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Abstract

Another approach is adopted for deriving the moments
equations in spherical geometry using a spherical harmonics
expansion of the neutrqn transport equation over a variable
range of the direction cosine. Because of complications and
uncertainties in establishing boundary conditions for the
equations, only the zero'th order equations are solved, in
an idealized situation, in order that a feel for equations
and boundary conditions may be obtained. |

The equations are compared to eqéations given in a
paper 'Directionally Discontinuous Harmonic Solutions of the
Neutron Transport Equation in Spherical Geometry', by A. A.
Harms and E. A. Attia. Analytical solutions for the zero'th
order equations are given for equations developed there and
to the equations developed in this paper. Numerical values
are presented to give an idea of what accuracies might be
expected. It is hoped that similar techniques can be used to
solve the higher order equations analytically, and that appro-

priate boundary conditions can be found.
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Introduction

It is of interest to study the behaviour of neutrons
in a specified volume within a nuclear reactor. To do so, an
equation must be set down describing a neutron's interaction
with its environment.

Let w(f,v(f,t)g,t) be the number of neuﬁronslat position
x, time t, travelling at speed V(E,t) that pass a unit area nor-
mal to Q. Neutrons at position xr, moving at'speed V(E,t) will
travel vAt units in a time At in the direction 9. The net
change in y per unit distance of travel over this time interval
is
w(5+v(5,t)At@,v(g,t)g,t+At) - w(g,v(f,t)g,t)

V(E,t)At

W,V (L, 6)2,t)
={ W (x,v(, £)Q, £)+v (X, £) ALQ- VY (r, v (L, t) Q, t) +At—ag—

ot
+0(8t%)] - Y(r,v(L,t)Q,t) }/v(c,t) st
1 vlr,v(r,t)Q,t |
T V(T B ot + QY (r,v(r,t)Q,t) + O(At) . (1)

The instantaneous rate of change on ¢ at position r, time t

is then

1 oY (r,v(xr,t)Q,t)
v(g,t) ot

+ Q’Vq)(flv(rlt)ﬂlt) . (2)



One thing that can happen in the length of time At and distance
vAt is that neutrons can interact with other nuclei (although
not with other neutrons). This interaction can involve reac-
tions such as (n,f), (n,y), (n,n') etc. At time t, if I(x)

is the probability of a neutron interaction per unit distance,
then removal of neutrons by interaction with other elements

resﬁlts in a change in ¥ that is

-Z(E)w(flv(flt)gjlt); . (3)

the minus sign signifies removal. The other possible contribution
in a time At and distance vAt is that of other neutrons which
are travelling at v'(r,t)d, emerging from some interaction to

travel at v(r,t)Q. This contribution can be written

J [ Z(E)f(g,v'(g,t)ﬂ' - V(E,t)Q)w(r,V'(r,t)Q',t)dQ'dv' (4)
v'Qr
where f(r,v'(r,t)Q' - v(r,t)Q) denotes the probability of in-

stantaneous deflection to vQQ. A source at the point considered

will be denoted

S(x,v(zr,6)2,t) | (5)

and will have dimensions n/cm3 sec. Then
1 W(x,viz,t)a,t)

v 3t + S}'Y‘I}(Elv(flt)s}rt) =

~I(r)y(xr,v(r,t)Q,t) + J J Z(E)f(g,v'(E,t)9'+v(£,t)Q)w(r,v(f,t)sz,t)
1 -

v' Q' an'av’

+ S(x,v(x,t),t) . (6)



This is known as the Boltzmann integrodifferential equation.

A convenient way to solve the Boltzmann integrodif-
ferential equation is to assume the flux Y (r,v(r,t)Q,t) can be
expanded as

Y(r,v(x,t)8,t) =L A (r,v(r,t),t)B, (2) . (7)
~ ~ ~ s ~ - ~
With such an expansion, it is necessary to require that either
{Az(f,v(g,t),t)} or {Bl(g)} form a complete set. The method of
Spherical Harmonics assumes'{Bg(Q)} is the complete set and

specifies it as the set of spherical harmonics
P?(u)elm¢,u=cose,05¢_§2ﬂ,¢—l§p_<_+l, (8)

where 86 is the azimuthal angle, measured from the direction
f/lfl and ¢ is the polar angle. In cases of spherical or planaf
symmetry, dependence on ¢ is not needed and these functions
reduce by a simple integration over ¢ to the set of Legendre

polynomials of the first kind
PQ’(U) ’ u = cosb , -1 < p <+ 1 ©(9)

which form a complete set on pe(-1l,+1). When this symmetry

exists, Yy need only be a function of |r| and the component of
- ~
Q in the direction T%T ; denoted p. Now the expansion of

