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Abstract 

The magnetic structures of antiferromagnetic man­

ganese pyrophosphate and copper pyrophosphate have been 

determined by single crystal neutron diffraction techniques. 

More detailed features of the magnetic structure have been 

determined by nuclear magnetic resonance (NMR). A discre­

pancy between previous NMR measurements on Mn
2
P2o

7 
and the 

single crystal neutron measurements was resolved by postula­

ting a low temperature crystallographic phase transitione 

Information about the dependence of the transferred hyper­

fine interaction upon the separation of the relevant ions 

is obtained for cu2P2o7 from the NMR data and from previously 

determined deviations from a higher symmetry phase. The 

origin of the magnetic anisotropy energy in cu2P2o7 is 

discussed. 
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CHAPTER I 

INTRODUCTION 

The purpose of this work is to examine the magnetic 

properties of manganese pyrophosphate (Mn2P2o7 ) and copper 

pyrophosphate (Cu2P2~7 ) in their magnetically ordered phases •. 

Previous work on these compounds has left a number of un= 

resolved problems. In manganese pyrophosphateu the spin 

configuration has been determined (Collins et al, 1971) by 

neutron diffraction from a powdered sample. Choh and Stager 

(1970) have proposed a number of possible spin configurations 

on the basis of nuclear magnetic resonance (NMR) experiments. 

None of their proposals are in agreement with the configura­

tion determined by Collins et al. One of the purposes of the 

present work is to resolve this"discrepancy. Single crystal 

neutron diffraction techniques were used to confirm the work 

of Collins et al and the Nl4R results are explained by postulat·ing· 

a crystallographic pha~e transition in this compound. 

In copper pyrophosphate a sim~lar crystallographic 

phase transition is known to exist (Robertson and Calvo, 1967)o 

The techniques employed in the present work to study this 

compound include NMR and single crystal neutron diffraction. 

The·single crystal neutron diffraction results were used to 

1 



2 

determine the gross features of the magnetic structure, that is 

the spin configuration. NMR was employed to look for more de-

.tailed features of the magnetic structure including small 

deviations from the structure determined by neutron and X-ray 

diffraction techniques. The known crystallographic phase transi-

~ion, in conjunction with the NMR data, is used to obtain 
I 

information about the dependence of spin transfer between ions 

upon the separation of the ions. Also, previous work on this 

compound has left unanswered the question of the origin of the 

anisotropy energy determined from antiferromagnetic resonance 

(AFMR) data (Fowlis, 1970). Several terms in the equations for 

the anisotropy energy are examined in an attempt to explain the 

data. 

The remainder of Chapter I is devoted to a brief dis-

cussion of magnetic ordering in transition metal compounds using 

the molecular field approximation. In addition there are some 

references to earlier work on similar magnetic systems. Chapter 

II contains an outline of the crystallography of the compounds 

studied. Chapter III describes· the neutron diffraction ex~eri-

ments and the method used to obtain the spin configurations. 

Chapter IV describes the NMR experiments and the associated 

analysis of the data. Finally, Chapter V is a theoretical 

discussion of the origin of the· anisotropy energy in cu2P2o7 • 

The magnetic character of the compounds studied arises 

from the "unpaired spins 11 which result from the incomplete 

filling of the 3d electron levels in the transition metal series 



of elements of which copper and manganese are members. In 

an isolated ion Hunds rule says that the states are filled 

3 

with parallel spins until the maximum number allowed by the Pauli 

exclusion principle is reached, after which electrons with 

antiparallel spins are added, until all states are filled. 

Thus Mn ++ with five 3d e·l~ctrons has a total spin of s = 5/2, · 

~rhile Cu ++ with nine 3d electrons has a total spin of s = 1/2, 

that is it can be represented as a complete 3d shell plus one 

hole. 

In the absence of any external perturbations, the 3d energy 

levels·are degenerate. However, in the environment of the 

surrounding crystal, the degeneracies are lifted by strong elec­

tric fields, resulting from the surrounding ions, that is a 

strong Stark splitting is observed. Given a knowledge of the 

symmetry of the ion sites, one can determine the manner in which 

the degeneracies are lifted, by group theoretical arguments. 

From this can be obtained information about the magnetic moment 

on the ions (Ballhausen, 1962). 

The neutron scattering experim~nts rely on the scattering 

of neutrons via the dipole-dipole interaction between the 

magnetic moment on the neutrons and that associated with the 

unpaired spins on the magnetic ions. If these spins exhibit 

long range order, as in the magnetically ordered state, then 

this interaction leads to a contribution to the intensity of 

Bragg diffraction peaks. Above the ordering temperature this 



contribution disappearsm It may be determined by measuring 

the intensity of the Bragg peaks above and below the ordering 

temperature. The remaining contribution to the Bragg peaks 

is due t·o scattering by the nuclei. Generally speaking, the 

magnetic symmetry of the crystals is different from the crystal~ 

lographic symmetry, so that some Bragg peaks which are forbidden 

by-symmetry for nuclear scattering, are not forbidden for mag-

netic scattering. Where the magnetic scattering is much weaker 

~han the nuclear scattering, this effect results in a considerable 

saving in the time required to obtain the desired statistical 

accuracy for magnetic scattering, as there is not a large back-

ground count due to nuclear scattering with an attendant large 

statistical uncertaintya 

The NMR experiments measure the internal magnetic fields 

present at the nuclear sites in the samples. These internal 

fields arise from two main sourcese The first of these is the 

classical dipole fieldu arising from the magnetic moments 

localized on the other magnetic ions. The field due to a single 

neighbouring moment is given by the classical dipole equation. 

If the site at which the fields is measured is labelled by i 

and if the magnetic sites are associated with a_magnetic moment 

mj separated 

the field at 

is given by 

from 

site 

H = 

site i by the distance r .. , it follows that 
-l.J 

i due to the rest of the ions in the sample 

-E [ 

- Jr .. m. 
J l.J <iii .• r .. > ] (1) 

j~i I 13 lr. ·1 5 J l.J r, .. 
l.J l.J 
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where we have summed over all the magnetic moments in the 

crystal® In general this sum depends upon the sample shape, how-. 

ever for distances sufficiently far from the site in questionu 

one can replace the discrete moments by a continuous distri­

bution of magnetic moment densitys Thus for ease of computationu 

one can perform the discrete sum for moments contained within·a 

radius R of the site i,·and replace the remaining terms with 

an integral. This integral contains the Lorentz and demagneti­

zing fieldss The demagnetizing field depends u~on the sample 

shape, but for a spherical sample it is equal in magnitude and 

opposite in sign to the Lorentz field, therefore these terms. 

cancela It should be noted that for an antiferromagnet, both 

of these terms are identically .zero, since in this case the 

macroscopic magnetic moment density is zero. 

The second contribution to the internal fields is the 

transferred hyperfine effects In an iron series transition 

metalu some of the 3d wavetunction.resides on·the non-magnetic 

ionsu resulting in a fractional unpaired spin on the non­

magnetic ionso The magnitude of the-fractional spin depends 

. upon the degree of covalency. Typical values for the fractio­

nal unpaired spin in iron series transition metal compounds 

are in. the range aS% to 5% (OWen and Thornley, 1966)o This 

trarisferred hyperfine effect is closely related to the ex­

change interaction which is responsible for magnetic ordering8 

The transferred hyperfine interaction was first observed 
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by OWens and Stevens (1953). They interpreted the electron 

spin resonance spectrum of Ir+4 in the complex (Ircl6)-2 by 

assuming that there were hyperfine lines produced by an interac­

tion with the neighbouring chlorine nuclei. For the iron 

series transition metal group, the interaction was first 
. ++ ++ 

observed by Tinkham (1956) in the ESR spectra of Mn , Fe , 
++ +++ . Co , and Cr ~ntroduced as impurities in ZnF2 • The first 

NMR measurements were made by Shulman and Jaccarino (1956) 

who observed field shifts in the nuclear magnetic resonances 

of 19F in MnF 2 from their predicted free ion values. They 

also showed that the shifts were proportional to the magnetic 

suscepbitility of the sample, and hence to the therma~ average 

of the manganese ion spin~ (Shulman and Jaccarino, 1957). The 

only magnetically ordered system with a similar structure to 

that of the pyrophosphates that has been studied by NMR is 

antiferromagnetic LiMnP04 (Mays, 1963). Numerous dissimilar 

magnetically ordered compounds have been studied,however. 

Choh and Stager (1970) have·observed the transferred 

hyperfine effect in Mn2P2o7 • They have also shown that it is 

necessary to include a term proportional to the s~sceptibility 

in the nuclear Hamiltonian when the· system is magnetically 

ordered. The resuiting field shifts in the 31P resonances 

become non negligible for high applied magnetic fields. In 

this case the shift shows an angular dependence related to 

that of the susceptibility tensor. 



In the current work, the NMR of Mn2P2o
7 

is reanalyzed 

in the light of neutron diffraction measurements determining 

7 

the spin configurations of the compound. The NMR of cu2P2o7 

is also .analyzed, again with a knowledge of the spin configu-

ration as determined from neutron diffraction. 

The systems studied both order magnetically at sufficient-

ly.low temperatures. The dominant contribution to the mechanism 

responsible for magnetic order may be represented by the Heisen-

berg Hamiltonian, which may be written as follows. 

H = I: 
i<j 

j .. s. ·s. 
l.J l. J 

(2) 

h S d S th . 1 t d th .th d .th . w ere . an . are e sp1.ns oca e on e 1. an J 1.ons. 
l. J 

Jij is the exchange parameter and is related to the overlap 

integral of the wave functions on adjacent ions. The sign of·-

J determines whether the ordering will be ferromagnetic or 

antiferromagnetic. A commonly used approximation is the 

molecular field approximation where s. is replaced by its ther­
J. 

mal average. This ignores spin-spin correlations, so the 

approximation is not valid at very low temperatures. In this 

case spin wave theory is employed. A commonly used concept 

in the molecula~ field approximation is the exchange field, 

defined by the following equation. 

H. = -gas. ·ii 
1. J. ex 

(3) 

·HJ.. is now a single ion Hamiltonian and H is the exchange ex 

field. This may be interpreted as a magnetic field which acts 
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on adjacent spins to keep them colinearc The ordering tem­

perature is reached when the exchange energy becomes comparable 

·with the thermal energy of the spins. Above thi.s temperature 

thermal energy dominates and the material is paramagnetic., and 

belo~ it~ the exchange energy predominates and the material 

becomes magnetically ordered. The ordering temperature may be 

determined by several methodsc One method is to observe the 

specific heat. The phase transition is second order and the 

specific heat shows a A type anomaly. Other methods include 

observing the temperature at which the electron paramagnetic 

resonance signal disappears and by measuring the temperature 

dependence of the magnetic susceptibility. Fowlis (1969) 

has measured the Neel temperature of Mn2P2o7 by the latter 

method and determined it to be l3(1)°K. The number in parentheses 

is the uncer.tainty in the data. For copper pyrophosphate 

·Fowlis (1970) determined the Neel temperature to be 26(1)°K 

from magnetic susceptibility data. 

As the com~ou~ds studied in this work order antiferro­

magnetically, we discuss briefly the antiferromagnetic stateo 

This state may be characterized by a number of interpenetrating 

sublattices, each of which has all its spins parallel. The 

case where there are two sublattices, with antiparallel spins 

is discussed at length in an article by N.~9amiya et al (1955). 

They derive the antiferromagnetic equations of motion in the 

molecular field approximation. If + denotes the "up" sublattice 
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and - denotes the "down" sub1attice, then the exchange field 

can be written as 

(4) 

where M+ and M denote the magnetization of their respective 

sub1attices. A and r are second rank interaction tensors which 

represent inter sublattice and intra sublattice exchange interac-

tions respectively. Their dominant parts are isotropic. With 

this assumption, the direction of the spins with respect to the 

crystallographic axes is undetermined so a phen9menological 

anisotropy energy is int~oduced which is denoted by EA~ ~n 

a system with no higher than orthorhombic symmetry, this energy 

takes the form 

E 1 K (o 2 + 0 _2) + 1 K ( 2 2) A = 2 1 ~+ ~ 2 2 y+ + y_ I 
(5) 

where K1 and K2 are anisotropy constants and a±, y± are the 

direction cosines of the respective sub1attice magnetization 

vectors with respect to the crystallographic axes. The equi­

librium spin direction is then determined by minimizing the 

expression for the anisotropy energy~ An anisotropy field is 

defined by the relationship 

= - (6) 

The assumption is usually made that the exchange energy is 

much larger than the anisotropy.energy, and therefore the magni-

tude of the sublattice magnetization vectors is not affected 



10 

by the anisotropy energy. In tensor notation we can write 

(7) 

In the principle axis system one principle value can be set· 

to zero, because only differences inthe principle values are 

considered. In a biaxial system, the remaining two are non zero 

and different in magnitude. 

There are several possible contributions to the anise-

tropy energy. The first of these is the magnetic dipole interac­

tion. For values of the spin greater than one half there are 

crystal-field contributions to the anisotropy energy, as for 

example in Mn2P2o7 where s = 5/2. This contribution does not 

arise in the case of cu2P2o7 as we have a ground state doublet 

and an effective spin of one half. The remaining contributions 

arise from the Heisenberg Hamiltonian. These contributions may 

·be further subdivided into those due to anisotropy in.s and 

into those attributable to anisotropy in the exchange tensor J .. 
~J. 

which couples adjacent spins. Kanamori (1963), gives an outline 

of.various sources o~ anisotropy energy arising from the exchange 

Hamiltonian. Another possible source of anisotropy lies in 

magnetostrictive effects, but without a detailed knowledge of 

the elastic constants of the materials, very little can be said 

about this contribution. 

For low symmetry crystals, the spin direction is deter-

mined experimentally from the angular dependence of the magnetic 

susceptibility. The exchange field may also be obtained from 
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susceptibility data and the anisotropy fields are obtained from 

AFMR data. Specifically, one obtains the exchange field from 

the perpendicular susceptibility, that is the susceptibility 

x1 measured with an external field applied perpendicular to 

M±. Molecular field theory gives Xl = 1/A so that, neglecting 

intra sublattice interactions, the exchange field is given 

by. --+ M 
= (8) 

For sufficiently large external fields, the spins in an anti-

ferromagnet rotate to orient themselves perpendicular to the 

applied field. This phenomenum is referred to as "spin-flop". 

This effect arises from the fact that the susceptibility for 

an antiferromagnet is greater for spins aligned perpendicular 

to the applied field than for spins parallel to the applied field. 

