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ABSTRACT

In the field of communications electronic plug-in units operating
together form a system. In the event of failure a plug-in unit can
easily be replaced by another. Each unit consists of electronic
components soldered onto a board in a particular pattern. A component
may be either a single electronic part such as a transistor or a
combination of single parts such as an integrated circuit. Electronic
components with similar properties have been grouped into families.
This reduces the number of parameters to be estimated from the
observations available.

The method of maximum likelihood is used to estimate the
failure rates of component families. The number of wmit failures
and the number of units in use observed during measured periods of
time and the component family makeup of the observed units are used
to make the estimates.

The probability of an electronic component from a given
component from a given family being acceptable after the production
process will be referred to as the component yield for that family.
Similarly, the probability of a given type of unit being acceptable
after the production process will be referred to as the yield for
that type of unit. By taking the logarithms of the yields, the
estimation problem can be reduced to the linear problem of estimating

logarithms of component family yields. Using unit yields, the total
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number of each type of unit produced, and the component family
makeup of those units produced, component family yields are
estimated. The method of maximum likelihood is applied directly
to the data and the methed of weighted least squares is applied

to the linearized problem.
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CHAPTER 1

INTRODUCTION

One of the tasks of a reliability engineer in the communi-
cations industry is prediction. If the yield of electronic units
from the production line can be predicted, producers can better
predict production costs and hence determine a selling price for
their products. If the reliability of a newly designed electronic
unit can be predicted, purchasers of the units can be given estimates
of their maintenance costs. Knowledge of the component family
yields and component family reliabilities would make these pre-
dictions possible.

Components within an electronic unit may either be in series
or in parallel. In the case of components in series, a component
failure will cause a break in the circuit thereby resulting in a
unit failure. When a component which is parallel with another fails
the circuit is not broken and hence the unit continues to function.
Parallel components are sometimes installed in order to lengthen the
lifetime of an electronic circuit. Designers of electronic plug-
in units tend to avoid parallel components because a plug-in unit can
be easily replaced, parallel components add to the cost of production,
and the lifetime of a. unit is not greatly prolonged by the addition
of extra components. It is therefore reasonable to assume that

components within units are in series.



CHAPTER 2

FAILURE RATES OF COMPONENT FAMILIES FROM UNIT FAILURE RATES

2.1 Introduction

The reliability of an electronic unit can be estimated
if the unit has been in service for a length of time, but no
adequate method has been developed for predicting the reliability
of a newly designed unit. If estimates of component family
reliabilities were available this would be possible. When units
from the field are serviced, a list of those components replaced
can be obtained. Unfortunately no differentiation is made between
those components which have been removed because of failure and
those removed as trouble shooting aids. As a result, no direct
method of estimating component reliabilities is available, Testing of
the reliability of electronic components under actual operating
conditions is costly in terms of both time and money. Accelerated
testing, where components are tested at their highest ratings of
temperature and humidity have been done. However, in the tests,
chemical reactions which occur within components at different
temperatures and humidities make the results difficult to apply.
Tests of the reliability of electronic components have been done in
the aircraft industry but cannot be applied because of the effect
of vibration as well as different temperature and humidity conditions.

For purposes of prediction, a method of estimating component family



reliabilities is needed by reliability engine=rs.

Units within a system can be assumed to operate independently.
The failure of one unit does not damage another unit or cause another
unit to fail. The same assumption can be made for individual
components since those components which have failed or have been
damaged as a result of the original component failure are replaced
along with the original component which failed. Unfortunately
damage to components cannot always be detected. Component failures
are assumed to follow a Poisson process with a constant failure rate.

With a constant failure rate, components can be replaced without

affecting the model.

2.2 Method of Maximum L}kelihood
Consider N distinct types of electronic units produced using
components from M distinct component families. Since components
are Poisson: _
P[ z components of type j failing in time t] = f——————;L———
where uj is the constant failure rate of a component of type j.
Since component failures are independent and components are in series:
M

A. = Z 0. q

.. (i=1,..., N),
. 3 g
J=1

where li is the constant failure rate of a unit of type i and qij is
the number of components of type j in a unit of type 1i.
The total number of units of a particular type in actual use

and the total number in the field may vary from one time period to
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another. As a result, the expected number of failures may differ

from one period to another. Let Yik be the random variable

denoting the number of failures of a unit of type i during the kth

time period. Then Yi is Poisson with parameter ¢ik where:

k

¢ik = ki (i=1,...,N; k=1,...,K};

Yik Mk tk
and Yix is the proportion of the units of type i in the field
actually used during the kth time period, Ny is the total

number of units of type in the field during the kth time period,

and ty is thelength of the kth time period.

The likelihood function L can now be set up:

N K e
Llagseeooylypoecoygd = 5l 40y 1

Maximizing the likelihood is equivalent to maximizing the logarithm

of the likelihood:

N

K
R A PR N T I izl kzl{yik log ¢;p - b5y - log(y;, D}

To maximize logL, its derivatives are taken with respect to the

parameters us(s=1,...,M) and set equal to zero. Since:

M

ik = Yik Mix %k jZ1 %5 4ij (i=1,...,N; k=1,.,K),

it follows that:



8q)ik
e - Yik Mik Tk %3 LN kel Kssl, M)
Hence:
dlogl .y § ¢ Jik 905k ik
dag is1 k=1 %3k %% %9
o
= {y., n._ t. q. {-—=-1} (s=1,...,M.
i21 kel ik Tik "k t'is ¢ik
Set derivatives equal to zero and solve for &S (s=1,...,M) where &s

is the maximum likelihood estimate of the failure rate of a component

of the st component family:
yox Yik
izl kzl Yig Mg bt s ! T -1 =0 (s=1,...,M
Yik Mix S jzluj 9 5

The method of scoring (Appendix 1) is used to solve this set of

non-linear equations. The information matrix is required for scoring:

5%logl  _ g § 1
3a, on Lo Lo 945 Yik Ba M J
t s i=1 k=1 . q
N K Y.o Q.. 4.
SRR D L R L S B T S [
kL (Y g, )
]=IJ 1)
N K v. q .
3°1ogL k ik Tk t
TE< S S R LT
t i=1 =]
) %5 943 (s=1,...,Mt=1,...,M),



R Y., n.. t. q. q.
B¢s, 1) y ik ik k is it (s=1,...,M; t=1,...,M).

[t}

M

Using the inverse of the estimated information matrix an
approximate 100(1-€)% confidence interval for the sth component family

failure rate is

@S i_ze/z <§-1(s,s) | (s=1,...,M),

where zE/ is the 100 e/z% critical value for the normal distribution
2

and|9'1(s,s) is the (s,s) entry of the inverse of the estimated in-
formation matrix.
Unit failure rates can now be predicted using our estimated

component family failure rates:
)
A, = 8. q,:
0 52179 0J
where XO is the predicted failure rate of any unit made of components

from the M component families for which we estimated failure rates and

qOj is the number of components of type j in that unit.

“ M
Var(ko) = Var( -Z &j qu)
j=1
Tl
= Qns 9ay Cov(a., &)
Kly 55y 05 ok i7 %
11 9!
= Qp: 9 T3G,0)
k=1 j=1 01 Ok
MM ~
= )] a9y 9 (G,K)
0j 10k



Then approximate 100(1-€)% confidence intervals for the unit failure

rates based on the predicted failure rates are:

M

M
~ /\_1
Ag 2 2 Z Z dp: 4 3 (G,k)
0 €/ k=1 j=1 0j "0k

Using the normal approximation to the Poisson distribution, approximate
100(1-¢£)% confidence intervals for the unit failure rates based on

the observed failure rates are:

K Yik K Yik
L v o Yo, T, b
k=1 'ik ik “k /2 k=1 Yik "ik "k

For those units used to estimate the component family failure rates,
the approximate confidence intervals for unit failure rates based on
predicted failure rates can be compared with those based on observed
failure rates.

An approximate test of fit can be done using the normal

approximation to the Poisson distribution. The statistic

A2
T2
) ————=——— is asymptotically Chi squared on N-K-M

i=1 k=1 ¢y

degrees of freedom.

2.3 Discussion and Recommendations

2.3.1 Monte Carlo Study:

Ten distinct artificial units, each made of components from
three distinct families with known failure rates, were simulated.
Setting the ratio of units in use to the number of units in the field

to one, the number of each type of unit in use for a period of five



thousand hours was chosen to represent possible actual conditions.
One hundred samples of the number of failures of each of the ten units
were randomly generated using the normal approximation to the Poisson
distribution. If Yi is Poisson with mean ¢i and variance ¢i, then Yi
is approximately normal with mean ¢i and variance ¢i. Estimates
of the component family failure rates and predicted unit failure
rates were then made for the one hundred samples using the method
of maximum likelihood.

Approximate ninety-five percent confidence intervals for
each of the component family failure rate estimates for the one
hundred samples were calculated under the assumption that the component
family failure rates are approximately normal. The estimates made
from the generated unit failure rate data appear to be approximately
normal (Figures 1, 2 and 3). Under actual conditions, it can be
expected that the same will occur. A likelihood ratio test was used
to test equality of the estimated variance-covariance matrix of the one
hundred sets of component family failure rates and the inverse of the
true information matrix (T.W. Anderson, 1958, Section 10.8). The
calculated statistic was 5.16. The five percent Chi-squared critical
value on six degrees of freedom is 12.6, meaning that the hypothesis
of equality of the two matrices is accepted at the five percent level.
Then the use of the inverse of the estimated information matrix in
calculating confidence intervals should not affect the level of

confidence.
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The number of confidence intervals for each family containing
the true parameter value indicates that the true level of confidence
méy be less than ninety-five percent (Table 1). Further Monte Carlo
studies with larger samples would allow us to make stronger inferences
regarding confidence levels, as the differences between the observed
levels of confidence and ninety-five percent may be the result of
sampling error.

Since the predicted unit failure rates are linear combinations
of the estimates of component family failure rates, it can be expected
that predicted unit failure rates will be closer to normal distri-
butions. Evidence of this can be seen from the approximate ninety-five
percent confidence intervals for the unit failure rates bhased on the
predicted unit failures. Although still below ninety-five percent,
the level of confidence appears to be greater than that for the
confidence intervals for component family failure rates. This
property will be advantageous when the reliability cf a new unit is

predicted.

2.3.2 Applications

Information regarding failure rates of electronic units in
bthe field was not available when the computing work was done. As a
result, at this time, there is no indication of how well the model
fits actual conditions. If unit failure rate data is to be used to
estimate component family failure rates, accurate methods of
collecting data from users of electronic units must be developed and

users must be cenvinced of the need of accurate data. As the quality
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TABLE 1

PERCENTAGE OF APPROXIMATE 95% CONFIDENCE INTERVALS FOR
FAILURE RATES CONTAINING THE TRUE PARAMETER VALUE

COMPONENT FAMILIES

COMPONENT PERCENTAGE
FAMILY CONTAINING TRUE VALUE
1 92%
2 93%
3 93%

CONFIDENCE INTERVALS BASED ON PREDICTED UNIT FAILURE RATES

' PERCENTAGE
UNIT CONTAINING TRUE VALUE
1 93%
2 95%
3 95%
4 96%
5 95%
6 95%
7 92%
8 92%
9 96%

[
o
]
93]
P

13
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on incoming information improves, the estimates of component family
failure rates should improve.

The method of maximum likelihood was applied to a single
set of randomly generated approximately Poisson unit failures for
one period of time. Ten distinct units made from components of
three distinct families were considered. The test of fit statistic
calculated from the predicted unit failure rates and observed
failure rates was 6.15. This is less than 14.1, the five percent
critical value for the Chi-squared distribution on seven degrees of
freedom, indicating that this set of data fits the maximum likeli-
hood model. Different starting values were tried for the iterative
scheme. It was found that, for this set of generated failure rate
data, the scheme converged quickly for starting values between 10-24
and 105 failures per ten million hours (Figure 4 and Figure 5).

For this set of data the true component family failure rates per ten
million hours were ten for the first family, five for the second,

and one for the third. This wide range of values for which the method
will converge will allow users of the method to proceed without
having prior knowledge of approximate failure rates of the components.
Future studies of this method, involving randomly generated unit
failure rate data, should include more than one period of time.

A lack of sufficient unit failure rate data requires
reliability engineers to group components into families. Care must
be taken to insure that components are grouped into families of

components having the same failure rates. Otherwise, predicted unit
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Sequence of Converging Component Family Failure Rate Estimates using 105

as Starting Values
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failure rates are likely to be poor estimates of the true unit
failure rates. Results from accelerated tests and from tests in

other fields may be of use in grouping components into families.

17



CHAPTER 3

YIELD OF COMPONENTS FROM THE YIELD OF UNITS

3.1 Introduction:

Faulty components, damage due to handling during production, and
failures expected during normal use contribute to newly produced
electronic components failing test procedures. A method of estimating
the component family yields from .the observed yields of units, the
total number of each type of unit produced, and the component makeup
of the observed units would enable reliability engineers to predict pro-
duction yields of newly designed units.

The effect of the production process on one particular component
is assumed to be independent of the effect on any other component.
Hence, the number of acceptable components of a particular type within
a particular unit after production will be a binomial observation.

Let Xij be a binomial random variable denoting the number of acceptable
components of type j in a unit of type i, that is:

PIX.. = x..] =(qij A, 1 (1-A.)qij_Xij

%35/ J.

(x..=0,...,qij; j=1,...M; i=1,...,N),

where qij is the number of components of type j being acceptable

after production, N is the number of distinct types of units to be

18
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used in the estimation procedure, and M is the number of distinct
component families found in the N observed units. The probability
of a unit of type i being accepted can be expressed as a joint

binomial probability, that is:

M .
p[X, I, A, (=1,...,N).

i1 = Y1000k

T L j

Denote:

It follows from the independence of the acceptability of components,
that units are independently produced. Thus, the number of
acceptable units of type i produced during a production period will
also be binomial. Denoting by the random variable Yi’ the

number of acceptable units produced during a production period,

we get:

i

n. Y. n.-y.
_ 1 1 _ 171
P[Yi-Yi] ( Pi (1 Pi)

s Ve M q.. n.-y.
ijq/ ij i‘i

A. 1-L.TLA.

R L eBS AWk

uﬁlz

1}
/'\
< 3
He e
~——
M
—

n,, i=1,...
(0<Yi nl, 1 1: :N)

It follows that:

and:
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Then using the normal approximation to the binomial distribution,

an approximate 100(l-€)% confidence interval for a unit of type i is:

AR B S (i=1,...,N).

n,
1

3.2 Method of Maximum Likelihood

Consider N distinct types of electronic units produced using
components from M distinct component families. Using the distribution
of acceptable components produced, the likelihood equation can be set

up:
N ry M9 i 7Y s
j 9435, %774
Ay = ST ( y,) [T, i -1 a, )

1

Maximizing the likelihood is equivalent to maximizing the logarithm

of the likelihood:
1ogL(A1,.. AMlyl,...,yN
N ny ﬁ 13
= I {log( yi)* v, Z a;5 log Ay + (ny-y,) log(i-[ K
i=l j:l

To maximize log L, the derivatives with respect to As(s=1,...,M)

are found and set equal to zero.

N -n. ij
9 logl _ y ! (y [J =1 ] D (s=1,...,M).
Msim (aA L A 9551
j 1
Set the derivatives equal to zero and solve for Ks (s=1,...,M)

th

where Ks is the estimated yield for a component of the s = component

family:


http:1(1-[.II

B M A 13
? qis(yi nl[J =17 D =0 (s=1,...,M).
DT GAR LR %5
LA J

The simplex method developed by Nelder and Mead {Appendix 2) is

used to solve for the maximum likelihood estimates of the component

family yields. This method proved to be preferable to the method of

of scoring. (See page 37.)

) The estimated information matrix is used to estimate confidence
intervals:

2 (YA
5210gL 4is 93¢0 "105y

BAt SAS

i=1

q; ;
a2
A A G- E A )
q. .

521 A ]
g | -9 toglk I _

3A, oA .

t S 1

Z

"y Y45 lt[J =1
1 M qu
AS At(l"[jglAj ])

i ~12Z

-3 (s,t) (s=1,...,M; t=1,...,M),
M /\ qi'
J
Ies,0) = % M dis qlt[lﬁJ J ! (s=1,...,M;
T A M o~ 4 -
i=1 ij t=1,...,M).
Ag A (-[mA P
Then an approximate 100(1-e)% confidence intervals for the sth
component family yield is
Az /87 (5,9 (s=1,...,M)
5 — 8/2 H) s > >
where Zg is the 100 €/2% critical value for the normal distribution

/2

A

and 9 —1(5’5) is the (s,s) entry of the inverse of the estimated

information matrix.
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Yields of units can now be predicted using the estimated

component family yields:

where ﬁo is the predicted yield of any unit made of components from
the M component families for which we estimated yields and qOj is
the number qu is the number of components of type j in that unit.
The predicted yields of the N units used in the estimation procedure
can be compared with the confidence intervals for unit yields based
on the observed values.