-~

looks like

20+1
ST @R (10)

il ™ 8

Y(r,u) =
2



the coefficients 2%;1 being chosen so that
-+l ,
w£<r) = I V(r, )P, (w)ydan . - (1)

-1
It has been tacitly assumed that W(r,u)aLi(—l,+l) (the set

of functions square integrable over 1 < u < +1) and so

™=

+1
lim l (x,u) =
-1

, .
wz(r)Pz(u)] du = 0 (12)

2=0

or, the mean square deviation in u of Y (r,u) approaches 2ero
as N approaches infinity. Moments, wz(r}, are found using Eq.
11 by multiplying Boltzmann's equation, Eq. 6, by Pl(u) and
integrating over -1 < p <+l as follows.

This repoft considers only the case of isotropic scat-

tering and so the function f(r,v'(r,t)Q' » v(r,t)) in Eq. 6

1

is Just 41 (steridians)

. The flux ¢ is not considered as a
function of time and so

1 Wz, v
v(r) ot )

~

(13)

The directional derivative of ¥ in the direction §, denoted .
Q-Vw(f,v(r)ﬁ) can be reduced in the case of spherical symmetry

1)

following a derivation by Tait™’ . From figﬁre 3,

Q.yp = - Q¥ _ _ 3y 3r _ 3y 3u (14)

Since

Ar = cos(7-(8+A0))Ap = —cos(0)Ap ‘ (15)
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Figure 1 Directional derivative in spherical geometry



then
dr _ _ - _
a5 - cosf u. (16)
Also
rAB® = sin6Ap
2
- N IS ¢ £ T |
=> ao = sinb o — . (17)
Therefore
Q'YW(r,u) =W T + = o . (18)

Thus, the Boltzmann integrodifferential equétion for a pfoblem
with spherical symmetry, no time dependence, constant velocity
as well as no external sources reduces to

+1

w Wlrw o Qo) ngﬁfu’ $Ip,w = 9| d(rman. (19)
J

-1

Multiplying this equation by Pg(u) and integrating over
-1 <y < +1 while making use of the recurrence relation for

the Legendre polynomials

dP_ (u)
(-v?) —G— =5 p o -, ) (20)

gives the following equations for the moments:

(n+2)

(n+1) L+, (04 - {22

r

19, (D) +(20+1) 2y (1) (21)

= Czwo(r)GnO .

When ¢ is discontinuous in the variable u, difficul-

ties in the form of slow convergence of the expansion occur.



Discontinuities in u at, say)ﬁ force the expansion to cénverge'
to |

1 ~ -

S0V (x,1-0) + ¥ (xr,u+0)] (22)
where w(r,ﬁ—O) denotes 1im+ W(r,ﬂ—e). For example at the

>

interface between two mgdga with different mean free paths,
the flux will experience a discontinuity at ¢ = 0, r = f, r
being the position of the interface. Yvon, Ref. 2, solved
this by creating two expansions, one on the range of py (-1,0)
and the other on (0,+1) and found much better éccuracy with
lower order expansions. Because of convergence, as in Eg. 12
over the open interval of expansions, the,probleﬁ of slow
convergence at the interface is avoided with Yvon's method.
Note that this method can be applied at the interface between
two infinite slabs in planar geometry or at the boundary be-
tween two spherical annuli. In the case of a black sphere of

radius a, the discontinuity of ¥ (r,u) in pu when at position

r, occurs at uo(r) = //l - (a/r)z), as shown in Fig. 1, which
is a function of r. It would make sense then, following the
exémple of Yvon to expand Y (r,u) over the range (—1,u0(r)),
(uo(r),+l). To do this, complete sets over the ranges of
u(—l,uo(r)), and (uo(r),+l) can be made with simple linear
transformations of u, i.e. on the‘range -1 < p< uo(r), chose
functions a(r), B8(r) such that a(r)-(-1) + B(r) = -1, and
u(r)-uo(r) + B(rs = +1, With such a(r), B(r), the polynimials

Pm(a(r)u + g(r) = Pm(r,u) form a complete set over the range



/( 0 (r)=cos e,

=J’ “(3)2
b o

Black Sphere

Figure 72 Black sphere and point of discontinuity of

Y(rvg) in./}k



of u chosen above. Following the procedures outlined for the
Spherical Harmonics method, a set of coupled, first order
equations can be obtained. |