Thus the energy of interaction with the external field, given 

by 

1· I 2 E = - 2 x•H dv (9) 

where the integral is over the volume of the sample, is lower 

when the applied field is perpendicular to the spins. Spin 

flop occurs when this energy difference overcomes the anisotropy 

energy of the crystal. The spin-flop field is given by 

HSF -= (2H H ) Ya (10) ex Al 

where HAl is the lower of the two anisotropy fields. The 

spin flop field can be measured by observing a discontinuity 
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'in the parallel susceptibility as a function of applied field 

:and by AFl.ffi. 

From AFMR measurements two resonant frequencies can be 
I 

• I 

measured for a biaxial system. Assuming that both anisotropy 

fields are much less than ~he exchange field, these frequencies 

are given at T = 0 by 

and w2 = (2H x H )1/2 
y E A2 (11) 

from which both anisotropy fields HAl and HA2 can be obtained. 

y is the gyromagnetic ratio. 

There are a number of deviations from true antiferromag-

netic behaviour. One of these involves a canting, or tipping, 

towardsone another of the spins on opposing sublattices. The 

interaction may be represented by the following Hamiltonian. 

H = L d•(S. X S.) 
i<j ~ J 

(12) 

and is referred to as the Dzialoshinski interaction. The 

Symbol d iS a COnstant VeCtOr and Si X Sj representS the 

vector cross product of the spins on adjacent sites. Dzialoshinski 

first used this interaction to explain weak ferromagnetism in 

Fe2o3 . (Dzialoshinski, 1958) • Moriya (1963) discusses this, 

~nd other sources of wea~ ferromagnetism in nearly antiferro-

magnetic compounds. Another phenornenum worthy of note is the 

existence of two dimensional antiferromagnets above the temperature 

where one finds true three dimensional ordering. This effect is 

noted when the exchange coupling within planes is strong, but the 
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:exchange coupling between planes is small. Lines (1967) has 

:investigated such systems, for example K2NiF
4 

• The iron series 

transition metal pyrophosphate compounds might be expected to 

exhibit this effect, since planes of magnetic ions defined by 

~e crystallographic axes a and b lie relatively far apart as 

compared to ions contained within the planes. 

Several previous measurements have been made on the 

pyrophosphates. Atkinson and St~ger (1969) and Atkinson et al. 

(1970) have measured the 31P NMR shift for Mn
2

P2o
7

, cu
2

P2o7 , 

Ni2P2o7 , and co2P2o7 in the paramagnetic phases, thus measuring 

the transferred hyperfine interaction in these compounds. Fowlis 

(1970) has observed the magnetic susceptibil~ty of Mn2P2o7 , 

cu2P2o7 , co2P2o7 and Ni2P2o7 • In addition he has made AFMR 

measurements on Mn2P2o
7 

and cu2P2o
7

• Choh and stager have observed 

the 31P NMR in antiferromagnetic Mn2P2o7 • Their results are 

reinterpreted in the present work. Collins et al (1971) have 

determined by powder neutron diffraction measurements the spin 

configuration of Mn 2P2o7 • In this wprk their results are con­

firmed, using single crystal neutron diffraction techniques 

and the reported discrepancies between their work an~ the NMR 

results of Choh and Stager (1970) are reconciled by postulating 

a low temperature crystallographic phase transition in that 

compound. 

h 1 f ++ ++ d ++ h b d . -T e g va ues o Mn , Cu ,·an Co ave een eterm~ned 

in the pyrophosphate structure by substituting them as dilute 

impurities in a non-magnetic host pyrophosphate compound, for 
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example zn2P2o7 (Chambers et al. 1964, Calvo et al. 1967, and 

Atkinson et al. 1970). 

The crystallographic structu~e of cu2P2o7 was determ~ned 

by Robertson and Calvo (1967). Lukaszewicz and Smajkiewicz 

(1961) and Tendon (1971) have done the crystall~graphic work on 

Mn2P207. 



CHAPTER II 

CRYSTALLOGRAPHY OF THE COMPOUNDS STUDIED 

The crystal structure of Mn2P2o7 , at room temperature, 

has been determined by Lukaszewicz and Smajkiewicz (1961). It 

is monoclinic with space group C2/m and contains two molecules 

in a unit cell. Tendon (1971) has ascertained that there is no 

phase transitiondown to 100°K. He gives the lattice parameters 
0 0 0 

at 100°K as a= 6.598(5)A, b = 8.558(5)A, c = 4.516(5)A and 

a= 102.74(5) 0
• Among a series of pyrophosphates that have 

the C2/m structure at high temperatures, Mn
2

P
2
o

7 
is unique in 

that there is no X-ray-evidence for a different low temperature 

phase (Robertson and Calvo, 1970). The other compounds in 

the series all lose the mirror plane in the low temperature 

phase. 

The four manganese ions in the c-centered unit cell 

are crystallographically equivalent. They are located on a two 

fold axis and are related·by the mirror plane and the c-

centered operation. The four phosphorus ions are also 

equivalent and are located on the mirror plane. The oxygen 

atoms are of three types. Two of them are designated o1 and 

form ·the bridging link between the two phqsphorus ions in the 

anion. ·These are located both on the mirror plane and on a 

two fold axis. The second type, designated o
11

, are terminal 

15 
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ions on the anion group and are located on the mirror plane, 

but not on a two fold axis. There are 4 of these. The re-

maining eight are designated OIII• These are also terminal ions 

on the anion and are not located at points of symmetry. The 

lattice coordinates of the ions are listed in Table 1, as 

are some of the important bond lengths. 

cu2P2o7 is monoclinic and is known to exist in two 

phases. The high temperature or a phase has the C2/m structure 

and is isomorphous with Mn2P 2o
7

• The low temperature or a 

phase has the c axis doubled. Robertson and Calvo (1967) re-
0 

port the lattice parameters of the a phase as a= 6.876(5)A, 
0 0 

b = 8.115(5)A, c = 9.162(S)A and a= 109.54(6) 0
• They re-

fined the structure in the space groups C2/c and Cc, and chose 

C2/c as being the most probable. In either case the structure 

does not differ by much from the C2/m phase. The atomic co-

ordinates for a. cu2P 2o7 are listed in Table 2, as are some 

important bond lengths. A schematic diagram of the pyrophos-

phate molecule is shown in Fig. 1. 

In both compounds the magnetic ions occur in layers which 

lie in planes containing the b and a axes. The~ons in adjacent 

planes are relatively far apart, and are separated by layers 

of anions. 



TABLE 1 

Atomic Coordinates for Manganese Pyrophosphate 

ion a x/a Y/b z/c 

Mn 0 .3096 1/2 

p .2155 0 .9092 

OI 0 0 0 

0 II. .3742 0 .2082 

0
III .2209 .1489 .7258 

... . . 

Selected Bond Lengths for Mn2P207 

. ' ... 

Mn-0 distance 0-P distance Mn-0-P angle 
o· 0 

.'(A) (A) . (deg.) 

2.098(10) 1.525(11) 136.6 

2.343(10) 118.1 

2.098(10) 1.525(11)· 136.6 

. 2.343 (10) 118.1 

2.138(7) 1.540(11) 130.1 

2.138(7) 130.1 

aThe remaining atomic coordinates are obtained 
by applying the symmetry operations of t~e 
space group C2/m. 

17 
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TABLE 2 

ion a x/a y/b. z/c 

Cu -.0183 (2) .3133(2) .5138(3) 

p .1978(4) .0086 (4) -.0878(5) 

OI 0 .0480(24) 0 

0 11 .3768(11) ~.0019 (15) .2254(18) 

0 rii .2223(11) .1556(12) .2714(15) 

.1782(13) .1530(10) .2634(10) 

Bond Lengths in a cu2P2o7 for a Single ++ Cu Ion 

0 

Cu-o11 1.990(6) A 

Q 

Cu-o11 1.986(6) A 
0 

Cu ·OIII 1.907(6) A 
0 

Cu OIII 1.935(6) A 
0 

Cu OIII 2.322(6) A 
0 

Cu OIII 2.947(6) A 

aThe rema1n1ng coordinates are generated using the symmetry 
operations of the space group C2/c. 



Fig. 1 

A schematic diagram of a transition metal ion 

pyrophosphate compound. The unmarked circles 

correspond to metal ions and the intra anion bonds 

are marked in black. 
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CHAPTER III 

~eutron Diffraction. Experimental Apparatus 

Neutrons have associated with themselves an intrinsic 

wavelength given by A = h/mv where h is Planck's constant and 

m and v are the mass and velocity of the neutron. If one con~ 

Siders that the neutrons in a reactor have made a large number 

of collisions with atoms at a temperature T before being ex-

tracted from the reactor thus they will have a root mean square 

velocity v related to the absolute temperature by the following 

equation. 

(13) 

where k is Boltzman's constant. The associated wavelength of 

these neutrons is then given by 

(14) 

It is fortuitous that the wavelengths, for typical reactor 

temperatures of approximately 100°C, are of the same order of 

magnitude as a typical lattice constant for the compounds 

studied. There will be a spread of neutron velocities given 

by the Maxwellian distributiono If NAdA is the number of 

neutrons extracted from the reactor per second with wave-

length between A and A + dA, then 

(15) 

20 
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where N1 is the number of neutrons per second integrated over 

all velocities, and E is the energy ·of a neutron of wavelength 

A· (Bacon and Thewlis, 1949). The white beam from the reactor 

must be monochromated. This is accomplished by using a Bragg 

reflection from a copper crystal. The monochromated beam is 

collimated by using cadmium apertures. The resulting beam 

has a wavelength given by 

A = 2d(h,k,i)sin e (16) . .m 

where d(h,k,i) is the interplanar spacing of those planes 

corresponding to Miller indices h, k and 1. The angle eM is 

shown in Fig. 2. The wavelength desired can be selected by 

making an appropriate choice for eM.· It is apparent that neut­

rons of w~velength A/n will be diffracted at the same angle 

from the set of planes characterized by nh, nk, and n1, where 

n is an integer. To reduce this harmonic contamination of the 

monochromated beam it is necessary to select a wavelength suf-

ficiently near the high energy end of the Maxwellian distribu­

tion so that the spectral density of the white beam for nA(n~2) 

is negligible. 

The bandwith ~A is determined by the mosaic spread of 

the monochromating crystal, and by the finite divergence of 

the incident beam. The intensity of the monochromated beam in-

creases as 6A is increased but the spectral resolution decreases 

so a compromise must be reached between the two factors. 



Fig. 2 

A schematic diagram of the McMaster triple axis 

spectrometer at Chalk River 0 Ont. 
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The monochromatic beam is diffracted by the sample 

crystal and a proportional counter is used to measure the dif-

fracted neutrons from the sample. The diffraction angles for 

the sample are denoted by.~ and the. orientation of the crystal. 

axes with respect to the incident beam is denoted by X· Both 

of these angles are shown in Fig. 2 •. A monitor counter is used 

to determine the intensity of the incident monochromatic beam. 

The count rate is defi~ed as the number of diffracted neutrons 

for a fixed number of monitor counts.· The neutron diffraction 

experiments employed two spectrometers. Where the count rates 

were sufficiently high, it was possible to use the double axis 

spectrometer at the McMaster University reactor. A schematic 

diagram of the spectrometer is. shown in·Fig .. 3. A boron 

trifluoride proportional counter was employed ·as a detector. 

The monochromator for this experiment utilized the (220) reflec-

tions of a copper crystal and provided a neutron beam with 
0 

wavelength 1.048 A. Where small sample size, and very weak 

magnetic scattering necessitated the use of a higher flux reac­

tor, use was made of the McMaster University triple axis spec-

trometer at the NRU reactor of Atomic Energy of Canada Ltd. 

at Chalk River, OQtario. The spectrometer was used in a two 

axes mode, that is the analyzer crystal was removed so that 

the detector directly counted the diffracted beams from the 

sample. In this case the detector was a 3He proportional 

counter. This spectrometer employs a double monochromator 

which enables the wavelength of the monochromated beam to be 



Figo 3 

A schematic diagram of the ·M~Master University 

double axis spectrometer. 
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changed easily, wtihout moving the entire spectrometer with 

its heavy machinery and shielding. A schematic diagram of 

this spectrometer is shown in Fig. 2. The wavelength used for 
0 

this experiment was 1.190 A. 

The cryostat used for these experiments was of conven-

tiona! design and used helium exchange gas to cool the sample. 

An ultimate temperature of 6°K was reached. A schematic 

diagram of the cryostat is shown in Fig.4 • The crystal was 

mounted on a tripod inside the exchange gas chamber so that 

small adjustments to the alignment of the crystal could be made 

while it was in the cryostat. 

Samples 

The Mn2P2o7 and cu2P 2o7 crystals were obtained by slowly 

cooling a melt of the desired compound through the melting point. 

The crystals were extracted from the resulting solidified mass. 

For Mn2P2o7 the compound was melted and cooled under vacuum 

and for cu2P2o
7 

the powder was sealed in an evacuated silica 

tube before heating. The Mn2P2o7 crystal was shaped into a rough 

ellipsoid with principal diameters of 3.5, 5.5, and 5.5 mrn along 

the a, b, and c* crystallographic axes. The cu2P2o7 crystal was 

approximately a rectangular parallelepiped with dimensions 

2 mm-xl· mmxl mm. 

The crystals were aligned to within 1° along a specific 

crJstallographic axis before being inserted into the cryostat. 

This was done with an X-ray precession camera. Once aligned in 

this manner, they were glued to a quartz rod and mounted on the 



Fig. 4 

A schematic diagram of the cryostat used for 

neutron diffraction studies. 
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tripod within the cryostat. They could then be aligned to 

greater precision using the neutron beam. A further adjustment 

was necessary after the samples were cooled due to differential 

thermal expansion of the sample holder. 

Theory of elastic neutron scattering by solids 

Scattering by nuclei 

If we represent an incoming plane wave of neutrons by 
ikZ '!' = e · where ]( = 27T/A. and if this wave is incident upon a 

single nucleus the scattered wave will be of the form 

m -- -(b/r)eik r, h ' h d' f h z w ere r 1s t e 1stance rom t e scat-

tering nuclei, b is defined as the scattering length 

which is in general a complex number. We write b = a + iS. 

The imaginary part becomes impo~tant only for materials with a 

large neutron absorption coefficient, such as cadmium, and may 

be ignored for the types of atoms considered in this work. 

