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ABSTRACT 

In the field of commu11ications electronic plug-in units operating 

together fo:rm a system. In the event of failure a plug-in unit can 

easily be replaced by another. Each unit consists of electronic 

components soldered onto a board in a particular pattern. A cowponent 

may be either a single electronic part such as a transistor or a. 

combination of single parts such as an integrated circuit. Electronic 

components with similar properties have been grouped into families. 

This reduces the number of parameters to be estimated fr·om the 

observations available. 

The method of maximum likelihood is used to estimate the 

failure rates of component families. The number of unit fa.ilures 

and the number of units in use observed during measured periods of 

time and the component family makeup of the observed units are used 

to make the estimates. 

The probability of an electronic component from a given 

component :from a given family being acceptable after the production 

process will be refened to as the component yield for that family. 

Similarly, the probability of a given type of u:ait being acceptable 

after the prodth::tion pTocess will be referred to as the yield for 

that type of unit. By taking the logarithms of the yields, the 

estimation problem can be reduced to the linear problem of estimating 

logarithms of component fam:i.l y yields. Using unit yields, the total 
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number of each type of unit produced, and the component family 

makeup of those units produced, component family yields are 

estimated. The method of maximum likelihood is applied directly 

to the data and the method of weighted least squares is applied 

to the linearized problem. 
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CHAPTER 1 


INTRODUCTION 


One of the tasks of a reliability engineer in the communi

cations industry is prediction. If the yield of electronic units 

from the production line can be predicted, producers can better 

predict production costs and hence determine a selling price for 

their products. If the reliability of a newly designed electronic 

unit can be predicted, purchasers of the units can be given estimates 

of their maintenance costs. Knowledge of the component family 

yields and component family reliabilities would make these pre

dictions possible. 

Components within an electronic unit may either be in series 

or in parallel. In the case of components in series, a component 

failure will cause a break in the circuit thereby resulting in a 

unit failure. When a component which is parallel with another fails 

the circuit is not broken and hence the unit continues to function. 

Parallel components are sometimes installed in order to lengthen the 

lifetime of an electronic circuit. Designers of electronic plug-

in units tend to avoid parallel components because a plug-in unit can 

be easily replaced, parallel components add to the cost of production, 

and the lifetime of a.unit is not greatly prolonged by the addition 

of extra components. It is therefore reasonable to assume that 

components ivi thin units are in series. 
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CHAPTER 2 


FAILURE RATES OF COMPONENT FAMILIES FROM UNIT FAILURE RATES 


2.1 Introduction 

The reliability of an electronic unit can be estimated 

if the unit has been in service for a length of time, but no 

adequate method has been developed for predicting the reliability 

of a newly designed unit. If estimates of component family 

reliabilities were available this would be possible. When units 

from the field are serviced, a list of those components replaced 

can be obtained. Unfortunately no differentiation is made between 

those components which have been removed because of failure and 

those removed as trouble shooting aids. As a result, no direct 

method of estimating component reliabilities is available. Testing of 

the reliability of electronic components under actual operating 

conditions is costly in terms of both time and money. Accelerated 

testing, where components are tested at their highest ratings of 

temperature and humidity have been done. However, in the tests, 

chemical reactions which occur within components at different 

temperatures and humidities make the results difficult to apply. 

Tests of the reliability of electronic components have been done in 

the aircraft industry but cannot be applied because of the effect 

of vibration as well as different temperature and humidity conditions. 

For purposes of prediction, a method of estimating component family 

2 
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reliabilities is needed by reliability engine~rs. 

Units within a system can be assumed to operate independently. 

The failure of one unit does not damage another unit or cause another 

unit to fail. The same assumption can be made for individual 

components since those components which have failed or have been 

damaged as a result of the original component failure are replaced 

along with the original component which failed. Unfortunately 

damage to components cannot always be detected. Component failures 

are assumed to follow a Poisson process with a constant failure rate. 

With a constant failure rate, components can be replaced without 

affecting the model. 

2.2 Method of Maximum Likelihood 

Consider N distinct types of electronic units produced using 

components from M distinct component families. Since components 

are Poisson: -a·t z e J (a.t) 
{j=l,... ,M),P[ z components of type j failing in time t] = z! 

where a. is the constant failure rate of a component of type j.
J 

Since component failures are independent and components are in series: 

M 

A. 
l 

= I aJ. qiJ. (i=l, ... , N), 
j=l 

where A. is the constant failure rate of a unit of type i and q .. is 
l lJ 

the number of components of type j in a unit of type i. 

The total number of units of a particular type in actual use 

and the total number in the field may vary from one time period to 
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another. As a result, the expected number of failures may differ 

from one period to another. Let Yik be the random variable 

denoting the number of failures of a unit of type i during the kth 

time period. Then Yik is Poisson with parameter ¢ik where: 

(i=l, ... ,N; k=l, ... ,K); 

and yik is the proportion of the units of type i in the field 

actually used during the kth time period, nik is the total 

number of units of type in the field during the kth time period, 

thand tk is thelength of the k time period. 

The likelihood function L can now be set up: 

-¢ik yik 
e ¢ik 

= 
yik. 

Maximizing the likelihood is equivalent to maximizing the logarithm 

of the likelihood: 

N K 

I k~l {yik log ¢ik - ¢ik - log(yik!)}.
i=l 

To maximize logL, its derivatives are taken with respect to the 

parameters a (s=l, ... ,M) and set equal to zero. Since: 
s 

M 

L aJ. qij (i=l, ... ,N; k=l,.,K), 
j=l 

it follows that: 
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8¢ik 
(i=l, ... ,N; k=l, ... ,K;s=l, ... ,M).~ = y · k n · k tk q · ov. l • l . lS 

s 

Hence: 

ologL = 
N K 

dCI. I I 
s i=l k=l 

N K y.k 
= I L {y.k n.k tk q. { ~- 1} (s=l, ... ,M).

i=l k=l 1 
l lS ~ik 

Set derivatives equal to zero and solve for a (s=l, ... ,M) where & 
s s 

is the maximum likelihood estimate of the failure rate of a component 

of the sth component family: 

N K 

I L y.k n.k tk q. {
k=l l l 1Si=l 

} 

(s=l, ... ,M) . 

The method of scoring (Appendix 1) is used to solve this set of 

non-linear equations. The information matrix is required for scoring: 

a2logL N K a 1 = I I )
aat aas qis Yik aa ( 

Mi=l k=l t L a. q
1) 
.. 

j =1 J 

N K 
(s=l, ... ,M;t=l, ... ,M), 

i=l k=l 
= - I I 

2 N K-o logL yik nik tk qis qit
E[ ] = I I = 9cs,t)

aat del. M s i=l k=l La. q .. 
1J ( s = 1 , . . . , M; t = 1 , . . . , M) ,j =1 J 



6 

N K 
..9cs,t) = I I (s=l, ... ,M; t=l, ... ,M). 

i=l k=l 

Using the inverse of the estimated information matrix an 

approximate 100(1-E)% confidence interval for the sth component family 

failure rate is 

a + z ~~-1 (s=l, ... ,M),
s Efz .:1 (s,s) 

where z is the 100 Ej % critical value for the normal distribution2Efz 

and 9"-1 
(s, s) is the (s, s) entry of the inverse of the estimated in

formation matrix. 

Unit failure rates can now be predicted using our estimated 

component family failure rates: 

where ~O is the predicted failure rate of any unit made of components 

from the M component families for which we estimated failure rates and 

qOj is the number of components of type j in that unit. 

M 

Var(A

A 

0) = Var( I a. qOj)
Jj=l 

M M 
= I L: qoj q0k cov (aj, (\) 

k=l j=l 

M M 
~ ~ -1

L: L: qOj qOk (j 'k)
k=l j=l 

M M A -1 
~ I L: qOj qOk 9 (j 'k)

k=l j=l 
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Then approximate 100(1-E)% confidence intervals for the unit failure 

rates based on the predicted failure rates are: 

M M ~ -l" A. + z L L qoj qok 3 (j,k)o - Ef2 k=l j=l 

Using the normal approximation to the Poisson distribution, approximate 

100(1-E)% confidence intervals for the unit failure rates based on 

the observed failure rates are: 

K 
+ z (i=l, ... ,N).I Ef2k=l 

For those units used to estimate the component family failure rates, 

the approximate confidence intervals for unit failure rates based on 

predicted failure rates can be compared with those based on observed 

failure rates. 

An approximate test of fit can be done using the normal 

approximation to the Poisson distribution. The statistic 

N K 
is asymptotically Chi squared on N•K-MI I 

i=l k=l 

degrees of freedom. 

2.3 Discussion and Recommendations 

2.3.1 Monte Carlo Study: 

Ten distinct artificial units, each made of components from 

three distinct families with known failure rates, were simulated. 

Setting the ratio of units in use to the number of units in the field 

to one, the number of each type of unit in use for a period of five 
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thousand hours was chosen to represent possible actual conditions. 

One hundred samples of the number of failures of each of the ten units 

were randomly generated using the normal approximation to the Poisson 

distribution. If Y. is Poisson with mean¢. and variance¢., then Y. 
1 1 1 1 

is approximately normal with mean ¢. and variance ¢.. Estimates 
1 1 

of the component family failure rates and predicted unit failure 

rates were then made for the one hundred samples using the method 

of maximum likelihood. 

Approximate ninety-five percent confidence intervals for 

each of the component family failure rate estimates for the one 

hundred samples were calculated under the assumption that the component 

family failure rates are approximately normal. The estimates made 

from the generated unit failure rate data appear to be approximately 

normal (Figures 1, 2 and 3). Under actual conditions, it can be 

expected·'that the same will occur. A likelihood ratio test was used 

to test equality of the estimated variance-covariance matrix of the one 

hundred sets of component family failure rates and the inverse of the 

true information matrix (T.W. Anderson, 1958, Section 10.8). The 

calculated statistic was 5.16. The five percent Chi-squared critical 

value on six degrees of freedom is 12.6, meaning that the hypothesis 

of equality of the two matrices is accepted at the five percent level. 

Then the use of the inverse of the estimated information matrix in 

calculating confidence intervals should not affect the level of 

confidence. 



~ 
co • 20 . 
E 
·~ 
~ 
(/) 
().) 

Co-t 
0 

s:: .15 
0 
·~ 
~ 
$-., 
0 
p. 
0 
$-., 

p_., 
.10 1

.05 1

l I 
IL...J\1' ' . • . . . 

4. 6. 8. 10. 12. 
-~ 

14. 16. ' 
Estimate of Failures per ten million hours 

.30 

.25 

(/) 
().) 

9 

Figure 1 
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Figure 3 

Distribution of the One Hundred Monte Carlo 
Estimates of the Failure Rate of Component Family 3 
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The mnnber of confidence intervals for each family containing 

the true parameter value indicates that the true level of confidence 

may be less than ninety-five percent (Table 1). Further Monte Carlo 

studies with larger samples would allow us to make stronger inferences 

regarding confidence levels, as the differences between the observed 

levels of confidence and ninety-five percent may be the result of 

sampling error. 

Since the predicted unit failure rates are linear combinations 

of the estimates of component family failuTe rates, it can be expected 

that predicted unit failure rates will be closer to normal distri

butions. Evidence of this can be seen from the approximate ninety-five 

percent confidence intervals for the unit failure rates based on the 

predicted unit failures. Although still below ninety-five percent, 

the level of confidence appears to be greater than that for the 

confidence intervals for component family failure rates. This 

property will be advantageous when the reliability of a new unit is 

predicted. 

2.3.2 Applications 

Information regarding failure rates of electronic units in 

the field was not available when the computing work was done. As a 

result, at this time, there is no indication of how well the model 

fits actual conditions. If unit failure rate data is to be used to 

estimate component family failure rates, accurate methods of 

collecting data from users of electronic units must be developed and 

users must be convinced of the need of acc.u::ra.te data. As the quality 

http:acc.u::ra.te
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TABLE 1 

PERCENTAGE OF APPROXHvtATE 95% CONFIDENCE INTERVALS FOR 

FAILURE RATES CONTAINING THE TRUE PARAMETER VALUE 

COMPONENT FAMILIES 

COMPONENT PERCENTAGE 
FAMILY CONTAINING TRUE VALUE 

1 92% 

2 93% 

3 93% 

CONFIDENCE INTERVALS BASED ON PREDICTED UNIT FAILURE RATES 

PERCENTAGE 
UNIT CONTAINING TRUE VALUE 

1 93% 


2 95% 


3 95% 


4 96% 


5 95% 


6 95% 


7 92% 


8 92% 


9 96% 


10 95% 
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on incoming information improves, the estimates of component family 

failure rates should improve. 

The method of maximum likelihood was applied to a single 

set of randomly generated approximately Poisson unit failures for 

one period of time. Ten distinct units made from components of 

three distinct families were considered. The test of fit statistic 

calculated from the predicted unit failure rates and observed 

failure rates was 6.15. This is less than 14.1, the five percent 

critical value for the Chi-squared distribution on seven degrees of 

freedom, indicating that this set of data fits the maximum likeli

hood model. Different starting values were tried for the iterative 

scheme. It was found that, for this set of generated failure rate 

data, the scheme converged quickly for starting values between l0- 24 

5and 10 failures per ten million hours (Figure 4 and Figure 5). 

For this set of data the true component family failure rates per ten 

million hours were ten for the first family, five for the second, 

and one for the third. This wide range of values for which the method 

will converge will allow users of the method to proceed without 

having prior knowledge of approximate failure rates of the components. 

Future studies of this method, involving randomly generated unit 

failure rate data, should include more than one period of time. 

A lack of sufficient unit failure rate data requires 

reliability engineers to group components into families. Care must 

be taken to insure that components are grouped into families of 

components having the same failure rates. Otherwise, predicted unit 
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Figure 5 
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failure rates are likely to be poor estimates of the true unit 

failure rates. Results from accelerated tests and from tests in 

other fields may be of use in grouping components into families. 



CHAPTER 3 

YIELD OF COMPONENTS FROM THE YIELD OF UNITS 

3.1 Introduction: 

Faulty components, damage due to handling during production, and 

failures expected during normal use contribute to newly produced 

electronic components failing test procedures. A method of estimating 

the component family yields from.the observed yields of units, the 

total number of each type of unit produced, and the component makeup 

of the observed units would enable reliability engineers to predict pro

duction yields of newly designed units. 

The effect of the production process on one particular component 

is ·assumed to be independent of the effect on any other component. 

Hence, the number of acceptable components of a particular type within 

a particular unit after production will be a binomial observation. 

Let X.. be a binomial random variable denoting the number of acceptable
1J 

components of type j in a unit of type i, that is: 

X.. q .. -X .• 

P[X .. X .• J =(qij) A. 1J (1-A.) 1J 1J 
X ••1J 1J J J1J 

(x .. =O, ... ,q .. ; j=l, .•. M; i=l, ... ,N),
1J 1J 

where q .. is the number of components of type j being acceptable
1J 

after production, N is the number of distinct types of units to be 

18 
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used in the estimation procedure, and M is the number of distinct 

component families found in the N observed units. The probability 

of a unit of type i being accepted can be expressed as a joint 

binomial probability, that is: 

M q .. 

II A. 1J (i=l, ... ,N) .
. 1J= J 

Denote: 
M q .. 

P . = .rrl A. 1J (i=l, ..• ,N).
1 J= J 

It follows from the independence of the acceptability of components, 

that units are independently produced. Thus, the number of 

acceptable units of type i produced during a production period will 

also be binomial. Denoting by the random variable Y., the 
1 

number of acceptable units produced during a production period, 

we get: 

y. n.-y. 

P[Y.=y.] 1 (1-p.) 1 1 


1 1 = (ny11.·) pi 1 

(O~y.~n., i=l, ... ,N)
1 1 

It follows that: 

= ( ~~) 

(i=l, ... ,N), 

and: 

p. (1-p.)
1 1 (i=l, •.. ,N).Var [:~] = n. 

1 
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Then using the normal approximation to the binomial distribution, 

an approximate 100(1-s)% confidence interval for a unit of type i is: 

y. y. y.l l
+ z (1- ~)

n. n. n. (i=l, ... ,N).€/2l l l 
n.l 

3.2 Method of Maximum Likelihood 

Consider N distinct types of electronic units produced using 

components from M distinct component families. Using the distribution 

of acceptable components produced, the likelihood equation can be set 

up: 
N 

= .Till= 

M q .. y. M q .. n.-y. 
[ .II A. lJ] 1(1-[.II A. lJ]) l l 
J=l J J=l J 

Maximizing the likelihood is equivalent to maximizing the logarithm 

of the likelihood: 

logL(Al, ... •\tiYl' ... ,yN) 

N M M q.( n.) · 
= I {log y~ + y. I q .. log A.+ (n.-y.) log(l-[.II1A. lJ])}

i=l l l j=l lJ J l l J= J 

To maximize log L, the derivatives with respect to A (s=l, ... ,M)
s 

are found and set equal to zero. 

M qij
N q. (y.-n. [.II A. ])a logL = lS l l J =1 J (s=l, ... , M) • aA I 

s i=l (A -A [ M A.qi.])
s s II J J

j=l 

Set the derivatives equal to zero and solve for A (s=l, ... ,M)
s 

where A is the estimated yield for a component of the sth components 

family: 

http:1(1-[.II
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M A qij
N q. (y. -n. [. rr A. ] ) 

lS 1 1 J =1 JI = 0 (s=l, ... ,M). 

i=l cl -~ r M A qij]J
s s .li A. 

J=1 J 

The simplex method developed by Neider and Mead (Appendix 2) is 

used to solve for the maximum likelihood estimates of the ~omponent 

family yields. This method proved to be preferable to the method of 

of scoring. (See page 37.) 

The estimated information matrix is used to estimate confidence 
intervals: 

M qij
N q. q.t[.li A. ](y.-n.)= I 1s 1 J =1 J 1 1 (s=l, ... ,M; t=l, ... ,M), 

i=l A A (1-[.N A.qij]) 2 
s t J=l J 

M qij
N n. q. q. t [. li A. ]I 1 1s 1 J =1 J 

i=l M qij
As At(l-[j~lAj ]) 

= .9 (s,t) (s=l, ... ,M; t=l, ... ,M), 

M qijA 

N n. q. q. [.li1 A. ]
A 1 1S 1t J= J (s=l, ... ,M;
J(s,t) = I M q ..i=l A A 

1 t=l, ... ,M).A At(l-[.li A. J])
s J= 1 J 

thThen an approximate 100(1-£)% confidence intervals for the s 

component family yield is 

A + z ;'j -l (s,s) (s=l, ... ,M),
s - £f2 

where z is the 100 £/2% critical value for the normal distribution
Ef2 

and 3A -1 
(s,s) is the (s,s) entry of the inverse of the estimated 

information matrix. 



22 

Yields of units can now be predicted using the estimated 

component family yields: 

where p0 is the predicted yield of any unit made of components from 

the M component families for which we estimated yields and qOj is 

the number q j is the number of components of type j in that unit.0

The predicted yields of the N units used in the estimation procedure 

can be compared with the confidence intervals for unit yields based 

on the observed values. 

An approximate test of fit can be performed using the normal 

approximation to the binomial distribution. The statistic 
A 

N - n. p.)2..
1 1 is asymptotically Chi squared on N-M degreesI n. p. (1-p.)i=l 1 1 1 

of freedom. 

3.3 Method of Weighted Least Squares 

Consider N distinct types of electronic units produced using 

components from M distinct component families. Take the logarithm 

of the yield of a unit of type i: 

M 

log p. = L q .. log A. (i=l, ... ,N). 