The problem of the black sphere was attempted‘in.a
paper 'Directionally Discontinuous Harmonic Solutions of the
Neutron Transport Equation in Spherical Geometry' by A. A.
Harms and E. A. Attia, Ref. 3. 1In it, they not only expanded
over the ranges listed above, but also made the u~defivative
of Y (r,u) proportional to a delta function at the point of
discontinuity in p. Equations for the zero'th moments from
that paper will be solved for comparison with solutions obtained
here. |

This paper will first derive modifed spherical harmo-
nics equations for a general system of annular sphéres. Be-
cause of the difficulty, as of this writing, of assigning -
boundary conditions to this set of equations, the idealized
case of the black sphere will be used in order that analytical
solutions can be found and that boundary conditions can be
determined. It is hoped that techniques discovered for this
special case will lead to the ability to solve more generalized
cases. Equations that were solved numerically in the Harms-—
Attia paper will be solved analytically here as well aé a more
generalized set listed there. Corresponding equations from
the set of equations derived here will be solved analytically,
compared with the Harms-Attia solutions, and comparea with

transport and diffusion values listed iﬁzipaper by Sahni, Ref.
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4. 1Indications will then be given of what approach might be
taken to solve more generalized equations, that is, for annu-

lar systems and higher moments.



Derivation of Modified Spherical Harmonics
Equations in a General System of
Annular Spheres
Consider a system of annular spheres and suppose there

are no external sources, that the scattering is isotopic and

that the medium within an annulus isvhomogeneous (see Fig.

2). ForrRz <X <Rp,r 0< 2 <L with Ry = 0, R, = = and
Ha(r) = 2 2,0 () <w<p (), 1 <n< e+, =1,
Moyq = -1, the behaviour of the angular flux density y(r,p)

is given by the equation

g1 [Hy-1(0)

.2 G2

R S e AT R R b(r,wan} (23)
J:
uj(r)

where Cz(r), Zﬁ(r) are C(r), I(r), R2 < r < Rz+l' On each open
set uj(r) < u < uj,l(r), expand Y (r,u) by

| o 2m+1 ' .

Y(r,u) mio uj—l(r)—uj(r) Y ()P (x ) (24)

Pm(r,U)=;Pm(a(r)u + B(xr)) with o(r), B(r) chosen so that

m - = -
Pm(r,uj(r)) = Pm(—l) = -1, Pm(r,uj_l(r)) = Pm(+l) = 4+1. There
fore, Pm(r,u) are just the Legendre polynomials defined on an
appropriate range of p and so they form a complete orthogonal
set on this range of u. The straightforward derivation of needed

properties of Pm(r,u) is done in Appendix A. If there are dis-

11



Figure 3

General system of annular spheres
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continuities in yu, us(uj(r),uj_l(r)), say at u = ﬁ, the above
expansion will converge to

1 ~ ~

53 W(xr,u-0) + ¢(r,u+0)1 (25)

although the convergence will be slow. VY(r,u) also need not be

continuous at the common ehdpoint of two adjacent u-intervals.

Because of this, a continuity argument will be used on the end-

points of these ranges of p in developing equations for the

moments wn(r). With such an expansion, as in Eq. 24,

+1 N

lim | [p(r,m - I 9 (0P (r,m)%n=0. (26
N~ n=0 ’

-1

Equations for the Moments Qn(r)

Since
uj_l(r) _ ‘ uj_l(r) .
2m+1
Y(r,WP_(r,u)dy = (Z —
n m=0 uj_l(r) uj(r)
uj(r) uj(r)

wm(r)Pm(r,u))Pn(r,u)du ' (27)

assuming absolute convergence of the series, and using the fact

that Pm(r,u) are continuous, the above is
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o el Uj_l(r)
m+
mio My (B)-Hy (@) Vo (7) [ P (raP (x,u)du
' uj(r)
- +1
_ 2m+1 . . du
mEO “j—l(r)“j(r) b (x) P (WP (1) 163l
11
2 2m+1 . uj_l(r)-uj(r) 2 _
- miO uj_l(r)—uj(r) V() - 2 Il Onm “¥n (¥) -
(28)

Then, to obtain equations for the moments wn(rL equation 4 is

multiplied by Pn(r,u) (limits on n later{ and integrated over
the appropfiate cosine range. If w(r,uj+(r)) denotes

lim Y (xr,u.(r) + €) and P(r,u. (r)) denotes lim Y(xr,u.(r)-c),
>0 J J e>ot ]

continuity arguments at the endpoints together with Leibniz'

rule combine to give

My (T)
a J
ar uw(r,u)Pn(r,u)du

uj(r)
- (& . . = : - :
= (GF Wy () tHy (B) vl uy ()P (g (X))
- @) s ) ) e (et )

dr "3 3 rHy n'FrHy

.o () ;

