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Abstract

We develop a coarse-grained model of lipids and proteins in which the lipids

are modelled as diblock copolymers and the proteins as rigid cylinders. The

generic protein model allows the possibility of amphipathic proteins with in-

trinsic curvature. Self-consistent field theory (SCFT) is used to determine the

morphology of the lipid bilayer in the vicinity of the proteins. In particular, we

focus on the case of a long transmembrane protein inserted perpendicular to

the bilayer. For this system we use SCFT to determine the mechanical prop-

erties of the membrane and the thickness profile as a function of distance from

the protein inclusion. The mechanical constants are also used in an elastic the-

ory to predict the thickness profile. Good agreement between the full SCFT

and elastic theory is obtained. We also use SCFT to determine systematic

trends of the boundary conditions for the thickness profile at the protein in-

terface. Such results could be used as boundary conditions for the description

of bilayers using elastic theory. We show that this system undergoes a second

order wetting transition as the interaction strength between the protein and

membrane is varied.
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Chapter 1

Introduction

1.1 Lipid Bilayers and Proteins

1.1.1 Types of Lipids and Bilayer Composition

Lipids are amphiphilic molecules which self-assemble in aqueous environ-

ments to form many different structures, in particular they can form bilayer

membranes [1]. Such membranes are the structural basis for many living or-

ganisms and may have been important for the evolution of life itself [2, 3].

Cellular membranes are characterized as a “fluid mosaic”, in which the var-

ious components of the membrane, including proteins, can diffuse laterally

along the surface formed by the lipid bilayer [4]. This fluid structure leads to

many interesting mechanical properties, which will be discussed later. In order

to maintain the stability of the fluid membrane, several different types of lipid

molecules are required [5], which will be discussed briefly in what follows.

Lipid molecules can differ from one another in terms of their hydrocarbon

tail length (i.e. number of carbons in the tail) and saturation (i.e. number

1
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of carbon-carbon double bonds). These properties of the lipids (in addition

to others not discussed here) determine the geometry of their self-assembled

structure [6]. The most abundant type of lipids in the plasma membrane of

cells are those which spontaneously form flat (zero spontaneous curvature)

bilayers, for example phosphatidylcholine (PC) [7]. Lipids of this type can be

thought of as having a cylindrical shape, in which the head group and tail

group have approximately equal volumes [8]. See Figure 1.1a.

For other types of lipids, the tail group can take up more or less volume

than the head group. Such lipids do not necessarily self-assemble into flat

bilayers because of their asymmetric structure and instead form morphologies

with some spontaneous curvature [6]. For example, phosphatidylethanolamine

(PE) is a lipid in which the tail group has a larger area than the head group

and hence has more of a conical shape [8], see Figure 1.1b. Conversely, lipopro-

tein(a) (LPA) has a small tail group compared to its head group. Thus LPA

has an inverse conical shape [8], see Figure 1.1c. Due to the intrinsic curvatures

of the structures which conical and inverse conical lipids form on their own,

these lipids are associated with stabilizing negative and positive curvatures,

respectively [8, 9].

Cellular membranes contain lipids of all three types along with many dif-

ferent proteins and constitute a complex system. Interactions in this system

include those between the different types of lipids with the proteins [10, 11],

interactions between the different types of lipids between themselves [4, 8, 9],

indirect interactions between proteins via the lipids [12] and interactions of the

membrane with other cellular components [4]. During this work we will not

2



M.Sc. Thesis –– Michael Donald Birch –– McMaster University - Physics and Astronomy –– 2016

(a) Cylindrical (zero

spontaneous curvature)

lipid, e.g. PC.

(b) Conical (negative

spontaneous curvature)

lipid, e.g. PE.

(c) Inverse conical (pos-

itive spontaneous curva-

ture) lipid, e.g. LPA.

Figure 1.1: Schematic of different lipid types.

consider this full range of complexity, but rather focus on a few key aspects of

the membranes and use models which adequately capture those features. In

the following subsections we will present the motivation behind the aspects of

membrane biophysics which were studied in this work.

1.1.2 Mechanical Properties of Lipid Bilayers

The idea that lipid bilayers could be modelled by a continuum-mechanical

description was proposed by Canham, Helfrich and Evans, all around the same

time [13–15]. This idea turned out to be extremely fruitful in terms of under-

standing the various shapes which membranes can have [16, 17]. Their main

insight was that at the macroscopic level (so that the membrane can be treated

as a 2D surface), the energy associated with the shape of the membrane must

depend on parameters which describe that shape. Thus they connected lipid

3
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bilayers with differential geometry. In particular, Helfirch considered a free

energy functional of the form [16]

F =

∫
dA

(
1

2
kb(2H + c0)2 + kK + γ

)
, (1.1.1)

where kb is the bending modulus, H is the mean curvature, c0 is the spon-

taneous curvature, k is the Gaussian bending modulus, K is the Gaussian

curvature, and γ is the surface tension. The mean curvature, H, is the aver-

age of the two principle curvatures, while the Gaussian curvature, K, is their

product. The principle curvatures are the curvature (reciprocal of the radius

of curvature) in each of the two independent directions one could move on the

surface. For example, on a cylinder the two directions are up/down the length

and around the circular cross-section. The former has zero curvature, while

the later has curvature given by 1/R, where R is the radius of the cylinder.

Thus, for a cylinder H = 1/2R and K = 0.

The bending moduli and surface tension are mechanical properties of the

membrane. They depend only on the membrane composition and not its

shapea, hence these constants are useful descriptors for differentiating and

characterizing membranes. For this reason, significant experimental and theo-

retical efforts have been made in measuring and making use of these properties

(see e.g. [16, 17, 19]).

a The independence of the mechanical constants is only approximately true. One can think

of Equation 1.1.1 as an expansion of the free energy up to second order in the curvature

and hence only gives a good description for small curvatures, while vary large curvatures

could require higher-order terms. However, as the curvature becomes larger the radius

of curvature shrinks, and once this length scale is on the order of bilayer thickness, such

a continuum description would no longer be valid [18].

4
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Our interest in these constants lies in investigating the consistency of elas-

tic theory and self-consistent field theory (SCFT). Elastic theories are based

on Helfrich’s free energy functional and require the mechanical properties as

input. On the other hand, self-consistent field theory is a meso-scale theory

from which the mechanical constants can be determined. Hence, we can take

the mechanical properties of the bilayer determined by SCFT and make predic-

tions about the bilayer shape using elastic theory. However, such predictions

about the shape can also be made within SCFT itself. If the two theories

are consistent then these predictions should agree. In this work we show the

consistency of SCFT with elastic theory in this way (see section 4.2).

1.1.3 Transmembrane Proteins and Hydrophobic Mismatch

Cellular membranes, while structurally based on lipid bilayers, contain

other components, such as proteins. Proteins in the cell membrane perform

crucial tasks, such as transport of materials across the membrane and sig-

nalling [20]. They are also targeted by many drugs [21]. Thus studying the

interactions of these proteins with the cell membrane is important for future

drug development. The study of these proteins is also relevant to detection

and treatment of certain membrane based disease, for example Alzheimer’s

disease [22].

Most membrane proteins span the thickness of the membrane [21], con-

necting the inside of the cell to the outside. Such proteins are called “trans-

membrane proteins.” It has been observed that the same membrane can ac-

commodate transmembrane proteins of various lengths and the same trans-

5
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Figure 1.2: Schematic of how the lipids may stretch in order to accommodate

hydrophobic mismatch.

membrane protein can be found in membranes of different thicknesses [23].

We define “hydrophobic mismatch” to be the difference between the length

of the hydrophobic core of the transmembrane protein (often an α-helix) and

the hydrophobic thickness of the membrane in which the protein is embedded.

Hydrophobic mismatch is energetically unfavourable since the protein could

be too long (positive hydrophobic mismatch), causing the hydrophobic section

to be in contact with the polar solvent. Alternatively, the hydrophobic section

is too short (negative hydrophobic mismatch), causing the hydrophilic section

of the protein to be in contact with the membrane’s hydrophobic core [24].

In order to accommodate positive or negative hydrophobic mismatch lipids

may stretch (as in Figure 1.2) or compress, respectively. However, there is an

entropic cost to stretching or compressing the lipid tails in order to remove

the mismatch completely since fewer configurations are available to a polymer

which has been stretched or confined. Therefore, the optimal configuration of

the lipids near a transmembrane protein is a non-trivial balance between these

two contributions to the free energy.

In this work we focus on positive hydrophobic mismatch, using a protein

which is much longer than the membrane thickness. The reason for this is

computational simplicity, however it is not a significant limitation of the work

6
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and in fact provides an opportunity to study an additional phenomenon. For

values of the protein-membrane interaction which are not too large, the mem-

brane will stretch a finite amount and the remaining protein length will not

impact the bilayer morphology, thus the system becomes essentially equivalent

to one with a finite length protein. However, for large enough values of the

membrane-protein interaction, the membrane will completely wet the protein.

While the later case is not relevant in a biological context, this wetting phase

transition does have interesting physics (see subsection 1.3.2). Results related

to the transmembrane system are presented in chapter 4.

1.1.4 Membrane Curvature and Proteins

The use of differential geometry, specifically the curvature of surfaces, has

been useful in studying the shape of membranes. On the other hand, mem-

brane proteins perform many important biological functions. There is also

evidence that these two ideas are in fact related through so-called “curvature

sensing” and “curvature generating” proteins [25]. Curvature sensing occurs

when a protein will preferentially bind to regions of the membrane with a

particular curvature, while curvature generation occurs when a protein locally

reshapes the membrane to have a particular curvature. The two phenomena

are distinguished based on whether the protein changes the membrane (as in

curvature generating) or not. The interactions of proteins with membrane cur-

vature and its biological relevance has been the focus of many experimental

and theoretical studies in recent years (see Refs. [11, 25–34] and references

therein).

7
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(a) Scaffolding (b) Amphipathic insertion

Figure 1.3: Schematic of curvature sensing/generating mechanisms.

There are several proposed mechanisms by which curvature sensing and

generating could occur. The two mechanisms which will be discussed in this

work are scaffolding and amphipathic insertion. Scaffolding occurs when a

surface-bound protein has some intrinsic curvature [31] (e.g. BAR proteins

[32]), while amphipathic insertion involves a protein which embeds itself half-

way into the membrane since half of the protein (divided along the long axis)

is hydrophobic and the rest is hydrophilic [28]. These two mechanisms are

represented schematically in Figures 1.3a and 1.3b, respectively.

One of the original goals of this work was to investigate the circumstances

under which a protein will sense or generate curvature. This is an impor-

tant question since it is known that the two phenomena are related and that

some biological processes use curvature as a control mechanism, for example

in clathrin coated pit formation [35]. The theoretical framework to answer

this question is developed in chapter 2, however the numerical difficulties aris-

ing from the implementation of our model discussed in subsection 3.3.3 have

prevented further progress.

8
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1.2 Previous Theoretical Studies

The present work is not the first to investigate the ideas and phenomena

presented in the previous section. Here we briefly outline some of the previous

theoretical and computation works in this area and how the present work

builds on them.

1.2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are considered the computational

method closest to reality for investigating complicated systems which are gov-

erned by classical mechanics [19, 36]. The advantage of these simulations is

that great molecular detail could be included, thus making use of our detailed

knowledge of the chemical structure of many biologically relevant proteins and

lipids. However, the disadvantage is the great computational cost of including

such detail. For this reason, MD simulations are limited in terms of the size

of systems which can be investigated as well as the time-scale on which the

systems can be observed. As an example of a typical study, MD was used to

investigate the epsin-ENTH domain in a system composed of ∼ 106 particles

and simulated behaviour on time scales of ∼ 1− 100 ns [37]. Recent advances

in computing have allowed larger system to be investigated, even approaching

experimental length scales [38], thus reducing this limitation.

In spite of these limitations, MD simulations are considered to be a stan-

dard against which other models can be tested since few phenomenological

parameters are needed [36]. Comparisons between MD and more phenomeno-

logical models can help us elucidate what essential features of the system

9
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reproduce the behaviour of interest, thus contributing to our mechanistic un-

derstanding of these complex systems. While we do not directly compare our

results with any MD simulations, we do compare with and validate elastic

theory, which is often used in conjunction with MD simulations in order to

extract mechanical properties of bilayers. This is done by fitting the thermal

fluctuation spectra obtained in the MD simulation to the spectrum predicted

by elastic theory [19, 36, 39]. In this work we verify the parameters obtained

in such a fit are indeed physically meaningful, hence validating the approach.

