DIRECT VARIATIONAL METHOD OF

ANALYSIS FOR ELLIPTIC PARABOLOIDAL SHELLS OF TRANSLATION

BY
CHUNG-LI SUN

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PAR'SIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ENGINEERING

CIVIL ENGINEERING AND ENGINEERING MECHANICS HAMILTON, ONTARIO

TITLE: Direct Variational Method of Analysis for Elliptic Paraboloidal Shells of Translation

AUTHOR: Chung-li Sun, B.S. National Taiwan University (China) SUPERVISOR: Dr. G. AE Oravas

NO. OF PAGES: xiii, 96

SCOPE OF CONTENTS:
The Rayleigh-Ritz Method of Trial Function has been adopted to solve problems of translational shells under uniform external pressure. The basic energetical expressions have been written in terms of direct tensor notation. The stress-strain displacement relations are given in linear sense. Three different kinds of boundary conditions --- all four edges fixed, one paix of edges fixed and another pair of edges simply supported, and all four edges simply supported ---- have been analysed. The stress and moment resultants at different points of the shell have been computed by means of IBM 7040 , and are plotted into curves and figures to show their variations. The convergence of the displacement function u_{z} is roughly verified. Certain comparison with othex established results have been made. The results obtained by the present approach are satisfactory, at least from an engineering point of view.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. G. AF Oravas, chairman of his supervisory committee, for the consistent encouragement and guidance throughout the entire period of this study. The author also extends his thanks to Dr. J. Schroeder, Professor of Civil Engineering at the University of Waterloo and former lecturer of the Department of Civil Engineering and Engineering Mechanics at McMaster University, for his encouragement and advice. Finally, the author is grateful to the National Research Council of Canada whose award made it possible for the author to carry out this study.
NOTATION
CHAPTER I - INTRODUCTION 1
CHAPTER 2 - ENERGY METHOD IN ANAJYZING THIN SHALLOW TRANSLATIONAL SHELLS, 2-1 GENERAL EQUATION OF STRAIN ENERGY FORTHIN SHALLOW SHELLS
2-2 FORMULATION OF ELLIPTIC PARABOLOIDAL SHELLS OF TRANSLATION 5
2-3. SHELLS WITH ALL FOUR EDGES FIXED 9
2-4 SHELLS WITH ONE PAIR OF EDGES FIXED AND ANOTHER PAIR OF EDGES SIMPLY SUPPORTED 13
2-5 SHELLS WITH ALL FOUR EDGES SIMPLY SUPPORTED 14
CHAPTER 3 - APPLICATIONS 16
3-1 CONVERGENCE OF THE VERTICAL DISPLACEMENT FUNCTION 1.6
3-2 THIN SHALLOW TRANSIATIONAL SHEILS 23
3-2-1 SHELIS WITH ALL FOUR EDGES FIXED 23
3-2-2 SHELLS WITH ONE PAIR OF EDGES FIXED AND ANOTHER PAIR OF EDGES SIMPLY SUPPORTED 36
3-2-3 SHELLS WITH ALL FOUR EDGES SIMPLY SUPPORTED 36
3-3 SPECIAL CASE - THIN SHALLOW SPHERICAL SHELI 36
3-3-1 SHELLS WITH ALL FOUR EDGES FIXED 36
3-3-2 SHELLS WITH ONE PAIR OF EDGES FIXED AND ANOTHER PAIR OF.EDGES SIMPLY SUPPORTED 52
3-3-3 SHELLS WITH ALL FOUR EDGES SIMPLY SUPPORTED 52
3-4 INFLUENCE OF MIDDLE SURFACE STRAINS 52
3-5 COMPARISON OF SOLUTIONS BY ENERGY.METHODWITH SOARE'S METHOD 64
CHAPTER 4 - CONCLUSION 68
APPENDIX A - DERIVATION OF STRAIN ENERGY EXPRESSION FOR SHALLOW SHELLS - BY J. SCHROEDER 70
APPENDIX B - DETERMINATION OF FOURIER COEFFICIENTS FOR VERTICAL DISPLACEMENT FUNC؟ION - FOR SHELLS WITH FIXED EDGES 74
APPENDIX C - DERIVATION OF STRESS RESULTANT AND STRESS COUPLES 80
APPENDIX D - DETERMINATION OF FOURIER COEFFICIENTS FOR MEMBRANAL DISPLACEMENT FUNCTIONS 86
BIBIIOGRAPHY 95

A
A_{1}, A_{2}
$A_{m n}$
C_{1}, C_{2}, C_{3}
D, D^{\prime}
E
$F_{i j}^{(\sigma)}$

H
$K_{1}^{(n)}, K_{2}^{(n)}, K_{X}^{(n)}, K_{Y}^{(n)}$
$K_{1}^{(g)}, K_{2}^{(g)}$
$\delta_{K}{ }^{(g)}$
$\delta_{K}{ }_{1}^{(n)}, \delta_{K_{2}}^{(n)}$
$M_{x y}^{(\sigma)}, M_{Y x}^{(\sigma)}$
$M_{X X}^{(\sigma)}, M_{Y y}^{(\sigma)}$
P

R

S
$\mathrm{U}^{(S)}$
V
W
a, b
$\bar{e}_{x}, \bar{e}_{y}, \bar{e}_{z}$
h

Surface Integral
Scale Factors
Fourier Coefficient of Vertical Displacement

Arbitrary Constants
As Defined in Section II-2
Young's Modulus
Stress Resultants of the Cross-Section Normal to i-Axis Acting in j-Direction, (i, j $=x, y, z$)

Rise of the Middle Surface of a Shell

Normal Curvatures Along Corresponding Directions

Geodesic Curvatures

Change of Geodesic Torsion
Change of Curvatures
Bending Stress Couples
Twisting Stress Couples
Uniform Vertical External Load
Radius of Curvature of the Middle Surface

Line Integral
Strain Energy, or Elastic Potential
Total Potential Energy
External Work
Lengths of Edges of the Middle Surface Measured in its Base Plane

Unit Vectors along x, y, z Directions
Thickness of the Shell

m, n, p, q, r, s	Indices of the Fourier Coefficient
\bar{r}	Position Vector
$\mathrm{u}_{1}, \mathrm{u}_{2}$	Membranal Displacements along Two Curvilinear Co-ordinates α_{1}, α_{2}
u_{3}	Normal Displacement
u_{x}, u_{y}	Membranal Displacements along Two Cartesian. Co-ordinates x, y
u_{z}	Vertical (Transverse) Displacement
x, y, z	Cartesian Co-ordinates
α_{1}, α_{2}	Curvilinear Co-ordinates on the Middle Surface
$\epsilon_{11}, \epsilon_{12}, \epsilon_{22}, \epsilon_{x x}, \epsilon_{y y}, \epsilon_{z z}$	Strains along Corresponding Directions
ν	Poisson's Ratio
∇^{2}	Laplace Operator
μ	Lame's Elastic Constant

LIST OF FIGURES

Figure Page
I-1 1
I-2 1
I-3 1
II-1 7
II-2 7
II-3 11
3-1 Distribution of Normal Displacement u_{z} ofShallow Elliptic Paraboloidal Shell of Translationwith Fixed Boundaries. ($\mathrm{a}=40^{\prime}, \mathrm{b}=40^{\prime}$).22
3-2 Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries 25
3-3 Distribution of Stress Couple $\mathrm{M}_{\mathrm{yx}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries 26
3-4 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries 27
3-5 Distribution of Stress Resultant $F(\sigma)$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries 29
3-6a Distribution of Stress Couple. $M_{x y}^{(\sigma)}$ Along Section $y / b=0.4$ 30
3-6b Distribution of Stress Couple $M_{x y}^{(\sigma)}$ Along Section $y / b=0.2$ 30
3-6c Distribution of Stress Couple $M_{x y}^{(\sigma)}$ Along Section $y / b=0.0$ 31

3-7a Distribution of Stress Couple $\mathrm{M}_{\mathrm{yx}}^{(\sigma)}$ Along Section $x / a=0.4$
3-7b Distribution of Stress Couple $\mathrm{M}_{\mathrm{yx}}^{(\sigma)}$ Along Section $x / a=0.2$
3-7c Distribution of Stress Couple $\mathrm{Mx}_{\mathrm{Yx}}^{(\sigma)}$ Along Section $\mathrm{x} / \mathrm{a}=0.0$
3-8 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries ($\mathrm{a}=70^{\prime}$, $\mathrm{b}=35^{\prime}$)
3-9 Distribution of Stress Resultant $F_{Y Y}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)

3-10a Distribution of Normal Displacement u_{z} of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\circ}$)

3-10b Distribution of Normal Displacement u_{z} of Shallow Elliptic Paraboloidal Shell of Translation with Fixed Boundaries ($\mathrm{a}=70^{\prime}$, $\mathrm{b}=35^{\prime}$)
3-11 Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Mixed Boundary Conditions
3-12 Distribution of Stress Couple $M_{Y X}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Mixed Boundary Conditions
3-13 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Mixed Boundary Conditions ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)
3-14 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{yy}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Mixed Boundary Conditions ($\mathrm{a}=70^{\prime}$, $\mathrm{b}=35^{\prime}$)

3-15a Distribution of Normal Displacement u_{z} along $\mathrm{y} / \mathrm{b}=$ constants

3-15b Distribution of Normal Displacement u_{z} along
$x / a=$ constants
3-16. Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)
3-17 Distribution of Stress Couple $M_{Y x}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)
3-18 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)
3-19 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{Yy}}^{(\sigma)}$ of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)

3-20a Distribution of Normal Displacement u_{z} of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)

3-20b Distribution of Normal Displacement u_{z} of Shallow Elliptic Paraboloidal Shell of Translation with Simply Supported Boundaries ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$)46

3-21 Distribution of stress Couple $M_{x y}^{(\sigma)}$ of Shallow Spherical Shell with Fixed Boundaries
3-22 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Spherical Shell with Fixed Boundaries49

3-23a Distribution of Stress Couple $M_{x y}^{(\sigma)}$ Along Section $y / b=0.4$
3-23b Distribution of Stress Couple $M_{x y}^{(\sigma)}$ Along Section $\mathrm{y} / \mathrm{b}=0.2$
3-23c Distribution of Stress Couple $M_{x y}^{(\sigma)}$ Along Section $y / b=0.0$

3-24 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow \quad Spherical Shell with Fixed Boundaries $\left(\mathrm{a}=\mathrm{b}=40^{\prime}\right) \quad 53$
3-25 Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Shallow Spherical Shell with Mixed Boundaries ($a=b=40^{\prime}$) 54

3-26 Distribution of Stress Couple $M_{y x}^{(\sigma)}$ of Shallow Śsherical Shell with Mixed Boundaries ($\mathrm{a}=\mathrm{b}=40^{\prime}$) 55
3-27 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Shallow Spherical Shell with Mixed Boundaries ($\mathrm{a}=\mathrm{b}=40^{\prime}$) 56
3-28 Distribution of Stress Resultant $\mathrm{F}_{\mathrm{Yy}}^{(\sigma)}$ of Shallow Spherical Shell of Mixed Boundaries ($a=b=40^{\prime}$)

3-29 Distribution of Normal Displacement u_{z} of Shallow Spherical Shell with Mixed Boundaries ($a=b=40^{\circ}$)
3-30 Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Shallow Spherical Shell with Simply Supported Boundaries $9 \mathrm{a}=\mathrm{b}=40^{\prime}$)
3-31 Distribution of Stress Resultant $F_{x x}^{(\sigma)}$ of Shallow Spherical Shell with Simply Supported Boundaries $\left(a=b=40^{\circ}\right)$
3-32 Distribution of Normal Displacement u_{z} of Shallow Spherical Shell with Simply Supported Boundaries $\left(a=b=40^{\circ}\right)$
3-33 Comparison of Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of a Spherical Translational Shell with Fixed Boundaries ($a=40^{\circ}, b=40^{\circ}$)
3-34 Comparison of Distribution of Stress Resultant $F_{x x}^{(\sigma)}$ of Shallow Spherical Translational Shell with Fixed Boundaries ($\mathrm{a}=40^{\prime}, \mathrm{b}=40^{\prime}$)
3-35 Comparison of Distribution of Stress Couple $M_{x y}^{(\sigma)}$ of Spherical Translational Shell, with Simply Supported Boundaries, between SOARE'S Solution and AUTHOR'S Solution ($a=40^{\prime}, b=40^{\prime}$)

Figure

3-36 Comparison of Distribution of Stress Resultant $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ of Spherical Translational Shell, with Simply Supported Boundaries, between SOARE'S Solution and AUTHOR'S Solution ($\mathrm{a}=40^{\prime}, \mathrm{b}=40^{\prime}$)65

LIST OF TABLES

Table Page
III-1 20
III-2 24
III-3 60
III-4 67

INTRODUCTION

By definition, a shell is a three dimensional body

FIGI-1
bounded by two curved surfaces whose one dimension is negligibly small compared with the other two dimensions. (See Fig. I-1) The surface which lies at equal distances between these two bounding external surfaces defines the middle surface of the shell.

