MAGNETIC PROPERTIES OF MANGANESE

AND COPPER PYROPHOSPHATES



MAGNETIC PROPERTIES OF MANGANESE PYROPHOSPHATE

AND COPPER PYROPHOSPHATE

by
JAMES A. R. STILES, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

Novembexr 1972



DOCTOR OF PHILOSOPHY (1973) : McMASTER UNIVERSITY
(Physics) ‘ Hamilton, Ontario

TITLE: Magnetic Properties of Mangahese Pyrophosphate and.
Copper Pyrophosphate

AUTHOR: James A. R. Stiles, B.Sc. (University of British
Columbia, Vancouver, B.C.)

SUPERVISOR: Professor C. V. Stager
NUMBER OF PAGES: ix, 117
SCOPE AND CONTENTS:

The magnetic structure of manganese pyrophosphate and
copper pyrophosphate have been determined by single crystal
neutron diffraction studies. More detailed information about
the magnetic structure is determined from nuclear magnetic
resonance data. The origin of the magnetic anisotropy energy

in Cu2P207 is discussed.

ii



Abstract

The magnetic structures of antiferromagnetic man-
ganese pyrophosphate and copper pyrophosphate have been
determined by singie crystal neuﬁron diffraction techniques.
More detailed features of the magnetic structure have been
determined by nuclear magnétic resonance (NMR). A discre-
pancy between previous NMR measurements on an.PzO7 and the
single crystal neutron measurements was resolved by postula-
ting a low temperature crystallographic phase transition.
Information about the dependence of the transferred hypér—
fine interaction upon the separation of the relevant ions
is obtained for Cu2P207 from the NMR data and from previously
determined deviations from a higher symmetry phase. The
origin of the.magnetic anisotropy energy in Cu2P207 is

discussed.
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cﬁAPTER I
INTRODUCTION

The purpose of this work is to examine the magnetic
properties of manganese pyrophosphate (Mn2P207) and copper
pyrophosphate (Cu2P207) in their magnetically ordered phases.
Previous work on these compounds has left a number of un-
resolved problems. In manganese pyrophosphate, the spin
configuration has been determined (Collins et al, 1971) by
neutron diffracﬁion from a powdered sample. Chéh and Stager
(1970) have proposed a number of possible spih configuraﬁions
on the basis of nuclear magnetic resonance (NMR) experiments.
None of their proposals are in agreement with the configura-
:tion determined by Collins et al. One of'the purposes of the
present work is to resolve this ‘discrepancy. 8ingle crystal
neutron diffraction techniques were used to confirm the work
of Collins et al and the NMR results are explained by postulating’
a crystallographic phase transition in this coﬁpound. |

"In cdpper pyrophosphaté a similar crystéllographic
phase transition is known to exist (Rbbertson and Calvo, 1967).
Thertechniques employed in the present work to study this
compound include NMR and single crystal neutron diffraction.

The  single crystal neutron diffraction results were used to



‘determine the gross features of the magnetic structure, that is
'the spin configuration. NMR was employed.to look for more dé-
_tailed features of the magnetic structure including small
deviations from the structure determined by neuﬁron and X-ray
diffraction techniques. The known crystallographic phase transi-
tion, in conjunction with the NMR data, is used to obtain
information about the dependence of spin transfer between ions
upon the separation of the ions. Also, previous work on this
compound has left unanswered the question of the origin of the
anisotropy energy determined from antiferromagnetic resonance
(AFMR) data (Fowlis, 1970). Several terms in the equations for
the anisotropy energy are examined in an attempt to explain the
data.

The remainder of Chapter i is devoted to a brief dis-
cussion of magnetic ordering in transition metal compounds using
the molecular field approximation. In addition there are some
references to earlier work on similar magnetic systems. Chapter
II contains an outline of the crystallography of the compounds
studied. Chapter III describes the neutron diffraction experi~
ments and the method used to obtain the spin configurationé.
Chapter IV describes the NMR experiments and the associated
énalysis of the data. Finally, Chapter V is a theoretical
discussion of the origin of the anisotropy energy in Cu2P207.

The magnetic character of the compounds studied arises
from the "unpaired spins" which result from the incomplete

filling of the 3d electron levels in the transition metal series



of elemeﬁts of which copper and manganese are members. In

an isolated ion Hunds rule says that the states are filled

with parallel spins until the maximum number allowed by the Pauli
exclusion principle is reached, after which electrons with
antiparallel spins are added, until all states are filled.

Thus Mn*t with five 34 electrons has a total spin of s = 5/2,°
while cu’t with nine 3d electrons has a total spin of s = 1/2,
that is it can be represented as a complete 3d shell plus one
hole.

In the absence of any external perturbations, the 3d energy
levels are degenerate. However, in the environment of the
surrounding crystal, the degeneracies afe lifted by strong elec-

_ tric fields, resulting from thg surrounding ions, that is a
stréng Stark splitting is observed. Given a knowledge of the
symmetry of the ion sites, one can determine the.manner in which
the degeneracies are lifted, by group theoretical arguments.

From this can be obtained information about the magnetic moment
on the ions (Ballhausen, 1962). !

The neutron scattering experiments rely on the scattering
of neutrons via the dipole-dipole interaction between the
magnetic moment on the neutrons and that associated with the
unpaired spins on the magnetic ions. If these spins exhibit
long range order, as in the magﬁetically ordered state, then
this interaction leads to a contribution to the intensity of

Bragg diffraction peaks. Above the ordering temperature this



contribution disappears. It may be determined by measuring

the intensity of the Bragg peaks gbhove and below the ordering
temperature. The remaining contribufion to the Bragg peaks

is due to scattering by the nuclei. Generally speaking, the
magnetic symmetry of the crystals is different from the crystal-
lographic symmetry, so that some Bragg peaks which are forbidden
by- symmetry for nuclear scattering, are not forbidden for mag-
netic scattering. Where the magnetic scattering is much weaker
than the nuclear scattering, this effect results in a considerable
saving in the time required to obtain the desired statistical
accuracy for magnetic scattering, as there is not a large back-
ground count due to nuclear scattering with an attendant large
statistical uncertainty.

The NMR experiments measure the internal magnetic fields
present at the nuclear sites in the samples. These internal
fields arise from two main sources. The first of these is the
classical dipole fieidg arising from the magnetic moments
locaiized on the other magnetic ions. The field due to a single
neighbouring moment is given by the classical dipole equation.
If the site at which the fields is measured is labelled by i
and if the magnetic sites are associated with a_magnetic moment
Rj separated ffom site 1 by the distance Eij' it follows that

the field at site i due to the rest of the ions in the sample

is given by _ _
m : 3rij - - (
H= -% - (m.*T..) 1)
3#1| x| B




where we have summed over.ali the magnefic ﬁoments in the
crystal. In general this sum deéends upon the sample shape, how-.
ever for distances sufficiently far from the site in question,
one can replace the discréte moments by a continuous distri-
bution of magnetic moment density. Thus for ease of computation,
one can perform the discrete sum for moments contained within - a
fadius R of the site i, and replace the remaining terms with

an integral. This integral contains the Lorentz and demagneti-
zing fields. The demagnetizing field depends upon the sample
shape, but for a spherical sample it is equal in magnitude and
opposite in sign to the Lorentz field, therefore these terms.

- cancel, It should be noted that for an antiferromagnet, bothv

of these terms are identically zero, since'in this case the
maéroscopic magnetic moment density is zero.

The second contribution to the internél fields is the
transferred hypérfine effect. 1In an iron éeries transition
~metal, some of the 3d wavefunctionirésides on ‘the non-magnetic
ions, resulting in a fractional unpaired spin on the non-
magnetic ions. The magnitude of the-fractionai spin depends
. upon the degree of covalency. Typical values for the fractio-
nal unpaired spin in iron series transition metal compounds
are in the range .5% to 5% (Owen and Thornley, 1966). This
transferred hyperfine effect is closely reliated to the ex-
change interaction which is responsible for magnetic ordering.

The transferred hyperfine interaction was first observed



by Owens and Stevens (1953). They interpreted the electron

¢ in the complex (IrC16)_2 by

spih resonance spectrum of Irt
assuming tﬁat there were hyperfine lines produced by an interac-
tion wifh the neighbouring chlorine nuclei. For the iron '
series transition metal group, the interaction was first

observed by Tinkham (1956) in the ESR spéctra of Mn++, Fe++,

Co++; and cr'*t introduced as impurities in Zan. The first
NMR measurements were made by Shulman and Jaccarino (1956)

who observed field shifts in the nuclear magnetic resonances
of 19F in MnF2 from their predicted free ion values. They
also showed that the shifts were proportional to the magnetic
suscepbitility of the sample, and hence to the thermal average
‘of the manganese ion spins (Shulman and Jaccarino, 1957). The
only magnetically ordered sySteﬁ with a similar structure to
that of the pyrophosphates that has been studied by NMR is
antiferromagnetic LiMnPO4 (Mays, 1963). Numerous dissimilar
.magnetically ordered compounds have been studied,however.

Choh and Stager k1970) have: observed the transferred
hyperfiﬁe effect in Mn2P207: They have also shown that it is
necessary to include a term proportional to the susceptibility
in the nuclear Hamiltonian when the system is magnetically
ordered. The resuiting field shifts in the 31P resonances
become non negligible for high applied magnetic fields. In

this case the shift shows an angular dependence related to

that of the susceptibility tensor.



In the current work, the NMR of Mn2P207 is reanalyzed
in the light of neutron diffraction measurements determining
the spin configurations of the compound. The NMR of Cu2P207
is also analyzed, again with a knowledge of the spin configﬁ-
ration as determined from neutron diffraction.

The systems studied both order magnetically at sufficient-
ly low temperatures. The dominant contribution to the mechanism

responsible for magnetic order may be represented by the Heisen-

berg Hamiltonian, which may be written as follows.

; ijsi-sj (2)

=]

H= &
i<

th

where §i and §j are the spins located on the i and jth ions.

Eij is the exchange parameter and is related to the overlap
integral of the wave functions on adjacent ions. The sign of-
J determines whether the ordering will be ferromagnetic or
antiferromagnetic. A commonly used approximation is the
molecular field approximation where Si is replaced by its ther-
mal average. This ignores spin-spin correlations, so the
approximation is not valid at very low temperatures. In this
case spin wave theory is employed. A commonly used concept

in the molecular field approximation is the excE?nge field,

defined by the following equation.

Hy = —9BS;°H. 4 3

Hi is now a single ion Hamiltonian and H_, is the exchange

field. This may be interpreted‘as a magnetic field which acts



on adjacent spins to keep them colinear. The ordering tem-
reraturé is reached when the exchange energy becomes comparable
"with the thermal energy of the spins. Above this temperature
the:mal energy dominates énd the material is paramagnetic, and
belowvitp the exchange eneféy predominates and the material
becomes magnetically ordered. The orde;ing temperature may be
determined by several methods. One method is to observe the
sPécific heat. The phase transition is second order and the
specific heat shows a A type anomaly. Other methods include
observing the temperature at which the electron paramagnetic
resonance signal disappears and by measuring the temperature
dependence of the magnetic susceptibility. Fowlis (1969)
has'measuredlthe Néel temperature of Mn,P,0, by the latter
method and determined it to be 13(1f°K. The number in parentheses
is the uncertainty in the data. For copper pyrophosphate
’Foﬁlis (1970) determined the Néel temperature to be 26(1)°K
from magnetic susceptibility data.

As the compounds studied in this work ofder antiferxo-
magnetically, we discuss briefly the antiferromagnetic state.
This state may be characterized by a number of interpenetrating
sublattices, each of which has all its spins parallel. The
case where there are two sublattices, with antiparallel spins
is discussed at iength in an article by Nagamiya et al (1955).
They derive the antiferromagnetic eguations of motion in the

molecular field approximation. If + denotes the "up" sublattice



and - denotes the "down" sublattice, then the exchange field

can be written as

-t —t =t
H,, = -AM -TM | (4)

where M' and M~ denote thé magnetization of their respective
sublattices. A and T are second rank interaction tensors which
represent inter sublattice and infra sublattice exchange interac-
tions respectively. Their dominant parts are isotropic. With
this assumption, the direction of the spins with respect to the
crystallographic axes is undeterﬁined so a phenomenological
anisotropy energy is introduced which is denoted by EAf In

a system with no higher than orthorhombic symmetry, this energy
takes the form

1 2 2 1 2 2, . _
E, =3 K(@B"+8.7) +z3Ky,”+v."), K, >K >0. (5)

where Kl and K2 are anisotropy constants and Bt' Y, are the
direction cosines of the tespective sublattice magnetization
vectors with respect to the crystallographic axes. The eq;i-
librium spin direction is then determined by minimizing the

expression for the anisotrdpy energy. An anisbtropy field is

defined by the relationship

- —3 o +. - H _. M
§E, = - H, *oM Hy M . (6)

The assumption is usually made that the exchange energy is
much larger than the anisotropy-energy, and therefore the magni-

tude of the sublattice magnetization vectors is not affected
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by the anisotropy energy. In tensor notation we can write

H*=-a'f "

- 't (7)
In the principle axis system one principle value can be set -
to zero, because only differenceijxthe principle values are
considered. 1In a biaxial system, the femaining two are non zero
and different in magnitude.

There are several possible contribuﬁions to the aniso-
tropy energy. The first of these is the magnetic dipole interac-
tion. For ﬁélues of the spin greater than one half there are
crystal field contributions to the anisotropy energy, as for
example in Mn2P207 where s = 5/2. This contribution does not
arise in the case of Cu29207 as we have a.ground staté doublet
and an effective spin of one half. The remaining contributions
arise from the Heisenberg Hamiltonian. These contributions may
" be further subdivided into those due to anisotropy in s and
into those attributable to anisotropy in the exchange tensor Ei'

J.
which couples adjacent spins. Xanamori (1963), gives an outline

of various sources of anisotropy energy arising from the exch;nge
Hamiltonian. ‘Another‘possible source of anisotropy lies in
magnetostricﬁive Effects, but without a detailed knowledge of
the elastic constants of the materials, very little can be said
about this contribution.

For low symmetry crystals, the spin direction is deter-

mined experimentally from the angular dependence of the magnetic

susceptibility. The exchange field may also be obtained from
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susceptibility data and the anisotropy fields are obtained from
AFMR data. Specifically, one obtains the exchange field from
the perpendicular susceptibility, that is the susceptibility
'xl measured with an external field applied perpendicular to

Mi. Molecular field theory gives ¥l = 1/A so that, neglecting

intra sublattice interactions, the exchange field is given

by. -
L 5t
Hy =~ YI (8)

For sufficiently large external fields, the spins in an anti-
Rferromagnet rotate to orient themselves perpendicular to the
applied field. This phenomenum is referred to as "spin-flop".
This effect arises from the fact that the susceptibility for

an antiferromagnet is greater for spins aligned perpendicular

to the applied field than for spins parallel to the applied field.
Thus the energy of interaction with the external field, given

by
E= - %J x*szv : (9)

where the integral is over the volume of the sample, is lower
when the applied field is perpendicular to the spins. Spin
flop occurs when this energy difference overcomes the anisotropy

energy of the crystal. The spin-flop field is given by

H.., = (2H )"'a (10)

SF exHAl

where HA

spin flop field can be measured by observing a discontinuity

1 is the lower of the two anisotropy fields. The
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'in the parallel susceptibility as a function of applied field
‘and by AFMR.