1 j =1 1J J 


Let Y. be the random variable for the acceptable number of units 
1 

produced if a total of n. units of type i are produced. Then, since 
1 

the distribution of acceptable units produced is assumed to be bi

nomial the exact mean and variance of Y./n. are known. The exact 
1 1 
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variance of log (Y-j ), however, is unknown but can be approximated.
1 n. 

l 

Let: 

Y. 

b (__!_) = log (Y.;n.) (i=l, ... ,N),


n. l l 
l 

Y. 1 
b I ( __!_) = :-::--:--- (i=l, ... ,N).n. Y./n.

l l l 

By Taylor's Theorem: 

Y. Y. 

b(-2) ~ b(p. )+ c..2-..- p. )b'(p. }


n. 1 n. 1 1 ' 
l l 

where y. is an observed value of Y.. 
l l 

Then: 
Y. Y. 


Var[b (2..)] ~ {b '(pi) )2 Var[n~J
n. 
l l 

= w. 2 say (i=l, ... ,N).
l 

The method of weighted least squares can be applied: 

A= CQ*'Q*)-1 Q*' Y* 

where: 

Approximate 100(1-E)% confidence intervals for the logarithm 

of the component family yields are: 
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r-2
log A + t (N-M) ~Q 'Q*)-l CJ (s=l, ... ,M),

S - Ej2 * 55 

where t (N-M) is the 100 Ef2% critical value for the student'sElz 
t distribution on N-M degrees of freedom, (Q'Q ) -1 is the (s,s)

* * 
-1 A2 

entry of the matrix (Q 'Q ) and CJ is an estimate of the residual 
* * 

variance: 

"'2 = Cy*-Q*A)'Cy*-Q*A)
0 N-M 

= 

By taking the exponent of the bounds of the confidence intervals, 

approximate 100(1-£)% confidence intervals for the estimates of the 

component family yields can be found: 

A exp ( +t (N-M) /cQ' Q )-l 02 ) (s=l, ... ,M).
5 - £12 * * s,s 

Yields of units can now be predicted using the estimates of 

component family yields: 

A M A qOj
= .II1A.Po J= J 

where p
A 

is the predicted yield of any unit composed of components0 

for which estimates have been made and q j is the number of components0

of type j in that unit. Since 

M A 

log p = I q
0

. log A.
0 j=l J J 

it follows that: 

M 
A A 

Var(log p ) = Var( I q
0 

. log A.)
0 j=l J J 
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Then an approximate 100(1-E)% confidence interval for the predicted 

yield will be: 

-1 
Q ) . k )Po • expc+ z fr 

- Ef2/k=l * J ' 

The approximate 100(1-E)% confidence intervals for the unit yields 

based on the predicted yields can be compared with these based on 

the observed yields. 

An approximate test of fit can be performed using the normal 

approximation to the binomial distribution. 

is asymptotically Chi squared onThe statistic 
N
L 

i=l 

N-M degrees of freedom. 

3.4 Discussion and Recommendations 

3.4.1 Monte Carlo Study: 

Ten distinct artificial units, each made of components from 

three distinct families with known yields, were simulated. The 

number of each type of unit produced during a production period was 

chosen to represent possible actual conditions. One hundred samples 

of the number of accepted units of each of the ten types were 

randomly generated using the normal approximation to the binomial 

distribution. If Y. is binomial with mean n. p. and variance 
1 1 1 
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n. p. (1-p.), then Y. is approximately normal with mean n. p. and 
1.1 I. I. 11 

variance n. p. (1-p.). The method of weighted least squares was 
1 I. I. 

then applied to the one hundred samples. 

Approximate ninety-five percent confidence intervals for 

each of the logarithms of the component family yields for the one 

hundred samples were calculated using the normal approximation commonly 

used in least squares analyses. The estimates of the logarithms 

of the component family yields made from the generated unit yield 

data appear to be approximately normal (Figures 6,7 and 8). Under 

actual conditions it can be expected that the same will hold true. 

The number of confidence intervals for each family containing the 

true parameter value indicates that the true level of confidence 

may be greater than ninety-five percent (Table 2). One explanation 

for this may be that the weights used to adjust the component 

makeup matrix Q were approximate. Another possible explanation may 

be the non-normality of the linearized unit yield data. 

Future studies could try using the information matrix for 

the linearized problem as the variance-covariance matrix. Confidence 

intervals using the inverse of this information matrix would not 

then depend on the adjusted component makeup matrix. To determine 

this infm.·mation matrix, let A1, ... ,'\i be the M component family 

yields, L be the likelihood function for A1, ... ,'\i with N observed unit 

yields, and q .. be the number of components of type j in a unit 
l.J 

of type i. It can be sho\in that: 
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Figure 6 

Distribution of the One Hundred Monte Carlo 
Estimates of the Logarithm of the Yield of Component Family 1 
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Figure 7 


Distribution of the One Hundred Monte Carlo 

Estimates of the Logarithm of the Yield of Component Family 2 
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Figure 8 


Distribution of the One Hundred Monte Carlo 

Estima 
es of the Logarithm of the Yield of Component Family 3 
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TABLE 2 

PERCENTAGE OF APPROXIMATE 95% CONFIDENCE INTERVALS FOR 

YIELDS CONTAINING THE TRUE PARAMETER VALUE 

COMPONENT F~IILIES 

COMPONENT PERCENTAGE CONTAINING 
FAL\1ILY TRUE VALUE 

1 97% 

2 99% 

3 97% 

UNITS(CONFIDENCE INTERVALS BASED ON PREDICTED YIELDS) 

UNIT PERCENTAGE CONTAINING 
TRUE VALUE 

1 96% 


2 91% 


3 94% 


4 919c~ 


5 90% 


6 94% 


7 89% 


8 94% 


9 92% 


10 96% 
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2a log L 1 (s=l, .•. ,M; t=l, ..• ,M) • 

Then using the results of Section 3.2: 

M q .. 
N q . q.t[.ITlA. 1J](y.-n.)a2 log L 15 1 J = J 1 1 = a log A. a Log A I 

1 s i=l A 2 A 2(1-[.N A.qij]) 2 
s t J=l J 

(s=l, ... ,M; t=l, .•. ,M). 

It can then be shown that: 

M q .. 
2 N n. q. q.t[.ITlA. 1J]

1 lS l. J= ]E a log L I-a log At a log M q ..i=l 2 2E A A "(1-[.IT A. lJ 
s t J =1 J 

(s=l, ..• ,M; t=l, ... ,M). 

A likelihood ratio test was used to test equality of the estimated 

variance covariance matrix of the one hundred sets of component 

family yields and the inverse of the true infonnation matri.x (T .W. 

Anderson, 1958, Section 10.8). The calculated statistic was 304.44. 

The five percent Chi squared critical value on six degrees of freedom 

is 12.6, meaning that the hypothesis of equality of the two matrices 

is rejected at the five percent level. Although shown to be unequal, 

it appears that the inverse of the information matrix is an adequate 

approximation to the variance-covariance matrix for most purposes 

(Compare Table 3 and Table 4). The use of the inverse of the estimated 

information matrix in calculating confidence intervals should not 

greatly alter the level of confidence from ninety-five percent. 
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TABLE 3 

ESTIMATED VARIANCE-COVARIANCE MATRIX FOR TIIE ONE HUNDRED SAMPLES 

OF LOGARITHMS OF THE COMPONENT FAMILY YIELDS 

4.9178 X 10-6 5,6114 X 10-7 -2.9472 X 10-? 

5.6114 X 10-7 1.6996 X 10-6 -5.2049 X 10-8 

-2.9472 X 10-7 -5.2049 X 10-8 2.4009 X 10-8 

TABLE 4 


INVERSE OF THE TRUE INFORMATION MATRIX FOR THE LOGARITHMS 


OF THE CQr.1PONENT FAMILY YIELDS 


_.., 
I4.4645 X 10-6 2.9749 X 10 -2.8201 X 10-7 

2.9749 X 10- 7 
1. 7344 X 10-6 -4.7913 X 10-8 

-2.8301 X 10-7 -4,7913 X 10-8 1.9383 X 10-8 
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Since the predicted logarithms of the unit yields are linear 

combinations of the estimates of the logarithms of the component 

family yields, it can be expected that the predicted logarithms of 

the unit yields will be better approximations to normal distributions. 

A poor estimate of the yield of components of the second family may 

explain why the level of confidence for some of the intervals 

based on predicted yields appear significantly different from ninety

five percent while others are relatively close. It appears that 

where components of the second family in a yield estimate, the level 

of confidence for the confidence interval for that estimate is further 

from ninety-five percent. (Compare Table 2 and Table 5). Having 

used only one hundred sets of observations, sampling error may 

explain the difference between the observed level of confidence and 

ninety-five percent. Further Monte Carlo studies with larger samples 

may be of use in making conclusions. 

3.4.2 Applications 

The method of predicting unit yields presently used treats 

an insertion as a component. However, an insertion is not a component 

but a process. An insertion may be a success or a failure, but, 

when units are tested after production, it is the components which 

are acceptable or unacceptable, not the insertions. A component may 

be inserted into a unit manually or by machine. If the probability 

of one type cf insertion being successful is different from the pro

bability of the other type being acceptable, then the yield of a 
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TABLE 5 

COMPONENT FAMILY STRUCTURE OF THE ARTIFICIAL UNITS USED 

FOR 1HE MONTE CARLO STUDY OF THE WEIGHTED 

LEAST SQUARES METHOD FOR COMPONENT YIELDS 

COMPONENT FAMILY 

1 2 3 


1 27 3 450 


2 25 10 350 


3 31 0 375 


4 16 11 400 


5 10 25 200 

Unit 6 35 0 425 


7 29 29 325 


8 21 0 400 


9 21 9 428 


10 17 25 216 
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particular component family inserted manually should be estimated 

separately from the yield of components of that family inserted 

by machine. 

Both the method of weighted least squares and the method 

of maximum likelihood were applied to a single set of randomly 

generated unit yields for those ten artificial units used in the 

Monte Carlo study of section 3.4.1. The results indicate that both 

methods work for the randomly generated approximately binomial 

data. However, in the case of the maximum likelihood method, numerical 

difficulties were encountered. 

Using the weighted least squares estimates: the test of fit 

statistic for the randomly generated data was 2.23. The Chi squared 

critical value on seven degrees of freedom is 14.1. The test of fit 

statistic was also calculated for two of the samples used in the 

Monte Carlo study and were also found to be acceptable at the ninety

five percent level. It then appears that the weighted least squares 

method is satisfactory for approximately binomial observations of 

acceptable comnonents. However, when the weighted least squares 

method was applied to actual production yields, the fit was not 

acceptable. Two sets of actual production data were used for which 

the units were made from five distinct families. The test of fit 

statistic for the one set of data was 10.13 which is greater than 

7.81, the Chi squared five percent critical value on three degrees 

of freedom. For the other set of data, the statistic was 396.29 

which is greater than 27.6, the Chi squared five percent critical 
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value on seventeen degrees of freedom. Although sampling error may 

be responsible for the very poor fit of the model to the second set 

of actual produ~tion yield data, a number of other factors may be 

responsible. 

The present system of predicting yields of new units groups 

components into families which may not have the same yields. For 

example, resistors of all types are considered to be one family. However, 

it may be that resistors of different specifications and construction 

are affected differently during the production process. The possibility 

that the yield of a component inserted manually may differ from the 

yield of a component inserted by machine was not considered. Tests 

should be made to insure that all members of a family have the same yield. 

Otherwise, predicted unit yields are likely to be poor estimates of 

the true unit yields. Those component families used in the estimation 

of failure rates may not be appropriate for use in estimating yields. 

A number of factors in the production process itself 

may cause the observed number of acceptable components to 

deviate from the binomial distribution. Tests may vary from one 

type of unit to another. If units are tested for any length of 

time, then those Poisson failures which can be expected during normal 

operation of a unit will noticeably affect the distribution of the 

number of units passing production tests. The yield of the first few 

units produced may be less than that for units produced after any 

initial production problems have been corrected. Human factors, 

such as one worker being distracted by another, may cause units to 

become unacceptable after production. The production process should 
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be checked to find out how these factors affect production. If 

units are produced in more than one location, checks should be 

made to insure that the yields are independent of location before 

results from different locations are combined to make yield estimates. 

The method of maximum likelihood was initially tried using 

the method of scoring (Appendix 1) to maximize the likelihood. 

The program PREDMLE, designed to maximize the likelihood using the 

method of scoring was tested (Appendix 4) and the logic was found 

to be correct. Using the true unit yields as input and using the 

true component family yields as starting values, the iterative scheme 

converged after three steps. However, using other starting values 

close to the true component family yields, the estimates did not 

appear to be converging after seventy-five iterations (Table 6). 

This method was also tried with actual unit yield data from a 

production line. As anticipated, the sequence of component family 

yield estimates diverged. Weighted least squares estimates of the 

component family yields were used as starting values for the iterative 

procedure. However, after one hundred and fifty iterations, the 

component family yield estimates did not appear to be converging. 

The method of scoring was then discarded as a practical method of 

finding maximum likelihood estimates of component family yields. 

The simplex optimization method of Neider and Mead was then 

used to find those component family yield estimates which maximize 

the yield. This is the method described in section 3.2. Weighted 

least square esti.mates of the component family yields were used as 
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TABLE 6 

ESTIMATED COMPONENT FPJ1ILY YIELDS USING THE 

ME'fi:IOD OF SCORING TO MAXIMIZE THE LIKELIHOOD 

Component Starting Estimated Yield after Expected Value 
Family Values 3 Iterations of Estimate 

1 .9900 .9900 .9900 

2 .9950 .9950 .9950 

3 .9990 .9990 .9990 

Component Starting Estimated Yield after Expected Value 
Family Values 3 Iterations of Estimate 

1 .9925 .9996 .9900 

2 .9950 .9969 .9950 

3 .9975 .9982 .9990 
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one of the vertices of the initial simplex. When the method was applied 

to the randomly generated set of data, it was found that the likeli 

hood increased as the procedure progressed (Figure 9) . Althouzh 

the method appears to work, the value of the likelihood remained 

constant after a number of steps. This was a result of the limited 

number of figures of accuracy kept by the computer. When the method 

was applied to actual observed yields of units produced, the same 

observations were made. One possible solution to the restricted 

number of figures of accuracy may be to use double precision in the 

computational work. It was also noted that, for both the randomly 

generated set of data and the actual observations, the maximum 

likelihood method generally gave a slightly smaller Chi-squared value 

than did the method of weighted least squares. 

As an alternative to the method of maximum likelihood, the 

method of minimum Chi squared estimation (Kendall and Stuart, 

Volume 3, 1973, section 19.25) could be tried. This metho0 minimizes 

the test of fit statistic: 

N 

I 
i=l 

where N is the number of distinct types of units produced, n. is 
1 

"'the number of units of type i produced, p. is the predicted yield
1 

of a unit of type i, and Y. is the observed number of units of type i 
1 

accepted after production. One possible method of minimizing this 

statistic is to set equal to zero the derivatives of the statistic with respect 

to the estimated component family yield estimates. If the range of 
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Figure 9 

Step by Step Results of Application of Simplex Method 

of Maximizing the Likelihood For a Randomly Generated Set of Observations 

NCOUNT -.. 1 SHRINK LIKf.LIHOOn -- •0,37023'5303 E+04 
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= 
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convergence is great enough, these equations may be solved using Newton's 

iterative method (Russell, 1970, Chapter 5). Otherwise the statistic 

may be minimized using the simplex method of Nelder and Mead. (See 

Appendix 2) . One would expect that the number of figures of accuracy 

available with the computer is sufficient for making satisfactory 

estimates of component family yields. 

Although the method of weighted least squares may give 

reasonable estimates of component yields, further work with this 

problem may be of value. The method of weighted least squares has 

the advantage of requiring comparatively few calculations. However, 

we can expect the maximum likelihood estiamtion method and the 

minimum Chi squared estimation method to fit the data better. It 

may be that a wide range of starting values can be used for the 

iterative scheme for the minimum Chi sqtmred method and the sequence 

of estimates for this method may converge quickly. To use either 

the maximum likelihood ortheininimum Chi squared methods for 

practical purposes, a method of calculating approximate confidence 

intervals must be found. 

In order to make any of the methods of estimation better 

for practical use, there are two areas which should be investigated. 

The yields of the components within each family should be tested for 

equality. If eqlmlity among the components of a family does not 

exist, the components should be regrouped into families of components 

of equal yield. The second area to be investigated is the actual 

production process. One can expect that the closer the observed 
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number of units accepted after production is to a binomial observation, 

the better will be the estimates of component family yields. An 

investigation into these two areas may provide reliability engineers 

with better estimates of component yields and, hence, better pre

dictions of unit yields. 
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APPENDIX 1 

The Method of Scoring 

The method of scoring (C.R. Rao, 1965, Section Sg) is an 

iterative scheme for finding maximum likelihood estimates of 

parameters. Define L as the likelihood function for the vector of 

parameters : 

Let: 

a1ogL]
()~1 2 

s (8) = : = E [ o logLJ
[ ae.ae. - CllogL 1 J NxN 

aeN 

Let H(8) be theN by N derivative matrix for S(8). 

Then: 

E[-H(8)] = :) (8). 

As a first approximation, one may take: 

where e is the maximum likelihood estimate of e. 

Since a first order Taylor's expansion gives: 
A A A 

s (8) ~ S (8) + (~-~) H(~), 

and: 
A 

S(~) = 0, and we derive the iterative scheme: 

e = e - H- 1 C~n) • S(~n),-!1-+1 -i -h --h 
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which will converge to 8 if an initial value ~ 0 sufficiently 

close to 8 is chosen. Replacing H by its expected value, 

we get: 

which is the iterative method of scoring. 



APPENDIX 2 


The Nelder-Mead Simplex Method: 

The Neider Mead simplex (Kowalik and Osborne, 1968, 

Section 2.6) is a direct search technique for finding an optimum 

value. The procedure as described here locates a maximum using a 

simplex, a set of n+l points in n dimensions. The simplex is man

ipulated by reflecting the point at which the function f is the least, 

or by expanding or contracting the simplex 

Let: 

(1) xh be the vertex corresponding to f(xh) = minf(x.) 
. 1 
1 

(i=l, ... ,n+l). 

(2) x be the vertex which corresponds to f(x ) - minf(x), i~h. s s i 

(3) x be the vertex corresponding to f(x ) = maxf(x.),
1 1 . 1 

1 

(i=l, ... ,n+l). 

(4) x be the centroid of all xi' i#h and is given by
0 

1 
n+l 
l X. 

1
i=l 
i.#h 

Now define the three basic operations used: 

(1) Reflection, where xh is replaced by 

44 
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where a > 0 and is equal to the ratio of the distance [xrx0] 

to [xhx0]. 

(2) Expansion, where x is expanded in the direction along
r 

which the function value is expected to increase. The relation 

x = yx + (l-y)xe r 0 

is used where y > 1 is the ratio of the distance [xe,x0] to [xr,x0]. 

(3) Contraction, where the simplex is contracted, 

where 0 < S < 1 and is the ratio of the distance [xc,x0] to [xh,x0]. 

The technique proceeds as follows: 

(i) From an initial simplex and evaluate the function at each 

of the n+l vertices. 

(ii) Try a reflection and evaluate the function at the 

reflected point. 

(iii) If f(xh) ~ f(xr) ~ f(x~), replace xh by xr and return 

to step (i). 