An approximate test of fit can be performed using the normal
approximation to the binomial distribution. The statistic

2

(y. B i) is asymptotically Chi squared on N-M degrees
)

N n.
Z 1 ~ 1
i=1 % P (-

o) Bisw DY

1

of freedom.

3.3 Method of Weighted Least Squares

Consider N distinct types of electronic units produced using
components from M distinct component families. Take the logarithm

of the yield of a unit of type 1:

q.. log A, (i=1,...,N).

1o . =
g P; 1 3 j

j

TS

Let Yi be the random variable for the acceptable number of units
produced if a total of n. units of type i are produced. Then, since
the distribution of acceptable units produced is assumed to be bi-

nomial the exact mean and variance of Yi/ni are known. The exact
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variance of log (Yi/n ), however, is unknown but can be approximated.

i
Let:
Yy
‘D(E:) = log (Yi/ni) (i=1,...,N),
Yi 1
b'(ﬁf9 = Y7 (i=1,...,N)
i i1

By Taylor's Theorem:

Y.

Y.
b(;li) = b(pl )+ (-I;]; - Pl )b'(p ),

1

. 1
1

where i is an observed value of Yi'

Then:
Y

Var[b(ﬁ%ﬂ] S
1

Y.
{pri))ZYarEﬁﬂ

p: (1-p.)
=(5li.)2 R R

I

The method of
~ -1
A=) q,

where: ~

w.2 , say (i=1,...,N).

weighted least squares can be applied:

Y

log Yy
VY, = i1 Q= [Hi/w.]
log YN

NxM

W
L. N

Approximate 100(1-e)% confidence intervals for the logarithm

of the component famil

y yields are:
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2

~ -1 ~
J 1 =
log As + t8 Z(N M) /{Q* Q,) ss © (s=1,...,M),

/

where t. (N-M) is the 100 €/2% critical value for the student's
2

/

t distribution on N-M degrees of freedom, (Q;Q*)—1 is the (s,s)
entry of the matrix (Q*'Q*)_1 and 82 is an estimate of the residual

variance: R ~
52 A A
N-M
' _r 1
Yo Ve AQ,
N-M

By taking the exponent of the bounds of the confidence intervals,
approximate 100(1-€)% confidence intervals for the estimates of the

component family yields can be found:

| (st () Qo %) (se1,...,M).
2

%" S,S

Yields of units can now be predicted using the estimates of

component family yields:

N _ qoj
PO - j

1%

==

where ﬁO is the predicted yield of any unit composed of components
for which estimates have been made and qOj is the number of components

of type j in that unit. Since
~ M ~
log py = | dp; log A;
j=1
it follows that:

A M
Var (log pO) = Var ( z

. lo K.
3 g5 1og J)

1
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M M

= Z X qn: 9,, Cov(log K., log A )
k=1 j=1 0j "0k j k
M M
~2 ' -1
= . o . .
kzl jzl Qj dox 0 Q' QI ¢

Then an approximate 100(1-€)% confidence interval for the predicted

yield will be:

B24 ’fqo,quz Q' Q) )
€/2 /x=1 j=1 7 0 * w7 gLk

ﬁO * exp(+ z
The approximate 100(1-e)% confidence intervals for the unit yields
based on the predicted yields can be compared with these based on
the observed yields.

M approximate test of fit can be performed using the normal
approximation to the binomial distribution.
N (yi—n:.L pi)Z

The statistic z

————x———=—_ is asymptotically Chi squared on
i=1 B Py (1-P;)

N-M degrees of freedom.

3.4 Discussion and Recommendations

3.4.1 Monte Carlo Study:

Ten distinct artificial units, each made of components from
three distinct families with known yields, were simulated. The
number of each type of unit produced during a production period was
chosen to represent possible actual conditions. One hundred samples
of the number of accepted units of each of the ten types were
randomly generated using the normal approximation to the binomial

distribution. If Yi is binomial with mean n. p; and variance
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n. pi(l—pi), then Yi is approximately normal with mean n, p; and
variance n, pi(l—pi). The method of weighted least squares was
then applied to the one hundred samples.

Approximate ninety-five percent confidence intervals for
each of the logarithms of the component family yields for the one
hundred samples were calculated using the normal approximation commonly
used in least squares analyses. The estimates of the logarithms
of the component family yields made from the generated unit yield
data appear to be approximately normal (Figures 6,7 and 8). Under
actual conditions it can be expected that the same will hold true.
The number of confidence intervals for each family containing the
true parameter value indicates that the true level of confidence
may be greater than ninety-five percent (Table 2). One explanation
for this may be that the weights used to adjust the component
makeup matrix Q were approximate. Another possible explanation may
be the non-normality of the linearized unit yield data.

Future studies could try using the information matrix for
the linearized problem as the variance-covariance matrix. Confidence
intervals using the inverse of this infermation matrix would not
then depend on the adjusted component makeup matrix. To determine

this infermation matrix, let A ..,AM be the M component family

1’°

yields, L be the likelihood function for A "AM with N observed unit

17°°

yields, and qij be the number of components of type j in a unit

of type i. It can be shown that:
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Figure 6

Distribution of the One Hundred Monte Carlo
Estimates of the Logarithm of the Yield of Component Family 1
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Figure 7

Distribution of the One Hundred Monte Carlo
Estimates of the Logarithm of the Yield of Component Family 2
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Figure 8

Distribution of the One Hundred Monte Carlo

Estimates of the Logarithm of the Yield of Component Family 3
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TABLE 2

PERCENTAGE OF APPROXIMATE 95% CONFIDENCE INTERVALS FOR
YIELDS CONTAINING THE TRUE PARAMETER VALUE

COMPONENT FAMILIES

COMPONENT PERCENTAGE CONTAINING
FAMILY TRUE VALUE
1 97%
2 99%
3 97%

UNITS (CONFIDENCE INTERVALS BASED ON PREDICTED YIELDS)

UNIT PERCENTAGE CONTAINING
TRUE VALUE

W 00 N O AN e
©w
o
o

[y
o
0
[}
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82 log L _ 1 82 log L
9 log At 0 log As - AS At aAt SAS

Then using the‘results of Section 3.2:

My i
32 1og L _ 4is ¢ 508 T10y0y)

d log Ay o Log As

0~

i=l , 2, 2 945..2
a2 ala-rla

It can then be shown that:

) N ¥
sl 8% 1ogL 3 0y 95 95 [TA; 7]
3 log At 9 log AS - iz . .

A likelihood ratio test was used to test equality of the estimated
variance covariance matrix of the one hundred sets of component
family yields and the inverse of the true information matrix (T.W.
Anderson, 1958, Section 10.8). The calculated statistic was 304.44.
The five percent Chi squared critical value on six degrees of freedom
is 12.6, meaning that the hypothesis of equality of the two matrices
is rejected at the five percent level. Although shown to be umequal,
it appears that the inverse of the information matrix is an adequate
approximation to the variance-covariance matrix for most purposes
(Compare Table 3 and Table 4). The use of the inverse of the estimated
information matrix in calculating confidence intervals should not

greatly alter the level of confidence from nimety-five percent.



TABLE 3

ESTIMATED VARIANCE-COVARIANCE MATRIX FOR THE CME HUNDRED SAMPLES

OF LOGARITHMS OF THE COMPONENT FAMILY YIELDS

4.9178 x 10°° 5.6114 x 10~/ -2.9472 x 10~
5.6114 x 10~/ 1.6996 x 107 -5.2049 x 10~
-2.9472 x 107/ -5.2049 x 1078 2.4009 x 10~

TABLE 4

INVERSE OF THE TRUE INFORMATION MATRIX FOR THE LOGARITHMS

OF THE COMPONENT FAMILY YIELDS

4.4645 x 10°° 2.9749 x 10~/ -2.8201 x 10~
2.9749 x 10~/ 1.7344 x 1078 -4.7913 x 10°
-2.8301 x 107/ -4.7913 x 1078 1.9383 x 10°

7

8

8

7

8

8
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Since the predicted logarithms of the unit yields are linear
combinations of the estimates of the logarithms of the component
family yields, it can be expected that the predicted logarithms of
the unit yields will be better approximations to normal distributionms.
A poor estimate of the yield of components of the second family may
explain why the level of confidence for some of the intervals
based on predicted yields appear significantly different from ninety-
five percent while others are relatively close. It appears that
where components of the second family in a yield estimate, the level
of confidence for the confidence interval for that estimate is further
from ninety-five percent. (Compare Table 2 and Table 5). Having
used only one hundred sets of observations, sampling error may
explain the difference between the observed level of confidence and
ninety-five percent. Further Monte Carlo studies with larger samples

may be of use in making conclusions.

3.4.2 Applications

The method of predicting unit yields presently used treats
an insertion as a component. However, an insertion is not a component
but a process. An insertion may be a success or a failure, but,
when units are tested after production, it is the components which
are acceptable or unacceptable, not the insertions. A component may
be inserted into a unit manually or by machine. If the probability
of one type cf insertion being successful is different from the pro-

bability of the other type being acceptabie, then the yield of a



TABLE 5

COMPONENT FAMILY STRUCTURE OF TIE ARTIFICIAL UNITS USED
FOR THE MONTE CARLO STUDY OF THE WEIGHTED

LEAST SQUARES METHOD FOR COMPONENT YIELDS

COMPONENT FAMILY

1 2 3
1 27 3 450
2 25 10 350
3 31 0 375
4 16 11 400
5 10 25 200
Unit 6 35 0 425
7 29 29 325
8 21 0 400
9 21 9 428
10 17 25 216
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particular component family inserted manually should be estimated
separately from the yield of components of that family inserted
by machine.

Both the method of weighted least squares and the method
of maximum likelihood were applied to a single set of randomly
generated unit yields for those ten artificial units used in the
Monte Carlo study of section 3.4.1. The results indicate that both
methods work for the randomly generated approximately binomial
data. However, in the case of the maximum likelihcod method, numerical
difficulties were encountered.

Using the weighted least squares estimates, the test of fit
statistic for the randomly generated data was 2.23. The Chi squared
critical value on seven degrees of freedom is 14.1. The test of fit

vstatistic was also calculated for two of the samples used in the
Monte Carlo study and were also found to be acceptable at the ninety-
five percent level. It then appears that the weighted least squares
method is satisfactory for approximately binomial observations of
acceptable components. However, when the weighted least squares
method was applied to actual production yields, the fit was not
acceptable. Two sets of actual production data were used for which
the units were made from five distinct families. The test of fit
statistic for the one set of data was 10.13 which is greater than
7.81, the Chi squared five perceﬁt critical value on three degrees
of freedom. For the other set of data, the statistic was 396.29

which is greater than 27.6, the Chi squared five percent critical
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value on seventeen degrees of freedom. Although sampling error may
be responsible for the very poor fit of the model to the second set
of actual production yield data, a number of other factors may be
responsible.

The present system of predicting yields of new units groups
components into families which may not have the same yields. For
example, resistors of all types are considered to be one family. However,
it may be that resistors of different specifications and construction
are affected differently during the production process. The possibility
that the yield of a component inserted manually may differ from the
yield of a component inserted by machine was not considered. Tests
should be made to insure that all members of a family have the same yield.
Otherwise, predicted unit yields are likely to be poor estimates of
the true unit yields. Those component families used in the estimation
of failure rates may not be appropriate for use in estimating yields.

A number of factors in the production process itself
may cause the observed number of acceptable components to
deviate from the binomial distribution. Tests may vary from one
type of unit to another. If units are tested for any length of
time, then those Poisson failures which can be expected during normal
operation of a unit will noticeably affect the distribution of the
number of units passing production tests. The yield of the first few
units produced may be less than that for units produced after any
initial production problems have been corrected. Human factors,
such as one worker being distracted by another, may cause units to

become unacceptable after production. The production process should
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be checked to find out how these factors affect production. If
units are produced in more than one location, checks should be
made to insure that the yields are independent of location before
results from different locations are combined to make yield estimates.

The method of maximum likelihood was initially tried using
the method of scoring (Appendix 1) to maximize the likelihood.
The program PREDMLE, designed to maximize the likelihood using the
method of scoring was tested (Appendix 4) and the logic was found
to be correct. Using the true unit yields as input and using the
true component family yields as starting values, the iterative scheme
converged after three steps. However, using other starting values
close to the true component family yields, the estimates did not
~ appear to be converging after seventy-five iterations (Table 6).
This method was also tried with actual unit yield data from a
production line. As anticipated, the sequence of component family
yield estimates diverged. Weighted least squares estimates of the
component family yields were used as starting values for the iterative
procedure. However, after one hundred and fifty iterations, the
. component family yield estimates did not appear to be converging.
The method of scoring was then discarded as a practical method of
finding maximum likelihood estimates of component family yields.:

The simplex optimization method of Nelder and Mead was then
used to find those component family yield estimates which maximize
the yield. This is the method described in section 3.2. Weighted

least square estimates of the component family yields were used as



Component
Family

Component
Family

TABLE 6

ESTIMATED COMPONENT FAMILY YIELDS USING THE
METHOD OF SCORING TO MAXIMIZE THE LIKELIHOOD

Starting
Values

.9900
.9950

.9990

Starting
Values

.9925
.9950

9975

Estimated Yield after
3 Iterations

.9900
.9950

.9990

Estimated Yield aftexr
3 Iterations

.9956
.9969

.9982

Expected Value
of Estimate

.9900
.9950

.9990

Expected Value
of Estimate

.9900
.9950

.9990

38
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one of the vertices of the initial simplex. When the method was applied
to the randomly generated set of data, it was found that the likeli-
hood increased as the procedure progressed (Figure 9). Although
the method appears to work, the value of the likelihood remained
constant after a number of steps. This was a result of the limited
number of figures of accuracy kept by the computer. When the method
was applied to actual observed yields of units produced, the same
observations were made. One possible solution to the restricted
number of figures of accuracy may be to use double precision in the
computational work. It was also noted that, for both the randomly
generated set of data and the actual observations, the maximum
likelihood method generally gave a slightly smaller Chi-squared value
than did the method of weighted least squares.
As an alternative to the method of maximum likelihood, the

method of minimum Chi squared estimation (Kendall and Stuart,

Volume 3, 1973, section 19.25) could be tried. This method minimizes

the test of fit statistic:

where N is the number of distinct types of units produced, n, is

the number of units of type i produced, ﬁi is the predicted yield

of a unit of type i, and Y; is the observed number of units of type i

accepted after production. One possible method of minimizing this

statistic is to set equal to zero the derivatives of the statistic with respect

to the estimated component family yield estimates. If the range of
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convergence is great enough, these equations may be solved using Newton's
iterative method (Rgssell, 1970, Chapter 5). Otherwise the statistic
may be minimized using the simplex method of Nelder and Mead. (See
Appendix 2). One would expect that the number of figures of accuracy
available with the computer is sufficient for making satisfactory
estimates of component family yields.

Although the method of weighted least squares may give
reasonable estimates of component yields, further work with this
problem may be of value. The method of weighted least squares has
the advantage of requiring comparatively few calculations. However,
we can expect the maximum 1ikelihood estiamtion method and the
minimum Chi squared estimationmethod to fit the data better. It
may be that a wide range of starting values can be used for the
iterative scheme for the minimum Chi squared method and the sequence
of estimates for this method may converge quickly. To use either
the maximum likelihood or the minimum Chi squared methods for
practical purposes, a method of calculating approximate confidence
intervals must be found.

In order to make any of the methods of estimation better
for practical use, there are two areas which should be investigated.
The yields of the components within each family should be tested for
equality. If equality among the components of a family does not
exist, the components should be regrouped into families of components
of equal yield. The second area to be investigated is the actual

production process. One can expect that the closer the observed
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number of units accepted after production is to a binomial observation,
the better will be the estimates of component family yields. An
investigation into these two areas may provide reliability engineers
with better estimates of component yields and, heﬁce, better pre-

dictions of unit yields.



APPENDIX 1

The Method of Scoring

The method of scoring (C.R. Rao, 1965, Section 5g) is an
iterative scheme for finding maximum likelihood estimates of
parameters. Define L as the likelihood function for the vector of

parameters:

Let:

dlogL
96

1 32 logL
S(8) = . , J© = §§*§%~
dloglL

NN
aeN

Let H(Q) be the N by N derivative matrix for S(Q).
Then:
E[-H(8)] = I (9).
As a first approximation, one may take:
98y = -H(D),
where 8§ is the maximum likelihood estimate of g.

