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Abstract 

Another approach is adopted for deriving the moments 

equations in spherical geometry using a spherical harmonics 

expansion of the neutron transport equation over a variable 

range of the direction cosine. Because of complications and 

uncertainties in establishing boundary conditions for the 

equations, only the zero'th order equations are solved, in 

an idealized situation, in order that a feel for equations 

and boundary conditions may be obtained. 

The equations are compared to equations given in a 

paper 'Directionally Discontinuous Harmonic Solutions of the 

Neutron Transport Equation in Spherical Geometry', by A. A. 

Harms and E. A. Attia. Analytical solutions for the zero'th 

order equations are given for equations developed there and 

to the equations developed in this paper. Numerical values 

are presented to give an idea of what accuracies might be 

expected. It is hoped that similar techniques can be used to 

solve the higher order equations analytically, and that appro­

priate boundary conditions can be found. 
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Introduction 

It is of interest to study the behaviour of neutrons 

in a specified volume within a nuclear reactor. To do so, an 

equation must be set down describing a neutron 1 s interaction 

with its environment. 

Let w(r,v(r,t)Q,t) be the number of neutrons at position 

r, time t, travelling at speed v(r,t) that pass a unit area nor­

mal to n. Neutrons at position r, moving at speed v(r,t) will 

travel v~t units in a time ~t in the direction n. The net 

change in w per unit distance of travel over this time interval 

is 

w<:+v<:,t>~t~,v(:,t)~,t+~t) - w<:,v<:,t)Q,t) 

v(r,t)~t 

aw(r,v(r,t)Q,t) 
={ [w<:,v<:,t>~,t)+v<:,t>~tn·vw<:,v<:,t>~,t)+~t - ~~ ­

+ 0(~t 2 )] - W(r,v(r,t)Q,t)}/v(r,t)~t 

aw(r,v(r,t)Q,t1 - - ­= v(r,t) at 

The instantaneous rate of change on ~ at position r, time t 

is then 

a~(r,v(r,t)Q,t)
1 - at- - + Q·V~(r,v(r,t)Q,t) (2)v(r,t) 

(1) 

1 




- -
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One thing that can happen in the length of time ~t and distance 

v~t is that neutrons can interact with other nuclei (although 

not with other neutrons). This interaction can involve reac­

tions such as (n, f), (n,y), (n,n') etc. At time t, if E (r) 

is the probability of a neutron interaction per unit distance, 

then removal of neutrons by interaction with other elements 

results in a change in w that is 

-E(r)w(r,v(r,t)n,t); ( 3) 
"""" -w - ­

the minus sign signifies removal. The other possible contribution 

in a time ~t and distance v~t is that of other neutrons which 

are travelling at v' (r,t)d, emerging from some interaction to 

travel at v(r,t)n. This contribution can be written 

I I l:(JO)f(:;,v'(!;",t)~' + v(:,t>~>H~;,v'(:,t>~',t)dn'dv' (4) 

v'n' 

where f(r,v'(r,t)n• + v(r,t)n) denotes the probability of in­

stantaneous deflection to vn. A source at the point considered 

will be denoted 

S(r,v(r,t)n,t) (5) 
~ 

and will have dimensions n/cm3 sec. Then 

1 aw(~,v<:,t>~,t) 

at + n·vw(r,v(r,t)n,t) = 
v 

-E(r)w(r,v(r,t)n,t) E(r)f{r,v' (r,t)n'+v{r,t)n)w(r,v(r,t)n,t)... 
l 

dn'dv' 

+ S(E,v(E,t) ,t) • ( 6) 
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This is known as the Boltzmann integrodifferential equation. 

A convenient way to solve the Boltzmann integrodif­

ferential equation is to assume the flux ~(r,v(r,t)Q,t) can be 

expanded as 

~(r,v(r,t)n,t) (7) 

With such an expansion, it is necessary to require that either 

{A~(~,v(~,t),t)} or {B~(~)} form a complete set. The method of 

Spherical Harmonics assumes {B~(~)} is the complete set and 

specifies it as the set of spherical harmonics 

P~(,,)eim<j> , ,, = 8 0 ~ 2 1 1 (8)N 1-' 1-' COS I < 'I' < 7f I • - < ll < + I 

where 8 is the azimuthal angle, measured from the direction 

~11:1 and <P is the polar angle. In cases of spherical or planar 

symmetry, dependence on <j> is not needed and these functions 

reduce by a simple integration over <j> to the set of Legendre 

polynomials of the first kind 

ll = cos8 , -1 < ll < + 1 (9) 

which form a complete set on l.l£(-1,+1). When this symmetry 

exists, ~ need only be a function of lrl and the component of 
r 

n in the direction ~ denoted ll· Now the expansion of ~ 
1:1 

looks like 

00 

1/J(r,l.l) = l: (10) 
~=0 
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the coefficients 2 ~+l being chosen so that 

Wi(r) = J+l W(r,~)Pi(~)d~ . (11) 

-1 

It has been tacitly assumed that ~(r,~)EL2 (-l,+l) (the set 
r 

of functions square integrable over 1 ~ ~ ~ +1) and so 

lim 
N+oo 

(12) 

or, the mean square deviation in~ of ~(r,~) approaches zero 

as N approaches infinity. Moments, ~51, (r),, are found using Eq. 

