ESTIMATION METHODS FOR DETERMINING FAILURE RATES OF COMPONE $T T$ FAMILIES FROM OBSERVED FAILURE RATES OF UNITS AND
 YIELDS OF COMPONENT FAMILIES FROM OBSERVED YIELDS OF UNITS

By
LAWRENCE WESLEY STITT, B.Sc.

A Project
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree
Master of Science

McMaster University
December 1976
MASTER OF SCIENCE (1976) McMaster University
(Statistics)
Hamilton, Ontario
TITLE: Estimation Methods for Determining Fajlure Rates of Component Families from Observed Failure Rates of Units and Yields of Component Families from Observed Yields of Units
AUTHOR: Lawrence Wesley Stitt, B.Sc. (McMaster University)
SUPERVISORS: Professor P.D.M. Macdonald (McMaster University)
Mr. Antonin Wild (Bell Northern Research)
NUMBER OF PAGES: viii, 100

ABSTRACT

In the field of communications electronic plug-in units operating together form a system. In the event of failure a plug-in unit can easily be replaced by another. Each unit consists of electronic components soldered orto a board in a particular pattern. A component may be either a single electronic part such as a transistor or a combination of single parts such as an integrated circuit. Electronic components with similar properties have been grouped into families. This reduces the number of parameters to be estimated from the observations available.

The method of maximum likelihood is used to estimate the failure rates of component families. The number of unit failures and the number of units in use observed during measured periods of time and the component family makeup of the observed units are used to make the estimates.

The probability of an electronic component from a given component Erom a given family being acceptable after the production process will be referred to as the component yield for that family. Similarly, the probability of a given type of unit being acceptabie after the production process will be referred to as the yield for that type of unit. By taking the logarithms of the yields, the estimation problem can be reduced to the linear problem of estimating logarithns of component fanily yields. Using unit yields, the total
number of each type of unit produced, and the component family makeup of those units produced, component family yields are estimated. The method of maximum likelihood is applied directly to the data and the method of weighted least squares is applied to the linearized problem.

ACKNOWLEDGEMENTS

I wish to thank both Dr. P.D.M. Macdonald of McMaster University and Mr. Antonin Wild of Bell Northern Research for their assistance in this work.

A special thanks is due to Mr. Diju Raha of Bell Northern Research for providing the problems and the resources of Bell Northern Research with which to work towards solutions. Thanks are also due to other employees of Bell Northern Research including Mr. John Rakos, Mr, Attilio DeBernardo and Miss Pat Paley, for their assistance in times of need.

Finally, I wish to thank Susan Baker for typing the project.

TABLE OF CONTENTS
Page
CHAPTER 1 - INTRODUCTION 1
CHAPTER 2 - COMPONENT FAMILY FAILURE RATES FROM OBSERVED UNIT FAILURE RATES 2
2.1 Introduction 2
2.2 Method of Maximum Likelihood 3
2.3 Discussion and Recommendations 7
2.3.1 Monte Carlo Study 7
2.3.2 Applications 12
CHAPTER 3-COMPONENT FAMILY YIELDS FROM OBSERVED UNIT YIELDS 18
3.1 Introduction 18
3.2 Method of Maximum Likelihood 20
3.3 Method of Weighted Least Squares 22
3.4 Discussion and Recommendations 25
3.4.1 Monte Carlo Study 25
3.4.2 Applications 33
APPENDIX 1 - THE METHOD OF SCORING 43
APPENDIX 2 - THE NELDER MEAD SIMPLEX METHOD OF OPTIMIZATION 44
APPENDIX 3 - PROGRAMS FOR THE COMPONENT FAILURE RATE PROBLEM 47
APPENDIX 4 - PROGRAMS FOR THE COMPONENT YIELD PROBLEM 63
REFERENCES 100

LIST OF TABLES

Page
1 Percentage of Approximate 95\% Confidence Intervals For Failure Rates Containing the True Parameter Value 13
2 Percentage of Approximate 95% Confidence Intervals For Yields Containing the True Paraneter Value 30
3 Estimated Variance Covariance Matrix for the One Hindred Estimates of the Logarithms of the Component Family Yields 32
4 Inverse of the True Information Matrix for the Logarithns of the Component Family Yields 32
5 Component Family Structure of the Artificial Units Used For the Monte Carlo Study of the Weighted Least Squares Method for Component Family Yields 34
6 Estimated Component Family Yields Using the Method of Scoring to Maximize the Likelihood 38
7 Results of Test Run on the Program FATLMLE 51
8 Results of Test Run on the Program LINLSQ 68
9 Results of Test Run on the Program PREDMLE 68
Figure Page1 Distribution of the One Hundred Monte Carlo Estimatesof the Failure Rate of Component Family 192 Distribution of the One Hundred Monte Carlo Estimatesof the Failure Rate of Component Family 210
Distribution of the One Hundred Monte Carlo Estimates of the Failure Rate of Component Family 3 114 Sequence of Converging Component Failure RateEstimates Using 10^{-24} as Starting Values15
Sequence of Converging Component Failure RateEstimates Using 10^{5} as Starting Values16
Distribution of the One Hundred Monte Carlo Estimatesof the Logarithm of the Yield of Component Family 127
Distribution of the One Hundred Monte Carlo Estimates of the Logarithm of the Yield of Component Family 2 28
Distribution of the One Hundred Monte Carlo Estimatesof the Logarithm of the Yield of Component Family 329Input Format for the Program FAILMLE50
11 Input Format for the Program LINLSQ 67

CHAPTER 1

INTRODUCTION

One of the tasks of a reliability engineer in the communications industry is prediction. If the yield of electronic units from the production line can be predicted, producers can better predict production costs and hence determine a selling price for their products. If the reliability of a newly designed electronic unit can be predicted, purchasers of the units can be given estimates of their maintenance costs. Knowledge of the component family yields and component family reliabilities would make these predictions possible.

Components within an electronic unit may either be in series or in parallel. In the case of components in series, a component failure will cause a break in the circuit thereby resulting in a unit failure. When a component which is parallel with another fails the circuit is not broken and hence the unit continues to function. Parallel components are sometimes installed in order to lengthen the lifetime of an electronic circuit. Designers of electronic plugin units tend to avoid parallel components because a plug-in unit can be easily replaced, parallel components add to the cost of production, and the lifetine of a unit is not greatly prolonged by the addition of extra components. It is cherefore reasonable to assume that components within units are in series.

CHAPTER 2

FAILURE RATES OF COMPONENT FAMILIES FROM UNIT FAILURE RATES

2.1 Introduction

The reliability of an electronic unit can be estimated if the unit has been in service for a length of time, but no adequate method has been developed for predicting the reliability of a newly designed unit. If estimates of component family reliabilities were available this would be possible. When units from the field are serviced, a list of those components replaced can be obtained. Unfortunately no differentiation is made between those components which have been removed because of failure and those removed as trouble shooting aids. As a result, no direct method of estimating component reliabilities is available. Testing of the reliability of electronic components under actual operating conditions is costly in terms of both time and money. Accelerated testing, where components are tested at their highest ratings of temperature and humidity have been done. However, in the tests, chemical reactions which occur within components at different temperatures and humidities make the results difficult to apply. Tests of the reliability of electronic components have been done in the aircraft industry but cannot be applied because of the effect of vibration as well as different temperature and humidity conditions. For purposes of prediction, a method of estimating component family
reliabilities is needed by reliability enginesrs.
Units within a system can be assumed to operate independently. The failure of one unit does not damage another unit or cause another unit to fail. The same assumption can be made for individual components since those components which have failed or have been damaged as a result of the original component failure are replaced along with the original component which failed. Unfortunately damage to components cannot always be detected. Component failures are assumed to follow a Poisson process with a constant failure rate. With a constant failure rate, components can be replaced without affecting the model.

2.2 Method of Maximum Likelihood

Consider N distinct types of electronic units produced using components from M distinct component families. Since components

$$
\begin{aligned}
& \text { are Poisson: } \\
& \qquad P[z \text { components of type } j \text { failing in time } t]=\frac{e^{-\alpha_{j} t}\left(\alpha_{j} t\right)^{z}}{z!}(j=1, \ldots, M),
\end{aligned}
$$

where α_{j} is the constant failure rate of a component of type j.
Since component failures are independent and components are in series:

$$
\lambda_{i}=\sum_{j=1}^{M} \alpha_{j} q_{i j} \quad(i=1, \ldots, N),
$$

where λ_{i} is the constant failure rate of a unit of type i and $q_{i j}$ is the number of components of type j in a unit of type i.

The total number of units of a particular type in actual use and the total number in the field may vary from one time period to
another. As a result, the expected number of failures may differ from one period to another. Let $Y_{i k}$ be the random variable denoting the number of failures of a unit of type i during the $k^{\text {th }}$ time period. Then $Y_{i k}$ is Poisson with parameter $\phi_{i k}$ where:

$$
\phi_{i k}=\quad \gamma_{i k} n_{i k} t_{k} \lambda_{i} \quad(i=1, \ldots, N ; k=1, \ldots, K) ;
$$

and $\gamma_{i k}$ is the proportion of the units of type i in the field actually used during the $k^{\text {th }}$ time period, $n_{i k}$ is the total number of units of type in the field during the $\mathrm{k}^{\text {th }}$ time period, and t_{k} is thelength of the $k^{t h}$ time period.

The likelihood function L can now be set up:

$$
L\left(\alpha_{1}, \ldots, \alpha_{M} \mid y_{11}, \ldots, y_{N K}\right)=\stackrel{N}{i=1}{\underset{k=1}{K} \prod_{1} \frac{e^{-\phi_{i k}} \phi_{i k}^{y_{i k}}}{y_{i k}!} .}^{n} .
$$

Maximizing the likelihood is equivalent to maximizing the logarithm of the likelihood:

$$
\log L\left(\alpha_{1}, \ldots, \alpha_{M} \mid y_{11}, \ldots, y_{N K}\right)=\sum_{i=1}^{N} \sum_{k=1}^{K}\left\{y_{i k} \log \phi_{i k}-\phi_{i k}-\log \left(y_{i k}!\right)\right\}
$$

To maximize log, its derivatives are taken with respect to the parameters $\alpha_{s}(s=1, \ldots, M)$ and set equal to zero. Since:

$$
\phi_{i k}=\gamma_{i k} n_{i k} t_{k} \sum_{j=1}^{M} \alpha_{j} q_{i j} \quad(i=1, \ldots, N ; k=1, \ldots, k)
$$

it follows that:

$$
\frac{\partial \phi_{i k}}{\partial \alpha_{s}}=\gamma_{i k} n_{i k} t_{k} q_{i s} \quad(i=1, \ldots, N ; k=1, \ldots, K ; s=1, \ldots, M)
$$

Hence:

$$
\begin{aligned}
\frac{\partial \operatorname{logL}}{\partial \alpha_{s}} & =\sum_{i=1}^{N} \sum_{k=1}^{K}\left\{\frac{y_{i k}}{\phi_{i k}} \frac{\partial \phi_{i k}}{\partial \alpha_{s}}-\frac{\partial \phi_{i k}}{\partial \alpha_{s}}\right\} \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K}\left\{\gamma_{i k} n_{i k} t_{k} q_{i s}\left\{\frac{y_{i k}}{\phi_{i k}}-1\right\} \quad(s=1, \ldots, M) .\right.
\end{aligned}
$$

Set derivatives equal to zero and solve for $\hat{\alpha}_{s}(s=1, \ldots, M)$ where $\hat{\alpha}_{s}$ is the maximum likelihood estimate of the failure rate of a component of the $s^{\text {th }}$ component family:

$$
\sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_{i k} n_{i k} t_{k} q_{i s}\left\{\frac{y_{i k}}{\gamma_{i k} n_{i k} t_{k} \sum_{j=1}^{M} \hat{\alpha}_{j} q_{i j}}-1\right\}=0 \quad(s=1, \ldots, M) .
$$

The method of scoring (Appendix 1) is used to solve this set of non-1inear equations. The information matrix is required for scoring:

$$
\begin{aligned}
& \frac{\partial^{2} \log L}{\partial \alpha_{t} \partial \alpha_{s}}=\sum_{i=1}^{N} \sum_{k=1}^{K} q_{i s} y_{i k} \frac{\partial}{\partial \alpha_{t}}\left(\frac{1}{\sum_{j=1}^{M} \alpha_{j} q_{i j}}\right) \\
& \\
& =-\sum_{i=1}^{N} \sum_{k=1}^{K} \frac{y_{i k} q_{i s} q_{i t}}{\left(\sum_{j=1}^{M} \alpha_{j} q_{i j}\right)^{2}} \quad(s=1, \ldots, M ; t=1, \ldots, M), \\
& E\left[\frac{-\partial^{2} 10 g L}{\partial \alpha_{t} \partial \alpha_{s}}\right]=\sum_{i=1}^{N} \sum_{k=1}^{K} \frac{\gamma_{i k} n_{i k} t_{k} q_{i s} q_{i t}}{\sum_{j=1}^{M} \alpha_{j} q_{i j}}=9(s, t)
\end{aligned}
$$

$$
\hat{\vartheta}(s, t)=\sum_{i=1}^{N} \sum_{k=1}^{K} \frac{\gamma_{i k} n_{i k} t_{k} q_{i s} q_{i t}}{\sum_{j=1}^{M} \hat{\alpha}_{j} q_{i j}} \quad(s=1, \ldots, M ; t=1, \ldots, M) .
$$

Using the inverse of the estimated information matrix an approximate $100(1-\varepsilon) \%$ confidence interval for the $s^{\text {th }}$ component family failure rate is

$$
\hat{\alpha}_{s} \pm z_{\varepsilon / 2} \sqrt{\hat{Y}^{-1}(s, s)} \quad(s=1, \ldots, M)
$$

where $z_{\varepsilon / 2}$ is the $100 \varepsilon / 2 \%$ critical value for the normal distribution and $\hat{\vartheta}^{-1}(s, s)$ is the (s, s) entry of the inverse of the estimated information matrix.

Unit failure rates can now be predicted using our estimated component family failure rates:

$$
\hat{\lambda}_{0}=\sum_{j=1}^{M} \hat{\alpha}_{j} q_{0 j},
$$

where $\hat{\lambda}_{0}$ is the predicted failure rate of any unit made of components from the M component families for which we estimated failure rates and $q_{0 j}$ is the number of components of type j in that unit.

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\lambda}_{0}\right) & =\operatorname{Var}\left(\sum_{j=1}^{M} \hat{a}_{j} q_{0 j}\right) \\
& =\sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \operatorname{Cov}\left(\hat{\alpha}_{j}, \hat{\alpha}_{k}\right) \\
& \simeq \sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \theta^{-1}(j, k) \\
& \simeq \sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \hat{g}^{-1}(j, k)
\end{aligned}
$$

Then approximate $100(1-\varepsilon) \%$ confidence intervals for the unit failure rates based on the predicted failure rates are:

$$
\hat{\lambda}_{0} \pm z_{\varepsilon / 2} \sqrt{\sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \hat{\jmath}^{-1}(j, k)}
$$

Using the normal approximation to the Poisson distribution, approximate $100(1-\varepsilon) \%$ confidence intervals for the unit failure rates based on the observed failure rates are:

$$
\sum_{k=1}^{K} \frac{y_{i k}}{\gamma_{i k} n_{i k} t_{k}} \pm z_{\varepsilon / 2} \sqrt{\sum_{k=1}^{K} \frac{y_{i k}}{\gamma_{i k} n_{i k} t_{k}}} \quad(i=1, \ldots, N) .
$$

For those units used to estimate the component family failure rates, the approximate confidence intervals for unit failure rates based on predicted failure rates can be compared with those based on observed failure rates.

An approximate test of fit can be done using the normal approximation to the Poisson distribution. The statistic
 degrees of freedom.

2.3 Discussion and Recommendations

2.3.1 Monte Carlo Study:

Ten distinct artificial units, each made of components from three distinct families with known failure rates, were simulated. Setting the ratio of units in use to the number of units in the field to one, the number of each type of unit in use for a period of five
thousand hours was chosen to represent possible actual conditions. One hundred samples of the number of failures of each of the ten units were randomly generated using the normal approximation to the Poisson distribution. If Y_{i} is Poisson with mean ϕ_{i} and variance ϕ_{i}, then Y_{i} is approximately normal with mean ϕ_{i} and variance ϕ_{i}. Estimates of the component family failure rates and predicted unit failure rates were then made for the one hundred samples using the method of maximum likelihood.

Approximate ninety-five percent confidence intervals for each of the component family failure rate estimates for the one hundred samples were calculated under the assumption that the component family failure rates are approximately normal. The estimates made from the generated unit failure rate data appear to be approximately normal (Figures 1, 2 and 3). Under actual conditions, it can be expected that the same will occur. A likelihood ratio test was used to test equality of the estimated variance-covariance matrix of the one hundred sets of component family failure rates and the inverse of the true information matrix (T.W. Anderson, 1958, Section 10.8). The calculated statistic was 5.16 . The five percent Chi-squared critical value on six degrees of freedom is 12.6, meaning that the hypothesis of equality of the two matrices is accepted at the five percent level. Then the use of the inverse of the estimated information matrix in calculating confidence intervals should not affect the level of confidence.

Figure 1

True Value: 10.0 failures $/ 10$ million hours Average of Estimates: 10.166 failures $/ 10$ million hours

Figure 2
Distribution of the One Hundred Monte Carlo

Estimate of Failures per ten million hours

True Value: 5.0 failures $/ 10$ million hours Average of Estimates: 4.830 failures $/ 10$ million hours

Figure 3
Distribution of the One Hundred Monte Carlo Estimates of the Failure Rate of Component Family 3

True Value: 1.0 failures $/ 10$ million hours Average of Estimates: . 997 failures/10 million hours

The number of confidence intervals for each family containing the true parameter value indicates that the true level of confidence may be less than ninety-five percent (Table 1). Further Monte Carlo studies with larger samples would allow us to make stronger inferences regarding confidence levels, as the differences between the observed levels of confidence and ninety-five percent may be the result of sampling error.

Since the predicted unit failure rates are linear combinations of the estimates of component family failure rates, it can be expected that predicted unit failure rates will be closer to normal distributions. Evidence of this can be seen from the approximate ninety-five percent confidence intervals for the unit failure rates based on the predicted unit failures. Although still below ninety-five percent, the level of confidence appears to be greater than that for the confidence intervals for component family failure rates. This property will be advantageous when the reliability of a new unit is predicted.

2.3.2 Applications

Information regarding failure rates of electronic units in the field was not available when the computing work was done. As a result, at this time, there is no indication of how well the model fits actual conditions. If unit failure rate data is to be used to estimate component family failure rates, accurate methods of collecting data from users of electronic units mast be developed and users must be convinced of the need of accurate data. As the quality

PERCENTAGE OF APPROXIMATE 95\% CONFIDENCE INTERVALS FOR

 FAILURE RATES CONTAINING THE TRUE PARAMETER VALUECOMPONENT FAMILIES
COMPONENT
PAMILY
CONTAINING TRUE VALUE

1
2
3

92\%
93\%
93\%
CONFIDENCE INTERVALS BASED ON PREDICTED UNIT FAILURE RATES
PERCENTAGE
UNIT
1
93\%
2
95\%
3
95\%
4
96\%
5
95\%
6
95\%
7
92\%
8
92\%
9
96\%
10
95\%
on incoming information improves, the estimates of component family failure rates should improve.