“'__l (r) alp(r’u) uj—l BPn(rIU)

+ J ) U -——5;f-Pn(r,u)du + wp(r,u) ——§;r———-du
uj(r) uj(r)

(egn. continued next page)
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2 2
RS
= —3—3—-'}——— Uiy (B9, (x))- ———1-—— ‘u.(r)- w(r.u ey - ( 1"+
rou., ,(xr) J J- r p (r) J ‘
j-1
. 4 (xr) p. . (xr)
j-1 j-1 9P (r,u)
+[ —a—w—é%'ﬁ)—Pn(r,u)dqu uy (r,u) nar du. (29)
J
uj(r) uj(r)
Then
H3-1 By (x, 1) R} | sz n
WSS P (r, ) dp=- —3—— A0 L (X)) +—2 Vlrouy *(£)) + (-1)
J r r
p. ()
uj_l(r) 9P_(r, 1) 4 uj_l(r)
- Wy (r,u) 5T du-dr wp(r,u)Pn(r.u)du - (30)
TNCIN uy (o)
Similarly
ST RN (1-12_ () _ _
S P (x,p) dps [— 1 (Fouy_q (0P (T g (x))
uj(r)
1- (u, () Hy_p (F)
-1 - ]°¢(r,uj ()P (roug Tr))+2 = w(r,u)P (r,u)du
| by (o)
P, . (x)
j-1 ) 3P (r,u)
i l LT R - Rikdadet
p. (x)
J
R%_, R2
= 23 vl ) - F v m e en”
X r .
+ 2 7 V(r,wPp (r,u)du- V(r, u)—————i—-—— du. (31)

uj (r) | My (x)
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It can be seen that when equations 30 and 31 are added, the

evaluated terms, i.e. the terms (ijl/r3)w(r,uj:l(r)),

(R?/r3)¢(r,u;(r))-(—l)n, cancel. Therefore
H. 4 (x)
e ooau(r,u) |, (1-u?) 3y(r.w)
Pn(r,u)du]{u ™ + - T + L ¥(r,n) =
uj(r)
cg, s+ M3 () ‘
5— (= Y (r,u)du)}
j=1
uj(r)
gives
g [M5-1®) M1 e e g2y 3B (x)
ar Wy (x, WP (x,1)du (0 —He——+ 2F )
uy (o) e -
uj_l(r)u : .ngz L+l »
Y(r,u)du + 2 ;‘w(r,u)Pn(r,u)du=22wn(r) ETET.kﬁl wo(r)ano.
p. (x)
J (32)

The superscript on wg(r) denotes the k;th cosine range

uk(r) < up < uk_l(r) and will be left off of the other moments

for clarity. Using the results described in Appendix C, the n'th
moments equations become

a [- B(xr) n+l
dr

n .
o @ 'nt T Va1l s ey Ya-1 (001

n (n+l1)

. 28(r)
PV ) EmE D ra (o) [pj_l(r)pj(r)

ro(x)

+21 + Y (r)-[I, - ]

C,z %+l
272 k
(D) b2 wo(r)éno - (33)

k=1

n+l [ n

. 2- :
(2n+l)rq(r) uj_l(r)uj(r

+ Y (xr)

n+l )]_
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Truncation is performed by forcing wn(r) = 0,n > N for sdme N.
Equations for N=0 and N=1 are as follows: r is expressed in

mean free paths. For N=0,

c, #+1
_ B(E) _2B(x)y - % k
[ ES) Vo)1 + Yo (r) [1 ra(r)] oz kil Vo (x) (34)

a
dr

and for N=1, n=0,

2y, (xr)
a4 _B(X) 4 oy . 1 _ 28(x) (8
ar Da@ Yo Yam i@ F YL - et (2] r
c, &l
aEy (I Vo) ' (35)
n=1,
d B(xr) 1 ' 2
e () + S V@] ) s [“j_l(r)uj o+ 2
sy - 28 - o - (36)



- Solution of Zero'th Order Equations

Solutions to the equations for N=0 will be obtained
for the éase of the black sphefe i.e. the division of the co-
sine range into -1 < u < uo(r) and uo(r) < u < +l. The
functions a(r) and B(r) needed for the linear transformation

of p are obtained as follows.  On uo(r) < u < +1, let

_ N 2
a(r) = a (r) = ———-————l_uo(r) ’ (37)
+ (1+u,(x))
B(r) = B (r) = - m . (38)
0
and '
_ L+ .
wo(r) = wo(r) ; (3?)
on -1 < u < uylr),
.- 2
a(r) = a (r) = W ’ (40)
- (M, (¥)-1) .
B(x) = B (r) = - 5715+ (41)
(uo(r)+l)
and
Yolr) = bylx) . (42)