11 by multiplying Boltzmann's equation, Eq. 6, by PJI,(~) and 

integrating over -1 2 ~ _::: +1 as follows. 

This report considers only the case of isotropic scat­

tering and so the function f(r,v' (r,t)Q' + v(r,t)Q) in Eq. 6 

1is J'ust The flux ''' is not considered as a4rr (steridians) · ~ 

function of time and so 

a~(r,v(r)Q)1 - - ­ = 0 • (13)
v (r) at 

The directional derivative of ~ in the direction D., denoted. 

Q·V~(r,v(r)Q) can be reduced in the case of spherical symmetry 

following a derivation by Tait1 ). From figure 3, 

= - d~ = (14)
dp 

Since 

~r = cos(rr-(8+~8))~p ~ -cos(8)~p (15) 
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Figure 1 Directional derivative in spherical geometry 
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then 

dr = -case = -].l. (16)dp 

Also 

rt:.e ~ sinet:.p 
2 

= -sine de = - (l-J.l > (17)
dp r 

Therefore 

CJljJ(r,li) (l-]..12) Cll/J(r,].l)
+ (18)ar r Clll 

Thus, the Boltzmann integrodifferential equation for a problem 

with spherical symmetry, no time dependence, constant velocity 
. 

as well as no external sources reduces to 

+1 
C[ 

[ 1/J(r,].l)d].l. (19)T 
J.l CltJI(r,ll) 

ar 
) 
-1 

Multiplying this equation by P~(J.l) and integrating over 

-1 ~ ].l ~ +1 while making use of the recurrence relation for 

the Legendre polynomials 

2 dP n (ll) n (n+l)
(1-]..l ) (20)-::,;.d-]..1- = 2n+l (Pn-1 (J.l) - Pn+l (].l)) 

gives the following equations for the moments: 

When 1/J is discontinuous in the variable ].l, difficul­

ties in the form of slow convergence of the expansion occur. 
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"' Discontinuities in ~ at, say ~ force the expansion to converge 

to 

(22) 

where ~(r,0-0) denotes lim ~(r,~-£). For example at the 
£-+o+ 

interface between two media with different mean free paths, 
A A 

the flux will experience a discontinuity at ~ = 0, r = r, r 

being the position of the interface. Yvon, Ref. 2, solved 

this by creating two expansions, one on the range of ~ (-1,0) 

and the other on (0,+1) and found much better accuracy with 

lower order expansions. Because of convergence, as in Eq. 12 

over the open interval of expansions, the problem of slow 

convergence at the interface is avoided with Yvon's method. 

Note that this method can be applied at the interface between 

two infinite slabs in planar geometry or at the boundary be­

tween two spherical annuli. In the case of a black sphere of 

radius a, the discontinuity of ~(r,~) in~ when at position 

2
r, occurs at ~ 0 (r) = /1- (a/r) ), as shown in Fig. 1, which 

is a function of r. It would make sense then, following the 

example of Yvon to expand ~(r,~) over the range (-1,~ 0 (r)), 

(~ 0 (r) ,+1}. To do this, complete sets over the ranges of 

~ (-1,~ 0 .(r}}, and (~ 0 (r) ,+1} can be made with simple line.ar 

transformations of~' i.e. on the range -1 < ~ 2 ~ 0 (r), chose 

functions a(r), S(r) such that a(r) • (-1) + S(r) = -1, and 

a(r)·~ 0 (r) + S(r) = +1. With such a(r), S(r), the polynimials 

Pm(a(r}~ + S(r) = Pm(r,~) form a complete set over the range 



--------­ --­ --­

)A- 0 (r}::.: cos e 0 

=J1 
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-(a) 2 
r 

Black Sphere 

Figure '2 Black sphere and point of discontinuity of 

't' (r:f) in JA 
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of ~ chosen above. Following the procedures outlined for the 

Spherical Harmonics method, a set of coupled, first order 

equations can be obtained. 

The problem of the black sphere was attempted in a 

paper 'Directionally Discontinuous Harmonic Solutions of the 

Neutron Transport Equation in Spherical Geometry' by A. A. 

Harms and E. A. Attia, Ref. 3. In it, they not only expanded 

over the ranges listed above, but also made the ~-derivative 

of w<r,~) proportional to a delta function at the point of 

discontinuity in ~. Equations for the zero'th moments from 

that paper will be solved for comparison with solutions obtained 

here. 

This paper will first derive modifed spherical harmo­

nics equations for a general system of annular spheres. Be­

cause of the difficulty, as of this writing, of assigning 

boundary conditions to this set of equations, the idealized 

case of the black sphere will be used in order that analytical 

solutions can be found and that boundary conditions can be 

determined. It is hoped that techniques discovered for this 

special case will lead to the ability to solve more generalized 

cases. Equations that were solved numerically in the Harms-

Attia paper will be solved analytically here as well as a more 

generalized set listed there. Corresponding equations from 

the set of equations derived here will be solved analytically, 

compared with the Harms-Attia solutions, and compared with 
-

transport and diffusion values listed inapaper by Sahni, Ref. 
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4. Indications will then be given of what approach might be 

taken to solve more generalized equations, that is, for annu­

lar systems and higher moments. 



