0 . (2.10)

Finally, the requirement that the extra-dimensional flux be quantized (as would be nec-
essary to stabilize the extra-dimensions) leads to:∫

S2

F = 4πfb2 =
2πn

e
,

=⇒ f =
f

b2
, (2.11)

where we have defined f := n/2e, with n ∈ Z, and e is the EM field’s coupling constant,
and we have used Maxwell’s equation (2.6), and the Bianchi identity (2.10).

2.2 4D Perspective

Since we mere mortals live down here in our lowly four dimensions, it is a good idea to
explore this system from a 4D perspective. Fortunately, our ansätze make this relatively
straightforward, as we can simply integrate out our extra dimensions. We also later show
explicitly that our new 4D equations of motion are equivalent (by a change of coordinates)
to the full 6D equations of motion, and therefore that our solutions fully capture the dy-
namics of the 6D theory, at least at the classical level (this is known as a consistent truncation.
See [21]).

This reduction can be carried out in a few logical steps.

24



1. Setup: First, we need to write things in terms of the separate 4D and 2D components
of our metric. Using equation (2.4), we can write the scalar curvature as:

R(6) := gMNRMN = gµνRµν + gmnRmn,

= R̂(4) +
R(2)

b2
+ 4

(
�̂b
b

)
+ 2

(
∂̂b

b

)2

, (2.12)

Here, R̂(4) is the Ricci scalar built from ĝµν , R(2) is the scalar built from γmn, and �̂

and ∂̂ only run over the 4D coordinates, so �̂ := ĝµν∇̂µ∇̂ν , and (∂̂b) := ĝµν ∂̂µb ∂̂νb.
For the sphere, R(2) = −2. We can also write the metric determinant

√
−g(6) =√

−ĝ(4)
√
γ b2.

2. Integrate out the extra dimensions: Now that we can see nothing depends on the extra-
dimensional coordinates, we can explicitly perform the extra-dimensional integral.∫

S2

d2y
√
γ = 4π. (2.13)

Thus the Einstein-Hilbert action (i.e., the gravitational action, with the Lagrangian
L = κ−2R) becomes:

SEH = −
∫

d4x
√
−ĝ(4)

2π

κ2

(
b2R̂(4) − 2 + 4b�̂b+ 2

(
∂̂b
)2)

,

= −
∫

d4x
√
−ĝ(4)

2π

κ2

(
b2R̂(4) − 2− 2

(
∂̂b
)2)

, (2.14)

where in the second line, we integrate by parts, and drop the surface term. The matter
Lagrangian is simply multiplied by a factor of 4πb2.

3. Re-scale: It is usually helpful to view the system from the Einstein frame (i.e., the
frame in which the Ricci scalar is not multiplied by a dynamic quantity in the La-
grangian). To do so, we make the field re-definition:

gµν = eψ/Mp ĝµν , (2.15)
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where we have defined M2
p := 4πb2?/κ

2 = 4πb2?M
4
(6), and b? = b(t?) is the size of the

extra-dimensions today. In terms of this metric,√
−ĝ(4) =

√
−g(4) e−2ψ/Mp , and

R̂(4) = eψ/Mpgµν
{
Rµν −

2

Mp
∇µ∇νψ +

3

2M2
p

∂µψ∂νψ

}
.

4. Make everything canonical: To write the kinetic energy of the extra-dimensional radius
in a canonical way, we perform the field re-definition:

b = b?e
ψ/2Mp , (2.16)

so that (
∂̂b
)2

=
1

4M2
p

eψ/Mp ĝµν ∂̂µψ∂̂νψ,

=
1

4M2
p

e2ψ/Mpgµν∂µψ∂νψ. (2.17)

We call the field ψ the “radion,” reflecting its origin as the radius of the extra dimen-
sions.

With this, the Einstein-Hilbert action becomes:

SEH = −
∫

d4x
√
−g(4) e−2ψ/Mp

2π

κ2

[(
b?e

ψ/2Mp

)2
×
(
eψ/Mpgµν

{
Rµν −

2

Mp
∇µ∇νψ +

3

2M2
p

∂µψ∂νψ

})
−2− 2

(
b2?

4M2
p

e2ψ/Mpgµν∂µψ∂νψ

)]
,

= −
∫

d4x
√
−g(4)

[
M2
p

2
R+

1

2
(∂ψ)2 − e−2ψ/Mp

b2?

]
, (2.18)

where we make use of the definition of M2
p , and in the last line, drop the contribution

from the surface term �ψ. Now we can see the field ψ has a canonical kinetic term
0.5(∂ψ)2.

For the matter contribution, integrating the extra dimensions means the matter La-
grangian receives an overall multiplicative factor of 4πb2. The field re-definition 2.15
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means the kinetic term for the inflaton can be written:

4πb2?e
ψ/Mp

(
∂̂φ
)2

= 4πb2?e
ψ/Mpe−ψ/Mp(∂φ)2,

= 4πb2?

(
∂̂φ
)2
. (2.19)

Hence, the inflaton can be canonically normalized by defining ϕ :=
√

4πb?φ. At the
end of the day, we are left with the 4D action:

S = −
∫

d4x
√
−g

{
M2
p

2
Rµν +

1

2
(∂ψ)2 +

1

2
(∂ϕ)2 +W (ϕ,ψ)

}
, (2.20)

where the effective potential W (ϕ,ψ) is defined by

W (ϕ,ψ) := 4πb2?e
−ψ/MpU(ϕ)−

M2
p

b2?
e−2ψ/Mp +

2πf2

b2?
e−3ψ/Mp , (2.21)

with U(ϕ) := V (φ).

The action 2.20 can now be treated as any other 4D action, and continuing to assume
homogeneity and isotropy (i.e., using an FRW form for gµν , and taking ϕ = ϕ(t), ψ = ψ(t))
we can obtain the following equations of motion:

ϕ̈+ 3Hϕ̇+W,ϕ = 0,

ψ̈ + 3Hψ̇ +W,ψ = 0, and (2.22)

ϕ̇2

2
+
ψ̇2

2
+W = 3M2

pH
2 ,

where H := ȧ/a, over-dots refer to derivatives with respect to t, and commas denote
derivatives with respect to ϕ or ψ, as indicated. In appendix C, we show explicitly that
a coordinate transformation relates these equations of motion (2.22) to the full 6D EOMs
(2.5) and (2.9), and therefore that solutions to either set of equations are solutions to the
other set.

This system (2.22) is now much more intuitive in that we can think of it as a 4D system
with two scalar fields. However, it is still a very complicated system, and we do not have
a complete classification of its solutions. Nevertheless, in our numerical searches, we are
able to find and understand two classes of solutions. Next, we detail those solutions, and
when possible, we perform an analysis of the sensitivity of the solution to variations in its
initial conditions.
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2.3 Solutions

In our numerical searches, we explore the system by manually searching small regions
of parameter-space, and we find two recurring classes of solutions. First, in some cases
when we start the radion, ψ, near its minimum, we see it minimize quickly, after which the
inflaton, ϕ, engages in a long period of slow-roll. We refer to this solution as the “Cradle”
scenario. Second, when we start the radion far from its minimum, we typically see a period
where both fields are well-described by power-laws. Using scaling ansätze for our fields,
we are able to show analytically that there are indeed power-law solutions to our system
in certain regimes, including one that is difficult, but not impossible to find numerically.
We detail these solutions below in the order just described, and conclude with an analysis
of their sensitivity to initial conditions.

2.3.1 Cradle

If the radion starts very near to its minimum, we numerically see the system find a solution
that appears to exhibit a period of 4D quasi-de Sitter space, and almost static extra dimen-
sions (see figure 2.1 for an example). We call this solution the “Cradle” solution because
the radion is nestled into its minimum like in a cradle (and so as to distinguish it from
the scaling solution that also demonstrates slow-roll behaviour). To describe the inflation-
ary portion of this system analytically, we first write ψ in terms of ϕ using the fact that it
minimizes its potential. That is, we find ψc(ϕ) such that W,ψ(ϕ,ψc) = 0:

ψc
Mp

= − ln
(

1 +
√

1− 6πb4?U(ϕ)/M2
p

)
− ln(2/3), (2.23)

where we use Λ = M2
p /8πb

4
? in order to enforce that the potential vanish when both ψ and

ϕ are minimized, and we choose f2 = M2
p /4π so that the minimum for ψ is at 0 when ϕ is

also minimized. Note that ψc is only real for ϕ such that U(ϕ) < M2
p /6πb

4
?.

Thus we reduce the two-field problem to a (rather complicated) single-field problem.
If indeed the segment is quasi-de Sitter, as we suspect, it should be possible to describe the
inflaton as slowly rolling, so that the equations of motion are equivalent to those in chapter
1.3:

ϕ̇ ≈ −W,ϕ(ϕ,ψc(ϕ))

3H
and 3M2

pH
2 ≈W (ϕ,ψc(ϕ)). (2.24)
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FIGURE 2.1: A numerical example of the Cradle scenario. The radion ψ is
on the left, and the inflaton ϕ is on the right. The suspected slow-roll regime
begins around t ∼ 1028M−1

p , when ψ appears to settle. The parameters for
this run are: U0 = 10−108, b∗ = 1027, β1/

√
4pib∗ = 38.15, β2/

√
4πb∗ = 41.97,

ϕ0 = 15, ψ0 = −0.325, ϕ̇0 = ψ̇ = 0, and t0 = 1027, all in units such that
Mp = 1.

Following section 1.3, we can use these to compute ε.

ε := − Ḣ

H2
= − 1

6M2
p

W,ϕϕ̇+W,ψψ̇

H3

= − 1

6M2
p

W,ϕϕ̇

H3

=
M2
p

2

(
W,ϕ

W

)2

. (2.25)

exactly in analogy to equation (1.33).
These equations look easy to manage, but W is a very complicated function, so in-

tegrating the ϕ equation of motion is highly non-trivial, and at this stage, we have no
analytic solution. We can, however, use the approximate Friedmann equation to write

H ≈
√
W/3M2

p . This relation is a good trademark of this slow-roll regime, so it can be
used to verify that these approximations do describe the inflationary regime we observe in
our numerical solution. An example showing this is exactly the case is given in figure 2.2.