Therefore we may consider b to be real. The resultant neutron 

.wave is given by 

iktr (b/r) e - (17) 

The scattering cross section is defined as the ratio of the 

outgoing current of scattered neutrons to the incident neutron 

flux. It is therefore given by the following relation 

2 a = 47Tr v 

2 

(18) 

If we now consider the scattering of neutrons from a 

regular lattice of atoms, the amplitude of the scattered wave 

is given by 
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(19) 

-where p labels the atoms and p is the vector from the origin to 

the pth atom. k and k 1 are the wave vectors of the incident and 

scattered waves respectively. For the case of a regular lattice 

ip(k-k 1
) the term e which takes into account the phase difference 

between the scattered waves from different nuclei, is replaced 

by exp{2wi(hx + ky + tz)}. In this expression, h, k and i are 

the Miller indices appropriate to the scattering direction being 

considered and x, y, and z are fractions of the lattice vectors 

a, b and c. 
In a regular lattice diffraction is is only possible at 

discrete angles which are determined by the Bragg condition. 

K-K' = G(h k 1). (20) 

G(hki) is referred to as a reciprocal lattice vector and is 

given by 

(21) 

The intensity of the Bragg peak corresponding to the direction 
-

(hki) is proportional to the following expression. 

b exp 2~i(hx + ky + iz) 1
2 • p 

(22) 

The assumption is made that the incident beam is not signifi­

cantly attenuated by the crystal. Also lattice vibrations are 

neglected, but since the compounds studied have a high melting 

temperature, this effect should be negligible at the temperatures 

of interest. 
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The Bragg condition contains two requirements for 

scattering. The ·first concerns the angle 2¢ which the scat-

tered beam makes with the incident beam. This is given by 

A = 2d(hki)sinf (23) 

where d(hki) is the interplanar spacing associated with h, k 

and i • The angle cp is shown in Fig. 2. The second concerns the 

direction of the reciprocal lattice vector G(hki} which must 

- -· be in the same direction as K-K • This is also shown in Fig. 2. 

In addition to the intensity due to the Bragg peaks, there is a 

background intensity which is independent of the orientation of 

G with respect to the beam. This background arises from several 

sources. These include incoherent scattering due to different 

isotopes of the same element being distributed randomly through 

the crystal. They include as well the effect of the different 

nuclear spins on atoms of the same element. 

In single crystal diffraction experiments, the usual ex-

periment is to set the scattering angle at the prescribed angle 

for a particular Bragg peak and rotate the crystal by varying 

the angle x to produce a rocking.curve. The intensity is then 

taken to be proportional to the area under the curve. This pro--cedure introduces an additional geometric factor into the expres-

sian for the scattered intensity. In this case we have for the 

intensity of the peak 

I = (24) 
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V is the volume of the crystal and N
0 

is the number of unit 

~ells per unit volume. 

Magnetic scattering 

Neutrons may be scattered from unpaired electrons in a 

crystal via the dipole-dipole interactiono The scattering ampli­

tude for nuclear scattering is replaced by the_ following expression 

for an antiferromagnet with a 'single magnetic species@ 

exp 2~i(hx + ky + iz) (25) 

q is the magnetic interaction vector defined by 

(26) 

where K is a unit vector in the direction of the atomic magnetic 

moment and € is a unit vector along the reciprocal lattice vector 

for the appropriate hu k and t. S is the spin on the magnetic 

ions, y is the magnetic moment of the neutron expressed in nuclear 

magnetons, and f is an atomic form factor given by 

f ... 41r J dpn(p) . 
I 

(27} 

The factor n(p) is the density of unpaired electrons in a single 

ion normalized so that the total number of unpaired electrons per 

magnetic ion is unity. The symbol p is the distance from the 

nucl~us of the ion in question and ~ = (4~/A)sinS. 
++ approximation this quantity is given for Mn as 

2 
f = e-.075~ (Shull et alu 1951) 

To a first 

(28) 
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. ++ 
and for Cu is given by 

-.04~2 f = e (Alperin, 1960). (29) 

The sum over ions includes only magnetic ions. 

If we consider both nuclear and magnetic scattering, 

the intensity of the Bragg peaks is given by the following expres-

sion. 

(39) 

2 
where p = ~Sf, and X is the neutron polarization vector 

2mc 
(Halpern and Johnson, 1939). For an unpolarized neutron beam, 

the dot product q•X averages to zero, therefore 

2 2 2 
do = b + p q • (31) 

As a result, the magnetic and nuclear scattering contributions to 

the intensity of a Bragg peak are additive. In those cases 

where symmetry permits both nuclear and magnetic scattering, the 

magnetic scattering intensity can be obtained by subtracting from 

the intensity observed below the magnetic ordering temperature, 

the intensity of the nuclear scattering observed above the orde-

ring temperature. Above the ordering temperature there is no 

coherent magnetic scattering in the absence of an external mag-

netic field. 

The Bragg conditions are expressed in terms of the fol­

lowing coordinate system for the monoclinic systems of interest. 

The direction of G(hk~) is given in spherical polar coordinates 

with respect to the following choice of axes. The x-axis is chosen 
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to be along the crystallographicaaxis, they axis is chosen to 

be along b, which makes the Z axis along the direction of the 

reciprocal lattice vector c*. 

The d spacings for a monoclinic system are given by the 

following expression 

1 d(hkt) = 

I h 2 . k 2 R, h Q 2. _ + _ + (a -c.cosi-J) 
a2 b2 acs~na 

(32) 

With the above choice of axes the polar angle a is given by the 

following expression 

-L R. h a= cos \C- cscS-- cotS]d(hkR.)) • c a (33) 

The azimuthal angle ¢ may be obtained from the following expres-

sion h 

(34) 

Selected values of 1/d(hkR.), and the spherical polar angles for 

the reciprocal lattice vectors are given in Table 3 for Mn2P2o7 , 

and in Table 4 for cu2P2o7 • 

The structure factors for the compounds studied are as 

follows. For Mn 2P2o7 it is given, for nuclear scattering, by 

4 
F (hk R,) = bMn I: exp 21Ti(hx. + ky. + R..z.) 

i=l ~ ~ l. 

4 
+ b I: exp 21Ti(hx. + ky. + R.z • ) 

p j=l J J J 

14 
+ b I: exp 2.'Tt'i (hxk + kyk + R.zk) (35) 

.o 
k=l 
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TABLE 3 

Selected Values of 1/d(hki) and Spherical Polar Angles for the 

Reciprocal Lattice Vectors in Mn2P 2o7 

h k 1 1/d(hki) e <P 

0 2 0 .2331 90.00 90.00 

0 0 1 .2258 0.00 o.oo 
0 0 2 .4516 o.oo o.oo 

0 1 0 oll66 90.00 90.00 

0 1 2 .4664 - 14.47 90.00 

0 3 0 .3497 90.00 90.00 

0 1 1 .2541 27.30 90.00 
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T~LE 4 

Selected Values of 1/d(hkR.) and Spherical Polar Angles for the 

I Reciprocal Lattice Vectors in cu2P 2o7 • I 

h k 1 1/d(hk.t) 9 

I 

0 6 0 .7396 90.00 90.00 

0 6 1 .7486 81.10 90.00 

0 6 4 .8727 57.94 90.00 

0 0 8 .9265 0.00 0.00 

0 2 2 .3383 46.78 90.00 

0 4 2 .5447 64.84 90.00 

0 2 1 .2724 64.84 90.00 

0 0 1 .1158 o.oo o.oo 
0 1 0 .1233 90.00 90.00 

0 1 1 .1691 46.78 90.00 

0 1 3 .3687 19.53 90.00 

0 3 0 .3698 90.00 90.00 

0 3 1 .3875 72.61 90.00 

0 3 3 .5074 46.78 90.00 



For cu2P2o7 the nuclear structure factor.is 

8 
F(hki) = beu I exp 27Ti(hxi + kyi + 1zi) 

i=l 

8 
+ bp I 'exp 27Ti(hx. + ky. + tz.) 

j=l J ] J 

28 
+ b I exp 27ri(hxk + kyk + 1zk) • 

0 .k=l 

35 

The coherent nuclear scattering lengths are given as follows: 

(36) 

-12 - -12 -12 bMn = -.36xlO em, bp = .S3xlO em, b
0 

= .577x10 em and 

bcu = .79xlo-12 em (Bacon, 1962). The indices j and kin the 

above expres.sions refer to the atomic positions of the phosphorus 

and oxygen atoms respectively. The index i refers to the mag-

netic atoms. 

For magnetic scattering the structure factors are given 

by 
e2ys n = sina ---2- f I exp 27Ti(hx + ky + iz). 
me i=l 

(37) 

The sum i runs over all magnetic ions in the respective materials. 

The angle a arises from the magnetic interactio~ vector and is 

defined as the angle between the direction of the magnetic 

moments and the reciprocal lattice vector. It is given by 

2 1/2 
sina = (l-(hcos~coso + ic~so) d(hki)2) (J 8) 

asJ.nS csJ.na 

where o is the angle between the magnetic moment direction and 

the Z axis. For Mn2P 2o7 a = 102·0 and o = SOJ) and for Cu2P 2o7 

S = 109° and o = 15° • The o angles are determined from magnetic 

susceptibility measurements. 
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Experimental Results 

A. Manganese Pyrophosphate 

A typical rocking curve for a magnetic reflection in 

Mn2P2o7 is shown in Fige Sa The double peak is presumed to be 

due to the sample consisting of two crystals with a small (0.8°) 

misorientation of the crystal axes.· The double peak is present 

for both maqnetic and nuclear reflections~ Table 5 gives the 

intensities of a selected number of Bragg peaks both at 100°K 

and 6°Ka These temperatures·are respectively above and below the 

the Neel temperature of 13(1)°K a~ determined from magnetic 

susceptibility measurements (Fowlis and Stager 1969). The 

intensities are obtained by integrating the Bragg peak .after 

subtraction of background counts. Fig. 6 shows the temperature 

dependence ·of the peak intensity for the (010) reflection. From 

Fig. 6 and Table 5 it is evident that the (010), (011), (030) 

and (012) reflections are magnetic in charactere The Miller 

indices used here and below are referred to the chemical unit 

cello It should be noted that the Neel temperature of l2°K 

obtained from the temperature dependence is a lower limit due 

to the existence of temperature gradients in the dewar, and 

does not conflict with the previously reported value (Fowlis and 

Stager 1969) of 13(1)°K. 

Assuming that the magnetic unit cell is either identical 

to the chemical unit cell, or is doubled along the c axis , 

there are 35 possible colinear antiferromagnetic spin configura­

tions possiblee The intensities of the magnetic reflections 



Fig. 5 

Rocking curve for the (010) magnetic reflection 

in Mn2P207. CThe solid line is drawn as a visual 

guide through the points. 
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Fig. 6 

Temperature dependence of the counting rate at 

the center of the (010) peak in Mn2P2o7 • 
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TABLE 5 

Observed·and Calculated Intensities for Mn2P2o7 

h k 1 Observed Intensity 
(l00°K) 

Observed Intensity 
· (6C!K) 

Calculated Intensity Type (Nuclear 
or Magnetic 

0 2 0 

0 0 1 

0 0 2 

0 l 0 

0 1 2 

0 3 0 

0 1 1 

28 

17 

26 

<l 

<1 

<1 

<1 

14 (2) . 

4 (1} 

·2 (1) 

10 (2) 

28 

18 

33 

18 

5 

2 

12 

•' 

N 

N 

N 

M 

M 

M 

M 

The calculated intensities have been normalized to the observed intensity for (020). 

The mesured integrated intensities· have been multiplied ~y the geometrical factor sin 28 

(Bacon 1962, p. 57). 

w 
\D 
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were calculated relative to the intensity of the (020) nuclear 

reflections for all 35 configurations. These calculations do not 

take into account spin transfer onto non magnetic ions. 

Of the 35 configurations, only one has a sufficiently 

strong (010) reflection to account for the experimental results. 

There are a number of other configurations with non zero intensities 

at (010) but they are at most one-quarter of the observed value. 

The remainder of the observed magnetic peaks are in good agree-

ment with the calculated values as shown in Table 5. There was 

some ambiguity in the powder results obtained by Collins et al 

{1~70) as to whether the peak was indeed (010) and not (00~) or 

possibly a superposition of both as the d spacings for these 

reflections are almost identical. The present work removes the 

uncertainty and confirms the spin configuration suggested by 

Collins et al (1970). The spin configuration for Mn2P2o7 is 

shown in Fig. 7o 

The c centering operation in the chemical unit cell is 

lost in the magnetic unit cell, but the axes lengths are identical. 

The very strong (010) reflection is caused ~y the antiferromagne-· 

tically ordered layers in the ac plane that are separated by 

1 
2 b. As a result there is almost perfect constructive interference 

for scattering vectors along b. It may be also noted that the 

(010) intensity is slightly smaller than the calculated value, 

but this may be attributed to extinction effects which become im-

portant for large peaks at low scattering angles. This effect 

was also apparent in the powder datao 



Fig. 7 

Spin configuration for Mn2P2o7 • The mirror plane 

is cross-hatched. The anti two-fold axis is a two­

fold axis rotation followed by the time reversal 

operation. This constrains the spins to be perpen­

dicular to the two fold axis. Dark circles are up 

spins, aligned 23° away from a* towards c*, and 

open circles are down spins. 
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B. Copper Pyrophosphate 

In Cu2P207 the magnetic reflections are predicted to 

be two orders of magnitude weaker than the nuclear ones. It 

was therefore necessary to look for magnetic scattering where the 

nuclear reflections are absent because of symmetry or where the 

intensity of the nuclear scattering is very small, either 

accidentally or due to small deviations from a higher symmetry. 

A typical scan of a Bragg peak for cu2P2o
7 

is shown in 

Fig. 8. The integrated intensities for selected Bragg peaks are 

shown in Table 6. The calculated intensities are normalized to 

the measured (060) peak. Again the calculations have not-included 

the effect of spin transfer onto the non magnetic ions. The 

space group of the chemical unit cell is either C2/c or Cc. In 

either case the c centering operation prohibits nuclear reflec­

tions if h+k is odd and the c glide plane prohibits nuclear 

reflections of the form (OOi) for i odd. These prohibited nu­

c~ear reflections were examined at 6°K for magnetic scattering. 