FIG. I-2

FIG.I-3 By definition, a shallow shell has a configuration that its rise of its middle surface H from the base plane is less than $1 / 5$ of the projected length of the shortest edge of the middle surface measured in its base plane. If the shell in Fig. I-2 is shallow, then its geometric configuration satisfies the condition $H<b / 5$, for $b<a$. A shell of translation is a shell whose middle surface is generated by a curve translated along another fixed curve as shown in Fig. I-3. Therefore, a thin shallow translational shell is a shell which satisfies all the criteria mentioned above.

The functions chosen to describe the middle surface of thin shallow shells of translation are generally of the hyperbolic paraboloidal, elliptic paraboloidal or parabolic cylindrical type. The present investigation is restricted to the elliptic paraboloidal type of thin translational shell.

The purpose of this study, which was carried out in 1964 is to present a simple yet practical method for analyzing the transverse flexure of thin shallow translational shell structures of moderate proportions. The major purpose of this thesis lies in an attempt to develop some general solutions for the behaviour of the translational shell in transverse bending by means of variational trial-function technique in the form of the Rayleigh-Ritz method as expounded in COURANT texts in 1953 and 1965, by MORSE and FESBACH in 1953 and KOPAL in 1961. The exact general solution of the basic differential equations of such translational shells is still to be found. For general techniques of solution of differential equations see KOSHLYAKOV, SMIRNOV and GIINER in 1964. The major reason for the absence of a general exact solution lies presumably in the exceptional complexity of the basic differential equations and in the requirements imposed by the general boundary conditions.

For special types of boundary conditions,
Sergei A. AMBAPTSUMYAN in 1947, Konrad HPUBAN in 1953, and Wilhelm FLÜGGE and D.A. Conrad in 1959, have derived restricted solutions. In 1957, Gunhard AE. ORAVAS dexived a solution for a special type of such shells by using the DONNEL-MUSHTARI-VLASOV's equation of shallow thin shells, in combination with

Friedrich TÖLKE's pseudo-complex function method in order to arrive at the solution in the form of the stress function and normal displacement function representing a combined series of exponential and trigonometric functions. The Norwegian engineer Kristoffal APELAND developed a generalized D. BERNOULLI-LEVY semidirect solution for translational shells with various boundary conditions in 1961 by adopting AMBARTSUMYAN'S method. Some analyses and tests for translational shells over circular and rectangular bases have been carried out by Mario G. SALVADORI in 1956. In Europe, Pal CSONKA in 1955; Wolfgang zERNA in 1953; and his student Goswin MITTELMANN in 1958, contributed to the approximate momentless and flexural theory of thin translational shells. In 1959, the Italian engineer Pietro MATILDI analyzed shells of translation over rectangular and square bases by a method of superposition similar to 'IMOSHENKO's method for plates.

2-1. General Equation of Strain Energy for Thin Shallow Shells
The general expression of strain energy for thin elastic shallow shells has long been established by the use of the indirect scalar method. Recently, Dr. John SCHROEDER, formerly of McMaster University, derived it by means of direct tensor methods via kinematic considerations (see Appendix I). The final formulation is as follows $U=\mu \iint\left\{\left(\epsilon_{11}^{2}+\epsilon_{22}^{2}+2 \nu \epsilon_{11} \epsilon_{22}+2(1-\nu) \epsilon_{12}^{2}\right] \frac{h}{1-\nu}\right.$

$$
\left.+\left[\left(\delta K_{1}^{(n)}\right)^{2}+\left(\delta K_{2}^{(n)}\right)^{2}+2 \nu \delta K_{1}^{(n)} \delta K_{2}^{(n)}+2(1-\nu)\left(\delta K^{(g)}\right)^{2}\right] \frac{h^{3}}{12(1-\nu)}\right\}
$$

$$
\begin{equation*}
A_{1} A_{2} d \alpha_{1} d \alpha_{2} \tag{II-1-1}
\end{equation*}
$$

in which α_{1} and α_{2} denote the curvilinear co-ordinates on the surface of the shell. (see Fig. I-2) This expression encompasses both membranal strain energy

$$
U_{m}^{(s)}=\mu \iint\left[\epsilon_{11}^{2}+\epsilon_{22}^{2}+2 \nu \epsilon_{11} \epsilon_{22}+2(1-\nu) \epsilon_{12}^{2}\right] \frac{h}{1-\nu} A_{1} A_{2} d \alpha_{1} d \alpha_{2}
$$

and the tranverse flexural strain energy

$$
U_{f}^{(s)}=\mu \iint\left(\left(\delta K_{1}^{(h)}\right)^{2}+\left(\delta K_{2}^{(n)}\right)^{2}+2 \nu \delta K_{1}^{(n)} \delta K_{2}^{(h)}+2(1-\nu)\left(\delta K^{(g)}\right)^{2}\right] \frac{h^{3}}{12(1-\nu)} A_{1} A_{2} d \alpha_{1} d \alpha_{2}
$$

where

$$
\epsilon_{11}=\epsilon_{11}\left(\bar{r}_{0}\right)=\frac{1}{A_{1}} \frac{\partial u_{1}}{\partial \alpha_{1}}+\frac{1}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} u_{2}+k_{1}^{(n)} u_{3}
$$

$$
\epsilon_{22}=\epsilon_{22}\left(\bar{r}_{0}\right)=\frac{1}{A_{2}} \frac{\partial u_{2}}{\partial \alpha_{2}}+\frac{1}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{1}} u_{1}+k_{2}^{(n)} u_{3}
$$

$$
\epsilon_{12}=\epsilon_{12}\left(\bar{r}_{0}\right)=\frac{1}{2}\left[\frac{A_{2}}{A_{1}} \frac{\partial}{\partial \alpha_{1}}\left(\frac{u_{2}}{A_{2}}\right)+\frac{A_{1}}{A_{2}} \frac{\partial}{\partial \alpha_{2}}\left(\frac{u_{1}}{A_{1}}\right)\right]
$$

$$
\delta K_{1}^{(n)}=\left[\frac{1}{A_{1}} \frac{\partial}{\partial \alpha_{1}}\left(\frac{1}{A_{1}} \frac{d U_{3}}{\partial \alpha_{1}}\right)-K_{2}^{(g)} \frac{1}{A_{2}} \frac{\partial U_{3}}{\partial \alpha_{2}}\right]
$$

$$
\delta K_{2}^{(h)}=\left[\frac{1}{A_{2}} \frac{\partial}{\partial \alpha_{2}}\left(\frac{1}{A_{2}} \frac{\partial U_{3}}{\partial \alpha_{2}}\right)-K_{1}^{(g)} \frac{1}{A_{1}} \frac{\partial U_{3}}{\partial \alpha_{1}}\right]
$$

$$
\begin{aligned}
\delta K^{(g)}= & -\frac{1}{2}\left\{\frac{1}{A_{2}} \frac{\partial}{\partial \alpha_{2}}\left(\frac{1}{A_{1}} \frac{\partial u_{3}}{\partial \alpha_{1}}\right)-K_{2}^{(g)} \frac{1}{A_{2}} \frac{\partial u_{3}}{\partial \alpha_{2}}+\frac{1}{A_{1}} \frac{\partial}{\partial \alpha_{1}}\left(\frac{1}{A_{2}} \frac{\partial u_{3}}{\partial \alpha_{2}}\right)\right. \\
& \left.+K_{1}^{(g)} \frac{1}{A_{1}} \frac{\partial u_{3}}{\partial \alpha_{1}}\right\}
\end{aligned}
$$

Since the shell is very shallow and uniformly loaded, $K_{l}^{(g)}$ becomes zero and. u_{1}, u_{2} are of comparatively higher order than u_{3}, hence they are negligible in the expression (II-1-2). Furthermore, owing to the shallowness of the shell, it is admissible to approximate the strain components by their projections along the directions of the base Cartesian co-ordinates x and y. Also, it is reasonable to replace the normal displacement u_{3} by the vertical displacement u_{z}. After these simplifications, the equations (II-I-I) and (II-1-2) are reduced to the following forms:

$$
\begin{align*}
\epsilon_{x x}= & K_{x}^{(n)} u_{z}, \quad \epsilon_{y y}=K_{y}^{(n)} u_{z} \\
\delta K_{x}^{(n)}= & -\frac{\partial^{2} u_{z}}{\partial x^{2}}, \quad \delta K_{y}^{(n)}=\frac{\partial^{2} u_{z}}{\partial y^{2}}, \quad \delta K^{(g)}=-\frac{\partial^{2} u_{z}}{\partial x \partial y} \quad\left(I I-1-2^{\prime}\right) \\
U{ }^{(S)}= & \mu \iint\left\{\left(\epsilon_{x x}^{2}+\epsilon_{y y}^{2}+2 \nu \epsilon_{x x} \epsilon_{y y}\right] \frac{h}{1-\nu}\right. \\
& +\left[\left(\delta K_{x}^{(n)}\right)^{2}+\left(\delta K_{y}^{(n)}\right)^{2}+2 \nu \delta K_{x}^{(n)} \delta K_{y}^{(n)}+2(1-\nu)\left(\delta K^{(g)}\right)^{2}\right] \\
& \left.\frac{h^{3}}{12(1-\nu)}\right\} A_{1} A_{2} d \alpha_{1} d \alpha_{2} \\
= & \mu \iint\left\{\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] u_{z}^{2} \frac{h}{1-\nu}+ \\
& +\left[\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}\right)^{2}-2(1-\nu)\left(\frac{\partial^{2} u_{z}}{\partial x^{2}} \frac{\partial^{2} u_{z}}{\partial y^{2}}-\left(\frac{\partial^{2} u_{z}}{\partial x^{2} y}\right)^{2}\right)\right] \\
& \left.\frac{h^{3}}{12(1-\nu)}\right\} A_{1} A_{2} d \alpha_{1} d \alpha_{2}
\end{align*}
$$