The method of maximum likelihood was applied to a single set of randomly generated approximately Poisson unit failures for one period of time. Ten distinct units made from components of three distinct families were considered. The test of fit statistic calculated from the predicted unit failure rates and observed failure rates was 6.15. This is less than 14.1 , the five percent critical value for the Chi-squared distribution on seven degrees of freedom, indicating that this set of data fits the maximum likelihood model. Different starting values were tried for the iterative scheme. It was found that, for this set of generated failure rate data, the scheme converged quickly for starting values between 10^{-24} and 10^{5} failures per ten million hours (Figure 4 and Figure 5). For this set of data the true component family failure rates per ten million hours were ten for the first family, five for the second, and one for the third. This wide range of values for which the method will converge will allow users of the method to proceed without having prior knowledge of approximate failure rates of the components. Future studies of this method, involving randomly generated unit failure rate data, should include more than one period of time.

A lack of sufficient unit failure rate data requires reliability engineers to group components into families. Care must be taken to insure that components are grouped into families of components having the same failure rates. Otherwise, predicted unit

Figure 4

```
N=0
    ALPHA( 1)=0.10000003E-23
    ALPHA( 2) = 0.10000003E-23
    ALFHA(3)=0.10000003E-23
N = 1
    ALPHA( 1) = 0.11217773E+02
        ALPHA( ?) = 0.45475035E+01
        ALPHA( 3) = 0.89707947E+00
N=2
    ALPHA( 1)=0.11396892E+02
        ALPHA( 2) = 0.40041603E+01
        ALPHA(3)=0.88496155F+00
N = 3
                ALPHA( 1) = 0.11390028F+02
                AL.PHA( 2) = 0.46050740E+01
                ALPHA( 3) = 0, SB474065t+00
M=4
                41.PHA(1)=0.11390049%+02
                ALPHA(2)=0.40050030E+01
                ALPHA( 3) = 0.8R473552E+00
F=5
                ALPPMA( 1) = 0.11390092F+02
                ALPMA( 2)=0.40050930F+01
                ALPHA( 3) = 0.8B473612E+00
N=6
                ALPHA( 1)=0.11390090E+02
                ALEWA( 2) = 0.46050949F+01
                ALPHA( 3) = 0.48475552E+00
N=7
                ALPHA( 1) = 0.11390090F+02
                ALPHA( ?) = 0.46050911f+01
                ALPHA( 3) = 0.88473624F+00
|=R
                A1PHA( 1)=0.11570086E+0?
                AINHA( 2) = 0.46050873F+01
                A!PHA( 3) = 0.8A473666F+00
```

Figure 5
$N=0$
ALPHA $\quad 1)=0.10000000 E+06$
ALPHA 2$)=0.10000000 E+06$
ALPHA (3) $=0,10000000 E+06$
$N=1$
ALPHA(1$)=0.15000000 E+02$
ALFHA (2) $=0.73750000 F+01$
ALPHA (3) $=0.10000000 \mathrm{~F}+01$
$N=2$
ALPHA (1$)=0,11416687 E+02$
AlPHA (2$)=0.46204288+01$
ALPHA(3) $=0.08267040 E+00$
$N=3$
$\triangle \operatorname{LPHA}(1)=0.11390633 E+02$
ALPHA (2) $=0.46053104 E+01$
A LPHA (3$)=0.88469625 t+00$
$N=4$
ALPHA(1$)=0.11390099 E+02$
ALPHA (2) $=0.40050987 \mathrm{E}+01$
ALPHA(3) $=0.88473541 E+00$
$N=5$
ALPHA (1) $=0.11390092 E+02$
ALPHA (2) $=0.46050930 E+01$
AL.PHA (3$)=0.68473600 E+00$
$N=6$

> ALPHA 1$)=0.11390099 F+02$ ALPHA 2$)=0.46950949 \mathrm{E}+01$
> ALPHA 3$)=0.88473541 \mathrm{~F}+00$
$N=7$
ALPHA $(1)=0.11390090 E+02$
ALPHA 2$)=0.46050911 E+01$
ALPHA (3$)=0.88473612 \mathrm{~F}+00$
$N=\beta$
ALPHA (1) $=0.11390087 E+02$
ALPHA 2) $=0.46050911 E+01$
ALPHA (3) $=0.884736425+00$

Sequence of Converging Component Family Failure Rate Estimates using 10^{5} as Starting Values
failure rates are likely to be poor estimates of the true unit failure rates. Results from accelerated tests and from tests in other fields may be of use in grouping components into families.

CHAPTER 3

YIELD OF COMPONENTS FROM THE YIELD OF UNITS

3.1 Introduction:

Faulty components, damage due to handling during production, and failures expected during normal use contribute to newly produced electronic components failing test procedures. A method of estimating the component family yields from the observed yields of units, the total number of each type of unit produced, and the component makeup of the observed units would enable reliability engineers to predict production yields of newly designed units.

The effect of the production process on one particular component is assumed to be independent of the effect on any other component. Hence, the number of acceptable components of a particular type within a particular unit after production will be a binomial observation. Let $X_{i j}$ be a binomial random variable denoting the number of acceptable components of type j in a unit of type i, that is:

$$
\begin{aligned}
& P\left[x_{i j}=x_{i j}\right]=\binom{q_{i j}}{x_{i j}} \quad A_{j}^{x_{i j}}\left(1-A_{j}\right)^{q_{i j}-x_{i j}} \\
&\left(x_{i j}=0, \ldots, q_{i j} ; j=1, \ldots M ; i=1, \ldots, N\right),
\end{aligned}
$$

where $q_{i j}$ is the number of components of type j being acceptable after production, N is the number of distinct types of units to be
used in the estimation procedure, and M is the number of distinct component families found in the N observed units. The probability of a unit of type i being accepted can be expressed as a joint binomial probability, that is:

$$
P\left[x_{i 1}=q_{i 1}, \ldots, x_{i M}=q_{i M}\right]=\prod_{j=1}^{M} A_{j}^{q_{i j}} \quad(i=1, \ldots, N)
$$

Denote:

$$
p_{i}={ }_{j=1}^{M} A_{j}^{q_{i j}} \quad(i=1, \ldots, N)
$$

It follows from the independence of the acceptability of components, that units are independently produced. Thus, the number of acceptable units of type i produced during a production period will also be binomial. Denoting by the random variable Y_{i}, the number of acceptable units produced during a production period, we get:

$$
\begin{aligned}
& P\left[Y_{i}=y_{i}\right]=\binom{n_{i}}{y_{i}} p_{i}^{y_{i}}\left(1-p_{i}\right)^{n_{i}-y_{i}} \\
&=\binom{n_{i}}{y_{i}} \quad \begin{array}{ll}
{\left[_{j=1}^{M}\right.} & \left.A_{j} q_{i j}\right]^{y_{i}}\left(1-\left[\prod_{j=1}^{M} A_{j} q_{i j}\right]\right) \\
n_{i}-y_{i}
\end{array} \\
& \quad\left(0 \leqslant y_{i} \leqslant n_{i}, i=1, \ldots, N\right)
\end{aligned}
$$

It follows that:

$$
E\left[\frac{Y_{i}}{n_{i}}\right]=p_{i} \quad(i=1, \ldots, N),
$$

and:

$$
\operatorname{Var}\left[\frac{Y_{i}}{n_{i}}\right]=\frac{p_{i}\left(1-p_{i}\right)}{n_{i}} \quad(i=1, \ldots, N)
$$

Then using the normal approximation to the binomial distribution, an approximate $100(1-\varepsilon) \%$ confidence interval for a unit of type is:

$$
\frac{y_{i}}{n_{i}} \pm z_{\varepsilon / 2} \sqrt{\frac{\frac{y_{i}}{n_{i}}\left(1-\frac{y_{i}}{n_{i}}\right)}{n_{i}}} \quad(i=1, \ldots, N)
$$

3.2 Method of Maximum Likelihood

Consider N distinct types of electronic units produced using components from M distinct component families. Using the distribution of acceptable components produced, the likelihood equation can be set up:

$$
L\left(A_{1}, \ldots, A_{M} \mid y_{1}, \ldots, y_{N}\right)=\stackrel{N}{\prod_{=1}}\binom{n_{i}}{y_{i}} \quad\left[\prod_{j=1}^{M} A_{j}^{q_{i j}}\right]^{y_{i}}\left(1-\left[\prod_{j=1}^{M} A_{j}^{q_{i j}}\right]\right)^{n_{i}-y_{i}}
$$

Maximizing the likelihood is equivalent to maximizing the logarithm of the likelihood:

$$
\begin{aligned}
& \operatorname{logL}\left(A_{1}, \ldots, A_{M} \mid y_{1}, \ldots, y_{N}\right) \\
& \quad=\sum_{i=1}^{N}\left\{\log \binom{n_{i}}{y_{i}}+y_{i} \sum_{j=1}^{M} q_{i j} \log A_{j}+\left(n_{i}-y_{i}\right) \log \left(1-\left[\prod_{j=1}^{M} A_{j}{ }_{i j}\right]\right)\right\}
\end{aligned}
$$

To maximize $\log \mathrm{L}$, the derivatives with respect to $A_{s}(s=1, \ldots, M)$ are found and set equal to zero.

$$
\frac{\partial \log L}{\partial A_{s}}=\sum_{i=1}^{N} \frac{q_{i s}\left(y_{i}-n_{i}\left[{ }_{j} \prod_{=1}^{M} A_{j}{ }^{q_{i j}}\right]\right)}{\left(A_{s}-A_{s}\left[\prod_{j=1}^{M} A_{j}{ }^{\left.q_{i j}\right]}\right)\right.} \quad(s=1, \ldots, M)
$$

Set the derivatives equal to zero and solve for $\hat{A}_{s}(s=1, \ldots, M)$ where \hat{A}_{s} is the estimated yield for a component of the $s^{\text {th }}$ component family:

$$
\sum_{i=1}^{N} \frac{q_{i s}\left(y_{i}-n_{i}\left[{ }_{j=1}^{M} \hat{A}_{j} \hat{A}_{i j}\right]\right)}{\left(\hat{A}_{s}-\hat{A}_{s}\left[\prod_{j=1}^{M} \hat{A}_{j} q_{i j}\right]\right)}=0 \quad(s=1, \ldots, M)
$$

The simplex method developed by Ne1der and Mead (Appendix 2) is used to solve for the maximum likelihood estimates of the component family yields. This method proved to be preferable to the method of of scoring. (See page 37.)

The estimated information matrix is used to estimate confidence intervals:

$$
\begin{aligned}
& \frac{\partial^{2} \operatorname{logL}}{\partial A_{t} A_{s}}=\sum_{i=1}^{N} \frac{q_{i s} q_{i t}\left[{ }_{j=1}^{M} A_{j}^{q}{ }^{q_{i j}}\right]\left(y_{i}-n_{i}\right)}{A_{s} A_{t}\left(1-\left[\sum_{j=1}^{M} A_{j}^{q_{i j}}\right]\right)^{2}} \quad(s=1, \ldots, M ; t=1, \ldots, M), \\
& E\left[\frac{-\partial^{2} \log L}{\partial A_{t} \partial A_{s}}\right]=\sum_{i=1}^{N} \frac{n_{i} q_{i s} q_{i t}\left[\prod_{j=1}^{M} A_{j}{ }^{q_{i j}}\right]}{A_{s} A_{t}\left(1-\left[M_{j=1}^{M} A_{j} q_{i j}\right]\right)} \\
& =9(s, t) \quad(s=1, \ldots, M ; t=1, \ldots, M) \text {, } \\
& \hat{g}(s, t)=\sum_{i=1}^{N} \frac{n_{i} q_{i s} q_{i t}\left[\prod_{j=1}^{M} \hat{A}_{j}{ }^{q_{i j}}\right]}{A_{s} \hat{A}_{t}\left(1-\left[\prod_{j=1}^{M} \hat{A}_{j} q_{i j}\right]\right)} \quad \begin{array}{r}
(s=1, \ldots, M ; \\
t=1, \ldots, M) .
\end{array}
\end{aligned}
$$

Then an approximate $100(1-\varepsilon) \%$ confidence intervals for the $s{ }^{\text {th }}$ component family yield is

$$
\hat{A}_{s} \pm z_{\varepsilon / 2} \sqrt{\hat{g}^{-1}(s, s)} \quad(s=1, \ldots, M)
$$

where $z_{\varepsilon / 2}$ is the $100 \varepsilon / 2 \%$ critical value for the normal distribution and $\hat{g}^{-1}(s, s)$ is the (s, s) entry of the inverse of the estimated information matrix.

Yields of units can now be predicted using the estimated component family yields:

$$
\hat{\mathrm{P}}_{0}=\frac{M}{I} \hat{\mathrm{~A}}_{j}^{q_{0 j}}
$$

where $\hat{\mathrm{p}}_{0}$ is the predicted yield of any unit made of components from the M component families for which we estimated yields and $q_{0 j}$ is the number $q_{0 j}$ is the number of components of type j in that unit. The predicted yields of the N units used in the estimation procedure can be compared with the confidence intervals for unit yields based on the observed values.

An approximate test of fit can be performed using the normal approximation to the binomial distribution. The statistic $\sum_{i=1}^{N} \frac{\left(y_{i}-n_{i} \hat{p}_{i}\right)^{2}}{n_{i} \hat{p}_{i}\left(1-\hat{p}_{i}\right)}$ is asymptotically Chi squared on $N-M$ degrees of freedom.

3.3 Method of Weighted Least Squares

Consider N distinct types of electronic units produced using components from M distinct component families. Take the logarithm of the yield of a unit of type i :

$$
\log p_{i}=\sum_{j=1}^{M} q_{i j} \log A_{j} \quad(i=1, \ldots, N)
$$

Let Y_{i} be the random variable for the acceptable number of units produced if a total of n_{i} units of type i are produced. Then, since the distribution of acceptable units produced is assumed to be binomial the exact mean and variance of Y_{i} / n_{i} are known. The exact
variance of $\log \left(\mathrm{Y}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}\right)$, however, is unknown but can be approximated. Let:

$$
\begin{array}{ll}
b\left(\frac{Y_{i}}{n_{i}}\right)=\log \left(Y_{i} / n_{i}\right) & (i=1, \ldots, N), \\
b^{\prime}\left(\frac{Y_{i}}{n_{i}}\right)=\frac{1}{Y_{i} / n_{i}} & (i=1, \ldots, N) .
\end{array}
$$

By Taylor's Theorem:

$$
b\left(\frac{Y_{i}}{n_{i}}\right) \simeq b\left(p_{i}\right)+\left(\frac{Y_{i}}{n_{i}}-p_{i}\right) b^{\prime}\left(p_{i}\right)
$$

where y_{i} is an observed value of Y_{i}.
Then:

$$
\begin{aligned}
\operatorname{Var}\left[b\left(\frac{Y_{i}}{n_{i}}\right)\right] & \simeq\left\{b^{\prime}\left(p_{i}\right)\right\}^{2} \operatorname{Var}\left[\frac{Y_{i}}{n_{i}}\right] \\
& =\left(\frac{1}{p_{i}}\right)^{2} \frac{p_{i}\left(1-p_{i}\right)}{n_{i}} \\
& \simeq \frac{n_{i}-y_{i}}{n_{i} y_{i}} \\
& =w_{i}^{2}, \text { say } \quad(i=1, \ldots, N)
\end{aligned}
$$

The method of weighted least squares can be applied:

$$
\hat{A}=\left(Q_{*}^{\prime} Q_{*}\right)^{-1} Q_{*}^{\prime} y_{*}
$$

where:

$$
\hat{A}=\left[\begin{array}{cc}
\log \hat{A}_{1} \\
\vdots \\
\log \hat{A}_{M}
\end{array}\right], y_{*}=\left[\begin{array}{c}
\frac{\log y_{1}}{w_{1}} \\
\vdots \\
\frac{\log y_{N}}{w_{N}}
\end{array}\right], Q_{*}=\left[q_{i j / w_{i}}\right]_{N \times M} .
$$

Approximate $100(1-\varepsilon) \%$ confidence intervals for the logarithm of the component family yields are:

$$
\log \hat{A}_{s} \pm t_{\varepsilon / 2}(N-M) \sqrt{\left(Q_{*}^{\prime} Q_{*}\right)^{-1} \hat{\sigma}^{2}} \quad(s=1, \ldots, M)
$$

where $t_{\varepsilon / 2}(N-M)$ is the $100 \varepsilon / 2 \%$ critical value for the student's t distribution on $N-M$ degrees of freedom, $\left(Q_{*}^{\prime} Q_{*}\right)^{-1}$ is the (s, s) entry of the matrix $\left(Q_{*} Q_{*}\right)^{-1}$ and $\hat{\sigma}^{2}$ is an estimate of the residual variance:

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\left(y_{*}-Q_{*} \hat{A}^{\prime}\right)^{\prime}\left(y_{*}-Q_{*} \hat{A}\right)}{N-M} \\
& =\frac{y_{*}^{\prime} y_{*}-\hat{A} Q_{*}^{\prime}}{N-M}
\end{aligned}
$$

By taking the exponent of the bounds of the confidence intervals, approximate $100(1-\varepsilon) \%$ confidence intervals for the estimates of the component family yields can be found:

$$
\hat{A}_{s} \exp \left(\pm t \varepsilon / 2(N-M) \sqrt{\left(Q_{*}^{\prime} Q_{*}\right)_{s, s}^{-1} \hat{\sigma}^{2}}\right) \quad(s=1, \ldots, M) .
$$

Yields of units can now be predicted using the estimates of component family yields:

$$
\hat{p}_{0}={ }_{j=1}^{M} \hat{A}_{j}{ }^{q_{0 j}}
$$

where $\hat{\mathrm{p}}_{0}$ is the predicted yield of any unit composed of components for which estimates have been made and $q_{0 j}$ is the number of components of type j in that unit. Since

$$
\log \hat{p}_{0}=\sum_{j=1}^{M} q_{0 j} \log \hat{A}_{j},
$$

it follows that:

$$
\operatorname{Var}\left(\log \hat{p}_{0}\right)=\operatorname{Var}\left(\sum_{j=1}^{M} q_{0 j} \log \hat{A}_{j}\right)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \operatorname{Cov}\left(\log \hat{A}_{j}, \log \hat{A}_{k}\right) \\
& =\sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \hat{\sigma}^{2}\left(Q_{*}^{\prime} Q_{*}\right)^{-1}{ }_{j, k} .
\end{aligned}
$$

Then an approximate $100(1-\varepsilon) \%$ confidence interval for the predicted yield will be:

$$
\hat{p}_{0} \cdot \exp \left(\pm z_{\varepsilon / 2} \sqrt{\sum_{k=1}^{M} \sum_{j=1}^{M} q_{0 j} q_{0 k} \hat{\sigma}^{2}\left(Q_{*}^{\prime} Q_{*}\right)^{-1} j, k}\right)
$$

The approximate $100(I-\varepsilon) \%$ confidence intervals for the unit yields based on the predicted yields can be compared with these based on the observed yields.

An approximate test of fit can be performed using the normal approximation to the binomial distribution.

The statistic $\sum_{i=1}^{N} \frac{\left(y_{i}-n_{i} \hat{p}_{i}\right)^{2}}{n_{i} \hat{p}_{i}\left(1-\hat{p}_{i}\right)}$ is asymptotically Chi squared on $\mathrm{N}-\mathrm{M}$ degrees of freedom.

3.4 Discussion and Recommendations

3.4.1 Monte Carlo Study:

Ten distinct artificial units, each made of components from three distinct families with known yields, were simulated. The number of each type of unit produced during a production period was chosen to represent possible actual conditions. One hundred samples of the number of accepted units of each of the ten types were randomly generated using the normal approximation to the binomial distribution. If Y_{i} is binomial with mean $n_{i} p_{i}$ and variance
$n_{i} p_{i}\left(1-p_{i}\right)$, then Y_{i} is approximately normal with mean $n_{i} p_{i}$ and variance $n_{i} p_{i}\left(1-p_{i}\right)$. The method of weighted least squares was then applied to the one hundred samples.