From AFMR measurements two resonant frequencies can be

i

°

measured for a biaxial system. Assuming that both anisotropy
fields are much less than the exchange field, these frequencies

" are given at T = 0 by
!

W w
1 _ 1/2 2 _ 1/2
e (2HE x HAl) and 7 = (2HE x HAZ) (11)
from which both anisotropy fields HAl and HA2 can be obtained.

vy is the gyromagnetic ratio.

There are a number of deviations from true antiferromag-
netic behaviour. One of these involves a cantihg, or tipping,
towards one another of the spins on opposing sublattices. The
interaction may be represented by the following Hamiltonian.

de(8; x 5.) o (12)

H= I
[ <3 j

i<j
and is referred to as the Dzialoshinski interaction. Thé
symbol d is a constant vector and §i X §j represents the
vector cross product of the spins on adjacent sites. Dzialoshinski
first used this interaction to explain weak ferromagnetism in
Fe203‘(Dzialoshinski, 1958). Moriya (1963) discusses this,
and other sources of weak ferromagnetism in nearly antiferro-
magnetic compoﬁnds. Another phenomenum worthy of note is the
éxistence of two dimensional antiferromagnets above the temperature

where one finds true three dimensional ordering. This effect is

noted when the exchange coupling within planes is strong, but the
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‘exchange coupling between planes is small. ' Lines (1967) has
‘'investigated such systems, for example K2NiF4 . The iron series

transition metal pyrophosphate compounds might be expected to

|

exhibit this effect, since planes of magnetic ions defined by
the crystallographic axes a and b lie~relatively far apart as

compared to ions contained within the planes.

!

‘ Several previous measurements have been made on the
pyrophosphates. Atkinson and Stager (1969) and Atkinson et al.

31

{1970) have measured the P NMR shift for Mn,P 07, Cu2P207,

2°2

N12P207, and c°2P207 in the paramagnetic phases, thus measuring
the transferred hyperfine interaction in these compounds. Fowlis
(1970) has observed the magnetic susceptibility of Mn2P207,

Cu.,P.0,, Co,P.O. and Ni.P.O In addition he has made AFMR

27277 2277 27277° .
measurements on anon7 and Cu2P207. Choh and Stager have observed
the 31P NMR in antiferromagnetic Mn2P207. Their results are

reinterpreted in the present work. Collins et al (1971) hav%
determined by powder neutron diffraction measurements the spin
configuration of Mn2P207. In this work their results are con-
firmed, using single crystal neutron diffraction techniques

and the reported discrepancies between their work and the NMR
results of Choh and Stager (1970) are reconciled by postulating
a low temperature crystallographic phase transition in that

compound .

+ .-
++,'and Co+ have been determined

The g values of Mn++, Cu
in the pyrophosphate structure by substituting them as dilute

impurities in a non-magnetic host pyrophosphate compound, for
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example Zn2P207 (Chambers et al. 1964, Calvo et al. 1967, and
Atkinson et al. 1270).

The crystallographic structu;e of Cu2P207 was determined
by Robertson and Calvo _(1967) . Lukaszewicz and Smajkiewicz
(1961). and Tondon (1971) have done the crystallographic work on

anPZO7 o



CHAPTER II

CRYSTALLOGRAPHY OF THE COMPOUNDS STUDIED

A. anPZO7

The crystal structure of anoni, at room temperature,
has been determined by Lukaszewicz and Smajkiewicz (1961). It
is monoclinic with space group C2/m and contains two molecules
in a unit cell. Tondon (1971)‘has ascertained that there is no
phase transitiondown to 100°K. He gives the lattice parameters
at 100°K as a = 6.598(5)A, b = 8.558(5)A, c = 4.516(5)A and
B = 102.74(5)°. Among a series of pyrophosphates that have
the C2/m structure at high temperatures, Mn,P,0, is unique in
that there is no X~-ray evidence for a different low temperature
phase (Robertson and Calvo, 1970). The other eompounds in
the series all lose the mirror plane in the low temperature
phase.

The four manganése ions in the c-centered unit cell
are crystallographically equivalent. They are located on a two
fold axis and are related by the mirror plane and the c-
centered operation. The four phosphorus ions aré also
equivalent and are located on the mirror plane. The oxygen
atoms are of three types. Two of them are designated OI and
form the bridging link between the two phosphorus ions in the
anién. ‘These are located both on the mirror plane and on a

two fold axis. The second type, designated O re terminal

I’ @
15
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ions on the anion group and are located on the mirror plane,

but not on a two fold axis. There are 4 of these. The re-
maining eight are designated O,;,. These are also terminal ions
on the anion and are not located at points of symmetry. The
lattice coordinates of the ions are listed in Table 1, as

are some of the important bond lengths.

B. . Cu2P20.7

Cu2P207 is monoclinic and is known to exist in two
phases. The high temperature or B phase has the C2/m structure
and is isomorphous with Mn2P207. The low temperature or o
phase has the c axis doubled. Robertson and Calvo (1967) re-
port the lattice parameters of the o phase as a = 6.876(5)£,
b= 8.115(5)&, c = 9.162(5)£ and B = 109.54(6)°. They re-
fined the structure in the space groups C2/c and Cc, and chose
C2/c as being the most probable. 1In either case the structure
does not differ by much from the C2/m phase. The atomic co-
ordinates for o Cu2P207 are listed in Table 2, as are some
important bond lengths. A schematic diagram of the pyrophos-
phate molecule is shown in Fig. 1.

In both compounds the magnetic ions occur in layers which
lie in planes containing the b and a axes. The=ions in adjacent

planes are relatively far apart, and are separated by layers

of anions.



TABLE 1

Atomic Coordinates for Manganese Pyrophosphate

ion® x/a y/b z/c
Mn o .3096 1/2
P .2155 o .9092
0. 0 0 0
O p .3742 0 .2082
Orrr .2209 .1489 .7258

Selected Bond Lengths for anon7
Mn-0 distance O-P distance Mn-0O-P angle
[- B (-]

{n) (a) {deg.)
2.098(10) 1.525(11) 136.6
2.343(10) . : 118.1
2.098(10) © 1.525(11) 136.6

0 2.343(10) S 118.1
2.138(7) 1.540(11) 130.1
2.138(7) | 130.1

AThe remaining atomic coordinates are obtained
by applying the symmetry operations of the
space group C2/m.

17
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TABLE 2

Atomic Coordinates for o Cu2P207

ion? x/a y/b. z/c

Cu -.0183(2) .3133(2) .5138(3)

P .1978(4) .0086 (4) ~.0878(5)

0; 0 .0480 (24) 0

Orq .3768 (11) ~.0019(15) .2254(18)

Orr1 .2223(11) .1556 (12) .2714(15)
.1782(13) .1530 (10) .2634(10)

Bond Lendths in a Cu2P207 for a Single Cu++ Ion

Cu-0_ 1.990(6) A
Cu-0 1.986(6) A
Cu O1q; 1.907(6) A
Cu O ; 1.935(6) A

0
Cu O 2.322(6) A
Cu Opp; 2.947(6) A

qThe remaining coordinates are generated using the symmetry
operations of the space group C2/c.



Fig. 1
A schematic diagram of a transition metal ion
pyrophosphate compound. The unmarked circles
¢orrespond to metal ions apd the intra anion bonds

are marked in black.
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CHAPTER III

Neutron Diffraction. Experimental Apparatus

Neutrons have associated with themselves an intrinsic
wavelength given by A = h/mv where h is Planck's constant and
m and v are the mass and velocity of the neutron. If one con-
siders that the neutrons in a reactor have made a large number
of collisions with atoms at a temperaturé T before being ex-
tracted from the reactor thus they will have a root mean square
velocity v related to the absolute temperature by the following
equation.

1 =2 3

where k is Boltzman's constant. The associated wavelength of

KT | (13)

these neutrons is then given by

2

A% = h%/3mkT. (14)

It is fortuitous that the wavelengths, for typical reactor
temperatures of approximately 100°C, are of the same order of
magnitude as a typical lattice constant for the compounds
studied. There will be a spread of neutron velocities given
by the Maxwellian distribution. If N,d) is the number of
neutrons extracted from the reactor per second with wave-
length between A and X + d4,, then

2N 2
1 (E© S-E/kT

M=% G (15)

20
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where N1 is the number of neutrons per second integrated over
all velocities, and E is the energy of a neutron of wavelength
A'(Baconvaﬁd Thewlis, 1949). The white beam from the reactor
must be monochromated. Thié is accéﬁplished by using a Bragg
fefleétion from a copper crystal. The monochromated beam is
collimated by using cadmium apertures. The resulting beam

has a wavelength given by
A = 2d(h,k,2)sin em (1l6)

where d(h,k,%) is the interplanar spacing of those planes
corresponding to Miller indices h, k aﬁd £. The angle eM is
shown in Fig. 2. The wavelength desired can be selected by
making an appropriate choice for GM, It is apparent fhat neut-
rons of wavelength A/n will be diffracted at the same angle
from the set of planes characterized by nh, nk, and n&, where
n is an integer. To reduce this harmonic contamination of the
monochromated beam it is necessary to select a wavelength suf-
ficiently near the high energy end of the Maxwellian distribu-
tion so that the spectral density of the white beam for n,(n>2)
is negligible.

| The bandwith AX is determined by the mosaic spread of
the monéchromatin; crystal, and by the finite divergence of
the incident beam. The intensity of the monochromated beam in-
creases as A)A is increased but the spectral resolution decreases

so a compromise must be reached between the two factors.



Fig. 2
A schematic diagram of the McMaster triple axis

spectrometer at Chalk River, Ont.
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The monochromatic beam is diffracted by the sample
crystal and a proportional counter is used to measure the dif-
fracted neutrons from the sample. The diffraction angles for
the sample are denoted by ¢ and the orientation of the crysfal»
axes with respect to the incident beam is denoted by Xx. Both
of these angles are shéwn in Fig. 2. A monitor counter is used
to determine the intensity of the incident monochromatic beam.
The éount rate is defined as the number of diffracted neutrons
for a fixed number of monitor counts. The neutron diffraction
experiments employed two spectrometers. Where the count rates
were sufficiently high, it was possible to use the double axis
spectrometer at the McMaster University reactor. A schematic
~diagram of the spectrometer is shown in Fig. 3. A boron
trifluoride proportional counter was employed ‘as a detector.
The monochromator for this experiment utilized the (220) reflec-
tions of a éopper crystal and provided a neutron beam with
Wavelength 1.048 R. Where small sample size, and very weak
magnetic scattering necessitated the use of a higher flux reac-
tor, use was made of the McMaster University triple axis spec-
trometer at the NRU reactor of Atomic Energy of Canada Ltd.
at Chalk River, Ontario. The spectrometer was used in a two
axes mode, that is the analyzer crystal was removed so that
the detector directly counted the diffracted beams from the
sample. In this case the detector was a 3He proportional
counter. This spectrometer employs a double monochromator

" which enables the wavelength of the monochromated beam to be



Fig. 3
A schematic diagram of the McMaster University

double axis spectrometer.
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changed easily, wtihout moving the entire spectrometer with
its heavy machinery and shielding. A schematic diagram of
this spectrometer is shown in Fig. 2. The wavelength used for
this experiment was 1.190 i.

The cryostat used for these experiments was of conven-
tional design and used helium exchange gas to cool the sample.
An ultimate temperature of 6°K was reached. A schematic
diégram of the cryéstat is shown in Fig.4 . The crystal was
mounted on a tripod inside the exchange gas chamber so that
small adjustments to the alignment of the crystal could be made

while it was in the cryostat.

Samples

The Mn2P207 and Cu2P207 crystals were obtained by slowly

cooling a melt of the desired compound through the melting point.
The crystals were extracted from the resulting solidified mass.

For Mn2P207 the compound was melted and cooled under vacuum

and for Cu2P207

tube before heating. The Mn2P207 crystal was shaped into a rough

ellipsoid with principal diameters of 3.5, 5.5, and 5.5 mm along

the powder was sealed in an evacuated silica

the a, b, and c* crystallographic axes. The Cu:_,on.7 crystal was
approximately a rectangular parallelopiped with dimensions
2 mmx1l mmxl mm.

The crystals were aligned to within 1° along a specific
crystallographic axis before being inserted into the cryostat.

This was done with an X-ray precession camera. Once aligned in

this manner, they were glued to a quartz rod and mounted on the



Fig. 4
A schematic diagram of the cryostat used for

neutron diffraction studies.
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tripod within the cryostat. They could then be aligned to
greater precision using the neutron beam. A further adjustment
was necessary after the samples were cooled due to differential

thermal expansion of the sample holder.

Theory of elastic neutron scattering by solids

‘Scattering by nuclei

If we represent an incoming plane wave of neutrons by
Y = eikz'where R = 2n/2 and if this wave is incident upon a
single nucleus the scattered wave will be of the form
¥ = -(b/r)eik ¥, where r is the distance from the scat
tering nuclei, b is defined as the scattering length
which is in general a complex number. We write b = o + ifB.
The imaginary part becomes important only for materials with a
large neutron absorption coefficient, such as cadmium, and may
be ignored for the types of atoms considered in this work.

Therefore we may consider b to be real. The resultant neutron

wave is given by

v = X% _ (p/r)elr : (17)

The scattering cross section is defined as the ratio of the
outgoing current of scattered neutrons to the incident neutron

flux. It is therefore given by the following relation

. 2
kr
_ 2 [jb/r)el |
g = 4nx" v ikz|2

v]e

If we now consider the scattering of neutrons from a
regular lattice of atoms, the amplitude of the scattered wave

is given by
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¥ =3 (bp/r)eii'feiﬁ'<i‘i" (19)

p

where p labels the atoms and p is the vector from the origin to

th

the p atom. k and k' are the wave vectors of the incident and

scattered waves respectively. For the case of a regular lattice

] — ]
the term elp(k k')

which takes into account the phase difference
between the scattered waves from different nuclei, is replaced
by exp{2ri(hx + ky + %z)}. In this expression, h, k and % are
the Miller indices appropriate to the scattering direction being
considered and x, y, and 2 are fractions of the lattice vectors
a, b and c.

In a regular lattice diffraction is is only possible at

discrete angles which are determined by the Bragg condition.