It is usually found for this solution that ε ∼ 0.009, and η ∼ 0.016, corresponding in the
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FIGURE 2.2: 4D Inflation in the Cradle scenario. Left: The inflaton field in
the Cradle scenario is effectively the only degree of freedom. Right: The
Hubble parameter in the Cradle scenario. The semi-analytic curve is a plot of

H ≈
√
W/3M2

p . The slow-roll inflationary regime occurs where the numeric
and semi-analytic curves agree. The parameters for this run are the same as

in figure 2.1.

usual perturbative analysis to ns ∼ 0.975, and r ∼ 0.15, which is in tension with recent
observations. However, this inflationary scenario is still not well understood, so it remains
to be seen whether this is a generic prediction, or if there exists a parameter space that may
yield acceptable values for these quantities. An in depth analysis is left for future work.

2.3.2 Power Laws

Besides the Cradle solutions, the other pattern we see frequently in our numerics is demon-
strated in figure 2.3. That is, on a log-linear plot, we see long segments where both ϕ and
ψ are straight lines. This suggests there exist solutions to this system for which the fields
scale as powers of t, at least in certain regimes. Indeed, we find this is exactly the case.
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FIGURE 2.3: An example of suspected power-law behaviour in our numer-
ical searches (the radion ψ is on the left, and the inflaton ϕ is on the right).
Notice how the numerics immediately seek solutions with straight lines on
these log-linear plots, strongly suggesting the existence of scaling solutions.
The parameters for this run are: U0 = 5× 10−90, b∗ = 1028, β1/

√
4πb∗ = 2.2,

β2/
√

4πb∗ = 15.4, ϕ0 = −30, ψ0 = −30, ϕ̇0 = ψ̇ = 0, and t0 = 108, all in units
such that Mp = 1.

To uncover these solutions, we first assume the following forms for the dynamical de-
grees of freedom in our problem:

ϕ

Mp
=

ϕ0

Mp
+ p1 ln (t/t0) ,

ψ

Mp
=

ψ0

Mp
+ p2 ln (t/t0) , and (2.26)

a = a0

(
t

t0

)α
,

hence
H =

α

t
. (2.27)

It is worth pausing here to note that these ansätze alone, if satisfied, have interesting
things to say. Most importantly, we can immediately see that

ε := − Ḣ

H2
= 1/α (2.28)
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is constant, and less than 1 as long as α > 1. Moreover, we can also easily calculateNe, and
connect it with the motion of the fields:

Ne := ln

(
af
a0

)
=

∫ tf

t0

dt H = α ln

(
t

t0

)
=

α

p2

(
ψf − ψ0

Mp

)
=

2α

p2
ln

(
bf
b0

)
, (2.29)

where in the last equality, we write ψ in terms of the extra-dimensional radius. In this
way, we can see that a power-law solution inherently has a direct connection between
the amount by which our extra dimensions inflate, and the amount of time it takes to get
them there. Incidentally, this allows for a very large possible value for Ne, given that b
could potentially range from the Planck scale all the way to the micron scale. However in
practice, additional constraints, such as requiring energy-densities be sub-Planckian, limit
this range to much stricter values.

Finally, with these ansätze, the equations of motion 2.22 become:

−p1
t2

+
p1α

t2
=

λ

M2
p

W (ϕ),

−p2
t2

+
p2α

t2
=

1

M2
p

W (ϕ) − 2

M2
p

W (c) +
3

M2
p

W (f), and (2.30)

p21 + p22 − 6α2

t2
= − 1

M2
p

W (ϕ) +
1

M2
p

W (c) − 1

M2
p

W (f).

where

W (ϕ) := U0

(
t

t0

)−λp1−p2
,

W (c) :=
M2
p

b2?
e−2ψ0/Mp

(
t

t0

)−2p2
, and (2.31)

W (f) :=
2πf2

M2
p b

2
?

e−3ψ0/Mp

(
t

t0

)−3p2
,

and we have taken the inflaton potential to be

U(ϕ) ∼ V0e−λϕ/Mp , (2.32)

which is generally a good approximation of (2.2) when λ = β1/
√

4πb∗ > 0 and ϕ < 0. We
also define U0 := 4πb2?V0 exp(−(λϕ0 + ψ0)/Mp), for convenience.
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It is found that these equations are consistent in two regimes, with different combi-
nations of the terms W (ϕ), W (c), and W (f) dominating the potential on the RHS of each
equation. An important point regarding this hierarchy of terms is that it also determines
whether or not a minimum can exist for the radion. To see this, recall that we ask the
total potential W to vanish at the minimum of both ϕ and ψ, and for that minimum to
occur when ψ = 0. It can be shown that this then requires all the terms W (i) to be of ap-
proximately the same magnitude at that point. Since this minimum must occur after the
inflationary regime, and since the flux and curvature terms W (f) and W (c) scale as dif-
ferent powers of e−ψ, this imposes the condition that the radion can only be trapped if,
throughout the inflationary regime, the hierarchy holds that

W (f) > W (c). (2.33)

With that in mind, we proceed to detail the two inflationary scaling solutions.

2.3.2.1 Attractor

First, if the potential is entirely dominated by the term containing the inflaton potential,
we find a solution we label the “attractor.” It is named so because (as is detailed in the next
section) it is marginally insensitive to variations in its initial conditions. When the flux and
curvature terms W (f) and W (c) in the potential are dropped, we find two sets of equations.
Equating the powers of time tells us

p1 = αλ , and p2 = α , (2.34)

while equating the coefficients of time yields

α =
2

1 + λ2
, and t20 =

(
5− λ2

)
α2M2

p

2U0
. (2.35)

If we insist that α and λ are real (which we do), we can see right away that this solution
gives us an upper bound on α of 2, hence from (2.28), a lower bound on ε = 1/α of 1/2.
As a result, this solution alone could not describe the cosmology we observe, assuming the
usual perturbation analysis applies. Nevertheless, it is an important solution because of its
attractor nature, so it is worth exploring. In figure 2.4, we show an example of this solution
found in our numerics.

Note that since both the flux and curvature terms were neglected in this solution, their
hierarchy is arbitrary, so (2.33) can certainly be satisfied. Despite that this is technically
allowed, however, we are unable to produce a numerical example of this attractor scenario
that also traps the radion. Numerically, we always see the radion overshoot its minimum,
so it is likely that a bound exists related to the kinetic energy of the fields that makes
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FIGURE 2.4: Plots of tϕ̇ (left) and tψ̇ (right) vs t. Reasonable agreement is
seen between the numerics and equation (2.34), indicating we are reasonably
seeing the attractor scaling solution. Note that the agreement begins to break
down as the approximation that U(ϕ) is a single exponential begins to fail.
The parameters for this run are: ϕ0 = −18.6, ψ0 = −30, ϕ̇0 = 10−9, ψ̇ = 10−8,
and all other parameters are the same as in figure 2.3 (again, in units such

that Mp = 1).

trapping the radion very difficult in this scenario. An exact statement to that effect is not
known at this time, and is relegated to future work.

2.3.2.2 Slow-Roll

Lastly, we find one more consistent solution in the regime where the flux term in the poten-
tial W (f) is much smaller than the other terms, which are roughly on par with each other.
Note that this immediately violates the condition (2.33), so this inflationary solution is in-
capable of trapping the radion. This solution is termed “Slow-Roll,” because we are able
to use this solution to obtain slow-roll parameters consistent with observational data.

When the flux term is dropped, we again obtain two sets of equations. From the equal-
ity of the powers of time, we learn

p1 =
1

λ
, and p2 = 1 , (2.36)
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FIGURE 2.5: Plots of tϕ̇ (left) and tψ̇ (right) vs t. Reasonable agreement is
seen between the numerics and equation (2.36), indicating we are reasonably
seeing the slow-roll scaling solution. The large deviations at the end indicate
the numerics transitioning to the attractor solution. The parameters for this
run are: U0 = 10−101, b∗ = 1028, β1/

√
4πb∗ = 18, β2/

√
4πb∗ = 36, ϕ0 = −30,

ψ0 = −30, ϕ̇0 = 6 × 10−18, ψ̇ = 4 × 10−17, and t0 = 1017, and all units are
such that Mp = 1.

whereas the equality of the coefficients provides us with

U0 =
2M2

p

(1− λ2) b2?
e−2ψ0/Mp , t20=

(
λ2 + 3

)
M2
p

2λ4U0
, and α =

1 + λ2

2λ2
. (2.37)

Here we can see that there is now no upper bound on α, so we are free to choose parameters
such that ε and η are observationally satisfactory. In figure 2.5, we show an example of such
a solution found in our numerics.

The cradle and power-law solutions are the sum of our analytical understanding of
the system (2.22), thus far. There may be more analytic inflationary solutions that can be
coaxed out, but that remains for future work. For now, we proceed to study the sensitivity
of these solutions to their initial conditions, as much as possible.

2.4 Sensitivity to Initial Conditions

In chapter 1, we detail how inflation is intended to solve the problem that the Big Bang
model alone requires an entire universe of causally disconnected regions to have started
out with almost exactly the same initial conditions. Any successful inflationary model
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will help to solve the problem by at least reducing it to a few initial conditions (e.g., the
initial values and velocities of a few fields), however to really properly solve the issue, it is
necessary for the inflationary model to be generic. Here we formalize that notion.

Consider an inflationary scenario governed by the fields χi, with an inflationary solu-
tion χi∗. Suppose at some arbitrary initial time t0 the fields are offset from the inflation-
ary solution by some small amount δχi(t0). The evolution of the small perturbations can
then be determined by linearizing the equations of motion in δχi. In this model, we have
a second-order ordinary differential equation for each perturbation (except for the Hub-
ble parameter, which is determined entirely in terms of the other fields by the Friedmann
equation), so we expect to find two linearly independent modes for each perturbation. The
late-time behaviour of these modes determines the sensitivity of the solution to its initial
conditions. Modes that decay to 0 are referred to as stable, and those that decay to a non-
zero constant are labelled marginally stable. Any mode that increases with time is called
unstable. Any solution for which all modes are stable is itself called an stable, or insensitive
to initial conditions. If any mode is marginally stable, the solution is itself called marginally
stable, or marginally insensitive to initial conditions. Finally, if any mode is unstable, the so-
lution is termed unstable, or sensitive to initial conditions. These categorizations are shown
schematically in figure.

For our system, the fields to be perturbed are1

ϕ→ ϕ∗ + δϕ,

ψ → ψ∗ + δψ, and (2.38)
H → H∗ + δH.