2-2. Elliptic Paraboloidal Shells of Translation
For translational shells over square or rectangular bases, it is always possible to reduce the term $2(1-\nu)\left[\frac{\partial^{2} u_{z}}{\partial y^{2}} \frac{\partial^{2} u_{z}}{\partial y^{2}}-\right.$ $\left.-\left(\frac{\partial^{2} u_{z}}{\partial \partial y}\right)^{2}\right]$ in expression (II-1-3) to be identically zexo. This
can be demonstrated in various ways. The simplest way is by applying the method of integration by parts. Since

$$
\begin{aligned}
\iint_{A} \frac{\partial^{2} u_{z}}{\partial x \partial y} \frac{\partial^{2} u_{z}}{\partial x \partial y} d x d y= & \oint_{S} \frac{\partial^{2} u_{z}}{\partial x^{2} y}\left[\frac{\partial u_{z}}{\partial x}\right]_{-\frac{b}{2}}^{\frac{b}{2}} d x-\iint_{A} \frac{\partial u_{z}}{\partial x}\left[\frac{\partial^{3} u_{z}}{\partial x \partial y^{2}}\right]_{-\frac{a}{2}}^{\frac{a}{2}} d y \\
= & \oint_{S} \frac{\partial^{2} u_{z}}{\partial x \partial y}\left[\frac{\partial u_{z}}{\partial z^{2}}\right]_{-\frac{b}{2}}^{\frac{b}{2}} d x-\oint_{S} \frac{\partial u_{z}}{\partial x}\left[\frac{\partial^{2} u_{z}}{\partial y^{2}}\right]_{-\frac{a}{2}}^{\frac{a}{2}} d y \\
& +\iint_{A} \frac{\partial^{2} u_{3}}{\partial x^{2}} \frac{\partial^{2} u_{z}}{\partial y^{2}} d x d y
\end{aligned}
$$

for rectangular or square base plan, $\frac{\partial u_{3}}{\partial x}=0$ along the edges $y=$ constant, and $\partial^{2} u_{z} / \partial y^{2}=0$ along the edges $x=$ constant.

Hence, the first two integrals in the above expression become identically zero. Therefore, it gives

$$
\frac{\partial^{2} u_{z}}{\partial x^{2}} \frac{\partial^{2} u_{z}}{\partial y^{2}}-\left(\frac{\partial^{2} u_{z}}{\partial x \partial y}\right)^{2}=0
$$

This reduces the expression (II-1-3) to the following form

$$
\begin{align*}
& U^{(s)}=\mu \iint_{A}\left\{\left(\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] u_{z}^{2} \frac{h}{1-\nu}\right. \\
&\left.+\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}\right)^{2} \frac{h^{3}}{12(1-\nu)}\right\} A_{1} A_{2} d \alpha_{1} d \alpha_{2} \tag{II-2-1}
\end{align*}
$$

For a second degree shallow elliptic paraboloidal shell of translation, the variations of the normal curvatures at different points are usually so small that the normal curvature itself appears approximately as a constant. Moreover, if the thickness h of the shell is also assumed to be a constant, them: the energy expression (II-2-1) becomes

$$
\begin{align*}
U^{(s)}= & \frac{\mu h}{1-\nu}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \iint_{A} u_{z}^{2} A_{1} A_{2} d \alpha_{1} d \alpha_{2} \\
& +\frac{\mu h^{3}}{12(1-\nu)} \iint_{A}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}\right)^{2} A_{1} A_{2} d \alpha_{1} d \alpha_{2} \tag{II-2-2}
\end{align*}
$$

If the function of the middle surface is described in the EULERIAN form

$$
\bar{r}=x \bar{e}_{x}+y \bar{e}_{y}+z(x, y) \bar{e}_{z}
$$

where

$$
z(x, y)=\left(c_{1} x^{2}+c_{2} y^{2}\right)+c_{3}
$$

for parabolic generators shown in Fig. (II-1) and (II-2)

FIG. II -1

then

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 c_{1} x, \quad \frac{\partial^{2} z}{\partial x^{2}} \dot{-}-K_{x}^{(n)}=2 c_{1}, \quad \therefore c_{1}=-\frac{K_{x}^{(n)}}{2} \\
& \frac{\partial z}{\partial y}=2 c_{2} y, \quad \frac{\partial^{2} z}{\partial y^{2}} \doteq-K_{y}^{(n)}=2 c_{2}, \quad \therefore c_{2}=-\frac{K_{y}^{(n)}}{2}
\end{aligned}
$$

When $x=0, y=0, z=c_{3}=H$.

$$
\therefore z=-\frac{1}{2}\left(K_{x}^{(n)} x^{2}+K_{y}^{(n)} y^{2}-2 H\right)
$$

The position vector \bar{r} of any point P on the middle surface is

$$
\bar{r}=x \bar{e}_{x}+y \bar{e}_{y}+z \bar{e}_{z}
$$

$$
\begin{aligned}
= & x \bar{e}_{x}+y \bar{e}_{y}+\left[-\frac{1}{2}\left(K_{x}^{(n)} x^{2}+K_{y}^{(n)} y^{2}-2 H\right)\right] \bar{e}_{z} \\
\therefore & \frac{\partial \bar{r}}{\partial x}=\bar{e}_{x}-K_{x}^{(n)} x \bar{e}_{z}, \quad \frac{\partial \bar{r}}{\partial y}=\bar{e}_{y}-K_{y}^{(n)} y \bar{e}_{z} \\
& \frac{\partial \bar{r}}{\partial \bar{y}} \cdot \frac{\partial \bar{r}}{\partial y}=1+\left(K_{y}^{(n)}\right)^{2} y^{2}=A_{2}^{2}, \quad \therefore A_{2}=\left[1+\left(K_{y}^{(n)}\right)^{2} y^{2}\right]^{\frac{1}{2}} \\
& \frac{\partial \bar{r}}{\partial x} \cdot \frac{\partial \bar{r}}{\partial x}=1+\left(K_{x}^{(n)}\right)^{2} x^{2}=A_{1}^{2}, \quad \therefore A_{1}=\left[1+\left(K_{x}^{(n)}\right)^{2} x^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Expanding the expressions A_{1} and A_{2} into binomial series yields

$$
\begin{aligned}
& A_{1}=\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\cdots\right) \\
& A_{2}=\left(1+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}+\cdots\right) \\
\therefore & A_{1} A_{2}=\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}+\frac{1}{4}\left(K_{x}^{(n)}\right)^{2}\left(K_{y}^{(n)}\right)^{2} x^{2} y^{2}+\cdots\right)
\end{aligned}
$$

Since the shell is restricted to be a shallow one, $\left(K_{x}^{(h)} x\right)^{2},\left(K_{y}^{(h)} y\right)^{2}$ are assumed to be of much smaller magnitude in comparison with unity, therefore, it seems reasonable if the term $\frac{1}{4}\left(K_{x}^{(n)}\right)^{2}\left(K_{y}^{(n)}\right)^{2} x^{2} y^{2}$ is neglected as a small quantity. The same argument may be applied to the term $\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}$. For the time being, the term $\frac{1}{2}\left(K_{x}^{(n) \sigma^{2}}+\frac{1}{2}\left(K_{y}^{(n) 2} y\right.\right.$ is retained. Substituting expression $A_{1} A_{2}$ $\doteq 1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}$ in (II-2-2), where α_{1}, α_{2} now become x and $y, y i e l d s$

$$
\begin{aligned}
U^{(s)} & =\frac{\mu h}{(1-\nu)}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} u_{z}^{2}\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y \\
& +\frac{\mu h^{3}}{12(1-\nu)} \int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}\right)^{2}\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y
\end{aligned}
$$

Letting $\frac{\mu h}{1-\nu}=D^{\prime}$, and $\frac{\mu h^{3}}{6(1-\nu)}=D$, gives

$$
\begin{align*}
U^{(s)} & =D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2} u_{z}^{2}\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y \\
& +\frac{D}{2} \int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}\right)^{2}\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y(I I-2-3) \tag{II-2-3}
\end{align*}
$$

3-3. Shells with All Four Edges Fixed

For a shell with all four edges fixed, a function for u_{z} has been chosen to fulfill all the following geometric boundary conditions, say

$$
\begin{array}{ll}
u_{z}=0 & \text { when } \\
\frac{\partial u_{z}}{\partial x}=0, \frac{\partial u_{z}}{\partial y}=0 & x= \pm a / 2, y= \pm b / 2 \\
\frac{\partial^{2} u_{z}}{\partial x^{2}} \neq 0 & x= \pm a / 2 \\
\frac{\partial^{2} u_{z}}{\partial y^{2}} \neq 0 & y= \pm b / 2
\end{array}
$$

A suitable displacement function is

$$
\begin{equation*}
u_{z}=-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) \tag{II-3-2}
\end{equation*}
$$

Substituting this expression into (II-2-3), and integrating with respect to x and y, (see Appendix II) the following expression is obtained:
$U^{(s)}=D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \frac{3 a b}{4}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left(3+\frac{a^{2}}{4} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right.}{2}\right)^{2}+\right.$
$+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{S=0}^{\infty} A_{m r} A_{m s}\left(2+\frac{a^{2}}{6} \frac{\left(k_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+$
$+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(k_{y}^{(n)}\right)^{2}}{2}\right)+$
$\left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} A_{r p} A_{s q}\left(\frac{4}{3}+\frac{a^{2}}{9} \frac{\left(k^{(k)}\right)^{2}}{2}+\frac{b^{2}}{9} \frac{\left(k^{(n)}\right)^{2}}{2}\right)\right\}+$ $r \neq S \quad p \neq q$
$+\frac{2 D a b \pi^{4}}{a^{4}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left[(2 m+1)^{4}\left(3+\frac{a^{2}}{4} \frac{\left(k_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+\right.\right.$

$$
+(2 n+1)^{4}\left[\frac{3 a^{4}}{b^{4}}+\frac{a^{6}}{4 b^{4}} \frac{\left(K^{(n)}\right)^{2}}{2}+\frac{a^{4}}{4 b^{2}} \frac{\left(k_{y}^{(n)}\right)^{2}}{2}\right]^{2}+
$$

$$
+(2 m+1)^{2}(2 n+1)^{2}\left(2+\frac{a^{2}}{b^{2}}+\frac{a^{4}}{6 b^{2}} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{a^{2}}{6} \frac{\left(k_{y}^{(n)}\right)^{2}}{2}\right)+
$$

$$
\begin{align*}
& +\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{5=0}^{\infty} A_{m r} A_{m s}(2 m+1)^{4}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+ \\
& +\sum_{\substack{=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{r \neq s} \sum_{n=0}^{\infty} A_{r n} A_{s n}(2 n+1)^{4}\left(2 \frac{a^{4}}{b^{4}}+\frac{a^{6}}{6 b^{4}} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{a^{4}}{6 b^{2}} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right\} \tag{II-3-3}
\end{align*}
$$

The external work is easily found to be

$$
\begin{aligned}
W & =\int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}(-P)\left(u_{z}\right)\left(1+\left(K_{x}^{(n)}\right)^{2} x^{2} / 2+\left(k_{y}^{(n)}\right)^{2} y^{2} / 2\right) d x d y \\
& =a b\left[P \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\frac{a^{2}}{12} \frac{\left(k_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{12} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right]
\end{aligned}
$$

The total potential energy of this shell is

$$
\begin{equation*}
V=U^{(s)}-W \tag{II-3-4}
\end{equation*}
$$

The Stationary Potential Energy Principle is postulated as follows:
"Among all the displacements satisfying kinematic compatibility and given kinematic boundary conditions, those which satisfy the equilibrium conditions make the potential energy assume a stationary value".