None was observed. This means that the magnetic unit cell pre­

serves these two symmetry operations. The remaining nuclear peaks 

with 1 odd are relatively weak, as the-chemical unit cell is 

almost the same as in the high temperature a phase where the 

c axis is halved. The low angle peak of this type with the 

smallest nuclear intensity was examined as a function of tempera­

ture from 6°K to above the Neel temperature. The count rate at 

the middle of the (021) Bragg peak is shown in Fig. 9. A rocking 



Table . ·6 

' 
Observed Calculated Intensities for cu2P2o7 

h k R, Observed Intensity Observed Intensity Calculated Intensity Type (Nuclear 
(100°1<) (6°K) or Magnetic 

0 6 0 ~ 444 444 N 

0 6 1 38 14 N 

0 6 4 47 43 N· 

0 0 8 395 333 N 

0 2 2 88 121 N 
. l 

0 4 2 76 36 N 

0 2 l *· <0.1· 1.0(2) 1.2· M 
~ 

0 0 l <0.1· . <0.1 0 M 

0 1 0 <0.05 <0.05 0 ·M 

0 1 1 <0.05 <0.05 0 M 

0 1 3 <0.1 <0.1 0 M 

0 3 0 <0.1 <0.1 0 M 

0 3 l <0.1 <0.1 0 , ·.M ~ 
w 

0 3 3 <0.1 <0.1 0 • ·M 
The calculated intensities are normalized to the.observed intensity for (060) 
The observed intensities are multiplied by the geometrical fact9r sin 29 

"'The nuclear intensity has been subtracted from the total intens1ty for (021) 
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Fiq. 8 

Rocking curve for the (060) nuclear reflection in 

cu2P2o7 • The error bars in this case are smaller 

than the points on the figure. 
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Fig. 9 

Temperature dependence of the counting rate at the 

center of the (021) peak in cu2P2o7 • The intensity 

above TN is attributed to nuclear scattering, which 

is not prohibited by symmetry. 
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curve was done at 4.2°K and 77°K to ensure that the counts 

taken were at the center of the Bragg peak. This was done to 

ensure that the crystal did not move due to thermal expansion 

as the temperature was raised. Because of the very weak scat­

tering and resulting long counting times, it was not possible to 

cp.eck the rocking curve at other temperatures. The 8% dif­

ference in the count rate at 6°K and at 26°K is attributed to 

magnetic scattering. If the magnetic unit cell is commensurate 

with the chemical unit cell there are 35 possible colinear spin 

configurations. Eliminating those that do not preserve the c 

centering only three remain. Of these only 2 preserve the 

c elide plane and only one of these has magnetic scattering at 

the (021) Bragg reflection. It is concluded that this is the 

correct spin configuration. It should be noted here that the 

change in intensity for (021) may be due also to a crystallograp­

hic distortion at the Neel temperature. We are unable to rule 

out this possibility, but note that the change in intensity is 

in good agreement with the predicted magnetic intensity for 

this reflection. The spin arrangement consists of antiferro­

magnetic sheets in the ab plane which are coupled antiferro­

magnetically to neighbouring sheets. The favoured spin con­

figuration for cu2P2o7 is shown in Fig. lO(a}. The alternate 

configuration, which does not show magnetic reflection at (021) 1 

is shown in Fig. lO(b) and consists of an identical arrangement 

except that neighbouring sheets are coupled ferromagnetically 

rather than antiferromagnetically. 



Fig. 10 

-Spin configurations for cu2P2o7 • The planes drawn 

through the middle of the unit cell and the lines 

joining magnetic ions do not represent symmetry 

elements, but are drawn for visual assistance. The 

top configuration represents the one most favoured 

by the neutron diffraction results, but the bottom 

configuration is not ruled out. 
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CHAPTER IV 

NUCLEAR MAGNETIC RESONANCE 

Experimental Procedure 

The samples used for the NMR measurements were the 

same samples used for the neutron diffraction studies. The 

crystals were aligned along known crystallographic axes using 

an X-ray precession camera. Once aligned, the crystals were 

transferred to the end of a glass tube containing diamagnetic 

31 Mg2P2o7 • The Mg 2P2o7 was used as a standard sample for the P 

resonance, since no resonance shifts are expected for this com-

pound. Once mounted in this manner the alignment of the crystals 

was rechecked using the precession camera, and mounted inside 

the radio frequency (r.f.) coil. The coil consisted of a copper 

coil of diameter 3 mm and len9th 4 mm, wound with about 20 turns 

inside a teflon sleeve for rigidity. The sample alignment 

was accurate to within about 2° at low temperatures, as deter-

mined from the mutual consistency of data o~tained in several 

planes. 

The rf coil was incorporated in the tank circuit of a 

marginal oscillator. A circuit diagram of the oscillator is 

shown in Fig. 11. The frequency of the oscillator was kept 

constant while the magnetic field was swept linearly with time. 

Conventional field modulation and phase sensitive detection 
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Fig. 11 

Circuit diagram for the marginal oscillator used 

for the NMR studies. 
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so 

techniques were employed. The 100 Hz field modulation was 

variable from 0 - 100 gauss peak to peak and for the low tempera-

ture measurements, values ranging from 20 gauss to 100 gauss 

were found to be optimal, depending upon the orientation of 

the sample. A time constant of 3 seconds was used for the 

filter on the output signal. The· DC magnetic field was mea­

sured with a Varian Fieldial Mark I magnetic field regulator. 

The cryogenic system was also of conventional design, 

·enabling measurements to be made at 4.2°K. The sample was im-

mersed in the liquid helium. Provision was made for pumping 

on the liquid helium so that an ultimate temperature of 1.5°K 

could be reached. 

A typical first derivative resonance curve for the 31P 

resonance in Mg2P2o7 and in cu2P2o7 at room temperature is shown 

in Fig. 12. The resonance in cu2P2o7 is shifted with respect to 

that in Mg2P2o7 as a result of the transferred hyperfine interac­

tion in the paramagnetic state. A typical 31~ resonance 

from cu2P2o7 at 4.2°K, in the antiferromagnet~c state is shown 
I 

in Fig. 13. It should be noted that the l~newidth observed 

varied widely as a function of the orientation of the crystal, 

from about 30 Oe to 100 Oe. The integrated intensity of the 

resonance varied considerably as well. In fact for some orien-

tation of the crystal, the resonance due to certain crystallo­

graphic sites was too weak to be observed. This variation was 

first thought to be due to mosaic spread in the crystal but this 



Fiq. 12 

Field derivative of the 31P NMR in cu2P2o7 and in 

Mg2P2o7 at room temeprature. The frequency at which 

the resonances were observed is 22.49 MHz. 

' \ 



,__ 
0 

t\1 
0.. 
N 
::s 

(.) 

z 

0 _. 
LLJ 

ro­mLL . 
~c 

LtJ 

tO 
m 

• 
fl) 

-..J 
0.. 
0. 
<t 



Fig. 13 

Field derivatives of the 31P NMR in cu2P2o7 and 

Mg2P2o7 at 4e2°K. The linewidth for cu2P2o7 varies 

from about 25 Oe observed in this case to 100 Oeu 

depending upon the orientation of the crystal with 

respect to the external fieldo 
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possibility was ruled out because in this case the linewidth 

:should increase in those regions where the resonance field 

.changes rapidly with orientation. This was not the case 

experimentally. 

· Theory of NMR in the Ordered State 

The Hamiltonian for the ith phosphorus nucleus may be 

written in the following form. 

= r sj·Aij.!i • 
j 

(39) 

For phosphorus the nuclear spin I = 1/2. The second rank ten-

sor =ij 
A couples the ith nucleus to the jth magnetic ion. The 

sum runs over all magnetic ions. -j s represents the spin on 

the jth atom. For a simple two sublattice antiferromagnet, the 

sum can be divided into two parts, one for up spins, the other 

for down spins. Hence we can write. 

HM =E s k.A ki.Ii + L s k A ki Ii. 
1 t t k· + + 

(40) 

Because the up spins and down spins are all the same in a two 

sublattice model, we can write. 

• (4) 

At and A+ are the coupling tensors between all of the spins 

on the respective sublattice and the ith nucleus. If the 

following definitions are made: 

-+ 1 - -s- = 2 cst ± S+) 

(At ± A+) \'There At·,+ 

(42) 

(43) 
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then the above Hamiltonian may be written as 

(44) 

St(T,H) and S+(T,H) are functions of temperature and the exter­

nal magnetic field. These vectors are shown graphically in Fig. 

14. In the absence of an external field. 

§~t(T,O) = ±~SM (T)/M (0) ,., s s (45) 

where Ms(T) is the sublattice magnetization at T°K and k is a 

unit vector along the spin direction. Using the appropriate g 

tensor and the relation M = x·H we may write 

(46) 

where X is the susceptibility tensor expressed in units of e.m.u./ 

mole and N is Avogadro's number. The Hamiltonian may now be 

written as 

where the usual nuclear Zeeman term has been included. The fac­

tor g-l is the inverse of the g tensor, gN is the nuclear g 

factor and a and aN are the Bohr magneton and the nuclear magna­

ton respectively. 

......-+ --The task remains to determine the vectors S and S as 

a function of applied field. We will define these in terms of 

M+ and M- where 

= -+ + -+ = g·~ .g-._ M ±M 
· B o o (48) 



I 
• I 

Fig. 14 
-o -o 

An illustration of the spin vectors St and s~ 

at zero field and s+ and S+ in the presence of an ap­

plied field H~ ~± = ~(~+± ~+). 
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Nagamiya et al (1955) have outlined a method for cal­

culating the magnitude and direction of M+ and M- in the 

molecular field approximation. The_ following expression fo~ M+ 

is given 

. (49) 

H is the molecular exchange field and M is the zero field ex o 

value of the sublattice magnetization. The existence of .M+ is 

attributed to the tipping of spins on opposing sublattices 

towards one another to result in a net macroscopic magnetization 

iri an applied field. 

It is slightly more complic-ated to compute M • Nagamiya 

et al (1955) give the following expression for the free energy 

of the system. 

1 2 1 2 
F =- 2 XJJHIJ -2 XlHl +·EA. (50) 

Nagamiya et al (1955) assume that the two principle values of 

the susceptibility which correspond to eigenvectors perpendicu­

lar to the direction of the sublattice magnetization are equal. 

Experimentally, this is-not true for·cu2P2o7 but the values 

are sufficiently close to one another that the assumption is 

a valid approximation. The perpendicular susceptibility is 

denoted by xl' and the parallel susceptibility is denoted by 

Xj J• The anisotropy energy is defined phenomenologically as 

follows. 
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a± and a± are the direction cosines of the respective sublat-

tice magnetization vectors. The z axis is therefore the easy 

direction. The free energy of the system is expressed by the 

following equation. 

where aH' aH and yH are the direction cosines of the external 

field. The expression has been simplified by assuming that the 

sublattice magnetization vectors are colinear so that 

approximation if the induced magnetization of the sample is 

small. From equation (49) it can be seen that this condition is 

satisfied if the exchange field is very large compared to the 

external field. The magnetization direction in a finite exter-

nal field is obtained by minimizing the above expression for 

the free energy, subject to the constraint ~2 + a2 + y
2 = 1. 

This is equivalent to solving the following equation. 

2 
aH + 1(2-A. ~HSH ~HYHI 

aHSH a·2 .H +)(1-A.. BHYH = 0 (53) 

~HYH SHyH 
2 

YH -A. 

The constants 1 and 2 are defined as follows 

(54) 
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{55) 

The smallest value of the eigenvalue A corresponds 

to the condition of minimum free energy and the associated e.igenvec­

tor corresponds to the desired values of a, B and y that is 

the direction cosines of the sublattice magnetization. The 

coordinate system for the above equation has been defined so 

that the z direction correspo.nds to the easy direction, the y 

direction corresponds to the intermediate direction, and the 

x axis corresponds to the hard direction, with reference to 

the principal values of the free energy. 

Now that we have obtained the vectors M+ and M and 

-+ --hence S and S , the only unknown parameters in the Hamiltonian 

=+ -are the tensors A and A-. These may be determined from the 

experimental data. Each of these tensors has two major parts. 

The first of these is the classical dipole-dipole interaction, 

and may be calculated given a knowledge of the crystal struc-

ture, and the arrangement of the ~pins in the unit cell. To 

a first approximation this may be done assuming that all of the 

spins are localized on the magnetic ions. The dipole-dipole 

energy is given by 

3 {m.._k. r . ) (m ' • rk . ) 
1'J k] J J ....... 

---------- 5 1 (56) 

rkj 

This is the energy of interaction of the kth site with all of 

the magnetic ions. ~k is the nuclear moment at the kth site 

given by 
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(57) 

.and m. is the electronic magnetic moment at the. jth magnetic 
J 

·~ite. The vector rkj connects the jth site to the kth one. In 

general, a straightforward ?alculation of the dipole·sum is 

difficult. For the present work, Ewald's method, outlined 

in Born and Huang (1954) is used. This method involves sum-

mation of the series in both real and reciprocal space out to 

a finite radius R. The dipole energy of interaction with the 

site k can be written as 

(58) 

The coefficients O&a(k,k') are tensor ~lements which relate 

the a component of th~ magnetic moment associated with the kth 

ion in the unit cell to the a component of the resulting mag­

netic field at the kth ion in the unit cell. The sum over unit 

cells has been incorporated into the tensor elements. 

The Ewald meth,od has been used in a computer program, 

written by E. R. Cowley, to calculate the coefficients Qaa(kk'). 

The dipole sums can be modified to some extent by assu-

ming that some of the spin density is transferred to the non 

magnetic sites. The degree of transfer can be estimated from 

NMR studies in the paramagnetic state (Atkinson, 1969) and use 

of symmetry considerations. 
=·+ 

The second major contribution to the tensors A- is the 
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transferred hyperfine interaction. This effect arises from the 

presence of a finite spin density on the 31P ions.- This spin 

transfer is a result of the overlap of the wavefunctions of 

magnetic and non magnetic ions. In the process of orthogonali-

zing the wavefunction of the magnetic ions and neighbouring 

non magnetic ions, those wave functions associated with the 

is?lated ions which are not orthogonal, that is those with the 

same spin, become mixed. This process is approximated by the 

molecular orbital method which uses linear combinations of 

atomic orbitals to form bonding and antibonding orbitals. To 

obtain an understanding of this method, the simple case of a 

three electron two center case is considered. The bonding and 

antibonding orbitals have the following form. 

(59) 

(60) 

wM is a magnetic ion orbital and wL is a non magnetic ligand 

orbital. ~A and wAB are approximately orthogonal if 

X ~ y + <~LiwM>. The assumption is made that t~e overlap 

integral <~LiwM> is small. The bonding orbital ~B is lower in 

energy because its dominant part is ~L' which is a lower energy 

state that ~M. As a result wB contains two of the three elec-
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trans available from the atomic states, leaving one electron 

for the antibonding state. It is wAB which contributes to the 

unpaired spin density on the non magnetic ion. The unpaired 

spin density is then proportional to A2 • 

The remaining part of the transferred hyperfine interac­

tion is the interaction between the unpaired spin on the 31P 

ions and the nucleus. This is the direct hyperfine interac­

tion, and it consists of two parts. The first is a dipole­

dipole interaction between the nuclear and the electron spins. 

This effect is zero, if the electronic wave function is 

spherically symmetric. As a result there is no dipole interac­

tion for s electrons. There is however another contribution, 

the Fermi contact interaction, which depends on the electron 

density at the nucleus. This is finite only for s electrons, 

since all others have zero electron density at the origin. 