Approximate ninety-five percent confidence intervals for each of the logarithms of the component family yields for the one hundred samples were calculated using the normal approximation commonly used in least squares analyses. The estimates of the logarithms of the component family yields made from the generated unit yield data appear to be approximately normal (Figures 6,7 and 8). Under actual conditions it can be expected that the same will hold true. The number of confidence intervals for each family containing the true parameter value indicates that the true level of confidence may be greater than ninety-five percent (Table 2). One explanation for this may be that the weights used to adjust the component makeup matrix Q were approximate. Another possible explanation may be the non-normality of the linearized unit yield data.

Future studies could try using the information matrix for the linearized problem as the variance-covariance matrix. Confidence intervals using the inverse of this information matrix would not then depend on the adjusted component makeup matrix. To determine this infomation matrix, let A_{1}, \ldots, A_{M} be the M component family yields, L be the likelihood function for A_{1}, \ldots, A_{M} with N observed unit yields, and $q_{i j}$ be the number of components of type j in a unit of type i. It can be shown that:

Figure 6

True Value: $\log (.99)=-.100 \times 10^{-1}$
Average of Estimates: $-.97283 \times 10^{-2}$
$=\log (.99032)$

Figure 7
Distribution of the One Hundred Monte Carlo Estimates of the Logarithm of the Yield of Component Family 2

True Value: $\log (.995)=-.50125 \times 10^{-2}$
Average of Estimates: $-.50201 \times 10^{-2}$

$$
=\log (.99499)
$$

Figure 8

True Value: $\log (.999)=-.10005 \times 10^{-2}$
Average of Estimates: $-.10156 \times 10^{-2}$
$=\log (.99898$

TABLE 2

PERCENTAGE OF APPROXIMATE 95% CONFIDENCE INTERVALS FOR YIELDS CONTAINING THE TRUE PARAMETER VALUE

COMPONENT FAMILIES

COMPONENT
FAMILY
PERCENTAGE CONTAINING
TRUE VALUE
1
97\%
UNITS (CONFIDENCE INTERVALS BASED ON PREDICTED YIELDS)
UNITPERCENTAGE CONTAINING
TRUE VALUE196\%
2 91\%
3 94\%
4 91\%
5 90\%
6 94\%
7 89\%
8 94\%
9 92\%
10 96\%

$$
\frac{\partial^{2} \log L}{\partial \log A_{t}} \frac{L}{\partial \log A_{s}}=\frac{1}{A_{s} A_{t}} \quad \frac{\partial^{2} \log L}{\partial A_{t} \partial A_{s}} \quad(s=1, \ldots, M ; t=1, \ldots, M) .
$$

Then using the results of Section 3.2:

$$
\begin{array}{r}
\frac{\partial^{2} \log L}{\partial \log A_{i} \partial \log A_{s}}=\sum_{i=1}^{N} \frac{q_{i s} q_{i t}\left[{ }_{j}{ }_{j}^{M} A_{j} A_{j}^{q_{i j}}\right]\left(y_{i}-n_{i}\right)}{A_{s}{ }^{2} A_{t}{ }^{2}\left(1-\left[\prod_{j=1}^{M} A_{j}{ }_{i j}\right]\right)^{2}} \\
\quad(s=1, \ldots, M ; t=1, \ldots, M) .
\end{array}
$$

It can then be shown that:

$$
\begin{aligned}
& E\left[-\frac{\partial^{2} \log L}{\partial \log A_{t} \partial \log A_{s}}\right]=\sum_{i=1}^{N} \frac{n_{i} q_{i s} q_{i t}\left[{ }_{j=1}^{M} A_{j}{ }^{q_{i j}}\right]}{A_{s}{ }^{2} A_{t}{ }^{2}\left(1-\left[\prod_{j=1}^{M} A_{j}{ }^{q_{i j}}\right.\right.} \\
& (s=1, \ldots, M ; t=1, \ldots, M) .
\end{aligned}
$$

A likelihood ratio test was used to test equality of the estimated variance covariance matrix of the one hundred sets of component family yields and the inverse of the true information matrix (T.W. Anderson, 1958, Section 10.8). The calculated statistic was 304,44. The five percent Chi squared critical value on six degrees of freedom is 12.6 , meaning that the hypothesis of equality of the two matrices is rejected at the five percent level. Although shown to be unequal, it appears that the inverse of the information matrix is an adequate approxination to the variance-covariance matrix for most purposes (Compare Table 3 and Table 4). The use of the inverse of the estimated information matrix in calculating confidence intervals should not greatly alter the level of confiance from ninety-five percent.

TABLE 3

ESTIMATED VARIANCE-COVARIANCE MATRIX FOR THE ONE HUNDRED SAMPLES OF LOGARITHMS OF THE COMPONENT FAMILY YIELDS

$$
\begin{array}{lll}
4.9178 \times 10^{-6} & 5.6114 \times 10^{-7} & -2.9472 \times 10^{-7} \\
5.6114 \times 10^{-7} & 1.6996 \times 10^{-6} & -5.2049 \times 10^{-8} \\
-2.9472 \times 10^{-7} & -5.2049 \times 10^{-8} & 2.4009 \times 10^{-8}
\end{array}
$$

TABLE 4

INVERSE OF THE TRUE INFORMATION MATRIX FOR THE LOGARITHMS OF THE COMPONENT FAMILY YIELDS
4.4645×10^{-6}
2.9749×10^{-7}
-2.8201×10^{-7}
2.9749×10^{-7}
1.7344×10^{-6}
-4.7913×10^{-8}
-2.8301×10^{-7}
-4.7913×10^{-8}
1.9383×10^{-8}

Since the predicted logarithms of the unit yields are linear combinations of the estimates of the logarithms of the component family yields, it can be expected that the predicted logarithms of the unit yields will be better approximations to normal distributions. A poor estimate of the yield of components of the second family may explain why the level of confidence for some of the intervals based on predicted yields appear significantly different from ninetyfive percent while others are relatively close. It appears that where components of the second family in a yield estimate, the level of confidence for the confidence interval for that estimate is further from ninety-five percent. (Compare Table 2 and Table 5). Having used only one hundred sets of observations, sampling error may explain the difference between the observed level of confidence and ninety-five percent. Further Monte Carlo studies with larger samples may be of use in making conclusions.

3.4.2 Applications

The method of predicting unit yields presently used treats an insertion as a component. However, an insertion is not a component but a process. An insertion may be a success or a failure, but, when units are tested after production, it is the components which are acceptable or unacceptable, not the insertions. A component may be inserted into a unit manually or by machine. If the probability of one type of insertion being successful is different from the probability of the other type being acceptable, then the yield of a

TABLE 5

COMPONENT FAMILY STRUCTURE OF TIIE ARTIFICIAL UNITS USED
FOR THE MONTE CARLO STUDY OF THE WEIGHTED
LEAST SQUARES METHOD FOR COMPONENT YIELDS

COMPONENT FAMILY

		1	2	3
	1	27	3	450
	2	25	10	350
	3	31	0	375
	4	16	11	400
	5	10	25	200
	6	35	0	425
	7	29	29	325
	8	21	0	400
	9	21	9	428
	10	17	25	216

particular component family inserted manually should be estimated separately from the yield of components of that family inserted by machine.

Both the method of weighted least squares and the method of maximum likelihood were applied to a single set of randomly generated unit yields for those ten artificial units used in the Monte Carlo study of section 3.4.1. The results indicate that both methods work for the randomly generated approximately binomial data. However, in the case of the maximum likelihood method, numerical difficulties were encountered.

Using the weighted least squares estimates, the test of fit statistic for the randomly generated data was 2.23 . The Chi squared critical value on seven degrees of freedom is 14.1 . The test of fit statistic was also calculated for two of the samples used in the Monte Carlo study and were also found to be acceptable at the ninetyfive percent level. It then appears that the weighted least squares method is satisfactory for approximately binomial observations of acceptable components. However, when the weighted least squares method was applied to actual production yields, the fit was not acceptable. Two sets of actual production data were used for which the units were made from five distinct families. The test of fit statistic for the one set of data was 10.13 which is greater than 7.81 , the Chi squared five percent critical value on three degrees of freedon. For the other set of data, the statistic was 396.29 which is greater than 27.6 , the Chi squared five percent critical
value on seventeen degrees of freedom. A1though sampling error may be responsib1e for the very poor fit of the model to the second set of actual production yield data, a number of other factors may be responsible.

The present system of predicting yields of new units groups components into families which may not have the same yields. For example, resistors of all types are considered to be one family. However, it may be that resistors of different specifications and construction are affected differently during the production process. The possibility that the yield of a component inserted manually may differ from the yield of a component inserted by machine was not considered. Tests should be made to insure that all members of a family have the same yield. Otherwise, predicted unit yields are likely to be poor estimates of the true unit yields. Those component families used in the estimation of failure rates may not be appropriate for use in estimating yields.

A number of factors in the production process itself may cause the observed number of acceptable components to deviate from the binomial distribution. Tests may vary from one type of unit to another. If units are tested for any length of time, then those Poisson failures which can be expected during normal operation of a unit will noticeably affect the distribution of the number of units passing production tests. The yield of the first few units produced may be less than that for units produced after any initial production problems have been corrected. Human factors, such as one worker being distracted by another, may cause units to become unacceptable after production. The production process should
be checked to find out how these factors affect production. If units are produced in more than one location, checks should be made to insure that the yields are independent of location before results from different locations are combined to make yield estimates. The method of maximum likelihood was initially tried using the method of scoring (Appendix 1) to maximize the likelihood. The program PREDMLE, designed to maximize the likelihood using the method of scoring was tested (Appendix 4) and the logic was found to be correct. Using the true unit yields as input and using the true component family yields as starting values, the iterative scheme converged after three steps. However, using other starting values close to the true component family yields, the estimates did not appear to be converging after seventy-five iterations (Table 6). This method was also tried with actual unit yield data from a production line. As anticipated, the sequence of component family yield estimates diverged. Weighted least squares estimates of the component family yields were used as starting values for the iterative procedure. However, after one hundred and fifty iterations, the component family yield estimates did not appear to be converging. The method of scoring was then discarded as a practical method of finding maximum likelihooa estimates of component family yields. The simplex optimization method of Nelder and Mead was then used to find those component family yield estimates which maximize the yield. This is the method described in section 3.2. Weighted least square estimates of the component family yields were used as

TABLE 6

ESTIMATED COMPONENT FAMILY YIELDS USING THE
 ME'THOD OF SCORING TO MAXIMIZE THE LIKELIHOOD

Component Family	Starting Values	Estimated Yield after 3 Iterations	Expected Value of Estimate
1	.9900	.9900	.9900
2	.9950	.9950	.9950
3	.9990	.9990	.9990
Component Family	Starting Values	Estimated Yield after 3 Iterations	Expected Value of Estimate
1	.9925	.9996	.9900
2	.9950	.9975	.9989

one of the vertices of the initial simplex. When the method was applied to the randomly generated set of data, it was found that the 1ikelihood increased as the procedure progressed (Figure 9). Although the method appears to work, the value of the likelihood remained constant after a number of steps. This was a result of the limited number of figures of accuracy kept by the computer. When the method was applied to actual observed yields of units produced, the same observations were made. One possible solution to the restricted number of figures of accuracy may be to use double precision in the computational work. It was also noted that, for both the randomly generated set of data and the actual observations, the maximum likelihood method generally gave a slightly smaller Chi-squared value than did the method of weighted least squares.

As an alternative to the method of maximum likelihood, the method of minimum Chi squared estimation (Kendall and Stuart, Volume 3, 1973, section 19.25) could be tried. This method minimizes the test of fit statistic:

$$
\sum_{i=1}^{N} \frac{\left(n_{i} \hat{p}_{i}-\hat{y}_{i}\right)^{2}}{n_{i} \hat{p}_{i}^{\left(1-\hat{p}_{i}\right)}}
$$

where N is the number of distinct types of units produced, n_{i} is the number of units of type i produced, \hat{p}_{i} is the predicted yield of a unit of type i, and y_{i} is the observed number of units of type i accepted after production. One possible method of minimizing this statistic is to set equal to zero the derivatives of the statistic with respect to the estimated component family yield estimates. If the range of

Step by Step Results of Application of Simplex Method
of Maximizing the Likelihood For a Randomly Generated Set of Observations

NCOUNT	$=2$
nCOUNT	=
NCOUNT	
NCOUNT	
NCOUNT	$=$
NCOUNT	
NCOUNT	
NCOUNT	$=$
NCOUNT	10
NCOUNT	11
NCOUNT	12
NCOUNT	13
NCOUNT	14
NCOUNT	15
NCOUNT	16
NCOUNT	17
NCOUNT	18
NCOUNT	19
NCOUNT	20
NCOUNT	21
ncount	22
NCOUNT	$=23$
NCOUNT	2
NCOUNT	25
NCOUNT	26
NCOUNT	7
NCOUNT	28
NCOUNT	29
NCOUNT	30
NCOUNT	31
NCOUNT	32
NCOUNT	33
NCOUNT	34
NCOUNT	35
NCOUNT	36
NCOUNT	37
NCOUNT	38
NCOUNT	39
NCOUNT	40
NCOUNT	41
NCOUNT	42
NCOUNT	43
nCOUNT	44
NCOUNT	$=45$

SHRINK
EXPANSION
SHRINK
REFLECTION
SHRINK
SHRINK
SHRINK
SHRINK
REFLECTION
SHRINK
EXPANSION
SHRINK
REFLECTION
SHRINK
EXPANSION
SHRINK
REFLECTION
SHRINK
EXPANSION
SHRINK
EXPANSION
SHRINK
SHRINK
EXPANSION
REFLECTION
EXPANSION
SHRINK
EXPANSION
SHRINK
EXPANSION
SHRINK
EXPANSION
SHPINK
REFLECTION
REFIECTION
REFLECTION

convergence is great enough, these equations may be solved using Newton's iterative method (Russel1, 1970, Chapter 5). Otherwise the statistic may be minimized using the simplex method of Nelder and Mead. (See Appendix 2). One would expect that the number of figures of accuracy available with the computer is sufficient for making satisfactory estimates of component family yields.

Although the method of weighted least squares may give reasonable estimates of component yields, further work with this problem may be of value. The method of weighted least squares has the advantage of requiring comparatively few calculations. However, we can expect the maximum likelihood estiamtion method and the minimum Chi squared estimation method to fit the data better. It may be that a wide range of starting values can be used for the iterative scheme for the minimum Chi squared method and the sequence of estimates for this method may converge quickly. To use either the maximum likelihood or the minimum Chi squared methods for practical purposes, a method of calculating approximate confidence intervals must be found.

In order to make any of the methods of estimation better for practical use, there are two areas which should be investigated. The yields of the components within each family should be tested for equality. If equality among the components of a family does not exist, the components should be regrouped into families of components of equal yield. The second area to be investigated is the actual production process. One can expect that the closer the observed
number of units accepted after production is to a binomial observation, the better will be the estimates of component family yields. An investigation into these two areas may provide reliability engineers with better estimates of component yields and, hence, better predictions of unit yields.

APPENDIX 1

The Method of Scoring
The method of scoring (C.R. Rao, 1965, Section 5 g) is an iterative scheme for finding maximum likelihood estimates of parameters. Define L as the likelihood function for the vector of parameters:

$$
\underset{\sim}{\theta}=\left[\begin{array}{l}
\theta_{1} \\
\vdots \\
\theta_{N}
\end{array}\right]
$$

Let:

$$
S(\underset{\sim}{\theta})=\left[\begin{array}{c}
\frac{\partial \log _{L}}{\partial \theta} \\
\vdots \\
\frac{\partial \log L}{\partial \theta_{N}}
\end{array}\right]^{\underset{\sim}{x}} \quad, \quad \rho(\underset{\sim}{\theta})=E\left[-\frac{\partial^{2} \log _{L}}{\partial \theta_{i}{ }^{\partial \theta}{ }_{j}}\right]_{N \times N}
$$

Let $\mathrm{H}(\underset{\sim}{\theta})$ be the N by N derivative matrix for $\mathrm{S}(\underset{\sim}{\theta})$.
Then:

$$
\mathrm{E}[-\mathrm{H}(\underset{\sim}{\theta})]=\Theta(\underset{\sim}{\theta})
$$

As a first approximation, one may take:

$$
g(\underset{\sim}{\theta}) \simeq-H(\underset{\sim}{\theta}),
$$

where $\underset{\sim}{\hat{\theta}}$ is the maximum likelihood estimate of $\underset{\sim}{\theta}$.
Since a first order Taylor's expansion gives:

$$
S(\underset{\sim}{\theta}) \simeq S(\underset{\sim}{\hat{\theta}})+(\underset{\sim}{\theta}-\underset{\sim}{\hat{\theta}}) \mathrm{H}(\underset{\sim}{\hat{\theta}}),
$$

and:

$$
\begin{aligned}
& S(\underset{\sim}{\hat{\theta}})=0, \quad \text { and we derive the iterative scheme: } \\
& {\underset{\sim}{\theta}}_{\ell+1}={\underset{\sim}{\theta}}_{\ell}-H^{-1}(\underset{\sim}{\theta}) \cdot S\left({\underset{\sim}{\theta}}_{\ell}\right),
\end{aligned}
$$

which will converge to $\underset{\sim}{\hat{\theta}}$ if an initial value $\underset{\sim}{\theta}$ 0 sufficiently close to $\underset{\sim}{\hat{\theta}}$ is chosen. Replacing H by its expected value, we get:

$$
{\underset{\sim}{\theta}}_{\ell+1}=\underset{\sim \ell}{\theta}-\Theta^{-1}(\underset{\sim}{\theta}) \cdot \mathrm{S}(\underset{\sim}{\theta}),
$$

which is the iterative method of scoring.

APPENDIX 2

The Nelder-Mead Simplex Method:

The Nelder Mead simplex (Kowaiik and Osborne, 1968, Section 2.6) is a direct search technique for finding an optimum value. The procedure as described here locates a maximum using a simplex, a set of $n+1$ points in n dimensions. The simplex is manipulated by reflecting the point at which the function f is the least, or by expanding or contracting the simplex

Let:
(1) x_{h} be the vertex corresponding to $f\left(x_{h}\right)=\operatorname{minf}_{i}\left(x_{i}\right)$

$$
(i=1, \ldots, n+1) .
$$

(2) x_{s} be the vertex which corresponds to $f\left(x_{s}\right)=\operatorname{minf}_{\mathbf{i}}(x)$, ifh.
(3) x_{ℓ} be the vertex corresponding to $f\left(x_{\ell}\right)=\operatorname{maxf}_{i}\left(x_{i}\right)$,

$$
(i=1, \ldots, n+1) .
$$

(4) x_{0} be the centroid of all x_{i}, $i \neq \frac{f}{h}$ and is given by

$$
x_{0}=\frac{1}{n} \sum_{\substack{i=1 \\ i \neq h}}^{n+1} x_{i}
$$

Now define the three basic operations used:
(1) Reflection, where x_{h} is replaced by

$$
x_{r}=(1+\alpha) x_{0}-\alpha x_{h}
$$

where $\alpha>0$ and is equal to the ratio of the distance $\left[x_{r} x_{0}\right]$ to $\left[x_{h} x_{0}\right]$.
(2) Expansion, where X_{r} is expanded in the direction along which the function value is expected to increase. The relation

$$
x_{e}=\gamma x_{r}+(1-\gamma) x_{0}
$$

is used where $\gamma>1$ is the ratio of the distance $\left[x_{e}, x_{0}\right]$ to $\left[x_{r}, x_{0}\right]$.
(3) Contraction, where the simplex is contracted,

$$
x_{c}=\beta x_{h}+(1-\beta) x_{0},
$$

where $0<\beta<1$ and is the ratio of the distance $\left[x_{c}, x_{0}\right]$ to $\left[x_{h}, x_{0}\right]$.
The technique proceeds as follows:
(i) From an initial simplex and evaluate the function at each of the $n+1$ vertices.
(ii) Try a reflection and evaluate the function at the reflected point.
(iii) If $f\left(x_{h}\right) \leqslant f\left(x_{r}\right) \leqslant f\left(x_{\ell}\right)$, replace x_{h} by x_{r} and return to step (i).
(iv) If $f\left(x_{r}\right)>f\left(x_{\ell}\right)$ it can be expected that an expansion in the direction $x_{r}-x_{0}$ could give us a greater value f or f. Replace x_{h} by x_{r} if $f\left(x_{\ell}\right)<f\left(x_{e}\right)$ and return to step (i). Otherwise replace x_{h} by x_{r} and return to step (i).
(v) If $f\left(x_{h}\right)<f\left(x_{r}\right)<f\left(x_{S}\right)$ replace x_{h} by x_{r} and try a contraction. If $f\left(x_{h}\right)<f\left(x_{c}\right)$, replace x_{h} by x_{c} and return to step (i). Otherwise the last simplex is shrunk about the point x_{ℓ} by the
relation

$$
x_{i}^{\prime}=\frac{1}{2}\left(x_{i}+x_{\ell}\right)
$$

and return to (i).