$$
\delta V=0
$$

which leads to

$$
\frac{\partial V}{\partial A_{m n}}=0
$$

Let $D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]=\phi$
then
$\frac{3 \phi}{2}\left\{A_{m n}\left(3+\frac{a^{2}}{4} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+\sum_{r=0}^{\infty} A_{m r}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right.$
$\left.+\sum_{r=0}^{\infty} A_{r n}\left(2+\frac{a^{2}}{6} \frac{\left(k_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+\sum_{r=0}^{\infty} \sum_{p=0}^{\infty} A_{r p}\left(\frac{4}{3}+\frac{a^{2}}{9} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{9} \frac{\left(k_{y}^{(n)}\right)^{2}}{2}\right)\right\}+$ $r \neq m$
$r \neq m$ 妦 n
$+\frac{4 D \pi^{4}}{a^{4}}\left\{A_{m n}\left[(2 m+1)^{4}\left(3+\frac{a^{2}}{4} \frac{\left(K_{x}^{(h)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)^{2}+(2 n+1)^{4}\left(\frac{3 a^{4}}{b^{4}}+\frac{a^{6}}{4 b^{4}} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}+\frac{a^{4}}{4 b^{2}} \frac{\left(K_{y}^{(h)}\right)^{2}}{2}\right)^{2}\right.\right.$
$\left.+(2 m+1)^{2}(2 n+1)^{2}\left(\frac{2 a^{2}}{b^{2}}+\frac{a^{4}}{6 b^{2}} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{a^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right]+$
$+\sum_{\substack{r=0 \\ r \neq 1}}^{\infty} A_{m r}(2 m+1)^{4}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(k_{y}^{(n)}\right)^{2}}{2}\right)+\sum_{\substack{r=0 \\ r \neq m}}^{\infty} A_{r n}(2 n+1)^{4}\left(\frac{2 a^{4}}{b^{4}}+\right.$ $\left.\left.+\frac{a^{6}}{6 b^{4}} \frac{\left(K^{(n)}\right)^{2}}{2}+\frac{a^{4}}{6 b^{2}} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right\}=P\left(\frac{24+a^{2}\left(K_{x}^{(n)}\right)^{2}+b^{2}\left(K_{y}^{(n)}\right)^{2}}{24}\right) \quad(I I-3-5)$

After the numerical values of $h, a, b, \mu, \nu, K_{x}^{(n)}, K_{y}^{(n)}$ are given, the Fourier coefficients $A_{m n}$ can be solved by substituting the values m, n from O to k (k is any desirable integer) into expression (II-3-5). Usually, a set of simultaneous equations containing $A_{m n}$ as unknown is obtained through this procedure.

Once the Fourier coefficients are found, the vertical displacement u_{z} of the shell can be obtained by substituting these coefficients into expression (II-3-2), and all stress resultants and stress couples can be evaluated by the expressions (II-3-6), (see Fig. (II-3)). The derivation of these expressions is given in Appendix III.

$$
\begin{aligned}
F_{x x}^{(\sigma)} & =D^{\prime}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) u_{z} \doteq D^{\prime}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) u_{z} \\
& =-D^{\prime}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
F_{y y}^{(\sigma)}= & D^{\prime}\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) u_{z} \doteq D^{\prime}\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) u_{z} \\
= & -D^{\prime}\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right)_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) \\
M_{x y}^{(\sigma)}= & D \frac{\partial^{2} u_{3}}{\partial x^{2}} \doteq D \frac{\partial^{2} u_{z}}{\partial x^{2}} \\
= & D \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left[\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right] \\
M_{y x}^{(\sigma)}= & -D \frac{\partial^{2} u_{3}}{\partial y^{2}} \doteq-D \frac{\partial^{2} u_{z}}{\partial y^{2}} \\
= & -D \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left[\left(\frac{2(2 n+1) \pi}{b}\right)^{2}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) \cos \frac{2(2 n+1) \pi y}{b}\right] \\
M_{x x}^{(\sigma)}= & D \frac{\partial^{2} u_{3}}{\partial x_{y}^{\partial y}}=D \frac{\partial^{2} u_{z}}{\partial x \partial y} \\
= & D \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(\frac{2(2 m+1) \pi}{a}\right)\left(\frac{2(2 n+1) \pi}{b}\right) \sin \frac{2(2 m+1) \pi x}{a} \sin \frac{2(2 n+1) \pi y}{b} \\
M_{y y}^{(\sigma)}= & -M_{x x}^{(\sigma)} \\
F_{x z}^{(\sigma)}= & -D\left(\nabla^{2} \frac{\partial u_{3}}{\partial x}\right) \doteq-D\left(\nabla^{2} \frac{\partial u_{z}}{\partial x}\right)=D \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left[\left(\frac{2(2 m+1) \pi}{a}\right)^{3} \sin \frac{(2(2 m+1) \pi x)}{a}\right) \\
& \left.\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)+\left(\frac{2(2 n+1) \pi}{b}\right)^{2}\left(\frac{2(2 m+1) \pi}{a}\right) \sin \frac{2(2 m+1) \pi x}{a} \cos \frac{2(2 n+1) \pi y}{b}\right] \\
F_{y z}^{(\sigma)}= & -D\left(\nabla^{2} \frac{\partial u_{3}}{\partial y}\right) \dot{=}-D\left(\nabla^{2} \frac{\partial u_{z}}{\partial y}\right) \\
= & D \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left[\left(\frac{2(2 n+1) \pi}{b}\right)^{3} \sin \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)+\right. \\
& \left.+\left(\frac{2(2 m+1) \pi}{a}\right)^{2}\left(\frac{2(2 n+1) \pi}{b}\right) \cos \frac{2(2 m+1) \pi x}{a} \sin \frac{2(2 n+1) \pi y}{b}\right]
\end{aligned}
$$

It is obvious that expressions (II-3-3) and (II-3-5) are very complicated, therefore, the term $\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y_{\text {which }}$ is small in $A_{1} A_{2}$, is henceforth neglected. The equations (II-3-3) and (II-3-5) reduce separately to the following expressions

$$
\begin{align*}
& U^{(s)}=D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \frac{3 a b}{4}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 3 A_{m n}^{2}+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} 2 A_{m r} A_{m s}\right. \\
& \text { } \ddagger \text { キs } \\
& \left.+\sum_{r=0}^{\infty} \sum_{j=a}^{\infty} \sum_{n=0}^{\infty} 2 A_{r n} A_{r s}+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} A_{r \xi} A_{s p}\right\}+ \\
& \text { r} \ddagger \mathrm{s} \\
& r \neq s \text { p } \ddagger q \\
& +\frac{2 D a b \pi^{4}}{a^{4}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left[3(2 m+1)^{4}+\frac{3 a^{4}}{b^{4}}(2 n+1)^{4}+\frac{2 a^{2}}{b^{2}}(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& \left.+\sum_{m=0}^{\infty} \sum_{\substack{s=0 \\
r \neq S}}^{\infty} \sum_{r=0}^{\infty} A_{m r} A_{m S} 2(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{\substack{\infty}}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{2 a^{4}}{b^{4}}(2 n+1)^{4}\right\}(I I-3-7) \\
& \frac{3}{2} D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\left\{3 A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 2 A_{m r}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} 2 A_{r n}+\sum_{\substack{r=0 \\
r \neq m, p \neq n}}^{\infty} \sum_{j=0}^{\infty} \frac{4}{3} A_{r p}\right\}+ \\
& +\frac{4 D \pi^{4}}{a^{4}}\left\{A_{m r}\left[3(2 m+1)^{4}+\frac{3 a^{4}}{b^{4}}(2 n+1)^{4}+\frac{2 a^{2}}{b^{2}}(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& \left.+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} 2(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n} \frac{2 a^{4}}{b^{4}}(2 n+1)^{4}\right\}=P \tag{II-3-8}
\end{align*}
$$

Geometrically speaking, this simplification means that the integration of the strain energy density over the middle surface of the shell is instead carried out over the projected base plan of the middle surface. If the shell is a shallow one, this approximation yields sufficiently accurate results for practical purposes. In section ($3-2-1$) of the next chapter, it can be seen that this approximation is quite sufficient for the present case. All later analyses are based upon this approximation. 2-4. Shells with One Pair of Edges Fixed and Another Pair of Edges Simply Supported

For a shell with one paix of edges fixed and another pair of edges simply supported, say, the two edges at $x= \pm a / 2$ are fixed, and those at $y= \pm b / 2$ are simply supported, the
function $\quad u_{z}$ must fulfill the following geometric boundary conditions:
$\left.\begin{array}{llll}u_{z}=0 & \text { when } & x= \pm \frac{a}{2}, & u_{z}=0 \\ \frac{\partial u_{3}}{\partial x}=0 & x= \pm \frac{a}{2}, & \frac{\partial u_{z}}{\partial y} \neq 0 & y= \pm \frac{b}{2} \\ \frac{\partial^{2} u_{3}}{\partial x^{2}} \neq 0 & x= \pm \frac{a}{2}, & \frac{\partial^{2} u_{z}}{\partial y^{2}}=0 & y= \pm \frac{b}{2}\end{array}\right\}(I I-4-1)$

The function u_{z} is chosen as $u_{z}=-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) \cos \frac{(2 n+1) \pi y}{b}$
Pursuing, exactly, the same procedure as - was followed in the preceeding section, equations corresponding to (II-3-7), (II-3-8) are given as
$U^{(s)}=D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left(\frac{3 a b}{4}\right)+\sum_{r=0}^{\infty} \sum_{r=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{a b}{2}\right]+$ $+\frac{2 D \pi^{4}}{a^{4}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left\{(2 m+1)^{4} a b+\frac{(2 m+1)^{2}(2 n+1)^{2} a^{2}}{4 b^{4}}(2 a b)+(2 n+1)^{4} \frac{a^{4}}{16 b^{4}}(3 a b)\right\}+\right.$
and $\left.\quad+\sum_{r=0}^{\infty} \sum_{\substack{s=0}}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} 2(2 n+1)^{4} \frac{a^{4}}{16 b^{4}}(a b)\right]$
$D^{\prime}\left(\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right)\left[\frac{3}{2} A_{m n}+\sum_{\substack{r=0 \\ r \neq m}}^{\infty} A_{r n}\right]+$
$+\frac{4 D \pi^{4}}{a^{4}}\left\{A_{m n}\left[(2 m+1)^{4}+\frac{2(2 m+1)^{2}(2 n+1)^{2} a^{2}}{4 b^{2}}+3(2 n+1)^{4} \frac{a^{4}}{16 b^{4}}\right]+\right.$
$+\sum_{\substack{r=0 \\ r \neq m}}^{\infty} A_{r n} 2(2 n+1)^{4} \frac{a^{4}}{16 b^{4}}-(-1)^{n} \frac{2 p}{(2 n+1) \pi}=0$
2-5. Shells with All Four Edges Simply Supported
The boundary conditions of this type of shell are:
$\left.\begin{array}{ll}u_{z}=0 & \text { when } \\ \frac{\partial u_{z}}{\partial x} \neq 0 & x= \pm \frac{a}{2}, y= \pm \frac{b}{2} \\ \frac{\partial u_{z}}{\partial y} \neq 0 & x= \pm \frac{a}{2} \\ \frac{\partial^{2} u_{z}}{\partial x^{2}}=0, \frac{\partial^{2} u_{z}}{\partial y^{2}}=0 & y= \pm \frac{b}{2}\end{array}\right\}$
(II-5-1)