R-%' = G(h k 1). (20)

G(hk&) is referred to as a reciprocal lattice vector and is
given by

G(h k 2) = ha + kb + 2c. (21)
The intensity of the Bragg peak cofresponding to the direction

(hk%) is proportional to the following exéression.

IF(hkz)l2 IZ bp exp 2mi(hx + ky + 22)[2. (22)

p

The assumption is made that the incident beam is not signifi-
cantly.attenuated by the crystal. Alsc lattice vibrations are
neglected, but since the compounds studied have a high melting
temperature, this effect should be negligible at the temperatures

of interest.
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The Bragg condition contains two requirements for
scattering. The first concerns the angle 2¢ which the scat-

tered beam makes with the incident beam. This is given by
A = 2d(hk&)sin¢ (23)

where d(hk%) is the interplanar spacing associated with h, k
and.z . The angle ¢ is shown in Fig. 2. The second concerns the
diréction of the reciprocal lattice vector G(hk2) which must

be in the same direction as K-k . This is also shown in Fig. 2.
In addition to the intensity due to the Bragg peaks, there is a
background intensity which is independent of the orientation of
G with respect to the beam. This background arises from several
sources. These include incoherent scattering due to different
isotopes of the same element being distributed randomly through
the crystal. They include as well the effect of the different
nuclear spins on atoms of the same element.

In single crystal diffraction experiments, the usual ex-
periment is to set the scattering angle at the prescribed angle
for a particular Bragg peak and rotate the crystal by varying
the angle x to produce a rocking curve. The intensity is then
taken to be proportional to the area under the curve. This pro-
cedure introduces an additional geometric factor into the expres-
sion for the scattered intensity. In this case we have for the

intensity of the peak

. (24)
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V is the volume of the crystal and N, is the number of unit

cells per unit volume.

Magnetic scattering

Neutrons may be scattered from unpaired electrons in a
crystal via the dipole-dipole interaction. The scattering ampli-
tude for nuclear scattering is repiaéed by the following expression
for an antiferromagnet with a ‘single magnetic species.

2

F, = |q|S 3—7 £ 5 exp 2rilhx + ky + 2z) . (25)

M .
mc Py

g is the magnetic interaction vector defined by

q = €(eK) - K (26)
where K is a unit vector in the direction of the atomic magnetic
moment and € is a unit vector along the reciprocal lattice vector
for the appropriate h, k and #. S is the spin on the magnetic

ions, ¥y is the magnetic moment of the neutron expressed in nuclear

magnetons, and f is an atomic form factor given by

£.o= 47 I don(p) p? 55%%2 . (27)

The factoi n(p) is the density of unpaired electrons in a single
jon normalized so that the total number of unpaired electrons per
ﬁégnetic ion is unity. The symbol p is the distance from the
nucleué of the ion in question and yu = (47/A)sin®. To a first
approximdtion this quantity is given for Mn++ as

2

e-.075u

£ = (Shpll et al, 1951) (28)
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and for Cu++ is given by

2

e 9% (a1perin, 1960). (29)

£ =
fhe sum over ions includes only magnetic ions.
If we consider both nuclear and magnetic scattering,
the intensity of the Bragg peaks is given by the following expres-

sion.

do = b% + 2bpg+X + p3qg? (39)

2

where p = &
2mc _
(Halpern and Johnson, 1939). For an unpolarized neutron beam,

Sf, and A is the neutron polarization vector

the dot product &-X averages to zero, therefore

2 + p2q2 . {(31)

do = b
As a result, the magnetic and nuclear scattering contributions to
the intensity of a Bragg peak are additive. In those cases
where symmetry permits both nuclear and magnetic scattering, the
- magnetic scattering intensity can be obtained by subtracting from
the intensity observed below the magnetic ordering temperature,
the intensity of the nuclear scattering observed above the orde-
ring temperature. Above the ordering temperature there is no
coherent magnetic scattering in the absence of an external mag-
netic field. |

| The Bragg conditioﬁs are expressed in terms of the fol-

lowing coordinate system for the monoclinic systems of interest.

' The direction of G(hk®) is given in spherical polar coordinates

with respect to the following choice of axes. The x-axis is chosen
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to be along the crystallographic aaxis, the y axis is chosen to
be along b, which makes the Z axis along the direction of the
reciprocal lattice vector c¥*.

' The d spacings for a monoclinic system are given by the

following expression

d (hk&) = 1 (32)
h2 + k2 + (al—chcosB )2
2 2 acsinp
a b

With the above choice of axes the polar angle 6 is given by the

following expression

p = cos-l(Cé cscR - 2— cotBlda{hki)) . (33)

The azimuthal angle ¢ may be obtained from the following expres-

sion ' h
¢ = cos"l(-——3-—=). (34)
/ n? | x?
=tz
a b

Selected values of 1/d(hk%), and the spherical polar angles for
the reciprocal lattice vectors are given in Table 3 for Mn2P207p
and in Table 4 for Cu2P207.

The structure factors for the compounds studied are as

follows. For Mn2P207 it is given, for nuclear scattering, by

[

F(hk) = b exp 2w1(hxi + kyi + zzi)

z
Mo goq
4

+ b 2rithx. + ky. + 2.
o jil exp 2wi( X Y 3)
14 o
+ b I exp 2'rr1(hxk + kyk + zzk) (35)

0 k=1
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TABLE 3

Selected Values of 1/d(hkf&) and Spherical Polar Angles for the
Reciprocal Lattice Vectors in Mn,P,0-

hk & 1/d (hkg) 0 ¢

020 .2331 90.00 90.00
001 .2258 0.00 B 0.00
00 2 .4516 : 0.00 0.00
010 .1166 90.00 : 90.00
012 .4664 - 14.47 90.00
030 .3497 90.00 90.00
011 .2541 27.30 90.00




34

TABLE 4

Selected Values of 1/d(hkf) and Spherical Polar Angles for the
Reciprocal Lattice Vectors in Cu,P,O

{ 2¥2%7

Bk 2 1/4a(hkg) ' 0 ¢
660 .7396 90.00 90.00
061 .7486 81.10 90.00
064 .8727 . 57.94 90.00
008 .9265 | 0.00 ~0.00
022 .3383 . 46.78 90.00
042 .5447 64.84 . 90.00
021 .2724 64.84 90.00
001 .1158 | 0.00 0.00
010 .1233 90.00 90.00
011 .1691 46.78 90.00
013 .3687 19.53 90.00
030 .3698 90.00 90.00
031 .3875 72.61 90.00
033 .5074 46.78 90.00
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For Cu2P207 the nuclear structure factor is

8 . '
iil exp 27r1(hxi + kyi + 2zi)

F(hk) = b€u

™ 0o

+b ‘exp 2mi(hx. + ky. + %z.

28
+'b°,k51 exp 2n1(hxk + kyk + 2zk) . (36)

The coherent nuclear scattering lengths are given as follows:

-.36x10712 cm, b, = .53x10°12 cm, b, = .577x10" 12

12

an,

bCu

above expressions refer to the atomic positions of the phosphorus

cm and

.79%x10"

cm (Bacon, 1962). The indices j'and k in the

and oxygen atoms respectively. The index i refers to the mag-
netic atoms.
For magnetic scattering the structure factors are given

by
e2 S n
Fy(hke) = sina =2 £ 1 exp 2mi(hx + ky + 22). (37)
nc i=1 ’

The sum i runs over all magnetic ions in the respective materials.
The angle o arises from the magnetic interactioq vector and is
defined as the angle between the direction of the magnetic
moments and the reciprocal lattice vector. It is given by

2 1/2
hcosBcos$ + Zcosé) d(hki)z) (38)

asing csing

sina = (1-(

where § is the angle between the magnetic moment direction and
3 a— -] —_ D
the 2 axis. For Mn2P207 B = 102° gng § = 80° and for Cu2P207
B = 109° and § = 15° ., The § angles are determined from magnetic

susceptibility measurements.
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Experimental Results

A. Manganese Pyrophosphate

A tyéical rocking curve for a magnetic reflection in
‘ Mn2P207 is shown ih Fig. 5. The double peak is presumed to bé
due to the sample cbnsisting of two crystals with a small (0.8°)
misorientation of the crystal axes. The double peak is present
for both magnetié and nuclear reflectibnso Table 5 gives the
intensities of a selected.number of Bragg peaké both at 100°K
and S°Ko These temperatures‘aré resPéCtively above and below the
the Néel temperature of 13(1)°K as detérmined from magnetic
susceptibility measurements (Fowlis and-Stager 1969). The
intensities are obtained by integrating the Bragg peak after
Subtraction_of‘béckgrOund counts, Fig. 6 shows the temperature
dependence of the peak intensity for the (010) reflection. From
Fig. 6 and Table 5 it is evident that the (010), (011), (030)
and (012) reflections are magnetic in character. The Miller
iﬁdices used here and below are referred to the chemical unit
cell. It should be noted that the Néel'temperature of 12°K
obtained from the temperaturé dependence is a lower limit due
to the existence of temperature gradients in the dewar, and
does not conflict with the previously reported value (Fowlis and
Stager 1969) of 13(1l)°K.

Assuming that the magnetic unit cell is either identical
to the chemical unit cell, or is doubled along the ¢ axis ,
there are 35 possible colinear antiferromagnetic spin configura-

tions possible. The intensities of the magnetic reflections



Fig. 5
Rocking curve for the (010) magnetic reflection
in Mn2P207.ﬂThe solid line is drawn as a visual

guide through the points.
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Fig. 6
Temperature dependence of the counting rate at

the center of the (010) peak in Mn2P207.
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TABLE 5

Observed and Calculated Intensities for Hn2P207

hk % Observed Intensity Observed Intensity Calculated Intensity ' Type (Nucleﬁr
(100°K) {6°K) . - or Magnetic
020 28 , - . 28 N
001. yo17 - 18 N
002 26 - - 33 N
010 <1 - 14 (2) o .18 M
012 ; <l . g 4 (1) . s M
030 a C 2 2 M
011 | M

<1 A 10 (2) S12 .

The calculated intensities have been normalized to the observed intensity for (020).
The mesured integrated intensities have been multiplied by the geometrical factor sin 20 -
(Bacon 1962, p. 57).

6€
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were calculated relative to the intensity of the (020) nuclear
reflections for all 35 configurations. These calculations do not
take into account spin transfer onto non magnetic ions.

Of the 35 configurations, only one has a sufficiently
strong (010) reflection to account for the experimental results.
There are a number of other configurations with non zero intensities
at (010) bﬁt they are at most one-quarter of the observed wvalue.
Thecremainder of the observed'magnetic peaks are in good agree-
ment with the calculated values as shown in Table 5. There was
some ambiguity in the powder results obtained by Collins et al
(1970) as to whether the peak was indeed (010) and not (003) or
possibly a superposition.of both as the d spacings for these
reflections are almost identical. The present work removes the
uncertainty and confirms the spin configuration suggested by
Collins et al (1970). The spin configuration for Mn2P207 is
shown in Fig. 7.

The ¢ centering operation in the chemical unit cell is
lost in the magnetic unit cell, but the axes lengths are identical.
The very strong (010) reflection is caused by the antiferromagne--
tically ordered layers in the ac plane that are separated by
% b. As a result there is almost perfect constructive interference
for scattering vectors along b. It may be also zbted that the
(010) intensity is slightly smaller than the calculated value,
but this may be attributed to extinction effects which become im-

portant for large peaks at low scattering angles. This effect

was also apparent in the powder data.



Fig. 7
Spin configuration for Mn2P207. The mirror plane
is cross-hatched. The anti two-fold axis is a two-
fold axis rotation followed by the time reversal
operation. This constrains the spins to be perpen-
dicular to the two fold axis. Dark circles are up
spins, aligned 23° away from a* towards c*, and

open circles are down spins.
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B. Copper Pyrophosphate

In Cu2P207 the magnetic reflections are predicted to

be two orders of magnitude weaker than the nuclear ones. It

was therefore necessary to look for magnetic scattering where the
nuclear reflections are absent because of symmetry or where the
intensity of the nuclear scattering is very small, either
accidentally or due to small deviations from a higher symmetry;

| A typical scan of a Bragg peak for Cu2P207 is shown in
Fig. 8. The integrated intensities for selected Bragg peaks are
shown in Table 6. The calculated intensities are normalized to
the measured (060) peak. Again the calculations have not:included
the effect of spin transfer onto the hon magnetic ions. The
space group of the chemical nnit cell is either C2/c or C€. 1In
either case the c centering operation prohibits nuclear reflec-
tions if h+k is odd and the ¢ glide plane prohibits nuclear
reflections of the form (00%) for % odd. These prohibited nu-
clear reflections were examined at 6°K for magnetic scattering.
None was observed. This means that the magnetic unit cell pre-
serves these two symmetry operations. The remaining nuclear peaks
with £ odd are relatively weak, as the chemical unit cell is
almost the same as in the high temperature-B phase where the

¢ axis is halved. The low angle peak of this type with the
smallest nuclear intensity was examined as a function of tempera-
Ature‘from 6°K to above the Néel temperature. The count rate at

the middle of the (021) Bragg peak is shown in Fig. 9. A rocking



Table ..6

' Observed Calculated Intensities for Cu,P,0,

hk 2 Observed Intensity Observed Intensity Calculated Intensity Type (Nuclear
(1L00°K) (6°K) or Magnetic
060 ' 444 - 444 N
061 38 - 14 N
06 4 47 - | | 43 N-
008 | 395 - 333 ‘lu
022 88 = . 121 | N
04 2 76 - S ) N
021" <001 T 1.0(2) o 1.2, M
001 0.1 N <0.1 0 M
010 <0.05 . <0.05 ' 0 M
011 <0.05 | <0.05 a 0 M
013 <0.1 o <0.1 0 M
030 <0.1 <0.1 ' 0 M
031 <0.1 <0.1 - 0 M
033 <0.1 | <0.1 | 0 - ‘M

184

The calculated intensities are normallized to the observed Intenslty for (060)

The observed intensities are multiplied by the geometrical factor sin 26 '
*The nuclear intensity has been subtracted from the total intensity for (021)



Fig. 8
Rocking curve for the (060) nuclear reflection in
Cu2P207. The error bars in this case are smaller

than the points on the figure.
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Fig. 9
Temperature dependence of the counting rate at the
center of the (021) peak in Cu2P207. The intensity
above T is attributed to nuclear scattering, which

is not prohibited by symmetry;
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éurvé was done at 4.2°K and 77°K to ensure that the counts

taken were at the center of the Bragg peak. This was done to
ensure that the crystal did nbt move due to thermal expansion

as the temperature was raised. Because of the véry weak scat-
téring and resulting long counting times, it was not possible to
check the rocking curve at other temperatures. The 8% dif-
férence in the count rate at 6°K and at 26°K is attributed to
magnetic scattering. If the magnetic unit cell is commensurate |
with the chemical unit cell there are 35 possible colinear spin
configurations. Eliminating those that do not preserve the c
centering only three remain. Of these only 2 preserve the

¢ clide plane and only one of these has magnetic scattering at
the (021) Bragg reflection. It is concluded that this is the
correct spin configuration. It should be noted here that the
change in intensity for (021) may be due also to a crystallograp-
hic distortion at the Néel temperature. We are unable to rule
out this possibility, but note that the change in intensity is
in good agreement with the predicted magnetic intensity for

this reflection. The spin arrangement consists of antiferro-
magnetic sheets in the ab plane which are coupled antiferro-
magnetically to neighbouring sheets. The favoured spin con-
figuration for Cu,P,04 is Qhown in Fig. 10{a). The alternate
configuration, which does not show magnetic reflection at (021),
is shown in Fig. 10(b) and consists of an identical arrangement
except that neighbouring sheets are coupled ferromagnetically

rather than antiferromagnetically.