Derivation of Modified Spherical Harmonics 

Equations in a General System of 


Annular Spheres 


Consider a system of annular spheres and suppose there 

are no external sources, that the scattering is isotopic and 

that the medium within an annulus is homogeneous (see Fig. 

2). For R~ < r < R~+l' 0 2 ~ 2 L with R0 = 0, RL+l = oo and 
r 

~n(r) ~; • ~n'~n(r) < ~ < ~n-l(r), 1 2 n < ~+1, ~0 = 1, 

~~+l = -1, the behaviour of the angular flux density ~(r,~) 

is given by the equation 

~+1 J~j-l(r) 
{j:l ~(r,~)d~} ( 2 3) 

~. (r)
J 

where Ci(r), E~(r) are C(r), E(r), R~ < r < R~+l" On each open 

set~-
J 

(r) < ~ < ~-
J-1 (r), expand ~(r,~) by 

~(r,~) = (24) 

P (r, ~) = P (_a (r) ~ + !3 (r)) with a (r), !3 (r) chosen so that m · m 
m 

P (r,~.(r)) = P (-1) = -1 , P (r,~. 1 (r)) = Pm(+l) = +1. There-
m J m m J-

fore, P (r,~) are just the Legendre polynomials defined on an m 

appropriate range of ~ and so they form a complete orthogonal 

set on this range of ~- The straightforward derivation of needed 

properties of P (r,~) is done in Appendix A. If there are dis­
m 

11 



12 

Figure 3 General system of annular spheres 
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"' continuities in~, ~E(~. (r),~. 1 (r)), say at~=~, the above
J ] ­

expansion will converge to 

; [ljJ(r,~-0) + ljJ(r,~+O)] (25) 

although the convergence will be slow. ljJ(r,~) also need not be 

continuous at the common endpoint of two adjacent ~-intervals. 

Because of this, a continuity argument will be used on the end­

points of these ranges of ~ in developing equations for the 

moments 1jJ (r). With such an expansion, as in Eq. 24,
n 

lim [ljJ(r,~) - 2: 

N+oo n=O
r N 

-1 

Equations for the Moments ~n(r) 

Since 


~j-1 (r) ~j-l(r) oo 


2m+l 

ljJ(r,~)Pn(r,~)d~ = ( 2: 

~ . (r) -~. (r)
m=O J-1 JJ f

~. (r) ~. (r)
J J 

1/Jm(r)P (r,~) )P (r,~}d~ , (27}m n 

assuming absolute convergence of the series, and using the fact 

that P (r,~) are continuous, the above is 
m 

(26) 
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ll. (r}
00 J-1

2m+l •t/J (r}.2: 	 P (r,ll)P (r,l-J}dl-1ll. (r)-}.l.(r) m n 	 mm=O J-1 J 	 I 
l1. (r)

J 

= 

oo 2m+l llj-1 (r) -llj (r) 2 
= l: ( ) ( ) • t/Jm (r) • 2 • -21 ° =t/Jn (r) •m=O llj-l r -llj r 	 m+ nm 

(28) 

Then, to obtain equations for the moments t/Jn (r), equation 4 is 

multiplied by P (r,}.l) (limits on n later) and integrated over 
n 

the appropriate cosine range. If t/J(r,ll.+(r)) denotes 
J 

lim t/J(r,}.l. (r) + s) and t/J(r,ll.-(r}} denotes lim t/J(r,}.l.(r}-s}, 
s+o+ J J s+o+ J 
continuity arguments at the endpoints together with Leibniz' 

rule combine to give 
llj-l (r)

d l-!t/J(r,}.l)P (r,ll)dl-1
nJ 

ll. (r)
J 

d -	 ­= (-d ll· (r))•l-J. 1 (r)•t/J(r,ll. (r})P 	 (r,}.l. {r))r J- 1 J-	 J n J 

+ 	 (- d~ llj(r))•l-Jj(r))•tjJ(r,l-!;))•Pn(r,ll;(r)) 

ll· (r)( ) 	 1 ()p (r,ll)llJ· -1 r Cl''' ( ) 	 J- _"""n___ dll't' r,}.l P (r,}.l)dll + 	 llt/J(r,ll)
+ ll ar n 	 ar

J	 I 
l-J.(r) 	 ll.(r)

J 	 J 

(eqn. continued next page) 
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= 

2
R. 1J-

3 
r Jl. 