APPENDIX 3

Programs for the Component Failure Rate Problem

The computing work for the problem of estimating component family failure rates involved two programs. Both programs are written in FORTRAN and both use the maximum likelihood method of estimating component family failure rates for one period of time. The program FAILMLE is designed for practical use and an external file is used as its source of unit failure rate data. The program MONTE generates one hundred random samples of unit failure rates for which component family failure rates are estimated. The input files for both programs are eighty columns long. The output files have a length of one hundred and thirty-three columns including carriage control.

Input for FAILMLE (see Figure 10) is unformatted and is completely general for any number of units observed and any number of component families. The first row of the input gives N, the number of distinct units observed, and then M, the number of distinct component families for which failure rates can be estimated. The first M columns of the second to $(N+1)$ st rows, inclusive, is the $\operatorname{matrix} Q=\left[q_{i . j}\right]_{N \times M}$ where $a_{i j}$ is the number of components of the $j{ }^{\text {th }}$ family in a unit of type i. The ($M+1$) st entry in the ($i+1$) st row is the number of units of type i in use during the time period. The $(M+2)$ nd entry in the ($i+1$)st row is the number of type i unit failures observed during that time period. The ($\mathrm{N}+2$) nd row give the length of the time period in units of ten million hours for which observations were made. The value in the $(N+3)$ rd row is given to the

M component family failure rates as starting values in the iterative procedure.

Input for MONTE is the same as that for FAILMLE except that M is restricted to three. Input for unit failures of one sample is required, but the results of the program are independent of this information. An alteration to the program would allow the omission of unit failures as input. MONTE could be generalized to allow for any number of component families and for any number of generated samples.

The external subroutines INFAIL and LAFAIL are called from both FAILMLE and MONTE. INFAIL determines the estimated information matrix as described in section 2.2 and LAFAII calculates the predicted failure rates of those units which have been usen in the estimation procedure. Three subroutines, SINV,EIGEN, and GAUSS, from the SSP FORTRAN library were used in the computing. SINV, which determines the inverse of a positive definite symmetric matrix, is called from INFAIL. The subroutine EIGEN is used to determine the eigenvectors and eigenvalues of the inverse of the estimated information matrix in the program FAILMLE. GAUSS, a normal random number generator, is used in MONTE to generate unit failures.

The approximate confidence intervals in both FAILMLE and MONTE are calculated at the ninety-five percent confidence level. Alterations in the program could be made which would allow different levels of confidence. FAILMLE could also be generalized to allow
for observations of unit failure rates for any number of time periods.

In order to check the logic of FAILMLE, the program was run treating the expected number of unit failures for a sample as the observed number of unit failures. The results (Table 7) indicate that the logic was correct. Differences between true values and the estimated values were due to round off errors.

Those calculations which were done by hand could be incorporated into the programs. The test of fit described in section 2.2 could be included in both MONTE and FAILMLE. Those calculations necessary to estimate the variance-covariance matrix of the parameter estimates found with MONTE could be included in the program. FAILMLE would be of more practical use if the program and its input were adjusted to predict point estimates and to determine confidence intervais for the reliability of new electronic units.

Figure 10

Input Format For The Program FAILMLE

```
10.3
27.3.450, 1000,368
25.10.350, 1500.488
31.0.375, 200.09
16,11,400, 1200,369
10.25.200, 500.100
35.0.425, 1900.688
29,29.325, 900.342
21.0.400. 2000.010
21.7.428. 1400.478
17,25,216, 1000,256
.0005
5
```


TABLE 7

RESULTS OF TEST RUN ON THE PROGRAM FAILMLE

Component Family	Estimated Component Family Failure Rate	True Component Family Failure Rate
1	10.0680	10.0
2	4.9885	5.0
3	.9970	1.0
Unit		
	Estimated Unit	Failure Rate

```
C
C THIS PROGRAM USES THE MAXIMUM LIKELIHOOD METHOD OF ESTIMATION AND
C THE METHIDD OF SCORItG TO DETERMINF THE FAILUPE RATES OF COMPONENT
C FAMILIES.
C
    OIMENSIUN Q(50,25),XINUSL(50),FAIL(50),XINF(25.25),XLAMDA(50).
    $ LWORK(25),R(25,25),PAEV(25),MWORK(25),ALPHA(25),FAC(25),
    $ S(2\zeta).CONDSO(25)
    MEAD(9,*)N,M
C
C N IS THF NUMBFR OF RONS (UNITS) & M IS THE NUMBER OF COLUMNS
C (COMPONENT FAOILIES).
C
        CALL SOLVE(Q,XINUSE,FAIL,LNORK,MWORK,ALPHA,M,N,FAC,S,XLAMOA,XINF,
    $ PREV,R,CONDSO)
        STOP
        END
C
        SURROUTINE SOLVFGO,XINUSF,FAIL,LNORK,MWORK,ALPHA,H,N,FAC,S,
    * XLANDA, XINF,PREV,R,CONDSDS
        OIMENSION (O(N,M), XINUSE(N),FAIL(N),XINF(M,M),S(NS,LWORK(N),
    $ MNORK(M),R(M,M),PQEV(M),ALPHA(M),FAC(M),XLAMDA(N),
    $ CONDSD(M)
C
        WKIIE(8,200)
200 FORMAT(2OX,IDATA MATRIX:1,/,/)
C
        DO 10 I=1.N
        READ(%,*)(Q(I,J),J=1,M),XINUSE(I),FAIL(I)
        WRITE(S,210)(Q(I,J),J=1,M)
210 FORMAT(3x,25F4.0)
10 CONTINUE
C
        REAO(9,*) TIME
        WRITE(8,220)
220 FORMAT(1H1)
        *RITE(8,230)
230 FOR:AAT(29X,'UNITI,15x,INUMBER IN USE1,10X,'NUMBEF OF FAILURES',
        | ')
C
    D0 15 I=1,N
    WRITE(8,240)I,XINOSE(I),F4IL(I)
240 FOFMAT(30X,I2,2(20X,F'S.0))
L5 CONTINUE
C
    WHITE(8.250)T1ME
250 FORMAT(/,/,HOX,'TIME IN UNITS OF !0 MILLION HOURS =',F10.6)
C
C SET UP IMITIAL VAlUES.
C
    NIT=0
    READ(9**) START
C
        00 20 J=1.M
        ALPHA(J)=STAPT
```

```
20 CONTINUE
WRJTE(8.220)
    NRITF(8,260) NIT
260 FORMAT(1.15X,IN=1.13)
    WRITE(8,270)(J,ALPHA(J),J=1,M)
    FORMA!(2'jX,1ALPHA(1,I2,1) =1,E16,8)
C
C gEgIN THE ITERATIVE procedure.
C
500 NIT=NIT+1
C WE WISH TO KFEP THE OLO VAlUES OF ALPHA TO TEST FOR CONVERGENCE.
C
    DO 25 J=1.m
    PREV(J)=ALPMA(J)
25 CONTINUE
C
    WRITE(B,260)NIT
    CALL LAFAIL(N,M,XLAMDA,O,ALPHA)
C DETERMINE THE SCORE VECTOR,
    00 30 J=1.M
    S(J)=0.0
        DO 35 I=1.N
        F=FAIL(I)/XLAMDA(I) - TIME*XINUSE(I)
        S(J)=S(J)+Q(I,J)*F
35 CONTINUE
3O CONTINUE
C
        CALL INFAILCN,M,O,XINUSE,TIME,XLANDA,XINF,LWORK,MWORK,
        & (0nOSO)
C
C DETERMINE THE aDJUSTMENT FACTOR
    0040 J=1.M
    FAC(J)=0,0
    D0 45 JJ=i.M
    FAC(J)=FAC(J)+XINF(J,JJ)*S(JJ)
45 cONTINUF
40 CONTINUE
C
C DETERMINE THE NEN ESTIMATES OF COMPONENT FAMILY FAILURE RATES,
C
    00 50 J=1.M
    ALPHA(J)=ALPHA(J)+FAC(J)
50 comTImuE
C
    WRITF(8,270)(J,ALPMA(J),J=1,M)
C
    00 55 J=1.M
    IF(AES(ALPHA(J)-PREV(J)).GT.0.000005) GOTO 520
```

C
GOTO 510
C
520 IF(NIT,LT,100)GOTO 500
510 CALL LAFAIL(N,M, XLAMOA,Q,ALPHA)
CALI. INFAILIN,M,Q,XIWUSE,TIME,XLAMOA,XINF,LWORK,MWORK,
\$ CONDSD)
C
WRITE(9,220)
WRITE(8.280)
280 FORMAT(SOX, 'COVARIANCF MATRIXI,1)
NRITE(8,290)(J,J=1:M)
290 FORNAT(16(13x,I2),1)
C
00 60 I=1,M
WRITE(8,300)I,(XINF(I,J),J=1,I)
300
6 0
C
DETERMINF APPROXIMATE CONFIDENCE INTERVALS FOR OUR ESTIMATES OF
C THE FAILURE RATES.
C
WRITE(8,220)
WRITE(B,310)
310 FORMAT(Z5X, 'APPROXIMATE 95% CONFIDENCE INTERVALS FOR COMPONENT',
\$ 1 FAllURE RATES:1,/,1)
WRITE (8,320)
320 FORMAT(7X,'COMPONENT':GX.'ESTINATEDI,EX,IUNCONDITIONALI,I2X,
s ICONDTTIONAL')
WRITE(8,330)
330 FORMAT(BX,IFAMILY',GX,IFAILURE RATEI,7X,IVARIANCE C,I,I,
\$ 12x.1VARIANCE C.I.',I)
WRITE(8,340)
340 FORMAT(10x,2(1-1),10x,8(1-1),6x,19(1-1),5x.19(1-1))
C
00 65 J=1.M
COMPLB=ALFHA(J)-1,96*SORT(XINF(J,J))
COMPUP=A1PHA(J)+1.9力*SORT(XJNF(J,J))
CONDLB=ALPHA(J)-1,90*CONOSO(J)
CONDUH=AlPHA(J)+1.96*COMDSO(J)
MRTTE(d,350)J,ALPHA(J),COMPLG.COMPUB,CONDLG.CONDUB
350 FORMAT(10x,12,10x,F8,5,':'5x,'(1,FB,5,1,1,F8,5,1)',
\$ 5x,1(1,FB,5,1,1,FB,5,1)')
65 CONTINUE
C
WRITE(8.220)
C
DETERMINE CONFTDENCE INTERVALS FOR THE UNIT FATLURE RATES FROM
C THE OBSERVEO FAILURES AND FROM THE ESTIMATED FAILURE RATES.
C
WRITF(8,360)

```

```

 $ (FAllURE RATES'.1,1)
 WRITE(8,3%0)

PROGRAM LISTING - FAILMLE (Cont'd)

```
WRITF(8,380)
    FORMAT(10x,2(1-1),5x,39(1-1),15x,39(1-1),1)
    0070 I=1.N
    PHT=FAIL(I)/(XINUSE(I)*T]ME)
    POISLB=P+4I-1.96*SQRT(PHI)
    POISUB=PHI+1,96*SORT(FHI)
    ESTVAR=0.0
C
    DO 75 J=1.M
    DO 80 K=1,M
    FSTVAR=ESTVAR+G(I,J)*Q(I,K)*XINF(J,K)
80 continue
75 contINUE
C
    ESTLB=XLAMDA(I)=1.96*SQRT(ESTVAF)
    FSTUE=XLAMOA(I)+1.90*SORT(ESTVAR)
    WRITE(8,390)I,PHT,POISLG.POISUF, XLAMDA(I),ESTLB,ESTUB
390 FORMAT(10X,I2,5X,F10.5,1:1,5X,1(1,F10,5,1,1,F10.5,1)1,15X,F10.5,
    $ 1:1,5x,1(1,F10,5,1,1,F10,5,1)1)
T0 CONTINUE
C
C DETERMINE PRINEIPAL COHPONENTS, THAT IS GY CALCULATING THE
C Elgenvalues and the eigenvectors we can determine new bases
C FOR OUR COMPOJENTS WHICH WILL NOT BE CORRELATED.
    CALL EIGEN(XINF,F,M,O)
    WRITE(8,2ट0)
C
    DO 85 J=1,M
    NRITE (8,400)J,XINF(J,J)
    400 FORMAT(/,20x,'EIGENVALUE(1,I2,1) = 1, F16.8./)
    WRITE(8,410)(I,I,H(I,J),I=1,M)
    410 FORMAT(25x, 'EIGFRIVECTOR(',I2,',',I2,')= 1,E1%,8)
    85 CONTINUE
C
    REIURN
    END
```

C THIS PROGRAM USES THE MAXIMUM I IKELIHOOD METHOD OF ESTIMATION AND C ThF NEIMOD OF SCGRING TO DFTERMINE THE FAILURE RATES OF COMPONENT c farlites.
C
DIMENSION O (50, 25), XINUSE (50), FAIL (50), XINF $(25,25)$, XLAMDA (50), \$ LWRRK (25),R(25,25), PREV(25), MWORK(25),ALPHA(25),FAC(25), \$ S(25),COMDSO(25)
READ (7,*)N.M
c
C N IS THE AMMGER OF RONS (UNITS) \& M IS THE NUMBER OF COLUMNS
C (COMPONENT FAMILIES).
C
CALL SOLVF (O, XINUSE,FAIL, LVORK,MWORK,ALPHA,M,N,FAC,S,XI,AMDA,XINF,
f PREV,R,CONOSDS
stop
END
C
SUBROUTINE SOLVEGQ,XINUSE,FAIL,LWORK, MWORK, ALPHA, M, N, FAC, S,
\$ XLAMDA, XINF, PREV,R,CONDSDI
DIMENSION Q(N,M),XINUSE (N),FAIL(N),XINF(M,M),S(M),LWORK(M),
\$ CMPFL(3),RATE(10), XMEAN(10),S1(10).S2(10).
SDEV (10), XGAR(3), SUM (3).
\$ MNORK(M),R(M,M), PRFV(M), ALPMA(M),FAC(M), XLAMDA(N),
$\$$ CONDSD(M)
C
WRITE (8,200)
200 FURMAT(2OX, 1OATA MATRIX:1,1,1)
c
$0010 \quad I=1, N$
PEAD(9,*)(O(I,J),J=1,M), XINUSE(I),FAIL(I)
WRITE $(8,210)(\mathrm{Q}(\mathrm{I}, \mathrm{J}), j=1, \mathrm{M})$
210 FOR:AT $(3 x, 25 F 4.0)$
10 CONTINUE
c
READ($3, *$) TIME
WRITE (8, 250) TIMF
250 FORMAT(/, $1,40 \mathrm{X}, 1$ TIME IN UNITS OF 10 MILLION HOURS $=1, F 10,6$)
C
WRITF (8,220)
220 FURMAT(1H1)
CMPFL (1) $=10$.
CMDFL.(2)=5.
$\operatorname{CMPFL}(3)=1$.
C
WRITE(R,221)
221 FORMAT(IBX.'COMPOMFIT FAMILY',10X, 'FAILURE RATEI, /)
WRITE A, ? ? 2) (J, CMPF: (J), $1=1,4)$
222 FORMAT(P5x, I2,20x,F5,1)
C
C
C
DETERMINE AND PRINT THE TRUE COMPONENT FAMIIV FAILURE RATES.
WRITE (8, 220)
WRTIE(8, 223)


```
C
    00 11 I=1,N
    RATE(I)=0.0
    DO 21 J=1.M
    RATE(I)=RATE(I)+D(I,J)*CMFFL(J)
    CONTINIJE
    WRTTE(8,?24)I, XINUSE(I),FAIL(I)
224 FOFMAT(25x,12,20x,F5,0,20x,FR,0)
    XMFAM(I)=XINUSE(I)*TIHE*RATE(I)
    OEV(I)=SORT(XMFAN(I))
    S1(I)=0,0
    S2(1)=0.0
11 continve
C
    WRITF(R,Z2O)
    IX=87
    00 61 J=1,H
    XAAR(J)=0.0
    SUM(J)=0.0
61 CONTINUF.
C
    DO 41 NSTEP = 1,100
C
C GENERATF APPROXIMATE POISSON RANDOM NUMBERS TO BE USED AS OBSERVED
C NUMBER OF UNIT FAILUPES I! THE FIELD.
C
    00 51 T=1,N
500 CALL GAHSS(IX,DEV(I),XMEAH(I),FAIL(I))
    IF(FAIL(I).LT.O.0)GOTO 500
51 CONTIHuE
C
C SET UP INITIAl, VALUES.
C
    NIT=0
C
    DO 20 J=1.M
    ALPHA(J)=CMPFL(J)
20 CONTINUE
C
C
C begtN the iterative procedure.
C
600 NIT=NIT+1
C
C WE WISH TO kEEP THE OLD values of alpha to test for convergence.
C
    10 25 J=1.19
    PRFV(J)=ALFHA(J)
25 CONTINUE
C
C
    CAILL LAFAIL(N,M,XIANOA,G,ALPHA)
C
C DETERMTNE THF SCOQE VEGTOR.
C
```

```
    00 30 J=1.M
    S(J)=0.0
    00 35 I=1,N
    F=FAIL(I)/XLAMDA(I) - TIME゙*XINUSE(I)
    S(J)=S(J)+Q(I,J)*F
35 CONTINUE
30 CONTINUE
C
    CALL TNFAIL(N,M,O,XINUSE,TIME,XLAMDA,XINF,LNORK,MWORK,
        $ CGNDSD)
C
C OETERMIVE THE ADJUSTMENT FACTOR
C
    0040 J=1,M
    FAC(J)=0.0
    0045 JJ=1,M
    FAC(J)=FAC(J)+XINF(J,UJ)*S(JJ)
45 CONTINUE
40 CONTINHE
C
C DETFRMINE THE NEW ESTIMATES OF COMPONENT FAMILY FAILURE RATES.
C
    00 50 I=1.M
    ALPHA(J)=ALPHA(J)+FAC(J)
50 CONTINUE
C
C
    D0 55 J=1.M
    IF(ABS(ALPHA(J)-PREV(J)).GT.0.000005) GOTO 520
55 CONTINUE
C
    GOTO 510
C
520 IF(NTT.LT.100)GOTO 600
5 1 0 ~ C A L L L L A F A I L ( N , M , X L A M D A , Q , A L P H A )
    CALL INFAIL (N,N,Q,XINHSE,TIME,XLAMDA,XINF,LWORK,NWORK.
        $ CONDSD)
C
C DETEGMINE APPRUKIMATF CONFINENCE INTERVALS FOR OUR ESTIMATES OF
C THE FAILUPE RATES.
C
        WRITF(8,310)
310 FORMAT(Z5X, APPRGXIHATE G5% CONFIDENCE INTERVALS FOR COMPONENTI,
        $ FAILURE RATES:1././)
        WRITF(8.320)
320 FOPMAT(7X,'COMPOMENTI,GX,'ESTIMATED',8X,IUNCONDITIONAL:,I2X,
        * 'CONOITIONAL')
        NFTTF(0,330)
330 FORMAT&RX,'FAIILY',OX,IFAILURE RATE',7X,VVARIANCE C.I.'.
        & I2x,'VARIAPCE C.I.',1)
        WRITE(8.340)
340 FORMAT(10X,2(:-1),10x,8(1-1),6x,19(1-1),5x,19(1-1))
C
        00 6S J=1,M
        COMPLB=ALPPA(J)-1,96*SMRT(XINF(J,J))
```

```
COMPUA=ALPHA(J) +1,On*SGRT(XINF(J.J))
```