(iv) . If f(xr) > f(x~) it can be expected that an expansion 

in the direction xr - x0 could give us a greater value f or f. 

Replace xh by xr if f(x~) < f(xe) and return to step (i). Otherwise 

replace x by x and return to step (i).
h r 

(v) If f(~) < f(xr) < f(xs) replace xh by xr and try a con

traction. If f(xh) < f(xc), replace xh by xc and return to step (i). 

Otherwise the last simplex is shrunk about the point x~ by the 



46 

relation 

X. ' 
1 


and return to (i). 



APPENDIX 3 

~rograms for the Component Failure Rate Problem 

The computing work for the problem of estimating component 

family failure rates involved two programs. Both programs are 

written in FORTRAN and both use the maximum likelihood method of 

estimating component family failure rates for one period of time. The 

program FAILMLE is designed for practical use and an external file is 

used as its source of unit failure rate data. The program MONTE 

generates one hundred random samples of unit failure rates for which 

component family failure rates are estimated. The input files for both 

programs are eighty columns long. The output files have a length of 

one hundred and thirty-three columns including carriage control. 

Input for FAILMLE (see Figure 10) is unformatted and is 

completely general for any number of units observed and any number 

of component families. The first row of the input gives N, the 

number of distinct units observed, and then M, the number of 

distinct component families for which failure rates can be estimated. 

The first M columns of the second to (N+l)st rows, inclusive, is the 

. Q [ ] h . h b f f h . thmatr1x = q.. N u w ere q .. 1s t e num er o components o t e J 
1J Xoo "1J 

family in a unit of type i. The (M+l)st entry in the (i+l)st row 

is the number of units of type i in use during the time period. 

The (M+2)nd entry in the (i+l)st row is the number of type i unit 

failures observed du:ring that time period. The (N+2)nd row give the 

length of the time period in units of ten million hours for which 

observations were made. TI1e value in the (N+3):rd Tow is given to the 

47 
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M component family failure rates as starting values in the iterative 

procedure. 

Input for MONTE is the same as that for FAILMLE except that 

M is restricted to three. Input for unit failures of one sample 

is required, but the results of the~ogram are independent of this 

information. An alteration to the program would allow the omission 

of unit failures as input. MONTE could be generalized to allow for 

any number of component families and for any number of generated 

samples. 

The external subroutines INFAIL and LAFAIL are called from 

both FAILMLE and MONTE. INFAIL determines the estimated information 

matrix as described in section 2.2 and LAFAIL calculates the pre

dicted failure rates of those lmits whic:h have been used in the 

estimation procedure. Three subroutines, SIN~,EIGEN, and GAUSS, 

from the SSP FORTRAN library were used in the computing. SINV, 

which determines the inverse of a positive definite symmetric 

matri~ is called from INFAIL. The subroutine EIGEN is used to 

determine the eigenvectors and eigenvalues of the inverse of the 

estimated information matrix in the program FAIL~LE. GAUSS, a 

normal random number generator, is used in MONTE to generate unit 

failures. 

The approximate confidence intervals in both FAIIMLE and 

MONTE are calculated at the ninety-five percent confidence level. 

Alterations in the program could be made which would allow different 

levels of confidence. FAILMLE could also be generalized to allow 
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for observations of unit failure rates for any number of time 

periods. 

In order to check the logic of FAIUfLE, the program was run 

treating the expected number of unit failures for a sample as the 

obseTved number of unit failures. The results (Table 7) indicate 

that the logic was correct. Differences between true values and 

the estimated values were due to round off errors. 

Those calculations which were done by hand could be in

corporated into the programs. The test of fit described in section 2.2 

could be included in both MONTE and FAILMLE. Those calculations 

necessary to estimate the variance-covariance matrix of the parameter 

estimates found with MONfE could be included in the program. FAILMLE 

would be of more practical use if the program and its input were 

adjusted to predict point estimates and to determine confidence 

intervals for the reliability of new electronic units. 



so 


Figure 10 

Input Format For The Program FAILMLE 

10,3 
27~3,1..150, 

25, to, ~so, 
31,0,375, 
10 I 1 1 I 4 Q0 I 
10,25,200, 
35,0,4?5, 
29u~q, ~2'5, 

21 '0, t.l {) 0, 
21t9ri.l28, 
17,25,216, 
,0005 
5 

1000,368 
1500,'188 

2oo,c,q 
1200,3b9 
50('!,106 

18CO,C:<18 
qcc,34e' 

20C0d:10 
1LlOO,tJ78 

1000,256 

UNIT 

UNIT 

UNJT 
UNIT 
UNIT 
UNIT 
UNIT 
UNIT 
UNIT 
UNIT 

1 
? 
3 
U 
S 
6 
7 
A. 
9 
10 



51 

TABLE 7 


RESULTS OF TEST RUN ON THE PROGRAM FAILMLE 


Component Estimated Component True Component 
Family Family Failure Rate Family Failure Rate 

1 10.0680 10.0 

2 4.9885 5.0 

3 .9970 1.0 

Unit Estimated Unit True Unit 
Failure Rate Failure Rate 

1 735.4426 735.0 

2 650.5281 650.0 

3 685.9751 685.0 

4 614.7542 615.0 

5 424.7893 425.0 

6 776.0962 775.0 

7 760.6575 760.0 

8 610.2202 610.0 

9 683.0325 683.0 

10 511.2166 511.0 
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PROGRAM LISTING - FAILMLE 


c 
C THIS PROGRAM USES TH~ ~~~JMUM LIKEL!rlGOD METHOD OF ESTlMATTON AND 

C THf.: '·1 E TH r; 0 0 r S C Cl ~(! t; G T0 0 F TE rH1 P,1 F THt F AI t.. U R f. R A H: S 0 F C 0 MP 0 '"E. N T 

C FAt-~ILTF.S. 


c 
D1 r-1 t: NS I Ut• q ( S 0 , 2 5 ) , X I r, US L ( S 0 ) , FA I L {50 ) 1 XIN F ( 2 5, 2 S ) , XL At--1 0 A (50 ) , 

$ L ~~ 0 R K ( 2 '5 ) 1 ~~ ( ?. 'S , 2 5 ) 1 P R E. V ( 2 '5 ) 1 t1 W0 R K ( 2 5 ) 1 A L P H A ( 21) ) 1 F A C ( 2 5 ) , 
$ SC2~),CO~DSDC25) 

R E A D ( q , * ) N I 1-1 

c 
C N 1 S THF. NU~., F3 F~ 0 F RQ wS ( UN i T S } & M I S T H t NUI"" Bf R 0 F C 0 L U M N S 

C (COMPONlNT FAMILIES)f 

c 

CALL SOLV~CQ,XINUSf 1 fA!L,L~ORK,~WORK,ALPHA 1 M,N 1 FAC,S,XLAMDA,XlNF, 
$ PREV 1 R,CONDSO) 

STOP 
E~'-JO 

.C 
SU8ROUTINE SOLVf(O,X!NUSE,fAIL,l~JRK,MWORK,ALPHA,M,N,FAC,S, 

$ XLANnA,X!NF,PRtV 1 R,COND5D) 
DIMENSION Q(N,M),XJ~US~(!J) 1 FAIL(N),X1NF(M,M),S(M),LWORK(~), 

S M~ORK(M) 1 R(M,M),PQEV(M) 1 ALPH~(M),FAC(M) 1 XLAMDA(N), 
$ CONflSD ( ~l) 

c 
iNf<!Tt(B,200) 


200 FO~MAT(20X, !DATA MAT~TX:!,/,1) 


c 
DO tO I:l,N 

READ(9 1 *)(Q(!,J),J:l,M),X!NUSE{!),FAILC!) 

~RITt(8,?.10)(~(I,Jl,J:t 1 M) 


210 FORMAT(~X,25F4.0) 


10 C 0 N T PJU E 
c 

REA0('1,•) TIME 

..~tn re:. cR, 2 z o ) 


220 FUR~AT(tH\) 


y,,qiTf (8,210) 

230 rOR1AT(29~<,'U·'IITI 1 15X,INlH"1f:lER IN USEI,lOX,'NUMBER OF FAILURES!, 


$ /) 

c 

DD 1'5 T:1 1 1'J 
w'? 1 T F ( 13 , 2 q 0 ) 1 , X I ~~ tJS l ( I ) , F A 1 l ( I ) 


240 FORMAT(30X.I2,2(20X 1 F5,0)) 

15 CONTINUE 

c 

. wRtTf(8,250)T1ME 
2~0 FOR'-~AT(/ 1 /, 1-IOX, ITI~t !N UNITS OF !0 t·1ILL10N HOURS :I,F10,6) 
c 
C SET UP INITIAL VALUES, 
c 

NIT:O 

RfAf)(9,*) STAf.H 


c 
{)0 20 J:t,t.1 

ALPHA(-.J):5T4Rf 
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PROGRAM LISTING - FAI~lLE (Cont'd) 

20 CONTl~!UE 

c 
W~TTf(81220) 

:<JRITF03,?60) !\itT 

260 F 0 R i-1 AT ( I 1!_, X , I t\, = ' I I 3 )
I 

WRITt(8,270)(J,ALPHA(J),J:t,Ml 
270 FOR:·1A f (?',X, I ALPHA (I, 12 1 I) : t ,E16 1 8) 

c 
C HfGIN THE JTfRAllVf PROCEDURE, 
c 
soo NJT:NIT+t 
c 
C WE Wt S H T 0 Kf f P T H f 0 L f) V A L l! ~- S 0 F A L P HA T 0 TF. ST F 0 R C 0 N V E R G £ r>! C E 1 

c 
DO 25 J:1,1Yl 
PREV(J):ALPHA(J) 

2 5 C0 N T! 'HJ E 
c 

WRITEC8 1 26Ci)NIT 
c 

c 
C DETERMINE THf SCORE VECTOR, 
c 

00 30 J=l,l-1 
S(J):(),O 
DO 3") I:l,N 
~=FA!L(l)/XlA~nACI) • Tl~E*XINUSEC!) 
SCJ):S(J)•Q(I,Jl•F 

35 CONTINUE. 
30 CONTINUE 
c 

CALL INFAILCN,M,G 1 XlNUSE,T1ME,XLA~DA,XINF,LWORK,MWORK 1 
$ CO~,JDSO) 

c 
C DE T E f.U-1 Pit: T~ E: A0 J US T ME ~H r AC T 0 R 
c 

DO 40 ,J:t,r-• 
fAC(J):O,O 
1)0 45 ..JJ:t,l-1 
~AC(J):FAC(J)+XINF(J,JJ1*S(JJ) 

Ll') cor·ITJ:~uE 

40 CONTPWE:. 
c 
C DETERMINE THf NEW ESTIMATES UF CO~PQNfNT fAMILY fAilURE RATES• 
c 

00 50 J::1,'l 
ALPHA(J):ALPHA(J)+FAC(J) 

5 0 C0 ~Jf I rd) E 
c 

wR!ff (8,2'70) (J 1 .4l.PHfl(JJ, ..J:1,f'l) 
c 

DO 55 .J::t8M 
IFCArSCALPHA(J)•PREV(J)),GT.O,QOOOOS) GOTO 520 

55 CCi r,. T 1 ·HJ F 
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PROGRAM LISTING - FAILMLE (Cont'd) 

c 
GOTO 510 

c 
520 IF(~>JIT,LT,11)Q)GiJTO c;oo 
510 CALL LAFA}L(N,M,XLA~DA,~,ALPHA] 

CALl. {N~AIL(N 1 M,Y,X!NUSE,TIM[,XLAMOA 1 XINF,LWORK 1 MWORK, 
$ CONDSDJ 

c 
WRIH.(~,220) 
WRIH.(8,280) 

280 FORMAT(50X, ICOVAH!ANC~ MATR!X1 1 /) 

>'I R I T t ( 8 , 2 9 0 ) ( ,J , J : 1 , ~1 ) 

290 FORNAT(16Cl3X,!2) 1 /) 

c 
DO 60 I:t,M 

WRITE(8 1 300)I,(X!NF(I,J),J:t,!) 


300 F 0 R ~~A T ( 2 X , ! 2 1 1o ( 2 X 1 t 1 3 • 7) ) 

60 CONTlNUE 
c 
C DETERMINF APPROXIMATE CONFIDENCE INTERVALS FOR OUR ESTIMATES OF 
C THE. FAILURE RATfS~ 

c 
WRITE{8,220) 
wi~IH.(8,310) 

310 FORMAT(25X, IAPPROXIMATF q5% CONFIDENCE INTERVALS FOR COMPONENT', 
$ I FAILU~E HATES:t,/ 1 /) 

wRIH.(t\,320) 
3 2 0 F 0 f.? !'1 A T ( 1 X , ' c0 "1 p {) NE1\j T I ·' 0 X I I Esllf'i ATED I , 8 X , I uNc0 ND I T 1 0 N A L I , 12 X , 

$ ICONI)!T!ONALl) 
~<.RIHC8,3-~0) 

3 3 o F oR ~1 " r c 8 x , ' r A r~ 1 t.. v • , 6 x , ' r A 1 L uRE. K Ar f. 1 , 1 x , ' v A R r A N cE c , I , ' , 
$ l?X, IVA~IA~Ct C,I,t,l) 

WtHlE-:.(8,340) 
3U0 f [) R hl A T ( t 0 X 1 2 ( ' • I ) , 10 X , 8 ( I • I ) 1 oX 1 1q ( I ,. I ) 1 '5 X1 1 9 ( I • ! ) ) 

c 
0.0 oS J:l,M 
COMPL~=ALPHA(J)·t.96•SQRT(XINF(J,J)) 
CQ H P U8:: AI. PH A ( ,) ) + 1 1 q 6 *Sf.l R T ( X TN F ( J , J ) ) 

C 0 N [) U~ : A l Ph A ( ,J ) • l , q 6 1t C 0 Nf) S I) ( J ) 

CCHJD l! H;: ALP H ~ ( J ) + 1 , 9 6 *C0 ~ il) S l"! ( ,J ) 

w~ I TE ( 8 , 3 ') 0 ) J , AL PH A ( ~1 ) • C t l ·! PL H , C D MP U H , C 0 Nf) l B , C C N 0 U B 


Jsn FORMATrtox,I2,tox,ra,s, •: ,,sx, • c•,Fa,s. ,,,,Fa,s, 1)', 
$ 5X, 1(1 1 fB 1 ~ 1 ', 1 1 rB,5 1 ') 'l 

65 CONT P,HJE: 
c 

wRITF(8.2?.0) 
c 

C DET~R~tN~ CUNFtnENCf INTER~ALS FOR THE UN[T FAILURE RATES FRO~ 


C THE OBSERVED FAILUkES AND FRO~ THE ~STIMATED FAilllRE RATES, 

c 


,.JRITF(8,3o0) 
3 6 0 F 0 P '·1 ,\ T ! ? 5 '.1( , ' A'-' P ~ n X I :11:. H 9 t;% C0:':1· IlH.f'.i CE. INTERVALS r 0 R UN I l I , 

t I ~· A llJI r~ F Q A H S ' , I , I ) 
~iRITECtJ-,370) 

3 7 0 F 0 R M. A r ( 9 X , ' U!.JI T • 1 1 7 X , ' !-- iW naS F R V f.() ! , !.J ('X 1 I F 0 H EST I "1 Aif. S I , I , I ) 
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PROGRAM LISTING - FAILMLE (Cont'd) 

i\RITf(8,3811) 
3 8 0 F !) R f.1 A T ( 1 0 X , 2 ( I - I ) , 5 X , 3 q ( ! • I ) , 1 5 X , .3 9 ( I ... ' ) , I) 
c 

DO 70 I::t,N 
PHI::F&JL(!]/(XT~USECil*TIME) 
POlSlA:P~l•l,Qh•SQRJ(PH!) 

PO I $Ufj:Pt·j I+ 1 I 96 *S(JfH (PH I) 

E:STVAR:O,O 


c 
DO 75 J:t,i-1 

DO BO K:t,~ 


FSTVAR:lSTVARtQ(! 1 J)*Q(!,K)~X!Nf(J 1 K) 


80 CON TUJUt 
75 C:OI·JT!i'iUE 
c 

E: S T U3: XL A:1 Dll ( ! ) •1 • 9 6 *S G R T ( f S TV AP ) 

f S T U 8: XL P·1 D A ( I ) t 1 • 9 tyA S CFH ( f S T VA R ) 

WRITf(8,390)1,Phi,POISLb,PC!ISUR,XLAMOA(!),fSTLB,ESTUB 


390 FORMAT(10X,!2,5X ,F10,5, 1 : 1 ,5X, l(',f10,5,',1 1 F10,5, 1 )1,15X,F10e5, 
$ ': ', 5X, ' ( t IF 10.5 I ', I, F 1 0 '5, ' ) I) 

ro CONT!t'JUE 
c 
C 0 E T E R "1 U~ F. P R I ,'\J C I P A L C 0 '·' P £Hi f.."! T S , TH A T 1 S B Y C A l. C U L AT I N G THE 
C EIGENVALUES A~O TH~ fiGENVFCTORS wE CA~ DETERMJNF NE~ BASES 
C FOR OUR C011Pl.FJE'HS WHICH ~~ILL NOT 8E COKRf:.LATEO, 
c 

CALL EIGENCXINF,R,~,O) 


~Rrn::ce,220> 


c 
DO 85 ,J::l ,M 
wRITE (8,UOO)J,XTNf(J,J) 

400 FORMAT(/,20X,'f!GENVALUE(1,!2 1 I) : 1 1 flb 1 8 1 /) 

WRilt(R 1 41 0) (.J, I,h:(I,J), !=l ,M) 

4 1 o FoR '"~ A r c 2 c:; x , ' ErGF ~· vt cr oR c ' , 1 c, • , 1 , r2 , ' > = ' , E 1 6 • a > 
8 5 c0 N T I ~Jl) t. 
c 

RfllJRN 
END 
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PROGRAM LISTING - MONTE 


c 
C THlS PROGRA11 USES THf: ~1AX!t-Ail"1 l IKf::LlHOOf) METHOt) OF ESTT"'1ATION AND 
C T•lr M[iHO~ OF SCGRJN~ TO DFTtRMINE THE FAILURE RATES OF COMPONtNT 
C FAtqLJFS. 
c 

D I r1 [ N sI 0 1\) CJ ( s0 , 2 5 ) I X I "'u sf.:: ( s0 ) I F Ar l.. ( 5 (j ) , X I NF ( 2 5 , 2 5 ) I X L t; MI) A ( 5 0 ) , 
$ L ~ :1 R I\ ( 2 ') ) 1 R ( ? r, 1 2 r:; ) 1 P P EIJ ( 2 S ) 1 ~ ~ I'H) RK ( 2 5 ) , ALP HA ( 2 I) ) , F A C ( 2 5 ) 1 

$ S(?S),C0rlf)SPC?5) 
READ(CJ 1 *)N,,'1 

c 
C N l S TH F \!I HH3 F. R 0 F P 0 I• S ( UN ! T S ) & ~1 I S THE N U ~1!3 E R 0 F C 0 L W1 N S 
C (COMPONENT fA~ILIESl. 

c 
CIll L S 0 l V f ( 0 , X 1N U S E , F A I L , L II: 0 R K 1 ~1 !<I 0 R K , A L P H A 1 f-1 1 N , F A C 1 S , X l. AMD A 1 X I N f 1 

$ PRE.V,R,Cllt'-lDSD) 