1 
(r)

J­

r 
llj-1 (r) 

+ 11 
J 

11· (r)
J 

ot/J(r,Jl) 
or 

oP (r,ll)
n 
-~-- dJ1. 

or 
( 29) 

Then 

ll. (r)
J-1 oP (r,Jl) 

- llt/J(r,Jl) n 
orI 

11. (r)
J 

( 30) 

Similarly 

11. 	(r)
J 

1- (11. (r)) 2 + 	 + Jllj-1 (r)
11-[ 	 ]•t/J(r,Jl. (r))P (r,11. (r))+2 t/J(r,11)P (r,11)d11 

r J n J 	 r n 

11. 	(r)
Jrj-1 (r) ()p (r,11) 

n
---=o;::.-11-- d 11 

11· (r)
J R2 	 2 

j-1 - Rj + n = - 3- t/J (r,J1J._
1 

(r)) - J t/J (r,Jl. (r) • (-1) 
r 	 r J 

rj-1 (r) 

3P (r,ll) 
nt/J ( r , 11) __;;~0:---- d 11 • ( 31 )11
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It can be seen that when equations 	30 and 31 are added, the 

2 3 ­
evaluated terms, i.e. the terms (R. 1;r )'''(r,~. 1 (r)),J- 'V J­

2 3 + n(R./r }J./J(r,~.(r))·(-1) , cancel. 	 Therefore 
J J 

rj-1 (r) 

~. (r)
J 

gives 

d ~· J-l(r) J~.J-l(r) aP _ (r,1•) 2 aP (r ll)
n '"' + (1-ll ) n ' 

dr ~1./J(r,~)Pn(r,~)d~ 	 (~ ar r a~ )J 
~.(r) 	 ~.(r)

J 	 J 

( 32) 

kThe superscript on J./J (r) denotes the k'th cosine range
0 

~k(r) _: 11 _: llk-l (r) and will be left off of the other moments 

for clarity. Using the results described in Appendix C, the n'th 

moments equations become 

d [- S(r) ,,, (r) + n+l '''n+l (r) + n ''' (r) 1 +
dr a (r) "'n a (r) (2n+l) "' a (r) (2n+l) "'n-1 

n [ (n+l) + 2 ] + 1./J (r) • [E _ 2 S (r)] 
+ J./Jn-1 (r) • (2n+l) ra (r) ll· (r) ll· (r) n 5?- ra (r)

J- 1 J 

n+l n CR,ER, R,+l k 
+ ljJn+l(r)•(2n+l)ra(r) [2 ll· 1 (r)~.(r)]=a(r) k~l 1./JO(r)ono (33 )

J- J 	 ­
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Truncation is performed by forcing ~ (r) = O,n > N for some N. 
n 

Equations for N=O and N=l are as follows: r is expressed in 

mean free paths. For N=O, 

d [- 8(r) ~ (r} 1 + ~o<r> [l _ 28(r) 1dr a (r) 0 ra (r) 

and for N=l, n=O, 

d 8 (r) 1 28 (r) J + 2~1 (r)
dr [- a {r) ~ 0 {r) + a{r) ~1 (r)] + ~0 {r) [l - ra {r) = 

a{r)r 

c.~~, .fl.+l J~ 
( 35)-:::-r:;;:\ E ~ <> { r ) ,

a,r, k=l 

n=l, 

d [- 8{r) ~ (r) + 1 ~ ) ~ ( ) 1 [ 2 + 21dr a (r) 1 3a {r) 0 {r ] + 0 r 3ra (r) 1-1. (r) 1-1. (r)
J-1 J 

28(r)]
+ ~1 { r) [ 1 - ra {r) = 0 . (36) 

(34) 



Solution of Zero'th Order Equations 

Solutions to the equations for N=O will be obtained 

for the case of the black sphere i.e. the division of the co­

sine range into -1 < ~ < ~ 0 (r) and ~0 (r} < ~ < +1. The 

functions a(r} and S(r} needed for the linear transformation 

of~ are obtained as follows. On ~ 0 (r} < ~ < +1, let 

+ 2 a (r} - a (r} = I {37)
l-~ 0 (r} 

(1+~ 0 (r}} S(r} - S+(r} = { 38}
(1-~ 0 (r}} 

and 

1J!o (r} - 1jJ 
+
0 (r} ; (39} 

on -1 < ~ < ~0 (r} , 

- 2 
a (r} - a (r} = {40)

~ 0 (r}+l ' 

(~ 0 (r)-l)-S(r) - s (r} = {41)
(~ 0 (r)+l) 

and 

1jJ 0 (r) - lj!~ (r) . (42} 

From the form of the N=O moments equations on the previous 

page, it seems natural to solve for the function 

= _ S (r) 1jJ (r)g (r) (43) 
a (r) 0 

18 
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Therefore, let 

(l+l-1 (r))
+ s+ (r) + 1 + 	 0 + 

g (r) = 1./J 0 (r) = 1./Jo(r) = 	 1./Jo (r)-	 2a+(r) a (r) 

and let 

(l-l-! (r))- s- (r) 1 	 0g (r) = - 1./J~(r) = 1./J~(r} = 1./J~(r) 
a - (r} a + (r) 