1.2.2 Elastic Theories

We have already mentioned the importance of elastic theory to the study of

membranes in subsection 1.1.2. Here we will focus on one work in particular,

that of Tjörnhammar and Edholm [40]. In this work, the authors use the free

energy functional

F [t] =
1

2

∫∫
dxdy

(
ks |t− t0|2 + γ |∇t|2 + kb

∣∣∇2t
∣∣2) , (1.2.1)

to describe how the thickness of a membrane is affected by hydrophobic mis-

match. In Equation 1.2.1 t(x, y) is the thickness, ks is the stretching modulus

(in the direction normal to the bilayer), γ is the surface tension and kb is the

bending modulus. In their work they define the length scale ξ = (kb/ks)
1/4

to non-dimensionalize the system. Applying the Euler-Lagrange equation to

Equation 1.2.1 in cylindrical coordinates (assuming rotational symmetry), we

obtain an equation for t̃(r) = t(r)− t0,

ρ3t̃(4) + 2ρ2t̃′′′ − (1− γ0ρ
2)
(
ρt̃′′ − t̃′

)
+ ρ3t̃ = 0, (1.2.2)

10
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where ρ = r/ξ and γ0 = γ/
√
kbks. The authors then solve Equation 1.2.2

with γ0 = 0, subject to suitable boundary conditions, in order to make general

conclusions about the shape of the thickness profile. They then tried to vali-

date their theory by comparing with MD simulations, however the mechanical

properties which enter their theory are not directly accessible by experiment

and so values of ks and kb are chosen by a combination of assumptions relating

them to other parameters and fitting to simulation data.

Validating elastic theories by fitting parameters as opposed to determining

them directly according to their physical interpretation is a common practice

(e.g. see Refs. [41–43]). This raises the question as to whether the parameters

of these theories carry the physical meaning we believe they do, or if they are

simply phenomenological parameters which parametrize a family of curves that

happen to fit well to simulations or experiments. In this work we answer this

question in the following way. First we determine the mechanical constants

directly within our theoretical framework (see subsection 2.2.3). Second, we

compare the elastic theory profiles, obtained from those constants, with the

predictions made by the same theoretical framework used to determine the

bilayer properties. Thus, we directly test the consistency of elastic theory

with our own.

1.2.3 Self-Consistent Field Theory

Finally, we include, for completeness, a brief discussion of previous works

which employed Self-Consistent Field Theory (SCFT) since that is the the-

oretical framework which is also applied here. SCFT can be thought of a

11
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mesoscopic theoretical tool which bridges the gap between MD and elastic

theory. This is because SCFT does not include molecular detail (results are

average concentrations of the various chemical species) like MD, however does

contain more detail than a continuum description. In addition to being concep-

tually in between the two other theoretical tools, it is also mid-way in terms of

computational difficulty. SCFT is not nearly as computationally expensive as

an MD simulation, however is certainly more costly than solving a differential

equation (or several) numerically.

While several SCFT studies concerning bilayer membranes have been done

previously [18, 44–46], to the best of our knowledge, only one other SCFT

work concerns bilayer membranes and proteins. This is the work by Kik et

al. [47] and also considered the problem of hydrophobic mismatch, as well as

made comparisons with predictions by elastic theory. However, their work,

while similar to what is done here, is distinct from ours. The differences lie in

the formulation of the theory (their discrete formulation versus our continuous

one) and the bilayer properties studied (they studied area per lipid while we

study bilayer thickness). In addition, the elastic theory Kik et al. use for

comparison is different from that used here. Therefore, we view the previous

work as complimentary to our own.

12
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(a) Partial wetting with

θe > 90◦.

(b) Partial wetting with

θe < 90◦.

(c) Complete wetting

(θe = 0◦).

Figure 1.4: Schematic of partial and complete wetting.

1.3 Wetting Phase Transitions

1.3.1 General Theory

Classically, wetting is thought of in terms of a liquid drop on a solid sub-

strate in equilibrium with its vapour. The greater affinity the liquid has for

the substrate, the more favourable it will be to have greater surface area of the

drop in contact with the substrate and hence the more “wetted” the surface

will be. The limiting case of very high affinity is complete wetting, in which

the liquid forms a uniform layer on the entire substrate surface. Situations

in which some wetting occurs, but not complete wetting, are called partial

wetting. The degree to which the surface is wetted can be quantified by the

wetting angle, θe, which is defined to be angle between the substrate and the

inner liquid surface. The smaller θe, the more the surface is wetted, with θe = 0

corresponding to complete wetting. See Figure 1.4 for diagrams of different

wetting scenarios. A wetting phase transition is then defined as the transition

between the partial and complete wetting phases.

13
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Figure 1.5: Diagram explaining Young’s formula.

The wetting angle can be related to physical properties of the system via

Young’s equation [48]

γSV − γSL − γ cos θe = 0, (1.3.1)

where γSV , γSL and γ are the interfacial tensions of the solid-vapour, solid-

liquid and liquid-vapour interfaces respectively. One way in which to under-

stand this relationship is by thinking of the surface tensions as forces, then

Young’s relation is simply the statement that the forces at the point where

the three phases meet must sum to zero since the system is in equilibrium (see

Figure 1.5).

One of the simplest, yet most successful theoretical descriptions of wetting

transitions is the Cahn model [48]. This is a continuum model; which includes

only short-range interactions and can be used to calculate how the various sys-

tem surface tensions change with temperature. Thus, using Young’s formula,

the Cahn model can predict when wetting will occur. This model also predicts

that both first and second order wetting transitions are possible, with the for-

14
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mer occurring when there is a discontinuous jump in the density of the fluid

at the substrate surface and the latter occurring when a microscopic thickness

film continuously grows into one of macroscopic thickness.

1.3.2 Wetting in Polymer Systems

While temperature is the parameter used in Cahn’s model, polymer sys-

tems can exhibit wetting transitions by varying other parameters. In partic-

ular, the strength of the interaction between different chemical species in the

system (parameterized by Flory-Huggins parameters, see subsection 2.2.2)b

can be used [49]. It has been seen previously that Cahn-like second order wet-

ting transitions can occur in polymer systems by varying one Flory-Huggins

parameter, while keeping the others fixed [49].

In the system we are interested in here, the substrate is a cylindrical hy-

drophobic insertion through a bilayer membrane, the membrane itself is the

wetting fluid and the parameter we vary is the the membrane-protein interac-

tion (Flory-Huggins parameter). As discussed in subsection 1.1.3, this system

can be used to model transmembrane proteins, however the motivation for

looking for a wetting transition is not biological since such wetting of proteins

has not been observed in cellular membranes. Instead, this part of our study is

motivated by the interesting physics this system presents, as well as finding an

b Varying these parameters could still be thought of as changing the temperature since

interaction strength between polymers does change with temperature. However, we want

to make it clear that we are directly changing the Flory-Huggins parameter and hence

that is the parameter we will focus on.

15
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upper bound for the membrane-protein interaction beyond which the system

no longer has biological relevance.

The interesting physics of exploring a wetting transition of a bilayer mem-

brane on a hydrophobic surface arises from the fact that, unlike with a droplet

of simple liquid, the spreading of the bilayer across the substrate depends not

only on surface tension, but also on the energies associated with stretching

the membrane from its preferred thickness and with bending the membrane

as this stretching occurs. This bending energy becomes especially important

in the complete wetting phase since the resulting structure in that case has

a sharp kink, which connects the monolayer forming the wetting layer to the

main bilayer membrane. The results of this study are given in section 4.1.

16
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Chapter 2

Model System

2.1 Lipids as Diblock Copolymers

As discussed in subsection 1.1.1, the key property of lipids which cause

them to self-assemble into bilayer membranes is that they are amphiphilic,

i.e. they are composed of hydrophilic and hydrophobic components. Diblock

copolymers are molecules which consist of two polymer chains, each composed

of chemically distinct monomer species, covalently bonded together. There-

fore, diblock copolymers could also act as amphiphilic molecules and hence

would capture the essential property of lipids. Different types of lipids were

distinguished based on the relative size of the head and tail groups (c.f. Fig-

ure 1.1). These differences between lipids can also be captured by diblock

copolymers through changing the relative lengths of the two polymer chains

which compose the diblock. Let NA be the number of monomers in the chain of

species A (here assumed to be modelling the lipid head group) and NB be the

number of monomers in the chain of species B. Then NA = NB would corre-

spond to a lipid with no intrinsic curvature, i.e. cylindrical lipid shape. While
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NA < NB and NA > NB would correspond to the conical and inverse conical

lipid shapes, respectively. Indeed, evidence supporting this correspondence

has been found in the qualitative agreement between theory and experiment

in the recent work published by Dehghan et al. [50].

Since plasma membranes are primarily composed of cylindrical-type lipids,

our model should use primarily symmetric diblock copolymers. In fact, since

this work deals only with small curvatures, we will simplify the system and only

include symmetric diblock copolymers. Since conical and inverse conical lipids

tend to aggregate in regions of high curvature [50], including only cylindrical

lipids should not impact the results of our low-curvature system.

Having motivated the use of diblock copolymers as a model of lipid molecules,

in what follows we present the theoretical tools which have been developed to

study the morphology of diblocks.

2.2 Self-Conistent Field Theory

2.2.1 Gaussian Chain Model

The Gaussian Chain Model is one of the simplest continuum chain models

which captures the basic properties of linear polymers. Despite its simplicity,

when this model is applied to diblock copolymers, the resulting self-assembled

structures have been found to be accurately reproduce the structural properties

of lipid membranes [44]. Here we present the basic assumptions and results
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of this model necessary for the development of Self-Consistent Field Theory

(SCFT). This discussion is based on that given in Ref. [51].

To begin, we assume that the chain is composed of N statistical units.

Each unit has a random length, but all lengths are sampled from the same

distribution. The mean length of a statistical segment is b. When applying

this model to a particular real polymer, N and b are often chosen such that

the average arclength, Nb, and the mean square end-to-end distance (defined

below) are equal to the values for the real polymer. In that case b is called the

Kuhn length.

The backbone of the polymer is described by the space curve, r(s), s ∈ [0, N ],

where r(s) gives the position of the s-th unit. We assume that each unit is sta-

tistically independent of each other in terms of both length and direction, i.e.

〈r′(s) · r′(t)〉 = b2δ(s− t), where 〈·〉 represents an ensemble average over possi-

ble polymer chains and δ is the Dirac delta function. Notice that this require-

ment gives the average arclength of the backbone to be
〈∫ N

0
ds ‖r′(s)‖

〉
= Nb,

as stated above. Moreover, the mean square end-to-end distance, defined as

R2
ee =

〈
‖r(N)− r(0)‖2〉, can be computed as

R2
ee =

〈∥∥∥∥∫ N

0

ds r′(s)

∥∥∥∥2
〉

=

〈∫ N

0

∫ N

0

dsdt r′(s) · r′(t)
〉

= Nb2.

A similar calculation shows that the radius of gyration, defined as the root

mean square distance of a segment from the centre of mass of the chain is

given by Rg = b
√
N/6.
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Finally, we assume that the bonds between segments of the chain can be

thought of as linear springs. The potential energy is thus

U [r(s)]

kT
=

3

2b2

∫ N

0

ds ‖r′(s)‖2
, (2.2.1)

where k is Boltzmann’s constant and T is the temperature. This assumption

is valid as long as the real polymer is not forcefully stretched so far the the

shape of the true bond potential (often modelled as a Lennard-Jones potential)

becomes important and cannot be approximated as being simply quadratic.

Using standard Maxwell-Boltzmann statistics, the probability of observing a

chain is a particular configuration is proportional to the Boltzmann factor,

given by

p[r(s)] ∝ exp

(
− 3

2b2

∫ N

0

ds ‖r′(s)‖2

)
. (2.2.2)

2.2.2 SCFT for AB/C Polymer Blends

We now present the Self-Consistent Field Theory (SCFT) for a blend of AB-

diblock copolymers with C-homopolymers. Here we only give some notation

and results, leaving the details of the derivation to Appendix A.

Let n1 diblock copolymer and n2 homopolymer chains be in a volume V .