From the form of the N=0 moments equations on the previous

page, it seems natural to solve for the function

= - B(x)
g(r) = D) Yo lx) - (43)

18
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Therefore, let

(L+u (x))
+ 8 (r) .+ 1 + _ o + _
(r) = - —=L ¥ _(r) = — Y (r) = ———F—— y_(r) (44)
’ ot(ry 0 o (m) © 2 °
and let
- - - - (1-p (x)) _
g () = - Lyt = - 2yt = - — ) . (45)
a (r) a (r) '
The equations for gi(r) are
L m=gma-2+gt@ | (46)
ar 9 '\ =g i ot g i) ' '
ad? g (x) = g+(r) (-1 - %) - g (r) (47
=> Edf g7 (r)+g (r)] = - }2‘ [g" (r)+g (1) ] (48)
+ - Cl
=> g (r) = -g (x) + 5 - - | (49)
Y

The general solution to these equations is

g () = 2} ¥ ;% ' (50)
g7 (r) - “(E‘ll;”zl - Srl (51)
and so
wg(r) - l+uz(r) ((Cl;CZ) - %}) ’ (52)
Y
vy (x) = EET%T:T L, ;%) (53)

(54)
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2r2

v
1-H4(x) a2
sphere, Y(r) ~ Ar+B near r = «, This solution is denoted wg in

Since r + ©, where a is the radius of thé black
the Tables.

For comparison with these solutions, equations similar
to the above from Ref. 3 are solved. Explicit description of
the discontinuity of y(x,u) in u at uo(r) through the use of a
delta function expanded in the functions Pm(r,u) was used in
this reference; . the equivalence of equations derived in Ref. 3
without delta function terms to equations derived in this re-
port is shown in Appendix D. Addition of these delta—functionvi
terms involves adding % (g+(r)+g~(r)) to the left hand sides

of the above set of equations as was shown in Appendix D. The

equations to be solved are then

S m=gma-gTma-D (55)
ddm=dmer-d-gmwa+d e
=L gt @l =-21gtm + @1 57

with general solutions

g = L-1.+2, (58)
2r r r
C C C
+
gty = 4+ 2 - 2. (59)
2r r r
Then
C C C
- 2 1 1 2
Y (r) —= - —= + —=) , (60)
0 uO(r) 1 2r4 r3 - r2



= 2 (—%
Lepg () "o

+
1Po(r)

and

Q
Q
Q

- + 2 1 1 2 2 1 1 2
Y(r)=y (x)+y_ (xr)= ( +t=-—5) + — —= + —=). (62)
0 0 uo(r)+1 2r4 r3 r2 uo(r) 1 2r4 r3 r2 v
wu)q,A+%+£% , r > o,
r
This solution is denoted wg in the Tables.
With uo(r) = 0, the zero order equations with delta
function terms included are
da ,- _ _1l .- 1 _ + ;
ar wo(r) = (1 r)wo(r) + (r 1)Qo(r) (63)
d ,* = (L + 1 v
ar Yo¥) = -G+ D0 + G+ DY) (64)
= 4 ot — v ()] = - 2t -
=> 3r [wo(r) wo(r)] - [wo(r) wo(r)] (65)
with general solutions
C C
Lo 1 1
Y. (r) = —- — +C, , (66)
0 r 2r2 2 .
C C _
+ 1 1 -
wO(r) = = + ;—5 + C2 (67)
r
and
Cl .
U(r) = 2 = + 2 C2 . (68)

Note the similarity to the diffusion solution. This solution
is denoted W; in the Tables.
The following section will discuss boundary conditions

to fix the constants Cl and C2.
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Boundary Conditions and Discugsion of Results
In the calculations, the boundary condition

corl
+ -
byla) = I Y(a,p)dp = 0 (69)
0
was used at the surface of the black sphere. The other boun-

dary condition was prescribed in two ways: (i) ¥(r) at r = o«
3)

was set equal to the exact diffusion flux calculated there™’,
the total diffusion current being normalized to %% at «;

(ii) yY(r) was set equal to one at the surface of the sphere.
(since the 0'th order equations derived in this report gave
fluxes that behave like A r + B when r aéproaches infinity‘
(see footnote, page ), solutions could only admit boundary
condition (ii). An alternative is to set A = 0. The condition
w;(a) = 0 cannot then be used; however, the physically mea-
ningful solution of a flux that is everywhére constant in
the moderator is then obtained. Tables 1-3 give solutions
using boundary condition (i) and Tables 4-6 give solution
values for boundary condition (ii). Differences present at the
surface of the sphere in Tables 1-3 will be the differences
obtained at r = « in Tables 4-6 so the two problems are essen-
tially equivalent. Results for both boundary conditions areb
listed to show the behaviour of the flux bear the.surface of
the sphere (and hence near «).