Substituting these into the 4D equations of motion 2.22, and using the fact that the 0th-order
fields solve those equations, we find in general:

δϕ̈+ 3(H∗δϕ̇+ δHϕ̇∗) + W,ϕϕ

∣∣∣∣
(ϕ∗,ψ∗)

δϕ+ W,ϕψ

∣∣∣∣
(ϕ∗,ψ∗)

δψ = 0

δψ̈ + 3
(
H∗δψ̇ + δHψ̇∗

)
+ W,ψϕ

∣∣∣∣
(ϕ∗,ψ∗)

δϕ+ W,ψψ

∣∣∣∣
(ϕ∗,ψ∗)

δψ = 0 (2.39)

ϕ̇∗δϕ̇+ ψ̇∗δψ̇ + W,ϕ

∣∣∣∣
(ϕ∗,ψ∗)

δϕ+ W,ψ

∣∣∣∣
(ϕ∗,ψ∗)

δψ = 6M2
p H∗δH

From the Einstein constraint (the third equation in 2.39), it is clear that the perturbation
in H is entirely determined in terms of the perturbations of the other fields, so we can

1Note that we have chosen to perturb H directly instead of the scale factor, since the scale factor only
appears in our equations through H . Had we perturbed a directly instead, we would simply perform the
same analysis for δH , but then also have to solve δH = δȧ/a∗ −H∗δa/a∗.
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eliminate δH from our equations, and arrive at a system of two equations for the two
functions δϕ and δψ.

Finally, we perform this analysis as much as possible on the analytic solutions found
for this system. Since we do not have an analytic expression for ϕ(t) in the cradle solution,
we do not know the time dependence of the background solutions so cannot solve for the
perturbations. This analysis must be relegated to future work for the moment, and we
proceed to study the well-understood scaling solutions.

2.4.1 Power Laws

As when deriving the solutions in section 2.3.2, we assume the approximate form 2.32 for
the inflaton potential. Now, the perturbation equations read:

δϕ̈+ 3 (H∗δϕ̇+ δHϕ̇∗) +
λU(t)

M2
p

(λδϕ+ δψ) = 0

δψ̈ + 3
(
H∗δψ̇ + ψ̇∗δH

)
+

(
U(t)

M2
p

− 4

b2?
e−2ψ∗/Mp

)
δψ +

λU(t)

M2
p

δϕ = 0 (2.40)

ϕ̇∗δϕ̇+ ψ̇∗δψ̇ −
λU(t)

Mp
δϕ+

(
2Mp

b2?
e−2ψ∗/Mp − U(t)

Mp

)
δψ = 6H∗M

2
p δH

where U(t) = 4πb2?V0 exp[−(λϕ∗ + ψ∗)/Mp], and we drop the terms corresponding to con-
tributions from the flux, since both of our scaling solutions require their absence.

Recalling the general form for our power-law solutions 2.26, and now substituting the
solution for δH as noted above, we arrive at:

δϕ̈+

(
3α+

p21
2α

)
δϕ̇

t
+
λU0

M2
p

(
λ− p1

2α

)( t

t0

)ζ
δϕ+

(p1p2
2α

) δψ̇
t

+

[
U0

M2
p

(
λ− p1

2α

)( t

t0

)ζ
+

p1
αb2?

e−2ψ0/Mp

(
t

t0

)−2p2]
δψ = 0

(2.41)

δψ̈ +

(
3α+

p22
2α

)
δψ̇

t
+

[
U0

M2
p

(
1− p2

2α

)( t

t0

)ζ
+

(p2 − 4α)

αb2?
e−2ψ0/Mp

(
t

t0

)−2p2]
δψ

+
(p1p2

2α

) δϕ̇
t

+
λU0

M2
p

(
1− p2

2α

)( t

t0

)ζ
δϕ = 0

where we define the quantity ζ := −λp1 − p2, for convenience.
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2.4.1.1 Attractor

As described in section 2.3.2.1, we now also drop terms in the potential due to the curvature
(i.e., the terms in 2.41 containing factors of 1/b?). This is important because the solutions
we are perturbing are formally solutions to the equation without the curvature so we need
to be consistent.

Substituting the solutions 2.34 and 2.35 into 2.41, we find the equations greatly simplify:

δϕ̈+
6 + λ2

1 + λ2
δϕ̇

t
+
λ2(5− λ2)
(1 + λ2)2

δϕ

t2
+

λ

1 + λ2
δψ̇

t
+
λ(5− λ2)
(1 + λ2)2

δψ

t2
= 0

(2.42)

δψ̈ +
7

1 + λ2
δψ̇

t
+

5− λ2

(1 + λ2)2
δψ

t2
+

λ

1 + λ2
δϕ̇

t
+
λ(5− λ2)
(1 + λ2)2

δϕ

t2
= 0 .

Being that these are two second-order equations for two functions, we expect four
linearly-independent solutions. The equations themselves look very open to power-law
solutions of their own, so we employ the ansätze

δϕ = tn, and δψ = Atm . (2.43)

which in turn yield{
(λ2 + 1)2n2 + 5(λ2 + 1)n+ (5− λ2)λ2

}
tn

+Aλ
[
(λ2 + 1)m+ (5− λ2)

]
tm = 0 , (2.44)

λ
[
(λ2 + 1)n+ (5− λ2)

]
tn

+A
{

(λ2 + 1)2m2 − (λ2 + 1)(λ2 − 6)m+ (5− λ2)
}
tm = 0 .

If n 6= m, then the equations in square brackets, which are linear in n and m, would
both need to vanish. However, those equations are identical, so it cannot be the case that
they are both satisfied if n 6= m. Therefore, we are left searching for solutions with n = m.
This leads to two quadratic equations for n:

(λ2 + 1)2n2 + (λ2 + 1)(5 +Aλ)n+ λ(5− λ2)(A+ λ) = 0, and (2.45)

A(λ2 + 1)2n2 + (λ2 + 1)(λ−A
(
λ2 − 6

)
)n+ (5− λ2)(A+ λ) = 0 (2.46)

These equations need not be consistent, but certainly could be for some well-chosen
value for A. Indeed, one solution is immediately evident. If A = −λ, then n = 0 solves
both equations. Another solution can be similarly obtained by trying A = 0. In that case,
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(2.46) reduces to:

n =
λ2 − 5

λ2 + 1
. (2.47)

It is easy to verify that this also solves (2.45) when A = 0, so we have a second solution.
The third and fourth solutions can be found by taking A = 1/λ. With this choice, both

equations reduce to the same form:

(λ2 + 1)2n2 + 6(λ2 + 1)n+ (5− λ2)(λ2 + 1) = 0, (2.48)

which has solutions

n = −1 and n =
λ2 − 5

λ2 + 1
. (2.49)

Hence, we have found the four linearly-independent solutions to this system.
In summary, the linearly-independent solutions to (2.42) are:

(δϕ, δψ) =


(1,−λ),

(tq, 0),

(0, tq),(
t−1, 1λ t

−1),
(2.50)

where q :=
(
λ2 − 5

)
/(λ2 + 1). Note that we have used a linear combination of the solution

with A = 0 and A = 1/λ to choose a more elucidating basis for the system.
Recall from (2.28) that for the power-law systems, ε = 1/α, and for the attractor solu-

tion, α = 2/(1 + λ2), so we have

ε =
1 + λ2

2
. (2.51)

It is also the case that we define λ to be non-negative, so for this solution to be inflating,
ε < 1 implies λ < 1. Under that condition, q is always less than 0, so all modes decay with
time or, at worst, remain constant. For this reason, we consider this solution marginally
stable, and an attractor. See figure 2.7 for numerical examples demonstrating this behaviour.

Lastly, we perform the same analysis on the slow-roll scaling solution derived in section
2.3.2.2.
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2.4.1.2 Slow-Roll

In contrast to the previous section, this time we do not drop any terms in (2.41) as the slow-
roll solution formally solves the system including the curvature terms. Substituting in the
results (2.36) and (2.37) of section 2.3.2.2, we find

δϕ̈+
3λ4 + 8λ2 + 3

2λ2(1 + λ2)

δϕ̇

t
+

3 + λ2

2(1 + λ2)

δϕ

t2
+

λ

1 + λ2
δψ̇

t
+

3 + λ2

2λ3(1 + λ2)

δψ

t2
= 0,

δψ̈ +
5λ4 + 6λ2 + 3

2λ2(1 + λ2)

δψ̇

t
+

(λ2 + 3)(λ4 + λ2 − 1)

2λ4(1 + λ2)

δψ

t2
(2.52)

+
λ

1 + λ2
δϕ̇

t
+

3 + λ2

2λ3(1 + λ2)

δϕ

t2
= 0

Once again, this is a system of second-order ordinary differential equations for two
functions, so we expect to find four linearly-independent solutions.

The system (2.52) also smells of power laws, so we proceed again with the ansätze (2.43),
which we repeat here for convenience:

δϕ = tn, and δψ = Atm . ((2.43))

Substituting (2.43) in (2.52), we find

λ
{

2λ(λ2 + 1)2n2 + (λ4 + 6λ2 + 3)n+ (λ2 + 3)λ2
}
tn

+Aλ
[
2λ4m+ (λ2 + 3)

]
tm = 0 , (2.53)

λ
[
2λ4n+ (λ2 + 3)

]
tn

+A
{

2λ4(λ2 + 1)m2 + λ2(3λ4 + 4λ2 + 3)m+ λ6 + 4λ4 − 3
}
tm = 0 .

Again, if n 6= m, then the equations in square brackets (i.e., those linear in n and m)
would separately need to be satisfied, but since they are identical, they could not both be
satisfied for n 6= m. Therefore, we must search for solutions where n = m. In that case, we
get another set of quadratic equations for n.