2 

The equations for g-+ {r} are 

d ­
dr g (r) = g {r) (1 - ! + g+{r) , 

r 

d + + 2
dr g (r) = g (r) { -1 - -) - g (r) 

r 

d + ­
=> dr [g (r)+g (r)] = ­

+ - cl 
=> g (r) = -g (r) + 	~ 


r 


The general solution to these equations is 

cl c2-g (r} = - +~,r r 
(Cl-C2) cl 


g + (r) = 
 2 rr 

and so 

(Cl-C2) cl+ 2
1./Jo(r) = ( 	 2 -} Il+l-1 (r) 	 r0 r 

c c2 {_! + ~)1./J~(r) = llo(r)-1 r 2 r 

+ ­=> 1./J(r} = 1./Jo(r}+l./Jo(r} 

(44) 

( 4 5) 

( 46) 

{4 7) 

( 4 8) 

(49) 

(50) 

{51) 

{52) 

(53) 
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21 2
Since ~ ~ , r + oo, where a is the radius of the black1-11 (r)

0 a 
sphere, ljJ(r) ~ Ar+B near r = oo. This solution is denoted ljJG in

T 

the Tables. 

For comparison with these solutions, equations similar 

to the above from Ref. 3 are solved. Explicit description of 

the discontinuity of ljJ(r,lJ) in 11 at 11 (r) through the use of a
0 

delta function expanded in the functions P (r,lJ) was used in m 

this reference;. the equivalence of equations derived in Ref. 3 

without delta function terms to equations derived in this re­

port is shown in Appendix D. Addition of these delta-function 

1 + ­terms involves adding- (g (r)+g (r)) to the left hand sides 
r 

of the above set of equations as was shown in Appendix D. The 

equations to be solved are then 

d - - 3 + 1)(r) = g (r) (1 - -) +g (r) (1 (55)
dr g 

r r 

d + + 3 - 1
(r) = g (r) (-1 - -) g (r) (1 + -) (56)

dr g r r 
d + - 4 + ­

=> [g (r) + g (r)] = - [g (r) + g (r) 1 (57)dr r 

with general solutions 

- cl cl c2 
g (r) = + (58)-4 -­

3 2'
2r r r 

cl cl c2 
g 

+ 
(r) = -- + . (59) 

2r4 3 2 r r 

Then 
cl cl c2 

ljJ~(r) = 
2 (- -+ -) (60)

11 (r)-l 4 3 2
0 2r r r 
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+ 2
ljlo(r) = (61)l+J10 (r) 

and 

This solution is denoted ljiG in the Tables.
H 

With ]1 (r) = 0, the zero order equations with delta0 
function terms included are 

1 - 1 += (1 - r)ljl (r) + (-- l)ljl (r) ( 63)
0 r ,o 


d + 1 + 1

dr 1ji 0 ( r) = - ( r + 1) 1ji 0 ( r) + ( r + 1 ) 1ji 0 ( r) ' ( 6 4) 

d + 2 + 
=> [ljlo(r) - ljl~(r)] = [ljl 0 (r) ljl~(r)] (65)dr r 

with general solutions 

cl cl 
1ji 0 (r) = - -- + c2 (66)r 2 ' 2r

cl cl 
lJio

+ 
(r) = -+ -2 + c2 ( 6 7)

r 2r 

and 

c 
lJi (r) = 2 __.!_ + 2 c (68)

r 2 

Note the similarity to the diffusion solution. This solution 

is denoted ljl~ in the Tables. 

The following section will discuss boundary conditions 

to fix the constants and c 
2

.c 1 
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Boundary Conditions and Discussion of Results 

In the calculations, the boundary condition 

l 

- 1/J(a,l-t)dl-1 = 0 (69)
J 
0 

was used at the surface of the black sphere. The other boun­

dary condition was prescribed in two ways: (i) 1/J(r) at r = oo 

3was set equal to the exact diffusion flux calculated there ), 

the total diffusion current being normalized to ;~ at oo; 

(ii) 1/J(r) was set equal to one at the surface of the sphere 

(since the O'th order equations derived in this report gave 

fluxes that behave like A r + B when r approaches infinity 

(see footnote, page ), solutions could only admit boundary 

condition (ii). An alternative is to set A= 0. The condition 

1/J+ 
0 

(a) = 0 cannot then be used; however, the physically mea­

ningful solution of a flux that is everywhere constant in 

the moderator is then obtained. Tables 1-3 give solutions 

using boundary condition (i) and Tables 4-6 give solution 

values for boundary condition (ii). Differences present at the 

surface of the sphere in Tables 1-3 will be the differences 

obtained at r = oo in Tables 4-6 so the two problems are essen­

tially equivalent. Results for both boundary conditions are 

listed to show the behaviour of the flux bear the surface of 

the sphere (and hence near oo). 

The condition 1/J(a) = 1 means th~t the angular distribu­

tion of the flux at the surface of the black sphere is 
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0 i l..l > 0 
ljJ(a,l..l) = (70)

{ 1; l..l < 0 . 

The current at the surface is then 

1 * 
(71)

2 

and the number of neutrons entering the sphere per second is 

(72) 


Therefore,both boundary conditions used above are just dif­

ferent normalizations of the number of neutrons entering the 

sphere per second. 