The condition yY(a) = 1 means thgt the angular distribu-

tion of the flux at the surface of the black sphere is
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0; w >0
U)(a,u) = (70)
1; w<o0°- '

The current at the surface is then

0 *
J. = uduy = - 1 ' ' (71)
S 2

-1
and the number of neutrons entering the sphere per second is

417a2JS = - 27122 . (72)

Therefore,both boundary conditions used above are just dif-
ferent normalizations of the number of neutrons ehtering the
sphere per second.

It was mentioned éarlier that the zero'th moments as
derived in this report behaved asymptotically like A + B r

near «, When the approximation

wg(r) ; w>0 _

Y(r,u) = _ (73)
lpo(r) :

L

~

-
A
(o]

for all r is used, Eg. 19 in the lowest order approximation
gives

axpa (r)

57— = Vo (¥ by () (74)

and

* _
The minus sign occurs since the gradient of the flux points

in an outward radial direction.
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3¢;(r)

— - — + . :
S = Vg (r) - Yy . (75)

The solution is
+ -—
Y(r) = P (x) + ¥, (r) = A + Br. (76)
Thus, the behaviour near infinity of the zero'th moments in an

expansion with po(r) = 0 is the same as that found for uo(r) not

identically zero in zero order expansion.



Conclusion

The zero order expansion for the angular flux
derived in this report, along with the application of the
boundary condition f y(a,u)dpy = 0 at the black sphere
surface has lead tooundesirable asymptotic behaviour of
the flux near infinity in the zero'th order approximation.
The equations derived in Ref. 3 give better behaviour because
~the discontinuity in the angular flux density was explicitly
accounted for in those equations. In solving systems of
higher order, it is apparent that functions of the form
gn(r) = f(a(r), B(r))wn(r)xwill be used. It is felt by the
author that although explicit addition of the delta function
terms gives. better behaviour of the flux near infinity and
at the surface of the black sphere in the lowest order, the
modified equations should be studied on their own in order
to determine convergence of the expansion and overall be-
haviour of the moments. The black sphere provides the idea-
lization necessary, at the moment, to deal with boundary

conditions.
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Appendix. A

Properties of Pj(r,p)
E §

On the open set uj(r) < u < uj_l(r), Pn(r,u) is
defined by Pn(r,u) = Pn(a(r)u + B(r)) where a(r), B(r) are
chosen so that Pn(a(r)uj(r) + B(r)) = -1, Pn(a(r)uj_l(r) +B (r))
= +1. Then, all of the properties of the Legendre polynomials
carry over under this linear transformation in u. Orthogo-
nality follows by

Hyop () +1
Pm(r.u)Pn(r.u)du

Pm(u)Pn(u)du

-

]Jj (r) -l

12

a(r) 2n+l "mn

(uj_l(r)-uj(r)) 5
2n+1 mn

A recurrence relation that will be used is the following: since

_ n+l . n
uPn(u) T 2n+1 Pn+l(U) BT Y] Pn-l(u)'

_ h+l n
(o (r)u+B(x))P (r,u) = 5—=5 P, (r,0) + =5 P, (r,1) ,

SO

B(xr)

a(xr)

n+l ' n
OL(I') (2n+1) Pn+l (r'u)Ta (r) (2n+1) Pn-—l (rtU) .

WP (r, W) = - P_(r,u) +

(A-1)
26




Appendix B

Derivatives of wvarious functions

R = o

For Rj < r < R » 03 <L, with RO’ I4+1

j+1

R. 2
= - J
Uj(r)—/l (r)

and
(., (x)+u.(x))
2 _ -1 ]
OL(r) = — ’ B(r) - - J . .
My_p(x) uj(rT (uy_q (0 uj(r))
Then
2 2
du. (r) R, (1-u5 (x))
g - 1 o A= -, (B-1)
r H. (r) 3 ru. (r)
j r j ,
2 2
dalr) _ -2 S = BT
2 173 . .
r (“j-l(r)_uj (r)) r Uj_l (x) UJ (xr)
a(r) 1 ,
= e—— (l + ) ’ (B-'Z)
r uj_l(r)uj(r)
38 (r) 28(x) |
= ’ (B—3)
ox ruj_l(r)uj(r) :
and
3 B(r) _ 1 B(r) 1 _ : -
F o(n) _ T a(m _munm e (B-4)