CONDLB=ALPHA $(J)-1.9 力 * \operatorname{CONDSO}(J)$
$C O A D U B=A L . P H A(J)+1.96 * C O Y O S D(J)$
WRITF (8, 350)J, ALPHA(J), COMPIF, COMPUB, CONOLB,CONDUB
FORMAT (10x, I2, 10x,FB,5,1:1,5x, (1, F8, 5, 1, 1, F8, 5, ') ',
要 $5 x, 1(1, F \Omega, 5,1,1, f R, 5,1) 1)$
$x B A R(J)=X: A R(J)+A L W H A(J)$
$S \cup H(J)=S U M(J)+A L P H A(J) * * Z$
C
C
OETERMINE CONFIDESRE TNTERVALS FOR THE UNIT FAILURE RATES FROM
C THE OSSERVED FAILURES AND FROM THE ESTIMATFD FAILURE RATES.
WRITE 8,360$)$
360 FORMAT (25 K, APPROXIMATE 95% CONFIDENCE INTERVALS FOR UNIT:
S ' FAILURF RATES', /, /)
WRITE (B, 370)
370 FORMAT (GX, IUNIT1,17X,IFOR OASERVED', $40 X, 1 F O R E S T I M A T E S I, /, 1)$
HRTTF $(8,380)$
380 FORMAT (10x,2(1-1),5x,39(1-1),15x,39(1-1),1)
C
NO $70 \quad I=1, N$
$P H I=F A I L(I) /(X I N I S E(I) * T I M E)$
POISLG=PHI-1,96*SORT(PHI)
POISUR=PHI+1.96*SQHT(PHI)
ESYVAR $=0.0$
C
$0075 \mathrm{~J}=1, \mathrm{M}$
$0080 \mathrm{~K}=1, \mathrm{M}$
$E S T \vee A Q=E S T V A R+Q(I, J) * Q(I, K) * X I A F(J, K)$
80 CONTINUE
75 CONTINUE
C
ESTIR=XLAMDA(I)-1.96*SORT(ESTVAR)
FSTUG=X $4.1 D A(T)+1.9 \ell * S O R T(F S T V A R)$
WRITE(A, 3OO)T, PHI, POISLG, POISUB, XLAMDA(I),ESTLB,ESTUB

$\$ 1: 1,5 x, 1(1, F 10,5,1,1, F 10,5,1)!)$
$S 1(I)=S 1(I)+X L A M D A(I)$
$S 2(I)=S 2(I)+X L A M D A(I) * * 2$
70 CONTJNUF
C
41 CONTINUE
WRITF (8,220)
WQITF $(8,375)$
375 FORMAT(JOX, OS\% CONFIDENCL INTERVALS FOR THE 1,
* COHPONENT FGILURE QATE ESTIMATES',/)
WRITE (R,3日1)
381 FOQMATCI7x, 'COMPOAENT. $12 \times$, "STIMATF., 12X.
s CONFIDENCF INTERYAL $1,6 x,{ }^{\prime}$ ACTUAL FAILURERATE1, 1)
* PITE (8,385)
385 FORMAT(20x,2(1-1),15x,9(1-1),11x,21(1-1),10x,9(1-1))
C
DO $71 \mathrm{~J}=1, \mathrm{M}$

```
    SUM(J)=(SUM(J)-((xAAR(J)**2)/100.))/99.
    XAAR(J)=XBAR(J)/100.
    XLB=XBAR(J)-1.96*SOQT(SUM(J))
    XU日=XBAR(J)+1.96*SQ&T(SUN(J))
    WHJTF(8,395)J,XBAR(J), XLR,XUB,CMPFL(J)
395 FORMAT(20X,12,15x,F9,4,1:1,10X,1(1,F9,4,1,1,F9,4,1)1,
    $ 10x.f9.5)
    71 CONTINUF
C
        WRITE(8,220)
        HRITE(R,400)
400
410 FORMAT(19X,IUNIT',I5X,IESTIMATE',I2X.
        $ 'CONFIDENCE INTFRVAL',/)
        WRITE (8,385)
C
    DO 81 1=1,N
    S2(I)=(S2(1)-((S1(I)**2)/100.))/99.
    SI(I)=S1(I)/100.
    XLB=S1(I)-1,90*SORT(S2(I))
    xU8=S1(I)+1.96*SORT(S?(1))
    WRITE(8,395)I,S1(I),XLG,XUG,RATE(I)
81 CONTINUE
C
RETURN
F \(\because\)
```

```
        SUGROUTINE INFAIL(N,M,O,XINUSF,TIME,XLAMDA,XINF,LWORK,MWORK,
        & COMOSO)
C
C THIS SUBROUTINE DETERMINES THE INFORMATION MATRIX FOR TME FAILURE RATE
C PRORREM AND ITS INVERSE.
C
    OIMENSION O(N,M),XINUSE(N),XINF(M,M),XLAMOA(N),LWORK(M),NWORK(M),
        $ A(325),COMDSD(M)
C
    00 25 J=2,M
    JMIN=J-1
    00 30 JJ=1.JMIM
    xINF(JJ,J)=xInF(U,JJ)
    CONIINUE
    contlvUE
25
C
    00 35 J=1,M
    CONTINUE
    LSUM=0
    DO 40 J=1,M
    00 45 k=1,J
    LSUM=LSUM+1
    A(LSUM)=10.E7*XINF(J,K)
    CONTINLE
    continue
4 5
40
C
    EPS=10.F-6
    CALL SINV(A,M,EPS,IER)
C
    LSUM=0
    00 50 J=1,M
    00 55 k=1.J
    LSUM=LSUM+1
    XINF(J,K)=10,E7*A(LSUM)
    XINF(K,J)=XINF(J,K)
    cONTINUE
50 conttNuE
C
    DO 60 J=1,M
60
    CONTINUE
    DO 65 J=1:M
65 CONIINUE
    RETURA
    ENO
```

SUBROUTINE LAFAIL (N, M, XLAMDA, D, ALPHA)
C this subroutine determines estimates of the unit failure rates. C DIMENSION XLAMDA(N), O(H,M), ALPHA(M)
C DO $10 \quad 1=1 . N$
XLAMDA(I) $=0.0$
DO $15 \mathrm{~J}=1$, i4
$X L A M D A(i)=X L A M D A(I)+A L P H A(J) * Q(I, J)$
15
CONTINUE
10 continue
C
RETURN
END

APPENDIX 4

Program for the Component Yield Problem

The computing work for the problem of estimating component family yields involved five programs. All are written in FORTRAN. The programs LINLSQ and CARLO use the method of weighted least squares. LINLSQ is designed for practical use while CARLO, which generates one hundred random samples of unit yields, is designed to study the properties of the estimates. The programs PREDMLE, COMB and SIMPLEX are designed to find maximum likelihood estimates of component family yields. PREDMLE uses a common starting value for the component family yield estimates and uses the method of scoring to find those estimates which maximize the likelihood. Using those estimates determined by the method of weighted least squares as starting values, the program COMB uses the method of scoring to find maximum likelihood estimates of component family yields. The program SIMPLEX uses the Nelder Mead Simplex method of finding maximum likelihood estimates of the component family yields. The method of weighted least squares is used to determine one of the vertices of the initial simplex used in SIMPLEX. The output file for all five programs has a length of one hundred and thirty-three columns including the carriage control.

Input for LINLSQ (Figure 11) is read from an external file having a length of eighty columns. It is unformatted and is general for any number of units observed and any number of component families. The first row of the input gives N, the number of distinct component families for which yields
can be estimated. The first M columns of the second to $(N+1) s t$ rows inclusive is the matrix $Q=\left[q_{i j}\right]_{N \times M}$ where $q_{i j}$ is the number of components of the $j^{\text {th }}$ family in a unit of type i. The ($M+1$)st entry in the ($i+1$) st row is the number of units of type i produced during the production period. The $(M+2)$ nd entry in the (i+1)st row is the number of units of type i accepted during the production period. The $(N+2)$ nd row gives the 97.5 percent critical value of the student's t distribution on N-M degrees of freedom.

LINLSQ calls three subroutines, GMPRD, SINV, and EIGEN, from the SSP FORTRAN library GMPRD determines the product of two general matrices. SINV calculates the inverse of a positive definite symmetric matrix and is used to determine the estimated variance-covariance matrix of the estimated component family yields. EIGEN is used to determine the eigenvectors and eigenvalues of that matrix.

The logic of LINLSQ was tested by using as input the expected number of acceptable units for a sample for which the component family yields are known. The program was adjusted to allow for the fact that there would be no variance in the input data. The results (Table 8) indicated that the logic was correct. Differences between the true values and the estimates were due to round off error.

Input for CARLO is the same as that for LINLSQ except that M is restricted to the value three. Input for the number of acceptable units of each type for one sample is required, but the results of the program would allow the omission of this input. CARLO could be
generalized to allow for any number of component families and for any number of generated samples. Three SSP subroutines GAUSS, GMPRD, and SINV are required for CARLO. GAUSS, a normal random number generator, is used to generate the number of acceptable units of each type.

Input for PREDMLE is the same as that for LINLSQ except that the entry in the $(\mathrm{N}+2)$ nd row gives a value which is given to the M component family yield estimates as starting values for the iterative procedure. PREDMLE calls the subroutine MINV from the SSP FORTRAN library in order to determine the inverse of the information matrix. The same data used to test LiNLSQ was used to test the logic of PREDMLE. To start the iterative procedure in the test, the true component family yields were used as starting values. Test results (Table 9) indicate that the logic is correct.

The input for COMB is the same as that for LINLSQ. Five external subroutines are called from COMB. The subroutines SINV, GMPRD, and EIGEN are called from the SSP FORTRAN library. COMYLD calculates predicted unit yields from estimates of component family yields. COMINF calculates the estimated information matrix and its inverse.

The input for SIMPLEX is identical to that for LINLSQ except that no entry in the $(N+2)$ nd row of the external data file is required. The subroutines GMPRD and SINV are called from the SSP FORTRAN library. As well, seven other subroutines, XCALC, XPLACE,XREF, XCONTR, XCENT, XSHR, and XPAND and the function XF are called externally
from SIMPLEX. The purposes of these subprograms are described in the initial comments of their listings.

With the exception of CARLO, all of the above programs were originally designed for practical use. Due to numerical problems, however, only LINLSQ can be used with any degree of success.

All approximate confidence intervals are calculated at the ninety-five percent confidence level. Alterations to the programs and their input could be made which would allow for different levels of confidence.

Those calculations which were done by hand using results from LINLSQ and CARLO could be incorporated into the programs. The test of fit described in section 3.3 could be included in both LINLSQ and CARLO. Those calculations necessary to estimate the variance-covariance matrix of the parameter estimates in CARLO could be included in the program. LINLSQ would be of more practical use if the program and its input were adjusted to predict point estimates and determine confidence intervals for the yields of newly designed electronic units.

Figure 11

Input Format For The Program LINLSQ

```
10.3
27,3,450, 1000,553
25,10,350, 500,144
31,0,375, 800,574
16,11,400, 750,101
10.25.290, 150.92
35.0.425, 650.496
29.29.325, 125.79
21,0,400, 600.24!
21.9.420, 850.337
17,25,216, 350,219
2.365
```

```
UNIT 1
```

UNIT 1
UNIT ?
UNIT ?
UNIT 3
UNIT 3
UNIT A
UNIT A
UNIT S
UNIT S
HNIT 6
HNIT 6
UNIT 7
UNIT 7
UNIT B
UNIT B
UNITT }
UNITT }
UNIT }1

```
UNIT }1
```


TABLE 8

RESULTS OF TEST RUN ON THE PROGRAM LINLSQ

Component Family	Estimated Component Family Yield	True Component Family Yield
1	.9899	.9900
2	.9949	.9950
3	.9990	.9990

TABLE 9

RESULTS OF TEST RUN ON THE PROGRAM PREDMLE

Component Family	Estimated Component Family Yield	True Component Family Yield
1	.9900	.9900
2	.9950	.9950
3	.9990	.9990

C THTS prograis takes the logarithm of the unit yieldo to form a linear C EOUATION in the logarithes of the component yields. these fouations C are solved using multiple regression.

C
DIMENSIOM Q(50.25),Y(50), ADJYLD(50,1), DTRANS(25,50), CMPYID(25),
\$ L(25), (50), CONS (25.1), MwDRK(25), NEW(50), DER(25,25), 2(25,50),
\$ A(325), K(25,25), 1JADJ(50, 25),Y1ELD(50)
REAL NEW
PEAD(9,*) N.M
C
C N IS THE NUMRER OF ROWS (UNITS) \& M IS THE NUMBER OF C COLUMOS (COMPONENT FAMILIES).
C
CALL OLS(N,HWORK, Q,YIELD,QTRANS,CMPYLD,L,M,NEW,
\$ DER, $2, C O N S, Y, N, A, A D J Y L D, G A D J, R)$
stop
END
C
SUBROUTINF OLS (N,MKORK, Q,YIELO, QTRANS, CMPYLD,L,M,
\$ NFW, DFR,Z,CONS,Y,W,A,ADJYLD,OADJ,R)
OIMENSION Q(N,M),A(325),ADJYLD(N, 1),OTRANS(M,N),
\& CMPYLD(M),R(Y,M),W(N),Y(N),L(M),MWORK(M),NEK(N),
\$ DER (M,M), QADJ(N,M),YIFLO(N), L(M,N),CONS(M,1)
REAL NFN
C
WRITE (3,200)
200 FORMAT(20X, DATA MATRIX:',1,1)
c
DO $10 \quad 1=1, \mathrm{~N}$
$\operatorname{READ}(9, *)(Q(I, j), J=1, M), N E W(I), Y(I)$
WRITE(8,210$)(0(1, J), J=1, M)$
210 FORMAT(3x,25F4.0)
10 CONTINUE.
C
WRITE 8,220$)$
220 FORMAT(1H1)
WRITF(R,230)
230 FORMAT (1./)
C
C
C
C calculate thf yields and adjust the yiflos and the o matrix for
C Unegulal variances. then print out the units acceptede the number
C tested. the yiel.d and the adjusted yieidis.
C
WRITE (8, 240)
240 FORNAT(1AX, UNIT', 13X, IUNITS TESTEDI,15X, 'UNITS ACCEPTED',
\$ $14 \mathrm{X}, \mathrm{CUNIT}$ YIELD'. $13 \mathrm{X}, \mathrm{A}$ ADJUSTED YIELDI, $)$
C

```
00 is I=1, iv
    YIELD(I)=Y(I)/NES(I)
    W(I)=SORT((NEN(I)-Y(I))/(NEN(I)*Y(I)))
    ADJYLO(I,!)=ALOG(YIELD(I))/N(I)
    00 20 J=1,14
    QADJ(I.J)=0(I,J)/W(I)
```

```
20 CONTINUE
    WRITF(8,250)I,NFF(I),Y(I),YIELD(I),ADJYLD(I,1)
250 FORMAT(15X,I2,2(20X.55.0).19X,F7.4.17X,F9.4)
15 cONTINUE
C
C dETERMINE THE TRANSFOSE OF ThE ADJUSTED Q matrix,
C
30 CONTINUE
25 CONTINUE
C
C NOW WE CAN PERFORM THE ACTUAL REGRESSION.
C
    CALI GMPRD(QTRANS,OADJ,OER,M,N,M)
C
C THE matrix der consistS of non negative entries, hence we can
C SCALE THE matrix SO that the INVFRSE of a matrix with a smaller
C RaNGE OF values can be detefmined, this will reduce the chances
C OF THE PROGRAM CHASHING THROUGH A REGISTER OVERFLON OR UNDERFLOW.
C
    ZZ=1000.*FLOAT(N)
    00 35 J=1,M
    DO 40 JJ=1.M
    ORR(J,JJ)=DEF(J,JJ)/ZZ
40 CONTINUE
35 CONTINUE
C
C WE DETERMINE THE INVERSE OF DER USTNG THE SSP SUEROUTINE SINV
C WhICH OETERMTNES THE INVERSE OF POSITIVE DEFINITE SYMMETRIC MATRICES.
C
    LSUM=0
    D0 45 J=1.M
    DO 50 k=1,.,
    LSUM=LSUM+1
    A(LSU*)}=0\mathrm{ OR(J,K)
50 CONTINUE
45 CONTINUE
C
    FPS=,001
    CALL. SINV(A,M,EPS,IER)
C
    LSUM=0
    00 55 J=1,m
    D0 to k=1:J
    LSUM=LSUN+1
    DER(J,K)=A(LSUM)
    DER(K,J)=0ER(J,K)
60 CONTIHLE
55 CONIINUE
C
C NOW aE HAVE TO RESTORE DER TO ITS ORIGINAL SCALING BEFORE WE
C CAN USF IT.
```

```
        0065 J=1.M
        DO 10,J.J=1,M
        DER(J,JJ)=DER(J,JJ)/ZZ
    70 CONTINUE
    65 CONTINUE
    C
        CALL GMPRO(DER,OTRANS,Z,N,M,N)
        CALL GMPRO(7, ADJYLO.CONS,N,N,1)
        WRITE(8,220)
        WRITE(8,230)
C
    SIGMA=0.0
    0075 I=1,N
    E=0,0
    00 80 J=1.M
    E=E+DADJ(I,J)*CONS(J,1)
80 CONTINUE
    E=ADJYLU(I,I)=E
    SIGMA=SIGAA+E**2
75 CONTINUF
    NH=N-M
    SIGMA=SIGMA/FLOAT(NM)
    0085 J=1,M
    DO 90 JJ=1,M
    DER(J,JJ)=OER(J,JJ)*SIGMA
90 CONTINHE
85 CONTINUE
C
    WRITE (8,200)
260 FORMAT(50X,ICOVARIANCE MATRIX1,1)
    WRITE(B,270)(J,J=1,M)
270 FORMAT(16(13X,I2),/)
    DO 95 I =1.M
    WRTTE(8,280)I, (DER(1, 1), I=1,1)
280 FORMAI(2X,I2,16(2X,E13.7))
95 CONTINUE:
    READ(q,*)T
C OETFRMINE CONFIOENCE INTERVALS FOR THF ESTIMATES OF THE LOGARITMM
C OF THE COMOONENT YIELDS AND FOR THE COMPONFNT YIELD ESTIMATES.
        WR11E(8,220)
        WRITE (0,230)
        WRITE(8.290)NA
290 FORPAT(25X, APPROXINATE 95% CONFIDENCE INTERYALS ONI,IZ,IX,
        $ IOEGREES OF FHEEDOM:',/J
        NRITF(8,300)
300 FORAAT(3X, COMFONENT', I2X,'LOG OF COMPONENT YIELDI,4SX,
        $ POMPONENT YIELOI,/)
        WTTE(8,310)
310 FGRMAT(10x,2(1,1),5x,50(1-1),15x,36(1-1))
    OO 100 J=1,M
    xLA=CONS(J,1)-T^SORT(OER(J,J))
    UB=CO4S(J.1)+i*SG2T(DER(J.J))
    CMPY(O(J)=EXP(CONS(J,1))
```

```
    FXPLE=EXP(XIR)
        EXPUB=EXP(UB)
        NRITF(8,320)J,CONS(J,1),XLB,UB,CMPYLD(S), EXPLB,EXPUB
320 FORMAT(10X,I2,5X,E14,6,5X,1(1,E14,6,1,1,F14,6,1)1,15X,FR,5,5X,
    $ ((1,E10,5,1,1,E:10.5,1)!)
100 CONTIHUE
C
C FIND APPROXIMATE CONFIDENCE INTERVALS FOR THE UNIT YIELDS USING
C BOTH THE OBSERVED YIFIDS AND THE FSTIMATED YIELDS.
C
    WRITE(8,220)
    WRITE(8.230)
    WRITE (8,330)
330 FORMAT(25X, IAPPQOXIMATE 95% CONFIDENCE INTERVALS FOR UNIT ',
    $ 'rIELOS:1,/,1)
        WRITE(8,340)
340 FORMAT(OX,'UNIT',14X,'FOR OGSERVED',35X,IFOR ESTIMATES',1)
        WRITE(8.350)
350 FORMAT(10x,2(1-1),5x,33(1-1),15x,37(1-1))
C
    00 105 I=1,N
    FAC=YIFLD(I)*(1.0-YIELD(I))/NEW(I)
    FAC=1.96*SORT(FAC.)
    BINLR=YIELD(I)-FAC
    BINUB=YPELD(I)+FAC
    ESTYLD=0.0
    ESTVAR=0.0
C
    DO 110 J=1,M
    ESTYLD = ESTYLD+O(I,J)*CONS(J,1)
C
    DO 115 K=1,M
    ESTVAR=FSTVAR+Q(I,K)*Q(I.J)*DER(J,K)
115 CONTINUE
110 COMTTNUF
C
    SD=SURT(ESTVAR)
    ESTLE=FXP(ESTYLO-1.96*SO)
    ESTUA=EXP(ESTYLD+1.90*SO)
    ESTYID=FXP(ESTYLD)
    WRITE(8,360)I,YIFLD(I),RINLB,BINUB,ESTYLD,ESTLB,ESTUB
360 FORMAT(1Ox,12,5X,F8.5,1:1,5x,1(1,F8,5,',1,F8.5,1)1,15x,
    $F8,5,1:1,5x,1(!,E10,5,',1,F10.5,1)!)
105 CONIINUE
C
C DETERMINE PRINCIPAL COMPONFNTS, THAT IS BY CALCULATING THE
C EIGENVECYORS, NE CAN DETERMINF NEN GASES FOR DUR CONPONENTS WHICH
c. WILL BE IADEPENDEST.
C
    CALL. EIGEN(DFR,R,M,O)
    WRITE(9,220)
C
    00 120 J=1,M
    *ile(R,570)J,oEP(J,j)
370 FORMAT(/,20X,'EIGENVALUE(1,I2.1)=1,E16.8./)
```