Let N1, N2 be the total degree of polymerization of the diblock and homopoly-

mer chains respectively. Let Nα = fαN1, where α ∈ {A,B} give the number of

A- and B-type monomers in the diblock respectively. Since we are applying the

continuous Gaussian chain model (see subsection 2.2.1), we must define a sta-

tistical length for each monomer type, bα = σαb, where α ∈ {A,B,C} and b is

a reference statistical length. We will also choose the diblock copolymer as the
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reference degree of polymerization, N = N1, and define κp = Np/N, p ∈ {1, 2}

so that κ1 = 1 and κ2 = κ. Recall from subsection 2.2.1 that the radius of

gyration for a polymer with degree of polymerization N and statistical length

b is Rg = b
√
N/6. This will be the adopted length scale used in the calcula-

tions. We will assume that both polymers have the same monomer density, ρ0,

which is defined as the number of monomers per unit volume. The “hardcore”

volume, i.e. the space taken up by one monomer which cannot be occupied by

more than one monomer, is thus ρ−1
0 . In SCFT we do not keep track of indi-

vidual molecules, but instead consider the ensemble average concentration of

each species at each point in space. The hard-core interactions are captured in

this formalizm by demanding that the system be incompressible, i.e. the sum

of the concentrations of all the chemical species at each point in space is equal

to unity. Given the definitions thus far, the spatial average concentration of

each polymer type is

φp =
npNp

ρ0V
, (2.2.3)

where p ∈ {1, 2}.

As mentioned above, SCFT works with ensemble average concentrations

(which can vary from point to to point in space), φα(r), α ∈ {A,B,C}, r ∈ V .

Along with these concentrations are average local chemical potential fields,

ωα(r), which capture interactions between the different chemical species. Nat-

urally, the potential fields depend on the concentrations since the interac-

tions at each point in space will depend on what polymers are present at that

point. However, the concentrations also depend on the potentials since poten-

tial gradients would cause polymers to move. There is one other field which is
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needed in characterizing the system, the pressure (or incompressibility) field,

η(r). Mathematically, this field is a Lagrange multiplier which enforces the

incompressibility constraint mentioned above. However, physically it can be

interpreted as the local pressure felt by the monomers at that point due to

hard-core interactions. In SCFT we are looking for the equilibrium configu-

ration, i.e. the set of fields {φα, ωα, η} such that the potential and pressure

fields produced by the concentrations would not change those concentrations.

The above paragraph can be formalized by using statistical mechanics to

write a free energy functional in terms of the various fields,

f [{φα}, {ωα}] =
1

V

∫
dr

(
1

2

∑
α 6=β

χαβNφα(r)φβ(r)−
∑
α

ωα(r)φα(r)

)
−

∑
p

φp
κp

lnQp, (2.2.4)

where χαβ are Flory-Huggins parameters, which give the strength of the inter-

action between species α and β (negative values is attraction, positive values

are repulsion) and Qp are defined below. The goal of finding an equilibrium set

of fields corresponds to finding a local minimum of the free energy functional.

Using functional differentiation, one obtains the following mathematical rela-

tionships between the concentrations, potentials and pressures:

φα(r) =
φ1

Q1

∫ fα

0

qα(r, s)q†α(r, fα − s) ds, α ∈ {A,B} (2.2.5)

φC(r) =
φ2

κ2Q2

∫ κ2

0

qC(r, s)qC(r, κ2 − s) ds (2.2.6)

ωα(r) =
∑
α 6=β

χαβN
(
φβ(r)− φβ

)
+ η(r) (2.2.7)

∑
α∈{A,B,C}

φα(r) = 1, (2.2.8)
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where Q1 and Q2 are functionals of the fields ωα(r), since the functions qα and

q†α depend on ωα(r),

Q1 [{ωα}] =
1

V

∫
q†A(r, NA) dr =

1

V

∫
q†B(r, NB) dr (2.2.9)

Q2 [ωC ] =
1

V

∫
qC(r, NC) dr. (2.2.10)

The functions qα and q†α satisfy the following modified diffusion equation with

initial conditions:

∂qα
∂s

= σ2
α∇2qα − ωαqα, α ∈ {A,B,C} (2.2.11)

qα(r, 0) = 1 (2.2.12)

∂q†α
∂s

= σ2
α∇2q†α − ωαq†α, α ∈ {A,B} (2.2.13)

q†α(r, 0) = qβ(r, fβ), β 6= α. (2.2.14)

Notice that Equation 2.2.7 and Equation 2.2.8 define a linear relationship

between the potential fields and the concentration/pressure fields and can be

written in matrix form as

ωA

ωB

ωC

0


=



0 χABN χACN 1

χABN 0 χBCN 1

χACN χBCN 0 1

1 1 1 0





φA − φA

φB − φB

φC − φC

η


. (2.2.15)

Equation 2.2.15 can be used to obtain an explicit expression for η in terms

of {ωα}. One could therefore define a loop for updating the potential and

pressure fields as follows:

Algorithm 2.2.1. Input: {ωα}, η
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1. Solve Equation 2.2.11 and Equation 2.2.13

2. Compute Q1 and Q2 using Equation 2.2.9 and Equation 2.2.10

3. Compute {φα} using Equation 2.2.5 and Equation 2.2.6

4. Compute the new potential fields, {ω′α}, using Equation 2.2.7

5. Compute the new pressure field, η′, by solving Equation 2.2.15

with {ω′α} on the L.H.S.

If the updated fields, {ω′α} and η′ are the same as the input fields within

some tolerance then a self-consistent solution has been found.

2.2.3 Determining Mechanical Properties of Membranes Within SCFT

As mentioned in subsection 1.2.2, the elastic theories describing the de-

formation of a membrane require mechanical properties of the leaflets of the

bilayer (i.e. a monolayer) as input. Using SCFT we can determine those

properties and hence compare the predictions of SCFT with elastic theories

directly. The elastic theory we focus on the most is that of Tjörnhammar and

Edholm [40], which has a free energy functional given by

F [t] =
1

2

∫∫
dxdy

(
ks |t− t0|2 + γ |∇t|2 + kb

∣∣∇2t
∣∣2) , (2.2.16)

where t(x, y) is the thickness of the membrane. The first term represents the

energy cost for stretching the membrane from its natural thickness, t0, while

the second and third terms are the costs associated with surface tension and
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bending the membrane, respectively. Therefore, we wish to determine the

three mechanical constants associated with stretching, ks, surface tension, γ,

and bending, kb, using SCFT.

The stretching modulus can be determined directly by fitting a quadratic

function to the free energy as a function of |t− t0| for a flat membrane. The

membrane thickness can be measured directly from the concentration profiles

in the SCFT solution and it can be changed by simply changing the box size

used in the numerical implementation of SCFT. It is important to note that

Equation 2.2.4 is a free energy per unit volume per chain and includes not only

the bilayer, but also the bulk solution in which the bilayer sits. Therefore, in

order to properly compare with Equation 2.2.16, the quantity we need to use

is V (f − fbulk), where V is the volume of system, f is given by Equation 2.2.4

and fbulk is the free energy per unit volume per chain of the bulk surrounding

the bilayer. Then ks (in units of free energy per chain per length-squared) can

be determined by fitting the coefficients of

V (f − fbulk) =
1

2
Aks |t− t0|2 + F0, (2.2.17)

where A is the area of the bilayer and F0 is a constant giving the free energy of

a flat membrane with its natural thickness. In fact, the constant F0 also gives

the surface tension, γ, of the membrane, F0 = γA. This is because the only

deviations of f from the bulk value in the case of a flat membrane with the

natural thickness result from the interfaces which define the membrane and

surface tension is simply the energy per unit area of an interface.

Finally, we need to also determine the bending modulus, kb. This is done

using the method presented by Matsen [52]. This method uses cylindrical
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coordinates in 1D in order to bend the monolayer in a controlled way and

thus determine the bending modulus. Using cylindrical coordinates in 1D

forces the membrane to bend into a cylindrical conformation (i.e. a tube). By

varying the radius of this tube we can control how much bending occurs (or

more preciously, the curvature of the bilayer). The result is that kb can be

determined by fitting the coefficients of

V (f − fbulk) =
1

2
AkbC

2 + F0, (2.2.18)

where C = 1/R, is the curvature of the monolayer (R is the radius of the

monolayer in the cylindrical coordinate system).

2.3 Proteins as Masks

2.3.1 General Formulation

To include a protein into the SCFT formalism we use a technique called

“masking” [53]. In this method we include additional concentration fields in

the SCFT equations called masks. These masks take up space (due to the

incompressibility condition) and can interact with the polymers in the system

(by including additional terms in Equation 2.2.7). Thus, masking allows us to

determine how the polymer system will interact with an external object within

SCFT. Generally, we think of the masks as being specified in advance (similar

to boundary conditions of a partial differential equation), and we solve the

SCFT equations for the polymer fields around them. However, it is possible

to have the masks change in response to the polymers as well. This is done by
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fixing the mask fields, finding polymer fields which satisfy the SCFT equations,

then changing the masks to respond to that polymer fields SCFT solution

and repeating until the mask fields no longer change (i.e. are in equilibrium

with their associated SCFT solution polymer fields solution). This has been

done previously, for example in work on nanoparticles suspended in polymer

solutions [54].

Specifically, for our system, we can suppose that the protein mask is com-

posed of two parts: φV and φW , corresponding to the hydrophilic and hy-

drophobic parts, respectively. The SCFT equations given in subsection 2.2.2

then change as follows. Equation 2.2.8 (the incompressibility condition) be-

comes

φA + φB + φC + φV + φW = 1 (2.3.1)

and Equation 2.2.7 becomes

ωα(r) =
∑
β 6=α

χαβN
(
φβ(r)− φβ

)
+ η(r), α ∈ {A,B,C} , β ∈ {A,B,C, V,W} .

(2.3.2)

The structure of Algorithm 2.2.1 is unchanged by these modifications so long

as we assume φV and φW are fixed. We will consider in more detail how to

handle changing protein masks in the next subsection.

2.3.2 Amphipathic and Flexible Masks

In order to address the problem of membrane curvature sensing and gen-

erating proteins we will need a mask which is both amphipathic and can have

spontaneous curvature. In this subsection we construct such a mask.
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To begin, we define the space curve ψ : R→ R3, parametrized by arclength,

to represent the center line of the protein. At each point along this curve

we define a body-fixed reference frame, (e1(s), e2(s), e3(s)), according to the

following rules:

(i) e3(s) = dψ/ds (note: ‖dψ/ds‖ = 1 in the arclength parametrization),

(ii) e2(s) is in the direction perpendicular to e3 and towards the lipid bilayer

when the protein is associated with it,

(iii) e1 = e2 × e3.

The rotation of this coordinate system along the arclength of the protein

is described by the strain vector [55], Ω(s),

dei
ds

= Ω× ei. (2.3.3)

Note that from the definition of ei we also have the relation ei × ej = εijkek,

where εijk is the antisymmetric symbol and repeated indices are implicitly

summed over (Einstein summation convention). Therefore, we can also write

Equation 2.3.3 as (c.f. equation (2) in [56])

dei
ds

= −εijkΩjek, (2.3.4)

where Ωj are the components of Ω in the body-fixed basis, Ωj = ej ·Ω. Ω1 and

Ω2 describe the bending (curvature) of the protein, while Ω3 gives the twist

(torsion) of the protein [57]. Given Ω(s) for each s, and set of initial conditions

ψ(0), e2(0), e3(0) (we do not need to be given e1(0) independently since e1 =

e2 × e3), the space curve ψ(s) is completely specified by Equation 2.3.4 and

ψ(s) =
∫ s

0
e3(s′) ds′ + ψ(0), which follows from the definition of e3.
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The bending and twisting energy of ψ is determined by Ω according to

[56, 57]

E[Ω] =

∫ L

0

3∑
i=1

ki
2

(
Ωi − Ωi

)2
ds, (2.3.5)

where Ωi are the spontaneous curvatures and torsion, k1 and k2 are the bending

moduli, k3 is the twisting modulus and L is the length of the protein. This

term will need to be included in the SCFT free energy functional in order to

model balancing the energy costs of deforming the protein with the energy

gains of being associated with the membrane. As described in the previous

subsection, we will also need a concentration profile (mask) for the protein in

order to include it within the SCFT formalism. In what follows we deviate

from the notation of subsection 2.3.1 since it is more convenient to denote the

two parts of the protein mask by φP,± rather than φW and φV . We associate

concentration profiles with ψ according to the following rule:

φP,±(r) =

∫ L

0

θ
(
±[r− ψ(s)] · e2(s)

)
ϕ (‖r− ψ(s)‖) ds, (2.3.6)

where θ(x) =

1 x > 0

0 x ≤ 0
and ϕ(x) = tanh(b(a − x)) + 1, where a is the ra-

dius of the protein and b > 0 is a parameter for the sharpness of the protein

interface. From the definition of e2, φP,+ is the protein concentration associ-

ated with membrane (hydrophobic), while φP,− will interact with the solvent

(hydrophilic).