The suitable function for the vertical displacement u_{z} is

$$
\begin{equation*}
u_{z}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} \cos \frac{(2 m+1) \pi x}{a} \cos \frac{(2 n+1) \pi y}{b} \tag{II-5-2}
\end{equation*}
$$

Just as it has been done in the two preceeding sections, the Stationary Potential Energy Principle is again applied, and the expressions corresponding to expressions (II-3-7) and (II-3-8) are

$$
\begin{align*}
U^{(s)}= & \frac{D \pi^{4}}{8 a^{4}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left[(2 m+1)^{4}+(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right]+ \\
& +D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2} \frac{a b}{4} \quad(I I-5-3) \tag{II-5-3}\\
A_{m n}= & (-1)^{m+n} 8 P /\left\{(2 m + 1) (2 n + 1) \pi ^ { 2 } \left[\frac{D \pi^{4}}{2 a^{4}}\left[(2 m+1)^{4}+2(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}\right]+\right.\right. \\
& \left.\left.+D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\right]\right\} \tag{II-5-4}
\end{align*}
$$

CHAPTER 3

APPLICATIONS

3-1. Convergence of the Displacement Function
Before going to the applications, the problem of
convergence of the chosen series of the displacement functions in their application to various geometric configurations of translational shell is subjected to a careful consideration at this stage. In expressions (II-3-8), (II-4-4) and (II-5-4) in the last chapter, the portion which is derived from the membranal energy is

$$
\begin{aligned}
& \frac{3}{2} D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\left\{3 A_{m n}+\sum_{r=0}^{\infty} \sum_{r \neq n}^{n}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n}+\right. \\
& \left.+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} \sum_{p=0}^{\infty} \frac{4}{3} A_{r p}\right\} \quad(I I I-1-1 a) \text { from }(I I-3-8) \\
& D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\left\{\frac{3}{2} A_{m n}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n}\right\}(I I I-1-1 b) \text { from (II-4-4) } \\
& \text { or } \\
& D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \quad
\end{aligned}
$$

It is obvious that these expressions are functions of the thickness h and the normal curvatures $K_{x}^{(n)}, K_{y}^{(n)}$ only i.e., that expressions (III-I-la,b,c) may be assumed to be constant with respect to the series indices m and n. Therefore, the problem becomes largely dependent upon how the expressions (III-l-la,b,c) influence the convergence of various shapes of translational shells, and under their influence, how rapidly will the vertical displacement series converge. For the first question, a procedure has been derived in the following paragraphs. For the second question, a series of numerical calculations have been prepared to establish a general estimation.

If the shell thickness h is fixed to 4 inches in the expressions (III-1-la,b,c) which is a reasonable thickness of a reinforced concrete shell of moderate proportions, the only factors which would influence the magnitudes of these expressions are the normal curvatures $K_{x}^{(n)}$ and $K_{y}^{(n)}$. Thus the maximum and minimum values of expressions (III-l-la,b,c) depend upon the maximum and minimum values of the expression

$$
\begin{equation*}
M=\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)} \tag{III-1-2}
\end{equation*}
$$

Now, returning to the function of the middle surface of the shell, which is

$$
\begin{equation*}
z=-\frac{1}{2}\left(K_{x}^{(n)} x^{2}+K_{y}^{(n)} y^{2}\right)+H \tag{III-1-3}
\end{equation*}
$$

let $\mathrm{a} \geqq \mathrm{b}, \mathrm{H}=\mathrm{b} / \omega$, in which $\omega \leqq 5$, then, when $\mathrm{x}=\mathrm{a} / 2 ; \mathrm{y}=\mathrm{b} / 2$, and $z=0$, expression (III-1-3) becomes

$$
\begin{align*}
& \frac{1}{8}\left(K_{x}^{(n)} a^{2}+K_{y}^{(n)} b^{2}\right)=\frac{b}{w} \\
& K_{x}^{(n)} a^{2}=\frac{8 b}{w}-K_{y}^{(n)} b^{2} \tag{III-1-4}\\
\therefore \quad & K_{x}^{(n)}=\frac{8 b}{\omega a^{2}}-\frac{b^{2} K_{y}^{(n)}}{a^{2}}
\end{align*}
$$

or

$$
\begin{align*}
& K_{x}^{(n)}-\frac{8 b}{\omega a^{2}}=-\frac{b^{2}}{a^{2}} K_{y}^{(n)} \\
\therefore & K_{y}^{(n)}=-\frac{a^{2}}{b^{2}}\left(K_{x}^{(n)}-\frac{8 b}{\omega a^{2}}\right) \tag{III-1-5}
\end{align*}
$$

Since for elliptic paraboloidal shells of translation with a positive GAUSSIAN curvature, the principal curvatures $K_{x}^{(n)}$ and $K_{y}^{(n)}$ are of the same sign, then

$$
K_{x}^{(n)} K_{y}^{(n)}=-\frac{a^{2}}{b^{2}} K_{x}^{(n)}\left(K_{x}^{(n)}-\frac{8 b}{\omega a^{2}}\right)>0
$$

and

$$
\frac{a^{2}}{b^{2}} K_{x}^{(n)}\left(K_{x}^{(n)}-\frac{8 b}{\omega a^{2}}\right) \leqq 0
$$

$$
\begin{array}{ll}
\text { or } & K_{x}^{(n)}-\frac{8 b}{\omega a^{2}} \leqq 0 \\
\therefore \quad & K_{x}^{(n)} \leqq \frac{8 b}{\omega a^{2}}
\end{array}
$$

This means that $K_{x}^{(n)}$ is bounded by the closed interval $0 \leqq K_{x}^{(n)} \leqq \frac{8 b}{\omega q^{2}}$ Substituting $8 b / a^{2} \omega=A^{\prime}, b^{2} / a^{2}=B^{\prime}$ into (III-1-4) and (III-1-5) gives

$$
\begin{align*}
K_{x}^{(n)} & =A^{\prime}-B^{\prime} K_{y}^{(n)} \\
K_{y}^{(n)} & =\frac{A^{\prime}-K_{x}^{(n)}}{B^{\prime}} \tag{III-1-6}\\
\left(K_{y}^{(n)}\right)^{2} & =\frac{\left(A^{\prime}-K_{x}^{(n)}\right)^{2}}{\left(B^{\prime}\right)^{2}} \tag{III-1-7}
\end{align*}
$$

and substituting the expressions (III-I-6) and (III-I-7) into (III-1-2) gives

$$
\begin{aligned}
M & =\left(K_{x}^{(n)}\right)^{2}+\frac{\left(A^{\prime}-K_{x}^{(n)}\right)^{2}}{\left(B^{\prime}\right)^{2}}+2 \nu K_{x}^{(n)} \frac{\left(A^{\prime}-K_{x}^{(n)}\right)}{B^{\prime}} \\
& =\left(K_{x}^{(n)}\right)^{2}\left(1+\frac{1}{\left(B^{\prime}\right)^{2}}-\frac{2 \nu}{B^{\prime}}\right)+K_{x}^{(n)}\left(\frac{2 \nu A^{\prime}}{B^{\prime}}-\frac{2 A^{\prime}}{\left(B^{\prime}\right)^{2}}\right)+\left(\frac{A^{\prime}}{B^{\prime}}\right)^{2}
\end{aligned}
$$

Set

$$
\begin{aligned}
& \frac{\partial M}{\partial K_{X}^{(n)}}=2 K_{x}^{(n)}\left(1+\frac{1}{\left(B^{\prime}\right)^{2}}-\frac{2 \nu}{B^{\prime}}\right)+\left(\frac{2 \nu A^{\prime}}{B^{\prime}}-2\left(\frac{A^{\prime}}{B^{\prime}}\right)^{2}\right)=0 \\
& K_{x}^{(n)}=\left[\frac{A^{\prime}}{B^{\prime}}\left(\frac{1}{B^{\prime}}-\nu\right)\right] /\left[1+\frac{1}{\left(B^{\prime}\right)^{2}}-\frac{2 \nu}{B^{\prime}}\right] \\
& \frac{\partial^{2} M}{\partial\left(K_{x}^{(n)}\right)^{2}}=2\left(1+\frac{1}{\left(B^{\prime}\right)^{2}}-\frac{2 \nu}{B^{\prime}}\right)=2+2 \frac{a}{b}\left(\frac{a}{6}-2 \nu\right)
\end{aligned}
$$

since $a / b \geqq 1$ and $2 \nu<1$, therefore,

$$
\frac{\partial^{2} M}{\partial\left(K_{x}^{(n)}\right)^{2}}>0
$$

So $K_{x}^{(n)}=\frac{A^{\prime}}{B^{1}}\left(\frac{1}{B^{1}}-\nu\right) /\left(1+\frac{1}{(B)^{2}}-\frac{2 \nu}{B^{1}}\right)$ assumes a minimum value of M. It can be observed that M is a quadratic form in $K_{X}^{(h)}$, therefore, the absolute maximum value of M must be at one of the two termini of the closed interval of $K_{x}^{(n)}$. First, substituting $K_{x}^{(n)}=8 b / a^{2} \omega=A^{\prime}$ into $M, M=A^{2}\left(1-a^{4} / b^{4}\right)+A^{\prime 2} / B^{\prime 2}$, then, substituting $K_{x}^{(n)}=0$ into $M, M=A^{\prime 2} / B^{2}$. Since $l-a^{4} / b^{4} \leqq 0$, then the maximum value of M must occur at $K_{x}^{(n)}=0$. This is a cylindrical shell which represents a special case of translational shells. There is
another special case when the shell has a square base plan and its M assumes a minimum value, i.e. $a=b$, so $B^{\prime}=1$

$$
\begin{aligned}
& K_{x}^{(n)}=\frac{\frac{A^{\prime}}{B^{\prime}}\left(\frac{1}{B^{\prime}}-\nu\right)}{\left(1+\frac{1}{\left(B^{\prime}\right)^{2}}-\frac{2 \nu}{B^{\prime}}\right)}=\frac{A^{\prime}}{2} \\
& K_{y}^{(n)}=\frac{A^{\prime}-K_{x}^{(n)}}{B^{\prime}}=\frac{A^{\prime}}{2}
\end{aligned}
$$

This case represents a spherical shell.
For translational shells with all edges fixed, the above dexivations show that the spherical shell assumes a minimum membranal strain energy, while the cylindrical shell assumes a maximum membranal strain energy. The ordinary paraboloidal translational shell assumes a membranal strain energy which lies in between the strain energies of the spherical and cylindrical shells. Therefore, the displacement series for the spherical. shell with a square base plan possesses the fastest rate of convergence, while for the cylindrical shell the convergence is the slowest. In order to show how fast the displacement series will actually converge, a few special cases have been considered. Vertical displacements at the apex of a series of shells have been calculated and tabulated in Table (III-I). The results agree with the above theory.