380
WRITE (8,390)(J,I,R(I,J), $I=1, M)$
FORMAT (25x, IEIGFNVECTOR(1,12.1,1.12.1) $=1, E 16.8)$
continue
RETURN
END

```
C THIS PROGRAM GENERATES 100 SAMPLFS OF YIELD DATA ANO COMPUTES
C CONFIDENCE INTERVALS FOR THE ESTIMATES USING THE RESULTS OF ALL
C OF THE SAMPLES. THE YIELD ESTIMATES FOR EACH SAMPLE IS FOUND USING
C THE METHOD OF THE PROGRAM LINLSQ.
C
    DIMENSION Q(50,25),Y(50), ADJYLD(50,1),OTRANS(25,50),CMPYLD(25),
    $P(50),AC(25),XMEAN(50),DEV(50),XBAR(25),
    $ SUM(25),S1(50),S2(50),
    $L(25),W(50),CONS(25,1),NWORK(25),NEW(50),DER(25,25),Z(25,50),
    S A(325),R(25,25),QADJ(50,25),YIELD(50)
    REAL NEW
    READ(9,*) N,M
C
C N IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER OF
C COLUMNS (COMPIONENT FAMILIES).
C
    CALL OLS(N,MWORK,Q,YIELD,QTRANS,CMPYLD,L,M,NEW,
    $ P,AC,XMEAN,DEV,XBAR,SUM,S1,S2,
    S DER,Z,CONS,Y,W,A,AOJYLO,OADJ,R)
        STOP
        END
C
    SUBROUTINE OL.S(N,MNORK,G,YIELD,OTRANS,CMPYLD,L,M,
    $ NEN,P,AC, XMEAN,DEV,XBAR,SUM,S1,S2,
    $ DER,Z,CONS,Y,W,A,ADJYLD,OADJ,R)
    DIMENSION O(N,M),A(325),ADJYLD(N,1),OTRANS(M,N),
    $ CMPYLO(M),R(M,M),W(N),Y(N),L(M),MWORK(M),NEW(N),
    $ P(N),AC(M),XMEAN(N),DEV(N),XBAR(M):SUM(M),
    $ S1(10),S2(10),
    $ DER(M,M),GADJ(N,M),YIELD(N),Z(M,N),CONS(M,1)
    REAL NEW
C
200 FORMAT(2OX,IDATA MATRIX:1:/,1)
C
    00 10 I=1.N
    READ(9,*)(O(1,J),J=1,M),NEW(I),Y(I)
    WRITE(6,210)(0(I,J),J=1,M)
210 FDRMAT(3X,25F4,0)
10 CONTINUE
C
    WRITE (6,220)
220 FORMAT(IHI)
C
    AC(1):.99
    AC(2)=.905
    AC(3)=.999
C
    WRITE(6.231)
231 FORMAT(22X,ICOMPONENT',16X,IYIFLDI,/)
    WRITE(6,232)(J,AC(J),J=1,M)
232 FORMAT(25X,I2.20X,F5.3)
C
C DETERMINE AND PRINT THE TRUE UNIT YIELDS.
C
```

```
    WRITE(6,220)
    WRITE (6,240)
240 FORMAY(?UX,IUNTT'.16X,IUNITS TESTEDI,17X,
    $ ITRUE UNIT YIELD',/)
C
    DO 1% I=1,N
    P(I)=0.0
    DO 21 J=1.M
    P(I)=P(I)+Q(I,J)*ALOG(AC(J))
21 CONTINUE
    P(I)=EXP(P(I))
    WRITE(6,250)1,NEN(I),O(I)
250 FORMAT(25X,12,20X,F5,0,20X,F10,8)
    XMEAN(I)=P(I)*NEH(I)
    DEV(I)=SGRT(KMEAN(I)*(1.0-P(I)))
    SI(I)=0.0
    S2(I)=0,0
11 CONTINUE
C
    WRITE(6,220)
    IX=79
    READ(9,*)T
C
    DO 61 J=1,M
    XBAR(J)=0,0
    SUM(J)=0.0
61 CONTINUE
C
    DO 41 NSTEP=1.100
C GENERATE APPROXIMATE BINOMIAL OBSERVATIONS TO BE USED AS
C THE NUMBER OF UNITS ACCEPTED.
C
    DO 51 I=1,N
500 CALL GAUSS(IX,DEV(I), XMEAN(I),Y(I))
        IF(Y(I).LT.O.0)GOTO 500
        IF(Y(I),GT,NEN(I))GOTO 500
51 CONTINUE
C
    calculate the yieldS and adjust the yielos and the o matrix for
    UNEQUAL VARIANCES, THEN PRINT OUT THE UNITS ACCEPTED. THE NUMBER
    tested, the yield and the adjusted yields.
    DO 15 I=1,N
    YIELD(I)=Y(I)/NEW(I)
    W(I)=SORT((NEW(I)-Y(I)),(NEW(I)*Y(I)))
    ADJYLO(I,1)=ALOG(YIELD(I))/W(I)
    OO 20 J=1.M
    OADJ(I,J)=0(I,J)/W(I)
20 CONTINUE
15 CONTINUE
C
C DETERMINE THE TRANSPOSE OF THE ADJUSTED O MATRIX.
C
00 25 I=1,N
```

```
    DO 30 J=1,M
    QTRANS(J,I)=QADJ(I,J)
30 CONTINUE
25 CONTINUE
C
C NOW WE CAN PERFORM THE ACTUAL REGRESSION.
    CALL GMPRO(QTRANS,OADJ,DER,M,N,M)
C
C THE mATRIX DER cONSISTS OF NON NEGATIVE ENTRIES. HENCE WE CAN
C SCALE the matrix so that the inverse of a matrix with a smallek
C RaNge of values can be determined. this mill reduce the chances
C OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERFLOW.
C
    Z2=1000.*FLOAT(N)
    DO 35 J=1,M
    DO 40 JJ=1,M
    DER(J,JJ)=DER(J.JJ)/2Z
40 CONTINUF
35 CONTINUE
C
C WE DETERMINE THE INVERSE OF DER USING THE SSP SUGROUTINE SINV
C WHICH DETERMINES THE INVERSE OF POSITIVE DEFINITE SYMMETRIC MATRICES.
    LSUM=0
    DO 45 J=1.M
    DO 50 K=1,J
    LSUM=LSUM+1
    A(L.SUM)=OER (J,K)
50 CONTINUE
45 CONTINUE
C
    EPS=.001
    CALL SINV(A,M,EPS,IER)
C
    LSUM=0
    DO 55 J=1,M
    DO 60 K=1,J
    LSUM=LSUM+1
    DER(J,K)=A(LSUM)
    DER(K,J)=DER(J,K)
60 CONTINUE
55 CONTINUE
C
C NOW WE HAVE TO RESTORE DER TO ITS ORIGINAL SCALING EEFORE WE
C CAN USE IT.
C
    DO }65\textrm{Jmi.M
    DO 70 jJ=1,M
    DER(J.JJ)=DER(J.JJ)/ZZ
70 CONTINUE
65 CONTINUE
C
    CALL GMPRD(DER,QTRANS,Z,M,M,N)
    CALL GMPRD(Z,ADJYLD,CONS,M,N,I)
```

 \(\operatorname{SIGMA}=0.0\)
 DO \(75 \mathrm{I}=1, \mathrm{~N}\)
 \(E=0,0\)
 DO \(80 \mathrm{~J}=1, \mathrm{M}\)
 \(E=E+Q \Delta D J(I, J) \star C O N S(J, 1)\)
 - continue
$F=A D J Y L D(1,1)-E$
SIGMA $=\operatorname{SIGMA}+E * * 2$
CONTINUE
$N M=N-M$
SIGMA $=$ SIGMA/FLOAT(NM)
$0085 \mathrm{~J}=1, \mathrm{M}$
DO $90 \mathrm{JJ}=1 \mathrm{M}$
DER(J,JJ) $=\operatorname{DER}(J, J J) * S I G M A$
CONTINUE
85 CONTINUE
${ }^{C}$
C
C DETERMINE CONFIDENCE INTERVALS FOR THE FSTIMATES OF THE LOGARITHM
C OF THE COMPONENT YIELDS AND FOR THE COMPONENT YIELD ESTIMATES,
WRITE $(6,290) \mathrm{NM}$
290 FORMAT(25X, IAPPROXIMATE 95\% CONFIDENCE INTERVALS ONI,I2,IX,
 * IDEGREES OF FREEDOM; 1,1$)$
WRIT (6,300)
300 FORMAT (SX, ICOMPONENTI, $12 x$: LOG OF COMPONENT YIELD'. $43 x$,
\$ 'component yieldi,1)
WRITE $(6,310)$
310 FORMAT(10x,2(1-1),5x,50(1-1),15x,36(1))
DO $100 \mathrm{~J}=1, \mathrm{M}$
$X \operatorname{LB}=\operatorname{CONS}(\mathrm{J}, 1)-T * \operatorname{SQRT}(D E R(J, J))$
UR $=\operatorname{CONS}(\mathrm{J}, 1)+T \star \operatorname{SORT}(D E R(\mathrm{~J}, \mathrm{~J}))$
CMPYLD(J) $=\operatorname{EXP}(\operatorname{CONS}(J, 1))$
XBAR (J) $=X B A R(J)+C M P Y L D(J)$
$\operatorname{SUM}(J)=\operatorname{SUM}(J)+C M P Y L D(J) * * 2$
$E \times P L B=E \times P(X L B)$
EXPUB=EXP(UB)
WRITE (6, 320)J, CONS (J, 1): XLB,UB, CMPYLD(J), EXPLB, EXPUB

\$ ($(1, E 10,5,1,1, E 10,5,1) 1)$
100 CONTIVUE
c
C FIND APPROXIMATE CONFIDENCE INTERVALS FOR THE UNIT YIELDS USING
C BOTH THE OBSERVED YIELDS AND THE ESTIMATED YIELDS.
c
WRITE $(0,220)$
WRITE 0,330)
330 FORMATC25X, APPPROXMATE 95% CONFIDENCE INTERVALS FOR UNIT 1 .
\$ MIELDS:':/:
WRITE $(6,340)$
340 FORMAT($9 X$, UNITI, $14 X$, FFOR OBSERVEDI, $35 X$, IFOR ESTIMATESI, 1$)$
WRITE $(6,350)$
350 FORMAT $(10 x, 2(1-1), 5 x, 33(1-1) .15 x, 37(1-1))$

PROGRAM LISTING - CARLO (Cont'd)

```
        D0 105 I=1,N
        FAC=YIELD(I)*(1.0-YIELD(I))/NEW(I)
        FAC=1,9h*SQRT(FAC)
        BINLB=YIELD(I)-FAC
        BINUB=YIELD(I)+FAC
        ESTYLD=0.0
        ESTVAR=0.n
C
        00 110 J=1,M
        ESTYLD = ESTYLO+Q(I,J)*CONS(J,I)
C
115 CONIINUE
110 CONTINUE
C
        SD=SQRT(ESTVAR)
        ESTLG=EXP(ESTYLD-1.96*SD)
        ESTUB=EXP(ESTYLD+1.96*SD)
        ESTYLD=EXP(ESTYLD)
        WRITE(6,360)I,YTELO(I),BINLG,RINUS,ESTYLD,ESTLB,ESTUB
360 FORMAT(10X,I2,5X,FB,5,1:1,5X,1(1,Fg,5,1,1,F8,5,1)1,15X,
    $F8,5,1:1,5x,1(1,E10,5,1,1,F,10.5,1)')
        SI(I)=SI(I)+ESTYLO
        S2(I)=S?(I)+ESTYLD**2
105 CONTINUE
c
41 CONTINUE
        WRITE(6,220)
        WRITF(6,370)
370 FORMAT(20X,195% APPROXIMATE CONFIDENCE INTERVALS FOR THE ',
    $ ICOMPONENT YIELD ESTIMATESI,/)
        WRITE (6,380)
380 FORMAT(17X,ICOMPONENTI,12X,IESTIMATEI,12X,
        * 'CONFIOENCE INTERVAL',/)
        WRITE (0,385)
385 FORMAT(20x,2(1-1),15x,9(1-1),11x,21(1-1))
C
        0071 J=1,M
        SUM(J)=(SUM(J)-((XBAR(J)**2)/1000))/99.
        XBAR(J)=XRAR(J)/100.
        XLB=XBAR(J)-1.96*SORT(SUM(J))
        XUR=XBAR(J)+1,96*SORT(SUM(J))
        WRITE(6,390)J,XBAR(J),XLB,XUB
390 FORHAT(20x,12,15x,F9,6,1:1,10x,1(1,F9,6,1,1,F9,6,1)1)
71 CONTINUE
C
        WRITE(6,220)
        WRITE (6,400)
400 FORMATC2OX,195% CONFIDENCE INTERVALS FOR UNIT YIELD ',
    $ 'ESTIMATES',/)
        WRITF(6.410)
410 FORMAI(IGX,IUNIT:,IFX,IESTIMATEI,IZX,
    $ ICONFIOENCE INTERVAL:/I
        WRITE(6,385)
```

PROGRAM LISTING - CARLO (Cont'd)

```
DO Bi l=i,N
S2(I)=(S2(I)-((S1(I)**2)/100.))/90.
S1(I)=S1(I)/100.
XLB=SI(I)-1,96*SQRT(S2(I))
XUB=S1(I)+1.90*SQRT(S2(1))
WRITE(0,390)I,SI(I),XLG,XUB
CONTINUE
RETURN
END
```

C

```
C
C THIS PROGRAN USES THE MAXIMUM LIKELIHOOD ESTIMATION METHOD AND THE
C METHOD OF "SCORING" TO DETERMINE TME YIELD OF COMPONENTS DURING
C PRODUCTION.
C
    DIMENSION G(35,25),NEW(35),YIELO(35),Y(35),AHAT(25).
    U INF(25,25),L(25),MM(25),S(35),FAC(25),K(35),
    U BR(35,25,25),PREV(25)
    REAL NEN,IAF,K
    READ(9**)N,M
C
C N IS THE NUMEER OF ROWS (UNITS) & M IS THE NUMBER OF COLUMNS
C (CDMPONENT FAMILIES).
C
    CALL SCORE(N,M,G,NEW,YIELD,Y,AMAT,PREV,INF,L,MM,S,FAC,K,BE)
    STOP
    ENO
C
    SURROUTINE SCORE(N,M,O,NEW,YIELO,Y, AHAT,PREV,INF,L,MM,S,FAC,K,
        U BB)
    DIMENSICN G(N,M),NEW(N),YIELD(N),Y(N),AHAT(N),PREV(M),INF(M,M),
    UL(M),MN(M),S(N),FAC(M),K(N),BE(N,M,M)
    REAL NEM,IAF,K
C
    DO 35 I=1.^
    READ(9,*)(G(I,J),J=1,M),NEW(I),Y(I)
    CONTINUE
35
C
C
C DETERMINE CCNSTANTS WHICH WILL BE USED THROUGHOUT THE ITERATIVE.
C PROCEDURE.
C
41 CONTINUE
31 CONTINUE
21 CONTINUE
C
c initialize the values
C
    MMM=M-1
C
    NIT=0
    READ(9.*) START
    00 85 J=1,N
    AHAT(J)=START
85 CONTINUE
C
WRITE(7.500)NIT
500
    FORMAT(/,7X:NNIT = 1,13)
    WRIIE(7,550)(J,AHAT(J),J=1,M)
550 FORMAT(15X,'AHAT('.12.') = ,E13.6)
C
```

```
C NOW we begin the iterative procedure.
C
10 NIT=NIT+I
C
    0095 J=1.N
        PREV(J)=AHAT (J)
95 CONTINUE
C
C DETERMINE THE ESTIMATES OF THE UNIT ACCEPTANCE P&OBABILITES.
C
    DO 205 I=1,N
    K(I)=0.0
        DO 215 J=1,M
        K(I)=K(I)*G(I,J)*ALOG(AHAT(J))
215 CONTINUE
        K(I)=EXP(K(I))
205 CONTINUE
C
C determine the information matrix and itS inverse.
C
    DO 105 KK=1.M
    DO 115 LL=1,KK
        INF(KK,LL)=0.0
        DO 100 I=1,N
        INF(KK,LL)=INF(KK,LL)+BB(I,KK,LL)*K(I)/(1.0-K(I))
100 CONTINLE
        INF(KK,LL)=INF(KK,LL)/(AHAT(KK)*AHAT(LL))
115 CONTINUE
105 CONTINUE
C
        DO 110 KK=1,MMM
        III=KK+1
        DO 120 LL=III,M
        INF(KK,LL)=INF(LL,KK)
120 CONTINUE
110 CONTINUE
C
    CALL MINV(YNF,M,D,L,MM)
C
C DETERMINE THE sCORE vECTOR.
C
    00 125 J=1.M
    B=0.0
    DO i35 I=1,N
    B=Q(I,J)*(Y(I)*NEW(I)*K(I))
    B=R/(AHAT(J)*(1.0-K(I)))
    S(J) =S(J)+B
135 CONTINUE
125 CONTINUE
C
C dETERMINE THE AOJUSTMENT FACTOR
C
    00 165 J=1.M
    FAC(N)=0.0
    DO 175 JJ=1.M
```