Since a first order Taylor's expansion gives:

[

S(8) = S8 + (6-9) H(D),

and:

S{6) = 0, and we derive the iterative scheme:

_ -1 .
Qg+1 - 92 - H (Qz) 5(92)’
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which will converge to 6 if an initial value 6, sufficiently

N

close to O is chosen. Replacing H by its expected value,

we get:

-1
Oe1 = 8y = D7 (@) * S8y,

~

which is the iterative method of scoring.



APPENDIX 2

The Nelder-Mead Simplex Method:

. The Nelder Mead simplex (Kowaiik and Osborne, 1968,
Section 2.6) is a direct search technique for finding an optimum
value. The procedure as described here locates a maximum using a
simplex, a set of n+l points in n dimensions. The simplex is man-
ipulated by reflecting the point at which the function f is the least,
or by expanding or contracting the simplex

Let:

(1 Xy be the vertex corresponding to f(xh) = minf(xi)
i

(i=1,...,n+l).

(2) X be the vertex which corresponds to f(xs) = minf (x), i#h.
B i
(3) x, be the vertex corresponding to f(xz) = maxf(xi),
i

2

(i=1,...,n+1).
4 Xq be the centroid of all X5 i#h and is given by

1 n+l
x=;2xi.
i=1
i#h
Now define the three basic operations used:

(1) Reflection, where Xy is replaced by

x, = (1+a)x0 - oxy

44



where o > 0 and is equal to the ratio of the distance [xrxo]

to [xhxo].

(2) Expansion, where X, is expanded in the direction along
which the function value is expected to increase. The relation
X, =YX, * (1-Y)x0
is used where vy > 1 is the ratio of the distance [xe,xo] to [xr,xo].
(3) Contraction, where the simplex is contracted,
X, = B X * (l—B)xo,
where 0 < B < 1 and is the ratio of the distance [xc,xo} to [xh,xo].

The technique proceeds as follows:
(i) From an initial simplex and evaluate the function at each
of the n+l veftices.
(ii) Try a reflection and evaluate the function at the
reflected point.

(iii) 1If f(xh) < f(xr) < f(xg), replace x, by X, and return

h
to step (i).

(iv) If f(xr) > f(xz) it can be expected that an expansion

in the direction X, - X could give us a greater value f or f.
Replace Xy by X, if f(xg) < f(xe) and return to step (i). Otherwise

replace x, by X, and return to step (i).

h

(v) If f(xh) < f(xr) < f(xs) replace x, by X and try a con-

h
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traction. If f(xh) < f(xc), replace Xy by X, and return to step (i).

Otherwise the last simplex is shrunk about the point x, by the

L



relation
1

: 1
X, =% (xi+x

and return to (i).

)
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APPENDIX 3

Programs for the Component Failure Rate Problem

The computing work for the problem of estimating component
family failure rates involved two programs. Both programs are
written in FORTRAN and both use the maximum likelihood method of
estimating component family failure rates for one period of time. The
program FAILMLE is designed for practical use and an external file is
used as its source of unit failure rate data. The program MONTE
geherates one hundred random samples of unit failure rates for which
component family failure rates are estimated. The input files for both
programs are eighty columns long. The output files have a length of
one hundred and thirty-three columns including carriage control.

Input for FAILMLE (see Figure 10) is unformatted and is
completely general for any number of units observed and any number
of component families. The first row of the input gives N, the
nunber of distinct units observed, and then M, the number of
distinct component families for which failure rates can be estimated.
The first M columns of the second to (N+1l)st rows, inclusive, is the
matrix Q = [qij]NXM where a5 is the number of components of the jth
family in a unit of type i. The (M+1l)st entry in the (i+1)st row
is the number of units of type i in use during the time period.
The (M+2)nd entry in the (i+l)st row is the number of type i umit
failures observed during that time period. The (N+2)nd row give the
length of the time period in units of ten million hours for which

observations were made. The value in the (N+3)rd vow is given to the
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M component family failure rates as starting values in the iterative
procedure.

Input for MONTE is the same as that for FAILMLE except that
M is restricted to three. Input for unit failures of one sample
is required, but the results of the pogram are independent of this
information. An alteration to the program would allow the omission
of unit failures as input. MONTE could be generalized to allow for
any number of component families and for any number of generated
samples.

The external subroutines INFAIL and LAFAIL are called from
both FAIIMLE and MONTE. INFAIL determines the estimated information
matrix as described in section 2.2 and LAFAIL calculates the pre-
dicted failure rates of those units which have been used in the
estimation procedure. Three subroutines, SINV,EIGEN, and GAUSS,
from the SSP FORTRAN library were used in the computing. SINV,
which determines the inverse of a positive definite symmetric-
matrix, is called from INFAIL. The subroutine EIGEN is used to
determine the eigenvectors and eigenvalues of the inverse of the
estimated information matrix in the program FAILMLE. GAUSS, a
normal random number generator, is used in MONTE to generate unit
failures.

The approximate confidence intervals in both FAILMLE and
MONTE are calculated at the ninety-five percent confidence level.
Alterations in the program could be made which would allow different

levels of confidence. FAILMLE could also be generalized to allow
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for observations of unit failure rates for any number of time
periods.

In order to check the logic of FAILMLE, the program was run
treating the expected number of unit failures for a sample as the
observed number of unit failures. The results (Table 7) indicate
that the logic was correct. Differences between true values and
the estimated values were due to round off errors.

Those calculations which were done by hand could be in-
corporated into the programs. The test of fit described in section 2.2
could be included in Both MONTE and FAILMLE. Those calculations
necessary to estimate the variance-covariance matrix of the parameter
estimates found with MONTE could be included in the program. FAILMLE
would be of more practical use if the program and its input were
adjusted to predict point estimates and to determine confidence

intervals for the reliability of new electronic units.



Input Format For The Program FAIIMLE

10,3
2703,450,
25,10,3%0,
3ie0.,375,
16,111,400,
1022%4200,
35000425,
29129,: 325,
210,400,
213,425,
17:25,216,
5

100,368
1S00,488
200,069
100,369
500,106
18C0, 698
00,347
2O0C0,610
14060,478
1600,2%6

Figure 10

UNIT
UNIT
UNTT
UNTT
UNIT
UNTT
UNITY
UNIT
UNIT
UNTT

50



TABLE 7

RESULTS OF TEST RUN ON THE PROGRAM FAIIMLE

Component Estimated Component True Component
Family Family Failure Rate Family Failure Rate
1 10.0680 10.90
2 4.9885 5.0
3 .9970 1.0
Unit Estimated Unit True Unit
Failure Rate Failure Rate
1 735.4426 735.0
2 650.5281 650.0
3 685.9751 685.0
4 614.7542 615.0
5 424.7893 425.0
6 776.0962 775.0
7 760.6575 760.0
8 610.2202 610.0
9 683.0325 683.0
10 511.2166 511.0
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PROGRAM LISTING - FAILMLE

S PROGRAM USES THE MAXTMUM LIKELIHCGOD METHOD OF ESTIMATIOM AND
METHOD OF SCURING TO DETERMINE THE FAILURE RATES OF COMPONENT
ILTES,

DIMENSTION Q(S50,25)  XTHUSE(S0),FATL(S0) ,XINF(25,25)«XLAMDA(S0),
$ LWORK(29),R(25,29),FREV(25),Ma0RK (25} ,ALPHA(2R),FAC(25),

3 5(29),C0NDSD(29)

READ(9,x)N, ™

S THE NUMRBRER UOF ROWS (UMITS) & M I8 THE NUMBER OF COLUMNS

(COMPONENT FaMILIES),

CALL SOLVE(Q,XIMUSE,FAIL,LWORK,MWORK,ALPHA,M,N,FAC,5,XLAMDA,XINF,
$ PREV,R,CONDSD)

STOP

END

SURROUTINE SOLVE (O, XINUSE,FAIL ,LAORK,MWORK,ALPHA,4,N,FAC,S,
$ XLAMDA,XINF,FREV,R,CONDSD)

DIMEMSTION QUN,MY, XTNUSE(N)  FATL (N),XINF(M,M),8(M),LWORK (M),
5 MAORK(M),R(M,M),PREV(M),ALPHA(M) ,FAC(M),XLAMDA(N),

$ CONDSED(M)

WRITE(B,200)
FORMAT (20X, !'DATA MATRIX2',/,/)

D0 10 I=1,N

READ(I,x)(0(T,J),Jd=1,M), XINUSE(TI),FAIL(I)
WRITE(B,210)(Q(L,J),J=1,M)
FORMAT(3X,25Fd4,0)

CONTINUE

READ(9,x) TIME

WRITTE(B,220)

FURMAT(1HL)

WRITEF(R,23%0)

s;onAT(aqx’sUNIT!,15x,!NUMa£R IN USE',10X, 'NUMBER OF FAILURES!,
$ /)

Do 18 I=1,N
WRITF(B,240)1,XINUSECIY,FALILC(T)
FORMAT(30X,12,2(20%X,F5,0))
CONTINUE

CWRTITE(B,250) TINE
FORMAT(/,/,40X, 0 TIMF IN UNITS OF (0 MILLION HOURS =1,F10,6)

UP INITIAL VALUES,

NIT=(
READ(9,%x) START

DO 20 J=i,M
ALPHA(J)=START
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20 CONTINUE

WRITE(8,220)
A#RITF(8,26C) NIT
260 FORMAT(/Z,15X,'N = 1,13)
WRITE(8,270)(J,ALPHACI)Y 0=, M) ,
) =1 ,E16,8)

270 FORMAT (25X, YALPHA(Y,I2,!

C

C BEGIN THE ITFRATIVFE FPROCEDURE, \
C

500 NTIT=NIT+1

C

C WE WISH TO KEEP THE OLD VALUES OF ALPHA TO TEST FOR CONVERGEMCE,
c

DO 25 J={,M

PREV (J)=ALPHA(J)

25 CONTINUE
C

WRITE(B,26G)N]T
c

CALL LAFATIL(N,M,XLAMDA,G,ALPHA)
C
C DETFRMINE THE SCORE VECTOR,
C

DO 30 J=1M

S(J)=9,0

DU 35 I=1,N

FFATL(I)/ZXLAMDACI) = TIME*XINUSEC(I)
CS(J)=S(JI) QI ,J)AF
35 CONTINUE

30 COMNTI®RUE
c
CALL INFATL(N,M,G,XINUSE,TIME,XLAMDA,XINF,LWORK,MWORK,
§ CONDSD)
c
C DETERMINE THE ADJUSTMENT FACTOR
c
DO 40 Jzy,m
FACCJ)=0,0
DO 45 J\J=1'M
. FAC(J)=FACCJI+XINF(J,JJI*S(JJ)
45 COMTINUE
40 CONTINUE
C

C DETERMINE THFE NEW FSTIMATES UF COMPONENT FAMILY FAILURE RATES,
C

D0 S0 J=i,M

ALPHA(JI=ALPHA(CIY+FAC ()
S0 COMNTINUE

WRITF(B,270)(J,8LPHACTY,J=1,M)
DO S5 J=1,M

[FCABRSCALPHACI)=PREV(J)),GT,0,00000%) GOTO 520
55 CONT LU
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PROGRAM LISTING - FAILMLE (Cont'd)

GOTO 510

520 IF(NIT, LT, 100)GDTO 500

S10  CALL LAFALL(N,M,XLAMDA,NW,ALPHA)
CALL [NFATLA(N, M, 0, XTHRUSE, TIME , XLAMDA,XINF,Lw0ORK,MWORK,
P CONDBD)

WRITE(S,220)
WRTITE(8,280)

280  FORMAT(50X, 'COVARIANCE MATRIX',/)
ARITE(8,290) ] ,d=1,™)

290  FORMAT(16(13X,12),7)

DO 60 I={,M
. WRITE(8,300)I,(XINF(I,J)sd=1,1)
300 FORMAT(2X,[2,10(2X,E13,7))
60 CONTINUE
c
C DETERMINE APPROXIMATE CONFIDENCE INTERVALS FQR OUR ESTIMATES OF
C THE FATLURE RATES,
C
WRITE(8,220)
WRITE(B,310)
310 FORMAT (25X, VAPPROXIMATE 95% CONFIDENCE INTERVALS FOR COMPONENT!,
$ ! FAILURE RATES1',/7,/)
WRITE(8,320)
320 FORMAT(T7X, 'COMPONENT  ,6X, TESTIMATED ! ,AX, 'UNCONDITIONALY,12X,
§ 1CONDITIONALY)
WRITF (8,33%0)
330 FORMAT(BX, 'FAMILYY 6%, 'FAILURE RATE!,7X,'VARTANCE C,I,t,
$ 12X, 'VARTANCE C,T1,',7)
KRITE(B,340)
340 FORMAT(10X,2( =), 10X,8(1=1),6X,19('=F),5X,19(!'=1))

DO 65 J=1 .M
COMPLB=ALPHA(J)=1,96%SQRT(XINF(J,J))
COMPURZALPHA(J)+1,96250RTI(XINF(J,J))
CONDLASALPRA(I) =1 ,96x00NDED(J)
CONDURZALPHA(IY+1,964%00NDSD{])
wRTTE(S,350)Jd,ALPHALIY,COMPLRB, COMPURB, CONDLRB, CONDUB
1590 FORMAT(LIOX,12,10%,F8,5,"31,8X,' (", FB,5,!,',F8,5,1)"',
$ OX, VL FB, S, FB 5" )
65 CONT IMUE

NRITE(B,220)

DETERMTHNE CONFIDENCE INTERYVALS FOR THE UNIT FATLURE RATES FROM
THE QO8SERVED FATLUKES AND FROM THE ESTIMATED FAILURE RATES,

IO MY

MRITF (8,360)
LY X0 FORMAT 28X, VALPDRROXINATE 95% CONFIOENCE INTERVALS FOGR UNITY,
Bt EAILURE RATES?,/,/)
ARITE(8,370)
376 FORMAT (9%, 'UHIT 17X, '#0F NBSERVED!, 80X, 1FOR ESTIMATES,/,/)
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PROGRAM LISTING -~ FAILMLE (Cont'd)

WRITE (8,380)
380  FORMAT(10X,2('=1),5%X,39(!=1),15X,39(!~"),/)

C
DN 70 I=1,N
PHTI=FATL(TIY/Z(XTINUSE(T)IXTIME)
POISLBzPHI={ ,96+80RT(PH]I)
POISUR=PHTI+1,96*x36LRT(FIHI)
ESTVAR=0,0

C
Do 75 J=i,H
DD RO K=1,M
FSTVARSESTVAR+Q(I,,JY*Q (T KIAXINF (J,K)

80 CONTINUFE

75 CONTINUE

C

ESTLB=XLAMDA(T)=1,964SQRT(FSTVAR)
ESTUB=XLAMDA(I)+1,9642SART(ES5TVAR)
WRITF(B8,390)],PHT,POTSLEB,PUISUN, XLAMDACTI) ESTLU,ESTUSB

390 FORMAT(LOX,12,5X ,F10,9,"8),SX, 0, F10,5,',1,F10,5,")',15X,F{0,5,
$ ':’,‘:)‘X.'(',Flo.S,';'.FIO.‘S,‘)‘)

70 CONTINUE

C

C DETERMINFE PRINCIPAL COHMPONEMTS, THAT 1S BY CALCULATING THE
C EIGENVALUES AND THE FIGENVFCTORS wE CAN DETERMINE NEW BASES
€ FOR DUR COMPUNENTS WHICH wWILL HNOT Bt CORRELATED,

C

CALL EIGEN(XINF,R,M,0)
WRITE(8,220)

DO 85 J=zi,M
ARITE (8,400)J,XInNF(J,J)
400 FORMAT(/,20X, VEIGENVALUE (Y, 12,!') = ',Fl6,8,/)
WRITE(R,d10) 0T, TI,R(L1,J),T=1,M)
410 FORMAT (25X, YEIGENVECTOR( , 12, ', ',12,4') = 1,E16,8)
85 CONTINUE

RETURN
END
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PROGRAM LISTING - MONTE