STOP 

fND 


c 
s u t1 Ro u 1 P! E s o L vF ( r; , x t Nu s E 1 f AI L 1 L woR K , M ~ o P K , A L PH A , M , r.J , r A c , s , 

$ XLAMOA,XINF,PRfV,R,CONOSDl 
DIMENSinN Q(N 1 M),XINUSE(~•) 1 FA!L(N],XINF(M 1 M) 1 S(M) 1 LWORK(M) 1 

$ CMPFL(3),RATE(10)1XM~A~(l0) 1 S1(10),5~(10), 
$DEV(10),X~AR(3),SliH(3), 

$ MWOR~(M),RCM,~),PRFV(~),ALPHA(~),fAC(M),XLAMDA(N), 


$ CO~JDS0(\1) 


c 
WRIH:(8,200) 

200 f~,)RMtd(21)X 1 10ATA tvi~TR!Xt1 1 ! 1 1) 
c 

DO 10 	 t:t,N 
P~AD(Q,*)(O(!,J),J:t,M),XJNUSE(I),FAILC!) 
~RITE(8,210)(Q(I 1 J),J:1 1 M) 

210 FOR~Af(3X 1 ?SF4.0) 
10 	 C 0 NT 1 ;,J U E 
c 

Rf.A0(9,•) TI"1E 
~iR! TF: (8, 2:>0) 1 P~F: 

250 	 FQRMAT(/ 1 / 1 40X,'T!ME IN UNITS OF 10 MILLION HOURS :t 1 Fl0 1 6) 
c 

t<~~f~ITf(8,?.20J 

220 	 FORMAT(1H1) 
("1PFL(l):lO, 
C'·IPF!. ( 2) :j, 
ctAP FL c·s >=1 • 

c 
wrnrEcH,?.21l ' 

221 F0~~-1AT(!RX, t(I}MPO~IfflT FAH!L.YI,lQX, 'FAILIJRf. RATEI,/) 
i-1 f) I T F ( P, , ? i) 2 ) ( ,.J , C~, P F L ( J ) , .1 :: 1 r \1 l 

222 F 0 R''' A T ( ? S X 1 l ?. , ? 0 X , F C) , 1 ) 
c 
C Dl: 1F R MIN f A;~ D P R PJT 1 Hf T R ll f Cm.1P 0 NEN T r Ai'l!!.. V FAIL lJ R E RATES 4 

c 
wRI H. ( 8 , 2 2 0 ) 
~.<·~na r~,?2'J 

2 2 3 	 F 0 R H A T ( ? i! X. , 1 UN I T I , 1. 5 X , I II t' 1 T S I N f 1 E L() 1 ~ 1 .$ X, I T R U F F A I L :.1 R E R A T f I 1 I ) 
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PROGRAM LISTING -MONTE (Cont'd) 

c 
o0 1 1 I ~ 1 , ~~ 
RATECT):O~O 
DO 21 	 .J:l,i1 
RATE(I):RATE(!)+O(J,J)*C~PFL(J) 

2 1 r. n ~n I '; ' JE 
W R TTE. ( 13 , ? 2 Ll ) t , Xt ~·1 1. I S f ( T ) , F A. I L ( T ) 

22~ 	 F0RMAT(2~K,t2,?0X,F~~0,?0X,FR.O) 
Xt-1 f M 1 ( I ) :X I "iUS F C ! ) * T] H [ :t ~ AT [ ( I ) 
DEV(J):SQRT(XMfAN(l)) 
Sl(l):o.o 
S2(l)::o.o 

J 1 	 CO~iTJNI.Jf. 

c 
~RITFCR,i?20) 

IX::A7 
no 61 J=l,n 
XBAR(J):::IJ.O 
SU1·1(J):0,0 

&1 	 C0t'ITl\JUf. 
c 

no at NSTEP : 1,100 
c 
C G~NERATF APP~OXIMAT~ Pfl!SSON RA~DOM NUMBERS TO 8f USED AS OdSERVED 
C NU,.1t~ER or IJN!i FAILURES ltl THf FIELO. 
c 

DO 51 T:t ,N 

500 cAL L G!\I Js s ( t X , DE: v ( I ) I Xp f. A~·J ( I ) , FA J L ( I ) ) 
If(FAIL(Il.LT.o,o)GOTO 500 

51 CO~lT I ~JUE 
c 
C SET 	 UP INITIAL VALUES, 
c 

NIT:O 
c 

D 0 2 0 	 ,J : 1 , ~1 
ALPHA(J):CMPFLrJ) 

20 CONTINUE 
c 
c 
C BEGTN THE: ITfRATJVE. PROCFOURE, 
c 
600 
c 
C WE WISH TO KEEP THE OLD VALUfS or AlPHA TO TEST FOR CONVERGENCE, 
c 

no ?5 J=t ,11 

P r~ F v CJ J : 1\ U' d h en 
2 5 cor·n 1"· uE 
c 
c 

cAt. L LA F A I L ( N, ~1, XL M1 D A I q, ALpHA ) 
c 
C DE TER M 1 ~i F T HF. S C nq 1:. VE_ C T 0 f? • 

c 

http:CO~iTJNI.Jf
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PROGRAM LISTING - MONTE (Cont'd) 

DO 30 J:l,M 

S(J)=o.o 

DO V5 I=l,N 

F:FAIL(I)/XLA~DA([) • TIME*XINUSfCl) 

SC.J):::S(.J) tCJ(! 1 .1) ~F 


3 5 C0 r>!T PJU E 
30 CONTI~JUf 

c 
CALL. !NFAIL(N,M,O,XI~USE,li~~,XlAMDA,XINF,LWORK,MwURK, 

$ CONDSD) 
c 
C DETERM!~E THf AOJUSTMFNT FACTOR 
c 

DD l~(l J:t,M 

F A. C ( J ) : (l • 0 

DO 45 JJ:t,~ 


FAC(J):FAC(J)+XlHF(J,JJl*S(JJ) 

45 CON T P"H:. 
40 CO~H I ''JIJE 
c 
C DETfRMPJE.: THE 1'-iEI<i fSTIMAH.S OF COMPONf~T FAMILY FAILURE RATES, 
c 

no 'lO J:t,~"1 


AlPHA(J):ALPH4(J)tFAC(J) 

5 0 C 0 ~JT I "i Uf . 
c 
c 

DO 55 J::t,M 
IFCARS(ALPHA(J)-PREV(J)).GT.0,000005) GOTO 520 

55 CONTUWE 
c 

GOTO '510 
c 
520 lFCNTT.LT.lOO)GOTO 6CO 
510 CALL LAfAIL(N 1 M 1 XLAMDA,~,ALPHA) 

C A L L I NF AI L ( N , ~1 , fl , X 1 ~J ll S E , T ! f'-1E , X L A r-.1 D A , X I N F , l W0 R K , 1-l W 0 R K , 
$ CO~JDSD) 

c 
C DETF~MI~E APPROX!~ATF CONFIOFNCE INTERVALS FOR OUR ESTIMATES OF 
C THE FAILURE RATES, 
c 

WR!Tf(8 1 3l0) 
31 0 F 0 R,, AT ( ;> 5 X, ' A P P ~< nX J i-'~ AT f:. q,% Cn~~ F I[) EriC E I ~J T f.. RVAL S F 0 R C 0 ~~ P 0 Nf NT I , 

$ t F~ILURr: RATES:,,/,!) 
~>1RITF(S,320) 

3 2 0 F 0 P ~H< f (7 X , ' Cr. tJ, P CHInH I , 6 X , ' E S T I MA T f 0 ' 1 8 )( , l Ut'>l C 0 N D I T I 0 N A L ' , 1 2 X , 
$ 1 C(l ~~ D l T I 0 "• AL ' ) 
!>o~dTF(S,.LSO)

33o FURMhT(dX,'FA.1ILY',6X,•FAILtJRE RArr•,7X,!VARIANCE c,r,•, 
$ t2X, 1 VARIAt;CF C.I.',I) 

r-RtTt(/3,3!.10) 
340 FORMAT(lOX,?(l•'),10X,8(1~t),6X,19(1•'),SX,1q(l•l)) 

c 
f)Q 1,5 J=1,"' 
COMPL8:ALPHA(J)~t,q6*SRRTCXI~F(J,J)] 

http:r-RtTt(/3,3!.10
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Cn 1'1 P U f3 : AL PH A ( ,] ) +1 • Q 6 *S t~ ~n (X I ~J F ( J , J ) ) 

CONDLH=~LP~A(J)-l.q~*CO~DSD(J) 


C 0 "-: 0 U R : A l Y H t\ ( J ) +1 • q h *C 0 \; f) S C ( J l 

\.liRITF(8,3'10)J,ALPHA(Jl,COHP1.F-),CCJMPl.JB,CONOtH,CONDUB 


1350 	 f0RMAT(10X,I2,10X,FR.S, t: 1 ,~x, l(!,f8.5, t, t,f8,~, 1 ) , 

$ 5X,'(' 1 F'R.r,,t,t,FP..'1,t)t) 

X B A R ( .] ) :: X r~ A~~ ( J ) +A L P t1 A ( .! ) 

S U f"l ( .J ) :: Stj ;vj ( J ) +ALPHA ( J ) * * 2 


os 	 (flNTINUE 
c 
c 
C 0 E. T E f.i ;~ FJ E C 0 ~· F 1 Dt :>J r. F TN Tf:_ RV A L S F 0 R THE IJ N1T F AI l ll RF: I·H T E S F R 0 "'1 
C THE OBStRVED FAlLUR~S AND FPOM THE fSTJMATfO FAILURE RATES, 
c 

WRJTECA,360l 
360 FOR~Af(25X, 1 APPROXI~ATE 95% CONFIDENCE INTERVALS FOR UNIT!, 

$ t FAILU~f RATES' 1 / 1 /) 

w~JTE(8,370l 
370 FUf~I>1AT(9X, !UNIT1 1 17X, !FOR CRSERVE0' 1 40X, lfOR t.ST!MATf:.SI,/ 1 /) 

~RTlF(8,3HO) 
380 	 FORMAT(10X,2('•'),5X 1 39(1•1) 1 15X,3Q(f•l) 1 /) 

c 
N.l 70 t:t,N 

PHl:FAIL(l)/(XI'll'Sf(l)*T!"'lr) 

P01SlA:PHl•l,96•S~~T(PHT) 
PGISUA:PHI+l•96*SQRT(PHJ) 

ESTVAR:o,o 


c 
DO 75 J:t,M 

OQ 80 K::t,M 

ESTVAq:ESTVARtQ(I.J)•Q(!,K)•X(NF(J,K) 


80 	 CONTT~UF: 

75 	 CONTP.1lJE 
c 

fSTLR:XLAMOA(1)·1.9h•SQRT(ESTVAR) 
FSTUR=XLA~OACI)t1.9b*S~RT(FSTVAR) 

wR I H cA, 31 o1 r , r HI , Pots L B, r or s:J u, x LAM oA cI l , EsT U3, E. s ruB 
390 FOR~AT(IOX,I2,5X ,F10.5, t:t,SX, '( 1 ,Ftn.5, 1 , t,FIO,S, ') 1 ,15X,F10.S, 

$ ': '' 5X, ' (',rIo • 5, ', '' F 1 n ''1' 'l I l 

Sl(J):St (I)tXLAMOA(I) 

S?(I):S2(J)+XLAMDAC1)**2 


70 	 CONTI-\iUE 
c 
4 1 	 C iW T Pi Uf~ 

;"'RITF:(B,??O) 
wRtTF(8,375) 

31s FCH( M A r ( ,:> ;p; , ' q c, 'Y. r: o ~ j F r nFNc t P' r ERvAL s F oR r Hr: ' • 
$ I C 0 H P 0 ''l L ~J T F A I L U f~ F R A T F f_ S 1 I '·i A T E S 1 1 I ) 
~RITf(P.,381) 

13 a1 r oq '"~A r c t 1 x , 1 co,,.. P c ~~ [ ~j r ' • 12 x. , ' £- s r I M A TF. , 1 2 x , 
$ ICONFIDt\JCF. l'JTERVAL lfbX, 'ACTUAL FAIL. 1JRf RATL 1 ,1) 

rqiTt.(8,3BS) 
3 8 5 F 0 R ~~AT ( ? 0 X , ~~ ( l .. ' ) , 1'5 X , 9 ( I - I ) , 1 1 X I ?, 1 ( f - I ) I 1 0 X , q ( ' .. I ) ) 

c 
DO 71 	 J:1 ,~"-! 

http:t.ST!MATf:.SI
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PROGRAM LISTING -MONTE (Cont'd) 

S U r~ ( .J ) : ( S !.1 '1 ( J ) .. ( ( :t.. ~ .\ I< ( J ) * • 2 ) I 1 0 0 , ) ) I q 9 • 

XAAR(J):XHAR(J)/100. 

XLB=XHAR(J)·1.06*S~~T(SUM(Jll 
XUB;XHAR(J)+l,96*S~~l(SU~(J)) 
w~ I T F ( R , :; q 5 ) J , X~~ A R { .. ! ) t Xl. f~ I Xu R, c Mp f L ( J ) 

395 FOR~AT(20X,l2,t5X,~9.4, ': ' 1 10X, 1(! 1 f9,4, ! 1 1 1 f9 1 4 1 !) 1, 

$ lOX,r9.5) 
71 CONTP.JL.JF 
c 

WR!TE(P.,220) 
~. R J Tf ( A , !.1 0 0 ) 

400 FOR~AT(20X, 195% CONfTOENCf !hTERVALS fOR UNIT fAILUHf 
$ ! tST!MATfS:',I) 

\IJRIH.(8,Ht0) 
4 1 0 F 0 R 1'1 A T ( 19 X 1 r U r-.; I T I , 15 X , I E S TI ._, A T E:: I , 12 X , 

$ 'CONFIDENCE I~TFRVAL',I) 

WR!TE(8,185) 
c 

DO 81 1: 1, ~j 


S?Cl):(S2(1)•([51Cll**?)I100.l)/99, 

Sl(l):St(I)/100. 

XLH:S1 Cil·l~96•SQRT(S2!I)) 


XUB:StCI)+1.9b•SORT(S?(l)) 

~RJTE(8,395)I,S1(I),XLB,XU8,RATf(!) 

81 CONTINUE 
c 

RETURN 

fND 


RATE I, 


http:CONTP.JL.JF
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SUBROUTINE LISTING - INFAIL 

S tJ 8 R 0 U T I i\1 E I ~~ F A I l ( N 1 ~1 , lJ , X I N US f , TI Mf , X l A :-1 DA, , X I N F , l, w0 R K , f;1 w0 R K , 
'S CO~IDSO) 

c 
C THIS SUBROUTINE DETtRMtNfS THE INFORMATION MATRIX FOR THE FAILURE RATE 
C PR08RfM ANO ITS lNVtRSE, 
c 

DIMENSION Q(N 1 H) 1 XINUSE(N),XI•JF(~,M) 1 XLAMDA(N),L~ORK(M) 1 MWORK(M) 1 
$ A(3?5) 1 CONOSO(M) 

c 
DO 10 J:l,M 
DO 1',; JJ:t,J 
XINFCJ,.JJ):O.O 
DO 20 I:1,t< 
XINF(J,JJ):XlNF(J,JJ)+TIME*XlNUSE(l)*G(I,J)*Q(l,JJ)/XLAMDA(!) 

20 CONTI :·JUt 
15 CONllNUf: 

CONDSD(J):l,O/SQ~T(XINF(J,J)) 

10 CONTPWE' 
c 

D 0 ~5 ,J : 2 , ~1 


J 1<~IN=J•1 


D 0 3 0 J J :: 1 , ,J M PJ 
xtNF(JJ,J):XlNF(J,JJ) 

3 0 C0 ~~ TI ~~ U E 
25 CONTl"tUE 
c 

DO 35 J: 1, ~,1 
35 CON T U~UE 

LSUM:O 

DO lJO J:t,M 

DO 45 K:lt ..T 

L S U r1 =L S U,,, +1 

ACLSUM):tn.t7•XINF(J,K) 


4 5 C 0 N T I ;-.J 1.1 f 
40 COI'd T. NUE 
c 

EPS:lo.F:-n 

CALL SINV(A,M,fPS,tER) 


c 
LSUM:O 

00 5() J=l,M 

00 55 K:1,J 

LSU"~=LSU~if.+ 1 
XINFCJ,K):lO,f:7*A(LSUM) 
XINF(K,J):XJNF(J,K) 

S 5 C 0 r~ T I tJ Ut. 
so co~nrrwE 

c 
DO 60 J:l,M 

60 CONT P·itJf. 
DO 65 J:t,M 

6 5 C 0 N T I :,wE 
RE::TUR~; 

E~O 



62 
SUBROUTINE LISTING - LAFAIL 


c 
C THIS SU8ROUT!NE OETERMJN~S fSTlMATES OF THE UNIT FAILURE RATES, 
c 

D I MEN S I oN XLA,., D~ cN ) , (:J ( ~ J , r1) , A L P ~~ Acr1 ) 

c 
1)0 10 !:1,N 

XLA,..1DA(! ):0 4 0 

DO 15 J=l,;-1 
XLAMDA(l):XLA~DA(!)+ALPHA(J)•Q(J,J) 

1'5 CONTINUE. 
10 CONTI'.!IJ£ 
c 

RE:.TUR~ 



APPENDIX 4 

Program for the Component Yield Problem 

The computing work for the problem of estimating component 

family yields involved five programs. All are written in FORTRAN. 

The programs LINLSQ and CARLO use the method of weighted least squares. 

LINLSQ is designed for practical use while CARLO, which generates one 

hundred random samples of unit yields, is designed to study the 

properties of the estimates. The programs PREDMLE, COMB and SIMPLEX 

are designed to find maximum likelihood estimates of component family 

yields. PREDMLE uses a common starting value for the component family 

yield estimates and uses the method of scoring to find those estimates 

which maximize the likelihood. Using those estimates determined by 

the method of weighted least squares as starting values, the program 

COMB uses the method of scoring to find maximu~ likelihood estimates 

of component family yields. The program SIMPLEX uses the Neider Mead 

Simplex method of finding maximum likelihood estimates of the component 

family yields. The method of weighted least squares is used to 

determine one of the vertices of the initial simplex used in. SIMPLEX. 

The output file for all five programs has a length of one hundred and 

thirty-three colunms including the carriage control. 

Input for LINLSQ (Figure 11) is read from an external 

file having a length of eighty columns. It is unformatted and 

is general for any number of units observed and any number 

of component families. The first row of the input gives N, 

the number of distinct component families for which yields 
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can be estimated. The first M columns of the second to (N+l)st 

rows inclusive is the matrix Q = [q .. ]N M where q .. is the number 
1J X 1J 

of components of the jth family in a unit of type i. The (M+l)st 

entry in the (i+l)st row is the number of units of type i produced 

during the production period. The ~1+2)nd entry in the (i+l)st row 

is the number of units of type i accepted during the production 

period. The (N+2)nd row gives the 97.5 percent critical value of 

the student's t distribution on N-M degrees of freedom. 

LINLSQ calls three subroutines, G~WRD,SINV, and EIGEN, 

from the SSP FORTRAN library GMPRD determines the product of two 

general matrices. S!NV calculates the inverse of a positive 

definite symmetric matrix and is used to determine the estimated 

variance-covariance matrix of the estimated component family yields. 

EIGEN is used to determine the eigenvectors and_eigenvalues of 

that matrix. 