Therefore, the free energy functional which includes the polymer SCFT as

well as the protein elasticity is

F = Fpoly + E[Ω] + Fprot,
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where Fpoly is the free energy of the polymers (given by Equation 2.2.4), E[Ω]

is the bending energy of the protein (given by Equation 2.3.5) and Fprot is the

energy from the polymer-protein interaction given by

Fprot =
1

V

∫
dr {χAP,+NφAφP,+ + χBP,+NφBφP,+ + χCP,+NφCφP,++

χAP,−NφAφP,− + χBP,−NφBφP,− + χCP,−NφCφP,−−

η(1− φA − φB − φC − φP,+ − φP,−)} .

Functional differentiation of this free energy with respect to the polymer fields

({ωα, φα, η}) gives the SCFT equations for a fixed protein, while differentia-

tion with respect to the protein variables (the curvatures, initial position and

initial direction) gives a “force” acting on the protein for the current polymer

configurations. Hence, finding the solution of this system requires first solving

the SCFT equations to find the best polymer configurations for the present

protein configuration, then changing the protein a small amount in the direc-

tion of the polymer “force” acting on it and repeating this process until the

protein is in equilibrium with the polymers. Details regarding the numerical

implementation of finding polymer fields which solve the SCFT equations are

given in chapter 3.
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Chapter 3

Numerical Implimentation

3.1 Solving SCFT Equations By Iteration With

Anderson Mixing

As we have seen in section 2.2, the chemical potential fields, ωα, concentra-

tion fields, φα, and pressure field, η, which are solutions to the SCFT equations

are related to one another. Therefore, if we define a function, G({ωα, η}), ac-

cording to Algorithm 2.2.1 (i.e. G is the mapping {ωα, η} 7→ {ω′α, η′}), then

SCFT solutions would also solve

{ωα, η} = G({ωα, η}), (3.1.1)

i.e. {ωα, η} is a fixed point of the function G.

Given the equivalence of solving the SCFT equations to solving a fixed

point problem established above, we will now consider the following general

fixed point problem. Let X be a Real Hilbert Space, with inner product

denoted by 〈·, ·〉 and let G : X → X be a function on that space. We wish to

find x ∈ X such that x = G(x).

31



M.Sc. Thesis –– Michael Donald Birch –– McMaster University - Physics and Astronomy –– 2016

A simple tactic for solving such problems is by iteration: begin with some

initial point x0 and define a sequence recursively according to xn+1 = G(xn).

One might hope that limn→∞ xn would converge and be equal to a fixed point.

In fact, this is true for a certain class of functions, as the following theorem

shows [58]:

Theorem 1 (Banach Fixed Point Theorem). Let U ⊆ X be a closed subset

under the mapping G. Suppose that for all x, y ∈ U

‖G(x)−G(y)‖ ≤ ε ‖x− y‖ , (3.1.2)

where ε ∈ [0, 1) and ‖·‖ is the norm induced by the inner product on X, i.e.

‖x‖2 = 〈x, x〉. Then G has a unique fixed point, x∗, in U and given any

x0 ∈ U , the sequence x0, G(x0), G(G(x0)) . . . converges to x∗.

A function satisfying Equation 3.1.2 is called a contraction mapping on U

and U is call the basin of attraction for the fixed point x∗. Note that the fixed

point is only unique when considering points in U ; G may have other fixed

points in X which lie outside that subset.

It is possible that the subset U is quite small compared to X or perhaps

even that G is not a contraction mapping at all. In this case we can attempt

to construct a contraction mapping with a larger basin of attraction in the

following way. Define a new function

Gλ(x) = (1− λ)x+ λG(x), (3.1.3)

where λ ∈ [0, 1] is called the mixing parameter. Notice that if x∗ is a fixed

point of G then it is also a fixed point of Gλ. Also note that if λ = 0 then Gλ
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is the identity function and if λ = 1 then Gλ = G. Therefore, in some sense,

Gλ is “less harsh” than G in terms of how much x is altered. In the SCFT

literature, solving the SCFT equations by iterating the function Gλ rather

than G is called “simple mixing.”

If one chooses the correct value of λ, the convergence of xn to the fixed

point can be greatly improved. However, the choice of λ is problem-dependant

since if λ is too small then the convergence can be made very slow, but if it

is too large then Gλ may not have a basin of attraction which includes the

initial condition the user has chosen. All of these considerations depend on the

details of G (which in turn depend on the details of the system begin studied)

and x0. Therefore, in practice, λ is chosen essentially arbitrarily by trial and

error.

The method of Anderson mixing is another modification of solving fixed

point problems using iteration. The idea behind this method is to use more

than just the current xn in determining the next iteration, i.e. the algorithm

includes some memory of past iterations. Anderson mixing is named after

Donald G. Anderson, who proposed the method in the context of solving

non-linear integral equations iteratively [59]. The method has since found

use in other areas of physics and chemistry (see e.g. [60, 61]). Here we use

a generalization of the derivation presented by Ng [60]. Suppose we have a

sequence of m points, x0, x1, x2, . . . , xm−1 and we wish to combine them in

some optimal way in order to come closer to a fixed point of G. The simplest

idea would be to choose a linear combination of the previous points:

xm = xm−1 +
m−2∑
n=0

cn(xn − xm−1). (3.1.4)
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Note that there are only m − 1 free constants since we also demand that

the sum of the coefficients in the linear combination be equal to unity, i.e.∑m−1
n=0 cn = 1 =⇒ cm−1 = 1−

∑m−2
n=0 cn. We wish to choose the constants cn

in order to minimize ‖G(xm)− xm‖ since this will make xm as close to being

a fixed point as possible. In order to derive a simple analytic expression we

make the further simplifying assumption that G is a linear function. Using

that assumption and the definition dn = G(xn)− xn, we can write

‖G(xm)− xm‖2 =

∥∥∥∥∥dm−1 +
m−2∑
n=0

cndn

∥∥∥∥∥
2

= ‖dm−1‖2 + 2
m−2∑
n=0

cn 〈dm−1, dn − dm−1〉+

m−2∑
n=0

m−1∑
k=0

cnck 〈dn − dm−1, dk − dm−1〉 . (3.1.5)

By differentiating Equation 3.1.5 we find that the solution to the optimiza-

tion problem is given by the solution to the linear system

b = Ac, (3.1.6)

where b is the vector with elements bn = 〈dm−1, dm−1 − dn〉, A is the matrix

with elements Ank = 〈dm−1 − dn, dm−1 − dk〉, and c is the vector with elements

given by the coefficients of the linear combination, cn.

The final result returned by Anderson mixing is not xm as defined in Equa-

tion 3.1.4, but rather

xm = G(xm−1) +
m−2∑
n=0

cn [G(xn)−G(xm−1)] , (3.1.7)

where the cn’s are the solution to Equation 3.1.6. This ensures that if G is a

non-linear function that future iterates are not limited to the subspace spanned
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by the previous ones. Of course, if G is non-linear then the cn’s used in the

linear combination are only an approximation to the true optimal coefficients,

however we assume that xm will still at least be closer to the fixed point than

the previous iterations, even if it is not as close as it could possibly be.

Thus, the full Anderson mixing algorithm is as follows:

Algorithm 3.1.1. Input: tol, maxit, m, x0

1. Initialize: y0 = G(x0); d0 = y0 − x0; x1 = y0; n = 0

2. while n ≤ m: //build up memory from initial condition

3. n = n+ 1; yn = G(xn); dn = yn − xn

4. if ‖dn‖ < tol then return yn

5. Construct (n−1)-component vector b such that bk = 〈dn, dn − dn−k〉,

k = 1, 2, . . . , n− 1.

6. Construct (n−1)×(n−1) matrix A such that Aij = 〈dn − dn−i, dn − dn−j〉

7. Solve Ac = b

8. xn+1 = G(xn) +
∑n−1

k=1 ck [G(xn−k)−G(xn)]

9. while n < maxit: //continue algorithm with present memory size

10. n = n+ 1; yn = G(xn); dn = yn − xn

11. if ‖dn‖ < tol then return yn

12. Construct (m−1)-component vector b such that bk = 〈dn, dn − dn−k〉,

k = 1, 2, . . . ,m− 1.
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13. Construct (m−1)×(m−1) matrix A such that Aij = 〈dn − dn−i, dn − dn−j〉

14. Solve Ac = b

15. xn+1 = G(xn) +
∑m−1

k=1 ck [G(xn−k)−G(xn)]

Where tol, maxit, and m are input parameters from the user giving the

convergence tolerance, maximum number of iterations and memory size, re-

spectively.

In the actual implementation of the code for this thesis, we have combined

Anderson mixing with simple mixing by also choosing a mixing parameter

λ and using Gλ as the function in the Anderson mixing algorithm instead of

simply G itself. For cases where no protein mask is present (e.g. computing the

bilayer mechanical properties), only Anderson mixing was required so λ = 1

was used. However, with a protein mask it seemed that G alone was not a

contraction mapping and λ = 0.25 was used instead in order for the system

to converge. The inner product used for these systems is the natural one for

a multi-component function space:

〈{ωα, η}, {ω′α, η′}〉 =
∑
α

(∫
dr ωα(r)ω′α(r)

)
+

∫
dr η(r)η′(r). (3.1.8)

3.2 Single Transmembrane Protein in a Bilayer

The main system which we consider in this thesis is one in which there is

a single, cylindrical inclusion which spans the entire width of the membrane

and in fact is much larger than the membrane thickness (however this is not
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a significant limitation, see subsection 1.1.3). In this section we specialize the

SCFT equations given in section 2.2 to this system.

3.2.1 SCFT Equations in 2D Cylindrical Coordinates

This system is rotationally symmetric, hence it lends itself well to cylin-

drical coordinates in which we do not explicitly include the angular variable.

In this coordinate system we have

∇2 7→ 1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2∫
dr 7→ 2π

∫
rdrdz.

Hence, the equations for the propagators for this system are

Q1 [{ωα}] =
2π

V

∫
drdz rq†A(r, z,NA) =

2π

V

∫
drdz rq†B(r, z,NB) (3.2.1)

Q2 [ωC ] =
2π

V

∫
drdz rqC(r, z,NC) (3.2.2)

∂qα
∂s

= σ2
α

(
∂2qα
∂r2

+
1

r

∂qα
∂r

+
∂2qα
∂z2

)
− ωαqα, α ∈ {A,B,C}, (3.2.3)

while the other SCFT equations remain essentially unchanged.

3.2.2 Alternating Direction Implicit (ADI) Method

Equation 3.2.3 needs to be solved numerically when implementing SCFT.

The Alternating Direction Implicit (ADI) Method is a finite differencing, op-

erator splitting method used for solving partial differential equations. The

method works well for equations with one time and two space variables, as
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in Equation 3.2.3 (indeed, it was first developed by Peacemand and Rachford

[62] to solve diffusion equations related to heat flow in two dimensions).

Since this is a finite difference method, we consider a discrete lattice of

spatial/contour (playing the role of time in our equation), {ri, zj, sk}, where

1 ≤ i ≤ Nr, 1 ≤ j ≤ Nz, 1 ≤ k ≤ Ns (in the implementation used in the thesis

Nr = Nz = 150, while Ns varied in order to obtain the desired accuracy of

the propagators). The spacing of the lattice will be given by ∆r = ri − ri−1,

∆z = zj−zj−1 and ∆s = sk−sk−1. For simplicity we will denote q(ri, zj, sk) by

qki,j and ω(ri, zj) by ωi,j. On this lattice Equation 3.2.3 is approximated by a

difference equation. The ADI method uses centred difference approximations

for the spatial variables:

∂2q(r, z, s)

∂r2
7→ δ2

rq
k
i,j =

1

(∆r)2

(
qki+1,j − 2qki,j + qki−1,j

)
(3.2.4)

∂q(r, z, s)

∂r
7→ δrq

k
i,j =

1

2∆r

(
qki+1,j − qki−1,j

)
(3.2.5)

∂2q(r, z, s)

∂z2
7→ δ2

zq
k
i,j =

1

(∆z)2
(qki,j+1 − 2qki,j + qki,j−1), (3.2.6)

and a forward (half-step) difference approximation in the contour variable

∂q(r, z, s)

∂s
7→ δsq

k
i,j =

1

∆s/2

(
q
k+1/2
i,j − qki,j

)
. (3.2.7)

The details of the ADI method are given in Appendix B. Here we concep-

tually lay out the method. Each step takes a full spatial solution forward in the

contour variable, qki,j → qk+1
i,j , by taking two half steps, qki,j → q

k+1/2
i,j → qk+1

i,j .