C
C THIS PROGRAM USES THE MAXTIMUM | TKELIHOOD METHOD OF ESTIMATION AND
C THF METHON OF SCORING TO DFTERMINE THE FAILURE RATES OF COMPONENT
C FAMILIES,
c
DIMENSION 0(50,25) XINUSE(S0) ,FATIL (S0),XINF(25,25),XLAMDA(S0),
$ LWNRK(25),R(25,25),PREV(25),MWORK(25),ALPHA(25),FAC(25),
$ S(2%),L0HNPSD(2Y)
READCO, k)N, M
c
C N IS THE ~UMBRFR OF RNOWS (UNITS) & M IS THE NUMBER OF COLUMNS
C (COMPONEMT FAMILIES),
C
CALL SOLVF (Q,XTNUSE,FATL,LWORK,MNORK,ALPHA,M,N,FAC,S,XLAMDA,XINF,
§ PREV,R,CONDSD)
STOP
EMND
C
SUBROUTINE SOLVE (G, XINUSE,FAIL,LYORK,MeORK, ALPHA, M, i, FAC,S,
$ XLAMDA,XINF,PREV,R,CONDSD)
DIMENSTION Q(N,M), XINUSE(M),FATL(N) ,XINF(M,M),S(M),LUORK (M),
$ CMPFL(3)Y,RATE(10),XMEAN(C10),S81€10),82(16),
$DEV(10),XBAR(3),5UM(3),
$ MWORK (M), R(M, M), PREVIM)Y,ALPHA(M),FACIM),XLAMDA(N),
§ CONMDSD (M)
c

WRITE(R,200)
200 FURMAT (20X, 'DATA MATRIX$',/,/)

DO 10 I=t,N ‘
READ(9,*x)(Q(T,J),J=21,M), XINUSE(I),FAILC(T)
ARITE(8,210)(0(1,J),J=1,M)

210 FORMAAT(3X,25F4,0)

10 CONTINUE

WRITE (8,250) T [MF
250  FORMAT(/,/,40%, ' TIME IN UNITS OF 10 MILLION HOURS =',F10,6)

WRITE(B,220)
220 FORMAT (1H1)
CMPFL(1)=10,
CHMPFL (2)=5,
CHPFL(3) =1,
c
WRITE(R,221) \
221 FORMAT(IBX, 1COMPONFNT FAMILYY, 10X, 'FAILURE RATE!,/)
ARITE (2,222) (J,C0PFL(J), =1 ,M)
222 FORMAT(PSX,12,20%,F%,1)
c
C DETERMINE AND PRINT THE TRUE COMPONENT FAMILY FAILURE RATES,
c
WRITE(8,220)
WRTITE(R,223) ,
22% FORMAT (20X, "UNTTY, 15X, VULITS IN FIELD',13%, 'TRUE FAILURE RATE', /)
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PROGRAM LISTING - MONTE (Cont'd)

DO 11 I=t,N

RATE(T)=0

DO 21 J=t.,™

RATECT)=RATE(IN+0(T,JYXCMPFL (J)
el CONTINUE

WRITE (8

, XTHUSE(TY,FATL(T)
224  FOEMAY(?
)
S

1,
2,20X,FR,0,20X,FR,0)
LSF(I)*TT”E*RATE(I)
XHFANCI)N)

P
5

XME AN (]
DEV(I)=
Si(1)=0,0
§2(11=0,0
11 COMTINUE

ad)
Kol
AT
RT(

-~
-
)

L3

WRITF(B,220)
I1X=R?
NG 61 J=1,H
XBAR(J)I=0,0
SUMJ)I=0,0

1 CONTINUE

DY 41 MSTEP = 1,100

GENERATE APPROXIMATE POISSON RANDOM MUMBERS TO BF USED AS OBSERVED
NUMBER OF UNIT FAILURES [H THE FIELD,

OO0 L I

DO 8y T=t,N

00 CALL GAUSS(IX,DEVII,XMEANCTI)Y,FATL(I))
TFCFATL (I, LT, 0,0)G0TO 500

1 COMTINUE

Y,

]
C
C SET UP INITIAL VALUES,
C
NIT=0
C
ne 20 J=1 .M
ALPHACIY=CHPFL (D)
20 CONTINUE
C
c
C BEGIN THE ITERATIVE PROCEDURE,
#
600 NIT=NIT41
C
C WE WISH T KEEP THE OLD VALUEFS OF aLPHA TO TEST FOR CONVERGENCE,
C
nao2s Jzt,H
PREV () =ALPHACD)
25 CONTINUE
C
c A
CALL LAFATIL(N,M,XULANDA,G, ALPHA)
C
C DETERMINE THE SCORE VECTOR,
¢
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PROGRAM LISTING - MONTE (Cont'd)

DO 30 Jzi,M
5(J)1=0,0

DO 35 I=zi,N

FzFATL(I)/XLAYDACT) = TIME#XINUSE (1)
5(J)=5(I)+R(1,.01)4F

35 CONTINUE

30 CONTINUFE

C
CALL TNFATLC(N,M,Q,XINUSE,TIME, XLAMDA,XINF | WORK,MAORK,
$ COGNDSD)

c -

C DETERMINE THE ADJUSTMENT FACTOR

c

DO 40 J=s1,M
FAC(J)=0,0
DO 45 JJz1,M
FACCJ)=FACCI) +XINF (J,dJ)#*S ()
45 CONTINUE
40 CONTTIAHUE
c
C DETERMIME THE NEW ESTIMATES CF COMPONENT FAMILY FAILURE RATES,

N S0 J=1,M
ALPHA(JY=ALPHACJY+FACC(J)
50 CONTINUE

DO 55 Jzi,M
TF (ARS(ALPHA(J)=PREV(J)),GT,0,000005) GOTO 520
55 CONTINUE

GNTO 510

520 IF(NTIT,LT 100)G0TD 6C0
510 CALL LAFATIL(N,M, XLAMDA,Q,ALPHA)
CALL INFATL(N,M,Q,XINMUSE, TIME, XLAMDA,XINF,LWORK,MWAORK,
$ CONDSD)
c
C DETERMINE APPRUGXIMATF CONFIDENCE INTERVALS FOR OUR ESTIMATES OFf
C THE FATLURE RATES,
c
WRITE(R,310)
310 FORMAT (25X, "APPROXTHAATE 99% CONFIDENCE INTERVALS FOR COMPONENT!,
§ ' FAILURE RATES:'s/47)
WRITF (8,320)
320 FORMAT(7X, ' COMPOMENTY 6%, VESTIMATED ! ,;8X, YUNCONDITIONAL Y, 12X,
§ 'CONDITIONALY)
WRTTF(R,33%0)
330 FORMAT(RAX, "FAATLY "', 6X,"FAILURE RATE',7X,'VARIANCE C,1,"',
$ 12X, PVARIANCE CL.1,',7)
WRITE (B,340)
340 FORMAT (10X, 201wt ), 10X, 8( =t), 6X,19(t=1),5%,19('="))

DO A5 Jzi,M
COMPLRZALPHA (I3 =1 ,9628QRT (XINF(J,d))
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PROGRAM LISTING - MONTE (Cont'd) >9

COMPURZALPHACI) +1,96%SERTIXINF(J,J))
CONDLB=ALPHALT)Y=1,9AxCONDSD ()
COMDUB=ALPHAC(T)+1,964C0MDSD(J)
BRITE(R,3ISO)J,ALPHACIY,CUHPL R, COMPLR,CONDLR, CONDUR
350 FORMAT (10X 12, 10X, FB, 5,1 ,5X, ' (', FR,S,, 'pFB,So')',
$ AX, T, FB S, FRE,1T)Y)
XBAR(J)IZXAAR(CIY+ALFHA(L)
SUM(I)=SUM{J)+ALPHA(S Y AR
65 CONTINUE
C
C
C DETERMINE CONFIDENCE TMTERVALS FOR THE UNMIT FATLURE RATES FROM
€ THE OBSERVED FAILURES AND FROM THE ESTIMATED FAILURE RATES,

C
WRITE(8,360)

360 FORMAT(2SX, 'APPROXIMATE 95% CONFIDENCE INTERVALS FOR UNIT!,
$ ' FATLURFE RATES',/,/)

. NRITE(B,370)

370 FORMAT(9X, tUNITY, 17X, 'FOR CRSERVED! , 40X, 'FOR ESTIMATES!,/,/)
KRITE (8,3R0) ' ’

380  FORMAT(10X,2('=1),5X,39('=1),15%,39(1=1),/)

C
PO 70 I=tf,N
PHI=FATLCI)/ZCXTNUSE (1Y *TIME)
POLSLB=PHIw ,964SORT(PH])
POISURZIPHIA1,,96x830KET(PH])
ESTVAR=zD, 0

C
00 75 Jst,M
DO 80 K=i,™
ESTVARZESTVARSQ(I, J) %O (], KYxXINF(J,K)

80 CONTINUE

75 CONTINUE

o

ESTLRIXLAMDA(I )= ,96250RT(ESTVAR)
FSTUB=XLAMDA(T)+1 ,96*x5ART(ESTVAR)
WRITE (A,370)7T,PHT,POTSLE,POISUB, XLAMDA(TI),ESTLB,ESTUB

390 FORMAT (10X,T2,5% ,F10,5,7:31,8X, ' (',Fi0,5,",',F10,5,')',15X,F10,5,
$ PN X, N ,F10,5, ,,F10,5,10Y) :
S1(I)=St(I)+XLaAMDA(T)
SC(T)=S2(I)+XLAMDA(T) x%x?2

70 CONTINUE
C
41 CONT I NUE

WRITF (8,220)
WRITE (8,375)
375 FORMAT (DX ,195% COMFIDENCE TINTERVALS FOR THE !,
$ JCOMPONENT FAILURE RATE ESTIMATES!',/)
WRITE(R,381)
3gy FORMAT (L 7X,, 'COMPONENT Y 12X, 'ESTIMATE ! 12X,
§ YCONFIDENCE INTERVALT,6X,'ACTUAL FAILURE RATE',/)
PRITE (8,389
385 FORMAT(20X,2( et ), 15X, 90 «1), 11X,21(1=13,10%,9("'=1))

Do 71 J=1;M
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PROGRAM LISTING - MONTE (Cont'd)

SUMCI)=(SUM(I)=((XRAR(J)*42)/10G,))/99,
XRAR(J)=XBAR(J)/100,
XLBIXBAR(J)~1,96%x30RT(SUM(]))
XUBZXBARCI)+1,96%SGRT(SUM(JI))

WRTTE (R, 399) ., XRARCI), XLE, XUB,CMPFL(J)

395 FORMAT(EOX,12,15X,F9,4,’:’,IOX,'(’,FQ,M,?,';FQ.Q.')’,.

$ 10X,F9,%)
71 CONTINUE
C
WRITE(R,220)
WRITE(&,400)

60

400 FORMAT(20X,1'95% CONFIRENCE INTERVALS FOR UNIT FAILURE RATE!,

$ ! ESTIMATES:Y,/)
WRITE(8,410)

410 FORMAT (19X, tUNITY, 1SX, YESTIMATE, 12X,
$ 'CONFIDENCE INTFRVAL!',/)
WRITE(8,385)

DO 81 J=t,MN

52(1)=(82(1)=((51(1)x%x2)/1060,))/99,

S1¢(I)=S1(I)/100,

XLB=S1([)=1,96+SRRT(S2(1))

XUB=S1(I1)+1,96x30RT(S2(1))

ARTTE(B,395)1,S1 (1), ALB,XUB,RATE(T)
81 CONTINYF

RETURN
END
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60
65

‘ o6l
SUBROUTINE LISTING - INFAIL

SURROUTINE IMFATL (N, M Q, XINUSE, TIME, XLAMDA,,XINF, L WORK,MWORK,
$ CONDSD)

THIS SUBRQUTINE DETERMINES THE INFORMATION MATRIX FOR THE FAILURE RATE
PRORREM AND ITS INVERSE, '

DIMENSION QN M), XINUSE(N) ,XTHF (M, M), XLAMDA(N) ,LWORK (M), MWORK (M),
$ A(325),CONDSD (M)

0o 10 J=1,M

DO 15 JJ=1,J

XINF(J,JJd)=0,0

PO 20 I=i,N

XINF LI, JIYSXTINF (), JI)+TIMEXXINUSE(TI*G(I,JIXC(I,JJ)/XLAMDA(L)
CONTINUE

CONTINLUE

CONDSD(J)=1,0/8QRT(XINF(J,J))

CONTINUE

DO 25 Jz2,m

JMINZ =1

DO 30 JJ=1,JMIN

XTINF (JJ,J)2XINF (J,00)
CONTINUE

CONTINUE

DO 35S J=i,M

CONTINUE

LSUM=0

DO 40 J=1,M

DO 48 K:loJ

LSUM=LSUMs

ACLSUM)Y=10, ,ETaXINF(JK)
CONTINUE

CONTINUE

EPSz10,E~5
calLll SINV(A,M,FPS5,TER)

L SUM=0

DD 50 J:l:M

nd 8% K=1,J

L3UMSL SUM+]
XINF(J,Kiz=10,E7%xA(LSUM)
XINF (K, ,JI=sXINF(J,K]
CONTINUE

CONTTNUE

DO 60 Jzi M
CONTINUE

DO 65 J=1,M
CONT INUE
RETURMN

EnNG
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SUBROUTINE LISTING - LAFAIL

SUBROUTIMNE LAFATL (N M, XLAMDA,Q, ALPHA)
THIS SUBROUTINE DETERMINES ESTIMATES OF THE UNIT FAILURE RATFES,
DIMENSTION XLAMDACNY,Q(H, M), ALPHA(HM)

PO 10 T=1,N

XLAMDA(I)=0,0

DO 15 J=t,
XLAMDA(I)=XLAMDA(I)+ALPHA(I)AG(T,J)
CONTINUE

CONTINUE

RETURN
END



APPENDIX 4

Program for the Component Yield Problem

The computing work for the problem of estimating component
family yields involved five ?rograms. All are written in FORTRAN.
The programs LINLSQ and CARLO use the method of weighted least squares.
LINLSQ is designed for practical use while CARLO, which generates one
hundred random samples of unit yields, is designed to study the
properties of the éstimates. The programs PREDMLE, COMB and SIMPLEX
are designed to find maximum likelihood estimates of component family
yields. PREDMLE uses a common starting value for the component family
yield estimates and uses the method of scoring to find those estimates
which maximize the likelihood. Using those estimates determined by
the method of weighted least squares as starting values, the program
COMB uses the method of scoring to find maximum likelihood estimates
of component family yields. The program SIMPLEX uses the Nelder Mead
Simplex method of finding maximum likelihood estimates of the component
family yields. The method of weighted least squares is used to
determine one of the vertices of the initial simplex used in SIMPLEX.
The output file for all five programs has a length of one hundred and
thirty-three columns including the carriage control.

Input for LINLSQ (Figure 11) is read from an external
file having a length of eighty columns. It is unformatted and
is general for any number of units observed and any number
of component families. The first row of the input gives N,

the number of distinct component families for which yields
63
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can be estimated. The first M columns of the second to (N+1)st

rows inclusive is the matrix Q = [qij] where Q ; is the number

NxM
of components of the jth family in a unit of type i. The (M+1l)st
entry in the (i+1l)st row is the number of units of type i produced
during the production period. The (M+2)nd entry in the (i+1l)st row
is the number of units of type i accepted during the production
period. The (N+2)nd row gives the 97.5 percent critical value of

the student's t distribution on N-M degrees of freedom.

LINLSQ calls three subroutines, GMPRD,SINV, and EIGEN,
from the SSP FORTRAN library GMPRD determines the product of two
general matrices. SINV calculates the inverse of a positive
definite symmetric matrix and is used to determine the estimated
variance-covariance matrix of the estimated component family yields.
EIGEN is used to determine the eigenvectors and eigenvalues of
that matrix.

The logic of LINLSQ was tested by using as input the expected
number cf acceptable units for a sample for which the component
family yields are known. The program was adjusted to allow for the
fact that there would be no variance in the input data. The results
(Table 8) indicated that the logic was correct. Differences between
the true values and the estimates were due to round off error.

Input for CARLO is the same as that for LINLSQ except that M
is restricted to the value three. Input for the number of acceptable
units of each type for one sample is required, but the results of

the program would allow the omission of this input. CARLO could be
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generalized to allow for any number of component families and for any
number of generated samples. Three SSP subroutines GAUSS, GMPRD,

and SINV are required for CARLO. GAUSS, a normal random number
generator, is used to generate the number of acceptable units of

each type.

Input for PREDMLE is the same as that for LINLSQ except that
the entry in the (N+2)nd row gives a value which is given to the
M component family yield estimates as starting values for the iterative
procedure. PREDMLE calls the subroutine MINV from the SSP FORTRAN
library in order to determine the inverse of the information matrix.
The same data used to test LINLSQ was used to test the logic of
PREDMLE. To start the iterative procedure in the test, the true
component family yields were used as starting values. Test results
(Table 9) indicate that the logic is correct.