The logic of LINLSQ was tested by using as input the expected 

number of acceptable units for a sample for which the component 

family yields are known. The program was adjusted to allow for the 

fact that there would be no variance in the input data. The results 

(Table 8) indicated that the logic was correct. Differences between 

the true values and the estimates were due to round off error. 

Input for CARLO is the same as that for LINLSQ except that M 

is restricted to the value three. Input for the number of acceptable 

units of each type for one sample is required, but the results of 

the program would allow the omission of this input. CARLO could be 
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generalized to allow for any number of component families and for any 

number of generated samples. Three SSP subroutines GAUSS, GMPRD, 

and SINV are required for CARLO. GAUSS, a normal random number 

generator, is used to generate the number of acceptable units of 

each type. 

Input for PREDMLE is the same as that for LINLSQ except that 

the entry in the (N+2)nd row gives a value which is given to the 

M component family yield estimates as starting values for the iterative 

procedure. PREDMLE calls the subroutine MINV from the SSP FORTRAN 

library in order to determine the inverse of the information matrix. 

The same data used to test LINLSQ was used to test the logic of 

PREDMLE. To start the iterative procedure in the test, the true 

component family yields were used as starting values. Test results 

(Table 9) indicate that the logic is corTect. 

The input for COMB is the same as that for LINLSQ. Five 

external subroutines are called from COMB. The subroutines SINV, 

GMPRD, and EIGEN are called from the SSP FORTRAN library. COMYLD 

calculates predicted unit yields from estimates of component family 

yields. COMINF calculates the estimated information matrix and its 

inverse. 

The input for SIMPLEX is identical to that for LINLSQ except 

that no entry in the (N+2)nd row of the external data file is 

required. The subroutines GMPRD and SINV are called from the SSP 

FORTRPN library. As well, seven other subroutines, XCALC,XPLACE,XREF, 

XCONTR,XCENT,XSHR, and XPAND and the function XF are called externally 
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from SIMPLEX. The purposes of these subprograms are described in 

the initial comments of their listings. 

With the exception of CARLO, all of the above programs were 

originally designed for practical use. Due to numerical problems, 

however, only LINLSQ can be used with any degree of success. 

All approximate confidence intervals are calculated at the 

ninety-five percent confidence level. Alterations to the programs 

and their input could be made which would allow for different levels 

of confidence. 

Those calculations which were done by hand using results 

from LINLSQ and CARLO could be incorporated into the programs. The 

test of fit described in section 3.3 could be included in both 

LINLSQ and CARLO. Those calculations necessary to estimate the 

variance-covariance matrix of the parameter estimates in CARLO could 

be included in the program. LINLSQ would be of more practical use if 

the program and its input were adjusted to predict point estimates 

and determine confidence intervals for the yields of newly designed 

electronic units. 
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Figure 11 


Input Format For The Program LINLSQ 


1 0 I 3 

27,3,tl50, 1000,553 UNP 1 

?5,10,3501 C)OO,l4l~ U~v IT ? 

31,0,37r.,, ROO,S74 urd r 3 

1b ~ 1 1 1 ll {) I) 1 750,101 UNIT u 

10,?.~..,,2')(1, \S(l,C)(~ u~: IT 5 

3 5 1 0 , I~ 2 r; 1 h~O,qQ6 u~n; 6 

?9,29, S~5, 125,7q IJNIT 7 

21,0,,~00, 6 (\ o, c'J 1 UHIT 8 

21 ... 9,42H~ 85\1,3.57 tiN IT 9 

17,25,216, SS0,2t9 UhJ IT 1 0 

2. :S6S 

http:85\1,3.57
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Component 

Family 


1 


2 


3 


Component 
Family 

1 


2 


3 


TABLE 8 

RESULTS OF TEST RUN ON TIIE PROGRAM LINLSQ 

Estimated Component 

Family Yield 


.9899 


.9949 


.9990 


TABLE 9 


True Component 

Family Yield 


.9900 


.9950 


.9990 


RESULTS OF TEST RUN ON THE PROGRAM PREDMLE 


Estimated Component 

Family Yield 


.9900 


.9950 


.9990 


True Component 

Family Yield 


.9900 


.9950 


.9990 
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PROGRAM LISTING - LINLSQ 


C T H T3 P R r) G R A i·l TA K f S T HE L 0 G A R l T H t1 0 F T H f U ~J I T Y I E L D S T 0 ~ 0 R M A I. I N E AR 
C UJU A T I 0 'J I N TH f l 0 r, AR 1 Ht r--• S 0 F T HE C0 M P 0 NF tH Y! E L {) S ft TH F. S F. fCW A TI 0 N S 
C AHE SOLV~D USPJG MUL TlPLr RtGRE::SSION, 
c 

1D I MF ~'- s r o ~' o c so , ? c; ) , v c 5o ) , Ao J vL o c 5o , 1 ) , n TRANs c 2 5 , 5o ) , cMP Y l. o <2 c; l , 
~ L ( 2 ~-~ ) , •'I ( 50 ) , C t! rJ S ( 2 5 , 1 ) , •1 •~ 0 ~ K ( 2 '3) , i'! t: W(50 ) , D f:. R ( 2 5 1 2 ~' ) 1 Z C 2 S, 50 ) , 
$ A(525),R(2S 1 2S),OAD.J(50,2t;),YlFLOC50) 

REAL r..;EI~ 

READC9 1 *) N,M 
c 
C N IS THE "lUMR[R OF ROwS (U~JJTS) 8, M IS THE NUMBER Of 
C CO~UM~S (COMPONENT FAMILIES), 
c 

CALL OLS(N,~~ORK,O,YifLD,GTRANS,CNPYLD,L,M 1 NEW, 
$ DER,Z,CO~S,Y,~,A,ADJYLD,GADJ,R) 

STOP 
fNO 

c 
SUBROUTPlf:: r"'LS(\J,~~wORK,Q,YIELD,QTRANS,C~PYL0 1 L 1 M, 

$ Nf~ 1 DFR,Z,CONS,Y~W,A,ADJYLO,nADJ,R) 
DI~ENSION Q(N,M),A(32S),ADJYLD(N,t),QTRANSCM,N), 

$ c ,.., p y L D ( ,.., ) , R ( '-1 I ~· ) , ~·i ( N ) , y ( I'J ) , L ( M ) , 'I w0 R K ( M ) , N E Ill ( tJ ) I 

$ DER(~ 1 M) 1 QADJCN,M),YlFLD(N) 1 l(~,N) 1 CONS(M,1) 
REAL ~JF.-1 

c 
wRITl (8,21/0) 

2 0 0 F 0 R t1 A T ( 2 (I X. , I D A T A r-1 A T R I X : ' 1 I 1 I ) 
c 

DO 10 I:l,N 
READ(q,*)(Q(!,J),J:t 1 M),N(W(J) 1 Y(l) 
~RITE(R,210)(Q(!,J),J:t,M) 

210 f0RMAT(3~,2~F4.0) 
10 COt-iTINUf 
c 

WRITf(8,220) 
220 FORMAT(1H1) 

wrnTf(B,2.30) 
230 FORi'llAT(I,I) 

c 
c 
c 
C CAl, C U L A Tf:. THF Y t F Lf) S !\ ~J D A0 ,J ll S T T H E YTF L l"l S A N D T H E Q M A T R T X F 0 R 
C UNEQUAL VARIANCtS. T~fN PRINT OUT THE UNITS ACCEPTED, THE ~UMBER 

C TESTED, THE YltLD AND THf ADJUSTfD YIELDS, 
c 

WRITE(8,240) 
2 4 0 F 0 R ~' f, T ( 1 (J X. I u'J IT I , 1~X, I lJ NIT 5 Tf s TF[) ' , 1 5 X, ' uNITs A c c E. p TF. 0 I , 

$ 1 t: x , Ill N1r n E L o ' , 1 n , ' AoJ u s r r: D vr f:. Lo ' , 1 ' 
c 

DO 1S I=l~i'l 
YIELD(l):Y{I)/Nf~(t) 
W(I):SQRT((~f~(t)-V(l))~(~f~fl)*Y(I))) 

AI) ,r Y L D ( I , t J :;: i~ t. 0 G ( Y11: L D ( I ) ) I ,.: ( I ) 
DO 20 J:::l,t1 
GADJ(J,J):QCI,J)/~(1) 

http:wrnTf(B,2.30
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PROGRAM LISTING - LINLSQ (Cont'd) 

20 CON T !'-lUE 
~RITF(B,250)l,Nf~(I),Y(l),Ylfl0(J),ADJYLDCI,1) 

250 F0RMAT(i5X,I2,?(?0X,FS,OJ,l9X,F7,a,t7X,F9 1 4) 
15 CONTINUE 
c 
C DETERMINE THE TRANSPOSE OF THf ADJUSTED Q MATRIX, 
c 

Dfl 25 l:l,N 

DO ~0 J:t,t-1 

QTRhNS(J,!):QADJ(J,J) 


30 C 0 NT I~~ U E 
25 
c 
C NOW WE CAN PERFORM THE ACTUAL REGRESSION, 
c 

CAll GMPRD(QTRANS,OADJ,DER,H,N 1 M) 

c 
C THE MATRIX D~R CO~SISTS OF ~ON NfGATlVE ENTRIES, HENCE Wf CAN 
C SCALf THF MATRIX SO THAT THE INVFRSF OF A MATRIX ~TTH A SMALLER 
C RANGf OF VALUES CAN BE OfTlRM!NED~ THIS WILL REDUCE THE CHANC~S 
C OF TI~E PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERFLOW, 
c 

ZZ:tnoo.*FLOAT(N) 

DO 35 J:l,M 

00 40 JJ:l,M 

DER(J,JJ):DER(J,JJ)/ZZ 


lAO CONTI 'WE 
35 CONTI dUE 
c 
C WE Of.Tf~MPjE THE INVERSE Of- PER USHJG THf SSP SUeROUTHlf. SINV 

C WHICH DETER~!NfS lHE INVERSE OF POSITIVE DEFIN!Tl SYMMETRIC MATRICES~ 


c 
l.SUM:O 

DO I~ 5 ,] : 1 , M 

DO 50 K:::t,-1 

LSU"~:tSLJt·l+ \ 
ACLSW'>):DER(J,K) 

5 o c o r1 r I N lJ E 
45 CONTI.WE 
c 

FPS:,001 

CALL SINV(A,~,EPS,IER) 


c 
LSUM:O 

DO ':)5 ,J:i,M 

DO 60 K:1;J 

LSiJM:LSUHtl 

D E R ( .J , K ) :: A. ( I_ SiJ~ ) 

OER(K,J):UER(J 1 K) 


60 ( 0 r-..J T 1'JUt: 
55 C 0 :~ f I >JU E 
c 
C NOW iO R~STORE DER TO ITS ORIGINAL SCALING BEFORE WE 
c CAN U3F IT. 
c 

http:CONTI.WE
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PROGRAM LISTING - LINLSQ (Cont'd) 

DO 6~) ,J:: t, t-'< 


DO !0 ,J,J:t,"'' 

nER(J,JJl=DER(J,JJ)/ZZ 


70 CONTJr;~Uf:. 

b 5 C~.HJ T I I'J U E 
c 

CAL. L Giv! P R D ( D f R 1 I') TI< A·~ S 1 Z , ~~ , 11 1 N ) 
CALL GMPR0(7 1 ADJYLD,CONS,~,N,1) 


~4Rllt(8,?.20) 


wRITfC8,2..SOl 
c 

SIG·"'A:o.o 
DO "!5 T::l,N 
r=o,o 
DO 80 J:t,M 
E=E+QADJ(l,J)*CONS(J,l) 

80 C 0 ";r PJUF. 
E : A D ,J y L D ( t I 1 ) - E 
S 1 G M t. : S I r.; '·1 A +E:. * * 2 

75 CONTlqUf 
Nt-i:N•M 
S!GMA:SIG~A/fLOAT(NM) 

DO t!5 J:t,t-1 

DO qo J,J:::t,M 

DER(J,JJ):DER(J,JJ)•SIGMA 


qo CO~lTT"dJE:: 

8 5 C 0 N T I ~~ U E 
c 

WRITE (8,260) 
260 FORMAT(50X, 'COVARIANCf MATRIX I,/) 

wRITE(R 1 ?70)(J,J:1 1 M) 

270 	 f0RMAT(lb(13X,I2) 1 /) 

DO 95 I:1,M 
WRTTf(8,?AO)I,CDER(l,J),J:t,l) 

280 FOkMAT(2X,I? 1 1b(2X,t13.7)) 
q5 CONTINUE 

REAI)(Q,•)f 
c 
C DETfRMINE CONFIDENCE INTFRVALS FOR THF ESTIMATES Of THE LOGARITHM 
C Of T~t cowPONENT YIELDS AND FOR THf COMPONENT YIELD ESTIMATES, 
c 

~t~Rtlf(fl. 1 ?20) 


~~nH <8,250) 

~'i R! TE ( 8 , £H} 0 ) f\JI1 


290 FOR~ATC25X, IAPPROXIMATf 95% CONFIDE~CE INTERVALS ON1,!2,1X, 
$ lf)fJ;RU:.S Of Ff.(EfDOM: 1,/) 

\iiRIH:(8,300) 
3 0 0 FfJ R',l AT C3 X , l Cn '1 P 0 :-,, F f-J T ' , 12 X, ' L 0 G 0 F C0MP 0 N EN T ¥ 1 r~ L D I , Ll.~ X, 

'f, !C()rAP0~4("'iT YI~LD' 1 1) 
.~l(ITf (8-.HO) 

310 FrJRMAT(tO'K 1 2( '"'' ),5X,50( 1.,1 ),15X 1 36( 1.,.1)) 
DO 100 .J:t,~1 

XLA:CONS(J,t)•T*S~RTCDER(J,J)} 


L! f3:: C P ;~ S ( J , 1 ) +T • Sf~~ 1 ( N. R ( J , ,J ) ) 

CMPYLO(J):fXP(CCNS(J,ll) 


http:4Rllt(8,?.20
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F_ XPL l~:f.-.XP ( X!..B) 
EXPU!3:F.XP(Uf~) 

1/R I Tf ( 8 , 3 2 0 ) J , Cn~~ S CJ , 1 ) , XU~ , lJ f.1 , Ct1 P Y L D ( J ) , f XPU~ , E X PUB 
320 FORMAT(l0X,I2,~X,E14,6,SX, !( 1 ,El4,br ' 1 ! 1 f14,6 1 !)1,1SX,F~,5,5X 1 

$ ' ( ' , E I 0 , 5 , ' , ' , E 1 0 • S , ' l ' ) 
100 CONT PWE. 
c 
C FIND APPROXIMATE CONFIDENCE INTERVALS FOR THE UNIT YIELDS USING 
C B 0 T H TH f.-. 0 B Sf. R V E 0 YH. L D S A N D THE F S T Jl-1 A T E D V I E l,. D S , 
c 

i·JRIH (8,220) 

i'<RITEC8,?..30) 

WR!lE(8,330) 


330 FORHAT(25X,tAPPROXtMATE 95% CONFIDENCE INTERVALS FOR UNIT '' 
$ IY!ELDS:t,;,;) 

WRITE.C8,340) 
3 q 0 F 0 R ~1 A T ( 9 X , I ll N I T t 1 14 X1 I F nR 0 8 S E R V E D I , 3 r; X , I F 0 R E. S T P1 A T E S I 1 I ) 

WRITE(8,:~~0) 
3 5 0 F 0 R r1 A T ( 1 0 X 1 2 ( I • I ) 1 5 X 1 3 3 ( I .. I ) 1 1 5 X 1 3 7 ( I "" I ) ) 

c 
DO 105 I:l,~-1 

fAC:YIELD(!)*(l.O-YlELD(!))/NEW(l) 

FAC:1,96•SYRTfFA[l 

R!NLR:YIELO(ll•FAC 

BINUR:YitLD(lltFAC 

ESTVLD::O.O 

ESTVAR:O,O 


c 
DO 110 ,1:1,"1 

ESTYLD = ESTYLD+U(!,J)•CUNS(J,l) 


c 
DO 115 K:t,r-l 
ESTVAR:fSTVAHtQ(T 1 K)*Q([,J)•DER(J 1 K) 

1 15 CONTI ";LJt_ 
110 CONft'~Uf 

c 
SD:S£J;.?T(tSlVA~) 

ESTL~:FXP(ESl1LD•t.96*SG) 
~STUR:tXP(ESTYLOil,96*SD) 
fSTYI D:fXPCFSTVLn) 
WRITf(8,160l!,Yl~LOCI),RINLB,8!NUA,ESTYLO,ESTLB,ESTU8 

_;bo FORMAT!10C,t2,5X,FB,s, •:•,sx,•ri,FB,s, ,, •,fe,s. 'l~,1~x, 
1$ ~fi•!)~ I: I ,SX, I ( 1 t't0,5 1 l, I ~f10.S, I) I) 

105 CON l I rHJt. 
c 
C Df TE. R '-~ P,J E P R t ~l C I P h t ( 0 r-1 P 0 N EN T S , T H A T I S A Y C A L C U l A T l NG THE 
C EIGENVECTORS, ~E CAN DETERMI~~ NEW BASES FOH OUR COMPONENTS WHICH 
C ~ILL HE !~OfPENOE~Te 
c 

(i\Ll. EIC1Efl(DFI( 1 1--l 1 M1 0) 
WRIH.U~,220) 

c 
I)!') 120 J:=l,~1 

~Rtlf(R,570)J,DERrJ,J) 

31 0 ~ 0 R '1 A T ( I , 2 0 X , ' f. I G f t-l v t, L LJ f:. ( I , I 2 , ' ) = I , E 1 6 • 8 , I ) 

http:l~:f.-.XP
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~R!Tf(8,3RO)(J,!,R(l,J),T=l,Ml 
1 1380 FORMAT(25X, 1[IGF~VFCTOR(',l2 1 , 1 12 1 

1 ) = t,E1b,8) 
1. 2 0 C 0 ~~ i 1 '': U E 
c 

RET UR ~J 
END 
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PROGRAM LISTING - CARLO 


C THIS PROGRAM GENERATES tOO SAMPLFS OF VlELD DATA AND COMPUTES 
C CONFIDENCE I~TERVALS FOR THE ESTIMATES USING THE RESUl.TS OF ALL 
t OF THE SAMPLES, THE YIELD ESTI~ATES FOR EACH SAMPLE IS FOUND USING 
C THE METHOD OF THE PROGRAM LlNLSQ, 
c 

DIMENSTON Q(50,25) 1 V(50),ADJYLOC50,1),{JTRANS(25,50)•CMPVLDC25), 
$ P(50),AC(25),XMEAN(50),D~V(50),X8AR(25) 1 

$ SUM(25),S1(50) 1 S2C50), 

$ LC25) 1 W(50) 1 CONS(25 1 1),~WORK(25),NEW(50) 1 DERC25,25),ZC25,50), 


$ AC3?5),RC25,25),QADJC50,25),YIELDC50) 

REAL NEW 

READ(q,•) N1 M 


c 
C N IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER OF 
C COLUMNS (COMPONENT FAMILIES), 
c 

CALl OLSCN,MWQRK,Q,YIELD,QTRANS,CMPYLD,L,M 1 NEW 1 

$ P,AC 1 XMEA~ 1 DtV,XBAR 1 SUM,S1,S2, 


$ OER,Z,CONS,Y,W,A,ADJYLO,QAOJ,R) 