The dipole hyperfine constant for 3p electrons is given 

by 

1 <--> . 
r3 

3p 

(61) 

The value for <-j-> can be obtained from the optical spectrum 
r 

(Barnes and Smitrt~ 1954). 

The Fermi contact contribution is 

A3s = ~ ngByHj~3s(o) 12 (62) 

where 1~ 3 s(o) 12 is the density of 3s electrons at the nucleus. 

It can be obtained from the formula 



a z. 
llP (o)f= ~ 

as Z 
0 
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1 (T) 3/2 

'fl'a 3 R 
0 

(63) 

where Zi is the effective nuclear charge, a
0 

is the Bohr 

radius, T is the term value and R is Rydbergs constant. (Crawford 

and Schawlow, 1949). 

The fraction of unpaired 3s electrons at the ith nucleus 

d t th k th t . . ' . b ue o e magne 1c 10n 1s g1ven y 

Aki 

2S 8 

f3s = 
A3s 

{64) 

k' 
where A 

1 is the experimental hyperfine constant determined s 

from the field shift at the ith nucleus in the paramagnetic phase. 

S is the spin on the magnetic ion. 

expression 

6
HHF !_ I: Aki 
~ = - yM k s 

Ati is given by the following s 

<S>i 
• -H- (65) 

o 

where AHHF is the transferred hyperfine field shift of the 

nuclear magnetic resonance which occurs at H0 in the absence of 

magnetic interactions. ~HHF. is obtained from the total experi­

mental field shift AH by subtracting from ~H contributions 

due to dipole fields and the demagnetization field. The above 

equations is easily solved for A~i if the assumption is made 

that A~i is the same for all magnetic ions. <S>i is the 

thermal average of the spins in the paramagnetic state and is 

given by 
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<S> = SB
8

(x) where x = (66) 

B
8

(x) is the Brillouin function for spins. For s = ~ it is 

given by 

Magnetic symmetry 

B1 (x) =tanh x 

"2" 
(67) 

The chemical unit cell of the compounds studied have 

the point group 2/mo That is there exists a 2 fold axis along 

the b axis of the crystal and a mirror plane perpendicular to it. 

The magnetic symmetry of the crystal involves the additional 

complication of keeping track of the spin direction of symmetry 

related sites. To accommodate this additional information a 

number of additional symmetry operations are defined. The 

magnetic symmetry elements for a monoclinic system include the 

follows: 2, 2', m, m', I, and I'. The 2 operation is the 

usual crystallographic 2 fold axis element, and m is the 

crystallographic mirror plane operation. I is the identity 

operation. The 2 1 operation is a product of the 2 operation 

and the time reversal operation. Magnetic vectors transform in 

the same way as angular momentum, and·the angular momentum 

vector can be written as rxp where r is a position vector and 

p is a linear momentum vector. The time reversal operator 

transforms p into -p while leaving r unchanged, so the net 

effect of this operation is to change the sign of a magnetic 

vector. The m• operation is a product of the mirror plane 
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and time reversal. I 1 is a product of the identity and the 

time reversal operator• Figo 15 shows the effect of the various 

operations on a magnetic vectoro A number of special cases 

are worthy of note. If a magnetic site is located on a crystal­

lographic 2 fold axis 8 then a magnetic 2 axis implies that the 

magnetic vector associated with that site must lie along the 

two fold axis. Similarly a magnetic 2' axis implies that the· 

vector must be perpendicular to the axiso If the site is lo­

cated on a crystallographic mirror plane, then a magnetic m plane 

implies that the magnetic vector must be perpendicular to the 

mirror plane, and an m' plane implies that it must lie within 

the mirror plane. A complete description of the way in which 

·axial or magnetic vectors transform·under the·magnetic·point 

group operations may be found in a paper by Donnay et al (1958)o 

Methods of applying these groups in the determination of mag~ 

netic structures from NMR data is discussed by Riedel and Spence 

(1960) and Spence and van Dalen (1968). In these papers the 

magnetic point groups are referred to as Heesch groups, of 

which there are 122 derivable from the 32 ordinary point groups 

and the corresponding magnetic space·groups are referred to as 

Shubnikov groups, of which there are 1651, obtainable from the 

230 ordinary crystallographic space groups. For a monoclinic 

system the following Heesch groups are possiblee If the crystal= 

lographic point group is m, then the Heesch group may be one of 

2 1 , m' or 2'/m'. Similarly if the crystallographic point group 

is 2 9 the Heesch group may be 2, m, or 2/m. Finally, if the 
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Fig. 15 

The effects of symmetry operations on magnetic 

vectors. 
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point group is 2/m, the Heesch group is one of 21' 1 ml' , 2/ml' , 

2/m' or 2'/m. As a final note it should be stated that the 

magnetic point groups defined here as Heesch groups differ _ -> 

'- ('< 

from those defined by Opechowski and Guccione (1965) in that 

they remove all translations from the magnetic space groups to 

obtain the point group whereas here the anti translations, 

that is those including time reversal, are condensed into the 

anti identity. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work on the NMR of this compound in 

the antiferromagnetic phase has been reported by Choh and Stager 

(1970). The interpretation of these results in terms of possible 

spin configurations, using the method of Spence and van Dalen 

.(1968), was not _consistent with the spin configuration deter­

mined by Collins et al (1970) from powder neutron diffraction 

data. Since the powdered d~ta was confirmed by single crystal 

studies in the present work, it beco~es necessary to reevaluate 

the NMR data in light of this information. The 31P NMR in the 

ordered state has been used to measure the internal field at 

the phosphorus nuclei. The components of the internal fields 

at the phosphorus sites are listed in Table 7. Assuming that the 

space group symmetry of the crystal does not change down to 4.2°K, 

the magnetic ions are located on a 2 fold axis. Experimentally 

the· spins are determined to be perpendicular to the 2 fold axis 
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TABLE 7 

Internal field components at the phosphorus sites in Mn2P2o7 

i B H Hz • X y 

1 • 005 (5) .259(11) +1.27(9) 

2 -.005(5) -.2?9(11) +1. 27 (9) 

3 +.005(5) +.259(11) -1.27{9) 

4 -.005(5) -.259 (11) -1.27 (9) 

- Fields are given in kiloOersteds. 

- The spin direction is along z. 

- The two-fold axis is along y. 

- i labels the phosphor u s ions. 
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(Fowlis 1970) so the 2 fold axis becomes a magnetic 2' axis. 

This is consistent with the spin configuration determined by 

neutron diffraction. The neutron studies determined that spins 

related by the mirror plane are antiparallel, and because the 

spins are parallel to the mirror plane, the crystallographic 

IfU.rror plane must be a magnetic m plane. The phosphorus 
I 

nuclei are situated on the m plane, so all internal fields 

measured at the phosphorus sites must be perpendicular to the 

mirror plane. From Table 7 it is evident that this is not 

observed experimentally. 

The dipole field was calculated and found to be perpen­

dicular to the m plane, as expected from symmetry. If all of 

lhe\··magnetic ·moment is conc'~ntrated on the manganese ions, 

then the calculated dipole field is approximately twice as 

large as the measured perpendicular component. This result can 

be modified significantly by assuming that some of the spin 

polarization is located on the oxygen ions that are near 

neighbours to the manganese ions. An order of magnitude estimate 

with 2% spin transferred to each oxygen ion, where spin polari-

zation is not forbidden by symmetry, would lead to an oxygen 

contribution to the perpendicular component that is approximately 

40% that of the manganese ion contribution. If the oxygen spins 

are antiparallel to the near neighbour manganese spins this 

contribution would have the opposite sign to that due to the 

manganese ions. A detailed calculation would be very sensitive 

to the atomic oositions, which are not accurately known at helium 
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temperatures, and especially sensitive to the spin direc-

tion. As a result it is possible that all of the perpendicular 

component of the internal field arises from the dipole field. 

The para~lel component must come from th~ transferred 

hyperfine interaction. The experimentally measured component 

in the plane is parallel to the measured spin direction, as 

expected for an isotropic transferred hyperfine interaction 

(Atkinson and Stager, 1969). The contributions to the parallel 

component should, however, cancel in pairs because of the 

m plane. We will postulate a very small distortion from C2/m 

symmetry so that the mirror plane is lost. If the distortion 

is small it will not strongly affect the dipole contribution 

·with its 1/r3 dependence. If we assume that the transferred· spin 

on the phosphorus ions result from the same mechanism responsible 

for superexchange, then from high pressure studies {Benedek and 

Kushida, 1960) there is an approximate'l/r10 radial dependence. 

The high pressure studies were done on manganese fluoride. 

The assumption is made that the change in the relevant bond angles 

is small and does not affect the magnitude of the interaction. 

A rough estimate of the degree of cancellation of the hyper-

fine fields can be obtained by comparison with the NMR data 

in the paramagnetic state. There the expectation value of 

all spins are parallel and··no cancellation occurs. Using the 

data of Atkinson and Stager(l969) a hyperfine field of 31.8 

kOe is predicted for saturated paramagnetic Mn2P2o7 • The observed 

value for the antiferromaqnetic state is 1.27 kOe. Order of 
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magnitude calculations are done in the following manner. 

The interaction between a magnetic ion and the phos­

s phorus nucleus is given by HHF = ~F(r) -.---where r is the 
. lJNgN 

length of the hyperfine path in the limit of C2/m symmetry. 

If the phosphorus ion is moved off the mirror plane the 

length of the hyperfine path for one of the symmetry related 

ma~netic ions becomes r+~ and for the other r-fi. Taking into 

account the functional dependence of the hyperfine interaction 

and the antiparallel arrangement of the symmetry related spins, 

the total hyperfine field becomes, for the distorted crystal 

HHF = 
s 

[AHF(r+~) - ~F(r-~)] (68) 
1JN9N 

s [k (r+~f10 -10 kS [r10 -lor9 ~+ 10 9 
= - k (r-~) 1 = •• -r -lOr b.] 

llN9N 1JN9N 

-20ksr9fi (69) = 
lJNgN 

k is an appropriate proportionality constant for the transferred 

hyperfine interaction. Similarly for parallel spins, as in a 

saturated paramagnet the hyperfine field is given by 

-10~ = --. r 
(71) 

~/r is the fractional change in the transferred hyperfine path. 

In gene_ral, for an rn dependence of the transferred hyper-
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:fine field this is given by 

(72) 

0 

Using equation (71) bond length changes of the order of .-01 A 

:are sufficient to explain ~he result. These changes are too 

small to have been observed by any neutron or X-ray diffrac-
1 
I 

:tion experiment carried out so far on Mn2P2o7 • F. Long 

(private communication) has examined a powdered sample by X-

rays at 6°K and observed no evidence for a symmetry change 

from the C2/m structure. 

The Heesch group above the low temperature phase transi­

tion is 2'/m. From the symmetry of the internal fields, it 

is,. like~y that the Heesch group remains unchanged through the 

phase transition, at least to within the accuracy of the ex-

perimental measurements. If this is indeed the case, the 

resonances corresponding to the four magnetic sites in the 

crystal should coincide in pairs if the internal field is 

oriente~ perpendicular to the 2 fold_axis. The linewidth of 

the resonances observed was about 80 Oe, and the internal field 

was approximately 1 kOe, so any splitting of the coincident 

resonances involving more than 5% difference between the two 

corresponding internal fields should have been observable. 

No such splitting was observed experimentally. This 5% limit, 

taking into account the r 10 dependence of the transferred 

hyperfine field would preclude the observance of changes from 
I 

2 /m symmetry involving fractional changes in atomic coordinates 



72 

of less than 0.5%. 

Data were taken at 4.2°K with the external field in 

the ac*, ab and be* planes. The c* axis is along the direction 

axb. Additional data were taken in a plane which is perpen­

dicular to an axis 30° from the c* axis towards the a* axis 

in the ac plane. These data are shown in Figs. 161 18, 18 

and 19 respectively. The first three planes of data were taken 

at 17.00 MHz, the latter at 16.5 MHz. A total of 4 resonances 

was observed. The angular dependence of a given resonanqe shows 

the characteristic 360° periodicity of NMR in a magnetically 

ordered· system. The four resonances correspond to the vector 

sum of the external field with. ·4 different internal fields at 

the phosphorus nuclei. There is no quadrupole splitting for 

31P since the nucleus has I = j. Measurements were made at 

a higher frequency (21 MHz) at 4.2°K in the ac plane to determine 

the field dependence of the resonance pattern~ These results are 

shown in Fig.20 • The additional resonance with a minimum at 

· 14.2 kOe is related to the an tiferrornagnetic spin flop res·onance. 

As this is a cooperative electronic effect in the crystal, the 

intensity of this resonance is several orders of magnitude 

larger than the nuclear resonances. Fowlis (1970).has observed 

the same· resonance using mic.rowave techniques at 35 GHz. The 

temperature dependence of the internal field was examined with 

the external field along the direction of easy magnetization. 



Fig. 16· 

Applied fields for th~ 31P resonances as a function 

of angle for the external field in the ac* plane. 

The resonant frequency is 17.00 MHz. 
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. Fig. 17 

Applied fields for the 31P resonances as a function 

of angle for the external field in the ab plane. The 

resonant frequency is 17.00 MHzo 
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Fiq. 18 

Applied fields-for the 31P resonances as a function 

of angle for the external field in the be* plane. 

The resonant frequency is 17a00 MHz. 
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Fiq. 19 

Applied fields for the 31P resonances as a function 

of angle for the external field in a plane perpen­

dicular to an axis 30° from c* towards the a axis 

in the ac* plane. The resonant frequency is 16.5 MHz. 
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Fiq. 20 

The solid circles are the applied fields for the 

31P resonances as a function of angle for the ex­

ternal field in the ac* plane. The resonant frequency 

is 21 MHz. The open circles are spin flop anti­

ferromagnetic resonances at the same frequency. 
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No temperature dependence was observed between 1.5°K and l0°K. 

The formalism of Choh and Stager (1970) as developed 

earlier in this chapter, was used to evaluate the cu2P 2o7 data. 