In the first half step, we keep the z part of the differential operator at k, while

advancing the r part of the differential operator to k + 1/2

δsq
k
i,j = σ2δ2

rq
k+1/2
i,j +

σ2

ri
δrq

k+1/2
i,j + σ2δ2

zq
k
i,j − ωi,j

(
q
k+1/2
i,j + qki,j

2

)
.
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After some rearrangement, one can write a linear system of equations for q
k+1/2
i,j

in terms of qki,j which can be represented using a tridiagonal matrix. This is

convenient since such systems can be quickly and efficiently solved by using the

tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm

[63, 64]. In the second half step we keep the r part of the differential operator

at k + 1/2 and advance the z part to k + 1

δsq
k+1/2
i,j = σ2δ2

rq
k+1/2
i,j +

σ2

ri
δrq

k+1/2
i,j + σ2δ2

zq
k+1
i,j − ωi,j

(
qk+1
i,j + q

k+1/2
i,j

2

)
.

Again, we can rearrange this into a tridiagonal system of linear equations

and apply the TDMA in order to obtain a full spatial solution at k + 1. This

process is repeated to take the initial condition at k = 1 through all the

subsequent values of k, hence obtaining a complete solution to the PDE.

3.3 A Single Surface Protein on a Bilayer

During this thesis work was also done on a system in which the protein

was embedded on the surface of the membrane rather than spanning the entire

thickness. This configuration of the protein breaks the rotational symmetry

used in the previous section to reduce the problem to two dimensions. There-

fore, in this case SCFT needs to implemented differently, as detailed in the

following subsections.
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3.3.1 SCFT Equations in 3D Cartesian Coordinates

Since this system has no canonical symmetry to take advantage of, we use

ordinary Cartesian coordinates as these are the simplest real-space coordinates.

In this coordinate system we have

∇2 7→ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2∫
dr 7→

∫
dxdydz.

Hence, the equations for the propagators for this system are

Q1 [{ωα}] =
1

V

∫
dxdydz q†A(x, y, z,NA) =

1

V

∫
dxdydz q†B(x, y, z,NB)

(3.3.1)

Q2 [ωC ] =
1

V

∫
dxdydz qC(x, y, z,NC) (3.3.2)

∂qα
∂s

= σ2
α

(
∂2qα
∂x2

+
∂2qα
∂y2

+
∂2qα
∂z2

)
− ωαqα, α ∈ {A,B,C}, (3.3.3)

while, again, the other SCFT equations remain essentially unchanged.

3.3.2 Pseudospectral Method

Once again Equation 3.3.3 needs to be solved numerically. However, now

with three spatial dimensions and one time dimension, the ADI method is no

longer sufficiently fast or accurate. Instead, we apply a method which takes

advantage of the form of the differential equation we aim to solve.

Abstractly, we can think of Equation 3.3.3 as ∂sq = Lq, where L is the

differential operator σ2∇2−ω/2−ω/2 (the reason for splitting the ω term into

two parts will be made clear below) and the subscript α’s have been dropped
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for brevity. In this form, theory of first order differential equations tells us

that

q(r, s+ ∆s) = e∆sLq(r, s).

The operator e∆sL can be factored into three parts by using each of the three

terms in L [65]

e∆sL = e−∆sω/2e∆sσ2∇2

e−∆sω/2 +O(∆s3)

(the reason for splitting ω into two parts was to allow the factorization to be

correct up to order ∆s3). The first and final parts of the operator are trivially

applied to the real-space representation of q, while the second part is easily

applied in Fourier space. Hence, if F is the Fourier transform operation then

we can write

q(r, s+ ∆s) = e−∆sω/2F−1
[
e∆sσ2k2F

[
e−∆sω/2q(r, s)

]]
. (3.3.4)

In the code for this thesis we use the fast Fourier transform (FFT) to

perform the Fourier transforms, allowing for a very efficient numerical imple-

mentation. Moreover, since the derivative operations are done in Fourier space

rather than by finite differences we can use a much less dense spatial grid while

keeping good numerical accuracy. This is important since storing many points

on a three-dimensional grid can quickly become very memory and time inten-

sive. In this work a 32× 32× 32 grid was used (compared with the 150× 150

grid used in the 2D case).
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3.3.3 Challenges of Complicated Masks

The reason for considering surface bound proteins was to answer questions

regarding membrane curvature sensing and generating proteins. This requires

a protein with some spontaneous curvature and hence the mask which repre-

sents the protein in SCFT is no longer simply cylindrical (see subsection 2.3.2

for details regarding these masks). These complicated masks effectively serve

as a boundary condition for this system and hence finding solutions becomes

significantly more difficult. Even with the Anderson mixing iterative scheme

described in section 3.1 and the accurate pseudospectral differential equation

solution method described in subsection 3.3.2, convergence was never achieved

for a system involving a curved surface protein.

To attempt to circumvent this problem we tried other schemes for solving

the SCFT equations including conjugate gradient methods, direct heuristic

optimization of the free energy functional, and Newton’s method-type algo-

rithms (with automatic differentiation [66] for computational efficiency). How-

ever, none of these were ever able to out-perform the Anderson mixing scheme

and none could find a solution for the curved protein system. For this rea-

son, despite much time and effort spent on this project, no results will be

presented regarding curvature sensing or generating proteins. However, these

problems only concern the numerical implementation of the theory developed

here, which we believe to be valuable nonetheless. This theoretical framework

may be used in a future work with a more robust numerical implementation.
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Chapter 4

Results for a Transmembrane Protein

in a Bilayer

In this chapter we present the results obtained for the system composed

of a bilayer membrane with a long, cylindrical, hydrophobic insertion span-

ning the entire membrane width. This system provides a simple model of

transmembrane proteins, as well as the opportunity to study an interesting

variation on wetting phase transitions.

Throughout this chapter we will be considering three different values of

the Flory-Huggins parameters which describe the bilayer, χABN = χBCN =

15, 20, 25. These values correspond to soft, medium and hard bilayers (in the

sense of their bending rigidities), respectively. In addition, we consider three

different values of the radius of the cylindrical insertion, R = 0.1, 2, 20 (in

units of the polymer radius of gyration). These values correspond to distances

which are much shorter, approximately equal to, and much greater than the

thickness of the membrane.
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4.1 Wetting Transition

We begin with the results regarding the wetting phase transition. During

this study we began with the membrane against a non-interacting insertion,

i.e. χAWN = χCWN = 0. Since the inclusion is normally inserted with respect

to the bilayer, this configuration corresponds to a wetting angle of θe = 90◦.

The strength of the protein-membrane interaction was then increased one unit

at a time, i.e. χAWN = χCWN = 1, 2, 3, . . ., with the previous SCFT solution

used as the initial condition for the next computation. As χAWN increases,

the bilayer covers more of the insertion surface and θe decreases. At each value

of χAWN , the membrane hydrophobic interfaces (defined to be where φA = φB

in the SCFT solution) were found. We then define complete wetting in terms

of these interfaces, viz. complete wetting has occurred once the interfaces no

longer intersect the hydrophobic insertion. Some representative plots of the

bilayer in the various configurations described here are shown in Figure 4.1.

Examining Figure 4.1, we see that the concentration of lipids (AB-diblocks)

at the insertion surface increases continuously until a full-fledged monolayer is

formed. Therefore, we conclude that this is a second order Cahn-like wetting

phase transition, similar to that found previously in another polymer system

[49]. This result is the same for each different set of membrane parameters and

protein radii (not all shown). However, those parameters do determine when

the transition occurs. This can be seen in Figure 4.2, in which θe is plotted

against χAWN . We see that the trend is softer bilayers and larger protein radii

tend to decrease the value of χAWN at which the transition takes place. This

result makes sense since, as mentioned in subsection 1.3.2, the primary energy
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Figure 4.1: Plotted is φA − φB as a function of r and z. The solid black lines

show the bilayer hydrophobic interface, φA = φB, and the dashed black line

shows the protein insertion surface, φW = 0.5. The value of χAWN increases

from left to right and top to bottom as follows: 0, 30, 40, 50, 60, 65, 70, 80,

90. We would say that complete wetting is achieved between χAWN = 70 and

80 since the solid and dashed lines no longer intersect after that point.

45



M.Sc. Thesis –– Michael Donald Birch –– McMaster University - Physics and Astronomy –– 2016

barrier to wetting is the formation of the kink which is necessary to connect

the wetting monolayer with the bilayer membrane. This energy barrier will

be lower for membranes which have smaller bending rigidities and for larger

protein radii (since the radius of curvature of the kink will be larger), hence

wetting would occur at lower values of χAWN . Note that in Figure 4.2 the

wetting angle does not suddenly drop to zero where the lines end in the plot

(which would indicate a first order phase transition); the wetting angle simply

because more difficult to numerically determine accurately after those points.

However, since this difficulty arises in the same way for all parameter values,

where the lines end is a proxy for where the phase transition occurs.

4.2 Consistency of Elastic Theory with SCFT

Next, we will use the membrane hydrophobic interface data obtained in

the calculations described in the previous section (the solid black lines in Fig-

ure 4.1) in order to compare SCFT with elastic theory. By taking the distance

between the top and bottom curves which describe the interfaces, we can de-

termine the thickness of the bilayer as a function of the radial coordinate.

This is the same quantity which can be predicted using the elastic theory of

Tjörnhammar and Edholm [40] discussed in subsection 1.2.2. Recall that the

mechanical properties of the bilayer are parameters of this theory and that

they can be calculated directly within SCFT. Using the methods described

in subsection 2.2.3, we determine the stretching modulus, ks, the surface ten-

sion, γ, and the bending modulus, kb. Additionally, from the thickness profile

obtained in SCFT, we determine the natural thickness, t0 and the boundary
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Figure 4.2: Plots showing the wetting angle of the bilayer as a function of

χAWN . Solid, dashed and dotted lines correspond to χABN = 15, 20, 25 (i.e.

soft, medium and rigid bilayers), respectively. Panels (a), (b), and (c) show

the data for the protein radius being equal to 0.1, 2, 20 (i.e. much smaller than,

approximately equal to and much greater than bilayer thickness), respectively.

The small oscillations which appear are due to numerical imperfections when

determining the wetting angle.
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conditions, t(R) and t′(R), where R is the protein radius. We can then use all

this information obtained from the SCFT calculation to solve Equation 1.2.2

numerically. In order to determine if the elastic theory is consistent with SCFT

we then compare this solution to the SCFT thickness profile.

Figure 4.3 shows some representative thickness profiles obtained from SCFT

and elastic theories. The average difference between the two curves is plot-

ted as a function of χAWN for the various membrane parameters and protein

radii in Figure 4.4. We see that the two theories agree very well (all aver-

age deviations < 8%, with the most significant differences occurring near the

wetting transition). Therefore it can be concluded that SCFT is consistent

with elastic theory in the sense that the profile predictions from elastic theory

obtained using the SCFT mechanical properties agree with the SCFT profile

predictions.

4.3 Systematics of Profile Boundary Conditions

Given that the predictions of elastic theory are the same as those from

the more complicated and more computationally intensive SCFT, it would be

desirable if elastic theory could be used in future studies. However, boundary

conditions are still required in order to solve the differential equation associ-

ated with elastic theory and these cannot be obtained without some additional

assumptions. For example, it has been assumed previously [40] that perfect hy-

drophobic matching occurs (i.e. the membrane thickness changes to perfectly

correspond with the protein thickness) and that the membrane is locally flat
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Figure 4.3: Representative plots showing the hydrophobic thickness of the bi-

layer as a function of r. The black lines show the thickness profile obtained

directly from the SCFT calculations, while the red lines are the profiles pre-

dicted by elastic theory using the parameters calculated from within SCFT.