Fig. 10

- 8pin configurations for Cu29207. The planes drawn
through the middle of the unit cell and the lines
joining magnetic ions do not represent symmetry
elements, but are drawn for visual assistance. The
top configuration represents the one most favoured
by the neutron diffraction resu}ts, but the bottom

configuration is not ruled out,
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CHAPTER IV

NUCLEAR MAGNETIC RESONANCE

Experimental Procedure

The samples used for the NMR measurements were the
same samples used for the neutron diffraction studies. The
crystals were aligned along known crystallographic axes using
an'x—ray precession camera. ‘Once aligned, the crystals were
transferred to the end of a glass tube containing diamagnetic
MgZP207. The Mgszo7 was used as a standard sample for the 31P
resonanée, since no resonance shifts are expected for this com-
pound. Once mounted in this manner the alignment of the crystals
was rechecked using the precession camera, and mounted inside
the radio frequency (r.f.) coil. The coil consisted of a copper
coil of diameter 3 mm and lengﬂ14 mm, wound with about 20 turns
inside a teflon sleeve for rigidity. The sample alignment
was accurate to within about 2° at low temperatures, as deter-
mined from the mutual consistency of data obtained in several
planes.

The rf coil was incofporated in the tank circuit of a
marginal oscillator. A circuit diagram of the oscillator is
shown in Fig. 11. The frequency of the oscillé?br was kept

constant while the magnetic field was swept linearly with time.

Conventional field modulation and phase sensitive detection

48



Fig. 11
Circuit diagram for the marginal oscillator used

for the NMR studies.
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techniques were employed. The 100 Hz field modulation was
variable from 0 - 100 gauss peak to peak and for the low tempera-
ture measurements, values ranging from 20 gauss to 106 gauss
‘were found to be optimal, depending upon the orientation of
the sample. A time constant of 3 seconds was used for the
'filter on the output signal. The DC magnetic field was mea-
sured with a Varian Fieldial Mark I magnetic field regulator.
The cryogenic system was also of conventional design,
- enabling measurements to be made at 4.2°K. The sample was im-
mersed in the liquid helium. Provision was madé for pumping
on the liquid helium so that an ultimate temperature of 1.5°K
could be reached. |
A typical first derivative resonance curve for the 31P
resonance in 1\*1<_:;2§?20.7 and in Cuz.on7 at room temperature is shown
in Fig. 12. The resonance in Cu2P207 is shifted with respect to

that in Mg2P as a result of the transferred hyperfine interac-

297
tion in the paramagnetic state. A typical 31P resonance
from Cu2P207 at 4.2°K, in the antiferromagnetic state is shown
in Fig. 13. It should be noted that the linewidth observed
varied widely as a function of the orientation of the crystal,
from about 30 0e to 100 Oe. The integrated intensity of the
resonance varied considerably as well. 1In fact for scme orien-
tatioﬁ of the crystal, the resonance due to certain crystalio-

graphic sites was too weak to be observed. This variation was

first thought to be due to mosaic spread in the crystal but this -



Fig. 12

Field derivative of the 31P NMR in CuzPZO7 and in
M.gszo7 at room temeprature. The frequency at which

the resonances were observed is 22.49 MHz.
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Fig. 13
Field derivatives of the 31? NMR in Cu2P207 and
ng2P207 at 4.2°K. The linewidth for CQZPZO7 varies
from about 25 Oe observed in this case to 100 Oe,
'depending upon the orientation of the crystal with

respect to the external field.
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possibility was ruled out because in this case the linewidth
'should increase in those regions where the resonance field
changes rapidly with orientation. This was not the case

‘experimentally.

" Theory of NMR in the Orderéd State

th phosphorus nucleus may be

! The Hamiltonian for the i

|
|

written in the following form.

sd.gid.gi | . (39)

i

HM =

U.M

For phosphorus the nuclear spin I = 1/2. The second rank ten-
sor Kij couples the ith nucleus to the jth magnetic ion. The
sum runs over all magnetic ions. §j represents the spin on

the jth atom. - For a simple twd sublattice ahtiferromagnet, the

sum can be divided into two parts, one for up spins, the other

for down spins. Hence we can write.

k
+ ¥

ki zi, (40)

p]

.31t + £ 8
. k )
Because the up spins and down spins are all the same in a two

H =5 5 "&

sublattice model, we can write.

— & .5 . = .5 .31
HM = Sy A I + S A I . (4)

i$ and'i+ are the coupling tensors between all of the spins
on the respective sublattice and the ith nucleus. If the
following definitions are made:
- 1.=- -
S —E(S+is

4 (42)

" (43)

wi
It
|
1+

= _ =k
A+) where Af,+ = ﬁ AM+
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then the above Hamiltonian may be written as

Hy = stext.7t 4 7.5 .1t. (44)

§+(T,H) and §+(T,H) are functions of temperature and the exter-
nal magnetic field. These vectors are shown graphically in Fig.

l4. In the absence of an external field.
—o - -
Sh+(T,O) = *kSM_(T)/M_ (0) - (45)

where MS(T) is the sublattice magnetization at T°K and k is a
unit vector along the spin direction. Using the appropriate g

tensor and the relation M = §~ﬁ we may write

A = =i

>

SeET.T* = A+ &
where ¥ is the susceptibility tensor expressed in units of e.m.u./

mole and N is Avogadro's number. The Hamiltonian may now be

written as

Hh = guey BTt 4 A TLRE 4200 PR T wn)
where the usual nuclear.Zeeman term has been included. The fac-
tor §°1 is the inverse of the g tensor, IN is the nuclear g
factor and B and BN are the Bohr magneton and the nuclear magne-
ton respectively.

The task remains to determine the vectors S’ and §  as

a function of applied field. We will define these in terms of

M' and M~ where

B = Geuge5F = M tai (48)



Fig. 14

An illustration of the spin vectors 52 and 52

at zero field and S+ and S+ in the presence of an ap-

(S,+ S

plied field H. &% = R

N =

-
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Nagamiya et al (1955) have outlined a method fér cal-
culating the magnitude and difection of M' and M in the
molecular field approximation. 'The,following expression for Mt
is given

||

[Eey|

|5t = a4, (49)

ﬁex is the molecular exchange field and ﬁo is the zero field
value of the subléttice magnetization. The existence of ﬁ+ is
att;ibuted to the tipping of spins on opposing sublattices
towards one another to result in a net macroscopic magnetization
in an applied field.

It is slightlj more complicated to compute ﬁ_.' Nagamiya
et al (1955) give the following expression for the free energy
of the system. .
R SUCHLIE SN (50)
Nagamiya et al (1955) assume that the two principle values of
" the susceptibility which correspond to eigenvectors perpendicu-
lar to the direction of the sublattice magnetization are equal.
Experimentally, this is not true for'Cu2P207 but the wvalues
are sufficiently close to one another that the assumption is
a valid approximation. The perpendicular susceptibility is
denoted by Xl, and the parallel susceptibility is denoted by

xll. The anisotropy energy is defined phenomenologically as

follows.
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2,-. 1 2 2 |
+ B_%) + 3 K2(3+ + o_ ),K2>K1>O. (51)

atr and B+ are the direction cosines of the respective sublat-
tice magnetization vectors. The z axis is therefore the easy
direction. The free energy of the system is expressed by the

following equation.

2

=1 2 2_ 1 2. 2 2
F= =3 x| B laagtBBy +yvy) ™= 5 X HT (1= (0ag+BBytyyy) "1+K BT 4Ky (52)

where a and vy, are the direction cosines of the external

u’ Pu
field. The expression has been simplified by assuming that the
sublattice magnetization vectors are colinear so that

le,| = loa_|, [8,] = [8_| and [y | = |y_| . This is a good
approximation if the induced magnetization of the sample is
small. From equation (49) it can be seen that this condition is
satisfied if the exchange field is very large compared to the

external field. The magnetization direction in a finite exter-

nal field is obtained by minimizing the above expression for

the free energy, subject to the constraint az + 62 + 72 = 1.
This is equivalent to solving the following equation.
o 2 + -A B
H x2 %y n °yYy
2
a8y B o+ -2 FaH =0 (53)
2 W,
%qYH ByYy Yg A

The constants 1 and 2 are defined as follows

Xy = ZKl/D\‘X-L_XI |)H2] {(54)
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The smallest value of the eigenvalue )X corresponds
to the condition of minimum free energy and the associated eigenvec=~
tor corresponds to the desired values of o, B and y that is
the direction cosines of the sublattice magnetization. The
coordinate system for the above equation has been defined so
that the z direction corresponds to the easy direction, the y
direction corresponds to the intermediate direction, and the
x axis corresponds to the hard direction, with reference to
the principal values of the free energy. |

Now that we have obtained the vectors ﬁ* and M and
hence §+ and S , the only unknown parameters in the Hamiltonian
are the tensors A@ and A . These may be determined from the
experimental data. Each of these tensors has two major parts.
The first of these is the classical dipole-dipole interaction,
and may be calculated given a knowledge of the crystal struc-
ture, and the arrangement of the spins in the unit cell. To
a first approximation this may be done assuming that all of the
spins are localized on the magnetic ions. The dipole-dipole

energy is given by

- = 3{m, *r .
By = 2 [m’;”; my 55 ik (56)
kj kj
This is the energy of interaction of the kth site with all of
the magnetic ions. me is the nuclear moment at the kth site

given by
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me = gNuNi , (57)
k : :
and ﬁj is the electronic magnetic moment at the,jth magnetic

th site to the kth one., In

'site. The vector Eks connects the j
general, a straightforward palculation of the dipole sum is
difficult. For the present work, Ewald's method, outlined

in Born and Huang (1954) is used. This method involves sum-
mation of the series in both real and reciprocal space out to

" a finite radius R. The dipole energy of interaction with the

site k can be written as

E pX uNBNI I L Q (kk')mk's. (58)

kK o B k!

The coefficients st(k,k') are tensor elements which relate
the B component of the magnetic moment associated with the kth
ion in the unit cell to the o component of the resulting mag-
netic field at the kth ion in the unit cell. The sum over unit
cells has been incorporated into the tensor elements.

The Ewala method has been used in a computer program,
written by E. R. Cowley, tb calculate the coefficients QaB(kk').

The dipole sums can be modified to some extent by assu-
ming that some of the spin density is transferred to the non
magnetic sites. The degree of transfer can be estimated from
NMR studies in the paramagnetic state (Atkinson, 1969) and use
of symmetry considerations.

+
The second major contribution to the tensors A~ is the
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transferred hyperfine interaction. This effect arises from the

31y jons. This spin

presence of a finite spin density on the
transfer is a result of the overlap of the wavefunctions of
magnetic and non magnetic ions. In the process of orthogonéli-
zing the wavefunction of the magnetic ions and neighbouring
non magnetic ions, those wave functions associated with the
isolated ions which are not orthogonal, that is those with the
same spin, become mixed. This process is approximated by the
molecular orbital method which uses linear combinations of
atomic orbitals to form bonding and antibonding orbitals. To
obtain an understanding of this method, the simple case of a
three electron two center case is considered. The bonding and
antibonding orbitals have the following form.
(bp,HY¥y) (44)

(59)
[L+2y<p o o+v21H/2

Vp

e (4) (o)

[1-22<y | v, +221 172

Il',AB

Uy is a magnetic ion orbital and 129 is a non magnetic ligand

orbital. and are approximately orthogonal if

1'pA 1‘}AB
A s Y + <wL|wM>. The assumption is made that the overlap

integral <wL|¢M> is small. The bonding orbital Yg is lower in
energy because its dominant part is wL' which is a lower energy

state that wM. As a result wB contains two of the three elec-
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trons available from the atomic states, leaving one electron
for the antibonding sﬁate. It is Vag which contributes to the
unpaired spin density on the non magnetic ion. The unpaired
spin density is then proportional to A2,

The remaining part of the transferred hYperfine'interac-

31

‘tion is the interaction between the unpaired spin on the P .

ions and the nucleus. This is the diregt hyperfine interac-
tion, and it consists of two parts. The first is a dipole-
dipole interaction between the nuclear and the electron spins.
This effect is zero, if the electronic wave function is
spherically symmetric. As a result there is no dipole interac-
tion for s electrons. There is however another contribution,
the Fermi contact interaction, which depends on the electron
density at the nucleus. This is finite only for s electrons,
since all others have zero electron density at the origin.

The dipole hyperfine constant for 3p electrons is given

by

A, = -g-_gsyn <_§_> ) (61)

3p *3p ,

The value for <—%—> can be obtained from the optical spectrum

r
(Barnes and Smitﬁ? 1954).

The Fermi contact contribution is

2 62
Ay = g- mgByt|y, (o) |7 . (62)

where |w3s(o)l2 is the density of 3s electrons at the nucleus.

It can be obtained from the formula
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Z, 3/2
1y (o= 2 Lo (D (63)
¥ o mag

where Z; is the effective nuclear charge, a, is the Bohr

radius, T is the term value and R is Rydbergs constant. (Crawford
and Schawlow, 1949).
The fraction of unpaired 3s electrons at the ith nucleus
due to the kth magnetic ion is given by
ki

S
2S5 1
3s A3S ‘

where Agl is the experimental hyperfine constant determined
from the field shift at the ith nucleus in the paramagnetic phase.