There are a number of outstanding differences between the 

experimental results for Mn2P2o7 and cu2P2o7 • The first is 

. the substantially larger internal_ field present at the phos-

phorous sites in cu2P2o7 • Secondly the resonance pattern in 

cu2P2o7 does not exhibit the two maxima per site as a function 

of angle over 360° as does that in Mn2P2o7 , but more closely 

approximates a simple sinusoidal dependence. This is related 

to the small magnitude of the susceptibility term in the· 

Hamiltonian. There are, however,· still significant deviations 

from sfnusoidal behaviour. Exact sinusoidal behaviour would 

result if the internal magnetic fields are not perturbed by 

the external fielde Finally, there was no temperature depen-

dence of the resonances for fields along the easy direction, 

in contrast to the results for Mn2P2o7 • 

As was discussed earlier in this chapter, there are two 

major perturbations on the spins in an antiferromagnetic system 

upon the application of an external magnetic fieldo The first 0 

being the tipping of spins on opposing sublattices towards one 

another, is included in the susceptibility term of the Hamil-
. 

tonian, since it involves the vector S+ defined earlier. As 

shown pr-eviously(} this tipping is proportional to H/H • In . ex 

Mn2P2o7 this effect is important since .the exchange field is 

77 kOe, as determined from magnetic susceptibility data (Fowlis 
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and Stager (1970) and the applied field was of the order of 

12 kOe. In cu2P2o7 , however 0 this spin tipping might be ex­

pected to be less important, because the exchange field for 

this compound has been determined to be H = 900 kOe as ex 

compared to an internal field again of the order of 12 kOe. 

The exchange field for cu
2

P
2
o

7 
has been determined by Fowlis 

(1970) from magnetic susceptibility datae The ratio of H/H ex 

is therefore much smaller for cu
2

P
2
o

7 
than it is for Mn

2
P 2o

7
o 

The second effect is the spin rotation effect which 

depends on H/HSFG This effect was not important in Mn2P2o7 be= 

cause of the relatively large spin flop field of 24.2 kOe. The 

spin flop field for Mn2P
2
o

7 
was obtained from antiferromag­

netic resonance data (Fowlis 1970). In cu
2

P2o
7

, the spin 

flop field of 14e2 kOe makes the rotation effect considerably 

larger. In Mn2P2o7 the rotation angle was at most about 2° 

while in cu2P2o7 the rotation was as much as 25°o 

In the analysis of the cu2P 2o7 data, the full Hamil~ 

tonian is used, and it will be shown that the neglect of the 

susceptibility term is justified. For this system it is not 

realistic to replace s= in the final term of the Hamiltonian 

with s~ where s~ is the unperturbed vector for an up spin in 

the absence of a magnetic field. This is because at the fields 

at which some of the experimental results were obtained the 

spin flop field is a~proached and the spins are rotated 

considerably from their equilibrium zero field positions. 

In the analysis of the NMR data for cu2P2o7 , the following 
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coordinate system was chosen. The z axis is chosen to be along 

the measured zero field sublattice magnetization, and the y 

axis is chosen to be along the b axis of the crystal. This co-

ordinate system then corresponds to the principle axes of the 

susceptibility tensor. The tensors A+ and A- are assumed to 

be real and symmetric. In order to evaluate the Hamiltonian it 

is necessary to determine the direction and magnitude of s- as a 

function of the magnitude and direction of the external field, 

using the procedure described earlier in this chapter. This 

requires a knowledge of the two spin flop fields for this biaxial 

system and of the ratio of the parallel to perpendicular suscep-. 

tibilities. The spin flop fields have been determined by 

Fowlis (1970) from antiferromagnetic data, to be 14.2 kOe and 

140 kOe. The latter result is not considered to be reliable 

since the AFMR data is not very sensitive to the parameter, but 

fortunately, the rotation of s- is not sensitive to small 

changes in the magnitude of this parameter either. The suscep-

tibility has also been determined by Fowlis. From these data 

are obtained the anisotropy fields of 120 Oe and 12 kOe 

respectively. The anisotropy field of 120 Oe is a measure of the 

ease with which tfie spins can be rotated in a plane defined 

by the easy direction and the b axis, and the field of 12 kOe 
-

refers to the ease by which they can be rotated in a plane 

perpendicular to the b axis. Thus the b axis is the "inter-

mediate" axis and the second perpendicular direction is 

the "hard" axis. 
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It is further assumed that the magnitude of S remains 

·unchanged and is equal to Is~ 1- This is a valid assumption 

,provided the ratio of the spin flop field to the exchange field 

HSF/Hex is small. Since Hex = 103. kOe for cu2P2o7 , this ap­

proximation is reasonable. · 

Having found the direction of S- under the influence 

of an external field H, one defines a new coordinate system, 

(X I Y I Z I ) SUCh ·th~t Z I iS along the direction Of s-: 
In this new coordinate system the solution of the Hamiltonian 

involves a straightforward diagonalization of the 2x2 matrix 

1 which arises from I =. 2 . 

As mentioned previously, there are four resonances 

observed experimentally, corresponding to 4 different sites. 

The values of the tensors IslA- and x·A+ are tabulated in Table 

8. Because the z ax-is is along the measured easy direction, 

only the xz, yz and zz components of A- are measured with any 

precision. The parameters tabulated were obtained by a least 

squares fit to the Hamiltonian. From these results it 

is apparent that to within experimental accuracy the tensor 
- -+ . =+ . product x•A is zero. The tensor A ~s easily obtained from 

NMR in the paramagnetic phase as it couples <S> and I in the 

paramagnetic phase. Atkinson (1969) has determined <S>A+ by 

measuring the frequency shift of the 31P NMR signal at room 

temperature (300°K). The thermal average of S' can be calcu 
.. 

lated, and hence A+ can be determined. Using this value of A+ 
. . = =+ and the experimental unc_erta1.nty l.n x •A one can put an upper 



T·able· 8 

Interaction:tensor components in units of 10-4 . -1 
em at 4.2°K 

·.,. 

ia. 1 2 3 4' 

+ (X •A ) XX .004(.004)b .011(.004) .011(.003) .004(.004)' 

+ <x·A )xy .005(.004) -.002(.004) ~. 002 < .·oo4> +.005(.004) 

+ <x·A )xz .• 005(.003) .002(.002) .002(.002) .005(.003) 

·+ <x·A )yy -.002 ( .• 003) .006(.003) + •. 006(.003) . -.002 ( .003) 

+ <x·A )yz -.009(.003) -.010(.003) -.010(.004) -.009 ( .003) 

+ <x·A > zz . - .• 0 0 4 ( • 0 0 3 ) . -.004(.002) -.004(.002) -~004(.003) 

<S>·A-xx -41 (24) 31 (14) . ~31 (14) 41 (24) 

<S>·A-xy 1.73 (.53) 1.95 (. 42) -1.85 (. 42) -1.73 (.53) 

<S>·A-xz -.03· (. 02) .00 (. 02) .oo (. 02) .03 (. 02) 

<S>·A-yy -.53 (. 28) .81 (. 39) -.81 (. 39) .53 (. 28) 

<S>·A yz 1.05 (. 02) 1.10 (. 02) -1.10 ( e 02) -1.05 ( • 0.2) 

<S>·A-zz -1.94 (. 03) 1.95 (. 03) -1.95 (. 03) 1.94 (. 03) 

a i labels the phosphorous ions. The remaining 4 ions in the chemical unit cell 
are generated by the c centering symmetry operation. 

b The numbers in parenthesis are the standard deviations •. 

'.,I 

00 
N 
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limit on the magnetic susceptibility tensor elements. 

A limit of approximately 10-2 emu/mole for the perpen­

dicular susceptibility is calculated. This is consistent with 

the value S.Oxl0-3 emu/mole obtained by Fowlis (1970) with a 

Foner magnetometer at 4.2°K. Our experimental uncertainty is 

due to the linewidth of the NMR signal. Assuming that any 

te~perature dependence is due to the susceptibility term in the 

Hamiltonian, the lack of any temperature dependence of the reso­

nance curves in cu2P 2o7 is consistent with the above result. 

It should be noted that there may be an additional temperature 

dependent term due to the Brillouin function dependence of lstl' 

but this is small over the temperature range examined. For a 

Neel temperature of 26°K the sublattice magnetization normalized 

to the sublattice magnetization at 0°K is M5 (T)/M
8

(0) =.985 at 

T = l0°K which is the highest temperature at which data was 

taken. It should be noted that for sufficiently low temperatures 

the magnetization should fall off more sharply according to spin 

wave theory which is valid in the low temperature region, but at 

l0°K we are sufficiently high in temperature that the mole-

cular field approximation is valid. Therefore the sublattice 

magnetization and hence lstl varies by at mostl.S% over the 

temperature range examined. This effect would be masked by 

the uncertainty in the measurements. 

The four resonances observed correspond to four inequiva-

lent phosphorus sites. At high temperature (300°K) the 

point group of the crystal is 2/m (Robertson and Calvo, 1967). 

The pQosphorus sites are at general positions, and so the 
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four sites are generated by the 2 fold axis rotation and 

the mirror plane. Initially it will be assumed that the point 

group remains 2/m at 4.2°K. The spin configuration has been 

determined in an earlier section of this work and is shown in 

Fig. lO(a). There is a possibility of the configuration being 

that shown in Fig. lO(b) for reasons discussed in Chapter III. 

As~uming that configuration I of Fig. lO(a) is correct, it can 

be seen from the figure and from the crystallographic space 

group that the Heesch group is 2/m'. Using this information 

the internal fields at the phosphorus sites can be analysed 

in terms of the crystal symmetry. Figure 21 shows the internal 

fields as determined from the NMR data. Sites (1) and (2) are 

related by the 2 fold axis, as are sites (3) and (4), using 

the above Heesch group as a guide. Sites (1) and (3), as well 

as (2) and (4) are related by the m' plane. It follows then, that 

all internal fields have the same magnitude and that the ex-

ternal fields (1) and (4) as well as (2) and (3) are colinear. 

From this information it is evident that if the external field 

is applied perpendicular to the 2 fold axis as in Fig. 16 that 

the magnitude of the vector sum of the internal and external 

fields should coincide in pairs, and only two resonances should 
~. 

be seen, related to each other by the 2 fold axis. The fact that 

experimentally, four resonances are observed in this plane 

indicates that the mirror plane has been lost as an element of 

the crystallographic point group. In terms of the space group 

for the crystal, this means that the c glide plane is no 



1 

-I 

Fig. 21 

Internal fields in cu2P2o7 at the phosphorus nuclei. 
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longer a symmetry element, so the space group becomes C2. 

If it should be true that configuration II in Fig. lO(b) 

represents the correct spin configuration, the Heesch group 

becomes 2'/m. Again with reference to ~ig.21 , it is now 

evident that sites (1) and (3) are related by the 2' axis as 

are sites (2) and (4). Sites (1) ·and .(4) as well as (2) and (3) 

are related by the mirror plane. Again it-follows that all 

internal fields are equal in magnitude and that fields (1) and 

(4) and (2) and (3) are colinear, assuming that the space group 

is C2/c. In this case the resonances should coincide in pairs 

as well, if the external field is perpendicular to the 2 fold 

axis. However, the two observed resonances are not related 

by the 2 fold axis in this case, but by the mirror plane. Thus 

the observance of four resonances indicates the loss of the 2 1 

axis as a symmetry element. In terms of the crystallographic 

symmetry this means that the space group is Cc. 

In either case, the degree of deviatio~ from C2/c can 

be estimated. With the external field along the easy direction, 
I 

where the splitting of the resonances is greatest, the observed 

splitting is of the order of 100 Oe. The internal field com-

ponent in this direction is 3.3 kOe so the fractional internal 

field difference for the 2 closely related sites is about 3%e 

Using the approximate io dependence for the transferred 
r 

hyperfine field gives a difference of 0.3% in the bond lengths. 

That is· the atomic coordinates of the symmetry related sites in 

the C2/c approximation are shifted relative to one another by 
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@ 

about .005 Ao 

Next the origins of the internal field are discussedo 

As in Mn2P2o7 these consist of two major partso The dipole 

field may be calculated using the procedure outlined earlier. 

As was the case for Mn2P2o7 , this was done assuming that the 

magnetic moments are localized on the magnetic ions, and 

then aqain 8 assuming that some of the spin polarization is 

on those oxygens which are near neighbours to the magnetic ions. 

The dipole fields for both of these cases, assuming spin con­

figuration I are given in Table 9. For the spin configuration 

II the dipole fields are given in Table 10. The spin poiari= 

zation on the oxygens was ~ssumed to be 2% of one unpaired 

spinu a result estimated from NMR in the paramagnetic phase 

(Atkinson 1969). From the tables it is evident that the mea-

sured components of the internal field perpendicular to the easy 

direction are not accounted for by the dipole fields, although 

the latter spin configuration gives a better ~esult than the 

former. The easy direction of the magnetization was determined 

by susceptibility measurements (Fowlis 1970) to lie in the ac* 

plane 15° away from the c* towards the a axis. 

Initially, the transferred hyperfine interaction is 

assumed to be isotropic. If this is the case, the transferred 

hyperfi~e contribution to the internal field should lie along 

the easy direction of the magnetizationo The fact that the only 



Table 9 

Dipole fields in Oe for phosphorou~ sites in cu2P2o7 for zpin configur&tion 

most favoured from neutron diffraction results 

aH 
y 

with spins localized on 

copper ions 

Hy 

with 2% spin polarization 

on oxygen sites 

contr~bution from copper sites 

contribution ~rom oxygen sites 

total dipole field 

measured field component 

along y axis 

1 

48 

46' 

125. 

171 

1850(40) 

2 

48 

46 

i25 

171 

1900(40) 

3 

-48 

. ·-46 

-125 

171 

.-1900(40) 

4 

-48 

-46 

-125 

171. 

-1850(40) 

'• .. 

a Only y components of the dipole fields are tabulated. There is a small perpen-·· 
dicular component to the dipole field arising because the copper ions are 
located slightly off of a two-fold axis in the crystal. 

b i labels the phosphorous sites. 

co 
co 



Table 10 

Dipole fields in Oe for phosphorus sites.in cu2P2o7 ~ ~ssuming 

alternate spin configuration 

aH 
y 

with spins localized on 

copper ions 

H. 
y 

with 2% spin polarization 

on oxygen sites 

contribution from copper sites 

· contribution from oxygen sites 

total 

1 

1060 

1000 

. 125 

1125 

2 

1060 

1000 

. 125 

3 

-1060 

-1000 

-125 

1125 -1125 

4 

-1060 

-1000 

-125 

-1125 

measured field compo~ent 
............ 1850(40) 1900(40)· -1900(40) -1850(40) 

along y axis 

aonly y components of the dipole fields are tabulated 

bi labels the phosphorus sites 

·.: ',.,:;,..'.•. 

'. 

co 
\0 
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other known contribution to the.internal field, the dipole 

field, does not account for the component of internal field per­

pendic~lar to the easy-direction suggeets· that there may be 

an anisotropic contribution to the transferred-hyperfine interac-

tion. The discrepancy might also be explained in the following 

manner. If_the point group is indeed Cc or C2, there is no 

center of inversion symmetry between magnetic ions and the 

existenceofaDzialoshinsky term ·in the exchange Hamiltonian is not 

ruled out. The spins may be canted slightly in this case. This 

did not manifest itself in the susceptibility measurements 

(Fowlis, 1970), but the experimental error in the measurements 

is such that a small canting angle would not have been apparent. 