The equilibrium thickness (thickness when no protein is present) has been sub-

tracted from the values so that a value of zero corresponds to the preferred

thickness of the membrane. The value of χAWN increases from top to bottom

and left to right: χAWN = 10, 20, 40, 60.
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Figure 4.4: Plots showing the average absolute difference between the SCFT

and elastic theory predictions of the hydrophobic thickness of the bilayer, a

function of χAWN . Solid, dashed and dotted lines correspond to χABN =

15, 20, 25 (i.e. soft, medium and rigid bilayers), respectively. Panels (a), (b),

and (c) show the data for the protein radius being equal to 0.1, 2, 20 (i.e. much

smaller than, approximately equal to and much greater than bilayer thickness),

respectively.
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near the protein (i.e. the first derivative of the thickness profile is zero at the

boundary).

In contrast, SCFT does provide boundary conditions for the profile with-

out additional assumptions. We take advantage of this fact in order to provide

systematics of the boundary conditions over the various parameter values used

in this study. We hope that the trends revealed here will inform future as-

sumptions used when determining the boundary conditions for elastic theories.

The thickness of the membrane is plotted as a function of χAWN in Fig-

ure 4.5 for the different membrane parameters and protein radii. Note that

for these calculations the hydrophobic mismatch is technically infinite since

the protein is much longer than the membrane thickness, however, below the

wetting transition, the stretching of the membrane is finite. This plot thus

gives an upper bound for the membrane stretching which can occur for differ-

ent interaction strengths. Perfect hydrophobic matching will occur only if the

hydrophobic part of the protein is shorter than the values given in Figure 4.5,

otherwise only some membrane stretching will occur. This is an important

result since it challenges the assumption given above. The general systematic

trend in this data is that the upper bound of membrane stretching increases

with the interaction strength and the rate of this increase is a decreasing

function of the membrane stretching/bending rigidities. The rate is also an

increasing function of the protein radius. Again, these trends are sensible

since, as mentioned previously, more rigid bilayers and smaller proteins should

result in a system which is more resistant to wetting.
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Figure 4.5: Plots showing the hydrophobic thickness of the bilayer at the

protein interface as a function of χAWN . The equilibrium thickness (thickness

when no protein is present) has been subtracted from the values so that a

value of zero corresponds to the preferred thickness of the membrane. Solid,

dashed and dotted lines correspond to χABN = 15, 20, 25 (i.e. soft, medium

and rigid bilayers), respectively. Panels (a), (b), and (c) show the data for the

protein radius being equal to 0.1, 2, 20 (i.e. much smaller than, approximately

equal to and much greater than bilayer thickness), respectively.
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These qualitative trends can be made a little more precise. If the χAWN

axes of all the plots in Figure 4.5 are scaled by a factor χ0, given by

χ0 = 2χABN

(
1 +

1

πR

)
, (4.3.1)

then all nine curves approximately collapse onto a single curve, as shown in

Figure 4.6. The collapse is not perfect and appears to be worse at higher values

of χAWN/χ0. However, Equation 4.3.1 was found using a computationally

assisted search and may only be approximate itself. It is possible that it

represents the first two terms in an expansion for the true scale factor which

relates all nine curves. Future work will be dedicated to developing a physical

model which can justify a formula like the one in Equation 4.3.1. Note that

this scaling does not apply to the derivative of the thickness profile at the

boundary since the trend is non-monotonic in R.

The first derivative of the membrane thickness profile evaluated at the

protein surface is plotted as a function of χAWN in Figure 4.7 for the different

membrane parameters and protein radii. Once again, we see that the previous

assumption does not appear to be correct as the slopes are all non-zero. We

also again see the same systematic trend as we have seen previously in which

softer bilayers are more prone to wetting and hence have steeper initial slopes.

Interestingly, however, the trend in terms of protein radius seems to be non-

monotonic, with the mid-sized protein resulting in the shallowest initial slopes.
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Figure 4.6: Same curves as in Figure 4.5 with the χAWN axes scaled by χ0,

defined in Equation 4.3.1. All nine curves approximately collapse onto a single

curve.
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Figure 4.7: Plots showing the first derivative of the hydrophobic thickness of

the bilayer at the protein interface as a function of χAWN . Solid, dashed and

dotted lines correspond to χABN = 15, 20, 25 (i.e. soft, medium and rigid

bilayers), respectively. Panels (a), (b), and (c) show the data for the protein

radius being equal to 0.1, 2, 20 (i.e. much smaller than, approximately equal to

and much greater than bilayer thickness), respectively. The small oscillations

which appear are due to numerical imperfections when determining the slope

of the thickness profile.
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Chapter 5

Towards an Analytical Framework for

Computing Mechanical Properties of

Membranes Within SCFT

5.1 Framework Motivation and Derivation

The process for determining the mechanical constants of membranes de-

scribed in subsection 2.2.3 is time consuming (∼ 2 days worth of computation)

because it requires solving the SCFT equations many times in order to explic-

itly determine how the free energy changes as the membrane is deformed.

However, it should, in principle, be possible to determine the mechanical con-

stants of a membrane from the SCFT field solutions themselves, rather than

using the free energy. This idea as been applied to other systems in order to

develop analytical expressions for the surface tension and bending moduli of

interfaces (see e.g. [67, 68]). In this section we work towards similar expres-

sions for the SCFT of lipid bilayers. To do this we will apply perturbation

theory to a general constrained optimization problem.
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We begin with some free energy functional, F [φ], which depends on a set

of fields here simply represented by φ for brevity. This functional could, for

example, be the one given in Equation 2.2.4, however we need not specify it

yet. Next, we imagine there are some constraints, {Gi[φ;h] = 0}ni=1, which

play the roll of specifying the shape of a membrane. Note that each Gi is not

a functional since its result is a new function, not a scalar. The idea is that

each Gi can be thought of as including many constrains, one at each point

on the membrane. The constraint depends on the fields involved in the free

energy functional as well as an additional function (or functions), h, which

determines how the membrane is being deformed.

For example, in the case of our SCFT bilayer, we could define the interface

as being where φA(x, y, z) = φB(x, y, z). For fixed x, y, there will be two values

of z where this relation holds (one for the upper leaflet and one for the lower

leaflet). Hence, we could deform the membrane by specifying two functions,

h±(x, y), which give the heights of the upper and lower leaflet. The constraints

would take the form

G±[φA, φB;h±] = φA(x, y, h±(x, y)− φB(x, y, h±(x, y) = 0.

We could simplify these constraints to depend on only one field and one pa-

rameter function by defining a new field, φ = φA − φB, and assuming that

the bilayer has a constant mid-plane height, h = (h+ + h−)/2, but variable

thickness, t(x, y). Then we have the constraints

G±[φ; t] = φ(x, y, h± t(x, y)/2) = 0. (5.1.1)

Notice that each G± is indeed an operator as it maps a function of three

variables (φ) to a function of two variables. The constraint demands that
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this function be identically zero. Keep this example constraint in mind as we

continue through this calculation.

We can now define a new functional, f [h], as follows:

f [h] = F [φ∗], (5.1.2)

where φ∗ is a solution to the constrained optimization problem

Minimize F [φ] subject to Gi[φ;h] = 0 for i ∈ {1, 2, . . . , n}. (5.1.3)

Thus, the functional f [h] captures the effect deforming the bilayer has on the

free energy. Moreover, if we expand f about the flat bilayer then we can

directly obtain the mechanical properties of the bilayer in terms of the flat

membrane SCFT solution since the coefficients of the expansion will depend

on the flat fields and correspond to mechanical properties (such as the bending

modulus). To second order, we can write

f [h∗ + δh] = f [h∗] +

〈
δf

δh
[h∗], δh

〉
+

1

2

〈
δ2f

δh2
[h∗]δh, δh

〉
, (5.1.4)

where h∗ corresponds to a flat bilayer and the inner products are the standard

function space inner products (i.e. integration). For instance, in the example

above, h∗ = 0 and the inner products would correspond to integration over x

and y. Note that in the last term of Equation 5.1.4, δ2f/δh2, is an operator

which acts on δh (much like how the Hessian of a scalar function of many

variables is a matrix). It will be important in what follows to note what type of

object results from a functional derivative and it is often helpful to think about

the multi-variable calculus analogy. Since (in the case of zero spontaneous

curvature) the flat membrane must correspond to a minimum of f (bending the
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membrane always costs energy), we must have that (δf/δh)[h∗] = 0. Thus it

only remains to compute the second functional derivative of f . For simplicity,

from this point forward we will assume that n = 1 so that there is only one

constraint, G[φ;h].

In order to perform this calculation, we will begin by rewriting Equa-

tion 5.1.3 using a Lagrange multiplier, λ,

δ

δφ

(
F [φ]− 〈λ, G[φ;h]〉

)
= 0 (5.1.5a)

G[φ;h] = 0, (5.1.5b)

where λ is a function compatible with the constraint in the sense that the inner

product is well defined. For example, using the constraint in Equation 5.1.1, λ

would be a function of two variables and the inner product would be integration

over x and y. Carrying through the functional derivative in Equation 5.1.5a,

we obtain

δF

δφ
−
(
δG

δφ

)†
λ = 0, (5.1.6)

where the
(
δG
δφ

)†
is the adjointa of the operator δG

δφ
. Combining this equation

with the chain rule, we can write the first functional derivative of f as

δf

δh
=

(
δφ∗
δh

)†
δF

δφ
[φ∗]

=

(
δG

δφ
[φ∗]

δφ∗
δh

)†
λ, (5.1.7)

a The adjoint of an operator A is defined by the property that 〈x, Ay〉 =
〈
A†x, y

〉
for all

x, y ∈ H, where H is a Hilbert space with inner product 〈·, ·〉.
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where φ∗ is as in Equation 5.1.2. Note that φ∗ depends on h implicitly since

it solves the constrained optimization problem. We can eliminate δφ∗/δh by

taking the functional derivative of Equation 5.1.5b with respect to h to obtain

δG

δh
[φ∗] +

δG

δφ
[φ∗]

δφ∗
δh

= 0. (5.1.8)

By substituting Equation 5.1.8 into Equation 5.1.7 we conclude that

δf

δh
= −

(
δG

δh
[φ∗]

)†
λ. (5.1.9)

Note that just as φ∗ implicitly depends on h, so does λ and we have already

argued that (δf/δh)[h∗] = 0, hence Equation 5.1.9 allows us to conclude that

at h = h∗, λ = 0. This is an important observation since it will greatly simplify

future equations. From this point forward we will only be considering h = h∗

so that we can ignore any terms which include λ. We will also drop explicit

references to φ∗, but keep in mind that all functional derivatives are being

evaluated at [φ∗;h∗], i.e. the flat membrane field solutions.

We now want to use Equation 5.1.9 in order to compute the second func-

tional derivative of f . Taking another functional derivative, we have

δ2f

δh2
[h∗] = −

(
δG

δh

)†
δλ

δh
. (5.1.10)

We can substitute δλ/δh out of Equation 5.1.10 in two steps. First, replace

δG/δh using Equation 5.1.8 to obtain

δ2f

δh2
[h∗] =

(
δφ∗
δh

)†(
δG

δφ

)†
δλ

δh
.