STOP 

END 


c 
SUBROUTINf OLS(N,MWORK,Q,YIELD,GTRANS 1 CMPVLD 1 L,M, 


$ NEW,P,AC,XMEAN 1 DEV,XHA~,SUM,S1 1 S2, 


$ DER,Z,CO~S,Y,w,A,ADJVLD,QADJ,R) 


DIMENSION Q(N,M),A(525),ADJYLD(N 1 l),QTRANS(M 1 N) 1 


$ C~PYLD(M),R(M,M),W(N),Y(N),L(M),HWORK(Ml,NE~(N), 


$ P(N) 1 AC(~),XHEA~(N) 1 DEV(N),XBAR(M) 1 SUM(H) 1 

$ 51(10),52(10), 

$ OERCM,M) 1 QADJ(N,M),YIELD(N) 1 Z(M,N),CON5(M,1) 


REAL NEW 
c 

WRITE(6,200) 
200 FORMAT(20X,tDATA MATRIXtl 1 / 1 /) 

c 
00 10 J:1,N 

READ(9,•)(Q(J,J),J:t,M)fNEW(I),Y(l) 

WRITt(6,210)(Q(!,J) 1 J:t,M) 


210 f0RMAT(3X,25FU 1 0) 
10 CONTINUE 
c 

WRIT£(6 1 220) 
220 FOR~ATC1Hl) 

c 
ACC1)~,qq 

AC(2):.9Q5 

AC(3):,qqq 


c 
WRITE(6,25l) 

231 FORMAT(22X 1 ICQ~PONE~T' 1 1bX, tYIELDt,/) 
WRJTE(b,232)(J,AC(J),J:t,M) 

232 FORMAT(25X,I2.20X,F5,3) 
c 
C DElER~INE &NO PRINT THE TRUE UNIT YIELDS, 
c 

http:RESUl.TS
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PROGRAM LISTING - CARLO (Cont'd) 

WRJTEC6 1 220) 
WRITE (6,2 1~0) 

2~0 FORMAT(21JX,•UNTTI 1 16X,IUNITS TESTEDI,17X, 
$ ITRUf UNIT YIELD 1 ,/) 

c 
00 11 I::t,N 

P(l):O,O 

DO 21 	 J:t,~1 
P(I)=PCl)+Q(J,J)*ALOG(ACCJ)) 

21 CONTINUE 
P(l):EXP(P(!)) 
WRIT£(6 1 250)I,NEw(I)~P(l) 

250 	 FORMAT(25X,I2,20X,F5,0,20X,F10,8) 
XMEAN(t):P(I)*NEW{!) 
OEVCI):SQRT(XMEAN(I)*(l,O•P(J))) 
51(1):0,0 
S2CJ):O,O 

11 CONTINUE 
c 

WRITE(o,220) 

lX:7C) 

READ!9,•)T 


c 
DO 61 J:t,M 

XBAR(J):O,O 

SUM(J):O.O 


61 	 CONTINUE. 
t 

DO 41 	 NSTEP:t 1 100 
c 
C GENERATE APPROXIMATE BINOMIAL OBSERVATIONS TO BE USED AS 
C THE NUMBE.R OF UNITS ACCEPTED, 
c 

DO 51 	 I:t,N 
500 	 CALL GAUSS(IX,DEVCI),XMEANCtl 1 Y(ll) 

IF(Y(Il,LT,O,O)GOTO 500 
lf(Y(t),GT,NE~CI))GOTO SOO 

51 	 CONTINUE 
c 
C CALCULATE THE YIELDS AND ADJUST THE YIELDS AND THE Q MATRIX FOR 
C UNEQUAL VARIANCES, THEN PRINT OUT THE UNITS ACCEPTED, THE NUMBER 
C TESTED, THE YIELD AND THE ADJUSTED YIELDS, 
c 

00 15 !:t,N 

YIELDCI):Y(!)/NEW(!) 

W(l):SQRT((N(~(ll~Y(l))/(NEW(l)*Y(!))) 

ADJYLD(l¥1):ALOG(Y!tlO(l))/W(!) 

DO 20 J:1,M 

QADJCI,J):Q(I,J)/WCl) 


20 CONTJ'JUE: 
15 CONTI :wt. 
c 
C OETEPMINE THE TRANSPOSE Of THE ADJUSTED Q MATRIX 1 

c 
DO 25 	 I=1 1 N 
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PROGP~ LISTING - CARLO (Cont'd) 

DO '30 .1:1,M 
QTRANS(J,!):QADJ(I 1 J) 

30 CONTPWE 
25 COtH!tWE 
c 
C NOW WE CAN PERFORM THE ACTUAL REGRESSION, 
c 

CALL G~PRD(QTRANS,QADJ,DER,M,N,M) 

c 
C THE MATRIX DfR CONSISTS OF NON NfGATJVf ENTRIES, HENCE WE CAN 
C SCALF lHE ~ATRIX SO THAT THE INVERSE Of A MATRIX WITH A SMALLER 
C RANGE OF VALUES CAN RE DETERMINED, THIS ~ILL REDUCE THE CHANCES 
C OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERfLOW, 
c 

ZZ:tOOO,•FLOATCN) 
1)0 .)5 J:l,M 
DO 40 J,):t,M 
DERCJ,JJ):DERCJ,JJ)IZZ 

40 CONilNUf 
35 CONTINUE 
c 
C WE DETERMINE THE INVERSf OF ~ER USING THE SSP SUBROUTINE SINV 

C WH!CH DETERMINES THE INVERSE Of POSITIVE DEFINITE SYMMETRIC MATRICES~ 


c 
LSUM:O 
DO 45 J:1,M 
DO 50 K:t,J 
LSUM:LSUM+t 
A(LSUM):DER(J,!() 

SO CONTINUE 
45 CONTINUE 
c 

EPS:,001 

CALL SINV(A,M,EPS,IER) 


c 
LSUM::O 
DO 55 .J:::t,M 
DO 60 K:l,J 
LSUM:LSUM+1 
DERCJ,K)::A(LSUM) 
OER(K,J):D~R(J,K) 

60 CONT!NUE 
ss CON TP~IJE 

c 
C NOW WE HAVE TO RESTORE DER TO ITS ORIGINAL SCALING BEFORE WE 
C CAN USE IT, 
c 

DO 65 J:=1 1 M 
00 70 J.J:1 1 1'1 
DERCJ,JJ):DfR(J,JJ)/ZZ 

7 0 C 0 NT Ji~ U E 
65 CONTINUE 
c 

CALL GMPRO(DER,QTRANS,Z,M,M,N) 
CALL GMPRDCZ,ADJYLD,CONS,M 1 N,!) 
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c 
SlGHA:O,O 
DO 75 	 1=1 ,N 
f:O,O 

DO 130 J:t,M 

E=E+GADJCI,J)•CONS(J 1 1) 


60 	 CONTI~~Uf. 

F.:AOJYLD(!,1)•f 
SIG~A=SIGMA+t••2 

75 	 CONTINUE 
NM:N .. M 
S!GMA:SIGMA/FLOAT(NM) 
DO 85 J:t,M 
DO 90 JJ:l,M 
DER(J,JJ):OER(J,JJ)*SIG~A 

qo CONT PHJE 
65 CONTINUE 
c 
c 
C DETERMINE CONFIDENCE INTERVALS FOR T~E ESTIMATES OF THE LOGARITHM 
C OF THE COMPONENT YIELDS AND FOR THE COMPONENT YIELD ESTIMATES, 
c 

WRITE(6 1 290)NM 
FORHAT(25X, 'APPROXIMATE qsx CONFIDENCE INTERVALS 0Nt,I2,1X, 

S IDEGREfS OF FREfOOM:I 1 /) 

WRITf(6,300) 
300 FORMAT(5X,!COMPONENTI,t2X, 'LOG OF COMPONENT YIELD',43X 1 

$ ICOMPONt~T YIELD',!) 
WRITEC6,310) 

310 FORMAT(10X 1 2(!~1) 1 5X 1 50(!•1) 1 1SX 1 3b(i•t)) 
DO 100 J:t,H 
XLB:CONS(J 1 1)~T•SQRT(DERCJ,J)) 
UB:CONS(J 1 1)+T•SQRT(DER(J,J)) 

CMPYLD(J):EXP(CONS(J 1 1)) 

X8AR(J):XBAR(J)tCMPVLO(J) 

SUM(J):SUM(J)+CMPVLD(J)**2 

EXPLB:EXP(XLB) 

EXPUB:f.XP(UR) 

WRITE(b,,20)J,CONS(J 1 1),XLB,UB,CMPYLD(J),EXPLB,EXPUA 


120 FOAMAT(tOX,I2,5X,EtU.b,5X 1 'C' 1 Et4,6 1 1 1 1 1 E14,b 1 f)1,1SX,F8 1 5r5X, 
$ '(! 1 ElO,S,,,,,Et0,5 1 1)t) · 

100 CONTI~UE 

c 
C fiND APPRQXIMAT~ CON~IDENCE INTERVALS FOR THE UNIT YIELDS USING 
C BOTH THE OBSERVf.D YIELDS ANO THE ESTIMATED YIELDS, 
c 

WRITE(6,220) 
WR!TE(b,.BI)) 

330 FORMAT[25X,!APPROX!MATE QSX CONFIDENCE INTERVALS FOR UNIT ,, 
$ 1VIE!...i1S: 1 ,1 1 1) 

WRITE(b,.:S-10) 
3LIO FOf.H1AT (9X, !UNITt, 14X, I fOR OBSERVE.D I r35X, trOR ESTIMATES I ,I) 

wR!HC6t'3~0) 
350 	 FORMAT(iOX,2('•') 1 5X,33('•') 1 lSX 1 37('""')) 
c 

http:WR!TE(b,.BI
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DO 105 I:t,N 

FAC:YIELOCil*Cl,O•YIELD(l))/NEW(l) 

rAC:l,96•SQRT(FAC) 

BINLB:YitLD(ll~FAC 
BINUB:YIELO(l)+FAC 

ESTVLD:O,O 

ESTVAR:Q 1 0 


c 
DO 110 J:l,M 

ESTYLO: ESTYLO+Q(I,J)•CONS{J,1) 


c 
DO 115 K:l,M 
ESTVAR:ESTVARtQ(I 1 K)•QCI,J)•DERCJ 1 K) 

11 s co~n PJU E. 
110 CONT P.JUE 
c 

SD:SQRT(ESTVAR) 

ESTL8:EXPCESTVLD•1,9b*SD) 

ESTUB:EXP(EST1LD+1.96•SD) 

ESTYLO:EXP(fSTYLD) 

WR!TE(b 1 3bO)!,YtfLD(t),BINLB,RtNUB,ESTYLD 1 ESTLBrESTU8 


160 	 FORMAT(10X,I2,5X,~8,5,t:I,5X, l(l,f8,5, •,•,F8,S,t)t,t5X, 
$ F8 '5 f f: I, sx, I (I, E10.5, I' I IE 10.5' ')I) 

S1CI):StCI,+EST¥LO 

52(I):S?.Cl)+ESTYLD**2 


lOS 	 CONTINUE 
c 
Ql 	 CONTINUE 

WRITE(6> 1 220) 
WR!Tf(b 1 370) 

370 FORMAT(?.OX, 195~ APPROXIMATE CONFIDENCE INTERVAlS FOR THE t, 
S ICOMPONtNT YIELD ESTlMATES1 1 /) 

WRITE(6,3AO) 
380 f0RMATC1"7X, ICOMPONEI\ITI,t2X, 1ESTlMATEI,t2X, 

$ 'CONFIDENCE !NTERV~Lf,/) 
WRITE:(6,3H5) 

385 F0RMAT(20X 1 2(t-t) 1 15X 1 9(1•1) 1 11X 1 21C'•')) 
c 

DO 71 	 ,J:t,M 
SUM(J):(SUH(J)•((X8AR(J)**2)/100 11 ))/99 1 


XBAR(J):XRAR(J)/100 1 


XLB:XBARCJ)~l.9b*SQRT(SUM(J)) 

XU R: X A A R ( J) t t , q b *S IJ R T ( S U fv1 ( J l ) 
WRITE(b 1 390)J,XAAR(J),XLR,XUB 

3q0 FORMAT(20X 1 !2,1SX,F9,b, '& 1 
1 10X,I(I,F9,&,t, t,F9,b,l)t) 

71 CONTINUt: 
c 

WRJTf:.(6 1 220) 
WRITE(b,lJOO) 

QOO FORMAT(20X, 1951 CONF!OfNCt INTERVALS ~OR UNIT YIELD 1, 
$ 'ESTfi-1ATES 1 ,1) 

WRITF.(6,ll10) 
410 fORMAT (19X, I UNIT If 1'5X, !ESTIMATE' ,12X, 

$ I C 0 .N F I D f ~~ C E 1 ~J T E R V A L I , I ) 
WRITf(b,385) 

http:FORMAT(?.OX
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DO 81 l =1, N 
S2(!)~CS2(I)~(CS1(1)••2)/100 1 ))/99• 
Sl C!l=S1 (!)/100,.. 
XL8=51(!)-1196•SQRT(52(1)) 
XUB:St(!)t1,9b•SQRT!S2(I)l 
WRITE(6,3QO)l,S1(1) 1 XLB,XUB 

81 CONTINUE 
c 

RETURN 

END 
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PROGRAM LISTING - PREDMLE 


c 
C T•ttS PROGRA~ US~S T~E MAXIMUM LIKELIHOOD ESTIMATION METHOD A~D THE 
C METHOD OF "SCORING~ TO DETfRMI~E THE YIELD CF CO~PCNENTS DURING 
C PRODUCTION, 
c 

DIMENSIO~ C(35,25),NEWC35),Y!fLDC35),Y(35),AHAT(25), 

U 1Nf(25,25),L(25),~M(25),SC35),FAC(25),KC35), 


U ABC3S,2S,25),PREVC25) 

REAL Nf.vq It-.F ,K 

RfAD(Q,•)N 1 M 


c 
C N IS THE ~U~BER OF ROWS (UNITS) & M IS THE ~U~8ER OF COLUM~S 
C (COMPONENT FAMILIES), 
c 

CALL SCCRE(N,M,G,NEW,YIELD,Y,AHAT,PREV,INF,L,MM,S,fAC,K,8B) 
STOP 
END 

c 
SUAROUTJ~E SCORECN,M,Q,NEW,YtELD,Y,AHAT,PREv,JNF,L,MM 1 S,FAC,K, 

u 88) 
DIMENSIC~ Q(N,M),NfW(N),VJELD(N),Y(N),A~AT(~),pREV(Ml,INF(M 1 M), 

u L(M),M~(M),S(N),~AC(M),K(~),BB(N,M,M) 
REAL NE!<oi,I~F,K 

c 
DO 35 T:t,~ 

RElD(Q,•)(G(I,J),J:t,M),NEWCI),YC!) 
35 CONTINUE 
c 
c 
C OETE~MINE CC~STANTS WHICH WILL BE USED T~4ROUGHOUT THE ITERATIVE 
C PROCE::DURE, 
c 

DO 21 l:t,t-.. 

DO 3\ KK:1 1 M 

00 41 LL:t,KK 

BB(l,KK,LL):~f::W(l)*Q(I,KK)•QCI,Ll) 

41 CONTINUf:. 
31 C.ONTINLIE 
21 CONTJNLiE 
c 
C INITJALIZ~ THE VALUES 
c 

c 
NIT=O 

REAO(q,;.) START 

DO 85 .1:-t,f.' 

AHAT(J);;STAHT 


85 CONTif\;UE 
c 

WRITE0,50C)NIT 
500 fORt-HT(/,7);, 1 1'!1T : 1 ,J3) 

WR!lt(7,550)(J,AHAT(J],J:t,M) 
550 FOFH-1AT(15X, 1 AHAT( 1 d2 1 1):: 1 1 [13,6) 
c 
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PROGRAM LISTING - PREDMLE (Cont'd) 

C NOW Wf B~GI~ T~£ ITERATIVE PROCEDURE, 
c 
10 NIT:NIT+1 
c 

DO 9'5 J:t,l¥' 
PREV(J)::UiAT (J) 

95 CONTINUE 
c 
C DETERMINE ThE ESTIMATES OF THE UNIT ACCEPTANCE PROBABILITES, 
c 

DO 205 I:t,N 

K(l):O,O 

DO 215 J:t,M 

KCJ):K(I)+GCI,J)•ALOGCAHAT(J)) 


215 CONTINUE 
K(l):E.XP(K(!)) 

205 CONTINUE 
c 
C DETERMINE T~E INFORMATION MATRIX AND ITS INVERSE, 
c 

DO 105 I<K:t,M 

00 115 LL:t,KK 

JNf(KK,LL):O,O 

DO 100 I:t,N 

!NF(K~,LL):INF(KK,LL)+AB(l,KK,LL)*K(l)~(t,O•K(!)) 