2λ3(λ2 + 1)n2 + λ(2Aλ3 + λ4 + 6λ2 + 3)n+ (λ2 + 3)(A+ λ3) = 0 , (2.54)

2Aλ4(λ2 + 1)n2 + λ2(A(3λ4 + 4λ2 + 3) + 2λ3)n

+ (λ2 + 3)(A(λ4 + λ2 − 1) + λ) = 0 . (2.55)

These also need not be consistent, but could be for appropriate forms for A.
It is a bit more difficult to see the solutions for this system, but with the benefit of

hindsight, the process is relatively straightforward. There are two choices for A which will
turn (2.54) and (2.55) into the same quadratic equation. First, if A = λ, both equations
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reduce to:

2λ2n2 + 3
(
λ2 + 1

)
n+ λ2 + 3 = 0. (2.56)

This equation has solutions

n = −1 and n = −λ
2 + 3

2λ2
. (2.57)

Finally, if instead we try A = −1/λ, we find both (2.54) and (2.55) reduce to:

2λ4n2 + λ2
(
λ2 + 3

)
n+

(
λ2 + 3

)(
λ2 − 1

)
= 0, (2.58)

with solutions

n =
1

4λ2

{
−
(
λ2 + 3

)
±
√

(λ2 + 3)(11− 7λ2)
}

(2.59)

To summarize, this system as a whole has the four linearly independent solutions

(δϕ, δψ) =



(
t−1, λt−1

)
,

(tr, λtr),(
ts+ ,− 1

λ t
s+
)
,(

ts− ,− 1
λ t
s−
)
,

(2.60)

where

r := −
(
λ2 + 3

)
/2λ2, and s± :=

(
−
(
λ2 + 3

)
±
√

(λ2 + 3)(11− 7λ2)
)
/4λ2. (2.61)

Recall from section 2.3.2.2 that

ε =
1

α
=

2λ2

1 + λ2
(2.62)

and λ is real and non-negative. In the inflationary regime, ε < 1, so we must have 0 < λ <
1. With these restrictions, it is clear that r and s− are always less than 0, hence those modes
always decay in time. The s+ mode, however, is much more interesting.

First, we note that s+(λ = 0) =
√

33− 3 ∼ 2.74, and s+(λ = 1) = 0. Next, computing

ds+
dλ

=
−28λ3 − 20λ

2
√

(λ2 + 3)(11− 7λ2)
− 2λ, (2.63)

and noting that the quantity in the denominator is real on the interval 0 < λ < 1, we see
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that s+ is a strictly decreasing function of λ on the domain of inflationary values. Given
the boundary values computed above, s+ is a strictly positive function on the domain of
interest. This means the s+ mode is the increasing mode that makes this power-law solution
unstable, or highly sensitive to its initial conditions. Given enough time, any perturbation
that evolves with any component of this mode will grow without bound, and ultimately
spoil the inflationary scenario. Numerical examples of this behaviour can be seen in figure
2.8.

Thus we can categorize the sensitivity to initial conditions of two extra-dimensional
inflationary solutions. Finally, we take stock and reiterate the key lessons from this chapter.

2.5 Conclusion

There is a very real possibility that our universe has extra dimensions. They are a firm
prediction of a leading candidate for a quantum theory of gravity, and they still have a safe
parameter-space as yet un-probed by experiment. If indeed there was an early period of
inflation in the history of our universe (as chapter 1 hopefully makes a strong case for), it
is perfectly likely that it would have involved any extra dimensions. To study this possible
connection, we construct a toy model with two extra dimensions, which expands upon the
well-studied case of one extra dimension. We include a scalar field to drive inflation, and
a Maxwell field in the hopes of stabilizing the extra dimensions. It remains to perform
an exhaustive search for solutions to this model, however we begin the process with two
classes of solutions.

First, we find a numerical solution demonstrating 4D quasi-de Sitter space, while trap-
ping the extra-dimensional radius. In this example, the radion is trapped almost immedi-
ately, and is nestled in its potential minimum when the inflaton takes action, so this it is
termed the “Cradle” solution. An exact analytical understanding of this solution thus far
eludes the author, however it is clear that its inflationary regime is equivalent to a single-
field slow-roll model with a very complicated potential. Future work may well uncover an
elegant mathematical description of the time-dependence of this system. Our numerical
trials show this scenario typically returns ns ∼ 0.975 and r ∼ 0.15, so it is likely incompat-
ible with observations.

Second, we find a class of solutions that scale as powers of time. We find two ex-
amples of this type of solution, both of which can be realized in the numerics. The first
example turns up generically in numerical trials, and is compatible with a stabilized extra-
dimensional radius, however suffers from an unacceptably large prediction for ε (assuming
the usual perturbative analysis applies). The second example has a freely tunable ε, but is
difficult to realize numerically, requiring very careful choices of initial conditions.

As inflation is intended to solve a problem of initial conditions, it is important to under-
stand how an inflationary scenario itself depends on its own initial conditions. To that end,
we analyze our scaling solutions for sensitivity to their initial conditions (we only study
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the scaling solutions since we do not have a thorough understanding of the Cradle solu-
tion). It is found that the example that can trap the radion is an attractor, and marginally
insensitive to its initial conditions, while the solution with that allows for acceptable values
of ε is highly sensitive to its initial conditions.

To summarize, some headway is made into understanding inflationary models with
more complicated extra-dimensional manifolds. In our model with two spherical extra
dimensions, we are able to find some solutions that can stabilize the extra-dimensional
radius, some that can allow for reasonable values of the slow-roll parameters, and some
that are insensitive to initial conditions. As yet, the intersection of those three sets of so-
lutions unfortunately remains empty, however that each set is individually populated is
important. An extra-dimensional inflationary scenario needs to be able to stabilize the
extra dimensions because we do not currently observe infinitely large extra dimensions.
It is also obviously important that an extra-dimensional inflationary scenario allow slow-
roll parameters that agree with observations. Finally, it is desirable for any inflationary
scenario to be insensitive to its initial conditions. While it is true that a model requiring
extremely precise initial field values is still an improvement over the standard Big Bang
model, it would ultimately be another problem to solve, so it is ideal to avoid it altogether.

More work on the topic clearly needs to be done. This includes a proper understanding
of the time-dependence in the Cradle scenario, a more exhaustive search of the model’s pa-
rameter space, a full perturbations analysis, and studies of different forms for the inflaton
potential.
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FIGURE 2.6: A schematic example of the classification of a solution’s sensi-
tivity to its initial conditions. The dashed line is the background solution,
and the solid lines are the full solutions f = f∗ + δf . The plot on the top left
shows an example that is insensitive to its initial conditions, in that the per-
turbation δf falls off with time. The plot on the top right shows an example
that is sensitive to its initial conditions, in that the perturbations δf diverge
with time. The plot on the bottom shows an example that is marginally sen-
sitive to its initial conditions. The function δf is a constant in time to lowest
order, so more information is needed to determine the late-time behaviour

of the solutions.
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FIGURE 2.7: Plots of tϕ̇ (left) and tψ̇ (right) vs t for several similar initial
conditions (solid lines are numerics, dashed lines are the analytic forms of p1
and p2 from equations (2.34) and (2.35)). Note that despite an assortment of
initial conditions ((ϕ0/Mp, ψ0/Mp) = (−19.6,−31), (−18.6, −30), and (−17.6,
−29)), each solution approaches roughly the same behaviour. Besides the
initial conditions already noted, all parameters are the same as in figure 2.4
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FIGURE 2.8: Plots of tϕ̇ (left) and tψ̇ (right) vs t for the slow-roll power-law
solution. Figure 2.5 is a close up of the short initially flat regions on these
plots. In contrast to that figure, here we plot the solution for long enough
to see it transition into the attractor power-law solution. The parameters for

this run are the same as in figure 2.5
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Chapter 3

Magnon Inflation

And now for something completely different—slow-roll with a steep potential. As men-
tioned in chapter 1, slow-roll inflation driven by a single scalar field imposes rather strin-
gent conditions on the slope of the inflaton’s potential (equation (1.33)). This result can be
generalized to the case of inflation with multiple scalar fields φa so that in general, slow-roll
requires

ε ≈
M2
p

2

Gab∂aV ∂bV
V2

� 1, (3.1)

where Gab is the inverse of the target-space metric defined by the kinetic terms

T =
1

2
Gabgµν∂µφa∂νφb, (3.2)

while V is the potential in terms of all the fields φa, and ∂a refers to the partial derivative
with respect to the field φa. Hence typically, slow-roll can only take place when fields are
subject to very shallow potentials. Such a strict requirement can be a hindrance to model-
builders seeking to incorporate inflation into a bigger picture, such as a UV completion to
the Standard Model. As a result, theorists have been seeking means of escaping this bound.

A hint for a general technique for avoiding the bound (3.1) can be found in the Chromo-
Natural model of inflation [12]. This model couples an axion to a collection of SU(2) scalars,
and seeks to use their interaction as a means of keeping the axion rolling slowly, despite
its own potential being relatively steep. The scalars are taken to be at their rotationally-
invariant vacuum expectation value described by a field ψ(t) (a choice which inherently
breaks Lorentz invariance), and the axion is taken to be homogeneous χ = χ(t), depending
only on a cosmic time coordinate. The action for this configuration is:

SCN = −
∫

d4xa3

[
3

2

1

a2

(
∂(ψa)

∂t

)2

+
1

2
χ̇2 − 3g̃

λ

f
χ
ψ2

a

∂(ψa)

∂t
+ V (ψ, χ)

]
, (3.3)
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where

V (ψ, χ) := −3

2
g̃2ψ4 − µ4(1 + cos(χ/f)). (3.4)

In the above, a is the scale-factor, g̃ is the SU(2) gauge coupling constant, f is the axion
decay constant, and λ and µ are coupling constants for the ψ-χ interaction and the axion
potential, respectively. This model finds the slow-roll parameter ε:

ε ≈ 3g̃2ψ4

µ4(1 + cos(χ/f))
+ ψ2, (3.5)

without a Planck mass in sight.
Equation (3.5) is an interesting result, and one might be led to wonder exactly what

was so special about the action (3.3). One possibility is that since slow-roll is defined by
the condition that the field velocities are small, it is terms linear in field derivatives, like
the interaction ∼ χψ2∂t(ψa), that actually dominate the dynamics. Indeed, such terms are
not usually included when constructing an inflationary theory. Therefore in this chapter,
we construct a toy model designed to study exactly those often-omitted interactions, and
their general effects on multi-field inflation.

In our toy model, we take the general approach of studying a system of n scalar fields
coupled to a fixed time-like vector-field Uµ. We construct a Lagrangian to first order in
the derivatives of the fields, and find that indeed the condition (3.1) on ε is relaxed in
general, with some field configurations even permitting it to vanish despite the presence
of an arbitrarily steep potential. A two-field model that demonstrates this vanishing ε is
also explicitly constructed. Following the theme of this thesis, we then proceed to study
the sensitivity of this two-field model to its initial conditions, and find conditions on the
parameters of the theory that allow it to be relatively insensitive to its initial conditions.
Finally, we include corrections due to all possible second-order terms in the Lagrangian,
and find conditions on those parameters that can make or break the sensitivity of the first-
order solutions initial conditions.