Second, we take another functional derivative of Equation 5.1.6 in order to

replace (δG/δφ)†(δλ/δh) with (δ2F/δφ2)(δφ∗/δh),

δ2f

δh2
[h∗] =

(
δφ∗
δh

)†
δ2F

δφ2

δφ∗
δh

. (5.1.11)
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Next, we use Equation 5.1.8 to isolate δφ∗/δh

δφ∗
δh

= −
(
δG

δφ

)‡
δG

δh
+

(
I −

(
δG

δφ

)‡
δG

δφ

)
W, (5.1.12)

where
(
δG
δφ

)‡
is a generalized inverseb of the operator δG

δφ
, I is the identity op-

erator and W is an arbitrary operator. Finally, we substitute Equation 5.1.12

in to Equation 5.1.11 to obtain

δ2f

δh2
[h∗] = G† δ

2F

δφ2
G − G† δ

2F

δφ2
GW − (GW )†

δ2F

δφ2
G + (GW )†

δ2F

δφ2
(GW ) (5.1.13)

where G =
(
δG
δφ

)‡
δG
δh

and G = I −
(
δG
δφ

)‡
δG
δφ

. Notice that if
(
δG
δφ

)‡
is chosen

to be a left-inverse of δG
δφ

then G = 0. Therefore, we have shown that for a

suitably chosen generalized inverse,

f [h∗ + δh] = f [h∗] +
1

2

〈
δ2F

δφ2
Gδh, Gδh

〉
. (5.1.14)

5.2 Example Calculation

To illustrate the usefulness of Equation 5.1.14, let us consider a simple ex-

ample. The Landau free energy functional for a simple liquid-vapour interface

is given by [67]

F [φ] =

∫
dr

(
g(φ) +

1

2
k ‖∇φ‖2

)
, (5.2.1)

where φ is the single particle density, g(φ) is the free energy per unit volume

of a fluid with density φ, and k > 0 is a constant which parametrizes the

b The generalized inverse of an operator A is defined by the property AA‡A = A. One can

prove that
(
A†)‡ =

(
A‡)†, so we will denote both adjoint of the generalized inverse and

generalized inverse of the adjoint as A†‡.
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cost of forming an interface. The free energy density, g(φ) is assumed to have

a double-well structure with the two minima corresponding to the liquid and

vapour phases. We will assume that the system is tuned for co-existence of the

two phases so that the value of g at each of those minima are equal. We will

use Equation 5.1.14 in order to calculate the surface tension of a flat interface

formed in this system.

In this example, we will assume that the z-axis is perpendicular to the

interface and that h(x, y) gives the height of that interface. Clearly, h∗ = 0

corresponds to the flat interface. The constraint we use to deform the interface

according to the function h is

G[φ, h] = φ(x, y, h(x, y))− φ = 0, (5.2.2)

where φ is the average single particle density between the liquid and vapour

phases (i.e. the density in the middle of the interface). In order to ap-

ply Equation 5.1.14 we first need to compute δG/δφ and δG/δh. Define

the mapping Ah by the rule φ(x, y, z) 7→ φ(x, y, h(x, y)). It is clear that in

terms of this map, G[φ, h] = Ahφ − φ, and hence it must be the case that

δG/δφ = Ah. In terms of the Dirac delta function, Ah can be expressed as

Ahφ =
∫
dz φ(x, y, z)δ(z − h(x, y)). Using this form we can compute δG/δh

with the chain rule and integration by parts

δG

δh
=

δ

δh

(∫
dz φ(x, y, z)δ(z − h(x, y))

)
= −

∫
dz φ(x, y, z)δ′(z − h(x, y))

=

∫
dz

∂φ

∂z
δ(z − h(x, y))

= Ah
∂φ

∂z
.
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Next, we compute the operator G,

G =

(
δG

δφ

)‡
δG

δh
= A‡hAh

∂φ

∂z
=
∂φ

∂z
,

where the last step follows from the fact that in the derivation of Equa-

tion 5.1.14 we chose to use a left inverse for the generalized inverse. The

final piece we need is that δ2F/δφ2 = g′′(φ)− k∇2; now we are ready to apply

the formula. Note that we are evaluating the functional derivatives at the flat

profile, φ0, which by symmetry can only depend on z.

f [δh] = f [φ0] +
1

2

∫
dxdydz φ′0(z)δh(x, y)

[
g′′(φ0)− k∇2

]
φ′0(z)δh(x, y)

= f [φ0] +
1

2

∫
dxdydz g′′(φ0) (φ′0(z)δh(x, y))

2
+ k ‖∇(φ′0δh)‖2

= f [φ0] +
1

2

∫
dxdy

([∫
dz g′′(φ0)(φ′0)2 + k(φ′′0)2

]
δh2 +

[
k

∫
dz (φ′0)2

]
‖∇δh‖2

)
,

where the second equality follows using integration by parts. Since ‖∇δh‖2

represents the increase in area of the interface due to the deformation, we

recognize its coefficient as the surface tension of the interface, γ. Therefore,

γ = k

∫
dz (φ′0)2,

which is the same result as that obtained in Ref. [67] by a different method.

Also note that the δh2 coefficient must be zero, by symmetry. We now show

this is indeed the case. Since φ0 is the flat density profile it must minimize the

free energy functional given in Equation 5.2.1 and therefore must satisfy

g′(φ0)− kφ′′0 = 0 (5.2.3)

by the Euler-Lagrange equation. Differentiating Equation 5.2.3 with respect

to z we see that

g′′(φ0)φ′0 = kφ′′′0 .
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Substituting this into the δh2 coefficient above, we have∫
dz g′′(φ0)(φ′0)2 + k(φ′′0)2 =

∫
dz kφ′′′φ′0 + k(φ′′0)2

=

∫
dz − k(φ′′0)2 + k(φ′′0)2

= 0,

where the second last equality follows from integration by parts.

Therefore, we have seen in this example that the theoretical framework

developed here has taken the Landau theory defined by the free energy func-

tional given in Equation 5.2.1 and connected it to an elastic theory defined by

the free energy functional

F [h] = F0 +

∫
dxdy γ ‖∇h‖2 , (5.2.4)

with γ = k
∫
dz (φ′0)2 and φ0(z) the density profile for a flat interface.

5.3 Remarks

With this theoretical framework laid out, one would like extend it to the

case of two constraints then derive a formula similar to Equation 5.1.14. Using

that new equation, with the SCFT free energy functional and constraints like

those in Equation 5.1.1, would create formulas for the mechanical properties

of the bilayer in terms of derivatives and integrals of the flat polymer profiles.

However, deriving the new formula and then computing each of the pieces

involved, as was done in the example above, would require some significant

effort beyond the scope of this thesis. Although, that calculation should be

done in some future work since the result would be very useful.
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Chapter 6

Conclusion

In conclusion, we have used self-consistent field theory (SCFT) to study

the morphology of a lipid bilayer near a transmembrane protein. The con-

nection between the biological system and SCFT was made by modelling the

lipids as diblock copolymers and the protein as a rigid cylinder. This model

framework was also expected to be able to study surface proteins with non-zero

spontaneous curvature, however significant future work is required to obtain

numerical solutions in this case.

Our calculations have shown that a second order wetting phase transition

occurs for strong enough interactions between a very long hydrophobic inclu-

sion and the bilayer membrane. For values of the interaction below the wet-

ting transition, we also verified that an elastic theory of the bilayer thickness

is consistent with SCFT. This is true in the sense that they make the same

predictions when the same mechanical properties and boundary conditions

are used for both (no fitting required). A systematic study of the membrane

boundary conditions at the protein interface was also done using our SCFT

calculations. In light of the consistency between SCFT and elastic theory,

these systematic trends are important as they give guidelines for boundary
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conditions used in future studies of bilayers with elastic theory. Indeed, we

advocate for the continued use of elastic theories since our work as shown they

provide high quality predictions and that fitting elastic theory curves to other

data is an accurate way to determine mechanical properties of bilayers.

Additionally, analytical work was done to derive Equation 5.1.14, which

can be used to calculate mechanical properties of a system without performing

numerical calculations that explicitly deform the system. As an example, we

have used this formalism to derive the surface tension of a liquid-vapour inter-

face within Landau theory. This analytical framework, when applied to SCFT,

would save significant computational time when determining mechanical prop-

erties of polymer systems. Hence, this result is important to the computational

polymer physics community as a whole. Although Equation 5.1.14 is not ap-

plied to SCFT in this work, we believe the mathematical framework itself is

useful and could be applied in future works regarding mechanical properties.
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Appendix A

Full SCFT Derivation

Here we present a derivation of the SCFT equations given in subsec-

tion 2.2.2, following the works in Refs. [51, 69–72].

Recall the notation from subsection 2.2.2. As some further notation, We

will denote the space curve used in the continuous Gaussian chain model for

the α-block of the jth chain by R
(α)
j (s).

The α-monomer concentration field for a given chain configuration is thus

given by

φ̂α(r) =
1

ρ0

np∑
j=1

∫ Nα

0

δ
(
r−R

(α)
j (s)

)
ds, (A.1)

where α ∈ {A,B} if p = 1, α = C if p = 2 and δ(r) is the Dirac delta function

on R3. Using the result from Equation 2.2.2, the probability density for the

configuration of a chain of a particular block is

p
[
R

(α)
j (s)

]
= A exp

− 3

2b2
α

∫ Nα

0

∥∥∥∥∥dR
(α)
j

ds

∥∥∥∥∥
2

ds

 , (A.2)

and hence the probability density for a configuration of chains of the entire

system, {Rj(s)} is

P ({Rj(s)}) =

n1∏
j=1

(
p
[
R

(A)
j (s)

]
p
[
R

(B)
j (s)

]
δ
(
R

(A)
j (NA)−R

(B)
j (NB)

)) n2∏
j=1

(
p
[
R

(C)
j (s)

])
,

(A.3)
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where the Dirac delta function ensures the A- and B-blocks are bonded to-

gether. We can hence write the partition function of the system as the func-

tional integral

Z =
zn1

1 zn2
2

n1!n2!

∫
D{Rj(s)}P ({Rj(s)})

∏
r

δ

(∑
α

φ̂α(r)− 1

)
e−W [{φ̂α(r)}],

(A.4)

where zp, p ∈ {1, 2} are the partition functions of a polymer chain due

to kinetic energy, {φ̂α(r)} is short-hand for {φ̂α(r)}α∈{A,B,C} (i.e. it is the

set of concentration fields from all types of monomers), W
[
{φ̂α(r)})

]
=

V
[
{φ̂α(r)}

]
/(kBT ) is the intermolecular potential functional and the Dirac

delta function ensures incompressibility which is meant to model the hardcore

interactions of the polymers. Recall from subsection 2.2.2 that the Flory-

Huggins parameter models the interaction between the monomers, hence the

intermolecular potential functional has the form

W
[
{φ̂α(r)}

]
=

1

2

∑
α 6=β

ρ0χαβ

∫
φ̂α(r)φ̂β(r) dr. (A.5)

To avoid integrating over the chain configurations themselves we can rewrite

the partition function as

Z =
z
n1
1 z

n2
2

n1!n2!

∫
D{φα}D{ωα}

∏
r δ (
∑

α φα(r)− 1) exp
(∑

α ρ0

∫
ωα(r)φα(r) dr−W [{φα(r)}]

)
×
∫
D{Rj(s)}P ({Rj(s)}) exp

(
−
∑

α ρ0

∫
ωα(r)φ̂α(r) dr

)
,

(A.6)

where we have used the identity

1 =

∫
D{φα}

∏
α

∏
r

δ
(
φα(r)− φ̂α(r)

)
(A.7)
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and the integral definition of the Dirac delta function,

δ(x − x0) =
∫∞
−∞ exp(2πik(x − x0)) dk to introduce auxiliary fields, ωα(r), in

order to write the identity as

1 =

∫
D{φα}D{ωα} exp

(∑
α

ρ0

∫
ωα(r)(φα(r)− φ̂α(r)) dr

)
, (A.8)

where the factor ρ0 was introduced for convenience by scaling the ωα fields

and the range of the {ωα} functional integral varies the value of each ωα(r)

over a line in the complex plane from −i∞ to i∞. We can rewrite the latter

term in Equation A.6 as (Q1V )n1(Q2V )n2 , where Qp [{ωα(r)}], α ∈ {A,B} if

p = 1 and α = C if p = 2, are the partition functions of a polymer chain in

the external fields ωα. These single-chain partition functions are defined by

the path integrals

Q1 [{ωα(r)}] =
1

V

∫
DR

(A)
j DR

(B)
j p

[
R

(A)
j (s)

]
p
[
R

(B)
j (s)

]
δ
(
R

(A)
j (NA)−R

(B)
j (NB)

)
× exp

− ∑
α∈{A,B}

∫ Nα

0

ωα

(
R

(α)
j (s)

)
ds

 (A.9)

Q2 [ωC(r)] =
1

V

∫
DR

(C)
j p

[
R

(C)
j (s)

]
exp

(
−
∫ NC

0

ωC

(
R

(C)
j (s)

)
ds

)
.