The input for COMB is the same as that for LINLSQ. Five
external subroutines are called from COMB. The subroutines SINV,
GMPRD, and EIGEN are called from the SSP FORTRAN library. COMYLD
calculates predicted unit yields from estimates of component family
yields. COMINF calculates the estimated information matrix and its
inverse.

The input for SIMPLEX is identical to that for LINLSQ except
that no entry in the (N+2)nd row of the external data file is
required. The subroutines GMPRD and SINV are called from the SSP
FORTRAN library. As wellg seven other subroutines, XCALC,XPLACE,XREF,

XCONTR,XCENT,XSHR, and XPAND and the function XF are called externally
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from SIMPLEX. The purposes of these subprograms are described in
the initial comments of their listings.

With the exception of CARLO, all of the above programs were
originally designed for practical use. Due to nﬁmerical problens,
however, only LINLSQ can be used with any degree of success.

All approximate confidence intervals are calculated at the
ninety-five percent confidence level. Alterations to the programs
and their input could be made which would allow for different levels
of confidence.

Those calculations which were done by hand using results
from LINLSQ and CARLO could be incorporated into the programs. The
test of fit described in section 3.3 could be included in both
LINLSQ and CARLO. Those calculations necessary to estimate the
variance-covariance matrix of the parameter estimates in CARLO could
be included in the program. LINLSQ would be of more practical use if
the program and its input were adjusted to predict point estimates
and determine confidence intervals for the yields of newly designed

electronic units.



Figure 11

Input Format For The Program LINLSQ

10,3
e7,3%3,450,
25,10,350,
21,0,375,
16,111,000,
10,225,290,
35,0,42%,
?9029’ 5(?5'
21,0,400,
219,428,
17,255,216,
2.365

1000,5%3
Q00,144
BOD,274
750,101
150,92
HH0, U496
125,79
anng, 244
850,557
350,219

UNMTT
UNTT
UNTY
UMTT
UMNIT
URTTY
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UNIT
UNTT
UNIT
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Component
Family

Component
Family

TABLE 8

RESULTS OF TEST RUN ON THE PROGRAM LINLSQ

Estimated Component True Component
Family Yield Family Yield
.9899 .9900
.9949 .9950
.9990 .9990
TABLE 9

RESULTS OF TEST RUN ON THE PROGRAM PREDMLE

Estimated Component True Component
Family Yield Family Yield
.9900 .9900
.9950 .9950
.9990 .9990

68
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PROGRAM LISTING - LINLSQ

THIS PROGRAM TAKES THE LOGARITH® 0OF THE UNIT YIELDS TO FORM A | INEAR
EQUATION IN THE LOGARITHMS 0OF THE COMPONENT YIELDS, THESE FEQUATIONS
ARE SOLVED USING MULTIPLE RtGRESSION,

[aNeNaNe]

DIMENSION Q(50,25),Y(50),ADJYLD(S0,1),ATRANS(25,50),CMPYLD(2S),
$ LE2%)pN(50),CONS(2%5, 1), MwORK(2S),NEWN(S50),DER(25,29),2(25,50),
$ A(325),R(2%,25),9ADJ(50,25),YIELD(50)

REAL NEW

READ(9,x) N, M

N 1S THE NUMBER OF ROWS (UMITS) & M IS5 THE NUMBER OF
COLUMNS (COMPONENT FAMILIES),

OO0

CALL OLS(N,#WORK,Q,YIFLD,OTRANS,CHPYLD,L M, NEW,
$ DER,Z,CONS,Y, W, A, ANJYLD,QADJ],R)

sSTOP

END

SUBROUTINE OLS(N,MWORK,Q,YIELD,RTRANS,CMPYLD,L M,
$ NEW,DFR,Z,CONS,Y,W,A,ADJYLD,0ADS,R)

DIMENSION QEN,MY,A(3Z9),A0JYLD(N,1),QTRANS(M, N),
$ CMPYLD (M) RO, MY, W (N) Y IN) L (M), MWDRK (M), NEW (N,
$ DER(M,M),GADJ (N, MY, YIFLDIN)Y,,Z(M M), CONS(M,1)

REAL MNEW

WRITE(R,200)
200 FORMAT (20X, 'DATA MATRIXt',/,/)

DO 10 I=si,N
READ(O, #)Y(Q (1,00, =1, M), NEW(]),¥Y(])
WRITE(8,210){0t(l,J),J=1,M)

210 FORMAT(3X,25F4,0)

10 CONTINUE

WRITE(8,220)
220 FORMAT (1H1)

WRITF(B,230}
230 FORMAT (/,7)
C
C
C
C CALCULATE THF YIELDS AND ADJUST THE YIFLDS AND THE @ MATRIX FQOR
C UNEQUAL VARIAMCES, THEN PRINT OUT THE UNITS ACCEPTED, THE NUMBER
C TESTED, THE YIELD aAND THE ADJUSTFD YIELDS,
C

WRITE(8,2407 '
240 FORMAT(UAX, VUNTT Y, 13X, tUNITS TESTEDY, 15X, 1UNITS ACCEPTED!,

B O1UX, TUNIT YTELDY, 13X, vADJUSTEDR YIELD!', /)
C

DO 15 T=1,W

YIELD(II=Y (TXI/ZNEX(T)

WET)=SURTINER(T)Y=YL(I))/Z(NERLITI®Y (1))

ADJIYLOD (1 3=2AL0GCYIELD(I)) /R (1)

BO 20 J=1,H

QADI(Y, =0 (T, )/w{1)
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PROGRAM LISTING - LINLSQ (Cont'd)

20 CONTIHUFE
WRITF (B,250) I, NEW(I),Y (1), YIELD(T),ADIYLD(I,1)
250 FORMAT (195X ,12,2(20X»F5,00,19X,FT,4,17X,F9,4)

15 CONTINUE

o

C DETERMINE THE TRANSPOSE OF THE ADJUSTED O MATRIX,
c .

PO 25 1=1,N
DO 30 J=1,M
QTRANS(J,1)=202DJ(1,.])
30 CONTINUE
25 CONTINUE

NOW WE CAN PERFQORM THE ACTUAL REGRESSION,

[a Xy Re)

CALL GMPRD(QATRANS,QADJ,DER, M, N,M)

c

C THE MATRIX DER CONSISTS OF NON NEGATIVE ENTRIES, HENCE WE CAN

C SCALE THE MATRIX 80 THAT THE IMVFRSE OF A MATRIX WITH A SMALLER
RANGE OF VALUES CAN BE DETERMINED, THIS wIllLL REDUCE THE CHANCES
OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERFLQW,

O

e
c

7221000, xFLOAT(N)

DO 35 J=1,M

DO 40 JJ=1,M

DERCI,JII=DER{I,JJ) /22

40 CONTINUE
35 CONTINUE
C

C WE DETERMINE THE INVERSE OF DER USTHG THFE SSP SURROUTINE SINV
C WHICH DETERMINES THE INVERSE OF POSITIVE DEFINITE SYMMETRIC MATRICES,
C

LSUM=z0

DO 48 J=1,M

DO 50 K=1,J

LSUM=L SUM+t

ACLSUMY=DER(J,K)

S0 CONTINUE
45 CONTINUE
c

FPS=2,001
CALL SINV(A,M,ERS,TER)

C
LSUM=zn
DO 885 Jzi,m
N 60 K=t;J
LSUMzL Suid+
DER{S,KY=a(LLSiM)
DER(K,JI=DER(T, K]
60 CONTINUE
55 CONTINUE
C

C NOW «wE HAVE 70 RESTORE DER T0 175 QRIGINAL SCALING BEFORE WE
C CaAN USF 1T,
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PROGRAM LISTING - LINLSQ (Cont'd)

DO &5 Jz=i M
DO 10 Jd=imm
DERCI,JI)=DER(I,JIYZ72Z

70 CONTINUE
65 CUNTINUE
C

CALL GHMPRO(DER,NTRANS,Z,M,M,N)
CALL GMPRD(Z,ADJYLD,,CONS,M,N,1)
WRITE(B,220)
WRITE(8,230)

SIGMA=0,0
DO 78 T=1,N
£E=0,0
DD 86 J=t .M
Exf+QADI(T,J)®CONS(J, 1)
80 CONT INUE \
ExADJYLD(T,1)=E
SIGMA=SIGHA+Exa2
75 CONTINUF
NMzNeM
SIGMA=SIGHMA/FLOAT (NM)
D0 8% J=ti,M
DO 90 JJsi,#
DER(J,JI)=DER(J,JII*SIGHA
90 CONTINUE
85 CONTINUE !
C
. WRITE (B,260)
260 FORMAT(SOX,'COVARTANCE MATRIX', /)
WRITE(8B,2703(],J=1,M)
270 FORMAT(16(13X,12),7)
DO 9% I=z1,M
WRTITE(8,280)1,(DER(TI, ), d=1,1)
280 FORMAT (2X,I2,16(2XE13,7))
95 CONTINUE
READ(9,%)T
C
C DETFRMINE CONFIDENCE INTERVALS FOR THF ESTIMATES QOF THE LOGARITHM
C OF THE COMPONENT YIELDS AND FOR THE COMPONENT YIELD ESTIMATES,
C
WRITE(8,P220)
WRITE (8,230
WRITE (8,290 )NH
290 FORMAT (25X, tAPPROXIMATE 95% CONFIDENCE INTERVALS ON!;I2,1X,;
§ IDFGREES OF FREEDDMII, /)
WRITE(8,500)
300 FORMAT(IX, 'COMPONENTY 12X, 'L0DG OF COMPONENT YIELD',423X,
$ YCOMPONENT YIELD',/)
WRITE (R, 310
310 FORMAT (10X, 20 et ), 8%,50( =1),15X,36('="))
DO 100 J=1 .M
YLAZCOMS(J, 1) =TaS8ART(DER(I, I
UB=CONB (S, 1)+ 7«SARI(DERII,JY)
CHMPYLDCJ)SEXP(CONS(I,1)
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PROGRAM LISTING - LINLSQ (Cont'd)

EXPLB=EXP(XI.R)
EXPURSEXP (1I8)
ARITE (B8,320)J,CNNS (), 1), LB, UBR, CHPYLD (), EXPLB,EXPUR
320 FDRMAT(lf)X,IZ,SX,EiU,b,SX, !(’Uﬁlaqbr.I!IEIL‘.(’;!)"15x,F3.5,5X'
$ VO EL0,5, Y, ELC.S,))
100 CONTINUE
C
C FIND APPROXIMATE CONFIDENCE INTERVALS FOR THE UNIT YIELDS USING
C BOTH THE OBSERVED YIFLDS AND THE ESTIMATED YIELDS,
" C
WRITE(8,220)
WRITE(8,230)
WRITE(8,330)
330  FORMAT (25X, 'APPROXIMATE 95% CONFIDENCE INTERVALS FOR UNIT ',
$ 'YIELDS:Y,/,/7) :
WRITE(8,340)
340  FORMAT(9X,'UNITY, 14X, 'FOR ORSERVED!, 35X, 1FOR ESTIMATES!, /)
WRITE(8,350)
350 FORMAT (10X, 2( 1t ), 5%, 33 (et} , 15%X,37('m?))

DO 105 I=1,H
FACSYIELOCI)*(1,0=YTELDCI))/NEW(T)
FAC=1,96xSGRT(FAR)
RINLB=YIELD(II=FAC
BINUBzYTELD(I)4FAC

ESTYLD=0,0

ESTVAR=0,0

DO 110 J=1,M
ESTYLD = ESTYLD+Q(I,Jd)*CONS(J,1)

DO 118 K=, M
ESTVARZFSTVAR+Q(T,K)*Q(1,J)aDER(J,K)
CONTINUE

CONTINUE

£ en -
-
[« ¥ )]

SD=SHURT(ESTVAR)
ESTLR=2FXP(ESTYLDm],96%x80)
ESTURZEXP(ESTYLD41,96%5D)
ESTYLDSEXPEFSTYLD)
WRITE(8,360)1,YIFLD(I),RINLB,RINUB,ESTYLD,ESTLB,ESTUB
360 FORMAT 10X, T2,5X,FR, S, te 5%, (', FB,5,7,1,FB,5,1)1,15X,
§ FB S, et 5X, 1, F10,5, 7, F10,5,M)")
105 CONTINUE
C
C DETERMINE PRINCIPAL COMPONENTS, THAT IS 8Y CALCULATING THE
C EIGENVECTORS, WE CAn DETERMINE NEW BASES FOR NUR COMPONENTS WHICH
€ WILL BE TNDEPENDENT,
c
CALL EIGEM(DFR,R,M,0)
WRITE(9,220)

DA 120 J=i,M
: WRITE (8, 370)J,0ERCS, J) |
370 FORAAT(/,20%, "EIREMVALUE (!, 12,0) = !,E16,8,/)
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PROGRAM LISTING - LINLSQ (Cont'd)

WRITE(R,3A0YI(T,I,R(L, )11, M)
FORMAT (25X, VEIGENVECTOR( 12,4, ,12,1)
CONTINUE

RETURN
END

'+E16,8)

73
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PROGRAM LISTING - CARLO

THIS PROGRAM GENERATES 100 SAMPLES NF YIELD DATA AND COMPUTES
CONFIDENCE INTERVALS FOR THE ESTIMATES USING THE RESULTS OF ALL

OF THE SAMPLES, THE YTIELD ESTIMATES FOR EACH SAMPLE IS FOUND USING
THE METHOD OF THE PROGRAM LINLSQ, '

DIMENSTON Q(50,25),Y(50),ADJYLD(50,1),QTRANS(25,50),CMPYLD(25),
$ P(SOY,AC(2%9) ,XMEAN(RBYDEV(S6)XBAR(25),

$ SUM{25),51(50),82(50),

$ L(25),4(50),CONS(25,1) s MWORK(25),NEW(S50),DER(25:25),2(25,50),
$ A(325),R(25,2%),0ADJ(50,2%),YIELD(50)

REAL NEW

READ(9, %) N,M

N IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER OF
COLUMNS (COMPONENT FAMILIES),

CALL OLS(N,MWORK,Q,YIELD,QTRANS,CMPYLD,L ,M,NEW,
$ P,AC,XMEAN,DEV,XBAR,SUM,S1,S82,

$ DER,Z,CONS,Y,W,A,ADJYLD,RADJ,R)

STQP

END

SUBROUTINFE OLS(N,MWORK,G,YIELD,QTRANS,CMPYLD,L ™,
5 NEN'P;AC'XMEANpDEVlXBARISUM081lszl
$ DERLZ,CONS,Y,W,A,ADJYLD,QADJ,R)

DIMENSION Q(N,M),A(325),ADJYLR(N,1),BTRANS(M,N),
$ CMPYLD (MY, R(M MY WIN), Y (M), L (MY, MWORK (MY ,NEWK(N),
$ PINY,AC(M)  XMEAN(IN) ,DEVN), XBAR(M) ,SUM(M],
$ S1€10),52(10),
$ DER(M,M),CGADJI(N M), YIELD(N),Z(M,N),CONS(M,1)

REAL NEW

WRITE(6,200)

200 FORMAT (20X, 'DATA MATRIX:',/,/)

DO 10 I=1,N
READ(G, =) (R(I,J),J =1 MY NEW(]I),Y(])
WRITE(6,210)(Q(1,J),Jd=1,M)

210 FORMAT (3X,25F4,0)

10

CONTINUE

WRITE(&,220)

220 FORMAT (1HY)

o

AC(1)=,99
AC(2)=,995
AC(3)=,999

WRITE(6,231)

231 FORMAT (22X, 1COMPONENT !, 16X,V YIELD!,/)

WRITE (6,232 (JAC(J)J=1,M)

232 FORMAT (25X, 12,20X,FS,3)

¢
c
¢

DETERMINE &ND PRINT THE TRUE UNIT YIELDS,
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PROGRAM LISTING - CARLO (Cont'd)

WRITE(6,220)
WRITE (6,240)

240 FORMAT (24X, "UNTT !, 16X, 'UNITS TESTED!, 17X,
$ 'TRUE UNIT YIELD',/)

00 11 I={,N
P(i)=0,0
DO 21 J=1,M
PCII=P(T)+Q(1,J)*xALOG(AC(J))