100 CONTINUE 
INF(KK,LL):lNF(KK,LL)/(AHATCKK)*AHATCLL)) 

115 C 0 NT t N.U E 
105 CONTINUE 
c 

DO 110 KK:t 1 MMM 
JIJ:KK+t 
DO 120 LL=III,M 
lNF(KK,LL):INF(LL,KKl 

120 CONT!~UE 
110 CONTINUE 
c 

CALL MI~V(lNF,M,D,L,MM) 

c 
C DETER~INE T~E SCORE VECTOR, 
c 

00 125 J:t,M

B=o,o 

DO 135 I:::t,N 

B:Q(!,J)*(Y(l)•NEW(J)•KCl)) 

B:e/(A~AT(J)*(t,O•K(l))) 
SC.J):S(J)-}8 

135 CONTINUE. 
125 CONTINIJf:. 
c 
C DETERMINE T~E ADJUSTMENT fACTOR 
c 

DO 165 J:t,M 
FAC(J):O,O 

DO 175 JJ:q,M 
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FAC(J):FAC(J)+INFCJ,JJ)*S(JJ) 
t7S CONTINUE 
1&5 CONTINUE 
c 
C DETER~INE THE ~~W VALUf OF AHAT, 
c 

DO 185 J:t,~ 


AHAT(J):A~AT(J)+FAC(J) 


185 	 CONTINUE 
c 

DO 225 J=1 1 M 

If(AHAT(J),Ll,0,75)AHAT(J):0,75 

lFCAHAl(J),GT,1,25)AHAT(Jl=1,25 


225 	 CONTINl!f:. 
WRITEC7 1 500) NIT 
WRJTE(7,550)(J,AHAT(J) 1 J:1,M) 

c 
DO tqs J:t,M 
IFCARSCA~AT(J)~PREV(J)),GT.O.OOOOOOS) GOTO 20 

lqS CONTINUE 
RETURN 

c 
20 	 IFCNIT,LT,75)GOTO 10 

RETURN 
END 
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PROGRAM LISTING - COMB 


C THIS PFO;RAM USES rHE METHOD OF 7HE PROGRAM LINLSQ ~0 FIND ESTIMATES 
C OF THE COMPONENT YIElDS WHICH CAN THEN BE USED AS SlARTING VALUES FOR 
C FINDING MAXIMUM LIKELIHOOD ESTIMATES USING THE METHOD OP SCORING. 
c 

DIMENSION Q(40,20) ,Y(L~O) ,ADJYLD{40,1) ,QTRANS(20,40) ,.:MPYLD(20), 
$ BB(!~0,20,20) ,CONDSD(20) ,S{20) ,FA.C(20), 
$ LWORK(20) ,W(40) ,CONS(20,1) ,MWORK(2C>) ,N.EW(40) ,DER(20,20) ,Z(20,40) 1 

$ A(320) ,F(20,20) ,QADJ(40,20) ,YIELD(40) 
REAL NEW 
READ (9, *) N, M 

c 
C N IS THE NUMBER OF ROWS (UNITS) & M IS I:HE NUllBER OF 
C COLUMNS (CO~PONENT FAMILIES). 
c 

CALL OLS(N,M,Q,YIE1D,Q?RANS,CMPYLD,LWORK,MWORK,NEW, 
$ DER,Z,CONS,Y,W,A,ADJYLD,QADJ,R,BB,:ONDSD,S,FAC) 


STOP 

END 


c 
SUBROUTINE OLS(N,M,Q,YIELD,QTRANS,CMPYLD,LWORK,!WORK, 

$ NEW,DER,Z,CONS,Y,W,A,ADJYLD,QADJ,P,B3,CONDSD,S,FAC) 
DIMENSION C (N ,l'l) , A(3251, ADJYLD {N, 1), QrRANS (M, N), 

$ BB(N,M,M) ,CONDSD(:1) ,S{£'1) ,FAC(M) I 

$ CMPYLD (M) ,R {M,M) ,w (N), y (N) ,LWORK (t1) MWORK (M) ,NEW (N),I 

$ DER (M,M) ,QADJ(N,M} ,YIELD(N) ,Z (~ 1 N) ,CONS (M, 1) 
REAL NEW 

c 
WRITE (6, 200) 

200 FORMAT(20X, 1 DATA MATRIX:',/,/) 
c 

DO 10 I=1,N 

READ(9,*) (Q(I, ...1) ,.J=1,M) ,NEW (I) ,Y (I) 

WRITE(6,210) (,.2{I,J) ,J=1,M) 


210 FORMAT ( 3X, 25F4. 0) 
10 CONTINUE 
c 

WRITE{6,220) 
220 FORMAT(1H1) 

WRITE (6, 230) 
230 FORMAT(/,/) 
c 
C CALCULATE THE YIELDS AND ADJUS7 THE Y!E~DS aND THE Q MATRIX FO~ 

C UNEQUAL VARIANCES. THEN PRINr OUT EHE UNITS ACCEPlED, THE NUMBER 
C TESTED AND THE YIELDS. 
c 

WRITE(6,240) 
240 FOR~1AT(14X,'UNIT' ,13X 1 

1 UNITS TESTED' ,15X,'UNITS ACCEPTED', 
$ 14X,~UNir YIELD',/) 

c 
DO 15 I=1,N 
YIELD (I) =Y (I) /NEW (I) 
W{I) =S QRT ( ( N E ·~ {I) - Y (I) ) I (NEW (I) *Y (I) ) ) 
ADJYLD(I~1)=AL0G(YIELD{I}}/~{I) 

DO 20 J= 1 , t1 

QADJ (I,J) =Q (I,J) /W {I) 
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20 	 CON7I NUE 
WRITE (61 250) I, NEW (I) I y (I) YIELD (I)I 

250 FORM.AT'(15X,I2,2(20X 1 F5.0) 1 19X 1 F7.4) 
15 CONTINUE 
c 
C DETERMINE THE TRANSPOSE OF THE ADJUSTED Q MATRIX. 
c 

DO 25 I=1,N 

DO 30 J=1 1 M 

QTFANS(J 1 I)=QADJ(I 1 J) 


30 CONTINUE 
25 CONTINUE 
c 
C NOW WE CAN PERFORM THE ACTUAL REGRESSION. 
c 

CALL GMPRD(QTRANS,QADJ 1 DER,M 1 N,M) 
c 
C THE MATRIX DER CONSISTS OF NON NEGATIVE ENTRIES. HENCE WE CAN 
C SCALE THE MATRIX SO THAT THE INVERSE OF A MATRIX WirH A SMALLER 
C RANGE OF VALUES CAU BE DETERMINED. THIS WILL REDUCE THE CHANCES 
C OF THE PROGRAM CRASHING THROUGH A REGISrER OVERFLOW OR UNDERFLOW. 
c 

ZZ=100C.*FLOAT(N) 

DO 35 J=1 1 M 

DO 40 JJ=1 1 M 

DER(J,JJ)=DER{J,JJ)/ZZ 


40 CON-riNUE 
35 CON1'INUE 
c 
C WE DETERMINE THE INVERSE OF DER USING THE SSP SUBROUTINE SINV 
C WHICH DETERMINES THE INVERSE OF POSITIVE DEFINITE SYMMETRI: MATRICES. 
c 

LSUM=O 

DO 45 J=1,M 

DO 50 K=1,J 

LSUM=LSUM+1 

A(LSUM)=DER(J,K) 


50 CONTINUE 
45 CONTINUE 
c 

EPS=.001 

CALL SINV(A,M,EPS,IER) 


c 
LSUM=O 
DO 55 J=1,M 
DO 60 K=1 ,J 
LSUM=LSUM+1 
DEB (.1 I K) =A (L SUM) 
DER(K,J)=OER(J 1 K) 

60 CONTINUE 
55 CONTINUE 
c 
C NOH WE HAVE TO HESTOFE DER ro ITS ORIGINAL SCALING BEFORE WE 
C CAN USE IT" 
c 
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DO 65 J=1,M 

DO 70 JJ=1,M 

DER(J,JJ) =DER(J,JJ)/ZZ 


70 CONTINUE 

65 CONTINUE 

c 


CALL GMPRD(DE~,Q~RANS,Z,M,M,N) 


CALL GMPRD(Z,ADJY1D,CONS,~,N,1) 


WRITE (6,220) 

WRITE (6, 230) 


c 

DO 19 J=1 ,M 

CMPYLD (J) =EXP (CONS {J 1 1)} 


19 CONTINUE
• 	 c 

c 
C DETERMINE 7HE CONS7ANTS WHICH WILL BE USED 1HROUGHOJT THE ITERATIVE 
C PROCEDURE. 
c 

DO 21 I=1,N 
DO 31 KK=1,M 
DO 41 LL=1,KK 
BB(I,KK,LL)=NEW{I)*Q(I,KK)*Q(I,LL) 

41 CONTINUE 
31 CONTINUE 

21 CON'I'INUE 

c 

C INITIALIZE THE VALUES 

c 


MMM=M-1 

NIT=O 

WRITE(5,600)NIT 


600 FORMAT(/,7X, 1 NIT = 1 ,!3) 
WRITE (6,55J) (J,CMPYLD(J) ,J=1,M) 


550 FORMAT(15X, 1 C11PYL.C(',I2,') = ',E13.6) 

c 


' 	 C NOW BEGIN THE ITER~TIVE PROCEDURE 
c 
500 NIT=NIT+1 

DO 95 J=1,M 

CONS(J,1)=CMPYLD(J) 


95 CON~INUE 

~ c 

CALL COMYLD{W,Q,M,N,CMPYLD) 
CALL COMINF(B3,M,N,DER,W,CONDSD,LWORK,Mw0RK,CMPYLD) 

c 

C DETERMINE THE SCORE VECTOR. 

c 


DO 125 J=1,M 

B=O. 0 

DO 135 I==1,N 

B=Q (I ,J) * (Y (I) -NEW (I) *w (I)) 

B=B/(CMPYLD (J)* (1.J-W (I))) 

S (J) =S (J) +B 


135 CONJ:'INUE 
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125 CONTINUE 
c 

DO 2 3 5 ,J= 1 1 M 

FAC(,J) =0.0 

DO 245 JJ=1,M 

FAC (J) =FAC (J) +DEP (J ,JJ) *S (JJ) 


245 CONTINUE 
235 CONTINUE 
c 
C DETERMINE THE NEW ESTIMATE OF THE COMPONENT YIELD 
c 

DO 185 ,J=1,M 
CMPYLD(J)=CMPYLD(J)+FAC(J) 

18 5 CONTINUE 
c 

WRITE(6,600)NI~ 

WRITE(6,550) (J,CMPYLD(J) ,J=1,M) 
c 

DO 1 9 5 J =1, r1 
IF(ABS(CMPYLD{J)-CONS(J,1)) .GT.0.00005) GOTO 510 

195 	 CONTINUE 
RET;JRN 

c 
510 IF(NIT.LT.150)GOTO 500 

IF(NIT.EQ.250)BETURN 
WRITE(6,26C) 

260 FORMAT(50X,'COVA~IANCE MATRIX',/) 
WRITE(6,27'J) (J,J=1,11) 

270 	 FORMAT ( 16 (13X ,I2) ,/) 
DO 96 I=1,M 
WRITE (6,280) I, (DER(I,J) ,J=1 ,I) 

280 FORMAT(2X,I2,16 (2X,E13.7)) 
96 CONTINUE 

READ (9,*) T 
c 
C DETERMINE APPROXIaATE CONFIDENCE IN?ERVALS FOR OUR :OMPONENT 
C FAMILY YIELD ES:I~ATES. 

c 
WRITE(6,220) 

WRITE(6,230) 

WRITE (6, 290) 


290 FORMAT(25X, 1 APPROXIMATE 95% CONFIDE~CE INTERVALS FOR', 
$ 1 COMPONENT YIELDS',/,/) 

WRITE(6,300) 
1 1300 FORMAT(7Y.,'CO~PONE~T',6X, ESTIMATED ,8X, 1 UNCONDITIONAL', 

$ 16X,'CONDI?IONAL') 
WRITE (6, 30 5) 

305 FORMAT(8X,'FAfELY',10X,'YIELD',10X,'VARIANCE C.. .I.', 
$ 16X,'VARIANCE C.I.',/1 

WRITE(6,310) 
31 0 F 0 P.M AT ( 1('X , 2 ( ' - ' ) , 1 (j X, 8 ( ' - • ) , 6 X, 19 ( ' - ' ) I 5 X .. 2 3 ( ' - ' ) ) 
c 

DO 100 J=1,M 

COMPLB=CMPYLD(J)-1.96*SQRT(DER(J,J}) 

COMPUB=CMPYLD(J)+SQRT(D1R(J,J)) 
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CONDLB=CMPY1D(J)-1.96*CONDSD(J) 
CONDUB=Ct1PYLD (J) + 1. 96*CONDSD (J) 
WRITE(6,390}J,CMPYLD(J) ,CO~PLB,COMPUB,CONDLB,CONDUB 

1 1390 F 0 RM A1' ( 1 0 X, I 2 , 1 0 X , F 8 • 5, 1 : ' , 5 X, ' { ' , F 8. 5 1 , 1 F 8. 5, ' ) t 1 

$ 5X, I (' , F 1 0. 5 I ' I t , P' 10. 5 I ') I ) 

100 CONTINUE 
c 
C PRINT OUT THE ESTIMATED UNIT YIELDS AND COMPARE WITH THAr OBSERVED. 
c 

WRITE (6, 220) 
WRITE(6,230) 
WRITS (6, 330) 

330 FOPMAT(9X,'UNir 1 ,11X,'YIELD ESriMATE 1 ,9X, 1 0BSEilVED YIELD', 
$ 4X, 1 95% C.I. FOR OBSERVED YIELD',/) 

WRITE(6,41C) 
410 FO.RMA'r(10X,2 ('-') ,2 (15X,8 {'-')), 15x, 19 ('-')) 
c 

DO 105 I=1,N 
FACT= YIELD (I)* (1. 0-YIELD(I)) /NEW (I} 
FACT= 1. 9 6*SQB r (F ll.C-r) 
BINLB=YIELD(I}-FACT 
BINUB=YIELD(I)+FACT 
WRITE (6, 420) I, 'N (I}, YIELD {I) , BINLB 1 BINUB 

4 2 0 }"'0 R MAT ( 1 0 X I I 2 , 2 ( 1 5 I, F8. 5) I 1 5 X I ' ( ' I F9. 5, ' , ' , F 8. 5, t ) • ) 

10 5 CONTINUE 
c 
C DETERMINE PRI~CIPAL CC~PONENTS, THA~ IS BY CALCULATING THE 
C EIGENVECTORS, WE CAN DETERMINE NEW BASES FOR OUR COMPONENTS WHICH 
C wiLL BE INDEPENDENT. 
c 

CALL EIGEN(DER,R,M,O) 

WRITE(6,220) 


c 
DO 120 J=1,M 
WRITE (6 1 370) J, DER (J, J) 

370 FORI1AT(/,20X,'EIGENVALUE(',I2, 1 ) = ',E16.8,/) 
W"RITE{6,38·1) (,J,I,B(I,J) ,I=1,M) 

380 FOPr1AT(25X,;EIGENVECTOR{',I2,',',I2,') = ',E16.8) 
120 CONTINUE 
c 

RETURN 

END 
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C THIS SUBROUTINE DETERMINES THE ESTIMATES OF THE UNir YIELDS. 
c 

SUBROU~INE COMYLD(W,Q,M,N 1 CMPYLD} 
DIMENSION W(N} Q (N 1 M} ,CMPYLD (M)1 

c 
DO 10 I=1,N 
W(I) =0. 0 
DO 15 J=1,M 
W(I)=W(I)+Q(I,J)*ALOG(CMPYLD(J)} 

15 	 CONTINUE 
W (I) =EXP (W (I) ) 

10 CONTINUE 
c 

RETlJ P.N 

END 


SUBROUTINE LISTING - COMINF 

C THIS SUBROUTINE CALCU~ATES THE INFORMATION MATEIX. 
c 

SUBROUTINE COMINF(BB,M,N,XINF,W,CONDSD,LWORK,MWORK,CMPYLD) 
DIMENSION BB(N,M,r.) 1 XINF(M 1 :1) ,W{N) ,:OWORK(M) ,MWORK(M), 

$ CONDSD (M) , CMPYLD (:1) 
c 

DO 10J=1,M 
DO 15K=1 1 J 
XINF (J 1 K} =0.0 
DO 20 I= 1, N 
xrNF (J, K) =XINF (J I K) +BB (I, J, K) *W (I) 1 (1. o-w (I}> 

20 	 CONTINUE 
XINF(J 1 K)=XINF{J 1 K)/(CMPYLD(J)*CMPYLD{K}) 
X!NF (K 1 J) =XINP (J, K) 
IF(J.EQ.K)CONDSD(J)=1.0/SQRT(XINF(J,J)) 

15 CONTINUE 
10 CON':'INUE 
c 

CAlL 8INV(XINF 1 M,D,LiORK,MWORK) 
c 

RETURN 
END 
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C THIS PROGRAM TAKES THE LOGARITHM OF THE UNIT VIELDS TO FORM A LINEAR 
C EQUATION IN THE LOGARITHMS OF THE COMPONtNT YIELDS, THtSE EQUATIONS 
C ARE SOLVtD USING MULTTPL~ REGRESSION, THtSE fSTlMATES ARE THEN 
C USED 10 CONSTRUCT THf VERTICES OF A SIMPLEX WHICH WILL BE USfD 
C TO DETERMINE THE M&XIMlJM LIKELIHOOD ESTIMATES OF THE COMPONENT 
C YIELDS, 
c 

DIMENSION Q(50,25) 1 V(SO),YifLDC50) 1 QTRAN$(25,SO),CMPYLD(25), 

$ LC25) 1 W(50) 1 CONS(25,1),MwORK(25),NEW(50) 1 DER(25,25),ZC25,50), 

$ VERTC26,25) 1 CENT(25),FLIKEC26) 1 V~RTRC25) 1 VERTEC25),AHATC25l, 
S VERTC(25),C0NOSD(25),ADJYLOC50,1),QADJ(50,25),A(325),EST(50) 

REAL NEW 
REA0(9 1 *) N,M 

c 
C N IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER Of 
C COLUMNS (COMPONENT FAMILIES) 1 

MPLUS:M+1 
c 

CALL OLS(A,N,EST,MWORK,Q,VIELD,QTRANS,CMPYlD 1 L1 M,NfW, 
S DER,Z,CONS,V,W,VERT,CENT,~LIKE,VERTR,VERTE,AHAT,VERTC,M~LUS, 
$ QADJ,ADJYLO,CONDSD) 

STOP 
END 

c 
SUBROUTINE OLS(A,N,EST,MWORK,Q,VIELD,QTRANS,CMPVLD,L,M,NEW, 

S DER 1 Z,CONS,Y,w,VERT,CENT,fLlKE,VERTR 1 VERTE 1 AHAT 1 VERTC,MPLUS, 
$ QAOJ,ADJYLD,CONOSOl 

DIMENSION Q(N,M),VERT(MPLUS,M) 1 CENT(M),FLIK£(MPLUS),VIELOCN), 
$ CMPYLD(M),EST(N) 1 QTRANS(M 1 N) 1 W(N) 1 Y(N) 1 L(M) 1 MWORK(M) 1 NEWCN), 
S DER(~ 1 M),VERTR(Ml,VERTE(M) 1 AHAT(M,,VERTC(M),Z(M,N) 1 CONS(M,1), 
S A(325) 1 CONDSDCM),ADJVL0(N 1 1) 1 QADJ{N,M) 

REAL NEW 
c 

WRITE(& 1 200) 
200 FORMAT(20X, IDATA MATR1Xf 1 / 1 /) 

c 
00 10 J:t,N 

REA0(9 1 *)(Q(! 1 J),J:1,M),NEW(l) 1 YCI) 

WRITE(6,210)CG(! 1 J),J:1,M) 


210 FORMAT(3X 1 25F4 1 0) 
10 CONTINUE 
c 

WRITE(6,220) 
220 fORHAT(tHI) 
c 
C CALCULATE iHE YIELDS AND ADJUST FOR UNEQUAL VARIANCES, 
c 

wRITf.Co,230) 
230 FORMATC14X, 1UNJT1 1 13X 1 1UNITS TESTEOt,t5X,tUNITS ACCEPTEDt, 

$ 14XttUNIT YIELD1 1 13X 1 1ADJUSTED YIEL01 1 /) c 
00 15 i:t,N 

Y!ELDC!):Y(!)INEW(!) 