It was mentioned earlier that the zero'th moments as 

derived in this report behaved asymptotically like A + B r 

near co When the approximation 

l..l > 0 
(73)ljJ(r,l..l) 

l..l < 0 

for all r is used, Eq. 19 in the lowest order approximation 

gives 

()ljJ~ (r) 

ar = ljJ~(r) - ljJ~(r) (74) 

and 

*The minus sign occurs since the gradie~t of the flux points 
in an outward radial direction. 
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+a1jJ (r)
0 

-~-= (75)ar 

The solution is 

ljJ(r) = 1/J~(r) + 1/J~{r) =A+ Br. (76) 

Thus, the behaviour near infinity of the zero'th moments in an 

expansion with 11 (r) = 0 is the same as that found for ll (r) not
0 0 

identically zero in zero order expansion. 



Conclusion 

The zero order expansion for the angular flux 

derived in this report, along with the application of the 
1 

boundary condition f 1/J(a,ll)dll = 0 at the black sphere 
J 
0

surface has lead to undesirable asymptotic behaviour of 

the flux near infinity in the zero'th order approximation. 

The equations derived in Ref. 3 give better behaviour because 

the discontinuity in the angular flux density was explicitly 

accounted for in those equations. In solving systems of 

higher order, it is apparent that functions of the form 

g (r) = f (a (r) , S (r)) 1/J (r) ..will be used. It is felt by the n n 

author that although explicit addition of the delta function 

terms gives better behaviour of the flux near infinity and 

at the surface of the black sphere in the lowest order, the 

modified equations should be studied on their own in order 

to determine convergence of the expansion and overall be­

haviour of the moments. The black sphere provides the idea­

lization necessary, at the moment, to deal with boundary 

conditions. 
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Appendix. A 

Properties of P (r,~) 
n 

On the open set~. (r) < ~ < ~. 1 (r), P (r,~) is
J J- n 

defined by P (r,~) = P (a(r)~ + S(r)) where a(r), S(r) are n n 
chosen so that P (a(r)~. (r) + S(r)) = -1, P (a(r)~. 1 (r) +S (r))

n J n J ­

= +1. Then, all of the properties of the Legendre polynomials 

carry over under this linear transformation in ~· Orthogo­

nality follows by 

+lrj-l (r) 1= P (~)P (~)d~a (r) m nJ 
~. (r) -1 

J 

1 2 


0= a(r) 2n+l mn 

(~. (r) -~. (r))
]-1 1 0= 2n+l mn 

A recurrence relation that will be used is the following: since 

so 

~P 
n 
(r,~) = S(r)

a(r) 
P (r 11) 

n ''"' 
+ n+l 

a(r) (2n+l) 
P 

n+l 
(r ll}+ n . 

''"' a(r) (2n+l) 
P ( }

n-1 r,~ · 

(A-1) 
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Appendix B 

Derivatives of various functions 

For Rj < r < Rj+1 ' 0 < j ~ L, with R0 , RL+1 = w 

R. 2 
ll· (r) = I 1- (_2)

J r 

and 

(ll. (r)+ll. (r))2 )-1 ]
a (r) = I S(r) = ll. (r)-ll. (r)

J-1 J 

Then 

d11 . (r) R 
2 (1-11~(r))1J _j_ = J 7 (B-1)ar = -ll-j-;-(-r-:-) 3 rll. (r) 

r J 

R. 
2

1 R~ aa (r) -2 [__!_ ( J­= ar 2 3 11. (r) - 11.1r))]
(ll· 1 (r)-ll.(r)) r J-1 JJ- J 

a(r) 1 )= (1 + , (B-2)
r 11. (r) 11. (r)

J-1 J 

()f3(r) = 2S(r) 
1 (B-3)

a r rll . 1 (r) ll . ( r)
J- J 

and 

a S (r) _ 1 8 (r) [ 1 _ 1 ] • (B-4)ar a(r) - r a(r) 11· (r)11.(r)
J-1 J 
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Appendix C 

Integrals of some Functions 

Using Eq. (A~l) 1 

d J.l • 1 (r) 	 d J. J.l • (r) S ( ) 1 
dr J~ J.llJJ ( r 1 J.l ) P n ( r , J.l ) d J.l = dr J ~ lJJ ( r 1 J.l ) • [-a. (~) P n ( r 1 J.l ) + 

J 
].l .(r) J.l.(r)


J J 


n+l 	 n 
+ a.(r) (2n+l) Pn+l(r,].l) + a.(r) (2n+l) Pn-l(r,].l)]d]J 

= d~ [-! ~~~ lJJn (r) + a. (r~~~n+l) lJJ n+l (r) + a. (r) ~2n+l) lJJn-1 (r) ] • 

(C-1) 

Let x(r,].l) = a.(r)].l + S(r). This gives 

d d3l1 = a.(r) ax 

and 

a (J.l aa. (r) + as (r) > a 
ar- ar ar ax 

Then 

J.l. 1 (r)J- ap (r,].l) r].lj-1 (r) 2 ()P (r,].l) 