21 CONTINUE
P(I)=EXP(P(I))
WRITE(6,250)] ,NEW(T),P(I)

250 FORMAT (25X,12,20X,F%9,0,20X,F10,8)
XMEAN(I)=SP(T)IANEW(I)
DEV(I)=SGRT(XMEAN(I)I*(1,0~P(I)))

St(l)=0,0
§2(1)=0,0

i1 CONTINUE

C
WRITE(6,220)
IX=79
READ(9,%)T

C

DO 61 Jsi,M
XBAR(J)=0,0
SUM(J)=0,0
61 CONTINUE
#

c

C GENERATE APPROXIMATE BINOMIAL OBSERVATIONS 70 BE USED AS
C THE NUMBER OF UNITS ACCEPTED,

c

DO 41 NSTEP=1,100

DO S1 I=zy,N
500 CALL GAUSS(IX,DEV(I),XMEAN(I),Y(1))
IFCY(I), LT,0,0)G0T0O SC0
IF(Y(1),GT NEA(I))IGOTOD 500
51 CONTINUE
C
C CALCULATE THE YIELDS AND ADJUST THE YIELDS AND THE Q@ MATRIX FOR
C UNEQUAL VARIANCES, THEN PRINT OUT THE UNITS ACCEPTED, THE NUMBER
C TESTED, THE YIELD AND THE ADJUSTED YIELDS,

¢
DG 15 I=1,N
YIELDC(I)=Y(I)/NEW(T)
W(I)=SARTCINEW(LI=Y(I))/(NEW(I)*Y(]I)))
ADJYLD (I, 1)=ALOGIYIELD(I))/WN(T)
DO 20 J=1.M

QADJ(I,J)=0(T,J)/W(])
20 CONTINUE
15 CONTINUE
c
C DETERMINE THE TRANSPOSE OF THE ADJUSTED @ MATRIX,
c
DO 25 I=i,N
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DO 30 J=i,M
QATRANS (J,1)=0ADJ(CI,d)
30 CONTINUE
25 CONTINUE
C
C NOW WE CAN PERFORM THE ACTUAL REGRESSION,
C
CALL GMPRD(QTRANS,QADJ,DER,M,N,HM)
c _
C THE MATRIX DFR CONSISTS OF NON NEGATIVE ENTRIES, HENCE WE CAN
C SCALF THE MATRIX SO THAT THE INVERSE OF A MATRIX WITH A SMALLER
C RANGE OF VALUES CAN BE DETERMINED, THIS WILL REDUCE THE CHANCES
C OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW OR UNDERF|LOMW,
C

2221000, xFLOAT (W)

DO 35 J=1,M

DO 40 JJ=i,M

DER(J,JJI=DER(J,JIJ) 722
40 CONTINUF
35 CONTINUE
C
C WE DETERMINE THE INVERSE OF DER USING THF SSP SUBROUTINE SINV
C WHICH DETERMINES THE INVERSE OF POSIVIVE DEFINITE SYMMETRIC MATRICES,
o

LSUM=0

DO 45 J=i,M

DO S50 K=1,J

LSUM=L SUM4+

ACLSUM)ZDER(J,K)

50 CONTINUE
45 CONTINUE
c
EPS=,001
CALL SINV{A,M,EPS,IER)
C
LSUM=0
DO 55 J:llM
DO 60 K=1,J
LSUMsLSUM+
DER(X,J}=DER(J,K)
60 CONTINUE
55 CONTINUE
c

C NOW WE HAVE TO RESTORE DER TO ITS ORIGINAL SCALING BEFORE WE
C CAN USE IT, _

DO 65 Ju=1,M
DO 70 JJsi,M
DERCJI,JJISDER(JI,,JIYZ22
70 CONTINUE
65 CONTINUE

CALL GMPRD(DER,QTRANS,Z,M,M,N)
CALL GMPRD(Z,ADJYLD,CONS,M,N, 1)
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' PROGRAM LISTING - CARLO (Cont'd)

SIGMAZO0,0
PO 75 1=1,N
E=0,0C
DO RO Jst .M
ExE+QADI(I, JIRCONS (I, 1)
80 CONTINUE
F=ADJYLD(I,1)=F
SIGMA=SIGMASE k%P
75 CONTINUE
NM:N-»W
SIGMA=SIGMA/FLOAT (NM)
DO 8BS J=i,M
DO 90 JJ=1,4
DER(J,JJ)=DER(J,JIIERSIGMA
90 CONTINUE
85 COGNTINUE
¢
C DETERMINE CONFIDENCE INTERVALS FOR THE ESTIMATES OF THE LOGARITHM
C OF THE COMPONENT YIELDS AND FOR THE COMPONENT YIELD ESTIMATES,

o
WRITE(6,290)NM
290  FORMAT(25X,'APPROXIMATE 95% CONFIDENCE INTERVALS ON',I2,1X,
$ 'DEGREES OF FREEDOM3!,/)
WRITE(6,300) )
300  FORMAT(3X,!COMPONENT!,12X,'L0G OF COMPONENT YIELD!',43X,
$ 'COMPONENY YIELD',/)
WRITE(6,310) ,
310 FORMAT(10X,2(tet),5%,50('w?),15X,36(!s!))
DO 100 Jz1,M
XLB=CONS(J,1)=T*SGRT(DER(J,J))
URSCONS(J, 1)+ T*SGRT(DER(J,J))
CMPYLD (J)=EXP (CONS(J,1))
XBAR(J)I=XBAR(J)+CMPYLD (L)
SUMJ)=SUMJ)+CMPYLD (J)x%2
EXPLBZEXP (XLR)
EXPUB=EXP (UR)
WRITE(6,320)J,CONS(J,1),XLB,UB,CMPYLD(J) ,EXPLB,EXPUR
320  FORMAT(LOX,I2,5X,E1d,6,5X, 1 (1, E14,6,',1,E14,6,')!',15X,F8,5,5X,
$ Y1, EL10,5,1,1,E10,%,')1) :
100 CONTINUE
C
C FIND APPROXIMATE CONFIDENCE INTERVALS FOR THE UNIT YIELDS USING
C BOTH THE OBSERVED YIELDS AND THE ESTIMATED YIELDS,
C
WRITE($,220)
WRITE(6,330)
330 FORMAT(25X, 'APPROXTIMATE 95% CONFIDENCE INTERVALS FOR UNIT t,
$ 'WIELDS:I?,/,/)
WRITE (6,340)
340 FORMAT({IX, JUNIT!, 14X, 'FOR OBSERVED! 35X, IFOR ESTIMATES!, /)
WRITE(6,350)
350 FORMATEIOX ,2{ ' 1) ,8%X, 33 (e ), (2%, 57¢('mi})
c
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PROGRAM LISTING - CARLO (Cont'd)

DO 108 I=zi,N ,
FACSYIELD(I)Yx(1,0=-YIELDC(IJ)/NERW(])
FAC=1,96%SART(FAC) :
BINLB=YIELD(I)=FAC
BINUB=YIELO(I)4FAC

ESTYLD=0,0

ESTVAR=(Q,0

DO 110 J=1,M
ESTYLD = ESTYLD+Q(I,J)*CONS(J,1)

DO 115 K=i,M
ESTVARZESTVAR4GQ(I,K)xQ(I,J)+DER(J,K)
CONTINUE

CONTINUE

SD=SURT(ESTVAR)
ESTLBEXP(ESTYLDw1,96%5D)
ESTURZEXP (ESTYLD41,96%5D)
ESTYLDZEXP(ESTYLD)

WRITE(6,360)1,YTELD(I),BINLB,RINUAB,ESTYLD,ESTLB,ESTUB
FORMAT (10X, 12,5X,FB,5,187,5X, (1 ,F8,5,!,',F8,5,1)1,15X,
$ F&,S;'!'csxoi('aElogsl'l'lElonsl.)')

SI(I)=S1(IY+ESTYLD
S2(1)=82(1)+ESTYLD*x2
CONTINUE

CONTINUE
WRITE (&,220)
WRITE(6,370)

FORMAT (20X, 195% APPROXIMATE CONFIDENCE INTERVALS FOR THE

ICOMPONENT YIELD ESTIMATES!,/)
WRITE (6,380)

FORMAT (17X, tCOMPONENT !, 12X, 'ESTIMATE !, 12X,

'COMFIDENCE TIMTERVAL!',/)
WRITE (6,385)

FORMAT (20X, 2(1=1),15%X,9(!'=1),11X,21('="'))

DG 71 J=1,H

SUM(JI)=(SUM(J)« ((XBAR(JI*%2)/100,))/99,

XBAR(JY=XBAR(J)/100,

XLB=XBAR(J)»1 ,96%SART (SUM(J))
XUB=SXBAR(J)+!,9625QRT(SUM(JI))
WRITE(6,392)J,XBAR(J),XLB,XUB

FORMAT (20X, 12,15X,F9,6, 10" ) 10X, 1 (', FI,6,1,',F9,6,1)1")

CONTINUE

WRITE(6,220)
WRITE(6,400)

FORMAT (20X, 195% CONFIDENCE INTERVALS FOR UNTIT YIELD

TESTIMATES!, /)

WRITE(6,410)

FORMAT (19X, VUNTIT!  §5X, 'ESTIMATE! 12X,
'CONFIDENCE INTERVALY, /)

WRITE (6,385)

'

[4

by
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DO BY 1=i,N
S2(I)=(S2(1)=((81(1)*x*2)/100,))/99,
S1(Iy=81(1)/100,
XLB=S1(1)=1,9643GRT(S52(1))
XUBR=S1(1)+1,964SGRTLS2(1))
WRITE(6,3%0)1,81(1),XLB,XUB
CONTINUE

RETURN
END
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c
C THIS PROGRAM USES THE MAXIMUM LIKELIHOOD ESTIMATION METHOD AND THE
C METHOD OF "SCORING" TO DETERMINE THE YIELD CF COMPONENTS DURING
C PRODUCTION,
c
DIMENSICN Q(35,253) NEW(3IS),YIFLDC(3S),Y(35),AHAT(25),
U INF(2%5,25),L(25) ,MM(25),5(35),FAC(25),K(35),
U BR(2%,25,25),PREV(2%)
REAL NEW,INF,K
READ(G,s»IN, M
c
C N IS THE NUMBER OF ROWS (UUNITS) & M IS THE NUMRER OF COLUMNS
C (COMPONENT FAMILIES),
c
CALL SCORE(N My U e NEW,YIELD Y )AHAT ,PREV)INF,LoMM,8,FAC,K,BB)
STOP
END
c
SUBROUTINE SCORE(N,M,Q,NEW,YIELD,YsAHAT,PREV,INF,L MM, S,FAC,K,
U B8)
DIMENSICN GUIN M) NEWINY s YIELDINY ,YIN) ,ARAT (M) ,PREV (M), INF (M,M),
U LMY MM (M), SIN) FAC(MY ,K(N),BB(N,M,M)
REAL NEW, INF,K
o

DO 35 Iz1,N

READ(Gsx )G (T,Jd)edsl oMY NEW(T), YLI)
35 CONTINUE
c
c
C DETERMINE CCMSTANTS WHICH WILL BE USED THROUGHOUT THE ITERATIVE
C PROCEDURE,
C

DO 21 Isz1,A

DO 31 KKz, ,M

DO 41 LL=1,KK

BBCI KK, LL)SNEWCT)*Q (I KKI4O(TI,LL)
41 CONTINUE
31 CONTINUE
21 CONTINUE

c
C INITIALIZE THE VALUES
c
MMMzZMm
c
NIT=90

READ(G.x) STARY

DO 8BS Jd=t,¥

AHAT (J)=8TART
8% CONTINUE

WRITE(7,50C)NIT

500 FORMAT(/,7Xe INIT = 1',13)
WRITE(T,55G) (J,ARATIY Il sM)

550 FORMAT(1SX, "AHAT (g 12,1) = 1,E13,6)



PROGRAM LISTING - PREDMLE (Cont'd)

C NOW WE BEGIN THE ITERATIVE PROCEDURE,

0 NIT=NIT+{

€Y e 3

DO 95 Jst,V
PREVIJ)sAHAT(J)
95 CONTIMNUE
C .
€ DETERMINE TrE FSTIMATES OF THE UNIYT ACCEPTANCE PROBABILITES,
c
DO 205 I=1,N
K(1)=0,0
DO 215 J=i M
KCIXsK(I)4G(Y,JI*XALOGCAHAT(J))
215 CONTINUE
K(I)=EXP(K(I))
205 CONTINUE
c -
C DETERMINE TKHE INFORMATION MATRIX AND ITS INVERSE,
c
DO 105 KK={,M
DO 115 LL=1,KK
INF(KK,LL)=0,0
DO 100 I=1,N
INFUKKpLL)INF KK, LL)4BBUTI s KK LLYXK(TI)/(1,0mK (1))
100 CONTINUE ’
INF(KK LL)SINFURK,LLY/ CAHAT (KK)I*AHAT(LL))
115 CONTINUE
105 CONTINUE

DO 110 KKs{1,MMM
I1I=KKe}
DO 120 LL=TII,M
INFOKK,LL)=INF{LL,KK)
120 CONTINUE
110 CONTINUE

c

CALL MINVCINF, MDD, ,MM)
c
C DETERMINE THE SCORE VECTOR,
c

DO 125 Jd=1i,M
B=0,0
DO 135 I=1,N
BeQ(I,J)r{Y(I)wNEW(TI)®K(]))
B=R/(AFAT(J)*(1,0=K(1)))
S(JI=8(J)+8
135 CONTINUE
125 CONTINUE
c
C DETERMINE THE ADJUSTMENT FACTOR
C
NG 165 J=i.M
FACC(J)=0,0
DO 175 Jdsi,M

81



175
165
c

PROGRAM LISTING - PREDMLE (Cont'd)

FAC(JISFAC(JI+INF(J,JI)*8(JJ)

- CONTINUE

CONTINUE

C DETERMINE THE ANEW VALUF OF AHAT,

c

185

225

195

20

DO 185 Jd=1,¥
AHAT(J)=AHAT(J)+FAC(J)
CONTINUE

DO 225 Jzi,M |
IF CAHAT (1), LT,0,75)AHAT (J)=0,75
TF (AHAT (J),GT,1,25)AHAT (J) 51,25
CONTINUE ,
WRITE(7,500) NIT

WRITE(7,550) (JoAHAT(J) 4Js1,M)

DO 195 J=zi1,M
IF(ARS(ARAT(J)=PREV(J)),6T,0,0000005) GOTC 20
CONTINUE

RETURN

IF(NIT LT 7916070 10
RETURMN
END

82



" 83

PROGRAM LISTING - COMB

C THIS PROGRAM USES THE METHOD OF THE PROGRAM LINLSQ TO FIND ESTIMATES

C OF THE COMPONENT YIEIDS WHICH CAN THEN BE USED A3 STARTING VALUES FOR
Cc
C

N

aann

200

210
10
C
- 220
230

U
T

aoqaonn

240

C

INDING MAXIMUM LIKELIHOOD ESTIMATES USING THE METHOD OF SCORING.

DIMENSION Q(40,20),Y(40),ADJYLD{40,1) ,CTRANS{20,40) ,CMPYLD(20),
$ BB(40,20,20) ,COND3D(20),5(20),FAC(2D),
$ LWORK(20) ,W(40),CONS(20,1) ,MWORK(2J),NEW (40),DER(20,20),2(20,40),
$ A(320),F(20,20),Q0AD3(40,20) ,YIELD (40)

REAL NEW

READ(9,*) N,H

IS THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER OF

COLUMNS (COMPONENT FAMILIES).

CALL OLS(N,M,Q,YIELD,QOTRANS,CHMPYLD,LWORK, MWORK,NEW,
$ DER,Z,CONS,Y,¥%,A,ADJYLD,{(ADJ,R,BB,CONDSD,S,FAC)
STOP

END

SUBROUTINE OL5(N,M4,Q,YIELD, QTRANS,CMPYLD, LWORK, YWORK,
$ NEW,DER,Z,CONS,Y,%,A,ADJYLD,QADJ,R,BB,CONDSD,S, FAC)
DIMENSION C(N,H),2(325),ADJYLD(N,1),QTRANS(H,N),
$ BB(N,M,M),CONDSD(4),S{H4),FAC(H),
$ CMPYLD (M) ,R{M,H),¥ (N),Y (N) ,LWORK (M) , MHORK (M) ,NEW (N),
$ DER(M,M) ,QADJI(N,M),YIELD(N¥),2 (%,N),CONS (4,1)
REAL NEW

WRITE (6,290)
FORMAT (20X, 'DATA MATRIX:',/,/)

DO 10 I=1,N

READ (9, %) (Q(I,d),d=1,%) ,NEW (I),¥ ()
WRITE (6,210) (2(I,J),J=1,H)
FORMAT(3X,25F4.0)

CONTINGE

WRITE (6,220)
FOKMAT (1H1)
WRITE (6,230)
FORMAT(/, /)

CALCULATE THE YIELDS AND ADJUST THE YIELDS AND THE QO MATRIX FOR

NEQUAL VARIANCES. THEN PRINT OUI THE UNITS ACCEPTED, THE NUMBER
ESTED AND THE YIELDS,.