3.1 Action and Field Equations

In order to include first-order derivatives in a general way, we construct our model with a
system of scalar fields coupled to gravity and a vector-field Uµ whose value is fixed, pre-
sumably by some ultra-violet completion1 (that is, we are describing a low-energy effective
theory, and assume that the full theory that describes higher energies has an explanation
for the fixed value of this vector-field). The action to first order in derivatives of the scalar

1In this respect, our model resembles the Einstein-Aether theories [22].
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and Uµ fields is:

SM = −
∫

d4x
√
−g [V(φ) +Aa(φ)Uµ∂µφ

a + ξ (gµνU
µUν + 1)] . (3.6)

where the last term is used to fix the value of the field Uµ to point along a time-like direc-
tion. Since this action is similar to that of spin-waves in a ferromagnet [10, 11], we label
this model “Magnon” inflation.

Given the action (3.6), the equations of motion can be computed directly:

• ξ-EOM:

gµνU
µUν + 1 = 0 , (3.7)

• Uµ-EOM:

Aa ∂µφa + 2ξ Uµ = 0 , (3.8)

• φa-EOM:

−∂aV − Fab Uµ∂µφb +Aa∇ · U = 0 , (3.9)

where we have defined Fab := ∂aAb − ∂bAa. A convenient expression for ξ can be ob-
tained by contracting the Uµ equation of motion (3.8) with Uµ and making use of the first
equation:

2ξ = AaUµ∂µφa. (3.10)

If we look for homogeneous and isotropic solutions for the scalars (which we do), the
Uµ equation of motion implies U0 = 1 while U i = 0, whenever ξ 6= 0. In looking for homo-
geneous and isotropic solutions, we assume the FRW form for the metric. That combined
with our expression for Uµ means we have

∇µUν =

{
H, if µ, ν ∈ {1, 2, 3},
0, else.

(3.11)

so that∇ · U = 3H . This can be neatly written using (3.7) as

∇µUν = H(δµν + UµU
ν), (3.12)

In the event that F is invertible, the φ equation of motion also yields the handy formula

φ̇a := Uµ∂µφ
a = F̃ab[3HAb − ∂bV], (3.13)
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where F̃ab is the inverse of Fab, and we have made the notational choice to represent the
combination Uµ∇µ with an over-dot.

Finally, we also have the Einstein Equations. To use them, we need the Stress-Energy
tensor:

Tµν = gµνLM − 2
δLM
δgµν

,

= −gµν
[
V +Aa φ̇a

]
− 2ξUµUν ,

= −gµνV −Aaφ̇a[gµν + UµUν ], (3.14)

where LM is the negative of the Lagrangian scalar in (3.6), and we have made use of the
equations of motion to eliminate ξ and set the norm of Uµ to −1.

Immediately, we can see that our choice of a time-like Uµ and FRW metric make the
stress-energy diagonal, and in order to satisfy homogeneity and isotropy, it must have the
form of a perfect fluid, as in chapter 1:

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

, (3.15)

The components can be calculated directly as

ρ = UµUνTµν = V, and p = NµNνTµν = −V −Aaφ̇a, (3.16)

for some space-like unit vector Nµ (which is therefore orthogonal to Uµ). From here we
can see that all that is needed to produce a de Sitter equation of state p = −ρ is

Aaφ̇a = 0. (3.17)

Already, this is a great success. In (3.17), we find that in our simple toy model, we can
achieve an exact vacuum equation of state (so that ε = 0 identically) simply due to the
alignment of φ̇a in field-space. Note that this condition makes no demands on the size of V ,
so in a sense, we can already see that this model achieves the results it was designed for.
That said, we can still find a more useful way to phrase this result.

Contracting (3.13) with Aa, we can see one way to achieve the condition (3.17) would
be if Aa were parallel to the gradient of V , so that εabAa∂bV = 0. More generally, with the
stress-energy tensor above, we can compute the Friedmann equation

3M2
pH

2 = V (3.18)
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so that explicitly, the slow-roll parameter ε is

ε := − Ḣ

H2
= − ∂aVφ̇a

6M2
pH

3
=

3

2

F̃abAa∂bV
V

. (3.19)

This expression (3.19) should be compared with the classic multi-field result (3.1). Not
only does our new expression have no Planck mass in sight, but it can be set to 0 solely
with an appropriate alignment of the vectorsA and ∂V . In general then, this model clearly
does loosen the restrictions on slow-roll with a steep potential, as desired.

Finally, it is important to note that this explains the results from the Chromo-Natural
model above. Dropping the second-derivative terms in the action (3.3), and applying
framework just described, we find that for the Chromo-Natural model,

ε ≈ 3g̃2ψ4

µ4(1 + cos(χ/f))
, (3.20)

so that to leading order, it is indeed the contributions of the first-derivative terms that
control the size of ε.

Now that we understand some general properties of this model, it is worth construct-
ing an explicit example of a system that can realize the condition (3.17), and in particular,
studying the sensitivity to initial conditions of solutions to that system. For instance if it
were the case that all solutions in this model required highly specific initial conditions to
inflate, then we might have aided model-builders slightly, but ultimately have replaced
one initial conditions problem with another.

3.2 Two-Field Solution

A non-trivial solution to (3.17) requires a minimum of two fields, so we construct our solu-
tion from exactly two fields. Let φ1 = ψ, and φ2 = χ. We then make the following choices
for V and Aa:

V = V (ψ), and A = A1 dφ1 = A(χ) dψ. (3.21)

which implies

Fab = fεab, (3.22)
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where f := −A(χ). With this choice, the gradient of the potential ∂aV is parallel to the
gauge potential Aa, so we have

F̃abAa∂bV = − 1

f
ε̃abAa∂bV = 0, (3.23)

and as a result, the slow-roll ε vanishes to first-order, for an arbitrarily steep potential V (ψ).
Finally, we may use the equations of motion (3.13) to determine:

ψ̇ = 0, and

χ̇ =
V ′(ψ)− 3HA(χ)

A′(χ)
, (3.24)

as long as A′ 6= 0.
The first equation in (3.24) clearly states that ψ is a constant in time. Using the Fried-

mann equation, 3M2
pH

2 = V , this implies the Hubble parameter is also a constant in time.
With those helpful facts, we can solve the second equation in (3.24) exactly for A(t):

Ȧ = −3H A+ V ′(ψ),

=⇒ A(t) =

[
A0 −

V ′(ψ)

3H

]
e−3H(t−t0) +

V ′(ψ)

3H
. (3.25)

whereA0 = A(t = t0). Note that in the above, V ′ andH are evaluated at the constant value
of ψ, so that A does not depend on ψ.

From here, it is impossible to find a unique expression for χ, however its late-time
behaviour can be inferred in the special case where A′ does not approach 0. At late times,
the exponential in A dies out, and V ′ − 3HA → 0. As a result, χ approaches a constant
value in the far future.

Now we have an example of a solution to our model that explicitly demonstrates its
trademark feature—slow-roll with an arbitrarily steep potential. It just remains to explore
the sensitivity of this solution to its initial conditions.

3.2.1 Sensitivity to Initial Conditions

In the same manner as section 2.4, we test the sensitivity of our two-field slow-roll solution
to its initial conditions by applying some small perturbations to the fields in our problem,
and studying their dynamics with the equations of motion. Hence we take

φa → φa∗ + δφa and H → H∗ + δH, (3.26)

where φa∗ and H∗ satisfy the first-order, unperturbed equations of motion. We could also
perturb the fields Uµ and ξ, but doing so would have no effect on the fields of interest (the
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ξ equation of motion along with (3.10) mean that expressions like ∇ · U = 3H still hold
true).

The linearized equation of motion for φa is

Fab,c φ̇b∗δφc + Fab δφ̇b + Vacδφc − 3[H∗Aa,cδφc + δHAa] = 0. (3.27)

where all appearances of V , F , andA are evaluated at the background solution. The Fried-
mann equation yields

δH =
1

6M2
pH∗

V,aδφ
a, (3.28)

so that

Fab δφ̇b = −Mab δφ
b. (3.29)

where

Mab := Fac,b φ̇c∗ + Vab − 3

[
H∗Aa,b +

1

6M2
pH∗
AaV,b

]
(3.30)

The expression (3.30) can be simplified greatly by making use of the background equa-
tion of motion for φa. Taking the derivative of the φ equation of motion (3.9) with respect
to φb, we have

V,ab +
(
Fac φ̇c∗

)
,a
− 3(H∗Aa),b = 0. (3.31)

The Friedmann equation also tells us that H∗,b = V,b/6M2
pH∗, so that altogether,Mab takes

on the clean form

Mab = −Fac
(
φ̇c∗

)
,b
. (3.32)

Next, for invertible F (as it is in our two-field example), we can simplify this further:

δφ̇a = −M̃a
bδφ

b, (3.33)

where we have defined

M̃a
b := F̃acMcb =

[
F̃ac(V,c − 3H∗Ac)

]
,b
, (3.34)
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(using (3.13) to eliminate φ̇c∗). In general, the solution to this system is

δφa =

[
T exp

(
−
∫ t

t0

d t′M̃
)]a

b

δφb0 (3.35)

where T is the time-ordering operator, and δφb0 := δφb(t = t0).
The late-time behaviour of the perturbations is therefore dictated by the sign of the

eigenvalues of M̃. If they are all positive (negative), the solution is sensitive (insensitive)
to its initial conditions. Vanishing eigenvalues corresponds to modes that are marginally
stable at the first-order level, and whose stability is ultimately determined by the higher
order corrections.

In our two-field example, we can explicitly evaluate M̃.

M̃ =

[
0 0

(3H ′ − V ′′)/A {(3HA− V ′)/A},χ

]
, (3.36)

which has eigenvalues 0 and {(3HA− V ′)/A},χ. Therefore, this solution has one mode
which can be stable depending on the signs of A, H , and V , and one mode whose stability
needs to be determined by other means.

It seems then that we cannot say one way or the other about the sensitivity to initial
conditions of our explicit solution demonstrating slow-roll with an arbitrarily steep poten-
tial. It is important, however, to place the action (3.6) in a broader picture. Any model
that employs these results, like Chromo-Natural inflation, is more than likely to also in-
clude higher derivative terms, such as the standard second-order kinetic terms. Therefore,
we should take into account corrections to the equations of motion (3.7) to (3.9) due to
all possible terms second-order in the derivatives of our fields. If we linearize our original
two-field solution about these corrected equations of motion, we could well find something
decisive to say about the marginally stable mode.