PROGRAM LISTING - PREDMLE (Cont'd)

```
        FAC(J)=FAC(J)*INF(J,JJ)*S(JJ)
175 CONTINUE
165 CONTINUE
C
c determine the aew value of ahat.
C
185 CONTINUE
C
DO 225 J=1.M
IF(AHAT (J).LT.0.75)AHAT (J)=0.75
IF(AHAT(J),GT,1,25)AHAT(J)=1.25
cONTINUE
WRITE(7,500) NIT
WRITE(7,550)(J,AHAT (J),J=1,M)
C
DO 195 J=1.M
IF(ARS(AHAT(J)-PREV(J)).GT.0.0000005) GOTO 20
195 CONTINUE
RETURN
C
20 IF(NIT.LT.75)60T0 10
RETURN
END
```

C THIS PROGRAM USES THE METHOD OE THE PROGRAM IINLSQ IO FIND ESTIMATES C OF THE COMPONENT YIEIDS WHICH CAN THEN BE USED AS SIARTING VALUES FOR C FINDING MAXIMUM LIKEIIHOOD ESIIMATES USING THE METHOD OR SCORING. C

DIMENSION Q 40,20$), Y(40), \operatorname{ADJYLD}(40,1), Q T R A N S(20,40), ~ С M P Y I D(20)$, $\$ \mathrm{BB}(40,20,20), \operatorname{CONDSD}(20), \mathrm{S}(20), F A C(20)$.
$\$ \operatorname{LWORK}(20), \mathcal{W}(40), \operatorname{CONS}(20,1), M W O R K(20), N E W(40), \operatorname{DER}(20,20), Z(20,40)$, $\$ \mathrm{~A}(320), \mathrm{F}(20,20), \operatorname{QADJ}(40,20), \operatorname{YIELD}(40)$
REAL NEW
$\operatorname{READ}(9, *) N, M$
C
C N IS THE NUMBER OF ROWS (UNITS) $\mathcal{E} M$ IS IHE NUMBER OR
C COLUMNS (COMPONENT FAMILIES).
CALL OLS (N,M,Q,YIEID,QTRANS,CMPYLD,LWORK, MWORK,NEW,
\$ DER,Z,CONS,Y,K,A,ADJYLD,QADJ,R,BB, CONDSD,S,FAC)
STOP
END
C
SUBROUTINE OIS (N, M, Q, YIELD, QTRANS, CMPYID, LHORK, MHORK,
\$ NER, DER,Z,CONS,Y, $A, A, A D J Y I D, Q A D J, R, B B, C O N D S D, S, F A C)$
DIMENSION $\mathcal{Q}(N, H), A(325), \operatorname{ADJYLD}(N, 1), Q T E A N S(M, N)$,
$\$ \mathrm{BB}(\mathrm{N}, \mathrm{M}, \mathrm{M}), \operatorname{CONDSD}(\mathrm{M}), \mathrm{S}(\mathrm{M}), \mathrm{FAC}(\mathrm{M})$.
\$ CMPYLD (M), R(M, H), N(N), Y(N), LWORK (M), MWORK (M),NEW(N),
$\$ \operatorname{DER}(M, M), Q A D J(N, M), Y I E L D(N), Z(N, N), \operatorname{CONS}(M, 1)$
REAL NEW
C
maite 6,200$)$
200 FOAMAT(20X,'DATA MATRIX:',/,/)
C
DO $10 \mathrm{I}=1$, N
$\operatorname{READ}(9, *)(Q(I, J), J=1, M), N E W(I), Y(I)$
WRITE (6, 210) (Q(I,J), J=1, M)
210 FORMAT ($3 \mathrm{X}, 25 \mathrm{~F} 4.0)$
10 CONTINUE
C

220 Fokmat (1H1)
WRITE $(6,230)$
230 FORMAT(/,)
C
C CAICULATE THE YIELDS AND ADJUSI THE YIEEDS AND THE Q MATRIX FOR
C UNEQUAL VARIANCES. THEN PRINT OUT THE UNITS ACCEPTED, THE NUMBER
C TESTED AND THE YiELDS.
C
WRITE $(6,240)$
240 FORMAT(14X,'UNIT', 13X,'UNIMS TESTED',15X,'UNITS ACCEPTED', \$ 14X, 'UNIT YIELD',
C
DO $15 I=1, N$
$\operatorname{YIELD}(I)=Y(I) / N E W(I)$
$W(I)=S Q R T(N E R(I)-Y(I)) /(N E W(I) * I(I)))$
$\operatorname{ADJYLD}(I, 1)=\operatorname{ALOG}(V I E D(I)) / W(I)$
DO $20 \mathrm{~J}=1, \mathrm{M}$
$\operatorname{QRDJ}(I, J)=Q(I, J) / W(I)$

```
20 CONPINUE
    WEITE(6,250) I,NEW(I),Y(I),YIELD(I)
250 FORMAT(15X,I2,2(20X,F5.0),19X,F7.4)
15 CONTINUE
C
C DETERMINE THE TRANSPOSE OF THE ADJUSTED Q MATRIX.
C
    DO 25 I=1,N
    DO 30 J=1,M
    QTRANS(J,I) =QADJ(I,J)
    CONTINUE
C
C NOW WE CAN PERFORM THE ACTUAL REGRESSION.
C
    CALL GMPRD(QTRANS,QADJ,DER,M,N,M)
C
C the mateix der consists of non negative zNTRIES. hence we can
C SCALE THE MATRIX SO THAT THE INVERSE OF A MATRIX HINH A SMALIER
C RANGE OF VALUES CAN BE DETERMINED. THIS WIII EEDUCE THE CHANCES
C OF THE PROGEAM CRASHING THROUGH A REGISIER OVERFLON OR UNDERFLOW.
C
    ZZ=1000.*FLOAT(N)
    DO 35 J=1,M
    DO 40 JJ=1,M
    DER(J,JJ)=\operatorname{DER}(J,JJ)/ZZ
40 CONTINUE
35 CONTINUE
C
C WE DETERMINE THE INVERSE OF DER USING THE SSP SUBROJTINE SINV
C WHICH DETERMINES THE INVERSE OF qOSITIVE DEFINITE SYMMETRIE MATRICES.
C
    LSUM=0
    DO 45 J=1,M
    DO 50 K=1,J
    LSUM=LSUM+1
    A (ISUM) = DER(J,K)
50 CONTINUE
4 5 ~ C O N T I N U E ~
C
    EPS=.001
    CALI SINV(A,M,EPS,IER)
C
    ISUM=0
    DO 55 J=1,M
    DO 60 K=1,J
    LSUM=LSUM+1
    DER(J,K) =A (ISUM)
    DER(K,J)=\operatorname{DER}(J,K)
60 CONTINUE
55 CONTINUE
C
C NOW HE HAVE TO RESTOEE DER TO ITS ORIGINAI SCALING BEFORE WE
C CAN JSE IT.
C
```

 DO \(65 \mathrm{~J}=1\), M
 DO \(70 \mathrm{JJ}=1, \mathrm{M}\)
 \(\operatorname{DER}(\mathrm{J}, \mathrm{JJ})=\operatorname{DER}(\mathrm{J}, \mathrm{JJ}) / \mathrm{ZZ}\)
 DO \(19 \mathrm{~J}=1, \mathrm{M}\)
 \(\operatorname{CMPYLD}(\mathrm{J})=E X P(\operatorname{CONS}(\mathrm{~J}, 1))\)
 19 CONTINUE
C
C
C DETERMINE THE CONSTANTS WHICH RILL bE USED IHROUGHOJT THE ITERATIVE
C procedure.
C
DO $21 I=1, N$
DO $31 \mathrm{KK}=1, \mathrm{M}$
DO $41 \mathrm{LI}=1, \mathrm{KK}$
$B B(I, K K, L L)=N E Q(I) * Q(I, K K) * Q(I, L L)$
41 CONTINUE
31 CONTINUE
21 CONaINUE
C
C INITIALIZE THE VALUES
C
$M M M=M-1$
$N I T=0$
WRITE $(5,600)$ NIT
600 FORMAT (/,7X,'NIT $=1, I 3)$
HRITE (6, 550) (J,CMPYLD(J), J=1, M)
550 FOFMAT (15X,'CMPYLL (', I2, ' $)=1, E 13.6$)
C
C NOW BEGIN THE ITERATIVE PROCEDURE
C
$500 \quad \mathrm{NIT}=\mathrm{NIT}+1$
DO $95 \mathrm{~J}=1$, M
$\operatorname{CONS}(J, 1)=\operatorname{CMPYLD}(J)$
95 CONTINUE
C
CALL COMYLD (K, Q, M, N, CMPYLD)
CALL COMINF (BB, M, N, DER, $\mathrm{K}, \mathrm{CONDSD}$, LWORK, MHORK, CMPYLD)
C
C determine the score vector.
C

```
DO \(125 \mathrm{~J}=1\), M
\(B=0.0\)
DO \(135 \mathrm{I}=1, \mathrm{~N}\)
\(B=Q(I, J) *(Y(I)-N E M(I) *\) in \((I))\)
\(B=B /(\operatorname{CMPYLD}(J) *(1.0-W(I)))\)
\(S(J)=S(J)+B\)
```

135 CONIINUE

PROGRAM LISTING - COMB (Cont'd)

```
125 CONTINUE
C
    DO 235 ,J=1,M
    FAC(J)=0.0
    DO 245 JJ=1,M
    FAC(J)=FAC(J) +DER(J,JJ)*S(JJ)
245 CONTINUE
235 CONTINUE
C
C determine the new estimate of IHE COmponent yield
C
185 CONTINUE
C
    WRITE (6,500)NIT
    WRITE(6,550)(J,CMPYID(J),J=1,M)
C
195 CONTINUE
    RETJRN
C
510 IF(NIT.IT. 150)GOTO 500
    IF(NIT.EQ.250) RETURN
    WRITE (6,260)
260 FORMAT(50X,'COVARIANCE MATRIX',/)
    WRITE (5,27)) (J,J=1,4)
270 FORMAT(15(13X,I2),/)
    DO }96\textrm{I}=1,\textrm{M
    WRITE (6, 280) I, (DEE (I,J),J=1,I)
280 FORMAT(2X,I2,16(2X,E13.7))
96 CONTINUE
    READ (9,*)T
C
C DETERMINE APPROXIMATE CONFIDENCE INIEEVAIS FOR OUR IOMPONENT
C FAMIIY YIELD ESBIMATES.
C
    WRITE (5,220)
    WRITE (6,230)
    WRITE (6, 290)
290 FOEMAT(25X,'APPROXIMATE 95号 CONFIDENCE INTERVALS FOR',
    $ ' COMPONENT YIEI,DS',/,/)
    WRITE (6,300)
300 FORMAT(7X,'COMPONENT',6X,'ESTIMATED', 8X,'UNCONDITIONAL',
    $ 16X,'CONDITIONAI')
    WRITE (6,305)
305 FORMAT(8X,'FAMILY',10X,'yIELD',10X,'VARIANCE C.I.',
    $ 16X,'VARIANCE C.I.',/I
    WRITE (6,310)
310 FORMAT(10X,2('-'),10X,8('-'),5X,19('-'),5X,23('-'))
C
    DO 100 J=1,M
    COMPLE=CMPYLD(J)-1.96*SQRT(DER(J,J))
    COMPUB=CMPYLD (J) + SQRT(DER(J,J))
```

```
        CONDLB=CMPYLD (J)-1.96*CONDSD (J)
        CONDUB=CMPYLD(J) + 1.96*CONDSD (J)
        WRITE (6,390) J,CMPYLD(J), COMPIB,COMPUB,CONDLE,CONDUB
390 FORMAT(10X,I2,10Z,F8.5,':',5X,'(',F8.5,',',F8.5,''',
    $ 5X,'(',F10.5,',',F10.5,')')
100 CONTINUE
C
C PRINT OUT THE ESTIMATED UNIT YIELDS AND COMPAFE WITH THAT OBSERVED. C WRITE \((6,220)\) WRITE \((6,230)\) WRITE \((6,330)\)
```



``` \(\$ 4 \mathrm{X},{ }^{\prime} 95 \% \mathrm{C}, \mathrm{I}\). FOR OBSERVED YIELD',/) WRITE (5,410)
410 FORMAT(10X,2('-'),2(15X,8('-')),15X,19('-'))
C
\[
\text { DO } 105 I=1, N
\]
FACT=YIEID(I)*(1.0-YIELD(I))/NEW(I)
FACT \(=1.96 * S Q R\) ( PACT )
\(B I N I B=Y I E L D(I)-F A C T\)
BINUB=YIELD(I) +FACI GRITE \((6,420)\) I, \(\operatorname{To}(I), Y I E L D(I), B I N I B, B I N U B\)
420 FORMAT(10X,I2,2(15X,F8.5),15X,'(',F3.5,',',F8.5,')')
105 CONTINUE
c
C DETERMINE PRINCIPAL CCMPONENSS, THAI IS BY CALCULATING THE
C EIGENVECTORS, WE CAN DETERMINE NEW BASES FOR OUR COMPONENTS WHICH
C WIIL BE INDEPENDENT.
C
CALI EIGEN (DEF,R,M,O)
WRITE \((6,220)\)
C
DO \(120 \mathrm{~J}=1\), M
WRITE (6, 370) J, DER (J, J)
370 FORMAT (/,20X,'EIGENVALUE(',I2,') \(=1, E 16.8 . /)\)
WRITE \((6,389)(J, I, R(I, J), I=1, M)\)
380 FORMAT (25R,'EIGENVECTOE (',I2,',',I2,') \(=1, E 16.8\) )
120 CONTINUE
C
RETURN
END
```

```
C THIS SUBROUTINE DETERMINES THE ESTIMATES OF THE UNIT YIELDS.
C
    SUBROUTINE COMYID(M,Q,M,N,CMPYLD)
        DIMENSION H(N),Q(N,M),CMPYLD(M)
C
    DO 10 I= 1,N
    W (I) =0.0
    DO }15\textrm{J}=1,
    W(I)=W(I)+Q(I,J) *ALOG(CMPYLD(J))
    CONTINUE
    W(I)=EXP(W (I))
    CONTINUE
C
        RETURN
        END
```

```
        SUBROUTINE COMINF (BB,M,N,XINF,W,CONDSD,LGORK,MNORK,CMPYID)
        DIMENSION BB(N,M,M),XINF(M,M),W(N), 工WORK(M),MKORK (M),
        $ CONDSD(M),CMPYLD(M)
```