WRITE (6,2u40)
FORMAT (14%,'UNIT',13X,'UNITS TESTED',15X,'UNITS ACCEPTED',
$ 14X, 'UNIT YIZLD',/)

DO 15 I=1,N

YIELD (I) =Y (I) /NEW {I)

W{I)=SQRT ((NEW(I)=-Y (1)) /(NER(I}*Y{I)))
ADJYLD (I,1)=ALOG (YIELD{I)) /W (I)

DO 20 J=1,M

QADJ (I,J)=0(I,J) /W{I)
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20 CONTINUE
WRITE(6,250) I,NEW(I),Y(I),YIELD(I)
250  FORMAT(15%X,I2,2(20X,F5.0),19%,F7.4)

15 CONTINUE

o

C DETERMINE THE TRANSPOSE OF THE ADJUSTED QO KATRIX.
C

DO 25 I=1,N
DO 3C J=1,M
QTRANS (J,I)=QADJ(I,J)

30 CONTINUE
25 CONTINUE
o
C NOW WE CAN PERFORM THE ACTUAL REGRESSION.
o
CALL GMPRD (QTRANS,QADJ,DER, M, N,H)
C
C THE MATRIX DER CONYSISTS OF NON NEGATIVE ENTRIES. HENCE WE CAN
C SCALE THE MATRIX SO THAT THE INVERSE OF A MATRIX WITH A SHMALLER
C RANGE OF VALUES CAN BF DETERMINED. THIS WILL REDUCE THE CHANCES
C OF THE PROGEAN CRASHING THROUGH A REGISTER OVERFLOW OR UNDERFLOW.
c
Z72=100C. *FLOAT (N)
DO 35 J=1,4
DO 40 JJ=1,M
DER (J,JJ) =DER (J,JJ) /2%
40 CONTINUE
35 CONTINUE
c

C WE DETERMINE THE INVERSE OF DER USING THE SSP SUBROUTINE SINV
C WHICH DETERMINES THE INVERSE OF POSITIVE DEFINITE SYMMETRIC MATRICES.
C

LSUM=0

DO 45 J=1,H

DO 50 K=1,J

LSUM=LSUM+1

A (LSUM) =DER (J,K)

50 CONTINUE
45 CONTINUE
o
EPS=.001
CALL SINV(A,M,EPS,IER)
c
LSUM=)
DO 55 J=1, ¥
DO 60 K=1,J
LSUM=LSUM+1
DER (J,K) =A (LSUM)
DER (K ,J) =DER (J, K)
60 CONTINUE
55 CONTINUE
c

C NOW WE HAVE TC RESTOEE DER TO ITS ORIGINAL SCALING BEFORE WE
C CAN USE I7T.
C
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DO 65 J=1,M

DO 70 JJ=1,M
DER(J,JJ) =DER (J,JJ) /22

70 CONTINUE
65 CONTINUE
C

CALL GMPRD (DER,QTRANS,Z,H,HM,N)
CALL GMPRD(Z,ADJYLD,CONS,H,N,1)
WRITE (6,220)
WRITE (6,230)

C
DO 19 J=1,M
CMPYLD (J) =EXP {CONS(J, 1))
19 CONTINUE
C
C

C DETERMINE THE CONSTANTS WHICH WILL BE USED THROUGHOJT THE ITERATIVE
C PROCEDURE.

C
DO 21 I=1,N
DO 31 KK=1,M
DO 41 LL=1,KK
BB(I,KK,LL) =NEW{(I)=*Q(I,KK)*Q({I,LL)
41 CONTINUE
31 CONTINUE
21 CONTINUE
C
C INITIALIZE THE VALUES
C
MMM=M-1
NIT=0

WRITE {(5,600) NIT
600  FORMAT(/,7Y,'NIT = ',I3)
WRITE (6,559) (J,CMBYLD(J) ,J=1,M)
550  FORMAT(15X,'CMPYLL(',I2,') = %,E13.6)

C NOW BEGIN THE ITERATIVE PROCEDURE

500 NIT=NIT+1

DO 95 J=1,M

CONS {J, 1) =CMPYLD (J)
95  CONTINCE

CALL COMYLD(W,Q,4,N,CMPYLD)
CALL CCMINF(B3B,M,N,DER,¥,CONDSD,L¥ORK, MAORK, CHPYLD)
C
C DETERMINE THE SCORE VECTOR.
C
DO 125 J=1,HM
B=(C.0
po 135 1I=1,HN
B=Q(I,Jd)*{Y{I)=-NEW(I)*W(I))
B=B/ (CMPYLD (3)* (1.2=#(I)))
S (J)=5(J) +B
135 CONTINUE



125

245
235
C
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CONTINUE

DO 235 J=1,M

FAC(J) =0.0

DO 245 JJ=1,M

FAC (J) =FAC (J) +DER (J,JJ) *S (3J)
CONTINUE

CONTINUE

C DETERMINE THE NEW ESTIMATE OF T HE COMPONENT YIELD

C

185

195
C
510
260
270
280
96

C

DO 185 J=1,M
CMPYLD (J) =CHMPYLD (J) +FAC (J)
CONTINUE

WRITE (6,600)NIT
WRITE(6,55C) (J,CMPYLD(J) ,Jd=1,M)

DO 195 J=1,H4
IF(ABS{CMPYLD{J) -CONS(J, 1)) .GT.D.00005) GOTO 510
CONTINUE

RETIRN

IF(NIT.LT.150}GOTG 500
IF(NIT.EC.250) RETURN

WRITE {(6,26C)
FORMAT (50X, 'COVARIANCE MATRIX',/)
WRITE (6,279) (J,J=1,H)
FORMAT (15 (13%X,I2),/)

DO 96 I=1,M

WRITE {(6,280) I, (DER(I,J) ,Jd=1,1)
FORMAT(2%,12,16 (2%,E13.7))
CONTINUE

READ (9, %) T

C DETERMINE APPROXTIMATE CONFIDENCE INTERVALS FOR OUR ZOMPONENT
C FAMILY YIELD ESTIMATES.

C

290

300

305

310

RRITE (6,220)

WRITE (6,230)

WRITE (6,290)

FORMAT (25%,'APPRCXIMATE $5% CONFIDENCE INTERVALS FOR?',
$ ' COMPONENT YIELLS',/,/)

WRITE (6, 300)

FORMAT(7Y¥,'CGMPONENT',6X,' ESTIMATED' ,8X, 'UNCONDITIONAL®Y,
$ 16X, 'CONDITIONAL')

WRITE (6,305)

FORMAT (8X,'FAMILY',10X,'YIFLD', 10X, VARIANCE C.I.?,
$ 16X, 'VARIANCE C.I.',/)

WRITE (6,310) _

FORMAT (10¢,2(*=") ,10¥X,8 ('=*),6X,19('="),5%,23(*="))

DC 100 J=1,M
COMPLEB=CMPYLD {J) - 1.36%SQRT (DER (J, J))
COMPUB=CMPYLD (J) +SQRT{DER(J,J))
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CONDLB=CMPYLD (J) - 1.96*CONDS D (J)
CONDUB=CMPYLD (J) +1.96*CONDSD (J)
WRITE (6,330)J,CMPYLD(J) ,COMPLB,COMPUB, CONDLE,CONDUB
390 FORMAT (10X,12,107%,F8.5,":",5X,"(',F8.5,',",F8.5,") ',
F 5%,'(*,F10.5,',',P10.5,")}")
100 CONTINUE
C
C PRINT OUT THE ESTIMATED UNIT YIELDS AND COMPARE WITH THAT OBSERVED.
C
WRITE(6,22D)
WRITE (6,230)
WRITE(6,330)
330 FORMAT({SX,'UNIT',11X,'YIELD ESTIMATE',2X,'OBSERVED YIELD?,
$ U¥,'95% C.I. FOR OBSERVED YIELD',/)
WRITE (6,810)
410 FORMAT(10X,2("=") ,2(15X,8("=')),15%,19("'="))
C
DO 105 1I=1,N
FACT=YIELD(I)* (1.0=-YIELD(I))/NEW (I)
FACT=1.96*SQRT{FPACT)
BINLB=YIELD(I)~FACT
BINUB=YIELD(I) +FACT
WRITE(6,420)I,7(I),YIELD(T),BINLB,BINUB
420 FORMAT(10X,I2,2(15{,F8.5),15X,' (',F8.5,"',',F8.5,')")
105 CONTINUE
c
C DETERMINE PRINCIPAL CCMPONENTS, THAT IS BY CALCULATING THE
C EIGENVECTORS, ¥WE CAN DETERMINE NEW BASES FOR OUR COMPONENTS WHICH

C WILL BE INDEPENDENT.

o
CALL EIGEN (DER,R,H,0)
WRITE (6,220)

c

DO 120 J=1,M
WRITE(6,370)J,DER {J,J)
370  FORMAT(/,20%, *EIGENVALUE(',I2,') = ',216.8,/)
WRITE (6,389) (J,I,R(I,J),I=1,M)
380  FORMAT (25X, EIGENVECTOR{(',I2,',',I2,') = ',E16.8)
120  CONTINUE

RETURN
END



SUBROUTINE LISTING - COMYLD

C THIS SUBROUTINE DETERMINES THE ESTIMATES OF THE UNIT YIELDS.
C

SUBROUTINE COMYLD(W,Q,M,N,CMPYLD)

DIMENSION W({N),Q(N,HM),CHMPYLD (M)

DO 10 I=1,N

W(I)=0.0

DO 15 J=1,H

W(I)=W(I)+Q(I,J)*AL0OG (CMPYLD (J))
15 CONTINUE

W (I) =EXP (W (1))
10 CONTINUE

RETUEN

END

SUBROUTINE LISTING - COMINF

C THIS SUBROUTINE CALCULATES THE INFORMATION MATEIX.
C
SUBROUTINE COMINF (BB,M,N,XINF,W,CONDSD,LWORK,MWORK,CMPYLD)
DIMENSION BB(N,M,¥) ,XINF(M,4),W(N),LWORK (M), MRORK (M),
$ CONDSD (M) ,CMPYLD (M)

DO 10J=1,H

DO 15K=1,J

XINF (J,K)=2.0

DO 20 I=1,N

XINF (J,K) =XINF (J,K) +BB(I,J,K) *W (I)/ (1.0~W (I))
20 CONTINUE

XINF(J,K) =XINF(J,K) /(CHPYLD (J) ¥*CMPYLD (K) )

XINF (K,J) =XINF (J, K)

IF{J.EQ.K)CONDSD (J)=1.0/5QRT (XINF (J,J))

15 CONTINUE
10 CCNTINUE
C

CALL MINV{XINF,M,D,LA0KRK, H¥ORK)

RETURN
END
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PROGRAM LISTING - SIMPLEX 89

THIS PROGRAM TAKES THE LNGARITHM OF THE UNITYT YIELDS TO FORM A LINEAR
EQUATION IN THE LOGARITHMS OF THE COMPONENT YIELDS, THESE EQUATIONS
ARE SOLVED USING MULTIPLE REGRESSION, THESE FSTIMATES ARE THEN

USED TO CONSTRUCT THF VERTICES OF A SIMPLEX WHICH WILL BRE USED

TO DETERMINE THE MAXIMUM LIKELIHOOD ESTIMATES OF THE COMPONENT
YIELDS,

DIMENSION Q(50,25),Y(S0),YIELD(S0),0TRANS(25,50),CMPYLD(25),

§ LE25),WI50),CONS(29,1) , MAORK(2%),NEW(S0),DER(25,25),2(25,50),
5 VERT(26,25),0ENT(25),FLIKE(26), VERTR(25),VERTE(25),AHAT(25),
§ VERTC(25),CONDSD(29),ADJIYLOD(S0,1),BADJ(%0,25),A(325),EST(50)
REAL NEW

READ(9, %) N,M

N IS5 THE NUMBER OF ROWS (UNITS) & M IS THE NUMBER OF
COLUMNS (COMPONENT FAMILIES),
© MPLUS=zMst

CALL OLS(A,N,EST,MWORK,Q,YIELD,QTRANS,CMPYL.D,L,M,NEW,

$ DER,Z,CONS,Y,w,VERT,CENT,FLIKE,VERTR,VERTE ,AHAT,VERTC,MPLUS,
$ QADJ,ADJYLD,CONDSD)

sTOP

END

SUBROUTINE OLSCAN,EST,MWRORK,Q,YIELD,QTRANS,CMPYLD,L ,M,NEW,
$ DER,Z,CONS,Y,w, VERT,CENT FLIKE,VERTR,VERTE,AHAT,VERTC,MPLUS,
$ RADJ,ADJYLD,CONNSD)

DIMENSION G(N,M),VERT(MPLUS,M),CENT(M),FLIKE(MPLUS),YIELD(N),
$ CMPYLD(M),EST(N),OTRANS(M,N),W(N)Y,Y(N),L(M),MANORK(M),NEW(N),
$ DER(M,M),VERTR(M), VERTE (M), AHAT (M), VERTC(M),Z(M,N),CONS(M,1),
$ A(325),CONDSD(M),ADJYLD(N,1),QADJ(N,M)

REAL NEW

WRITE(H,200)

200 FORMAT{20X, 'DATA MATRIX!,/,/)

21
10
c

22
C
c
¢
23

¢

BO 10 I=1,N
READ (9, %) (R(I,J),J=1, M) NEW(T),Y(I)
WRITE(6,2101(0(¢T,J),J51eM)
0 FORMAT(3X,25F4,0)
CONTINUE

WRITE(6,220)
0 FORMAT (1#1)

CALCULATE THE YIELDS AND ADJUST FOR UNEQUAL VARIANCES,

WRITE(6,230)
0 FORMAT (14X, VUNITH, 13X, YUNITS TESTED!, 15X, 'UNITS ACCEPTED!,
$ 14X, YUNIT YIELD!,13X,'ADJUSTED YIELD?,/)

DO 15 i=t,N
YIELD(I)SY(TI)/NEW(I)
W(T)=SQRT((NEA(I)=Y (]

IV/ZANEWCIINY LT ))
ADJYLD(I,33=ALOGCYIELD(

/{
I)I/W(D)
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DO 20 J=1'M
QADJ(T,J)=Q{I,J)/W(])
20 CONTINUE
WRITE(O,240)T ,NEWCT), Y(IJ,YIELD(I),ADJIYLD(I,1)
15 CONTINUE

C
C DETERMINE THE TRANSPQOSE OF THE ADJUSTED O MATRIX,
c

DO 25 I={,N

0O 30 J:l;M

QTRANS(J,13=QADJ(1,J)
30 CONTINUE
25 CONTINUE

c
C NOW WE CAN PERFORM THE ACTUAL REGRESSION,
¢
CALL GMPRD(QTRANS,QADJ,DER,M,N,M)
C

¢ THE MATRIX DER CONSISTS OF NON NFGATIVE ENTRIES, HENCE WE CAN
C SCALE THE MATRIX SO THAT THE INVERSE OF A MATRIX WITH A SMALLER
C RANGE OF VALUES CAN RE DETERMINED, THIS WILIL REDUCE THE CHANCES
€ OF THE PROGRAM CRASHING THROUGH A REGISTER OVERFLOW QR UNDERFLOW,
c
Z2=30000,xFLOAT(N)
(
PO 35 J=t .M
DO 40 JJz1,M
DERCJ,JJ)=DER(J,JJI722
40 CONTINUE
35 CONTINUE
c
c
C WE DETERMINE THE INVERSE 0OF DER USING THE SSP SUBROQUTINE SINMV
C WHICH DEYERMINES THE INVERSF OF PUGSITIVE DEFINITE SYMMETRIC MATRICES,
¢

¢

LSUM=9

DO 45 J=1,M
DO S0 K=it,J
LSUMzL SUM+1
ACLSUMYSDER(J,K)
50 CONTINLE
a5 CONTINUE

¢
EPS=,00}
CALL SINV(A,M,EPS,IER)
LSUM=0
c .
DO 85 Jai,M
DO 60 k=i,J

LSUMzL UM+

DER(J,K)=A(LSUM)

DER(K,J)ZDER(J,K)
60 CONTINUE
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¢ NOW
C CAN

70
65

230
260

CIOIOO

90
85
¢

o
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CONTINUE

WE HAVE TO RESTORE DER T0O ITS ORIGINAL SCALING BEFORE WE
Use I,

DO 65 J=i,M

DO 70 JJ=i,M
DER(J,JJI=DER(J,JJ)/Z2
CONTINUE

CONTINUE

CALL GMPRD(DER,GTRANS,Z,M,M,N}
CALL GMPRD({Z2,ADJYLD,CONS,M,N,1)