3.2.2 Second-Order Corrections

There are a great many possible terms second-order in the derivatives of our fields. As a
result, the algebra becomes highly detailed very quickly, without being very illuminating,
so it is almost entirely relegated to appendix D. The key points are as follows. The pos-
sible contributions to second order can be summarized with the following addition to the
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Lagrangian:

−∆L :=
1

2

[
Gab(φ) gµν + Iab(φ)UµUν

]
∂µφ

a∂νφ
b +

1

2

[
C(1)(φ)∇µUν∇µUν

+ C(2)(φ)(∇ · U)2 + C(3)(φ)∇νUµ∇µUν + C(4)(φ)Uλ∇λUµUν∇νUµ
]

+ C(5)a (φ)Uν (∇νUµ) ∂µφ
a + C(6)a (φ)Uµ (∇ · U) ∂µφ

a. ((D.1))

To second order, the aligned solution for Uµ as used above is still a solution. Lastly, the
equation of motion for φa receives an additional term on the LHS:

∆(φ) =
∂(∆L)

∂φa
+∇µ

{
Gab∇µφb + Iab Uµφ̇b + C(5)a U̇µ + C(6)a Uµ∇ · U

}
, (3.37)

and the Friedmann equation receives a modification of

3M2
pH

2 = V + ∆ρ, (3.38)

where

∆ρ :=
1

2
Qabφ̇aφ̇b − 3HC(6)a φ̇a − 9

2
H2
(
C(1) + 3C(2) + C(3)

)
− 3C(1)Ḣ, ((D.16))

and Qab := Gab − Iab is the target-space metric.
In motivating this model, we used that derivatives in time should be costly during

slow-roll, so the dynamics should be dominated by terms with fewer derivatives in time. In
that spirit, we treat derivatives in time as small quantities when linearizing these equations,
so the corrections (3.37) and (D.16), which are entirely second-order in time, can simply be
evaluated at the background. This means that the linearized equations of motion including
second-order contributions are simply

Fab δφ̇b = −Mab δφ
b + Ja, (3.39)

where

Ja := −Qab
(
φ̈b∗ + 3H∗ φ̇

b
∗ + Γbcd φ̇

c
∗φ̇

d
∗

)
+ 3H∗(C(6)a,b − C

(6)
b,a )φ̇b∗

− 3H2
∗

2

[
(C(1) + 3C(2) + C(3)),a − 6 C(6)a

]
,

and Γbcd are the Christoffel symbols built from the metric, Qab := Gab − Iab. That is:

Γbcd :=
1

2
Qbe{Qec,d +Qed,c −Qcd,e}. (3.40)
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Again, in our two-field scenario, F is invertible, so we write:

δφ̇a = −M̃a
b δφ

b + J̃ a, (3.41)

with

J̃ a := F̃abJb. (3.42)

This is just the inhomogeneous version of equation (3.33), so the solution is a sum of the
homogeneous solution with a particular solution,

δφa =

[
T exp

(
−
∫ t

t0

d t′M̃
)]a

b

δφb0 +
(
M̃−1

)a
b
J̃ a. (3.43)

It is then the behaviour of this new term M̃−1J that controls the late-time behaviour
of the perturbations, and ultimately determines the sensitivity of our solution to its initial
conditions. Of particular note, this term now assigns dynamics even to the zero-modes of
M̃. In our two-field model, we saw that one of the perturbations’ solutions could be made
stable with an appropriate choice of A, H , and V , but not much could be said for the other
mode. Now, the late-time behaviour of both modes is also affected by the extra J term, so
a judicious choice of A, H , and V , as well asQ and the various C(i) can ensure insensitivity
to initial conditions. Therefore, we have shown that there exists parameter space not only
for which the slow-roll parameter ε vanishes to first order, but also for which the solution
is insensitive to its initial conditions, and could therefore be a conclusive solution to the
Big Bang model’s initial conditions problem.

3.3 Conclusion

It is typically the case that slow-roll inflation demands stringent constraints on the shape of
the inflating scalar fields’ potential (i.e., (3.1)). However some models, such as the Chromo-
Natural inflation governed by the action (3.3), succeed in producing slow-roll despite hav-
ing a surprisingly steep potential for the field driving their inflation. Based on the suspicion
that their success is due to the inclusion of an interaction involving a first-order derivative,
we construct a model explicitly governed by interactions first-order in derivatives of our
fields. We find that such a model does indeed generically predict much weaker constraints
on the form of the scalar fields’ potential, and can in fact arrange for ε = 0 identically
for arbitrarily steep potentials. We are also able to finger the single-derivative interaction
as the culprit in the Chromo-Natural model’s success by reproducing the leading order
contribution to their expression for ε using our framework.
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Finally, we explicitly construct a solution to our model that aligns the fields and poten-
tial such that ε vanishes to first order with no restriction on the size of the gradient of the
potential. We find that such a model is marginally sensitive to its initial conditions if the La-
grangian only contains terms to first order in the derivatives of the fields. However, if the
model has higher order terms, their contributions can in fact be used to nudge the solution
in the direction of being safely insensitive to its initial conditions. Therefore, we success-
fully demonstrate a framework wherein the steepness of the potential driving inflation can
be detached from the conditions to achieve slow-roll. Furthermore, we demonstrate that
there exists at least one such solution in that framework, and show that it is possible to
construct such a solution in a way such that it is insensitive to its initial conditions, and can
therefore safely solve the Big Bang’s initial conditions problems.
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Conclusion

The idea of inflation is to solve the problem of highly specific initial conditions in the Big
Bang model. Inflation itself is simply the idea of a temporary epoch of quasi-de Sitter space,
of which there are any number of possible realizations. It is important, therefore, that any
such implementation of inflation not itself be beholden to highly specific initial conditions,
otherwise it would only be transferring the problem. In this thesis, we therefore study the
sensitivity to initial conditions of solutions to two novel inflationary realizations.

First, we study a model of extra-dimensional inflation. This is motivated both by the
fact that a leading theory of quantum gravity, String Theory, inevitably predicts the ex-
istence of extra dimensions, and by the fact that small enough extra dimensions are still
experimentally viable. We construct our toy model with two dimensions, since the case of
a single extra dimension has been well explored. We compactify our extra dimensions on a
sphere, and include a Maxwell field over them in an effort to be able to stabilize them after
inflation (which is necessary, but typically difficult to accomplish). We then drive inflation
with a single scalar inflaton. Although we do not fully explore its parameter space, we find
two classes of inflationary solutions to this model.

One class of solutions we refer to as the Cradle solution. It is achieved for a certain
range of parameters when the extra-dimensional radius (the radion) is initially very close
to its minimum. The radion then quickly minimizes, and the inflaton undergoes standard
slow-roll inflation. While this class of solutions is conceptually straightforward, it is dif-
ficult to model mathematically, and we do not have an analytic description yet, so we are
unable to study its sensitivity to initial conditions in any detail. Nevertheless, it is a class
of solutions worth exploring in future work, since it does manifestly stabilize the extra di-
mensions. Moreover, it typically predicts values for the slow-roll parameters ε ∼ 0.009 and
η ∼ 0.016 which correspond to ns ∼ 0.975 and r ∼ 0.15, which are just in conflict with
recent data. Future work should therefore include a comprehensive study of the parame-
ter space for this class of solutions, as it may well turn out that there exist parameters that
make acceptable predictions for these values.

The second class of solutions are of a form that scales as a power of time. In general,
these solutions predict η = 0 identically, as well as an intuitive relationNe ∝ 2 ln(bf/b0), so
that the duration of inflation is directly tied to the change in size of the extra dimensional
radius b(t) (which, for instance, means if b ranges from the Planck scale ∼ 1019 GeV to the
Electroweak scale ∼ 102GeV, say, then Ne ∼ 70 if the constant of proportionality is O(1)).
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In this class of solutions, we find two examples of inflation. The first is referred to as the
Attractor solution, and has the advantages that it can be used to stabilize the extra dimen-
sions, and is shown to be marginally insensitive to its initial conditions. It does, however,
have the drawback that it predicts ε ≥ 0.5, which implies r ≥ 8, so is excluded by data
as long as the usual perturbative analysis is applicable. The second inflationary example
is referred to as the Slow-Roll solution because it has the advantage that it can predict a
generic value for ε. This example suffers from the disadvantages that it is incapable of sta-
bilizing the extra dimensions, and it is shown to be highly sensitive to its initial conditions.

Secondly, we study a toy model constructed explicitly with interactions first-order in
derivatives of the fields. During slow-roll, it is expected that higher orders of derivatives
come with a penalty, so it should be the lowest orders that dominate the dynamics. It
is indeed found that this model greatly loosens the usual restrictions on the steepness of
the inflaton fields potential, no longer requiring it be extremely shallow to allow slow-
roll to take place. Moreover, it is found that an appropriate field configuration alone can
yield ε = 0 while saying nothing of the magnitude of the slope of the potential. That is
to say, this model successfully demonstrates an example of how to achieve slow-roll with
an arbitrarily steep potential. We furthermore construct an explicit example of a solution
that realizes this condition, and we show that there exists a region of parameter-space for
which it is marginally insensitive to its initial conditions. Finally, we include corrections
due to higher-order terms in the Lagrangian, and show that they can be used to find a set
of parameters for which the example solution is highly insensitive to its initial conditions.

In the end, we are able to understand analytically three new inflationary solutions, and
can show that one of them is generically highly sensitive to its initial conditions, one is
marginally insensitive, and one can be made highly insensitive. While these are simply
toy models, they may well describe more general features, for instance of some poten-
tial Stringy inflation in the one model, and of examples like Chromo-Natural inflation
in the other. This thesis therefore makes some progress in understanding how success-
ful some inflationary realizations could be at addressing the original motivation for the
framework. Future work should involve properly understanding the cradle solution to the
extra-dimensional model, as well as a full understanding of the perturbations in both toy
models.
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Appendix A

Horizon Problem Details

Mathematically, we arrived at the Horizon Problem by comparing the integral of H−1 to
the left and right of a fixed point z = zCMB, and noting that the integral to the left (from
z = 0 to z = zCMB) easily trumped the integral to the right (from z = zCMB to z → ∞). Any
reasonable solution to this problem therefore must modify the form ofH−1 either for small
or large z (one might propose a modification in both ranges, but that would imply that both
integrals were wrong, which violates the firm physical principle that two wrongs make a
right). However, it is also important that any solution maintain the successes of the current
Big Bang model, which tracks the evolution of the universe very well through temperature
ranges we mostly understand in the lab. This includes events such as the formation of
neutral hydrogen (recombination, zCMB ∼ 1100), the radiation-matter crossover (zeq ∼ 3000,
the value of which affects how much large structure we should see), and the formation of
nuclei (big bang nucleosynthesis, z ∼ O

(
1010

)
). Clearly then, we should only consider

augmenting H−1 for very large z. Figure 1.2 show schematically how some modification
to H−1 at very large z can solve the problem as stated above.