S is the spin on the magnetic ion. A;i is given by the following

expression
AH L] i
HF _ 1 ki , <s>
el JE N S o (63)
o o
where AHHF is the transferred hyperfine field shift of the

nuclear magnetic resonance which occurs at Ho in the absence of

magnetic interactions. AH, - is obtained from the total experi-

HF
mental field shift AH by subtracting from AH contributions

due to dipole fields and the demagnetization field. The above
equations is easily solved for Afi if the assuﬁBtion is made

ki

that A," is the same for all magnetic ions. <s>t

is the
thermal average of the spins in the paramagnetic state and is

given by



gugSH
kT

<S> = SBs(x) where x =

Bs(x) is the Brillouin function for spin s. For s = % it is

given by

Bl(x) = tanh x | - (67)
2

Magnetic symmetry

The chemical unit cell of the compounds studied have
the point group 2/m. That is there exists a 2 fold axis along
the b axis of the crystal and a mirror plane perpendicular to it.
The magnetic symmetry of the crystal involves the additional
complication of keeping track of the spin direction of symmetry
related sites. To accommodate this additional information a
number of additional symmetry”operations afe defined. The
magnetic symmetry elements for a monoclinic system include the
follows: 2, 2', m, m', I, and I'. The 2 operation is the
usual crystallographic 2 fold axis element, and m is the
crystallographic mirror plane operation. I is the identity
operation. The 2' operation is a product of fhe 2 operation
and the time reversal operation._ Magnetic vectors transform in
the same way as angular momentum, ana‘the angular momentum
vector can be written as rxp where r is a position vector and
p is a linear momentum vector. The time reversal operator
transforms p into -p while leaving r unchanged, so the net
effect of this operation is to change the sign of a magnetic

vector. The m' operation is a product of the mirror plane
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and time reversal. I' is a product of the identity and the
time reversal operator. Fig. 15 shows the effectfof the various
operations on a magnetic vector. A number 6f special cases
are worthy of note. If a magnetic site is located on a crystal-
logfaphic 2 fc:ldam:"’:us,y then a magnetig 2 axis implies that the
magnetic vector associated with that site must lie along the
two fold axis. Similarly a magneﬁic 2' axis implies that the’
vector must be perpendicular to the axis. If the site is lo-
cated on a crystallographic mirror plane, then a magnetic m plane
implies that the magnetic vector must be perpendicular to the
mirror plane, and an m' plane implies that it must lie within
the mirror plane. VA éomplete description of the way in which
"axial or magnetic vectors tfanéform’under the magnetic point
éroup operations may be found in a>péper by Donnay et al (1958).
Methods of applying these groups in thé determination of mag-
netic structures from NMR data is discussed by'Riedel and Spence
(1960) and Spence and van Dalen (1968). In these papers the
magnetic point groups are referred to as Heesch groups, of
which there are 122 derivable from the 32 ordinary point groups
and the corresponding magnetic space groups are referred to as
Shubnikov groups, of which there are 1651; obtainable from the
230 ordinary crystallographic space groups. For a monoclinic
system the following Heesch groups are possible. If the crystal-
logfaphic point group is m, then the Heesch group may be one of
2', m' or 2'/m'. Similarly if the Crystallographic point group

is 2, the Heesch group may be 2, m, or 2/m, Finally, if the



Fig. 15
The effects of symmetry operations on magnetic

vectors.
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'point group is 2/m, the Heesch group is one of 21', ml', 2/ml’',
2/m; or 2‘/m. As a final note it should be stated that the
magnetic point groups defined here as Heesch groups differ
from those defined by Opechowski and Guccione (1965) in that
‘they remove all translations from the magnetic space groups to
obtain the point group whereas here the anti translations,

that is those including time reversal, are condensed into the

anti identity.

EXPERIMENTAL RESULTS AND DISCUSSION

Mn2P20

7

The experimental work on the NMR of this compound in
the aﬁtiferromagnetic phase has been reported by Choh and Stager
(1970). The interpretation of these results in terms of possible
. spin configurations, using the method of Spence and van Dalen
(1968), was not consistent with the spin configuration deter-
mined by Collins et al (1970) from powder neutron diffraction
data. Since the powdered data was confirmed by single crystal
studies in the present work, it becomes necessary to reevaluate

the NMR data in light of this information. The 31

P NMR in the
ordered state has been used to measﬁre the internal field at

the phosphorus nuclei. The components of the internal fields

at the phosphorus sites are_listed in Table 7. Assuming that the
space group symmetry of the crystal does not change down to 4.2°K,

the magnetic ions are located on a 2 fold axis. Experimentally

the spins are determined to be perpendicular to the 2 fold axis

-



TABLE 7

Internal field components at the phosphorus

i H H

x | Y
1 .005(5) .259(11)
2 -.005(5) -.259(11)
3 +.005(5) +.259(11)
4 -.005(5) -.259(11)

- Fields are given in kiloOersteds.
- The spin direction is along z.
- The two-fold axis is along y.

- i labels the phosphorus ions.

sites in anP 0

H,

+1.27(9)
+1.27(9)
-1.27(9)

-1.27(9)

67
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kFowlis 1970) so the 2 fold axis becomes a'magnetic'Z' axis.
ihis is consistent with the spin configuration determined by
_neutron diffraction. The neﬁtron studies determined that spins
ielated by the mirror plane are antiparéllel, and because the
$pins are parallel to the mirror pl&ne, the crystallographic
@irror plane must be a magnetic m plane. The phosphorus

ﬁuclei are situated on the m plane, so all internal fields
measured at the phosphorus sites must be perpendicular to the
mirror plane. From Table 7 it.is evident that this is not
observed experimentally.

The dipole field was calculated and found to be perpen-
diculaf to the m plane, as expected from symmetry. If all of
“the magnetic moment is concéntrated on the manganese ions,
then the calculated dipole field is approximately twice as
large as the measured perpendicular component. This result can
be modified significantly by assuming that some of the spin
Apolarization is located on the oxygen ions that are near
neighbours to the manganese ions. An order of magnitude estimate
with 2% spin transferred to each oxygen ion, where spin polari-
zation is not forbidden by symmetry, would lead to an oxygen
contribution to the perpendicular component that is approximately
40% that of the manganese.ion contribution. If the oxygen spins
are antiparallel to the near neighbour manganese spins this
contribution would have the opposite sign to that due to the
manganese ions. ‘A detailed calculation would be very sensitive

to the atomic positions, which are not accurately known at helium
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temperatures, and especially sensitive to the spin direc-

tion. As a result it is possible that all of the perpendicular

componént of the internal field arises from the dipole field;
The parallel component must come from the transferred

hyperfine interaction. The experimentally measured component

in the plane is parallel to the measured spin direction, as

expected for an isotropic transferred hyperfine interaction

.\(Atkinson and Stager, 1969). The contributions to the parallel

component should, however, cancel in pairs because of the

m plane. We will postulate a very small distortion from C2/m

symmetry so that the mirror plane is lost. If the distortion

is small it will not étrongly affect the dipole contribution

with its l/r3 dependence. If we assume that the transferred spin

on the phosphorus ions result from the same mechanism responsible

for superexchange, then from high pressure studies (Benedek and

0 radial dependence.

Kushida, 1960) there is an approximate‘l/r1
The high pressure studies were done on manganese fluoride.

The assumption is made that the change in the relevant bond angles
is small and does not affect the magnitude of the interaction.

A rough estimate of the degree of cancellation of the hyper-

fine fields can be obtained by comparison with the NMR data

in the paramagnetic state. There the expectation value of

all spins are parallel and no cancellation occurs. Using the
data of Atkinson and Stager (1969) a hyperfine field of 31.8

kOe is predicted for saturated paramagnetic Mn2f207. The observed

value for the antiferrcmagnetic state is 1.27 kOe. Order of
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magnitude calculations are done in the following manner.

The interaction between a magnetic ion and the phos-
. . _ s .
phorus nucleus is given by Hyp --AHF(r) T where r is thg
length of the hyperfine path in the limit of C2/m symmetry.

If the phosphorus ion is moved off the mirror plane the
length of the hyperfine path for one of the symmetry related
magnetic ions becomes r+A and for the other r-A. Taking into
account the functional depenaence of the hyperfine interaction
and the antiparallel arrangement of the symmetry related spins,
the total hyperfine field becomes, for the distorted crystal

S

=5 [k(r+Af1° - k(r—Aflol kS [rl°~10r9A+ ..-rlo-lorgA]
NN NN
9
NN

k is an appropriate proportionality constant for the transferred
hyperfine interaction. Similarly for parallel spins, as in a

saturated paramagnet the hyperfine field is given by

' .
Hep = —o— [r 0410270+t 0-100%0) = 2210 K8 (q0)
NN NIy
1
Taking the ratio HHF/HHF gives the following result.
v -10A
Hyp/Bgp = <7 (71)

A/r is the fractional change in the transferred hyperfine path.

In general, for an ™ dependence of the transferred hyper-
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%fine field this is given by
| 1
H . .-nA

Hpp/Hpp=D2 I (72)

Usiﬂg equation (71) bond length changes of the order of .01 i
are sufficient to explain the resuit. These changes are too
fsmall to have been observed by any neutron or X-ray diffrac-
;tion experiment carried out so far 6n Mn,P,0,. F. Long |
(private communication) has examined a powdered sample by X-
rays at 6°K and observed no evidence for a‘symmetry change
from the C2/m structure.

The Heesch group above the low temperature phase transi-
tion is 2'/m. From ﬁhe symmetry of the internal fields, it
‘is. likely that the Heesch groﬁp remains unchanged thrbugh the
phase transition, at least to within the accuracy of the ex-
perimental measurements. If this is indeed the case, the
resonances corresponding to the four magnetic sites in the
crystal should coincide in pairs if the internal field is
oriented perpendicular to the 2 fold axis. The linewidth of
the resonances observed was about 80 Oe, and the internal field
was approximately 1 kOe, so any splitting of the coincident
resonances involving more than 5% difference between the two
corresponding internal fields should have been observable.
No such splitting was observed experimentally. This 5% limit,

taking into account the rl0

dependence of the transferred
hyperfine field would preclude the observance of changes from

2'/m symmetry involving fractional changes in atomic coordinates
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df less than 0.5%.

Cuszo7

Data were taken at 4.2°K with the external field in
the acf, ab and bc* planes. The c* axis is along the direction
axb. Additional data were taken in a plane which is perpen- |
dicular to an axis 30° from the c* axis towards the a* axis
in the ac plane. These data are shown in Figs. 16, 18, 18
and 19 resPectivély. The first three planes of data were taken
at 17.00 MHz, the latter at 16.5 MHz. A tétal of 4 resonances
was observed. The angular dependence of a given resonance shows
the characteristic 360° periodicity of NMR in a magnetically
ordered system. The four resohances correspond to the vector
sum of the external field with 4 different internal fields at
the phosphorus nuclei. There is no quadrupole4splitting for
31P since the nucleus has I = %. Measurements were made at
a higher frequency (21 MHz) at 4.2°K in the ac plane to determine
the field dependence of the resonance pattern. These results are
shown in Fig.20 . The additional resonance with a minimum at
"14.2 kOe is related to the antiferromagnetic spin flop resonance.
As this is a cooperative electronic effect in the crystal, the
intensity of this resonance is several orders of magnitude
larger than the nuclear resonances. Fowlis (1970).has observed
the same resonance using microwave techniques at 35 GHz. The
temperature dependence of the internal field was examined with

the external field along the direction of easy magnetization.



Applied fields for the 31

P resonances as a function
of angle for the external field in the ac* plane.

The resonant frequency is 17.00 MHz.
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Fig. 17

Applied fields for the 31

P resonances as a function
of angle for the external field in the ab plane. The

resonant frequency is 17.00 MHz.
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Fig. 18
Applied fields for the 319 resonances as a function
of angle for the external field in the bc* plane.

The resonant frequency is 17.00 MHz.
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Fig. 19
Applied fields for the 31P resonances as a function
of angle for the external field in a piane perpen-—-
‘dicular to an axis 30° from c* towards the a axis

in the ac* plane. The resonant frequency is 16.5 MHz.
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Fig. 20
The solid circles are the applied fields for the
31P resonances as a function of angle for the ex-
ternal field in the ac* plape. The resonant frequency

is 21 MHz. Thé open circles are spin flop anti-

ferromagnetic resonances at the same frequency.



77

e® 00
: o0 °
e . . -
< —
o .
e O
° *
'Y nd
.0 o
'Y
06
. X
° °0
-] - - 0 ¢
0 ° V-,
L 2 X
o0 'Y
Lo o i i i { aa i
¢ " o = ° o
903 NI Q314 a43i1ddV

80

40

-4 0
ANGLE IN DEGREES

- 380



78

No temperature dependence was observed between 1;5°K and 10°K.
The formalism of Choh and Stager (1970) as developed |
earlier in this chapter, was used to evaluate the Cu2P207 data.
There are a number of outstanding differences between the
e#perimental results for Mn#on7 and Cu,P,0,. The first is
- the substantially larger'internal_field present at the phos-
phorous sites in Cu2P207. Secondly the resonapce pattern iﬁ |
Cuszo7 does not exhibit the two maxima per site as a function
of angle over 360° as does that in Mn2P207, but more closely
approximates a simple sinusoidal dependence. This is related
to the small magnitude of the susceptibility term in the-
Hamiltonian. There are, however, still significant deviations
from sinusoidal behaviour. Exact sinusoidal behaviour would
result if the internal magnetic¢ fields are not perturbed by
the external field. Finally, there was no temperature depen-
dence of the resonances for fields along the easy direction,
in contrast to the results for.Mn2P207.

As was discussed earlier in this chapter, there are two
major perturbations on the spins in an antiferromagnetic system
upon the application of an external ﬁagnetic field. The first,
being the tipping of spins on opposing sublattices towards one
another, is included in the susceptibility term of the Hamil-
tgeiah, since it involves the vector §+bdefined earlier. As
shown previously; this tipping is p;oportional to H/Hex' In
Mn2P207 this effec£ is important since the exchange field is

77 kOe, as determined from magnetic susceptibility data (Fowlis
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and Stage:'(1970) and ﬁhe applied field was of the oxrder of

12 x0e. In Cu2P207, however, this spin tipping might be ex-

pected to be less important, because the exchange field for

this compound has been determined to be H = 900 kOe as

- compared to an internal field again of the order of 12 kOe.

The exchange field for Cu2P207 has been determined by Fowlis
(1970) from magnetic susceptibility data. The ratio of H/Hex
is therefore much smaller for Cuszo7 than it is for Mn2P207°

The second effect is the spin rotation effect which
depends on H/HSFG This effect was not important in anon7 be-
cause of the relatively large spin flop field of 24.2 kOe. The
spin flop field for Mn2P207 was obtained from antiferromag- |
netic resonance data {Fowlis 1970). 1In Cu2P207, the spin
flop field of 14.2 kOe makes the rotation effect considerably
larger. In Mn2P207 the rotation angle was at most about 2°
while in Cu,P,0, the rotation was as much as 25°.

In the analysis of the Cu2P207 data, the full Hamil-
tonian is used, and it will be shown that the neglect of the
susceptibility term is justified. For this system it is not
realistic to replace S in the final term of the Hamiltonian
with gi where 52 is the unperturbed vector for an up spin in
the absence of a magnetic field. This is because at the fields
at which some of the experimental results were obtained the
spin flop field is approached and the spins are rotated

considerably from their equilibrium zero field positions.