DO 75 J=§i,M
CMPYLD(J)I=EXP(CONS(J, 1))
CONTINUE

WRITE(6,220)

WRITE(6,250)

FORMAT (30X, *STARTING VALUES FOR THE SIMPLEX PROCEDURED'}
WRITE(6,260)(1,CMPYLD(I),I=1,M)

FORMAT(1SX, ICOMPONENT YIELD(',I2:') = 1,F1S,7)

ALPHAZL 0

BETA=,S

GAMMAZY S

DETERMINE THE VERTICES OF AN M DIMENSIONAL SIMPLEX WITH WHICH TO
START THE SIMPLEX PROCEDURE,

NCOUNT=0
NSTOP=Mx1S
WRITE(6,220)

DO 80 J=i,M
VERT(1,J)=sCMPYLD(J)
CONTINUE

DO 85 I={,M

DO 90 J=z1,M

VERT(I+1,J)=CMPYLD(J)

IFCI EQJIVERT (I+1,J)=CMPYLD(J)e,0005
CONTINUE

CONTINUE

CALL XCALCN,M,Q,MPLUS,VERT,FLIKE,AMAT,Y,NEW)

C AT THIS POINT WE CaN ACTUALLY BEGIN THE SIMPLEX PROCEDURE,

c
500

c

IF(NCOUNT ,GE ,NSTOP)Y GOTO 5590
CALL XCENT{M,MPLUS,VERT,CENT)
NCOUNT=NCOUNT 4

C FIRST wE TRY A REFLECTICN NF THE VERTEX WHICH GIVES A MINIMUM

C VALUE TO THE LIKELIHOOD FUNCTION,



92
PROGRAM LISTING - SIMPLEX (Cont'd)

CALL XREF (M,MPLUS,ALPHA,VERT,CENT,VERTR)
FLIKER=XF (N,M,Q,VERTR,Y,NEW)
TF(FLIKE(!),GE FLIKER,AND,FLIKER,GE,FLIKE(M))GOTD 510
IF(FLIKER,GT,FLIKE(1)) GOTO 520
IF(FLIKE(M),GT FLIKERAND,FLIKER,GT FLIKE(M+1)) GOTD 530
IF(FLIKE(M#1),GTFLIKER) GOTO 540
WRITE(6,270)
70 FORMAT(10X,!PROCEDURE HALTED!)
RETURN

8wV e

L2 TS LV

C IF CONDITIONS OF STATEMENT | ARF SATISFIED, WE REPLACE THE VERTEX WITH
C MINIMUM LIKFLIHOOD FUNCTION WITH THE REFLECTED POINT AND THEN RESTART
C THE PROCEDURE,
¢
510 CALL XPLACE(M,MPLUS,VERT,FLIKE,VERTR,FLIKER)
WRITE (6,280)NCOUNT, FLIKEC(L)
280 FORMAT (10X, INCOCUNT =1,14,10X,'REFLECTION!,9X,LIKELIHOOD = !,
$ £18,10)
GOTO S00
c
C IF CONDITIONS OF STATEMENT 2 ARFE SATISFIED WE TRY AN EXPANSION AND
C THEN RESTARY THE PROCEDURE,
c
520 CALL XPAND(M,GAMMA,VERTE,CENT,VERTR)
FLIKEE=XF(N,M,Q,VERTE,Y,NEW)
IF(FLIKEE GT,FLIKEC(C1)ICALL XPLACE(M,MPLUS,YERT,FLIKE,VERTE,FLIKEF)
IF(FLIKEE LELFLIKE(1))CALL XPLACE(M,MPLUS,VERT ,FLIKE,VERTR,FLIKER)
WRITE(6,290)NCOUNT,FLIKE(1)
290 FORMAT (10X, 'NCOUNT =!,T14,10X,'EXPANSION!, 10X,
$ 'LIKELIHOOD = ',E18,10)
GOT0 500
c
C IF CONDITIONS OF STATEMENT 3 ARF SATISFIED WE TRY A CONTRACTYION,
C IF SUCCESSFUL WE RESTART THE PROCEDURE, OTHERWISE WE SHRINK THE
C SIMPLEX ABOUT THE POINT WITH THE HIGHEST LIKELIROOD VALUE,
c
530 CALL XCONTR(M,MPLUS,BETA,VERT,VERYC,CENT)
FLIKEC=XF( N,M,G,VERTC,Y,NEW)
IFCFLIKEC,GE FLIKE(M+1)) GOTO 540
IF(FLIKE(MeY),GT FLIKECICALL XPLACE(M,MPLUS,VERT,FLIKE,VERTC,
$ FLIKEL)
WRITE (6,300)INCOUNT,FLIKE (1)
300 FORMAT (10X, !NCOUNT =%,T14,10X,'CONTRACTION!,10X,
8 'LIKELIHOOD = ',E18,10)
GOTO 500
€
€ IF CONTRACTICON FAILS WE SHRINK THE SIMPLEX ABOUT THE VERTEX WHICH
C HAS THE GREATEST LIKELIHOND VALUE,
c
540 CALI, XSHR({M,MFLUS,YERT,FLIKE)
CALL XCALC(N,M,R,MPLUS,VERT,FLIKE,AHAT,Y, NEW)
WRITE (6, 310INCOUNT,FLIKE (1) '
310 FORMAT (10X, INCOUNT =7,14,10X, 'SHRINKt,13%,'LIKELIHOOD = 1,
$ Ei8,10)
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PROGRAM LISTING - SIMPLEX (Cont'd)

GOTO S00
E DETERMINE THE UNIT YIELDS IN ORNER TO ESTIMATE THE COVARIANCE MATRIX,
gso LSUM=0,0
‘ DO 95 I=1,N

W(I)=0,0

DO 100 J=1,M
WET)=w(I)+Q(I,J)*ALOGCVERT(1,J))
100 CONTINUE '
WIT)=SEXP(W(T))
9% CONTINUE

C
C ESTIMATE THE VARIANCE=COVARIANCE MATRIX,
¢
DO 105 J=ti,M
DO 110 K=1,J
LSUM=LSUMeY
ACLSUM)=0,0
C

DO 115 I=1,N
IF(G(1,J),EQ,0,0)G0T0 {15
IF(Q(I,K),EQ,0,0)60T0 115
XNUMSNEW(T)I*G (T, K)2Q(1,J) %W (1)
DEN=VERT(1,J)sVERT(1,K)*(1,0=8 (1))
ACLSUMY=ACLSUMY +XNUM/DEN

115 CONTINUE

IF(K, EQ,JYCONDSD(JI=L,0/SART(A(LSUM))
ACLSUMY=A(LSUMY/Z2Z
110 CONTINUE
105 CONTINUE

C
EPS=10,E=S
CALL SINV(A,M,EPS,IER)
LSUM=(

C

DO 120 J=1,M
DO 129 K=1,J
LSUM=L BUMat
DERC(J,KI=A(LSUM)/Z2
DER(K,J)=DER(J,K)
125 CONTINUE
120 CONTINUE

WRITE(6,220)
WRITE(6,320)

320  FORMAT(50X, 'COVARIANCE MATRIX!,/)
WRITE(6,330)(J,J=1,M)

330 FORMAT(16(13X,12),/)

DO 130 J=i M
WRITE(6,340 ), (DER(I,J1,151,))
340 FORMAT (2X,12,16(2X,E13,7))



PROGRAM LISTING - SIMPLEX (Cont'd)

130 CONTINUE

c

C DETERMINE APPROXIMATE CONFIDENCE INTERVALS FOR QUR COMPONENT
C FAMILY YIELD ESTIMATES,

c

WRITE (6,220)
WRITE (6,350)
350 FORMAT(25X, 'APPROXIMATE 95% CONFIDENCE INTERVALS FOR!,
$ | COMPONENT YIELDS#'y7,/)
WRITE (6,360) 4 -
360 FORMAT(7X, 'COMPONENT!,6X, 'ESTIMATED!, 8%, TUNCONDITIONALY,
$ 16X, 1CONDITIONAL t)
WRITE(6,370)
370  FORMAT(8X, tFAMILY!,10X, 'YIELD!,10X, 'VARTANCE C,I,',
$ 16X, 'VARIANCE C,1,!,/)
WRITE C6,380)
380 FORMAT(10X,2(!'w!),10X,8('=1),6X,19(1=1),5%,23('=1))

DO 135 J=i,M
COMPLB=VERT(1,J)=1,964SQRT(DER(J,J))
COMPUB=ZVERT(1,J)+1,9623GRT(DER(J,J))
CONDLB=VERT(1,J)=1,96+CONDSD(J)
CONDUBSVERT ({,J)+1,96«CONDSD(J)
. WRITE(6,390)J,VERT(1,J),C0MPLB,COMPURB,CONDLB,CONDUB

390 FDRHATHOXoIE,lOX,FB,S,'2';5)(,'(',F"B,S,',',FB,S,’)?;
$ SN (1 ,F10,5,4,1,F10,5,1)1")

135 CONTINUE

c

C PRINY OQUY TRE ESTIMATED YIELD AND COMPARE WITH THAT OBSERVED,

c
WRITE(6,220)
WRITE(6,400)

400 FORMAT (99X, TUNIT!, 11X, 'YIELD ESTIMATE!,9X,
$ VOBSERVED YIELD!',4X,'95% C,I, FOR OBSERVED YIELD!,/)
WRITE(6,410)

410 FORMAT (10X,2('»1),2015%,8(!'m1)),15X,19(!'=!))

DO 146 I=1,N

FAC=YIELD(I)Ix(1,0=YIELD(I))/NEW(])

FACS1,96%SGRT (FAC)

BINLBzYIELD(L)wFAC

BINUB=YIFLD(1)eFAC

WRITE (6,420)1,W(I), YIELD(I),BINLB,BINUB
420  FORMAT (10X, 12,2015 FB8,5) 15X, (1, F8,5,1,1,F8,5,1)1)
140  CONTINUE

RETURN
END
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SUBROUTINE LISTING - XCALC

SUBROUTINE XCALC(N,M,Q,MPLUS,VERT,FLIKE,AHAT,Y,NEW)
¢
C THIS SURROUTINE CALCULATES THE VALUES OF THE LIKELIHOOD FUNCTION AT
C ALL OF THE VERTICES AND SORTS THE VERTICES IN ORDER OF SIZE OF THEIR
C LIKELIHOOD FUNCTIONS (LARGEST 70O SMALLEST),
c
DIMENSION VERT(MPLUS,M),Y(N),NEW(N) ,FLIKE (MPLUS)  ARAT(M),3(N,M)
REAL NEW

DO 10 I=1,MPLUS
DO 15 J=i,M
AHAT(J)=SVERT(I,J)
1 CONTINUE
FLIKE(T)=XF(N,M,Q,AHAT,Y,NEW)
10 CONTINUE

DO 20 I=1,M
IPLUS=T+1
DO 25 1l=1PLUS,MPLUS
IF(FLIKE(I),GE,FLIKECII)) 607D 25
DO 30 J=i,M
YEMP=VERT(I,J)
VERT(I,J)=VERT{II,J)
VERT(I1,J)=TEMP

30 CONTINUE
TEMPEFLIKE(])
FLIKE(I)=FLIKE(II)
FLIKE(ITI)=TEMP

es CONTINUE

20 CONTINUE

RETURN
END
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SUBROUTINE LISTING - XPLACE

SUBROUTINE XPLACE (M,MPLUS,VERT,FL IKE,VERTR,FLIK)

¢ |
C THIS SUBROUTINE PLACES OUR NEW VERTEX IN THE PROPER ORDER AMONGST THE
C OTHER VERTICES

¢

c
C REPLACE THE VERTEX WITH THE LEAST LIKELIHOOD RY OUR NEWLY CHOSEN

€ VERTEX,
c

DIMENSION VERT(MPLUS,M),FLIKE(MPLUS),VERTR(M)

FLIKE(MPLUS)I=FLIK

DO 10 J=1,M

VERT(MPLUS,J)SVERTR(J)
10 CONTINUE

DO 15 I=1,M
IF(FLIKE(MPLUS=I) GE,FLIKE(MPLUS»I)IGOTD 500
0O 20 J=1,M
TEMFSVERY (MPLUS=T,J)
VERT(MPLUS»I,J)=VERT(MPLUS=I+1,J)
VERT (MPLLUS=]41,J)=STEMP

20 CONTINUE
TEMP=FLIKE (MPLLUS»I)
FLIKE(MPLUS=I)=FLIKE(MPLUSeT¢1)
FLIKE(MPLUS=I+1)=TERM

15 CONTINUE

- C
500 RETURN
END
SUBROUTINE LISTING - XREF
SUBROUTINE XREF(M,MPLUS,ALPHA,VERY,CENT,VERTR)
¢

C THIS SUBROUTINE FINDS A POINT REFLECTED THWROUGH THE CENTROID
C FROM THE VERTEX AT WHICH THE FUNCTION IS MINIMUM,
C
DIMENSION VERT(MPLUS,M),CENT(M),VERTR(M)
DO 10 J=i,M
VERTR(JIZ(1,0+4ALPHAYACENT (J)wALPHARVERT (MPLUS, )
10 CONTINUE

RETURN
END



FUNCTION LISTING - XF

FUNCTION XF(N,M,Q,AHAT,Y,NEW)

o
C THIS FUNCTION SUBPROGRAM DETERMINES THE LOGARITHM OF THE
C LIKELIHOOD FUNCTION AT A PARTICULAR VERTEX, THE LIKELIHOOD
C FUNCTION WILL HAVE A MAXIMUM AT THE SAME POINT AS THE L0OG
C OF THE LIKELIHOOOD FUNCTION,
¢

DIMENSION Q(N,M),NEW(INY,Y(N),AHAT (M)

REAL NEW

XF=0,0

DO 15 Is31,N

XK=0,0

DO 25 J=i,M

XK=XK4Q (1,J)%ALOG(AHAT (J))
25 CONTINUE
1F (XK,GE,0,0)G0TQ 35
XK2Y (T)&XK4 (NEW(T)=Y(I)I*ALOG(1,0=EXP(XK))

XF=XF+XK
15 CONTINUE

RETURN
35 XFz16,E=65
RETURN

END

SUBROUTINE LISTING - XCONTR

SUBROUTINE XCONTR(M,MPLUS,BETA,VERT,VERTC,CENT)
c /
C THIS SUBRDUTINE DECREASES THE SI1ZE OF THE SIMPLEX BY MOVING THE
C REFLECTED VERTEX IN,
(o

o

DIMENSION VERT(MPLUS, M), VERTC(M),CENT(M)

DO 10 J=1,M
VERTC(J)=BETAAVERT(MPLUS,J)+(1,0=BETAYACENT(])
10 CONTINUE

RE TURN
CEND

97
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SUBROUTINE LISTING - XCENT

SUBRQUYINE XCENT(M,MPLUS,VERT,CENT)
C THIS SUBROUTINE LOCATES THE CENTROID OF THE SIMPLEX EXCLUDING THE
C VERTEX HAVING THE LEAST LIKELIHOODD, -
C
DIMENSION VERT(MPLUS,M),CENT (M)
DO 15 I=1,M
CENT(I1)=0,0
DO 25 J=i,M
CENT(I)=CENT(IY+VERT(J, 1)
25 CONTINUE
CENT(I)=CENT(I)/FLOAT(M)
15 CONTINUE
RETURN
END

SUBROUTINE LISTING - XSHR

SUBROUTINE XSHR(M,MPLUS,;VERT,FLIKE)
C
C THIS SUBROUTINF SHRINKS THE SIMPLEX,RETAINING THE VERTEX WITH THE
C MAXIMUM L IKELIHOOD,
c
DIMENSION VERT(MPLUS,M),FLIKE (MPLUS)
DO 1S I={,M
DO 25 J=t,M
VERTLI#1,J)S(VFRT(I+1,J)&VERT(1,J))/2,0
es CONTINUE
i5 CONTINUE
RE TURN
END
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SUBROUTINE LISTING - XPAND

SUBROUTINE XPAND(M,GAMMA,VERTE ,CENT,VERTR)

HIS SUBROUTINE EXPANDS THE REFLECTION IN THE DIRECTION ALONG WHICH
FURTHER [MPROVEMENT OF THE LIKELIHOOD VALUE I5 EXPECTED

DIMENSION VERTE (M), CENT(M),VERTR (M)
DO 10 J=1,H

VERTF (J)=GAMMARVERTR(J) +(1,0mGAMMA) #CENT ()
CONTINUE

RETURHN
END
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