(A.10)

The expressions become more manageable be defining chain propagators,

Qα(r, s|r′) =

∫ R(s)=r

R(0)=r′
DR exp

(
−
∫ Nα

0

3

2b2
α

∥∥∥∥dRdt
∥∥∥∥2

+ ωα (R(t)) dt

)
,

(A.11)

where α ∈ {A,B,C}. Physically, we interpret Qα(r, s|r′) as the probability

density for monomer s being at position r given that monomer 0 is at r′ in the
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presence of an external field ωα. One can show that these propagators satisfy

the differential equation

∂

∂s
Qα =

b2
α

6
∇2Qα − ωαQα, (A.12)

with the initial condition Qα(r, 0|r′) = δ(r− r′). In terms of the propagators,

the single-chain partition functions become

Q1 [{ωα(r)}] =
1

V

∫
QA(r1, NA|r2)QB(r1, NB|r3) dr1dr2dr3 (A.13)

Q2 [ωC(r)] =
1

V

∫
QC(r1, NC |r2) dr1dr2. (A.14)

As one further simplification we can introduce the end-integrated propagators,

qα(r, s) =

∫
Qα(r, s|r′) dr′ (A.15)

q†α(r, s) =

∫
Qα(r, s|r′)Qβ(r, Nβ|r′′) dr′dr′′ (A.16)

qC =

∫
QC(r, s|r′) dr′, (A.17)

where if α = A then β = B and vice versa. These end-integrated propagators

also satisfy Equation A.12, with the initial conditions

qα(r, 0) = 1 (A.18)

q†α(r, 0) =

∫
Qβ(r, Nβ|r′) dr′ = qβ(r, Nβ) (A.19)

qC(r, 0) = 1. (A.20)

With these definitions, the single-chain partition functions are given by

Q1 [{ωα}] =
1

V

∫
q†A(r, NA) dr =

1

V

∫
q†B(r, NB) dr (A.21)

Q2 [ωC ] =
1

V

∫
qC(r, NC) dr (A.22)
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and the partition function can be written as

Z =

∫
D{φα}D{ωα}Dη

× exp

(∑
α

ρ0

∫
ωα(r)φα(r) dr−W [{φα}]− ρ0

∫
η(r)

(∑
α

φα(r)− 1

)
dr

)

× (z1Q1V )n1

n1!

(z2Q2V )n2

n2!
, (A.23)

where the field η(r) has replaced the Dirac delta function enforcing incom-

pressibility.

We shall now assume that we are considering a canonical ensemble, then

the number of polymer chains in the volume (and hence also the average

concentrations given by Equation 2.2.3) are constant. We can then write the

partition function as

Z =

∫
D{φα}D{ωα}Dη exp

(
−ρ0

∫
η(r)

(∑
α

φα(r)− 1

)
dr

)
e−F [{φα},{ωα}],

(A.24)

where

F [{φα}, {ωα}] = W [{φα}]−
∑
α

ρ0

∫
ωα(r)φα(r) dr−ln

(
(z1Q1V )n1

n1

)
−ln

(
(z2Q2V )n2

n2

)
(A.25)

is the free energy functional. Notice that up to this point no explicit length

scale has been specified. Adopting the radius of gyration length scale defined

earlier and using the definition of the average polymer concentrations the free

energy functional becomes

F [{φα}, {ωα}] =
ρR3

gV

N

(
1

V

∫
1

2

∑
α 6=β

χαβNφα(r)φβ(r)−
∑
α

Nωα(r)φα(r) dr

−
∑
p

φp
κp

ln

(
zpeNpQp
ρ0φp

))
, (A.26)
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where we have also used the Stirling approximation n! ≈ (n/e)n to simplify

the logarithm terms. We can then define a free energy density,

f [{φα}, {ωα}] ≡
N

ρ0R3
gV

F [{φα}, {ωα}] . (A.27)

We can also write Equation A.12 in a dimensionless form in this length scale

since b2
α/6 = R2

gσ
2
α/N ,

N
∂

∂s
Qα = R2

gσ
2
α∇2Qα −NωαQα. (A.28)

We can eliminate additional factors of N by scaling the arclength of the poly-

mers in units ofN and redefining the ωα fields to include the factor, Nωα → ωα.

In this scaled form the end-integrated propagators satisfy,

∂qα
∂s

= σ2
α∇2qα − ωαqα, α ∈ {A,B,C} (A.29)

qα(r, 0) = 1 (A.30)

∂q†α
∂s

= σ2
α∇2q†α − ωαq†α, α ∈ {A,B} (A.31)

q†α(r, 0) = qβ(r, fβ), β 6= α (A.32)

and the free energy density is

f [{φα}, {ωα}] =
1

V

∫ (
1

2

∑
α6=β

χαβNφα(r)φβ(r)−
∑
α

ωα(r)φα(r)

)
dr−

∑
p

φp
κp

lnQp,

(A.33)

where some constants have been dropped as they can be viewed as constant

terms in the ωα(r) fields and hence ignored since adding a constant to a field

does not change the physics. Finally, we define the effective free energy

Ω [{φα}, {ωα}, η] = ρ0R
3
g

(
V

N
f [{φα}, {ωα}] +

∫
η(r)

(∑
α

φα(r)− 1

)
dr

)
(A.34)
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and write the partition function as

Z =

∫
D{φα}D{ωα}Dη e−Ω[{φα},{ωα},η]. (A.35)

In general, direct evaluation of the partition function is not possible (functional

integrals can be very difficult to compute and sometimes even diverge!). To

use the expressions we have derived we apply the mean field approximation

which formally is a saddle–point approximation to the functional integral and

so we require first order variations of the integrand to vanish,

δΩ

δφα
=

δΩ

δωα
=
δΩ

δη
= 0. (A.36)

This requirement leads to the mean field equations

φα(r) =
φ1

Q1

∫ fα

0

qα(r, s)q†α(r, fα − s) ds, α ∈ {A,B} (A.37)

φC(r) =
φ2

κ2Q2

∫ κ2

0

qC(r, s)qC(r, κ2 − s) ds (A.38)

ωα(r) =
∑
α 6=β

χαβN
(
φβ(r)− φβ

)
+ η(r) (A.39)

∑
α∈{A,B,C}

φα(r) = 1, (A.40)

where the constants

φA = φ1fA, φB = φ1fB, φC = φ2

were added the ωα(r) fields to make
∫
ωα(r) dr = 0. We now see the physi-

cal meaning of the ωα(r) field is the effective potential felt by an α-block at

position r and so captures the interaction between polymers without explic-

itly tracking the positions of each polymer strand. The field η(r) can also be

viewed as a Lagrange multiplier to enforce the incompressibility condition.
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Appendix B

The ADI Method

Here we present the Alternating Direction Implicit (ADI) method in de-

tail. In what follows the notation introduced in subsection 3.2.2 is used. For

simplicity of the presentation we set σ = 1.

The ADI method numerically evolves the solution forward from the initial

condition q(r, 0) to q(r, 1) (here we are using the contour variable which is

scaled by N) in half steps. First, keeping the z part of the differential operator

fixed at sk while advancing the r differential operator to sk+1/2, we have

q
k+1/2
i,j − qki,j
(∆s/2)

=

(
δ2
rq
k+1/2
i,j +

1

ri
δrq

k+1/2
i,j + δ2

zq
k
i,j

)
− ωi,j

(q
k+1/2
i,j + qki,j)

2
. (B.41)

Notice that the field term is averaged between the two contour steps. Collect-

ing the sk+1/2 step terms together we get

α1q
k+1/2
i+1,j + α0q

k+1/2
i,j + α−1q

k+1/2
i−1,j = β1q

k
i,j+1 + β0q

k
i,j + β−1q

k
i,j−1, (B.42)

where

α1 ≡ − ∆s

2(∆r)2
− 1

ri

∆s

4∆r
(B.43)

α0 ≡ 1 +
∆s

(∆r)2
+

∆s

4
ωi,j (B.44)

α−1 ≡ − ∆s

2(∆r)2
+

1

ri

∆s

4∆r
(B.45)
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β1 ≡
∆s

2(∆z)2
(B.46)

β0 ≡ 1− ∆s

(∆z)2
− ∆s

4
ωi,j (B.47)

β−1 ≡
∆s

2(∆z)2
. (B.48)

The expression are not well defines on the boundaries i = 1, j = 1, i = Nr,

and j = Nz since i±1 or j±1 falls out off bounds of the lattice. However, the

boundary conditions handle these cases. For example, in our implementation

we use Neumann boundary conditions, i.e.

∂q(r, z, s)

∂r

∣∣∣∣
r=rmin,rmax

=
∂q(r, z, s)

∂z

∣∣∣∣
z=zmin,zmax

= 0. (B.49)

On the discrete lattice this corresponds to the relations

qk0,j = qk2,j qki,0 = qki,2 (B.50)

qkNr+1,j = qkNr−1,j qki,Nz+1 = qki,Nz−1. (B.51)

Hence, we can write the system of equations defined by Equation B.42 as the

matrix equations:



α0 (α1 + α−1) 0 · · · 0

α−1 α0 α1 · · · 0

...
. . . . . . . . .

...

0 · · · α−1 α0 α1

0 · · · 0 (α1 + α−1) α0





q
k+1/2
1,1

q
k+1/2
2,1

...

q
k+1/2
Nr−1,1

q
k+1/2
Nr,1



=



(β1 + β−1)qk1,2 + β0q
k
0,1

(β1 + β−1)qk2,2 + β0q
k
1,1

...

(β1 + β−1)qkNr−1,2 + β0q
k
Nr−1,1

(β1 + β−1)qkNr,2 + β0q
k
Nr,1
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when j = 1,



α0 (α1 + α−1) 0 · · · 0

α−1 α0 α1 · · · 0

...
. . . . . . . . .

...

0 · · · α−1 α0 α1

0 · · · 0 (α1 + α−1) α0





q
k+1/2
1,j

q
k+1/2
2,j

...

q
k+1/2
Nr−1,j

q
k+1/2
Nr,j



=



β1q
k
1,j+1 + β0q

k
0,j + β−1q

k
1,j−1

β1q
k
2,j+1 + β0q

k
1,j + β−1q

k
2,j−1

...

β1q
k
Nr−1,j+1 + β0q

k
Nr−1,j + β−1q

k
Nr−1,j−1

β1q
k
Nr,j+1 + β0q

k
Nr,j

+ β−1q
k
Nr,j−1


when 2 ≤ j ≤ Nz − 1 and



α0 (α1 + α−1) 0 · · · 0

α−1 α0 α1 · · · 0

...
. . . . . . . . .

...

0 · · · α−1 α0 α1

0 · · · 0 (α1 + α−1) α0





q
k+1/2
1,Nz

q
k+1/2
2,Nz

...

q
k+1/2
Nr−1,Nz

q
k+1/2
Nr,Nz



=



(β1 + β−1)qk1,Nz−1 + β0q
k
0,Nz

(β1 + β−1)qk2,Nz−1 + β0q
k
1,Nz

...

(β1 + β−1)qkNr−1,Nz−1 + β0q
k
Nr−1,Nz

(β1 + β−1)qkNr,Nz−1 + β0q
k
Nr,Nz


when j = Nz. These systems of equations can be solved using the tridiagonal

matrix algorithm (TDMA), also known as the Thomas algorithm [63, 64]. The

TDMA is a matrix inversion procedure which is computationally much faster

than simple Gaussian elimination. This speed up with the matrix inversion

while maintaining the accuracy of implicitly defining the next contour step is

the major advantage to the ADI method.

We can now use the solutions (qs+1/2) as the initial conditions for the

second step of the ADI method. The derivation for this is the same as above,
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however we are now leaving the r part of the differential operator at sk+1/2 and

incrementing the z part to sk+1. This gives the following system of equations:

γ1q
k+1
i,j+1 + γ0q

k+1
i,j + γ−1q

k+1
i,j−1 = σ1q

k+1/2
i+1,j + σ0q

k+1/2
i,j + σ−1q

k+1/2
i−1,j (B.52)

with the coefficients on the left hand side defined as

γ1 = − ∆s

2(∆z)2
(B.53)

γ0 = 1 +
∆s

(∆z)2
+

∆s

4
ωi,j (B.54)

γ−1 = − ∆s

2(∆z)2
(B.55)

and on right hand side,

σ1 =
∆s

2(∆r)2
+

1

ri

∆s

4∆r
(B.56)

σ0 = 1− ∆s

(∆r)2
− ∆s

4
ωi,j (B.57)

σ−1 =
∆s

2(∆r)2
− 1

ri

∆s

4∆r
. (B.58)

Setting up matrix equations similar to the previous step and applying the

TDMA, completes the step to sk+1. This process is the repeated from s0 to

sNs , giving the full solution to the PDE.
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