C
DO $10 \mathrm{~J}=1, \mathrm{M}$
Do $15 \mathrm{~K}=1, \mathrm{~J}$
$\operatorname{XINF}(J, K)=0.0$
DO $20 \quad I=1$, N
$\operatorname{XINF}(J, K)=X I N F(J, K)+B B(I, J, K) * W(I) /(1.0 m(I))$
20 CONTINUE
$\operatorname{XINF}(J, K)=X \operatorname{INE}(J, K) /(\operatorname{CMPYLD}(J) * \operatorname{CMPYLD}(K))$
$\operatorname{XINF}(K, J)=\operatorname{XIN}(J, K)$
$\operatorname{IF}(J . E Q, K) \operatorname{CONDSD}(J)=1.0 / S Q R T(X I N F(J, J))$
15 CONTINUE
C
CALL MINV (XINF,M, D, LAOKK, MUORK)
C
RETITR
END

```
C THIS PROGRAM TAKES THE LOGARITHM OF THE UNIT YIELDS TO FORM A LINEAR
C EQUATION IN THE LOGARITHMS OF THE COMFONENT YIELDS. THESE EQUATIONS
C ARE SOLVED USING MULYTPLE REGRESSION, THESE ESTIMATES ARE THEN
C USED YO CONSTHUCT THE VERTICES OF A SIMPLEX WHICH WILL BE USED
C TO DETERMINE THE MAXIMUM LIKELIHOOD ESTIMATES OF TME COMPONENT
C YIELDS.
C
    DIMENSION Q(50.25),Y(50),YIELD(50),QTRANS(25,50),CMPYLD(25),
    $L(25),W(50),CONS(25,1),MWORK(25),NEN(50),DER(25,25),2(25,50),
    * VERT(26,25),CENT(25),FLIKE(26),VERTR(25),VERTE(25),AHAT(25),
    $ VERTC(25),CONDSD(25),ADJYLD(50,1),GADJ(50,25),A(325),EST(50)
    REAG NEW
    READ(9,*) N,M
C
C N IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMGER OF
C COLUMNS (COMPONENP FAMILIES).
        MPLUS=M+1
C
        CALL OLSIA,N,EST,MWORK,O,YIELD,GTRANS,CMPYLD,L,M,NEW,
    $ DER,Z,CONS,Y,W,VERT,CENT,FLIKE,VERTR,VERTE,AHAT,VERTC,MPLUS*
    * QADJ,ADJYLD,CONDSD)
        SIOP
        END
        SUEROUTINE OLSIA,N,EST,MWORK,Q,YIELD,OTRANS,CMPYLD,L,M,NEW,
    $ DER,Z,CONS,Y,#,VERT,CENT,FLIKE,VERTR,VERTE,AHAT,VERTC,MPLUS*
    S QADJ,ADJYLD,CONDSDJ
        DIMENSION G(N,M),VERT(MPLUS,M),CENT(M),FLIKE(MPLUS),YIELD(N),
    & CMPYLD(M),EST(N),QTRANS(M,N),W(N),Y(N),L(M),MWORK(M),NEW(N).
    s DER(M,M),VERTR(M),VERTE(M),AHAT(M),VERTC(M),Z(M,N),CONS(M,1),
    & A(325),CONDSD(M),ADJYLD(N,1),QADJ(N,M)
        REAL NEW
C
        WRITE(5,200)
        FORMAT:ZOX, 'DATA MATRIX',/,/)
200
C
        DO 10 J=1,N
        READ(9,*)(Q(I,J),J=1,M),NEW(I),Y(I)
        WRITE(6,2:0)(O(I,J),J=1,M)
210 FORMAT(3X,25F4.0)
10 CONTINUE
C
        WRITE(6,220)
220 FORMAT(1H1)
C
C CALCULATE THE YIELDS AND ADJUST FOR UNEQUAL VARIANCES.
C
        WRITE(6,230)
230 FORMAT(14*,IUNITI,13X,IUNITS TESTEDI,15X,IUNITS ACCEPTEDI,
        $ 14x, IUN:T YIELDI,13X,14OJUSTED YIELO:,/)
C
DO 15 i=i,N
YIELD(I)=Y(I)/NEN(I)
W(I)=SQRT((NEW(I)mY(I))/(NEW(I)*Y(I)))
ADJYLD(I,!)=ALOG(YIELO(I))/W(I)
```

```
        00 20 J=1,M
        QADJ(T,J)=Q(I,J)/W(I)
20 CONTINUE
        WRITE(6,240)I,NEW(I),Y(I),YIELD(I),ADJYLD(I,1)
240 FORMAT(15X,I2,2(20X,F5,0),19X,F7,4,17X,F9,4)
15 CONTINUE
c
C DETERMINE THE TRANSPOSE OF THE ADJUSTED Q MATRIX.
C
            DO 25 I=1,N
            DO 30 J=1,M
            QTRANS(J,I)=QADJ(I,J)
30 CONTINUE
25 CONTINUE
C
NOW WE CAN DERFORM THE ACTUAL REGRESSION.
CALL. GMPRD(QTRANS,OADJ,DER,M,N,M)
C THE MATRİX DER CONSISTS OF NON NEGATIVE ENYRIES. MENCE WE CAN
C SCALE THE mATRIX SO THAT THE INVERSE OF A MATRIX WITH A SMALLER
C RANGE OF VALUES CAN be DETERMINED, THIS WILl REDUCE THE CHANCES
C OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERFLOW,
C
        ZZ=10000.*FLOAT(N)
c
        DO }35\textrm{J}=1.\textrm{M
        DO 40 JJ=1,M
        DER(J,JJ)=DER(J,JJ)/ZZ
40 CONTINUE
35 CONTINUE
C
C WE DETERMINE THE INVFRSE OF DER USING PHE SSP SUBROUTINE SINV
C WHICH DETERMINES THE INVERSE OF PGSITIVE DEFINITE SYMMETRIC MATRICES.
C
        LSUM=0
C
        DO 45 J=1.M
        00 50 K=1.J
        LSUM=LSUM+1
        A(LSUM)=DER(J,K)
50 CONTINUE
45. CONTINUE
C
        EPS=.001
        CALLSINV(A,M,EPS,IER)
        LSUM=0
C
        DO 55, 1:1,m
        DO 60 k=1.N
        LSUM=LSUM+1
        DER(J,K)=A(LSUM)
        DER(K,J)=DER(J,K)
6O CONTINUE
```

```
55 CONYINUE:
C
C NOW WE HAVE TO RESTORE DER TO ITS ORIGINAL SCALING BEFORE WE
C CAN USE IT.
C
    0065 J=1.M
    DO 70 JJ=1.M
    DER(J,JJ)=DER(J,JJ)/ZZ
70 CONTINUE
65 CONTINUE
C
    CALL GMPRD(DER,QTRANS,Z,M,M,N)
    CALL GMPRD(Z,ADJYLD,CONS,M,N,1)
C
    DO 75 J=1,M
    CMPYLD(J)=EXP(CONS(J,1))
75 CONTINUE
C
    WRITE(6,220)
    WRITE (6,250)
250 FORMATG3OX, 'STARTING VALUES FOR THE SIMPLEX PROCEDURE:')
    WRITE(6,260)(I,CMPYLD(I),I=1,M)
260 FORMAT(15X,ICOMPONENT YIELD(1,I2,1) = 1,F15.7)
    ALPHA=1.0
    BETA=.5
    GAMMA=1.5
C
C DETERMINE THE VERTICES OF AN M DIMENSIONAL SIMPLEX WITH WHICH TO
C START THE SIMPLEX PROCEDURE.
C
    NCOUNT=0
    NSTOP=M*15
    WRITE(6,220)
C
    00 80 J=1,M
    VERY(1.J)=CMPYLD(J)
80 CONTINUE
C
    DO 85 I=1,M
    DO 90 J=1,M
    VERT(I+I,J)=CMPYLD(J)
    IF(I,EQ.J)VERT(I*I,J)=CMPYLD(J)=,0005
90 CONTINUE
C
    CALL XCALC(N,M,Q,MPLUS,VERT,FLIKE,AHAT,Y,NEW)
C
AT THIS POINT WE CAN ACTUALLY GEGIN THE SIMPLEX PROCEDURE,
C
500 IF(NCOUNY,GE.NSTOP, GOTO 550
    GALL XCENT(M,MPLUS,VERT,CENT)
    NCOUNT=NCOUNT +1
C
C FIRST WE TRY A REFLECTION OF THE VERTEX WHICH GIVES A MINIMUM
C VALUE TO THE LIKELIHOOD FUNCTION.
```

```
    CALL XREF(M,MPLUS, ALPHA, VERT,CENT,VERTR)
    FLIKER=XF(N,M,Q,VERTR,Y,NEN)
1
    IF(FLIKE(1),GE,FLIKER,AND,FLIKER,GE,FLIKE(M))GOTO 510
    IF(FLLIKER,GT,FLIKE(I)) %OTO 520
    IF(FLIKE(M),GT,FLIKER,AND,FLIKER,GT,FLIKE(M+1)) GOTO 530
    IF(FLIKE(M+1),GT,FLIKER) GOTO 540
    WRITE(6,270)
    FORMAT (1OX,IPROCEDURE HALTEDI)
        RETURN
C
C IF CONDITIONS OF STATEMENT I ARE SATISFIED, WE REPLACE THE VERTEX WITH
C MINIMUM LIKELIHOOD FUNCTION WITH THE REFLECTED POINT AND THEN RESTART
C THE PROCEDURE.
C
510 CALL XPLACE(M,MPLUS,VERT,FLIKE,VERTR,FLIKER)
    WRITE (6,280)NCOUNT,FLIKE(1)
280 FORMAT(IOX,INCOUNT =I,IA,IOX,IREFLECTIONI,9X,ILIKELIHOOD=1,
    $ E18.10)
        GOTO 500
C
C IF CONOITIONS OF STATEMENT 2 ARE SATISFIED WE TRY AN EXPANSION AND
C THEN RESTARY THE PROCEDURE.
520 CALL XPAND(M,GAMMA,VFRTE,CENT,VERTR)
    FLIKEE=XF(N,M,Q,VFRTE,Y,NEW)
    IF(FLIKEE,GT,FLIKE(I))CALL XPLACE(M,MPLUS,VERT,FLIKE,VERTE,FLIKEE)
    IF(FLIKEE,LE,FIIKE(I))CALL XFLACE(M,MPLUS,VERT,FLIKE,VERTR,FLIKER)
        WRITE(6,290)NCOUNT,FLIKE(1)
290 FORMAT(IOX,INCOUNT =1.IL,10X,IEXPANSIONI,IOX,
    S ILIKELIHOOD= ',E18.10)
        GOTO 500
C
C IF CONDITIONS OF STATEMENT 3 ARE SATISFIED WE YRY A CONTRACTION,
C IF SUCCESSFUL WE RESTART THE PROCEDURE, OTHERWISE WE SHRINK THE
C SIMPLEX ABOUT THE POINT WITH THE HIGHEST LIKELIHOOD VALUE.
530 CALL XCONTR(M,MPLUS, BETA,VERT,VERTC,CENT)
        FLIKEC=XF(N,M,O,VERTC,V,NEW)
        IF(FLIKEC,GE,FLIKE(M+1)) GOTO 540
        IF(FLIKE(M+1),GT,FLIKEC)CALG XPLACEIM,MPLUS,VERT,FLIKE,VERTC,
    $FLIKEC)
        WRITE (6,300)NCOUNT,FLIKE(1)
300 FORMAT(1OX,INCOUNT =',IU,IOX, CONTRACTIONI,IOX,
    $ ILIKELIHOOD=1,EIB.10)
        GOTO 500
C
C IF CONTRACTICN FAILS WE SHRINK THE SIMPLEX ABOUT TME VERTEX WHICH
C HAS THE GREATEST LIKELIHOOO VALUE.
C
540 CALI XSHR(M,MPLUS,VERT,FLIKE)
    CALL XCALC(N,M,O,MPLUS,VERT,FLIKE,AHAT,Y,NEW)
        WRITE (6,310JNCOUNT,FLIKE(1)
310 FORMAT(10X,INCOUNT = I,I4,IOX,SHRINXI,I3X,ILIKELIHOOD=1.
    S E18,10)
```

GOTO 500
C DETERMINE TME UNIT YIELDS IN ORDER TO ESTIMATE THE COVARIANCE MATRIX. C $550 \quad$ LSUM $=0.0$

C
D0 $95 \quad I=1, N$
$W(I)=0.0$
DO $100 \mathrm{~J}=1, \mathrm{M}$
$W(I)=W(I)+Q(I, J) * A L O G(V E R T(I, J))$
100
CONTINUE
$W(I)=E \times P(W(I))$
95 CONTINUE
C C ESTIMATE THE VARIANCE-COVARIANCE MATRIX.

DO $105 \mathrm{~J}=1, \mathrm{M}$
DO $110 \quad \mathrm{~K}=1 \mathrm{i} \mathrm{J}$
LSUM = LSUM +1
$A(L S U M)=0.0$
C
DO $1151=1, N$
IF (O(I,J),EQ.O.0)GOTO 115
IF (O(I,K),EQ.0.0)GOTO 115
$X N U M=N E W(I) \star Q(I, K) \star Q(I, J) * W(I)$
DEN=VERT $(1, J) \star V E R T(1, K) *(1,0-W(I))$
$A(L S U M)=A(L S U M)+X N U M / D E N$
CONTINUE
IF(K,EQ,J)CONDSD(J) $=1,0 / \operatorname{SQRP}(A(L S U M))$
$A(L S \cup M)=A(L S U M) / Z Z$
$\begin{array}{ll}110 & \text { CONTINUE } \\ 105 & \text { CONTINUE }\end{array}$
C
$E P S=10, E-5$
CALL SINV (A,M,EPS,IER)
LSUM=0
C
DO $120 \quad \mathrm{~J}=1, \mathrm{M}$
DO $125 \mathrm{k}=1 . \mathrm{J}$
LSUM=LSUM+1
DER(i,K) $=A($ LSUM $) / Z 2$
$\operatorname{DER}(K, J)=\operatorname{DER}(J, K)$
125 CONTINUE
120 CONYINUE
C
WRITE $(0,220)$
WRITE 6,320)
320 FORMAT(50X, ICOVARIANCE MATRIXI.1)
WRITE $(6,330)(J, J=1, M)$
330 FORMAT(16(:3x,12),1)
C
DO $130 \mathrm{~J}=1 . \mathrm{M}$
WRITE $(6,340) \mathrm{J},($ DER $(1, J),[=1, \mathrm{~J})$
340
FORMAT(2X,12.16(2X,E13.7))

PROGRAM LISTING - SIMPLEX (Cont'd)

```
1 3 0
        CONTINUE
C DETERMINE APPROXIMATE CONFIDENCE INTERVALS FOR OUR COMPONENT
C FAMILY YIELD ESTIMATES.
C
    WRITE(6,220)
    WRITE(6,350)
3 5 0
    FORMAT (25X,'APPROXIMATE 95% CONFIDENCE INTERVALS FORI,
        $ I COMPONENT YIELDS:1,/,1)
        WRITE (6,360)
360 FORMATITX, ICOMPONENT',GX,'ESTIMATED', 8X,IUNCONDITIONAL',
    $ 16K,ICONDITIONAL 1)
        WRITE (6,370)
    FORMAT(8X,IFAMILYI,10X,IYIELDI,10X,IVARIANCE C,I,',
    $ 16x.IVARIANCE C.I.1,1)
        WRITE(6,380)
        FORMA1(10x,2(1-1),10x,8(1-1),6x,19(1=1),5x,23(1-1))
380
C
    DO 135 J=1,M
    COMPLB=VERT(1,J)-1.96*SQRT(DER(J,J))
        COMPUR=VERT (1,J) +1.96*SQRT(DER(J,J))
        CONDLB=VERT(1.J)-1.96*CONDSD(J)
        CONDUB=VERT(1,J)+1.96*CONOSD(J)
        WRITE (6,390)J,VERT(1,J),COMPLB,COMPUB,CONDLB,CONDUB
        FORMAT (10X,I2,10x,F8,5,1:1,5x,1(1,F8,5,1,1,F8,5,1)1,
    $ 5x,1(1,F10,5,1,1,F10,5,1)1)
        CONTINUE
c
C PRINT OUT THE ESTIMATED YIELD ANO COMPARE WITH THAT OBSERVED,
C
    WRITE(6,220)
    WRITE(6,400)
    FORMAT(9X,IUNIT',11X, IYIELD ESTIMATEI,9X,
    $ IOBSERVED YIELDI,4X,195% C.I. FOR OBSERVED YIELDI,N
    WRITE(6,410)
410 FORMAT(10x,2(1-1),2(15x,8(1-1)),15x,19(1=1))
C
    DO 140 I=1,N
    FAC=YIELD(I)*(1.OWYIELD(I))/NEW(I)
    FAC=1,96*SQRT(FAC)
    BINLG=YIELO(I)OFAC
    BINUB=YIFLD(I)+FAC
    WRITE(6,420)I,W(I),YIELD(I),BINLE,BINUB
420 FORMAT(10X,I2,2(15X,F8,5),15X,1(1,F8,5,1,1,F8,5,1)1)
140 CONTINUE
c
    RETURN
    END
```


SUBROUTINE LISTING - XCALC

SUBROUTINE XCALC(N,M,Q,MPLUS,VERT,FLIKE,AHAT,Y,NEW)

```
C
C this subrdutine calculates the values of the likelimood function at
C ALL OF THE VERTICES AND SORTS THE VERTICES IN ORDEN OF SIZE OF THEIR
C LIKELIHOOD FUNCTIONS (LARGEST TO SMALLEST).
C
    DIMENSION VERT(MPLUS,M),Y(N),NEW(N),FLIKE(MPLUS),AHAT(M),G(N,M)
    REAL NEW
C
    DO 10 I=1,MPLUS
    DO 15 J=1,M
    AHAT(J)=VERT(I,J)
15 CONTINUE
    FLIKE(I)=XF(N,M,Q,AHAT,Y,NEW)
10 CONTINUE
C
    DO 20 I= 1,M
    IPLUS=I+1
    DO 25 II=IPLUS,MPLUS
    IF(FLIKE(I),GE,FLIKE(II)) GOTO 25
    DO 30 J=1,M
    TEMP=VERT(I,J)
    VERT(I,J)= VERT(II,J)
    VERT(II,J)=TEMP
30 CONTINUE
    TEMP=FLIKE(I)
    FLIKF(I)=FLIKE(II)
    FLIKE(II)=IEMP
25 CONTINUE
20 CONTINUE
C
    RETURN
    END
```

SUBROUTINE XPLACE (M,MPLUS,VERT,FLIKE,VERTR,FLIK)
C this subroutine places our new vertex in the proper order amongst the C OTHER VERTICES
C
DIMENSION VERT(MPLUS,M),FLIKE(MPLUS),VERTR(M)
C
C REPLACE THE VERTEX WITH THE LEAST LIKELIHOOD BY OUR NEWLY CHOSEN C VERTEX.
C
FLIKE(MPLUS)=FLIK
DO $10 \mathrm{~J}=1, \mathrm{M}$
VERT(MPLUS,J) $=\operatorname{VERTR(J)}$
10 CONTINUE
DO $15 \mathrm{I}=1, \mathrm{M}$
IF(FLIKE(MPLUS-I),GE,FLIKE(MPLUSWI))GOTO 500
$0020 \mathrm{~J}=1 \mathrm{M}$
TEMF=VERT (MPLUS-I,J)
VERT (MPLUS-I, J) =VERT (MPLUS-I $+1, J$)
VERT (MPLUS-I + $1, J)=T E M P$
20 CONTINUE
TEMP=FLIKE(MPLUS-I)
FLIKF(MPLUS-I) $=$ FLIKE(MPLUS-I +1$)$
FLIKE (MPLUS-I +1)=TERM
15 CONTINUE
C
500 RETURN
END

SUBROUTINE XREF (M, MPLUS, ALPHA, VERT, CENT, VERTR)
c
C THIS SUBROUTINE FINDS A POINT REFLECTED THROUGH THE CENTROID
C FROM THE VERTEX AT WHICH THE FUNCTION IS MINIMUM,
DIMENSION VERT(MPLUS,M),CENT(M),VERTR(M)
DO $10 \mathrm{~J}=1, \mathrm{M}$
$\operatorname{VERTR}(J)=(1,0+A L P H A) * C E N T(S)=A L P H A * V E R T(M P L U S, J)$
10 CONTINUE
C
RETURN
END

```
    FUNCTION XF(N,M,Q,AHAT,Y,NEW)
C
C THIS FUNCTION SUBPROGRAM DETERMINES THE LOGARITHM OF THE
C LIKELIHOOD FUNCTION AT A PARTICULAR VERTEX, THE LIKELIHOOD
C FUNCTION WILl have a maximum at the same point as the log
C OF THE LIKELIHOOO FUNCTION.
    DIMENSION Q(N,M),NEW(N),Y(N),AHAT(M)
    REAL NEW
    XF=0,0
    DO 15 1=1,N
    xK=0,0
    DO 25 J=1,M
    XK=XK&Q(1,J)*ALOG(AHAT(J))
25 CONYINUE
    IF(XK,GE.0,0)GOTO 35
    XK=Y(I)*XK*(NEW(I)-Y(I))*ALOG(1,0-EXP(XK))
    XF=XF+XK
15 CONTINUE
    RETURN
35 XF=16,E=65
RETURN
    END
```

 SUBROUTINE XCONTR(M,MPLUS, BETA, VERT, VERTC,CENT)
 C
C THIS SUBROUTINE DECREASES THE SIZE OF THE SIMPLEX BY MOVING THE
C REFLECTED VERTEX IN.
C
DIMENSION VERT(MPLUS,M),VERTC(M),CENT(M)
c
10 CONTINUE
c
RETURN
END

SUBROUTINE LISTING - XCENT

SUBROUTINE XCENT (M,MPLUS,VERT, CENT)
C THIS SUBROUTINF LOCATES THE CENTROID OF THE SIMPLEX EXCLUDING THE C VERTEX HAVING THE LEAST LIKELIHOOD.
C
DIMENSION VERT(MPLUS,M),CENT(M)
DO $15 \quad I=1, \mathrm{M}$
$\operatorname{CENT}(I)=0,0$
DO $25 \mathrm{~J}=1 \mathrm{M}$
$\operatorname{CENT}(I)=\operatorname{CENT}(I)+V E R T(J, I)$
25 CONTINUE
$\operatorname{CENT}(I)=\operatorname{CENT}(I) / F L O A T(M)$
15 CONTINUE
RETURN
END

SUBROUTINE LISTING - XSHR

SUBROUTINE XSHR (M,MPLUS, VERT,FLIXE)
C This subroutine shrinks the simplex, retaining the vertex with the C MAXIMUM LIKELIHOOD.
C
OIMENSION VERT(MPLUS,M),FLIKE(MPLUS)
DO $151=1$ M
DO $25 \mathrm{~J}=1, \mathrm{M}$
VERT $(I+1, J)=(V E R T(I+1, J)+V E R T(1, J)) / 2.0$
25 CONTINUE
15 CONTINUE
RETURN
END

SUBROUYINE XPAND (M,GAMMA, VERTE, CENT, VERTR)
C
C THIS SUBROUTINE EXPaNOS THE REFLECTION in the direction along which C A FURTHER IMPROVEMENT OF THE LIKELIHOOD VALUE IS EXPECTED
C
DIMENSION VERTE(M),CENT(M),VERTR(M)
$00 \quad 10 \mathrm{~J}=1 . \mathrm{M}$
VERTE (J) =GAMMA*VERTR(J)*(1,0-GAMMA) *CENT(J)
10
CONTINUE
c
RETURN
END

REFERENCES

Anderson, T.W. Introduction to Multivariate Statistical Analysis. John Wiley and Sons Inc., 1958.

Kenda11, M.G. and A. Stuart. The Advanced Theory of Statistics. Volune 1. Hafner Publishing Company, 1969.

Kenda11, M.G. and A. Stuart. The Advanced Theory of Statistics. Volume 2. Hafner Publishing Company, 1973.

Kowalik, J. and M.R. Osborne. Methods for Unconstrained Optimization Problems. American Elsevier Publishing Company, Inc., 1968.

Myers, R., K. Wong, and H. Gordy. Reliability Engineering for Electronic Systems. John Wiley and Sons Inc., 1964.

Rao, C.R. Linear Statistical Inference and Its Applications. Sohr Wiley and Sons Inc., 1965.

Russeil, D.L. Optimization Theory. W.A. Benjamin, Inc., 1970.