Fowlis has shown that Ni 2P2o7 · a t d t"f t 
~s a c n e an ~ erromagne • The 

resulting component of spins perpendicular to the easy direction 

would result in a net ferromagnetic moment. The contributions to 

~he transferred hyperfine interactions due to this component of 

the spins on various sites would not tend to cancel. The spin 

components along.the easy direction do tend to cancel, however. 

Thus a relatively small perpendicular component of the spins in 

this direction could produce a large transferred hyperfine field 

at the phosphorus sites. 

It is noted that the transferred hyperfine fields in 

cu2P2o7 are much larger than those found in Mn2P2o7 , even though 

they might be expected to be much smaller, due to the spin of 

1/2 on the copper ions compared to s = 5/2 for manganese. To 

understand this effect it is appropriate to reconsider the origin 
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of the transferred hyperfine fields in Mn2P2o7 e In this case 

the space group was C2/m and the mirror plane was a magnetic 

m plane, which should result in the transferred hyperfine field 

at the phosphorus sites 0 which lie- on the mirror plane, to be_ 

zero@· However, it was postulated tha~ a crystallographic phase 

transition caused the disappearance of the mir~or plane, thus 

allowing the transferred hyperfine field to be non zero~ 

However, the deviation from symmetry was small, resulting in 

almost perfect cancellation of the symmetry related fields. In 

cu2P.2o7 0 however, the deviation from C2/m symmetry is larger 

so that the-cancellation effect is not as pronounced, resul~ 

ting in a larger net transferred hyperfine fieldo An approxi­

mate calculation can be made of the deviation from C2/m symmetry 

by using equation (71), as was done for Mn2P2o7• As in the 

previous case, the transferred hyperfine field in the para-

magnetic phase can be compared with the measured field for the 

antiferromagnetic phasev to roughly determine the magnitude 

of the deviations frpm C2/m symmetry. .From NMR in the paramagnetic 

phase (Atkinson 1969) an extrapolated field for a saturated 

paramagnet of 12.6 kOe is obtained. - Assuming that the mea-

sured transferred_hyperfine field consists only of the component 

of the measured internal field along the easy direction for the 

magnetization we may take it to be 3.3 kOe. These two results 

and equation (71) then predict a difference in the transferred 
Cl 

path lengths of oOB A for pairs which are symmetry related in 
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the C2/m phase, or roughly eight times the distortion predicted 

for Mn2P2o7 • This result can be compare~ with the variations. 

'in the cu-o bond lengths determined by. Robertson and Calvo (1967) 
. 0 

by X-ray diffraction. They obtained values of 1.907(6)A and 
. 0 

1.935(6)A for two bonds which are symmetry related in·the 8 
0 0 

or· C2/m phase giving a difference of .03A and 1.990(6)A and 
0 0 

1.968(6)A for the remaining pair giving a difference of .02A. 

These differences are smaller, partly because variations in the 

P-O bond lengths are being ignored. Also any dependence of 

the transferred hyperfine mechanism on the angle between the P-0 

bond and the Cu-0 bond has been ignored. These differences are 

small however and should not account for the discrepancy. It is 

concluded then, that the transferred hyperfine interaction 

varies more rapidly with increasing separation of the ions 

than was previously assumed. In fact a value of 20 for the fac­

tor n in equation (72) would.be more appropriate, that is the 

functional dependence of the interaction goes like r 20 where r 

is the separation of the ions measured along the connecting bonds. 

This result may be compared with the temperature dependence 
. 31 

of the fraction of unpaired electron on the P ion in the 

paramagnetic phase. Because the excited states for copper in 
-1 cu2P2o7 are of the order of 2000 em above the ground state 

doublet, they should not b~ appreciably occupied at T ~ 400°K 

or less. Thus any change in·the transferred hyperfine field 

may be attributed to changes in the transferred hyperfine path 

due to thermal expansion. Atkinson (1969) gives fractions of 
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unpaired electrons at 400°K of .23%, at 298°K of .25% and at 

77°K of .27% in cu2P2o7 • The lattice parameters are not 

accurately known as a function of temperature, but an estimated 

~hange of .4% between 400°K and 298°K can be obtained using 

the r 20 radial dependence of the unpaired spin. This is 
0 

a change of approximately .03 A for the lattice parameters over 

this .. temperature difference. This is not inconsistent with 

the work of Robertson and Calvo (1967), who obtain values for 
o o· 

a of 6.827(5)A at 370°K and 6.876(5)A at 298°K giving a dif-
0 

ference of .04(l)A. It should be noted that cu2P2o7 is in the 

a phase at 298°K and in the 6 phase at 400°K 1 however, this 

should not affect the lattice constants appreciably, except 

for the c axis, which is doubled in the a phase. 
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CHAPTER V 

A DISCUSSION OF THE ORIGIN OF THE ANISOTROPY ENERGIES 
FOR Cu2P2o7 

The reader is reminded that the anisotropy energy de­

.fines the ease with which the spins can be rotated from the 

long direction into each of two perpendicular directions. These 

two energy differences are denoted by EA and EA • The 
1 2 

anisotropy energy may_arise from a number of possible sources 

in a non cubic magnetic material. These include the dipole-

dipole interaction, single ion anisotropy energies arising 

from interaction with the crystal field, and anisotropy ari-

sing from the exchange Hamiltonian. 

The first of these to be discussed is the dipole 

anisotropy. The dipole energy can be written in the following 

form 

= -l I: E I: 
va f3 a kk' 

k<k 1 

(73) 

where E0 is the dipole energy p~r unit volume and the QaS(kk') 

are the coefficients defined in chapter four. ~ (k) and a 

~B(k)_are the a and 8 components of the kth and k,th magnetic 

moments in the unit cell. The magnetic moment is given by 

(74) 

94 
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where gaa(k) are the components of the g tensor for the site k 

and s6 (k) is the S component of the spin on the site ko Experi= 

mentally, the g tensor is identical for all sites so g(k) = g. 

The g tensor is given by 

-q -

g(z 0 )~g(x')sin8cos6 

0 

g(y') 

0 

0 

g(z')cos2 e+g(x 1 )sin2e 

t7S) 

where g{x 0 )v g(y'), and g(z') are the principal values corres-

ponding to a coordinate system where x 0 is 30 19 away from the a 

axis away from a* and y' is along the b axis. g(x) = 2.480, 

g {y 1 ) = 2. 090 and g (z 0 ) = 2. 095. The angle e corresponds to a 

rotation about ymo A rotation of e = -105° puts the g tensor 

in the coordinate system xyz where x corresponds to the easy 

direction for the magnetization. In this coordinate system the 

9 tensor is given by 

2.12 

= q = 0 

.11 

0 

2.09 

0 

.11 

0 

2.45 

(76) 

Combining equations (73) and {74) gives the dipo~e energy 

(77) 
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The tensor product g•Q(kk')•g is defined as C(kk'). Use has 

been made of the fact that g·s· = S•g because g is symmetric. 

The spin S(k) = (±l)ks. Incorporating the appropriate signs into 

the tensor ~(kk'), the dipole energy is given by 

sx cxx X cxz sx xy 

ED = sy • c cyY cyz II sy (78) yx 

sz czx c czz sz zy 

where 

c. = r (±1 > k ·c (kk • > c ±1 > k • .• (79) 
kk' 

·. k<k' 

The sign (±1~ is determined from the spin configuration. The 

direction of the spins for minimum dipole energy is then found 

by solving the following eigenvalue problem. 

C +E cxy cxz s 
XX X 

c cYY +E sy = 0 (80) yx c yz 
czx czy C +E zz sz 

The three eigenvalues, Eo, E1 and E2 are the dipole energies 

with the spins in the three orthogonal directions, with 

E2>E1>E0 • The spin direction is determined by the spin eigen­

vector association with E0 • From this vector, the easy direction 

for the magnetization is easily determined from the relation 

~ = g·S~ The dipole anisotropy energies are given by 

E~ = E2 - E0 and E0 = E1 - E0 • The calculated easy directions 
1 A2 
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for. the spin configurations shown in Figure~ lO(a) and lO(b) 

are shown in Fig.22 • In neither case does the calculated 

easy direction correspond to the experimental direction. T~e 

d I 1 I t I ED d D . b ED .172" 1po e an1so ropy energ1es A an _EA are g1ven y A = 
1 2 . l 

-1 D 
em and EA 

-1 = .163 em for the spin configuration in Fig. lO(a). 

refers to the anisotropy energy measured in 
2 

In.this case E~ 
1 

the ac plane and ED refers to the anisotropy energy in the plane 
A2 

defined by the predicted spin direction and the b axis. For 

the spin configuration in Fig. lO(b), E~ = .207 cm-1 and 
1 

E0 = .224 cm-l· For both these configurations the ratio of 
A2 

the anisotropy energies is approximately equal to unity, a 

·result in disagreement with a ratio of about-100 to 1 measured 

by antife~romagnetic resonance (Fowlis 1970). The lack of agree-

ment with experiment suggests that there is another contribution 

to the anisotropy energy. 

At this point it is appropriate to consider the electronic 

structure of the Cu++ ion. The Cu++ ion has nine 3d electrons 

and the free ion ground state is 2o
512

• In the absence of a 

spin orbit coupling term in the single ion Hamiltonian this 
2 state is degenerate in energy with the o312 state. Upon the 

application of spin orbit coupling these levels split, so there 

are six degenerate levels l9west in energy corresponding to 

2 the o512 state and four higher in energy corresponding to the 

2 
D

312 
state. In the crystal field resulting from neighbouring 

ions in cu2P2o7 , these states are mixed to form five Kramers 
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• I 

Fig. 22 

Calculated easy directions for the anisotropy energy, 

assuming different mechanisms. The direction la­

belled 2 is the easy direction for the dipole energy, 

as.suming the spin configuration in Fig. 10 (b) • The 

direction labelled 3 is the easy direction for the 

dipole'energy, assuming the configuration most favoured 

by neutron diffraction measurements as in Fig. lO(a). 

The direction labelled 1 is the easy direction predic-

ted on the basis of the spin anisotropy. Finally, 

the direction labelled 4 is the experimental easy 

direction. 
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doublets. The loc·al environment of the Cu ++ ions is almost 

tetragonal,. as_shown by the g values of 2.48, 2.090 and 2.095 

(Fowlis,l970) respectively. However, there is a small orthor­

hombic distortion. Using the measured spin orbit coupling 

constant for the free ion and the meas·ured g values the angular 

part of the wavefunctions for cu++ in cu2P2o7 can_be obtained. 

Since the Kramers doublets are well separated the system 

can be discussed in terms of the lowest doublet only.· A 

fictitious spin of 1/2 can be applied to this system as a re­

sult. This rules out the existence of single ion crystal field 

terms in the Hamiltonian which contribute to the anisotropy 

energy, since terms of this type are zero for S = 1/2~ 

Another source of anisotropy lies in the exchange 

Hamiltonian 

H = 1: j, .s.·s. ~ 
"<" l.J l. J 1 J 

(81) 

This anisotropy may be a result of anisotropy in the exchange 

tensor J .. or it may be due. to anisotropy in the expectation 
l.J 

value for s. and s .. The latter case will be discussed first. 
l. J 

It .is first necessary to calculate the wavefunctions of the 

Cu++ ions. The calculation is done using the basis states 

l.t s ++ 
R. 2 and s 1 leaving two possible J MJ>.For Cu = = 2' 

values for J, namely 3 
J 

5 The following Hamiltonian J = 2 and = 2. 

is used which describes the interaction of the ion with the 

crystal field. 
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(82) 

The sum over 1 and m. may be restricted by noting that R. < 5 

since matrix elements of the form <iSJMJilllkqJiSJ 1 MJ 1 > must · 

satisfy the triangle inequality k ~ J + J' < 5. The odd values 

are ~uled out because they result in non conservation of parity; 

so the only remaining.possibilities are 1 = 4, 1 = 2 and R. = 0. 

The allowable values of m may be determined by the symmetry 

of the sitec For cubic symmetry the allowable non zero coef­

ficients are A4° and A4
4 • The existence of the three fold 

symmetry axis in a cubic system demands that 11J 4° and w4
4 are 

realted by the following equation: A4
4 = ~ A4°. In a 

tetragonal field this restriction is lifted and A2° is non ~ero 

as wello .rn an orthorhombic field, the coefficients A2
2 and 

A4
2 are non zero~ but for our case these are small since 

the local symmetry is almost tetragonale The spin orbit 

·coupling parameter is denoted by X$ With the above restrictions 

in mind, the Hamiltonian becomes. 

The basic states used in this calculation are jJMJ>. There 

are ten of these, but they are paired into Kramers conjugate 

states which have degenerate energies. As a result the ten by 

ten matrix obtained by taking matrix elements of the Hamiltonian 

can be reduced to a five by five matrix. The matrix elements 

can be calculated by the following method., The Wigner Eckart 
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theorem can be used to-express the matrix elements in terms-

of a reduced matrix element. That is, one has 

<.tSJMJ llPk q I R.SJ I MJ I> = (l) J-MJ ( _:J ~. :~I J <R.SJ lllPk II R.SJ I>. (84) 

The syMbol in round brackets is the standard" 3j symbol as defined 

in Rotenberg, The 3j and 6j symbols (1959)a <1SJI l~kl ltSJ 1 > is 

the reduced matrix element. This reduced matrix element can 

be written in the following form. 

<R.SJ lllPk II R.sJ 1 > = < -u J+kH+s; (2J+l) (2J 1+1) {~, ~, ~} (ts llllPk Ill R.s l (8! 

where the symbol in curly brackets is the six j symbol defined 

in Rotenberg and (is) I l~kl I Its) is a doubly reduced matrix 

element which is independent of J and J'. ++ Because Cu has only 

one hole per ion this doubly reduced matrix element has a simple 

form given by 

= ( ..;.1) 1 i ( 21+ 1 )(21 I + 1 ) ( 1 k 
11 J 

0 0 0 

.where again the symbol in round brackets is a 3j symbol. 

(86) 

Combining these results gives the-following expression for 

the matrix elements of the Hamiltonian. 