_n~-- d].l + (1-J.l ) 
 n]JljJ{rl].l) --=-d-].1-- dJ.lar 	 r .J	 J 

J.l. 	(r) J.l. (r)
J J 

J.l • (r)
J 

Using Eq. (B-2) and Eq. (B-13) , 

28 

= J 
J.lj-1 (r) , 

lJJ (r' J.l) 
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3S(r)+a(r)]= -1 (l 2( ))
3r r ra (r) J.l. (r) J.l. (r) -x r' J.l ' 

J-1 J 

and using the recurrence relation 

2 dP n (x) n (n+l)
(1-x ) _d_x__ = 2n+l (Pn-1 {x) -Pn+l (x))' 

the above is 

-1 • n{n+l) (C-2)ra <r> J.l. <r> J.l .TrT 2n+l • {1/Jn-1 (r) -1/Jn+l <r> > · 
J-1 J 

Other integrals used in this report are 

J.lj-l(r) 
(C-3)r~ ljJ(r,].l)Pn{r,].l)d].l = 

J 
J.l. (r)

J 

J.lj-1 (r) 11~+1 J k-l{r)
c~r~ P (r,ll') E ljJ(r,].l)d].ldll'
--2- n

J k=l 


].l. (r) J.lk(r)

J 

C~E~ J11 j-l{r) ~+1 k 
= ~ Pn{r,].l') r 1jJ (r)dJ.l'

0k=l 
lJ.{r)


J 


(C-4) 


and finally 
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llj_1 {r) 

llt/J{r,ll)P {r,ll)dll 

J 
n 

ll. {r)
J 

llj_1 (r) 

S(r) n+1 n 
= t/J(r,ll} ·[-cdr) Pn(r,ll) + a(r} (2n+1} Pn+1 (r,ll) + a(r} (2n+1}r 

J 
ll. (r} 


J Pn_ (r,ll}]dll

1 

S(r} ,,, (r} + n+1 n (C-5}a (r} '~'n a (r) (2n+1) t/Jn+1 (r) + a (r) (2n+1) wn-1 (r) 



Appendix D 

Reduction of O'th Order Equations in Ref. 2 

The O'th order equations in the paper by Harms and 

Attia, Ref. 2, can be reduced to the equations derived in this 

report by omitting the terms deriving from the delta function. 

This reduction proceeds as follows. The delta function terms 

on the cosine range -1 < ~ < ~ 0 {r} are 

2 
{1-~0 {r}} 

00 {-l}t + 
Z:: (2t+l} [ (l- { } } <Pn {r}r t=O ~0 r N 

A similar term exists for the other range of ~- For zero'th 

moment terms, the above expression is 

and this expression also holds for the other cosine ranges. 

With c = 1, = 0, using the notation of Ref. 2,f 1 

BlO =- {1+~0 {r}}' 

and 
(l+~o{r}}2 

+ (1+~ 0 (r.. }).r~ 0 {r} 

31 
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Equations for the zero'th moments derived in this report 

are 

d S(r) 2 S(r) 1 + ­
dr [- a (r) 1/Jo (r) 1 - r a (r) 1/Jo (r) + 1/Jo (r) =a (r) [1/JO (r) +1/Jo (r) 1 • 

On -1 < ~ < ~ 0 (r), 

d <~ 0 (r} -1) _ <~ 0 (r) -1) _ _ <~ 0 (r) +1) + _ 
dr [ 2 1jJ 0 (r)] r 1jJ 0 (r) + 1jJ 0 (r) = 2 [1/J 0 (r) +1/J 0 (r)] ' 

on ~ 0 (r) < ~ < +1, 

d (1+~ 0 (r)) + (1-~ 0 (r)) + + (1-~ 0 (r)) + _ 
dr [ 2 1jJ 0 ( r) ] + r 1jJ 0 ( r) +1/J 0 ( r) = . 2 [ 1jJ 0 ( r) +1/J 0 ( r) ] ' 

+ + (1+~ (r)) 
2 

=>(l+~o(r))d~ 1/Jo(r) =-1/Jo(r) [ r~o(r) + (l+~o(r))]-1/J~(r) (-(1-~o(r))). 
0 

These agree with the Harms-Attia equations listed in Ref. 3. 



s 'il Trans 

o. 17.725 

• 1 30.010 

.2 32.475 

.3 33.620 

.4 34.250 

.5 34.643 

.6 34.913 

.s 35.260 

Table 1 

~Diff-
31.360 

33.027 

33.850 

34.360 

34.683 

34.929 

35.113 

35.360 

~~ 

25.761 

37.729 

36.490 

35.721 

35.329 

35.136 

35.048 

35.014 

~~ 

25.761 

29.197 

30.913 

31.944 

32.630 

33.121 

33.489 

34.004 

%ch ( l.l/ Trant "'~ ) 

+45.3 

+25.7 

+12.4 

+ 6.2 

+ 3.2 

+ 1.4 

+ 0.4 

- 0.7 

0 'th m.oment s'.olutions· !.for a ~ = 0. 2 
from the surface of the sphere. 