In the analysis of the NMR data for Cu29207, the following
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coordinate system was chosen. The z axis is chosen to be along
the measured zero field sublattice magnetization, and the y

axis is chosen to be along the b axis of the crystal. This co-
ordinate system then corresponds té the principle axes of the
Susceétibility tensor. The tensors A" and A are assumed to

be real and symmetric. 1In order to evaluate the Hamiltonian it
is necessary to determine the direction and magnitude of S~ as a
function of the magnitude and direction of the external field,
using the procedure described earlier-in this chapter. }This
requires a knowledge of the two spin flop fields for this biaxial
system and of the ratio of the parallel to perpendicular suscep-.
tibilities., The spin flop fields have been determined by

Fowlis (1970) from antiferromagnetic data, to be 14.2 kOe and

140 kOe. ‘The latter result is not considered to be reliable
since the AFMR data is not very sensitive to the parameter, but -
fortunately, the rotation of 8  is not sensitive to small

changes in the magnitude of this parameter either. The suscep-
tibility has also been determined by Fowlis. From these data

are obtained the anisotropy fields of 120 Oe and 12 kOe
respectively. The anisotropy field 6f 120 Oe is a measure of the
ease with which tRe spins can be rotated in a plane defined
by:the easy direction and the b axis, and the field of 12 kOe
refers to the ease by which—they can be rotated in a plane
perpendicular to the b akié. Thus the b axis is the "inter-
mediate" axis and the second perpendicular direction is

~ the "hard" axis.
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It is further assumed that the magnitude of.§_ remaiﬁs
éunchanged and is equal to |§?|. This is a valid assumption
. provided the ratio of the spin flop field to the exchange field
HSF/Hex is small. Since Hex = 103‘k0e for CuzPéO7, this ap-
proximation is reasonable. ° | '
i Having found the direction of S under the influence
Bf an external figld'H, one defines a new coordinate system,
(x'y'2') such that z' is along the direction of S~
In this new coordinate systeﬁ the solution of the Hamiltonian
involves a straightforward diagonalization of the 2x2 matrix
which arises from I =_%.

As mentioned previously, there are four resonances
observed experimentaily, corresponding to 4 different sites.
The values of the tensors |§|A  and X*A' are tabulated in Table
8. Because the z axis is along the measured easy direction,
only the xz, yz and zz components of A~ are measured with any
precision. Thé parameters tabulated were obtained by a least
squares fit to the Hamiltonian. From these results it
is apparent that to within experimental accuracy the tensor
product §'i+ is zero. The tensor At is easily obtained from
NMR in the éaramagnetic phase as it couples <S> and I in the
éaramagnetic phase. Atkinson (1969) has determined <S>&F by

31P NMR signal at room

measuring the frequency shift of the
temperature (300°K). The thermal average of S' can be calcu
lated, and hence A’ can be determined. Using this value of at

and the experimental uncertainty in ;-i+ one can put an upper
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ia

(X°A+)'xx
(x*A")xy
(x=A+)xz
(x*2")yy
(x-A ) yz

(x‘A+)zz

<S>-A-xx

| <S>+A"xy

a

b

<S>-A"xz
<S>+A"yy
<S>'A_yz

<S>*A"zz

i labels the phosphorous ions. The remaining 4 ions in the chemical unit cell

.004(.004)
.005(.004)
©.005(.003)
~.002(.003)
~.009(.003)

"JO04(.003)'

-41  (24)
1.73 f.ss)
~.03 (.02)
-.53 (.28)
1.05 (.02)
-1.94 (.03)

Table 8

'Interactionftensor components'in units of 10-4.cm

.011(.004)
-.002(.004)
.002(.002)

.006(.003)

-.010(.003)
-.004(.002)

1 (1)
1.85 (.42)
.00 (.02)
.81 (.39)
1.10 (.02)
1.95 (.03)

-1

.011(.003)
.002(.004)
.002(.002)
+.006(.003)
=.010(.004)
-.004(.002)

-3l (14)

-1.85 (.42)

.00 (.02)
-.81 (.39)
-1.10 (.02)
-1.95 (.03)

are dgenerated by the ¢ centering symmetry operation.

The numbers in parenthesis are the standard deviations..

at 4.2°K

.004(.004)

+.005(.004)
.005(.003)

'A'.OOZ(.003)
: '.009(-003)
'i004(.003)

4 (24)

-1.73 (.53)
.03 (.02)
.53 (.28)

=1.05 (.02)

1.94 (.03)

o0
LS
s
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limit on the magnetic susceptibility tensor eléments.

A limit of approximately 10"2 emu/mole for the perpen-
dicular susceptibility is calculated. This is consistent with
the value 8.0x10 > emu/mole obtained by Fowlis (1970) with a
Foner magnetometer at 4.2°K. Our experimental uncertainty is
due to the linewidth of the NMR signal. Assuming that any
temperature dependence is dug to the suséeptibility term in the
Hamiltonian, the lack of any temperature dependence of the reso-
nance curves in Cu2P207 is consistent with the above result.

It should be noted that there may be an additional temperature
dependent term due to the Brillouin function dependence of |[§,|,
but this is small over the temperature range examined. For a
Néel temperature of 26°K the sublattice magnetization normalized
to the sublattice magnetization at 0°K is MS(T)/MS(O) =,985 at

T = 10°K which is the highest temperature at which data was
taken. It should be noted that for sufficiently low temperatures
the magnetization should fall off more sharply according to spin
wave theory which is wvalid in the low temperature region, but at
10°K we are sufficiently high in temperature that the mole-
cular field approximation is valid. Therefore the sublattice
magnetization and hence |§+| varies by at most 1.5% over the
temperature range examined. This effect would be masked by

the uncertainty in the measurements.

The four resonances observed correspond to four inequiva-
lent phosphorus sites. At high temperature (300°K) the
point group of the crystal is 2/m (Robertson and Calvo, 1967).

The phosphorus sites are at general positions, and so the



84

four sites are generated by the 2 fold axis rotation and

the mirror plane. Initially it will be assumed that the point
graup remains 2/m at 4.2°K. The spin configuration has been
determined in an earlier section of this work and is shown in
Fig. 10{(a). There is a possibility of the configuration being
that shown in Fig. 10(b) for reasons discussed in Chapter III.
Assuming that configuration I of Fig. 10(a) is correct, it can
be seen from the figure and from the crystallographic space
group that the Heesch group is 2/m'. Using this information

the internal fields at the phosphorus sites can be analysed

in terms of the crystal symmetry. Figure 21 shows the internal
fields as determined from the NMR data. Sites (1) and (2) are
related by the 2 fold axis, as are sites (3) and (4), using

the above Heesch group as a guide. Sites (1) and (3), as well
as (2) and (4) are related by the m' plane. It follows then, that
all internal fields have the same magnitude and that the ex-
ternal fields (1) and (4) as well as (2) and (3) are colinear.
From this information it is evident that if the external field
is applied perpendicular to the 2 fold axis as in Fig. 16 that
the magnitude of the vector sum of the internal and external
fields should coincide in pairs, and only two resonances should
be seen, related to each other by the 2 fold axis. The fact that
experimentally, four resonances are observed in this plane
indicates that the mirror plane has been lost as an element of
the crystallographic point group. In terms of the space group

for the crystal, this means that the c glide plane is no



Fig. 21

Internal fields in Cu,P,0

27205 at the phosPhorus nuclei.
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longer a symmetry element, so the space group becomes C2.

If it should be true that configuration II in Fig. 10(b)
represents the correct spin configuration, the Heesch group
becomes 2'/m. Again with reference to Eig.21 , it is now
evident_that sites (1) and (3) are related by the‘2' axis as
. are sites (2) and (4). Sites (1) and (4) és well as (2) and (3)
-are related by the mirror plane. Again iﬁ»follows that all
intéfnal fields are equal in magnitude and that fields (1) and
(4) and (2) and (3) are colinear, assuming that the space group
is C2/c. In this case the resonances should coihcide in pairs
as well, if the external field is perpendicular to the 2 fold
axis. However, the two observed resonances are not related
by the 2 fold axis in this case, but by the mirror plane. Thus
the observance of four resonanées indicates the loss of the 2!
axis as a symmetry element. In terms of the crystallographic
symmetry this means that the space group is Cc.

In either case, the degree of deviation from C2/c can
be estimated. With the external field along the easy direction,
where the splitting of the resonances is greatést, the observed
splitting is of the order of 100 Oe. The internal field com-
ponent in this direction is 3.3 kOe so the fractional internal
field difference for the 2 closely related sites is about 3%.

" Using the approximate io dependence for the transferred
hyperflne field gives a dlfference of 0.3% in the bond lengths.
That is the atomic coordinates of the symmetry related sites in

the C2/c approximation are shifted relative to one another by
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about .005 A,

Next the origins of the internal field are discussed.
As in Mn2P207 these consist of two major parts. The dipole
£field may be calculated using the procedure outlined earlier.
As was the case for Mn2P207, this was done assuming that the
magnetic moments are localized on the magnetic ions, and
then again, assuming that some of the'séin polarization is
on. those oxygens whiéh are near neighbours to the magnetic iomns.
The dipole fields for both of these cases, assuming spin con- |
figuration I are given in Table 9. For the spih configuration
II the dipole fields are given in Table 10. The spin polari-
zation on the oxygens was assumed to.be 2% of one unpaired
spin, a result estimated frém.NMR in the pafamagnetic phase
(Atkinson 1969). From the tabies it is evident that the mea-
sured components of the internal field perpendicular to the easy
direction are not accounted for by the dipole fields, although
the latter spin configuration gives a better result than the
former. The easy direction of the magnetization was determined
by susceptibility measurements (Fowlis 1970) to lie in the ac*
plane 15° away from the c* towards the a axis.

Initially, the transferred hyperfine interaction is
assumed to be isotropic. If this is the case, the transferred
hypeffipe contribution to the internal field should lie along

the easy direction of the magnetization. The fact that the only



Table 9
' Dipole fields in Os for phosphorous sites in Cu29207 for spin configuration

.most favoured from neutron diffraction results

with spins localized on 48 48 -48 =-48

copper ions

Hy
with 2% spin polarization

on oxygen sites

contribution from copper sites - 46 46 =46 -46
contribution'from oxygen sites 125 i25 -125 - =125

total dipole field Can 171 171 . 171

measured field component

1850 (40) 1900 (40) ~1900(40) -1850 (40)
along y axis

Only y components of the dipole fields are tabulated. There is a small perpen-"

dicular component to the dipole field arlsing because the copper ions are
located slightly off of a two-fold axis in the crystal.

i labels the phosphorous sites.

(-]
[+ ]




Table 10

Dipole fields in Oe for phosphorus sites in Cu2P207p asguming

alternate spin configuration

along y axis

bi labels the phosphorus sites

aOnly y components of the dipole fields are tabulated

1P 1 2 3 4
aHy
with spins localized on 1060 1060 ~1060 -1060
copper ions
H
Yy
with 2% spin polarization
on oxygen sites
contribution from copper sites 1000 1000 . . =1000 =1000
'contributioﬁ'from oxygen sites - 125 .;125 | -125 -125
total 1125 1125 - =1125 ~1125
measured field component ) .
- 1850(40) 1900(40) ~1900(40) -1850(40)

68
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éther known contribution to the internal field, the dipole

field, does not account for the component of internal field per-
pendicuiar fo the easy direction suggests that there may be

an anisotropic contribution to the fransferred'hyperfine inﬁerac-
tion. ' The discrepancy migh£ also be explained in the following
manner. If the point group is indeed Cc or C2, there is no
center of inversion symmetry between magnetic ions and the
existence of aDzialoshinsky term in the exchange Hamiltonian is not
ruled out. The spinsrmay be canted slightly in this case. This
did not manifest itself in the susceptibility measurementé
(Fowlis, 1970), but the experimental error in the measurements

is such that a small canting angle would not have been apparenﬁ.

Fowlis has shown that Nl2P207 is a canted antiferromagnet. The

resulting'component of spins perpendicular to the easy direction
would result in a net ferromagnetic moment. The contributions to
the transferred hyperfine interactions due to this component of
‘the spins on various sites would not tend to cancel. The spin
components along'the easy direction do tend to cancel, however.
Thus a relatively small perpendicular component of the spins in
this direction could produce a large transferred hyperfine field
at the phosphorus sites.

It is noted that the transferred hyperfine fields in
Cu2P207 are much larger thaﬁ those found in Mn2P207, even though
they might be expected to be much smaller, due to the spin of

1/2 on the copper ions compared to s = 5/2 for manganese., To

understand this effect it is appropriate to reconsider the origin

-
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P.O In this case

2°277°
the space group was C2/m and the mirror plane was a magnetic

of the transferred hyperfine fields in Mn

m plane, which should result in the transferred hyperfine field
at thevphosphorus sites, which lie on the mirror plane, to be
gZero, However, it was postulated that a crystallographic phase
transition caused the disappearance of the mirror plane, thus
allowing the transferred hyperfinebfield to be non zero.
Howeéer, the deviation from symmetry was small, resulting in
almost perfect cancellation of the symmetry related fields. 1In
Cu,P,0,, however, the deviation from C2/m symmetry is larger

so that the cancellation effect is not as pronounced, resul-
ting in a larger net ﬁransferred hyperfine field. An approxi-
mate calculation can be made of the deviation from C2/m symmetry
: by'using equation (71), as was done for Mn2P207. As in the
previous case, the transferred hyperfine field in the para-
magnetic phase can be compared with the measured field for the
.antiferromagnetic phase, to roughly determine the magnitude

of the deviations from C2/m symmetry. From NMR in the paramagnetic
phase (Atkinson 1969) an extrapoleted field for a saturated
paramagnet of 12.6 kOe is obtained. = Assuming that the mea-
sured transferred_hyperfine field consists only of the component
of the measured internel field along the easy direction for the
magnetization we may take it to be 3.3 kOe. These two results

and equation (71) then predict a difference in the transferred

path lengths of .08 i for pairs which are symmetry related in

=
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the C2/m phase, or roughly eight times the distortion predicted

for Mn,P,0,. This result can be compared with the variations.