27



Appendix C

Integrals of some Functions

W, 4 (x) (Hs_q (T)
2 { L e me_(rwan= { e 2 Rl oy o RN
uj(r) uj(r)
+ n+l n

a(r) (2n+l1) P (T a(r) (2n+1) P _qp(r,u)ldu

d B(r) n+l n
2 ) s e Va1 O T S ey Va1 ()0
(c-1)
Let x(r,u) = o(r)p + B(r). This gives
9 _ 9
FIT *(r) 33
and
9 _ da (r) aB(r), 9
?r (u 5r T T ar ) Ox
Then
U, . (xr) Ui 4 (x)
j=-1 BPn(r,u) j-1 (l_u2) BPn(r,u)
up (xr,u) ““‘53‘:‘“""‘1“+J —-—E—_——w(r,u) —y— au
uj(r) Hy (r)

X (r)
-1 P (X)) 5 5a(r) a(r) 28(x) , o(x)
= { Y (xr,un) — s ™ Y ) + u 5T = ~-]du.

uj(r)

Using Eqg. (B-2) and Egq. (B-~13),

28
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(2 (aoc(r)__a(rr))+u 3§(r)4_“(r)]= -1 (1-x% (x, 1),

or r ra(r)uj_l(r)uj(r)

and using the recurrence relation

dp_ (x)
2 n _ n(n+l) _ ,
(1=x7) dx T 2n+1 (Pn-l(x) Pn+l(x))’
the above is
-1 . n(n+l)

P, _ O @ el I Vg ) (C-2)

Other integrals used in this report are

uj_l(r)
22 q)(rIU)Pn(rIU)du = Zzwn(r) v (C-3)
uj(r)
- My-p(®) g+l M1 (B
_'Q' % P (r,u'") z - Y(xr,u)dudy’
2 n k=1 :
uj(r) uk(r)
C,z, M1 () 4L
= = Pn(r,u ) kzl wo(r)du
uj(r)
C,L 2+1
= a%rf kzl Ip](j(r)éno ! ' (C-4)

and finally



B(x)

a(r)

uw(r,u)Pn(r,u)du

L B(r)
w(rlU) [ a(x) Pn(rIU)'l‘

n+l
alt) + sy oanF ) Vne

30

n+l n

o () (2nF1) Tnel (ErH) T

a(r) (2n+l)
P__y(x,m)ldu

n
o (1) (2n¥1) Yn-1

1 (x) + (r) (C-5)



Appendix D

Reduction of 0'th Order Equations in Ref. 2

The 0'th order equations in the paper by Harms and
Attia, Ref. 2, can be reduced to the equations deiived in this
report by omitting the terms deriving from the délta function.
This reduction proceeds as follows. The delta function terms

on the cosine range -1 < u < uo(r) are

2

(l-p_(x)) 3

—)— N L SN R
r zio(22+l)[(l-uo(r)) ¢2(r) (l+u0(r)) ¢£(#)].

»

A similar term exists for the other range of p. For zero'th

moment terms, the above expression is

(L+p, (x)) (1-u (x)) _
——— ¢ (r) - ———— 4 (x)

xr

and this expression also holds for the other cosine ranges.

With ¢ = 1, fl = (0, using the notation of Ref. 2,
(l—uo(r))2
Alo = ruo(r) + (l—uo(r)) ’
Blo==“(1+u0(r)),
A20 = - (l-uo(r))
and 5
(l+u0(r))
B20 = ruo(r) + (l+u0(?))'
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Equations for the zero'th moments derived in this report

are

da . B(r) 2 B(r)

ar - S b1 -2 20y ) 0y (1) = g W )+ (o) ]
On -1 < u < uy(x),

(uolx)=1)  _ (pg(x)-1) (u,(r)+1) -
A I ¥ () + Vg (1) =~ () + (D) ],
- G | . (- () Foy
= 3r wO(r)"TT:ﬁETfTT{WO(r)°[ ruo(r) {-(l—uo(r))]+w0(r)[—(uo(r)+1]}
On uo(r) < u < +1,

(1+u,(x)) (I-u_(x)) (1-u,(x))

a -
I b () ]+ ——2—— )+ (r) = — [y (x) +py (1) 1,
, ,
(1+u, ()

=> (Lt (5) )55 ¥g (1) = -9 (x) | + (Lhug (1)) 1= (2) (= (L=H g (£))) -

ruo(r)

These agree with the Harms-Attia equations listed in Ref. 3.



s Y rrans \\)Diff » k\’g "\’f; %ch(‘\’m ‘Vg )

0. 17.725 31.360 25.761 25.761 +45.3

.1 30.010 33.027 37.729 29.197 +25.7

.2 32.475 33.850 36.490 30.913 +12.4

.3 133.620 34.360 35.721 31.944 + 6.2

.4 34,250 34.683 35.329 32.630 + 3.2

.5 34.643 34.929 35,136 33.121 + 1.4

.6 34,913 35.113 35,048 33.489 + 0.4

.8 35.260 35.360 35.014 34.004 - 0.7
Table 1 0'th moment solutions.for a ﬂ= 0.‘2 .

from the surface of the sphere.