• 's' is tne distance 

w 
w 



s \f' Trans-
o. 0.653 

• 1 0.963 

.2 1.101 

.3 1.199 

.4 1. 275 

.5 1.337 

.6 1. 388 

.8 1. 470 

1.0 1.532 

Table 2 

'fG tys %ch (~Tranf 't'~
'\' Diff H H 

1.043 

1.134 

1.210 

1.274 

1.329 

1. 377 

1.418 

1.488 

, .543 

0.678 

1.034 

1.164 

1.247 

1. 307 

1.354 

1.393 

1.454 

1.502 

0.678 

0.801 

0.903 

0.991 

1.065 

1.129 

1.186 

1.280 

1.356 

+3.8 

+7.4 

+5.7 

+4.0 

+2.5 

+1.3 

+0.4 

-1.1 

-1.9 

0 'th moment s'olutions for a ~ = 
from the surface of the sphere. 

1 • 0 • 's' is the distance 

w 
*"' 



--s tt' Trans 't' Diff --'t'~ 'i's 
H \ch ( 't'Tran; 't' ~ ) 

o. 

• 1 

.2 

• 3 

.4 

.5 

.6 

.8 

1. 0 

0.158 

0.219 

0.252 

0.279 

0.301 

0.321 

0.339 

0.369 

0.395 

0.231 

0.255 

0.277 

0.296 

0.315 

0.331 

0.347 

0.374 

0.398 

0.146 

0.214 

0.250 . 
0.277 

0.300 

0.319 

0.336 

0.365 

0.390 

0.146 

0.174 

0.200 

0.223 

0.244 

0.263 

0.281 

0.314 

0. 341 . 

-7.6 

. -2.3 

-o.a 

-0.7 

-0.3 

-0.6 

-0.9 

-1.1 

-1.3 

Table 3 O'th ~oment solutions for a~= 
from the surface of the sphere. 

2.0 • 's' is the distance 

w 
Ul 



s YTrans 

o. 

• 1 

.2 

.3 

.4 

.5 

.6 

.a 

oO 

1.000 

1.693 

1.832 

1 .897 

1. 932 

1.954 

1. 970 

1.989 

2.053 

Table 4 

\ch ( 't'Trani "(~ }'t'oiff y~ ~~ 'f~-
1.000 1.000 1.000 1.000 

1.053 1.945 1 .465 1.133 

1.079 2.266 1.417 1.200 

1.096 2.517 1. 387 1 .240 

1.106 2.743 1.371 1.267 

1.114 2.958 1.364 1.286 

1.120 3.168 1.361 1.300 

1.128 3.580 1.359 1.320 

1.150 tO 1.400 1.400 

0 1 th m.oment solutions for a ~... 0~2 • 
from the surface of the sphere. 

-13.5 

-22.7 

-26.9 

-29.0 

-30.2 

-30.9 

-31.7 

-31.2 

1 s • is the distance 

w 
m 



- -
s 'Y Trans 

o. 

• 1 

.2 

~'3 

.4 

.5 

.6 

.a 

1. 0 

.0 

1.000 

1.475 

1.687 

1.837 

1. 953 

2.048 

2.127 

2.252 

2.347 

3. n3 

Table 5 

~G '¥s
~Diff T ~~ H 

1.000 1.000 1.000 1. 000 

1.170 1.617 1.526 1.182 

1.311 1. 953 1.717 1.333 

1. 417 2.239 1.840 1.462 

01.533 2.500 1.928 1 571 

1.662 2.745 1.998 1.667 

1.699 2.981 2.055 1. 750 

1.829 3.431 2.126 1.889 

1. 933 3.866 2.217 2.000 

1.949 00 3.000 3.000 

O'th ~oment solutions for a~= 1.0 
from the surface of the sphere. 

tch (CV Tran: '\' ~ ) 

+3.5 


+1.8 


+0.2 


-1.3 


-2.4 


-3.4 


-4.7 


-5.5 


-3.6 


• 's' is the distance 

w 
-..J 



't'Gs '\'~ ~ ~'t' Trans "'Diff T 

o. 1.000 

• 1 1.386 

.2 1.594 

.3 1. 762 

.4 1. 904 

.5 2.029 

.6 2.140 

.a 2.332 

1. 0 2.493 

Cl() 4.618 

Table 6 

1.000 1.000 1.000 1.000 

1.103 1.505 1.467 1.191 

1.197 1.817 1.708 1.364 

1. 282 2.094 1.895 1.522 

1. 361 2.353 2.051 1.667 

1.433 2.600 2.184 1.800 

1.499 2.839 2.301 1.923 

1.618 3.300 2.500 2.143 

1.721 3.745 2.665 2.333 

DO3.162 s.ooo 5.000 

O'th W!Oment solutions for a~= 2.0 • 
from ~he surface of the sphere. 

\ch ( \J{ Tfans 

+5.8 

+7.2 

+7.5 

+7.7 

+7.6 

+7.5 

+7.2 

+6.9 

+8.3 

"'' ~ ) 

's' is the distance 

w 
co 
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