Table (III-1) shows that the difference between $u_{z l}$ and $u_{z 2}$ is always less than 3%, while the difference between $u_{z 2}$ and $u_{z 3}$ is less than 1% for all shells listed. So it should be reasonable to say that the summation of eight terms of displacement series will give quite satisfactory values, and twelve terms of displacement series will give still better values of $u_{z}, F_{x x}^{(\sigma)}$

TABLE III-1

$\begin{gathered} a \\ (f t) \end{gathered}$	$\stackrel{b}{(f t)}$	μ	M	SUMMATIONS OF DISPLACEMENT SERIES			RATE OF CONVERGENCE IN PERCENT	
				${ }_{\mathrm{u} \mathrm{zl}^{\prime}}{ }^{8}$ terms	$\mathrm{u}_{\mathrm{z} 2^{\prime}} 12$ terms	$\mathrm{u}_{\mathrm{z} 3}{ }^{16}$ terms	$\left[\left(u_{z 2}{ }^{-u_{z 1}}\right) / u_{z 1}{ }^{1 \%}\right.$	$\left[\left(\mathrm{u}_{z 3}{ }^{-u_{z 2}}\right) / \mathrm{u}_{z 2}\right]$
40	40	5	MAX.	$.2463 \times 10^{-3}$	$.2509 \times 10^{-3}$	$.2515 \times 10^{-3}$	1.95\%	0.24\%
40	40	5	MIN.	$.4064 \times 10^{-3}$. 4121×10^{-3}	. 4128×10^{-3}	1.40\%	0.17\%
40	40	10	MAX.	$.8668 \times 10^{-3}$. 8749×10^{-3}	. 8759×10^{-3}	0.93\%	0.11%
40	40	10	MIN.	$.1470 \times 10^{-2}$. 1416×10^{-2}	$.1417 \times 10^{-2}$	0.64%	0.07\%
60	60	5	MIN.	$.9740 \times 10^{-3}$	$.9949 \times 10^{-3}$. 1001×10^{-2}	2.15\%	0.61\%
60	60	10	MIN.	$.3474 \times 10^{-2}$	$.3510 \times 10^{-2}$	$.3515 \times 10^{-2}$	1.03\%	0.14%
60	40	5	MAX.	$.2575 \times 10^{-3}$. 2646×10^{-3}	. 2657×10^{-3}	2.76\%	0.42\%
60	40	5	MIN.	$.1214 \times 10^{-2}$	$.1229 \times 10^{-2}$	$.1231 \times 10^{-2}$	1.24\%	0.16%
60	40	10	MAX.	$.9319 \times 10^{-3}$. 9456×10^{-3}	$.9478 \times 10^{-3}$	1.47\%	0.23\%
60	40	10	MIN.	$.4185 \times 10^{-2}$	$.4212 \times 10^{-2}$. 4214×10^{-2}	0.65%	0.05\%
70	35	5	MAX.	$.1963 \times 10^{-3}$	$.2017 \times 10^{-3}$. 2029×10^{-3}	2.75\%	0.60\%
70	35	5	MIN.	$.2515 \times 10^{-2}$	$.2541 \times 10^{-2}$	$.2542 \times 10^{-2}$	1.04\%	0.08\%
70	35	10	MAX.	$.7127 \times 10^{-3}$. 7274×10^{-3}	. 7293×10^{-3}	2.06\%	0.27\%
70	35	10	MIN.	$.8479 \times 10^{-2}$. 8522×10^{-2}	. 8524×10^{-2}	0.51%	0.02\%
* 70	35	10	AVE.	$.4735 \times 10^{-2}$. 4770×10^{-2}	. 4771×10^{-2}	0.78\%	0.02\%
100	50	5	MIN.	$.5640 \times 10^{-2}$	$.5720 \times 10^{-2}$. 5723×10^{-2}	1.42\%	0.06\%
100	50	10	MIN .	$.1950 \times 10^{-1}$	$.1966 \times 10^{-1}$	$.1966 \times 10^{-1}$	0.77\%	0^{+}\%

REMARKS: 1. $u_{z 1}, u_{z 2}$ and $u_{z 3}$ are the displacement at the apex.
2. All shells have fixed boundaries
$3 .{ }_{K}{ }_{X}^{(n)}=0.004 \quad \underset{Y}{(n)}=0.00633$
and $\mathrm{F}_{\mathrm{Yy}}{ }^{(\sigma)}$. The convergence of the functions of the stress couples $M_{x y}^{(\sigma)}, M_{y x}^{(\sigma)}, M_{x x}^{(\sigma)}$ and $M_{Y y}^{(\sigma)}$ is slower than for the displacements, since they are functions of the second derivatives of u_{z}. Hence a satisfactory solution for the stress couples may be expected to be procured by employing a much larger number of terms in the vertical displacement series. The transverse stress resultants $\mathrm{F}_{\mathrm{yn}}^{(\sigma)}$ and $\mathrm{F}_{\mathrm{xn}}^{(\sigma)}$ are functions of the third derivatives of the vertical displacement series, therefore, the convergence of these quantities will be even slower than those of the stress couples.

It is interesting to observe that the rate of convergence of the vertical displacement series varies at different points of a shell. For an example, curves of the vertical displacement u_{z} of a translational shell with square base, $a=40^{\circ}, \mathrm{b}=40^{\prime}$ and clamped edges is shown in Fig. (3-1). Since the shell is doubly-symmetric, the curves are drawn only for a quarter of the shell, say, $0 \leqq x \leqq a / 2,0 \leqq y \leqq b / 2$. The full line curves represent the vertical displacement curves by expanding the function u_{z} up to 24 terms. The broken line curves represent the same curves by expanding the same function up to 8 terms, while the thin solid line curves represent the same curves by expanding the same function up to 16 terms. It can be clearly observed that on the center line of the shell, the convergence of u_{z} is faster at those points within approximately the region $-0.2<\mathrm{y} / \mathrm{b}<0.2,-0.2<\mathrm{x} / \mathrm{a}<0.2$; than at points outside of this region. The convergence is slowest at those points approximately in the region $(0.25<\mathrm{x} / \mathrm{a}<0.35,0.25<\mathrm{y} / \mathrm{b}<0.35)$. Along the

$$
0.0000
$$

Fig. 3-1 DISTRIBUTTON OF NORYAL DISPLACEMENT y_{z} OF SHALION ELIMPRIC PARZBOLOTMAL SITIL OF TRANSIATTON WITH FIXED BOUNDARTES. $\left(a=40^{\prime}, b=40^{\circ}\right)$
curves near the edge, say, along curve $x / a=0.4$, it seems that the convergence is a little slower at those points close to the center or the edge of the shell. Along other curves, the figure shows that the vertical displacement series u_{z} converges quite uniformly.

3-2. Thin Shallow Translational Shells
For the thin shallow translational shells, a shell with the following data;

$$
\begin{aligned}
& a=70^{\prime}, \quad b=35^{\prime}, K_{x}^{(n)}=0.004, K_{y}^{(n)}=0.00633, P=90 \mathrm{lb} / \mathrm{ft}^{2} \\
& h=4^{\prime \prime}, \quad E=3 \times 10^{6} \mathrm{lb} / \mathrm{in}, \nu=0.16 \\
& \text { will be analyzed as an example. }
\end{aligned}
$$

Since the torsional stress couples $M_{x x}^{(\sigma)}, M_{Y Y}^{(\sigma)}$ and the transverse shear resultants $\mathrm{F}_{\mathrm{Xz}}{ }^{(\sigma)}, \mathrm{F}_{\mathrm{Y} Z}^{(\sigma)}$ are all negligible quantities compared with $M_{X y}^{(\sigma)}, M_{Y x}^{(\sigma)}, F_{X X}^{(\sigma)}$ and $F_{Y y}^{(\sigma)}$, no calculation is carried out for those quantities.

3-2-1. Shell with All Four Edges Fixed
First, substituting values of $a, b, k_{x}^{(n)}, k_{y}^{(n)}, P, h, E$ and p listed above into expression (II-3-5) then (II-3-8), different sets of Fourier coefficients are obtained, (see Table (III-2)). It is obvious that the differences between the corresponding values in these two sets are extremely small, say, mostly less than 3%. This shows numerically that the approximation by using expression (II-3--8) instead of expression (II-3-5) is quite reasonable. After substituting these values into expression (II-3-6), all values of $M_{X y}^{(\sigma)}, M_{Y x}^{(\sigma)}, F_{X X}^{(\sigma)}, F_{Y y}^{(\sigma)}$ at various points of the shell are obtained as shown in Figures (3-2) $(3-3),(3-4)$ and $(3-5)$. Since the shell is symmetric about the apex, all figures are drawn for one quarter of the shell

TABLE III-2

	FOURIER COEFFICIENTS CALCULATED BY EXP (IT-3-5	FOURIER COEFFICIENTS CALCULATED BY EXP (II-3-8
A00	0.002539	0.002517
A01	0.001727	0.001716
Al0	0.001327	0.001319
All	0.0001344	0.0001336
A02	0.00001929	0.00001907
A20	0.0003352	0.0003342
Al2	0.00001922	0.00001905
A21	0.00006294	0.00006198
A22	0.00001160	0.00001150
A03	0.000004572	0.000004508
A 30	0.00009778	0.00009378
A13	0.000004970 -	0.000004918
A31	0.00002532	0.00002641
A23	0.000003297	0.000003263
A32	0.000005811	0.000006140
A33	0.000001806	0.000001929
A04	0.000001715	0.000001688
A40	0.00003382	0.00003376
A14	0.000001918	0.000001895
A41	0.00001225	0.00001216
A24	0.000001352	0.000001336
A 42	0.000003434	0.000003381
A 34	0.0000008051	0.0000008553
A43	0.000001197	0.000001172

Fig. 3-2 DISTRIBUTION OF STRESS COUPLE M ${ }_{x Y}^{(\sigma)}$ OF SHALLON ELITPTIC PARABOLOIDAL SHCLL OF TRAMGLATION WITH FIXED BOUNDARIES.

Fig. 3-3 DISTRIBUTION OF SMRESS COUPLE M $\underset{y}{(\sigma)}$ OF SHALION EILIPTIC

of its base plan.
For the purpose of evaluating the nature of convergency of the solution series for the stress resultants and stress couples, the vertical displacement u_{z} is also expanded into eight and sixteen terms by using expression (II-3-8). The corresponding stress resultants and couples are calculated through expression (II-3-6). The results are plotted in Figures $(3-6),(3-7),(3-8),(3-9)$ and $(3-10)$. In Fig. (3-6) it is shown that at certain points of the shell, the convergence of the stress couple $M_{X y}^{(\sigma)}$ is not sufficient by expanding u_{z} into eight terms. For an example, in the neighborhood of sections $y / b=0.0$, $X / 2=0.15,0.225,0.275$ or 0.35 , the ratio of the value of $M_{x y}^{(\sigma)}$ on curve A and curve B is always larger than 2. This means that the value of $M_{x y}$ calculated by expanding u_{z} into 16 terms is only less than 50% of the value calculated by expanding u_{z} into 8 terms. At sections $y / b=0.225$ and 0.275 , the sign is even reversed. Nevertheless, according to the same figure, there is little difference between the value of $M_{X y}^{(\sigma)}$ on curve B or on curve C. This suggests that $M_{x y}^{(\sigma)}$ already possesses quite a satisfactory convergence when it is calculated by expanding the deflection series u_{z} into 16 terms. Certainly, if 24 terms of the series for transverse displacement u_{z} would be used to calculate the stress couple $M_{x y}^{(\sigma)}$, a good approximate result will be obtained. For $M_{y x}^{(\sigma)}$, it is shown in Fig. (3-7) that the corresponding variation is approximately the same as $M_{x y}^{(\sigma)}$, so it also requires 16 terms of the vertical displacement series u_{z} to achieve a better convergence. Figures (3-8) and (3-9)

Fig. 3-6b DISTRIDUTION OF STRESS COUPLE $M(\sigma)$ ATONG SECTION $y / b=0.2$ NOTE: Fig. 3-6. DETICTS DIGTRIDUTION OF STRESS COURIE M (σ) IN SHALION

Fig. 3-6c DISTRIBUTION OF SMPESS COUPLE ${ }_{x y}^{(\sigma)}$ ALONG SECTTON $y / b=0.0$