W(I):SQRT((N(~(!)~Y(!))/(Nf.W(1)*V(l))) 

ADJYLD(I,ll~ALOG(YltLOCI))/W(l) 
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DO 20 J:l,M 
QAOJCJ,J):Q(I 1 J)/W(l) 

20 CONTINUE 
WRITf(6 1 2~0)1 1 NtW(!).Y(J),YitLDCl) 1 ADJYLDCI,1) 

240 FORMAT(t5X,!2,2(20X,F5 1 0),1qX,f7 1 4 1 17X,F9,4) 
15 CONTINUE 
c 
C DETERMINE THE TRANSPOSE OF THE ADJUSTED Q MATRIX, 
c 

DO 25 I::t,N 

00 30 J:t,M 

QTRANS(J,!):QADJCI 1 J) 


lO CONTINUE:. 
25 CONT P.JUE 
c 
C NOW ~E CAN PERFORM THE ACTUAL REGRESSION, 
c 

CAll GMPRO(QTRANS 1 QAOJ 1 DER 1 M,N 1 M) 
c
C THE MATRiX DER CONSISTS OF NON NfGATIVE ENTRIES, HENCE WE CAN 
C SCALE THf MATRIX SO THAT THE:. lNVERSf OF A MATRIX WITH A SMALLER 
C RANGE OF VALUES CAN BE DETERMINED, THIS WILL REDUCE THE CHANCES 
C OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERrLOW 1 

c 
ZZ:tOOOO,•FLOAT(N) 

c 
DO lS J:t,M 

00 40 JJ::t,M 

DERCJ,JJ):DERCJ,JJ)/ZZ 


40 CONTI NUt: 
35 CONTINUE 
c 
c 
C WE DETERMINE THE tNVFRSE OF DER USING THE SSP SUBROUTINE SI~V 


C WHICH DETERMINES THE INVERSE OF POSITIVE DEFINITE SYMMETRIC MATRICES, 

c 

LSUM:O 
c 

DO 45 J:::t,M 

00 50 K::1,J 

L,SUM::L SU~1 +1 

A(LSUM):D£R(J 1 !<) 


50 CONTINUE 
45· CONTINUE 
c 

EPS:::.OOt 
CALL SJNV(A,M,F.PS,IER) 

LSUM:O 


c 
DO 55 J::1 1 M 

00 bO K:l,J 

LSUI-1::L sur-1 +l 

DEP.(J,K)::A(LSU~) 

DER(K,J):DfR(J,K) 
bO CONTINUE 
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55 	 CONTINUE 
c
C NOW WE HAVE TO RtSTORE DER TO ITS ORIGINAL SCALING BEFORE WE 
C CAN USE IT. 
c 

DO 65 J:t,M 

DO 70 JJ:1 1 M 

DER(J,JJ):DER(J,JJ)/ZZ 


70 CONTINUE 
&5 CONTINUE 
c 

CAll GMPROCDER 1 QTRANS,Z,M,M 1 N) 


CALl GMPROCZ 1 ADJVLO,CONS,M 1 N 1 1) 

c 

00 75 J:t,M 
CMPYLDCJ):EXP(CONSCJrll> 

75 CONTINUE 
c 

WRITEC6 1 220l 
WRITEC6,250) 

250 FORMATC30X 1 tSTARTING VALUES FOR THE SIMPLEX PROCEOUREit) 
WRITEC6,260)(!,CMPVLDCI),l:t,M) 

260 	 FORM~T(t5X, !COMPONENT VIELO(I,I2, I) : t,Ft5 1 7) 
ALPHA:1,0 
BETA=,5 
GAMMA:t,'i 

c 
C DETERMINE THE VERTICES Of AN M DIMENSIONAL SIMPLEX WITH WHICH TO 
C START THE SIMPLEX P~OCEDURE 1 
c 

NCOUNT::O 

NSTOP:M•15 

WRITE(o,220) 


c 
DO 80 .J::t,M 
VERf(t,J):CMPYLDCJ) 

80 CONTINUE. 
c 

DO 85 	 I=1,M 
00 90 J::t,M 

YERT(It1,J):CMPVLO(J) 

IFCI~tQ,JlVERTCI+t,J):CMPYLOCJ)@ 1 0005 

qo CONTINUE. 
85 CONTINUE 
c 

CALL XCALC(N,M,Q 1 MPLUS,VERT,FLIKE 1 AHAT,V,NEW) 
c 
C AT TH!S POiNT Wt CAN ACTUALLY BEGIN THE SIMPLEX PROCEDURE, 
c 
500 	 IF(NCOUNT,GE,NSTOP' GOTO 550 

CALL XCENT(M,MPLUS,VtRT,CENT) 
N C 0 UN T=NC0 U ~J T+1 

c 
C FIRST Wt lRY A REFLECTION nF THE VERTEX WHICH GIVES A MINIMUM 
C VALUt TO THE LIKELIHOOD FUNCTION, 
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CALL XREFCM,MPLUS,ALPHA 1 VERT 1 CENT,VERTR)
FLlKER:XF(N 1 M1 Q 1 VERTR 1 Y,NtW) 

1 IFCFLIKE(1),GE.FLIKER,AND 1 FLIKER,Gf,fLIKE(M))GOTO 510 
2 IFCFLIKER,GT,FL!Kf(1)) GOTO 520 
l IFCFLIKECM),GT 1 FLIKER,AND,FLIKER,GT,FLIKE(M+1)) GOTO 530 
4 IFCFLIKf(H+l),GT,FLIKFR) GOTO 540 

WRITE(6,270) 
270 FORMATCtOX, !PROCEDURE HALTED!) 

RETUR~ 

c 
C IF CONDiilONS OF STATEMENT 1 ARf SATISFIED, Wt REPLACE THE VtRTf-X WITH 
C MINIMUM LIKELIHOOD FUNCTION WITH THE REfLECTED POINT AND THEN RESTART 
C THE PROCfDURE 1 

c 
510 	 CALL XPLACE(M,MPLUS,VERT,FLIKE,VERTR,FLIKER) 

WRITEC6 1 280)NCOUNT~FLIKE(1) 
280 FORMATCtOX,tNCOUNT :I,JU 1 10X 1 'REFLECTION!,9X 1 1LIKEL!HOOD: t, 

S EtB,10) 
GOTO 500 

c 
C IF CONDITIONS OF STATEMENT 2 ARE SATISFIED WE TRY AN EXPANSION ANO 
C THEN RESTART THE PROCEDURE, 
c 
520 	 CALL XPANOCM,GAMMA,VfRTE,CENT,VERTR) 

FLIKEf:Xf(N,M,Q,VfRTE,Y,NE~) 

IFCFLIKfEeGT,FLIKE(l))CALL XPLACECM,MPLUS,VERT,FLIKE,VfRTE,FLIKEf) 
IFCFLIKEE,L~,FLIKECtllCALL XPLACECM,MPLUS,VERT,fLI~E,VERTR,FL!KER) 
WRITEC6,2q0)NCOUNT,FLIKEC1) 

290 FORMAT(10X, INCOUNT :1 1 !4 1 10X, IEXPANSIONI,tOX, 
$ 'LIKELIHOOD: 1 1 E18,10) 

GOTO 500 
c 
C lF CONDITIONS OF STATEMENT 3 ARf SATJSF"IED WE TRY A CONTRACTION, 
C IF SUCCESSFUL WE RESTART THE PROCfDURE, OTHERWISE WE SHRINK THE 
C SIMPLEX ABOUT THE POINT WITH THE HIGHEST LIKELIHOOD VALUE, 
c 
530 	 CALL XCONTR(M,MPLUS,BETA,VERT,VERTC,CENT) 

FLIKEC:XFC N,M,G,VERTC,Y,NfW) 
lFCFLIKEC,GE,fLIKECM+ll) GOTO 540 
IFCFLIKE(M+1),GT,FLIKEC)CALL XPLACECM,MPLUS,VERT,FLIKE,VERTC, 

$ FL!KEC) 
WRITt(b 1 300)NCOU~T,FLIKE(1] 

300 FOR~ATClOX,!NCOUNT :t,ta,tOX, 1 CONTRACTIONI,10X, 
S IL!KEllHOOD ~ t 1 E16,10l 

GOTO 500 
c 
C IF CONTRACTION FAILS WE S•IRINK THE SIMPLEX ABOUT THE VERTEX WHICH 
C HAS THE G~EATEST LIKELIHOOD VALUt, 
c 
540 	 CALL XSHR(M,MPLUS,VERT,FLIKE) 

CALL XCALC(N,M,Q 1 MPLUS,VERT,FLIKE,AHAT,Y 1 NEW) 
WR!TE(6,310)NCQUNT,FLIKE{l) 

110 	 FOR~AT(tOX, INCQUNT :i 1 I4 1 10X, 'SHR!NKt,tlX, 1 LIKELIHOOD: t, 
$ EiB,lOl 
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GOTO 500 
t 
C OETfRMINE THE UNIT YIELDS IN ORDfR TO ESTIMATE THE COVARIANCE MATRIX, 
c 
550 LSUM:O,O 
c 

DO QS I:t,N 

W(l):O,O 

00 100 J:t,M 

W(t):w(l)+Q(l,J)•ALOGCVERTC1 1 J)) 


tOO CONTINUE 
W(l):EXP(W(t)) 

95 CONTINUE 
c 
C ESTIMATE THE VARlANCE•COVARIANCE MATRIX, 
c 

DO 105 J:1,M 

00 110 K:;t,J 

LSUM:L.SUM+1 

A(l.SUM):0 1 0 


c 
00 115 I=t~N 

IF(G(I,J),EQ 1 0,0)GOTC 115 

lF(Q(I,K),EO,O.O)GOTO 115 

XNUM:NEWCil•QCI 1 K)•QCI,J)*~(l) 
OEN:VfRT(t,J)•V~RT{l,K)*(l,O•W(J)) 
ACLSU~):A(LSUM)tXNUM/DEN 

tt5 CONTINUE 
c 

lf(K,EQ,J)CONOSO(J):l,O/SQRT(A(LSUM)) 
A(LSU~):A(LSUM)/ZZ 

110 CONTINUE 

105 CONTINUE 


- c 
EPS:::tO,E•5 

CALL SINV(A,M,EPS,IER) 

lSUM:Q 


c 
00 120 J:t,M 

00 125 K:t,J 

LSUM:::LSUM+l 

DER(J,K):A(LSUM)/ZZ 

DER(K,J):DER(J,K) 


125 CON Tl NUE 

120 CONTINUE 

c 

WRITEC& 1 220) 

WRITE(6 1 320) 


320 FORMAT(50X, !COVARIANCE MATRIXI 1 /) 


WR!Tt(b,330)(J,J:t 1 M) 

330 FOHMAT(1b(13X 1 !2) 6 /) 


t 

DO 130 .J:;t,M 

~RITE{6f340)J 1 (0fR(I,Jl,I=l,J) 

340 FORMAT(2X,I2 1 1b(2X,E13,7)) 



94 
PROGRAM LISTING - SIMPLEX (Cont'd) 

130 CONTINUE 
c 
C DETERMINE APPAOX!MATt CONFIDENCE INTERVALS FOR OUR COMPONENT 
C FAMILY YIELD ESTIMATES, 
c 

WRITE:(b,220) 
WRITEC6,3'50) 

350 FORMATC25X,tAPPROXI~ATE qsx CONFIDENCE INTERVALS FORt, 
$ I COMPONENT YlELDS81 1 /,/) 

WRITE(b,360l 
3~0 FOAMAT(7X, ICOMPONENT•,ox,t~STIMATEDI,8X,fUNCONDIT!ONALt, 

$ 16X, !CONDITIONAL t) 
WRlTEC6 1 370) 

370 FORMAT(8X,tfA"'ILYt,tOX,IV!fL01 1 10X 1 1VARlANCE C,I,t, 
$ loX,IVARIANCE C,I,t,l) 

WRITEC6 1 380) 
$80 FORMAl(10X,2(1•'),10X,8(1et),bX,1Q(I•t),SX,23(1•1)) 
c 

00 135 J::t,M 
COMPL8:VERTCt,J)•1,q&~SQRTCOERCJ,J)) 
COMPUB:VERT(l 1 J)+l.Q6•SQRTCOER(J,J)) 

CONDL8:VEAT(1 1 J)-1,96•CONOSD(J) 

CONOUB:VERTC1 1 J)+l,qb•CONDSDCJ) 

WRITEC&,390)J,VERT(t,J),COMPL8,COMPUB,CONDLBrCONDUB 


390 FORMAT(10X,I2,10X 1 F8,5,1z1 1 SX, 1(1 1 f8 1 5 1 1 1 t 1 F8 1 5 1 1)l, 
$ SX, I (I 1 f 10,5 1 I 1 I 1 f l 0 1 51 I) I) 

135 CONTINUE 
c 
C PRINT OUT THE ESTIMATED YIELD AND COMPARE WITH THAT OBSERVED, 
c 

WRITE{o,220) 
WRITECo,400) 

400 FORMAT(qX,tUNITt 1 ttX 1 1VlELD tSTJMATEt,qx, 
S IOASERVED VIELDI,4X,tqSX C,I, FOR OBSERVED YlELDl,/) 

WRITE. (6 1 1.110) 
410 f0RMAT(10X,2('•1) 1 2(1SX,8(1•1)),1SX,1Q(I•I)) 
c 

DO 140 I=t,N 
fAC:VIELDCil•Ct,o~VIELDCI))/NEWCl) 
fAC:t,qo•SQRT(FAC) 

B!NLB:YIELD(!)wFAC 

BINUB=YifLDCiltfAC 

WRITEC6,420)1 1 W(J),YIELD(l),BINLB,BINUB 


420 FORMAT(10X,I2 1 2C15X 1 F8 1 5) 1 15X 1 1(1 1 f8 1 5 1 t 1 1 1 FB,S,t)l) 
140 CONTINUE 
c 

RETLIRN 

END 
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SUBROUTINE LISTING - XCALC 

SUBROUTINE XCALCCN,M,Q 1 MPLU$,VERT,fL!KE,AHAT,Y 1 NEW) 
c 
C THIS SUBROUTINE CALCULATES THE VALlJES OF THE LIKELIHOOD FUNCTION AT 
C ALL OF THE VERTICES AND SORTS THf VERTICES IN ORDER OF SIZE OF THEIR 
C LIKELIHOOD FUNCTIONS (LARGEST TO SMALLEST), 
c 

DIMENSION VERT(MPLUS,M),V(N),NEW(N) 1 fLIKf(MPLUS),AHAT(M),QCN,M) 
RfAL NEW 

c 
DO 10 I=1,MPL.US 

DO 15 J;q,M 

AHATCJ):VERTCI,J) 


15 CONTINUE 
fllKf(t):XF(N 1 M,Q 1 AHAT,Y,NEW) 

10 CONTINUE 
c 

DO 20 I:t,M 

IPI,.US:I+1 

DO 25 II=IPLUS,MPLUS 

IfCFLIKECI),GE~FLIKECll)) GOTO 25 

00 30 J:t,~ 


TE~P:VERT(I,Jl 


VERTCI,J):VERT(tt,J) 

VE::IH (I I, J) :TEt~P 


30 	 CONT!NUE 
TF.tv!P::FLIKE(l) 
FLIKFCI):FLIKECll) 
fliKE.CII)=TEMP 

25 CONTINUE. 
20 CONTINUE 
c 

RETURN 

END 


http:I=1,MPL.US
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SUBROUTINE LISTING - XPLACE 

SUBROUTINE XPLACE(M,MPLUS,VERT,FLIKE,VERTR,fllK) 
c 
C THIS SUBROUTINE PLACES OUR NEW VERTEX IN THE PROPER ORDER AMONGST THt 
C OTHER VERTICES 
c 

DIMENSION VERT(MPLUS,M) 1 ~LIKE(MPLUS) 1 VERTR(M) 
c 
C REPLACE THE VERTfX WITH THE LEAST LIKELIHOOD BV OUR NEWLY CHOSEN 

C VERTEX. 

c 

FLIKE(MPLUSl=FLlK 

DO 10 J:t,M 

VERTCMPLUS,J);VERTRCJ) 


10 	 CONTINUf.. 
c 

DO 15 1:1,M 

lfCFLIKE(MPLUS•I),GE,fLlKECMPLUS~I)lGOTO 500 

DO 20 J:1 1 M 

TEMP:VER1(MPLUS•f,J) 

VERT(MPLUS•I 1 J):VERT(MPLUS"I+1 1 J) 

VERT(MPLUS•I+1 1 J):TEMP 


20 	 CONTINUE 

TEMP:FLIKECMPLUS•l) 

fL1Kf(MPLUSwll=FLlKE(MPLUS•I+1) 

fLIKE(MPLUS•l+t):TERM 


15 	 CONTINUE 
c 
500 RETURN 


END 


SUBROUTINE LISTING - XREF 

SUBROUTINE XREF(M,M?LUS,ALP~A,VERT,CENT,VtRTR) 
c 
C THIS SUBROUTINE FINDS A POINT REFlfCTEO THROUGH THE CENTROID 
C FROM THE ~ERTEX AT WHICH THE FUNCTION IS MINIMUM, 
c 

DIMENSION VERT(MPLUS 1 H),CENT(M) 1 VERTR(M) 

DO 10 J:t,M 

VERTR(J):(t,U+ALPHA)*CENT(J)PALPHA~VERT(MPLUS,J) 

to 	 CONTINUE 
c 

RETURN 

END 
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FUNCTION LISTING - XF 

FUNCTION Xf(N 1 M1 Q,AHAT 1 Y1 NfW) 
c 
C THIS FUNCTION SUBPROGRAM DETERMINES THE LOGARITHM OF THE 
C l.li<El,IHOOD FUNCTION AT A PARTICULAR VERTEX, THE LIKELIHOOD 
C FUNCTION WILL HAVE A MAXIMUM AT THE SAME POINT AS THE LOG 
C OF THE LIKELIHOOD FUNCTION, 
t 

DIMENSION Q(N,M),NfW(N) 1 Y(N) 1 AHAT(M) 

REAL NEW 

XF:O,O 

00 15 I:1,N 

XK:O,O 

DO 25 J:t,M 

XK:XI<+G(l 1 J)*ALOG(AHAT(J)) 


25 	 CONTINUE 
lF(XK,GE.O,O)GOTO 35 
XK:V(t)•XK+(NEW(I)PY(l))tALOG(1 1 0•EXP(XK)) 
XF:Xf+XK 

15 	 CONTINUE 
RETURN 

35 XF:tb,E•oS 
RETURN 

END 

SUBROUTINE LISTING - XCOWfR 

SUBROUTINE XCONTRCM,~PLUS,BETA,VERT,VERTC,CENT) 

c 	 I 

C THIS SUBROUTINE DECREASES THE SIZE Of THE SIMPLEX BY MOVING THE 
C REFLECTED VERTEX IN 1 

c 
DIMENSION VERT(MPLUS,M),VERTC(~),CENT(M) 

c 
DO 10 J:t,M 
VERTC(J):BETA•VERTCMPLUS,J)+(1 1 0•8ETA)•CENT(J) 

10 CONTINUE 
c 

Rt:TUR~ 
END 
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SUBROUTINE LISTING - XCENT 


SUBROUTINE XCENT(M,MPLUS,VERT,CENT)
C THIS SUBROUTINE LOCATfS THE CENTROID OF THE SIMPLEX EXCLUDING THE 
C VERTEX HAVING lHE LEAST LIKELIHOOD, 
c 

DIMENSION VERTCMPLUS,M),CENT(M) 

DO 15 I:t,M 

CENTCI):C,O 

[)0 25 J:t,M 

CENT(I):CENT(!)+VERTCJ,l) 


25 	 CONTINUE 
CENT(J):CENT(l)/FLOAT(M) 

15 	 CONTINUE 
RETURN 
END 

SUBROUTINE LISTING - XSHR 

SUBROUTINE XSHR(M 1 MPLUS 1 YERT,FllKE) 
c 
C THIS SUBROUTINF. SHRINKS THE SIMPLEX,RETAINING THE VERTEX WITH THE 
C MAXIMUM LIKELIHOOD, 
c 

DIMENSION VERT(MPLUS 1 M) 1 fLIKE(MPLUS) 
DO 15 	 1:1 ,M 
00 25 J:1 1 M 

VERT(lt1,J):(VfRTCI+1 1 J)+VERT(l,J))/2,0 


25 	 CO~ITINU£ 
15 	 CONTINUE 

RETURN 
END 
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SUBROUTINE LISTING - XPAND 

SUBROUTINE XPANO(M,GAMMA,VERTE,CENT,V~RTR) 

c 
C THIS SUBROUTINE EXPANDS THE REFLECTION IN THE DIRECTION ALONG WHICH 
C A FURTHER IMPROVEMENT OF THE LIKELIHOOD VALUE IS EXPECTED 
c 

DIMENS!ON VERTE(M) 1 CENT(H),VERTR(M) 
c 

00 10 J:::1,i-1 
VERTfCJ):GAMMA•VERTRCJ)+(1 1 0-GAMMA)*CENT(J) 

10 CONTINUE 
c 

RETURN 
END 
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