's' is the distance
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s LY A "'YIS{ %ch(“(‘m\\’g)

Trans k'VD:i.ff H

0. 0.653 1.043 0.678 0.678 +3.8
.1 0.963 1.134 1.034 0.801 +7.4
.2 1.101 1.210 1.164 0.903 » +5.7
.3 1.199 1.274 1.247 0.991 +4.0
.4 1.275 1.329 1.307 1.065 +2.5
.5 1.337 1.377 1.354 1.129 +1.3
.6 ' 1.388 1.418 1.393 1.186 +O.4
.8 1.470 1.488 1.454 -1.280 -1.1

1.0 1.532 1.543 1.502 1.356 -1.9

Table 2 _ 0'th moment solutions for a® = 1.0 . 's' is the distance

from the surface of the sphere.
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Yorans Ypiff Y u Y H 3ch( \'}Trans YHA)

S
0. 0.158  0.231 - 0.146 0.146 ‘-7.6
0,219 0,255 0.214 0,174 -2.3
.2 0.252 0.277 | 0.250, 0.200 -0.8
.3 0.279 0.206 0.277 . 0.223 = -0.7
4 0.301 0.315  0.300 0.244 -0.3
.5 0.321 0.331 0.319 0.263 - -0.6
.6 0.339 0.347 0.336 0.281 =0.9
.8‘ 0.369 0.374‘ | 0.365 0.314 -1.1
1.0 0.395 0,398 0.3%0  0.341 1.3
‘Table 3 0'th moment golutions for a €‘= 2.0, 's' »is the distance

from the surface of the sphere.
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S YTrans‘ Y pise Y fl;‘ v g Y }SI

c. 1.000 1,000 1.000 1.000 1.000
o 1 1.693 1,053 1.945 1.465 1.133

.2 1.832 1.079 2.266 1.417 1.200

.3 1.897 1.096 2.517 1,387 1.240

.4 1.932 1.106 2.743 1.371 1.267

.5 1.954 1.114 2.958 1.364 1.286

.6 1.970 1.120 3.168 1.361 1.300

.8 1.989 1.128 3.580 1.359 1.320

s 2.053 1.150 “ 1.400 1.400

0'th moment Solutions for a §-= 0.2 . 's' is

Table 4

from the surface of the sphere.

G

-13.5

-22.7

-26.9

-29.0

-3002

-3009

-31.7

-3102

the distance
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s Y Trans ¥ Diff ¥ g Y g \PISX

0. 1.000 1.000 1.000 1.000 1.000
1 1.475 1.170 1.617 1.526 1.182

.2 1.687 1.311 1.953 1.717 1.333

<3 1.837 1.417 2.239 1.840 1.462

.4 1.953 1.533 2.500 1.928 1.571

.5 2.048 1.662 2.745 1.998 1.667

.6 2.127 1.699 2.981 2.055  1.750

.8 2.252 1.829 3.431 2.126 1.889

1.0 2.347 1.933 3.866 2.217 2.000
o ~3.1313 1.949 00 3.000 3.000
0'th moment solutions for a & = 1.0

Table 5

from the surface of the sphere.

G
sch(¥ roan2 \\’H )

+3.5
+1.8

+0.2

's' is the distance
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5 \VTrans Y pies ¥ g \\)g ¥ ls{,
0. 1.000 1.000 1.000 1.000 1.000
o1 1.386 1.103 1.505 1.467 1.191
.2 1.594 1.197 1.817 1.708 1.364
.3 1.762 1.282 2.094 1.895  1.522
.4 1.904 1.361 2.353 2.051 1.667
.5 2,029 1.433 2.600 2.184. 1.800
.6 2.140 1.499 2.839 2.301 1.923
.8 12,332 1.618 3.300 - 2.500 2.143
1.0 2.493 1.721 3.745 2.665 2.333
oo 4.618 3.162 0o 5.000 5.000
Table 6 0'th woment solutions for a ﬁ = 2,0 .

from the surface of the sphere.

3ch( \v'r’fans ¥ ka

+5.8
+7.2
+7.5
+7.7
+7.6
+7.5
+7.2
+6.9

+8.3

's' is the distance

8¢
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