Fig 3-7a DISTRIBUTION OF STRESS COUPLE $M_{Y X}(\sigma)$ ALONG SECTION $x / a=0.4$ NOTE: Fig. 3-7 DEPICTS DISTRIBUTION OF STRESS COUPLE M $\mu_{y}^{(\sigma)}$ IN SHALIOW ELLIPTIC PARABOLOIDAL SHELI OF TRANSLATION WITII FIXED BOUNDARIES. $\quad\left(\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\circ}\right)$

Fig. 3-7b DISTRIBUTION OF STRESS COUPLE M $\underset{y x}{(\sigma)}$ NLONG $\operatorname{SECTI} \mathrm{ON} \quad x / a=0.2$

Fig. $3-7 \mathrm{c}$ DISTRIBUTION OF STRESS COUPLE $\mathrm{M} \frac{(\sigma)}{\mathrm{y})}$ NLONG $\operatorname{sECIION} \mathrm{x} / \mathrm{a}=0.0$

Fig. 3-8 DISTRTBUTION OF STRESS RESULTANTS $\mathrm{F}_{\mathrm{XX}}^{(\sigma)}$ OF SHALLOW ELLIPTIC PARABOLOIDAL SUELI OE TRAEGLATION VITH FTXED BOUNDARIES

Fig. 3-9 DISTRIBUTION OE STRESS RESULTANT F yy of SHALLON ELIIPTIC PARABOLOIDNL, SHELI OF TRANSIATION NTTY
FIXED BOUNDARIES. $\quad\left(\mathrm{a}=70^{\circ}, \mathrm{b}=35^{\circ}\right)$
show that even less than 8 terms of vertical displacement series u_{z} might be sufficient for calculating the stress resultants $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ and $\mathrm{F}_{\mathrm{yy}}{ }^{(\sigma)}$

3-2-2. Shell with One Pair of Eages Fixed and Another Pair of Edges Simply Supported

In this case, the same shell, as in the last section, except that one pair of edges at $y= \pm b / 2$ become simply supported, is calculated by expanding the vertical displacement series u_{z} into 25 terms through expression (II-4-4). All stress resultants $F_{X X}^{(\sigma)}, F_{Y Y}^{(\sigma)}$ and stress couples $M_{X y}^{(\sigma)}, M_{Y X}^{(\sigma)}$ are calculated through expressions (II-3-6). The results of $F_{X X}^{(\sigma)}, F_{Y Y}^{(\sigma)}, M_{X Y}^{(\sigma)}, M_{Y X}^{(\sigma)}$ and u_{z} are depicted in Figures $(3-13),(3-14),(3-11)$, ($3-12$) and ($3-15$).

3-2-3. Shell with All Four Edges Simply Supported
The same shell is calculated except that now all its edges are simply supported. The vertical displacement series u_{z} is expanded into 25 terins through expression (II-5-4). Stress resultants $F_{X X}^{(\sigma)}, F_{Y Y}^{(\sigma)}$ and stress couples $M_{X Y}^{(\sigma)}$ and $M_{Y x}^{(\sigma)}$ are calculated through expressions (II-3-6) and are graphed as shown in Figures $(3-20),(3-18),(3-19),(3-16)$ and $(3-17)$. 3-3. Special Case - Thin Shallow Spherical Shell

For the thin spherical shell, an example is given with the following data: $a=40^{\prime}, b=40^{\prime}, k_{x}^{(n)}=0.02, k_{y}^{(n)}=0.02$, $P=90 \mathrm{lb} / \mathrm{ft}^{2}, \mathrm{~h}=4^{\prime \prime}, \mathrm{E}=310^{6} \mathrm{lb} / \mathrm{in}^{2}, \nu=0.16 . \mathrm{F}_{\mathrm{XX}}(\sigma), \mathrm{F}_{\mathrm{YY}}(\sigma)$, $M_{X Y}^{(\sigma)}$ and $M_{Y X}^{(\sigma)}$ were calculated for this shell.
3-3-1. Shell with All Four Edges Fixed
Following the same procedurs employed in the last sections,

Fig. 3-10a DISTRIBUTION OF NORMAL DISPLACEMENT u_{z} OF SHALIOW ELISPMIC PARABOLOIDAL SHELL OF TRANSIATION WITH FIXED BOUNDARTES. $\quad\left(a=70^{\prime}, \mathrm{b}=35^{\prime}\right)$

Fig. 3-10b DISTRIBUTIOL OF NOPMNL DISPLACEMENT u_{z} OF SHALIOW EILITPMIC PARABOLOIDAL SHELI OF TRANSLATION WITH FIXED BOUMDARTES. $\quad\left(a=70^{\prime}, b=35^{\prime}\right)$

Fig. 3-11 DISTRIBUMION OF STRESS COUPLE M ${ }_{x y}^{(\sigma)}$ OF SHALLOW BLLIPTIC PARABOLOIDAL SHELL OF TRANSJATION WITH MIXED BOUNDAPY CONDITIONS.
Boundaries $x= \pm a / 2$ fixed. Boundaries $y= \pm b / 2$ simply supported.

Fig. 3-12 DISTRIBUTION OF STRESS COURLE M ${ }_{\mathrm{yx}}^{(\sigma)}$ OF SHALLOW ELLIPTIC PARABOLOIDAL SHELL OF TRANSLATION WITH MIXED BOUNDARY CONDITIONS.
Boundaries $x= \pm a / 2$ fixed
Boundaries $y= \pm b / 2$ simply supported

Fig. 3-13 DISTRIBUTION OF STRESS RESULTANT $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ OF SHALLOW ELLIPTIC PARABOLOIDAL SHELL OF TRANSLATION WITH MIXED BOUNDARY CONDITIONS. $\left(a=70^{\prime}, b=35^{\circ}\right)$ Boundaries $x= \pm a / 2$ fixed Boundaries $y= \pm b / 2$ simply supported

Fig. 3-14 DISTRIBUTION OF STRESS RESULTANT F ${ }_{y}^{(\sigma)}$ OF SHALLOW ELLIPTIC PARABOLOIDAL SHEILL OF TRANSLATION WITH MIXED BOUNDARY CONDITIONS. ($\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\prime}$) Boundaries $\mathrm{x}= \pm \mathrm{a} / 2$ fixed Boundaries $y= \pm b / 2$ simply supported

Fig. 3-15b DISTRIbUTION OF NORMAL DISPlacement u_{z} ALONG $x / a=$ constants. NOTE: Fig. 3-15 DEPICTS DISTRIBUTION OF NORMAL DISPLACEMENT u_{n} OF Shalion elitptic paraboloidal subli of translation with MIXED BOUNDARY CONDTTIONS.
Boundaries $x= \pm a / 2$ fixed. Boundaries $y= \pm b / 2$ simply

Fig. 3-16 DISTRIBUTION OF STRESS COUPLE $M_{x y}^{(\sigma)}$ OF SHALLOW ELI,IPTIC PARABOLOIDAL SIELL, OF TRAHSLATION WITH SIMPLY SUPPORTED BOUNDARIES. $\left(\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\circ}\right)$

Di

Fig. 3-17 DISTRIDUTION OF STRESS COUPLE My OF GUALLOW ELIIPTIC PARABOLOIDAL SHELL

Fig. 3-18 DISTRIBUTION OF STRESS RESULTANT $\mathrm{F}_{\mathrm{XX}}^{(\sigma)}$ OF SHALLOW ELLIPTIC PARABOLOIDAL SHELL OF TRANSLATION WITH SIMPLY SUPPORTFD BOUNDARTES. $\left(\mathrm{a}=70^{\circ}, \mathrm{b}=35^{\circ}\right)$

Fig. 3-20a DISTRIBUTION OF NORMAL DISPLACEMENT u_{z} OF SHALLOW ELLIPTIC PARABOLOIDAL SHELL OF TRANSLATION WITH SIMPLY SUPPORTED BOUNDARIES. $\left(\mathrm{a}=70^{\prime}, \mathrm{b}=35^{\circ}\right)$

Fig. 3-19 DTSTRIBUTION OF STRESS RESULTANT F ${ }^{(\sigma)}$ OF SHALLON ELMIPTIC PARABOLOTDAL SHELL OF TRANSEATION WITH SIMPLY SUPPORTED

Fig. 3-20b DISTRIBUTION OF NORMAL DISRLACEMENT u_{z} OF SHALLOW
the values of Fourier coefficient are calculated through expressions (II-3-5) and (II-3-8), and are listed in Table (III-3) as shown. It can be observed that the differences between these two sets of values is always less than 1%. So the approximation by using expression (II-3-8) instead of expression (II-3-5) is even more suitable here than it was in section (III-1-1). The next step is to calculate the vertical displacement u_{z}, the stress resultants $\mathrm{F}_{\mathrm{Xx}}^{(\sigma)}, \mathrm{F}_{\mathrm{Yy}}^{(\sigma)}$ and the stress couples $\mathrm{M}_{\mathrm{XY}}^{(\sigma)}$ and $M_{\mathrm{yx}}^{(\sigma)}$ at various points in the middle surface of the shell. All results are plotted in Figures (3-1), (3-22), (3-24), (3-21) and (3-23). Since the shell is completely symmetric, therefore, $F_{x X}^{(\sigma)}=F_{y y}^{(\sigma)}$ and $M_{x y}^{(\sigma)}=M_{Y x}^{(\sigma)}$ at corresponding points. This is to say that the ahsolute values of $M_{x y}^{(\sigma)}$ and $F_{x x}^{(\sigma)}$ along some section $y=$ constant are exactly the same as those of $M_{Y X}^{(\sigma)}$ and $F_{Y Y}^{(\sigma)}$ along the corresponding section $\mathrm{x}=$ constant. Therefore, Figures of $\mathrm{M}_{\mathrm{yx}}^{(\sigma)}$ and $\mathrm{F}_{\mathrm{yy}}^{(\sigma)}$ are omitted.

From Figure ($3-23 c$), it is noticed that even if 16 terms of u_{z} would have been used, the convergency of $M_{x y}^{(\sigma)}$ could still not have been satisfactory in certain intervals, such as $\mathrm{x} / \mathrm{a}=0.225$ to $\mathrm{x} / \mathrm{a}=0.275$, of the shell. Fortunately, in this interval the absolute value of $\mathrm{M}_{\mathrm{xy}}^{(\sigma)}$ is much smaller than those at the edge or at the apex, and its evaluation is not too important for actual design. If 24 terms in the series of u_{z} would have been used, the series for stress couples $M_{x y}^{(\sigma)}$ could have converged more satisfactorily at every point in the middle surface of the shell.

The convergence of $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ is as good as it is in the last

Fig. 3-23a DISTRTBUTION OF STRESS COUPY\& $M_{X Y}^{(\sigma)}$ ALONG SECTION $y / b=0.4$ NOTE: Fig. 3-23 DEPICTS DISTRIBUTION OF STPESS COUPJE M ${ }^{(\sigma-)}$ OF SHAILOW SPHERICAL SHELI WITH FIXED BOUNDARIES. $\left(a=b=40^{\prime}\right)$

Fig. 3-23c DISTRIDUTION OF STRLSS COURTL M ${ }_{x y}^{(\sigma)}$ ALONG SECTION $\mathrm{y} / \mathrm{b}=0.0$
section. Figure (3-24) shows that eight terms of u_{z} will give a satisfactory value of $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ at every point in the middle surface of the shell.