2J+K+S-M 
= (-1) J (21+1) {(2J+l) (2J 1+1) 

x ( J_ k J' }(1 k 1){1 J ks} (B?) 
-MJ q MJ

1 
0 0 0 J 1 1 

The matrix of the-Hamiltonian is shown in Table 11. The spin 



Table 11 

++ Matrix Elements of the Crystal Field Hamiltonian fo~ Cu 

IS/2 5/2> 

I 6 o 1 a 5/2 5/2> - 21 A 2- 21 A4+A 

I 2 r-r 4 5/2-3/2> - 3 { Ii A4 

(3/2-3/2> ~ i ~~A: 

IS/2-3/2> 

2 AO+,kO+A 
35 2 7--4 

. 6 0 2 . 0 
-35 A2-21 A4 

13/2-3/2> 

--~/1A4 
3 7 4 

6 0 2 0 
=35 A2-21 A4 

= 1 AO-l ). 
5 2 2 

IS/2 1/2> 

2 2 1 2 
=35 ,/!5 A2-7 A4 

-3~1! A~+2i/5 A~ 

2 2 2 H 2 
"'"'35/3 A2+21Y;) A4 

' .. , ~ 

J3/2 1/2> 

2 2.1/"F 2 
-35110 A2- 21 v6 A4 

4 2 1 2 
35/2 A2-2li!Q A4 

.,.. {2 A2 
5 2 

\"'b 0 21'6 0 
35 A2 = n-·A4 

1 Ao 3 , 
5 2 = 2 1\ 

...... 
·o 

N 
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orbit terms are calc~ated by noting tha-t 

L•S = ~{J(J+l)=-1(1+1)-S(S+l)}. (88) 

Since J, 1, and S.are all qood quantum numbers of the basis 

states, this term contributes only to diagonal elements of the 

matrix& The wavefunctions are given by the following expressions. 

• = a 1 JS/2,5/2>+a2 IS/2,-3/2>+a3 J3/2,-3/2>+a4 ls/2,1/2>+a5 l3/2,i/2> (89) 

• t = a1 JS/~,-5/2>+a2 IS/2,3/2>-a3 l3/2,3/2>+a4 Js/2,-l/2>-a5 l3/2,-l/2>(~0) 
·J-M 

Use has been made of the fact that jJ,MJ> = (-1) J IJ-MJ> to 

determine the Kramers conjugate state ~·; The coefficients a. 
~ 

are determined by the diagonalization of the above matrix. It is 

necessary to determine the parameters A~ to get a numerical 

solution for the wavefunctions~ This is done by calculating the 

principle values of the g tensors in terms of the lowest energy 

wavefunctions with arbitrary A~'s. A best fit is then obtained 

for the measured g values, and the corresponding values for the 

t m · k t b th t para'llle ers Ai are ta en o e e correc ones .• 

The g values may be ca-lculated from the following formula. 

9 .= 1 + 2stl ·. (91) 

The orbital and spin angular momentum vectors may be expressed 

in terms_ of spherical tensor components of the first rank as 
.. 

follows. 
I 

(92) R,z = 1 
0 

-1 -17 
(1x +iR.y) R..l (93) = 2 = + 1 

R. = 
{2" 
2 (R. ~ii ) 

X y = R,-1 
1 

(94) 
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Similar expressions may be defined for the spin angular momentum• 

The t.i are components of a standard spherical tensor of first 

order. The matrix elements of these tensor operators for the 

orbital angular momentum operators are given by: 

S+2J+k+R.-MJ 
<LSJMJ I R.k qf LSJMJ> = (-1) {.(2J+l) {2J '+1) 

k 
(9·!;)) 

q 

where the symbols are as previously defined. The doubly reduced. 

matrix element <£1 I jR.kl I IR.> is given by 

(96) 

The matrix elements of the tensor operator for the spin angular 

momentum are given. ·by 

S+2J+k+R.-M 
<LSJMJjskqjLSJMJ> = (-1) J/{2~+1) (2J 1+1) 

x (~· ~ ~) (-~J ~ ~~·) <slllskllls>. (97) 

The doubly reduced matrix element <SI I !ski I Is> is given by 

<s II ! skills> = [s {S+l) (2S+l) 11
/

2 = ~ (98 > 

The above results-are derived in Dieke (1968). The doubly 

'reduced matrix elements· for a single particle state are given by 

Judd (1963). 

Using these resuits, matrix elements of the principle 

values of the g tensor, gx' g and g can be calculated. This y z 
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was done and the following expressions for the matrix elements 

·of 9 were obtained. 

'' -'<lP* 19 z llP* > = 

<wlgz(w*> = o 

(99) 

(100) 

(101) 

(102) 

(103) 

2 1 4 
5 v'l" a2a5 5 v'2 a3a4 - 5· v'3 a

3
a

5 

~ a 4
2 ~ lb a 4a 5 + ~ a 5

2 
(104) 

(195) 

These matrix elements cari then be used to determine the split-

ting of the ground state doublet in a magnetic field by degenerate 

perturbation theory. This was done and the corresponding ex­

perimental g values were determined to be gx = 2<w*(gx(~>, 
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These results were used 

to solve for.the coefficients a .• The resulting wavefunctions 
l. 

~nd their corresponding energies are given in Table 12. From 

these wave functions, the matrix elements of the spin operator 

can be obtained a These are given by 

<lllls lw*> 
IS. 

= =-s ala2 X 

2 ~12 + 5 IS ala3 + a2a4 5 

2 
- 5 v'J a2a5 

1 
- 5 12 a3a4 1 v'3 + 5 3 a3a5 

+ 
3 2 + 1 16 a4a5 + l a 2 n a4 5 5 5 (106) 

<wlsxlll-'> = _<w* I sx I w*> = 0 (107) 

II .1~ ·+~~ 2~ 2M" <$ Sy $*> = 1(!.vS a 1a 2 5 rS a1a 3 - 5 v2 a 2a 4 + ~ v3 a 2a5 

1 1 3 2 1 
+ 5 12 a3a4 - 5 13 a3a5 + 10 a4 + 5 l6 a4a5 

- <~*Is lw*> = o y 

1 2 3 2 3 2 1 2 = 2 al = ~ a2 + IO a3 + ~-a4 

<w*ls I~*> = -<wls lw> 
Z· Z 

(108) 

(109) 

(110) 

(111) 

For.the ground state doublet the following numerical values were 

obtained <~lsz($> = o49860 , <wlszl$*> = .49551, and <wlsyl~*> = 
(.49558)io The assumption is made that the total wave function, 

~ for the system is equal to the product of the wavefunctions 
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. TABLE 12 

Values of the Coefficients ai for the ++ Cu Kramers Doublets in 

in cu2P2o7 and Their Corresponding Energies 
• ! 

: energy al ·a 
2 a3 a4 as 

6355 -1 em .00039 -.00063 -.00031 .56980 -.82178 

5693 -1 em .19985 .71523 -.66971 .00006 -.00027 

3760 em -1 .63218 -.61632 -.46957 -.00056 .00069 

~6622 em -1 .00031 .00014 .00040 -.82178 -.56980 

-9187 em -1 .74861 .32954 .57532 -.00063 .00070 
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associated with the individual magnetic ions. This is a valid 

assumption provided that the exchange interaction does not per-

turb_ the wavefunctions significantly. This is the case for the 

system of interest since the e~change energy is much less than 

the energy separation of the Kramers doublets. It is further 

assumed that the single ion wavefunction ~~ refers to the ith 

site on one sublattice and that ~-~· refers to the jth site an· 
J 

the opposing sublattice. In the absence of the exchange in-

teraction, the system consists of 2N degenerate energy levels, 

corresponding to the N magnetic ions in the sample. The Heisen-

berg Hamiltonian is then applied·as a perturbation to the system. 

The degenerate states are now separated in energy and the ground 

state becomes a doublet consisting of a perfectly aligned 

antiferromagnet, and its time reversed state, that is where the 

direction of the spins on opposing sublattices are reversed. 

These two states are physically identical and hence have the 

same energy. The remaining states correspond to spin wave 

excitations. For the purposes of this discussion the system will 

be assumed to be in its ground state. The gro~nd state doublet 

is denoted by I~> and I~*> where 

I~> = 1~1 
* * If >= 1~1 

* * • • • ~· . . . ~j . . . wN> . 1 

. . . ~~ ~· wN> . 
~ J 

(112) 

In ~he above approximation the problem can be solved by con-

sidering the effect of the exchange interaction on the single 

ion energy levels. It is necessary to consider the effect of 

* the operator sai on ~i and Wi• 
~ 

The subscript a refers to the 
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appropriate component of si. By degenerate perturbation theory 

the solution to this problem is given by 

[

<•- (s . ($.> ~ <S .> 
1 0.1 1 a~ 

* <$ .. r s . 1 $. > 
. 1 0.1 1 

., 
<w . I s . I tP ·• > l . 1 0.1 1 . 

•. * <•1· Is . lt~J.>-<s .> _a1 l. aJ. 
[·~·] = 0 • (113) 
- tlJ i . . 

The energy of the entire system is then given-, relative to the 

unperturbed Kramers doublet,· by 

. E =:= I: 
i<j 

J <S .><S .> 
ij 0.1 O.J (114) 

and for the ground state doublet denoted by ~ and ~* is given 

by 

E =- -: 1: 
i<j 

J .. 
1J 

(115) 

The subsc.ript i has been dropped from Sa. since all spins in an 

antiferromagnet have the same magnitude. It is noted that E is 

directionally dependent since <S > depends 9n the spin direction a. 

and is given by <S > = .4986 if the spins are along the direction 
ex 

of the maximum principle value of z and <S > = .495 perpendicular 
ex -

to this direction. This direction is shown in Fig.22. 

· It is evident that this interaction gives rise to an 

anisotropy energy~that is given by . 

E = I 
i<j 

2 
J .. [ <S > 
~J a 

(116} 

The equilibrium spin direction, as predicted by this mechanism, 

occurs in the direction for minimum energy which is along the 
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direction of the maximum q value. This is 75° away from the 

measured easy direction for the magnetization, so it may be 

concluded that this mechanism does not account for the entire 

anisotropy energy. It should be noted, however, that this 

mechanism does predict a large anisotropy energy in the plane 

perpendicular to the b axis of the crystal, and a small anise-

tropy in the plane defined by the easy direction and the b axis, 

which is in accordance with experimental results. (Fowlis 1970). 

The anisotropy in the plane perpendicular to the b axis can be 

estimated from the measured exchange field Hex from which the 

exchange constant J can be calculated. The exchange field 

is defined as the exchange energy divided by the sublattice 

magnetization and is given by 

H . = ex • (117) 

J is the average of the nearest neighbour exchange parameters, 

·and z is the number of nearest neighbours. Taking z = 4 and Hex = 

900 kOe an average value for J of 34 cm-l is obtained. The 

value for g is taken to be 2.12 which is the correct value along 

the easy direction. Using this value for J, an anisotropy 

energy of EAN = 1~0 cm-l is obtained. It is noted that this is 

a considerably larger anisotropy than that due to the dipolar 

interaction. 

It has been assumed throughout the preceding discussion 

that the exchange tensor J .. is isotropic. The lack of agreement 
l.J 

between the experimental spin direction, and that predicted on 

the basis of dipolar and spin anisotropies would indicate that 
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'this may not be a valid assumption. One description of aniso­

tropic exchange is contained in the pseudo dipolar interaction 

(Kanamori, 1963). The approximate magnitude of.the anisotropic 
• I 

term as compared to the isotropic term is given by (A/6E) 2 

where A is the spin orbit cpupling parameter and AE is the 

energy s~paration of the two lowest Kramers doublets. This 

may also be expressed as being of the order of (g-2) 2 which 

for the case of interest gives a result of about 10%. A de­

tailed calculation of the pseudo dipolar term would be exceedingly 

difficult because of the complicated nature of the compound 

studied but it is noted that the interaction is not ruled out 

by symmetry. 

As a final .note, there are additional possible contri-

butions to the anisotropy, one of them being the magnetostrictive 

effects. This arises from spin orbit coupling or from the 

dependence of the exchange energy on the separation of t~e 

magnetic ions. Kanamori also gives a brief description of this 

effect. 



CHAPTER VI 

CONCLUSIONS 

The spin configurations of Mn2P2o7 and cu2P2o7 have 

been determined by single crystal neutron diffraction. In 

Mn2P2o7 the magnetic unit cell was determined to be commen­

surate with the chemical unit cell. However the C-centering 

symmetry is lost in the m~gnetic unit cell. These results 

confirmed the work of Collins et al {1970). For cu2P2o7 the 

magnetic unit cell was assumed to be commensurate with the 

chemical unit cell. In this compound the magnetic unit cell 

preserves both the C-centering symmetry and the c glide plane 

which are synunetry elements of the chemical unit cell. There 

are two spin configurations which satisfy these criteria, and 

these two configurations may be distinguished by the presence 

or absence of the {021) Bragg peak. This peak was found to be 

present, but its existence can be also explained in terms of 

a crystallographic phase transition at the Neel temperature. 

If the peak is assumed to be magnetic in character then the spin 

configuration consists of antiferromagnetic sheets in the ab -plane which are coupled antiferromagnetically to neighbouring 

sheets. The alternative configuration is identical except that 

the sheets are ferromagnetically coupled. 

The discrepancy between the neutron diffraction measure-

112·. 
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ments on Mn2P2o7 and the NMR results of Choh and Stager (1970) 

has been explained by postulating a low temperature crystallo= 

graphic phase transitions The NMR data in the paramagnetic 

and antiferromagnetic p~es have been used to estim~te the 

magnitude of the deviation from high temperature symmetry in 

10 the low temperature phase. It was found, using a 1/r dependence 

for the transferred hyperfine interaction, where r is the trans-

ferred hyperfine path length, that bond length changes of the 
0 

order of .01 A were sufficient to explain the results. 

For cu2P2o7 the NMR data were used in a similar manner 

to calculate transferred hyperfine path length differenceso In 

this compound, however, the distortion from the higher symmetry 

phase is known from X-ray data (Robertson and Calvo, 1967) and 

the above results can be compared with this known distortions 

It was found that a functional dependence of the transferred 

hyperfine interaction upon separation of the ions of 1/r20 

.9aVe better agreement with the X-ray datao This result is also 

consistent with the dependence of the transferred hyperfine 

interaction upon bond length changes due to thermal expansiono 

The anisotropy energy in cu2P2o7 has been discussed. 

Both dipole anisotropy and spin anisotropy contributions to the 

anisotropy energy have been considered. 'Although the spin 

anisotropy does give approximately the correct anisotropy ratio 

calculated from antiferromagnetic resonance data (Fowlis, 1970) 1 

the correct equilibrium spin direction is not predicted by this 
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contribution to the anisotropy energy. The dipole anisotropy 

.9ives a close approximation to the correct equilibrium spin 

direction, but does not give the correct anisotropy ratio. It 

is concluded that the exchange tensor may not be isotropic. 

The experimental results may be satisfactorily explained in 

terms of an anisotropic exchange tensor. 
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