‘in the Cu-0O bond lengths determined by Robertson and Calvo (1967Y
by X-ray diffraction. The& obtained values of 1.907(6)2 ané
1.935(6)2 for two bonds which are symmetry related in the B

or C2/m phase giving a difference of .03A and 1.990(6)A and
1.968(6)£ for the reméining pair giving a difference of .022.
These differenceé are smaller, partly because variations in the
'P-0 bond lengths are being ignored. Also any dependence of

the transferred hyperfine mechanism on the angle between fhe P-0
bond aﬁd the Cu-O0 bond has been ignored. These differences are
small however and should not account for the discrepancy. It is
concluded then, that the transferred hyperfine interaction
varies more rapidly with incfeasing separation of the ions

than was previously assumed. In fact a value of 20 for the fac-
tor n in equation (72) would be more'appropfiate, that is the

20 where r

functional dependence of the interaction goes like r
is the separation of the ions measured along the connecting bonds.
This result may be coﬁpared with ﬁhe temperature dependence
of the fraction of unpaired electron on the 31P ion in the
paramagnetic phase. Because the excited states for copper in
Cu2P207 are of the order of 2000 cm—l above the ground state
doublet, they should not be appreciably occupied at T n 400°K
or less. Thus any change in the transferred hyperfine field

may be attributed to changes in the transferred hyperfine path

due to thermal expansion. Atkinson (1969) gives fractions of
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unpaired electrons at 400°K of .23%, at 298°K of .25% and at
77°K of .27% in Cu2P207. Therlattice parameters aré not
accurately known as a function of temperature, but an estimated
change of .4% between 400°K and 298°K can be obtained using

the r20

radial dependence of the unpaired spin. Tﬁis'is

a change of approximately .03 i for the lattice parameters over
this.temperature difference. This is not inconsistent with

the work of Robertson and Calvo-(1967), who obtain values for

a of 6.827(5)A at 370°K and 6.876(5)A at 298°K giving a dif-
ference of .04(1)&. It should be noted that Cu,P,0. is in the
o phase at 298°K and in the B phase at 400°K, however, this
should not affect the lattice conétants appreciably, except

for the ¢ axis, which is doubled in the o phase.



CHAPTER V

A DISCUSSION OF THE ORIGIN OF THE ANISOTROPY ENERGIES
FOR Cusz 7

The reader is remaneg that thé anisotropy energy de-
fines the ease with which the spins can be rotated from the
iong direction into each of two perpendicular directions. These
two energy differences are denoted by EAl and EAZ. The
\anisotropy energy may arise from a number of possible sources
in a non cubic magnetic material. These include the dipole-
dipole interaction, single.ion anisotropy enérgies arising
from interaction with the crystal field, and anisotropy ari-
sing from the exchange Hamiltonian. |

The first of these to be discussed is the dipole

anisotropy. The dipole energy can be written in the following

form
= .l— 1 t
Ep v ) 2' ua(k)QaB(kk )UB(k ) (73)
asBoa
kgk'
where ED is the dipole energy per unit volume and the QaB(kk')
are the coefficients defined in chapter four. ua(k) and

th

uB(k)‘are the o and B components of the k and k'th magnetic

moments in the unit cell. The magnetic moment is given by

o (k) = 8 T g g (k)5g (k) (74)

94
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where gas(k) are the components of the g tensor for the site k
and SB(k) is the B component of the spin on the site k. Experi-
mentally, the g tensor is identical for all sites so é(k) = 3.

The g tensor is given by

g(x")cosza+g(z')sin26. ] g(z')-g(x'))sinecos®
; = 0 g(Y') 0 (73)
g(z')-g(x"')sin&cos6 0 g(z')cosze+g(x')sin20

where g{(x'), gly'), and g(2') are the principal values corres-
ponding to a coofdinate system where x' is 30" away from the a
axis away from a* and y' is along the b axis. g(x) = 2.480,

g {y')= 2.090 and g(z') = 2.095. The angle 6 corresponds to a
rotation about y'. A rotation of 6 = -105° puts the g tensor
in the coordinate system xyz where x corresponds to the easy
direction for the magnetization. In this coordinate system the

g tensor is given by

2.12 0 11
0 2.09 0 (76)

an
B

.11 0 2.45

Combining equations (73) and (74) gives the dipole energy
=1

B =y 2

a kk'

k<k'

S(k)+g+Qlkk') *g-S(k') (77)
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The tensor product gtﬁ(kk')-g is defined as ﬁ(kk'). Use has
been made of the fact that g+S = Seg because g is symmetric.
The spin S(k) = (il)ks. Incorporating the appropriate signs into

the tensor C(xk'), the diéole energy is given by

_Sx Cxx XXy Cxz Sk
E.= - |8 « lc._c.cC . 8
D Y yx yY yz Sy (78)
Sz sz Czy sz Sz
where
T = © {+L)k C(xk')(+1)k"' . {79)
~ kk! :
-~ k<k!

The sign (il%{is determined from the spin configuration. The
direction of the spins for minimum dipole energy is then found

by solving the following eigenvalue problem.

Cax™E cxy Cxz |[5x

C C __+E =
yx YY cyz SY 0 (80)
zZX czy CzztE Sz_

The three eigenvalues, Egs El and E, are the dipole energies
with the spins in the three orthogonél directions, with
E,>E,>E,. The spin direction is determined by the spin eigen-
vector association with EO’ From this wvector, the easy directicn

for the magnetization is easily determined from the relation

U= 3-5; The dipole anisotropy energies are given by
ED = E, - E, and ED = E, - E,. The calculated easy directions
Al 2 0 A, 1 0
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for the spin configurations shown in Figures 10(a) and lo(b)
are shown in Fig.22 . In neither case does the calculated . -
easy direction correspond to the experimental direction. The

dipole anisotropy energies EK and Eg are given by Eg = ,172 -
' 1 -T2 , i 8
cm_l and ER = ,163 cm_1 for the spin configuration in Fig. 10(a).
2

In this case.EK
_ ' 1
the ac plane and Eg

2
defined by the predicted spin direction and the b axis. For
the spin configuration in Fig. 10(b), ER = ,207 cm'1 and

1

Eg = .224 cm-l; For both these configurations the ratio of

2 :

the anisotropy energies is approximately equal to unity, a

refers to the anisotropy energy measured in

refers to the anisotropy energy in the plane

result in disagreement with a ratio of about 100 to 1. measured

- by antiferromagnetic resonance (Fowlis 1970). The lack of agree-
ment with experiment suggests that there is another contribution
to the anisotropy energy.

At this point it is appropriate to considef the electronic
structure of the Cu'' ion. The Cu’’ ion has nine 3d electrons
and the freé ion ground state is 205/2; In the absence of a
spin orbit coupling term in the single ion Hamiltonian this
state is degener;fe in energy with the 2D3/2 state. Upon the
application of spin orbit coupling these levels split, so there
are six degenerate levels lowest in energy corresponding to

the 2D5/2 state and four higher in energy corresponding to the

2D3/2 state. In the crystal field resulting from neighbouring

ions in Cu these states are mixed to form five Kramers

282077



Fig. 22
Calculated easy directions for the anisotropy energy,
assuming different mechanisms. The direction la-
belled 2 is the easy direction for the dipole energy,
'assuming the spin configuration in Fig. 10(b). The
direction labelled 3 is the easy direction for the
dipole energy, éSSuming the configuration most favoured
by neutron diffraction measurements as in Fig. 10{a).
The direction labelled 1 is the easy direction predic-
ted on the basis of the.SPin anisotropy. Finally,
the direction labelled 4 is the experimental easy

direction.
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doublets. The local environment of the cu'’ ions is almost
tetragonal, as shown by the g values of 2,48, 2;090 and 2.095
(Fowlis,1970) respectively, Howeve:, there is a small orthor-
hombic distortion. Using the measured spin orbit coupling
constant for the free ion and the measured g values the angular
part of the wavefunctions for Cu++ in Cuszo7 can'be obtained.

Sinée the Kramers doublets are well separated the system
can be discussed in terms of thé lowest doublet only. A
fictitious spin of 1/2 can be applied.to this system as a re-
sult. This rules out the existence of single ion crystal field
terms in the Hamiltonian which contribute to the anisotropy
energy, since terms of this type are zero for S = 1/2.

Another source of anisotropy lies in the exchange

Hamiltonian

H= 23 .55, . (81)

This anisotropy may be a result of anisotropy in the exchange
tensor Eij or it may be due to anisotropy in the expectation
value for §i and S,. The latter case will be discussed first.,
It is first necessary to calculate the wavefunctions of the
cut® ions. The calculation is done using the basis states

|2 s g MJ>.For cutt lA 2 and S =
values for J, namely J = % and J =

» leaving two possible

Nj L ) =

. The following Hamiltonian
is used which describes the interaction of the ion with the

crystal field.
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He= 1 a™ ™+ L8, (82)
- &,m

.The suﬁ‘oﬁef 2 and m may betzestricted by noting that 2 < 5
since matrix elements of the form <2SJMJ|wkqlsz’MJ.> must
satisfy the triangle inequality k < J + J' < 5._’The odd valueé
are ruled out because they result in non conservation ofkpaxity;
so the only remaining possibilities are £ =4, 2 = 2 and £ = 0.
The éllowablevvalues of m may be determined by the symmetry
of the site. For cubic symmetry the allowable non zero coef-

and A44. The existence of the three fold

0

ficients are A4©

symmetry axis in a cubic system demands that Yy and ¢44 are
realted by the following equation: A44 = //§; A4°. In a
tetragonal field this restriction is lifted and Azo is non zero
’.as wellol~In an orthorhombic field, the coefficiehts A22 and

A42 are non zero, but for our case these are small since

the local symmetry is almost tetragonal. The spin orbit
coupling parametér is denoted by A. With the above restrictions

in mind, the Hamiltonian becomes.
_ A 0.0 0, 0 4 4 . 2, 2 2, 2 ,=.= : :
H = A, U, ALY, THR, Y, TR TP TR, .xpé +AL°S . (83)

The basic states used in this calculation are |JM >. There

are ten of these,wbut they are pairod into Kramers conjugate
states which have degenetate energies. As a result the ten by
ten matrix obtained by taking matrix elements of the Hamiltonian
can be reduced to a five by five matrix. The matrix elements

cén be calculated by the following method. The Wigne; Eckart



101 o

theorem can be used to express the matrix elements in terms.

of a reduced matrix element. That is, one has

J-M

: '
5 J k J

. . ‘
«JLSJM,J|q,k‘?l|xs.J"M.J > = (1) M. QM

]<25J|1¢k‘IESJ‘>.-(84)

The symbol in round brackets is the sﬁandard 3j>syﬁbol as defined
in Rotenberg, The 3j and 6j symbols (1959). <zsa||¢k||zsa'> is
‘the reduced matrix element. This reduced matrix element can

be written in the following form.

J+k+z+sV(2J+1)(2J'+I){§, e i}(zs|[|wk1|]zs) (8!

<283 |y, | [253'> = (-1)

where the symbol in curly brackets is the six j symbol defined
in Rotehberé and (zslllwkllizs) is a doubly reduced matrix
element which is independent_of J and J'. Beéause cu’™ nas only
one hole per ion this dbubly reduced matrix element has a simple

form given by
- . - ' !
(es| |y l1lers) = 1) EEDRTED {i g 2 } (86)

where again the symbol in round brackets is a 3j symbol.
Combining these results gives the following expression for

the matrix elements of the Hamiltonian.

-

2J+K+S-MJ
(-1) (22+1) ¥ (2J3+1) (20" +1)

3 kJ° ](2 K z]{z J s}
X [_ : . . (87)
M.J q MJ 00 0)J{J'" 2 k
The matrix of the Hamiltonian is shown in Table 1ll1. The spin

1]
<£SJMJ|wkq|ZSJ'MJ >



Table 11

Matrix Elements of the Crystal Field Hamiltonian fox Cu++

|5/2 5/2>

|5/2-3/2> |3/2-3/2> |5/2 1/2> |3/2 1/25
5/2 5/2> =37 A3g7 Ag+* -3 ‘/;%BAi - 57/ %2 -35/15 aj-7 Ay -35/0 A% 21“~ a3
(5/2-3/2> - % /1 af 35 AR -3% Ap-pr Ay -32/3 AStpyvE A 33/Z A3-51/30 A
|3/2-3/2> - 2 Jf%— A -2, ad)-52 al - 3 a%-3 2 -52/3 A§+2i/§ A2 - f% aZ
5/2 1/2> ~52 vI5 a2-1 a2 E3allisal o2 A§+.2.%/5 a2 820220 4 " 5 a0 - %{E Al
]3/2 1/2> =§% vI0 Agfi%/ﬁ Ai 3% Y2 A§=§%/§U Az - Z% Ag g% 52-5%/3 Ag % Ag % A

20T
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orbit terms are calculated by noting that
L+S = 3{T(I3+1)-2(2+1)-5(S+1) }. (88)

Since J, 2, and S are all goéd quantum numbers of the basis
states, this term contributes only to diagonal elements of the

'matxix, The wavefunctions are given by the following expressions.
p = a1|5/2,5/z>+a2|5/2,_3/z>+a3|3/2,-3/2>+a4l5/2,1/2>+a5|3/z,1/2> (89)

L
V= a1|5/2,-5/2>+a2|5/2,3/2>-a3|3/2,3/2>+a4|5/2,-1/2>—a5|3/2,-1/2>(90)

J

. : -M
Use has been made of the fact that IJ,MJ> = (-1) J |g-

MU> to
determine the Kramers conjugate state ¥*. The coefficients a;
are determined bf tﬁe diagonalization of the abovelmatrix} It is
necessary to determine the parameters A? to get a numerical
solution for the wavefunctions. This is done by calculating fhe
principle values of the g tenso¥s in tefms of the.lowest energy
wavefunctions with arbitrary A?'s. A best fit is then obtained
for the measured g values, and the corresponding valﬁes for the
paraméters A? are taken to be the correct ones.

The g values may be calculatéd from the following formula.

7

g=1=2+ 25, . ' (91)

The orbital and spin angular momentum vectors may be expressed

in terms of spherical tensor components of the first rank as

follpﬁs.
[ |
Lz = i§ | . (?2)
=" - 21
-2_'_ = —/%- (2 +11‘) = 21 (93)
- iy -1 :
L_ = -3 (2 liy) = % i - (24)
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Similaf expressions may be defined for the spin angular momentum.
The.gi are.components of a standard spherical tensor of first
order. . The matrix eléments of these tensor operators for the
orbital angular momentum oberatorsiére given by:

S+2J+k+24-M

<L8IM, | g Il LsIM > = (-1) S ¢ RSO R CNAESY)
fr I8} 3 x I
X 4 el e e (95)
ot e k)|, g omg ‘

where the symbols are as previously defined. The doubly reduced

matrix element <21|{£k|||2> is given by

‘ Sl e = pesnee¥? - v . e

The matrix elements of the tensor operator for the spin angular

momentum are given. by
S+2J+k+2-M

<LsaM;|s, 9| Lsam,> = (-1) I /2y (25 7+ D)
S J2 J kJ
<[5 3] [, 5] ssdiis. on

The doubly reduced matrix element <S|||s,||[s> is given by

C<s| s l1]s> = [sts+1) (2541112 = /3 (98)

The above results-are derived in Dieke (1268). The doubly

reduced matrix elements for a single particle state are given by

Judd (1963).
Using these resuits, matrix elements of the principle

values of the g tensor, Iyt g.. and g, can be calculated. This

y
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was done and the following expressions for the matrix elements

iof g were obtained.