At this point, there are two possible mathematical solutions. First, H−1 could maintain
the same scaling with z, but suffer a wild discontinuity. It is, however, extremely difficult,
if not impossible, to imagine the physical consequences of a discontinuous Hubble param-
eter, and we make no attempt to do so here. The second option is that there exists at least
one transition to an epoch where H−1 > H−1mat := H−10 (1 + z)−3/2. In order for this to be
a continuous transition, there must be some point z∗ such that H−1(z∗) = H−1mat(z∗), after
which the ratio H−1(z)/H−1mat(z) must increase. That is, a successful, continuous augmen-
tation of the Hubble parameter must have some segment for which

d

dz

(
H−1

H−1mat

)
> 0,

=⇒
(
H−1

)′
H−1

>

(
H−1mat

)′
H−1mat

= − 3

2(1 + z)
, (A.1)

where primes denote differentiation with respect to z.
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We can actually do better than the strict inequality in (A.1). Consider the following
form for H−1:

H−1test :=
A

(1 + z)1−p
, for z∗ ≤ z <∞, (A.2)

where the constant of proportionality is fixed by continuity (so A = (1 + z∗)
1−p/H∗). This

test form contributes an insufficient finite amount to ∆rcaus if p < 0. However, if p ≥ 0, then
the integral over H−1test diverges, so can easily be made large enough to solve the Horizon
Problem. With this, we can now put a lower bound on the inequality (A.1):

d

dz

(
H−1

H−1test

)
≥ 0,

=⇒
(
H−1

)′
H−1

≥
(
H−1test

)′
H−1test

≥ − 1

(1 + z)
, (A.3)

So the robust, reasonable solution to the Horizon Problem can be summarized as the
requirement that there exists some period of time in the distant past where H−1 satisfied
the condition (A.3) for sufficiently long. Using (1.9) to exchange redshift for z in that ex-
pression leads immediately to the more common phrasing of this condition:

ε := − Ḣ

H2
≤ 1. (A.4)

where we have defined the inflationary parameter ε. Recalling that H = ȧ/a, it is easy to
see that this inequality is only satisfied if ä > 0.
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Appendix B

HDI Einstein Equations

Here we explicitly compute the Einstein Equations for the system in chapter 2. Recall, the
action is

S = −
∫

d6x
√
−g(6)

(
1

2κ2
R+

1

4
FMNF

MN +
1

2
∂Mφ∂

Mφ+ V (φ)

)
, (2.1)

with F = Fmndymdyn = fεmndymdyn so that F 2 = 2f2. We also have the FRW metric
ansatz

dŝ2 = −dt̂2 + â2(t̂ ) δij dx̂i dx̂j + b2(t̂ )γmn(y) dymdyn . (2.4)

Given this metric, we compute the Christoffel symbols directly from

ΓIJK =
1

2
gIM (gMJ,K + gMK,J − gJK,M )

so that

Γ0
ij = ââ′δij , Γ0

44 = bb′, Γ0
55 = Γ0

44 sin2 θ (B.1)

Γi0j =
â′

â
δij , Γa0b =

b′

b
δab , Γ4

55 = − cos θ sin θ, Γ5
45 = cot θ

where i, j run over the spacial 4-indices, and a, b run over the extra 2-indices. All other
Christoffel symbols vanish. Using Weinberg’s conventions, the Ricci tensor is

RMN = RQMQN = ∂MΓQNQ − ∂QΓQMN + ΓQPMΓPNQ − ΓQPQΓPMN (B.2)

RMN is Diagonal

To see that the Ricci tensor is diagonal, consider RMN for M 6= N . Let us consider the
expression term by term.
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• ∂MΓQNQ: From (B.1), the only non-zero ΓQNQ are ΓQ0Q and Γ5
45 (Q 6= 0). The first de-

pends only on t̂, while the second depends only on θ. However, if M 6= N , then the
derivative acting on the first Christoffel could not be with respect to t̂, nor the second
with respect to θ, therefore this term must vanish on the off-diagonals.

• ∂QΓQMN : From (B.1), the only non-zero ΓQMN with M 6= N are again ΓQ0Q and Γ5
45

(Q 6= 0). Again, ∂QΓQ0Q vanishes since Q 6= 0, and ∂5Γ
5
45 vanishes because there is no

dependence on φ.

• ΓQPMΓPNQ: This term requires a bit more direct substitution. First, if Q = 0, then
P = M for the first Christoffel not to vanish. In that case, the second factor is ΓMN0,
but this is only non-zero if M = N , so Q cannot be 0. The same argument says that P
cannot be 0 either. Similarly, if Q is a non-compact spatial dimension (i.e., 1-3), then
P = Q, and M = N = 0, so that one’s out too. Finally, if Q is an extra-dimensional
coordinate, then there is a non-zero option. If M = 0 and N = 4, then we have the
non-zero Γ5

50Γ
5
45 = b′ cot θ/b (this term is of course the same for M ↔ N ).

• ΓQPQΓPMN : This term is easier to handle. The only Christoffels of the form ΓQPQ either
have P = 0 or P = 4. For the former, we again find the second factor vanishes unless
M = N . For the latter, however, we can have the non-zero Γ5

45Γ
4
04 = b′ cot θ corre-

sponding to M = 0, N = 4. This is precisely the same contribution as the previous
term, and since they appear with a relative minus sign in the Ricci tensor, the tensor
itself vanishes for M 6= N .

Einstein Tensor

We conclude then, that the Ricci tensor is diagonal, and hence so is the Einstein tensor
GMN := RMN −

1
2δ
M
N R. To compute this, we need:

R := gMPRPM = −R00 +
1

â2

(∑
Rii

)
+

1

b2

(∑
Raa

)
,

= −3
a′′

a
− 2

b′′

b
+ 3

(
−2

(
a′

a

)2

− a′′

a
− 2

a′b′

ab

)

+ 2

(
−
(
b′

b

)2

− b′′

b
− 1

b2
− 3

a′b′

ab

)
,

= −6
a′′

a
− 6

(
a′

a

)2

− 12
a′b′

ab
− 2

(
b′

b

)2

− 4
b′′

b
− 2

b2
(B.3)
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so that we can write:

G0
0 = 3

(
a′

a

)2

+ 6
a′b′

ab
+

(
b′

b

)2

+
1

b2
,

Gij =

[
2
a′′

a
+

(
a′

a

)2

+ 4
a′b′

ab
+

(
b′

b

)2

+ 2
b′′

b
+

1

b2

]
δij , (B.4)

Gmn =

[
3
a′′

a
+ 3

(
a′

a

)2

+ 3
a′b′

ab
+
b′′

b

]
δmn .

Stress-Energy Tensor

Lastly, we need the Stress-Energy tensor TMN = δMN LM − 2gMCδLM/δg
CN , where LM is

the matter Lagrangian density—in this case:

−LM =
1

4
FMNF

MN +
1

2
∂Mφ∂

Mφ+ V (φ) (B.5)

from which:

− δLM
δgCN

=
1

2
FAC F

A
N +

1

2
∂Cφ∂Nφ

so that altogether

TMN = F M
A FAN + ∂Mφ∂Nφ−

[
1

4
FMNF

MN +
1

2
∂Mφ∂

Mφ+ V (φ)

]
δMN

= f2δmn + ∂Mφ∂Nφ−
[

1

2
f2 +

1

2
∂Mφ∂

Mφ+ V (φ)

]
δMN , (B.6)

where the first term is only present if M = m,N = n ∈ [4, 5]. Once we make the ansatz
that φ is homogeneous and isotropic, the Stress-Energy tensor becomes diagonal.
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Einstein Equations

Finally, we piece it all together in the Einstein Equations GMN = −κ2TMN :

3

(
a′

a

)2

+ 6
a′b′

ab
+

(
b′

b

)2

+
1

b2
= κ2

{
1

2

[
φ̇2 + f2

]
+ V

}
,

2
a′′

a
+

(
a′

a

)2

+ 4
a′b′

ab
+

(
b′

b

)2

+ 2
b′′

b
+

1

b2
= κ2

{
1

2

[
φ̇2 − f2

]
− V

}
, (2.9)

3
a′′

a
+ 3

(
a′

a

)2

+ 3
a′b′

ab
+
b′′

b
= κ2

{
1

2

[
φ̇2 + f2

]
− V

}
,

as seen in chapter 2.1.
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Appendix C

Consistency of the Truncation

Here we explicitly demonstrate that a coordinate transformation is all that separates the
4D and the 6D equations of motion. Given that, solutions to the 4D equations are then
just a coordinate transformation away from solutions to the 6D equations, so at least at the
classical level, studying our 4D system is sufficient to understand the full 6D system.

First we use the changes of variables a = â eψ/2Mp and t′ = dt/dt̂ = eψ/2Mp to write

H =
ȧ

a
=

(
Ĥ +

ψ′

2Mp

)
e−ψ/2Mp and H =

ψ′

2Mp
. (C.1)

Substituting these into (2.22) and undoing the field re-definition ϕ =
√

4π b? φ gives:

− ψ′

2Mp
φ′ + φ′′ + 3

(
ψ′

2Mp
+ Ĥ

)
φ′ +

∂V

∂φ
= 0 ,

− ψ′

2Mp
ψ′ + ψ′′ + 3

(
ψ′

2Mp
+ Ĥ

)
ψ′ − 4πb2?