L 9 2 6
<‘P!gzlw> = 331 - '5'Aa2 -5 a3 + 5 a4 .
2 4 2 o
+zag” +gaa; +¢v6a (99)
L s lurs = - <vlg v (100)
<ylg [v*> =0 (101)
‘ ' _ 6/5 2 12
"W’*lgxl‘p} = alaz + 5 /5 ala + 5 2 a2a4
2 1 4
5 V3 ajag - § Y2 aza, - g Y3 ajag
9 2 1 ! 4 2 )
tga” +5 /68,8, -5 ag (102)
<¥lg lv> = <p*[g fy*> =0 (103)
<y*lg lv> = - S /S aa, -2 /5aa /Z aya
Iy 5 a2 7 5 T‘ '
2 1 4
~g3aa; -572a33 -3 3 aja.
9 2 1 4 _ 2
~53° -5 % aatzag (104)
<wlgylw> = <y*|g [y*> =0 (195)

These matrix elements can then be used to determine the split-

ting of the ground state doublet in a magnetic field by degenerate

perturbation theory.

perimental g values were determined to be g, =

‘This was done and the corresponding ex-

2<¢*|9x|¢>o
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gy, = 2<w*|gy]w> and éz = 2§w]gz!w?o These results were used
to solve for the coefficients aj. The resulting wavefunctions
and their corresponding energies are given in‘Table 12. From |
tﬁese wave‘functions, the matrix eiements of the spin operator
can be obtained. These are giveﬁ by |

/5 . 2 2
= aja, + ¢ /5 aja; + 5 /2 aja,

<pls, [y*>

_ 2 1 1
-3 /3 a,az - ¢ Y2 aza, + & Y3 ajag

3 2 i 1 2
+ Iﬁ‘é4 + 5 {3 agag + & ag (106)
<¢lsxl¢> =_<¢f|sx|¢*> =0 (107)

.l L2 2 2
<wlsylw*> i 1(§ /§ aa, + ¢ /5 aja, - & V2 aja, + =z /3 aja

1 1 3 2 1
+F Y2 aza, - & /3 azag + 75 3, * § 3 a,ag
1 2
+ 3 a5.) (108)
<yls > = <yP* *> = 0 109
] ylw v*|s v (109)
1 2 3 2 3 2 1 2 1 2 4
wWlslv> =3 a° - pa®+ g’ tpa’ - mwast ts
+2 /8 a,a - | {110)
5 435 =
<prs lu*> = —<yls [y> (111)

For.the ground state doublet the following numerical values were
obtained <w|szlw> = .49860 , <w{sz|¢*> = .49551, and <w|sy|¢*> =
{.49558)i. The assumption is made that the total wave function,

¥ for the system is equal to the product of the wavefunctions
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" TABLE 12

Values of the Coefficients a; for the cu'T Kramers Doublets in
in Cuszo7 and Their Corresponding Energies

. energy a, “a, 63 a, ag
6355 cm™ ! .00039 -.00063 -.00031 .56980 -.B82178
5693 cm .19985  .71523 -.66971  .00006 ~—.00027
3760 em T .63218 -.61632 -.46957 =-.00056  .00069
<6622 cm .00031  .00014  .00040 -.82178 -.56980
-1

-9187 cm .74861 .32954 .57532 -.00063 .00070
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associated with the individual magnetic ions. This ié‘a valid‘
assumption provided that the exchange interaction-doeslnot per-
turb the wavefunctions significantly. This is the case for the
system of interest since the exchange energy is much less than
the energy~separation of the Kramérs doublets. It is further
assumed that the single ion wavefunction w; refers to the ith
site on one sublattice and that wg* refers to the jth site on
the opposing sublattice. In the absence of the exchange in-
teraction, the systeﬁ consists of 2N degenerate energy levels,
corresponding to the N magnetic ions in the samplé. The Heisen-
berg Hamiltonian is then applied as a perturbation to the system.
The degenerate staﬁes are now separated in energy and the ground
state becomes a doublet consisting of a perfectly aligned
antiferromagnet, and its time reversed state, that is where the
direction of the spins on opposing sublattices are reversed.
These two states are physically identical and hence have the

same energy. The remaining states correspond to spin wave
excitations. For the purposes of this discussion the system will
be assumed to be in its ground state. The ground state doublet

is denoted by |¥> and |¥*> where

*

.
e wj e wN>

wj Uy -

In thé above approximation the problem can be solved by con-

|¥> = [¥; «o0 ¥

¥ 1L ey a2

H-* P

sidering the effect of the exchange interaction on the single
ion energy levels. It is necessary to consider the effect of

. * -
the operator Sai on wi and y;. The subscript o refers to the
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appropriate component of Si' By degenerate perturbation theory

the solution to this problem is given by

- | , .
Wylsgylvs> = <85> <ylsyyles> vy

ol I . . x| =0 . (113)
VilSei1¥52 <Wjlsgslvi>=<syi>| ¥ |

The energy of the entire system is then given, relative to the
unperturbed Kramers doublet, by »
E= I J.. <8_:><8 .> ' (114)
- ai
i<y ¢J .

and for the ground state doublet denoted by ¥ and ¥* is given

by

E=- L J.. <sa>2 - {(115)

| i<y
The subscript i has been dropped from S, since all spins in an
antiferromégnet have the same magnitude. It is noted that E is
directionally dependent since <Sa> depeﬁds'on the spin direction
and is given by <Sa> = ,4986 if the spins are along the direction
of the maximum principle value of z and <§,> = .495 perpendicular
to this direction. This direction is shown in Fig. 22 .
| It is evident that this interaction gives rise to an

anisotropy energy-that is given by

_ 2
E = X Ji'[<sa> <S

i<j

2
B> 1. (116)

The equilibrium spin direction, as predicted by this mechanism,

occurs in the direction for minimum energy which is along the
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direction of the maximum g value. This is 75° away from the
meaéured easy direction for the magnetization, so it may be
concluded that this mechanism does not account for the entire
anisotropy energy. It should be noted, however, that this |
mechanism does predict a large anisotropy energy in the plane
perpendicular to the b axis of the crystal, and a small aniso-
tropy in the plane defined by the.easy direction and the b axis,
which is in accordance with experimental results. (Fowlis 1970).
The anisotropy in the plane perpendicular to the b axis can be
estimated from the measured exchange field Hex from Which-the
exchange constant J can be calculated. The exchange field

is defined as the exchange energy divided by the sublattice

magnetization and is given by
2523

H =
ex  gu

. (117)

J is the average of the nearest neighbour exchange parameters,

and z is the number of nearest neighbours. Taking z = 4 and Hoy =

900 kOe an average value for J of 34 cm_1 is obtained. The
value for g is taken to be 2.12 which is the correct value along
the easy direction. Using this value for J, an anisotropy
energy of Exn = 1.0 cm'-1 is obtained. It is noted that this is
a considerably larger anisotropy than that due to the dipolar
interaction. _ o

It has been assumed throughout the preceding discussion
that the exchange tensor Jij is isotropic. The lack of agreement

between the experiméntal spin direction, and that predicted on

the basis of dipolar and spin anisotropies would indicate that

-
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‘this may not be a valid assumption. Oﬁe dgécription of aniso-
tropic exchange is contained in the pseudo aipolar interaction
ﬁxanamori, 1963). The approximaté magnitude of the anisotropic
term as compared to the isotropic term is given by (A/AE)2
where A is the spin orbit coupling éaraméter and AE is the
energy separation of the two lowest Kramers doublets. This

Aay also be expressed as being of the order of (g--2)2 which

for the case of interest gives a result of about 10%. A de-
tailed calculation of the pseudo dipolar term would be exceedingly
difficult because of the complicated naﬁure of the compound
studied but it is noted that the interaction is not ruled out

by symmetry.

- As a final note, there are additional possible contri-
butions to the anisotropy, one of them being the magnetostrictive
effects. This arises from spin orbit couﬁling or from the
dependence of the exchange energy on the separation of the

- magnetic ions. Kanamori also gives a brief description of this

effect.



CHAPTER VI

CONCLUSIONS

The spin configurations of Mn2P207 and Cu2P207 have
been determined by single crystal neutron diffraction. In
anPZO7 the magnetic unit cell was determined to be commen-
sﬁrate with the chemical unit cell. However the C~centering
symmetry is lost in the magnetic unit cell. These results
confirmed the work of Collins et al (1970). For Cu,P,0, the
magnetic unit cell was assumed to be commensurate with the
chemical unit cell. In this compound the magnetic unit cell
preserves both the C-centering symmetry and the c glide plane
which are symmetry elements of the chemical unit cell. There
are two spin configurations which satisf§ these criteria, and
these two configurations may be distinguished by the presence
or absence of the (021) Bragg peak. This peak was found to be
present, but its existence can be also explained in terms of
a crystallographic phase transition at the Néel temperature.

If the peak is assumed to be magnetic in character then the spin
configuration consists of antiferromagnetic sheets in the ab
plane which are coupled antiferromagnetically to neighbouring
sheets. The alternative configuration is identical except that

the sheets are ferromagnetically coupled.

The discrepancy between the neutron diffraction measure-

112.
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ments on anon7

has been explained by postulating a low teniperature crystallo-

and the NMR results of Choh and Stager (1970)

graphic phase transition. The NMR data in the parémagnetic

and antiferromagnetic phages have been used to estimate the
magnitude of the deviation from high temperature symmetry in

the low temperature phase. It was found, using a l/r10 dependence
for the transferred hyperfine interaction, where r is the trans-
ferred hyperfine path length, that bond length changes of the
ofder of .01 i were sufficient to explain the results.

For Cuszo7 the NMR data were used in a similar’manner
to calculate transferred hyperfine path length differences. In
this compound, however, the distortion from the higher symmetry
phase is known from X-ray data (Robertson and Calvo, 1967) and
the above results can be compared with this known distortiom.

It was found that a functional dependence of the transferred
hyperfine interaction upon separation of the ions of l/r20
_gave better agreement with the X-ray data. VThis result is also
consistent with the dependence of the transferred hyperfine
interaction upon bond length changes due to thermal expansion-
~The anisotropy energy in'CuzPZO7 has been discussed.
Both dipole anisotropy and spin anisotropy contributions to the
anisotropy energy have been considéred. "Although the spin
anisotropy does give approximately the correct anisotropy ratio
calculated from antiferromagnetic resonance data (Fowlis, 1970),

the correct equilibrium spin direction is not predicted by this
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contribution to the anisotropy energy. The dipole anisotropy
~glves a close approximation to the correcﬁ equilibrium spin
direction, but does not give the correct anisotropy ratio. It
is concluded that the exchange tensor may not be isotropic.
The experimental results may be satisfactorily explained in

terms of an anisotropic exchange tensor.



BIBLIOGRAPHY 115

Alperin, H.A. 1960. J. Appl. Phys. 31, 354S.

Atkinson, R.J. 1969. Ph.D. Thesis, McMaster Univ. unpublished.

Atkinson, R.J. and Stager, C.V. 1969. Can. J. Phys. 47, 1557.

Atkinson, R.J., Fowlis, D.C. and Stager, C.V. 1970. Can. J.
Phys. 48, 543.

Bacon. G.E: 1962. Neutron diffraction, 2nd ed. (Oxford University
Press, Oxford).

Baéon, G.E. and Thewlis, J. 1949. Proc. Roy. Soc. A, 196, 50.

Ballhausen, C.J. 1962. Introduction to Ligand Field Theory
(McGraw Hill, New York). -

Barnes, R.G. and Smith, W.V. 1954. Phys. Rev. 93, 95.

Benedek, G.B. and Kushida, T..1960. Phys. Rev. 118, 46.

Born, M. and Huang, K. 1954. Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford).

Calvo, C., Leung, J.S. and Datars, W.R. 1967. J. Chem. Phys. 41,
796.

Chambers, J.G., Datars, W.R. and Calvo, C. 1964. J. Chem. Phys.
41, 806.

Choh S.-H. and Stager, C.V. 1970. Can. J. Phys. 48, 521.

Cbllins, M.F., Gill, G.S., and Stager, C.V. 1971. Can. J. Phys.
49, 973. _

Crawford, M.F. and Schawlow, A.R. 1949, Phys. Rev. 76, 1310.

Dieke, G.H. 1968. Spectra and Energy Levels of Rare Earth

Ions in Crystals. (Interscience, New York).



116

Donnay, G., Corliss, L.M., Donnay, J.D.H., Elliot, N. and
Hastings, J.M. 1958. Phys. Rev. 112, 1917.

Dzialoshinski, I. 1958. Phys. and Chem. Solids 4, 2411

Fowlis, D.C. 1970. Ph.D. Thesis, McMaster Univ. unpublished.

Fowlis, D.C. and Stager, C.V. 1969. Can. J. Phys. 47, 371.

Halpern, O. and Johnson, M.H. 1939. Phys. Rev. 55, 898.

Judd, B.R. 1963. Operator Techniques in Atomic Spectroscopy
(McGraw Hill, New York).

Kanamori,.J. 1963. Magnetism, Vol. 1, edited by G. T. Rado and
H. Suhl (Academic Press, New York) Chap.-4.

Lines, M.E. 1967. Phys. Rev. 164, 736.

Long, F. 1972, Private Communication.

' Lukaszewics, K. and Smajkiewicz, R. 196l. Rocz. Chem. 35, 741l.

Mays, J.M, 1963, éhys. Rev. lil' 38.

Moriya, T. 1963. Magnetism, Vol. 1, edited by G. L. Rado

and H. Suhl (Academic Press, New York), Chap.3.
Nagamiya, T., Yosida, K. and Kubo, R. 1955. Advances in Phys. 4, 1.

Opechowski, W. and Guccione, R. (1965). Magnetism, Vol. IIA.
Edited by G. L. Rado and H. Suhl (Academic Press, New York).

Owen, J. and STevens, K.W.H. 1953. Nature 171, €36.

Owen, J. and Thornley, J.H.M. 1966. Rep. Prog. Phys. 29, 675.

Riedel, E.P. and Spence, R.D. 1960. Physica, 26, 1174.

Robertson, B.E. and Calvo, C. 1967. Acta Cryst. 22, 665.

Robertson, B.E. and Calvo, C. 1970. Jour. Solid State Chem. 1},

120.



117

Rotenberg, C. 1959. The 3j and 6j symbols. (Technology Press,
M.I.T., Cambridge, Mass.)

Schull, C.G., Strauser, W.A. and Wollan, E.O. 1951. Phys. Rev.
83, 333.

Shulman, R.G. and Jaccarino, V. 1956. Phys. Rev. 103, 1126.

Shulman, R. G. and Jaccarino, V. 1957. Phys. Rev. 108, 1219,

Spence, R.D. and van Dalen, P.A. 1968. Acta Cryst. A24, 494.

Tinkham, M. 1956. Proc. Roy. ‘Soc. A236, 535.

Tondon, V.K. 1971. M.Sc. Thesis, McMaster Univ. unpublished.