Mp
V (φ)

+
2Mp

b2?
e−ψ/Mp − 6πf2

b2?Mp
e−2ψ/Mp = 0 , (C.2)

4πb2?
(φ′)2

2
+

(ψ′)2

2
+ 4πb2? V (φ)−

M2
p

b2?
e−ψ/Mp

+
2πf2

b2?
e−2ψ/Mp = 3M2

p

(
ψ′

2Mp
+ Ĥ

)2

,

where we have also expanded the definition of W (ψ,ϕ). Using b = b? exp(ψ/2Mp), we can
get rid of ψ in favour of b:

φ′′ +
(

3Ĥ + 2H
)
φ′ +

∂V

∂φ
= 0 , (C.3)
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ψ′′

2Mp
+
(

3Ĥ + 2H
)
H− 4πb2?

2M2
p

V (φ) +
1

b2
− 3πb2?

M2
p

f2

b4
= 0 , (C.4)

and
4πb2?
M2
p

{
1

2

[
(φ′)2

2
+

f2

b4

]
+ V (φ)

}
− 1

b2
= 3Ĥ2 + 6ĤH+H2 . (C.5)

Now using the definition of Mp, we can write κ2 = 4πb2?/M
2
p , which shows that (C.3) is

equivalent to the 6D inflaton equation of motion, (2.5), while (C.5) is equivalent to the 6D
Friedmann equation (i.e., the first in (2.9)). Finally, using

ψ′′

2Mp
=
b′′

b
−H2 (C.6)

shows (C.4) becomes

b′′

b
+ 3ĤH+H2 +

1

b2
= κ2

(
1

2
V (φ) +

3

4

f2

b4

)
. (C.7)

This is equivalent to 1/4 times the first, plus 3/4 times the second, minus 1/2 times the third
of the Einstein equations (2.9). Thus we recover all the information of the 6D equations
of motion using our 4D reduction, and hence we are capturing the full dynamics of the
system just by studying our 4D equivalent system. This is a consistent truncation [21] since
our extra-dimensional manifold S2 is homogeneous.
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Appendix D

Second-Order Corrections to the
Magnon Inflation Model

In order to include corrections to the first-order results, we can construct the matter La-
grangian to second-order by adding to the action

∆S =

∫
d4x
√
−g ∆L,

where we have defined the second-order Lagrangian contribution

−∆L :=
1

2

[
Gab(φ) gµν + Iab(φ)UµUν

]
∂µφ

a∂νφ
b +

1

2

[
C(1)(φ)∇µUν∇µUν

+ C(2)(φ)(∇ · U)2 + C(3)(φ)∇νUµ∇µUν + C(4)(φ)Uλ∇λUµUν∇νUµ
]

+ C(5)a (φ)Uν (∇νUµ) ∂µφ
a + C(6)a (φ)Uµ (∇ · U) ∂µφ

a. (D.1)

This correction includes all terms involving two powers of field derivatives, modulo inte-
gration by parts1. Given this modification of the action, we find the following corrections
are added to the LHS of the equations of motion (3.7) to (3.9):

∆(ξ) = 0,

∆(U)
µ = Iab ∂µφaφ̇b + C(4) U̇ν∇µUν + C(5)a ∇µUν∇νφa

+ C(6)a (∇ · U)∇µφa − ∇ν
{
C(1)∇νUµ + C(2)δνµ∇ · U + C(3)∇µUν

+ C(4)UνU̇µ + C(5)a Uν∇µφa + C(6)a δνµφ̇
a
}
, and

∆(φ) =
∂(∆L)

∂φa
+∇µ

{
Gab∇µφb + Iab Uµφ̇b + C(5)a U̇µ + C(6)a Uµ∇ · U

}
, (D.2)

1With constant coefficients, the terms in the second square brackets are the major players in the Einstein-
Aether theory [22] (whose authors deserve the credit for finding all those terms).
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where the contribution ∆(X) is added to the LHS of the X equation of motion.
Note that the ξ equation of motion is unchanged since there are no new terms involv-

ing ξ at the second order level (it is, after all, just a Lagrange multiplier). However, the
correction to the Uµ equation of motion does mean that the value of ξ changes. To see this,
contract the new equation of motion for Uµ with Uµ as before. Now, we have

2ξ = Aaφ̇a + Iabφ̇aφ̇b + C(4)U̇νU̇ν + C(5)a U̇ν∇νφa

+ C(6)a (∇ · U)φ̇a − Uµ∇ν
{
C(1)∇νUµ + C(2)δνµ∇ · U + C(3)∇µUν

+ C(4)UνU̇µ + C(5)a Uν∇µφa + C(6)a δνµφ̇
a
}
.

One useful thing we can do with these abominable equations is to verify that the value
of Uµ found before still holds, as long as we can assume the same homogeneous cosmic
frame. In this frame, we had that the scalars only depended on a time coordinate t, and the
metric took the FRW form (implying the helpful relation (3.12)). Under these assumptions,
the correction ∆(U) becomes

∆(U)
µ = Iab ∂µφaφ̇b + C(5)a

(
∇µφa + Uµφ̇

a
)

+ 3C(6)a H∇µφa

− ∇ν
{
C(1)∇νUµ + 3C(2)δνµH + C(3)∇µUν

+ C(5)a Uν∇µφa + C(6)a δνµφ̇
a
}
. (D.3)

while ξ takes the value

2ξ = Aaφ̇a + Iab φ̇aφ̇b + 3C(6)a Hφ̇a − Uµ∇ν
{
C(1)∇νUµ + 3C(2)δνµH

+ C(3)∇µUν + C(5)a Uν∇µφa + C(6)a δνµφ̇
a
}
. (D.4)

Clearly, the choice U0 = 1, U i = 0 satisfies the first-order components of the full Uµ

equation of motion, but it remains to be seen if the new contributions are satisfied. To do
so, first we evaluate the expressions (D.3) and (D.4) using this ansatz.

∆
(U)
0

∣∣∣∣
U0=1

= Iab φ̇aφ̇b + 3C(6)a Hφ̇a −∇ν
{(
C(1) + C(3)

)
H(δν0 − Uν)

+ 3C(2)δν0H + C(5)a Uν φ̇a + C(6)a δν0 φ̇
a
}
,

∆
(U)
i

∣∣∣∣
U i=0

= 0,
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while

2∆ξ

∣∣∣∣
U=(1,0,0,0)

= Uµ∆(U)
µ ,

= ∆
(U)
0 ,

where we have defined 2∆ξ := 2ξ −Aaφ̇a.
The second-order contributions to the Uµ equation of motion then become

2∆ξU0 + ∆
(U)
0 = −∆

(U)
0 + ∆

(U)
0 = 0, while

2∆ξUi + ∆
(U)
i = 0 + 0 = 0.

Therefore, even including second-order contributions, Uµ has the simple solution U0 =
1, U i = 0 as long as there still exist homogeneous and isotropic solutions for the scalars
and the metric. Finally, we must compute the corrections to the stress-energy tensor.

D.1 Corrections to the Stress-Energy

In order to compute the corrections to the stress-energy, we can write (D.1) in a more sug-
gestive way:

−∆L =
1

2
(Gabgµν + IabUµUν)∂µφ

a∂νφ
b + C(5)a U̇µ∂µφ

a

− C(6)a (∇ · U)φ̇a +
1

2
Kµν

αβ∇µU
α∇νUβ, (D.5)

where we have defined:

Kµν
αβ := C(1)gαβgµν + C(2)δµαδνβ + C(3)δµβδ

ν
α + C(4)gαβUµUν . (D.6)

The variation can then proceed as usual.

∆Tµν = gµν∆L− 2
δ∆L

δgµν
,

= gµν∆L+ Gab∂µφa∂νφb + C(1)
(
∇µUλ∇νUλ −∇λUµ∇λUν

)
− C(4)U̇µU̇ν − 2Jλα

δ∇λUα

δgµν
, (D.7)
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where this time we defined

Jλα := Kλρ
αβ∇ρU

β + C(5)a Uλ∂αφ
a + C(6)a φ̇aδλα. (D.8)

This just leaves the computation of:

Jλα δ(∇λUα) = JλαU
β δΓαλβ

= −1

2
JλαU

β [gγλ∇β(δgγα) + gγβ∇λ(δgγα)− gλγgβσ∇α(δgγσ)]. (D.9)

After integrating by parts, this term is equivalent to

Jλα δ(∇λUα)→ −1

2
∇σ
[
JγαU

σ + JσαUγ − J σ
γ Uα

]
δgγα. (D.10)

Altogether then, the additional contributions to the stress-energy are

∆Tµν = gµν∆L+ Gab∂µφa∂νφb + C(1)
(
∇µUλ∇νUλ −∇λUµ∇λUν

)
− C(4)U̇µU̇ν +∇σ

[
JµνU

σ + JσνUµ − J σ
µ Uν

]
. (D.11)

Corrections to the Energy Density

With this information in hand, we can also compute the corrections to the energy density.
Here it is very important to remember that the value of ξ is also modified by the higher
order terms. For ease, we also evaluate this as the solution U = (1, 0, 0, 0).

UµUνTµν = ρ+ ∆ρ

= V − 2∆ξ + UµUν∆Tµν . (D.12)

Separately (and using the assumptions of homogeneity and isotropy of the fields), we
have:

−2∆ξ = −Iab φ̇aφ̇b + 3H
(
C(5)a − C(6)a + C(2),a

)
φ̇a − 3H2

(
C(1) + C(3)

)
+ 3Ḣ

(
C(2) − C(1)

)
+
(
C(5)a,b + C(6)a,b

)
φ̇aφ̇b +

(
C(5)a + C(6)a

)
φ̈a, (D.13)
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and

UµUν∆Tµν =
1

2
(Gab + Iab)φ̇aφ̇b + 3C(6)Hφ̇a − 3

2
H2
(
C(1) + 3C(2) + C(3)

)
− 3HC(2),a φ̇

a − 3C(2)
(
Ḣ + 3H2

)
−
(
C(5)a φ̈a + 3HC(5)a φ̇a + C(5)a,b φ̇

aφ̇b
)

−
(
C(6)a φ̈a + 3HC(6)a φ̇a + C(6)a,b φ̇

aφ̇b
)
. (D.14)

Altogether then,

UµUνTµν = ρ+ ∆ρ, (D.15)

with ρ = V , and ∆ρ defined as

∆ρ :=
1

2
Qabφ̇aφ̇b − 3HC(6)a φ̇a − 9

2
H2
(
C(1) + 3C(2) + C(3)

)
− 3C(1)Ḣ, (D.16)

and Qab := Gab − Iab is the target-space metric.
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