3-3-2. Shell with One Pair of Edges Fixed and the Other Pair of Edges Simply Supported

Similar to section $(3-1-2)$, the edges of this shell at $x= \pm a / 2$ are fixed, while at $y= \pm b / 2$ they are simply supported, otherwise the shell is the same as in section (3-3-1). Values of $M_{x y}^{(\sigma)}, M_{Y x}^{(\sigma)}, F_{x x}^{(\sigma)}, F_{Y y}^{(\sigma)}$ and u_{z} are obtained through expressions (II-4-4) and (II-3-6), and are expressed in Figures $(3-25),(3-26),(3-27),(3-28)$ and $(3-29)$. 3-3-3. Shell with All Four Edges Simply Supported

In this case, the calculation procedure is the same as in section (3-2-3). The shell has the configurations as in section (3-3-1). Expressions (II-5-4) and (II-3-6) are used and all results of $M_{X y}^{(\sigma)}, F_{X X}^{(\sigma)}$ and u_{z} are plotted in Figures $(3-30),(3-31),(3-32)$.

3-4. Influence of Strains
In this section, a study of the influence of membranal displacements u_{x} and u_{y} on the transverse displacement u_{z} for cases of fixed boundaries and simply supported boundaries is effected. Equation (II-1-2) is used to calculate the total strain energy of the shell. Finally, instead of the single expression (II-3-8) or (II-5-4), obtained by neglecting all effects of u_{x} and u_{y}, a set of three simultaneous equations $(4-8 a),(4-8 b),(4-8 c)$ or $(4-15 a),(4-15 b),(4-15 c)$ are obtained, (see Appendix D). These three simultaneous equations

Fig. 3-24 DISTRTBUTION OF SMRESS RESULMAMT $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ OF SHALIOT SPherical sheili nith fixed boundaries. $\left(a=b=40^{\prime}\right)$.

fia. 3-25 Distribution of stress couple mey of shallow sphertcal shmel fith mixad boumdary comdttions. $\left(a=b=40^{\prime}\right)$ Doundarios $x= \pm a / 2$ fixed

Doundaries $y= \pm b / 2$ simply supported.

Fig. 3-26 DISTRIBUTION OF STRESS COUPLE $M_{Y x}^{(\sigma)}$ OF A SHALLON SPHERICAL SHELL WITH MIXED BOUNDARY CONDITIONS. $\left(a=b=40^{\prime}\right)$
Boundaries $x= \pm a / 2$ fixed.
Boundaries $y= \pm b / 2$ simply supported

Fig. 3-28 DISTRIBUTION OF STRESS RESULTANT $\mathrm{F}^{(\sigma)}$ OF SHALLOW SPHERTCAI, SHELL OF MIXED BOUNDARY CONDITIONS. $\left(\mathrm{a}=\mathrm{b}=40^{\prime}\right)$
Boundaries $x= \pm a / 2$ fixed. Boundaries $y= \pm b / 2$ simply supported

Fig. 3-27 DISTRIBUTION OF STRESS RESULTANT $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ OF SHALLOW SPHERICAL SHELI WITH MIXED BOUNDARY CONDITIONS. $\left(\mathrm{a}=\mathrm{b}=40^{\circ}\right)$
Boundaries $x= \pm a / 2$ fixed. Boundaries $y= \pm b / 2$ simply supported

Fig. 3-29 DISTRIBUTION OF NORMAL DTSPLACEMENT u_{z} OF SHALLON SPHERICAI SHEIL WITH MIYED ROUNDARY CONDITIONS. $\left(a=b=40^{\circ}\right)$
Boundarics $x= \pm a / 2$ fixed.
Boundaries $y= \pm b / 2$ simply supported

Fig. 3-30 DIGTRIBUTION OF STRESS COUPLE $M_{x y}^{(\sigma)}$ OF SHALLON SPHERICAL SHELL VITH SIMPLY SUPPORTLD EOUNDARIES.
$\left(\mathrm{a}=\mathrm{b}=40^{\circ}\right)$

Fig. 3-31 Dismribution of smress pesumman for of a shation

Fig. 3-32 DISTRIBUYION OF FORMAL DISPLACEMENE u_{z} OF A SHALION SPHERTCAI SHELL WITH SIMPLY SUPPORTED BOUHDARIES. $\left(a=b=40^{\circ}\right)$.

TABLE III-3

	FOURIER COEFFICIENTS CALCULATED BY EXP. (II-3-5	FOURIER COEFFICIENTS CALCULATED BY EXP.(II-3-8
A00	0.0001083	0.0001081
A01	0.00007473	0.00007485
Al0	0.00007473	0.00007485
All	0.00004381	0.00004364
A02	0.00002067	0.00002071
A20	0.00002067	0.00002071
A12	0.00001437	0.00001434
A21	0.00001437	0.00001434
A22	0.000006238	0.000006213
A03	0.000005515	0.000005523
A30	0.000005515	0.000005523
Al3	0.000004603	0.000004607
A31	0.000004603	0.000004607
A23	0.000002464	0.000002460
A 32	0.000002464.	0.000002460
A33	0.00000 .1149	0.000001146
A 04	0.000001983	0.000001985
A40	0.000001983	0.000001985
Al 4	0.000001838	0.000001839
A 41	0.000001838	0.000001839
A24	0.000001126	0.000001126
A 42	0.000001126	0.000001126
A 34	0.0000005963	0.0000005944
A43	0.0000005963.	0.0000005944

are much more complicated than the expression (II-3-8) or (II-5-4). For the purpose of giving a numerical example to show the influence of the membranal displacements on the transverse dispalcenent, stress couples and stress resultants, a simple case of a spherical translational shell in which $\mathrm{a}=\mathrm{b}=40^{\prime}, \mathrm{k}_{\mathrm{x}}^{(\mathrm{n})}=\mathrm{k}_{\mathrm{y}}^{(\mathrm{n})}=0.02, \mathrm{P}=90 \mathrm{lb} / \mathrm{ft} \mathrm{t}^{2}$ is calculated. Owing to the condition of complete symmetry, u_{x} equals u_{y}, so the three simultaneous equations reduce to two as shown in Appendix D. Using these reduced two simultaneous equations to solve for the Fourier coefficients $A_{m n}$ of the transverse displacement u_{z} to 8 terms for the case of fixed boundaries, and 25 terms for the case of simply supported boundaries, it is found that the difference between these Fourier coefficients to those obtained by neglecting u_{x} and u_{y} are small for the case of fixed boundaries, but large for the case of simply supported boundaries. Therefore, any solution of stress couples or stress resultants obtained by the approximate method for a translational shell with simply supported boundaries should be used very carefully for design (see next section and conclusion). The difference between stress couples and stress resultants obtained by these new Fourier coefficients and those obtained before are also small for the case of fixed boundaries, say, always less than 10%, and mostly less than 5%. This can be observed in Fig. ($3-33$) and Fig. (3-34). Hence, though values of stress couples and stress resultants obtained by neglecting u_{x} and u_{y} are not exact solutions, they still can be reasonably used as guides for practical

Fig. 3-33 COMPARISON OF DISTRIBUTION OF STRESS COUPLE M ${ }^{(\sigma y}$) OF A SPHERICAL TPANSLATIONAL SHELL WITH FIXED BOUNDARTES. $\left(\mathrm{a}=40^{\prime}, \mathrm{b}=40^{\circ}\right)$

Fig. 3-34 COMPARISON OF DISTRIBUTION OF STRESS RESULTANT $\underset{\mathrm{XX}}{(\sigma)}$ OF SHALLOW SPHERICAL TRANSLATIONAL SHELL WIMII FIXED BOUNDARIES. $\left(\mathrm{a}=40^{\circ}, \mathrm{b}=40^{\circ}\right)$
design purposes.
3-5. Comparison of the Solution of This Method with SOARE's Method

As it is mentioned in the introduction, up to the present time, the rigorous solution of an elliptic paraboloidal shell of translation with fixed boundaries still has not been established. Therefore, a comparison of solutions of a spherical translational shell with simply supported boundaries is given.

In Fig. ($3-35$) and Fig. ($3-36$) it can be clearly observed that the difference between solutions obtained by the approximate method and the method of SOARE's is quite large; especially for the stress couple $M_{X Y}^{(\sigma)}$ near the boundaries. The difference is more than 35% in terms of SOARE's solution. Therefore, a complete solution obtained by using expressions ($4-16 a)$, ($4-16 b$) in Appendix D is calculated. At first, Fourier coefficients obtained by expression (III-5-4) are used as basic values. Following a successive approximation procedure, these basic values are substituted into ($4-16 b$) to find out the Fourier coefficients $B_{m n}$, then substituting coefficients $B_{m n}$ into (4-16a), a set of revised Fourier coefficients $A_{m n}$ is obtained. A set of $A_{m n}$ values obtained from two cycles of calculation are compared to SOARE's solution in Table (III-4).

Fig. 3-36 COMPARISON OF DISTRIBUTION OF STRESS RESULTANT $\mathrm{F}_{\mathrm{xx}}^{(\sigma)}$ OF SPHERICAL TRANSLATIONAL SHELL WITH SIMPLY SUPPOP'TED bOUNDARIES BETWEEN SOARE'S SOLUTION AND AUTHOR'S SOLUTION. $\left(a=40^{\circ}, b=40^{\prime}\right)$

Fig. 3-35 comparison or distribution of stmiss couple m $\mathrm{my}_{\mathrm{xy}}^{(\sigma)}$ of SPherical translational shell, with smply supported boundaries, bermeen soare's solution amd author's SOLU'SION. $\left(\mathrm{a}=40^{\prime}, \mathrm{b}=40^{\prime}\right)$

TABLE III-4

FOURIER COEFFICIENTS	$B Y\left(\begin{array}{l}(4-16 a) \\ 4-16 b)\end{array}\right.$	BY SOARE'S METHOD
${ }^{\text {A }} 00$	0.002836	0.002524
${ }^{\text {A }} 10$	-0.000724	-0.000774
${ }^{\mathrm{A}} 20$	0.000298	0.000314
${ }^{\text {A }} 30$	-0.000111	-0.000111
${ }^{1} 40$	0.000040	0.000040
${ }^{\text {A }} 01$	-0.000724	-0.000774
${ }^{\text {A }} 11$	0.000239	0.000218
${ }^{\text {A }} 21$	-0.000090	-0.000083
${ }^{A_{31}}$	0.000032	0.000030
${ }^{\text {A }} 41$	-0.000012	-0.000011
${ }^{\text {a }} 02$	0.000298	0.000314
${ }^{\text {A }} 12$	-0.000090	-0.000083
${ }^{\text {A }} 22$	0.000035	0.000031
${ }^{\text {A }} 32$	-0.000013	-0.000012
${ }^{\text {A }} 42$	0.000005	0.000005
${ }^{\text {A }} 03$	-0.000111	-0.000111
${ }^{\mathrm{A}} 13$	0.000032	0.000030
${ }^{\text {A }} 23$	-0.000073	-0.000012
${ }^{\text {A }} 33$	0.000006	0.000005
${ }^{\text {A }} 43$	-0.000003	-0.000002
${ }^{A_{0}} 4$	0.000040	0.000040
${ }^{\text {A }} 14$	-0.000012	-0.000011
${ }^{\text {A }} 24$	0.000005	0.000005
${ }^{\text {A }} 34$	-0.000003	-0.000002
${ }^{\text {A }} 44$	0.000001	0.000001

CHAPTER 4

CONCLUSIONS

From the numerical results of examples in the last chapter, it is observed that for shells with fixed boundaries stress couples are always larger at the apex as well as along the boundaries than at any other point. This kind of distribution is intuitively acceptable and is similar to the experimental results of spherical shells and cylinderical shells which appear as special cases in this thesis. The absolute value of stress couples at the apex seems to be larger than actual values. This is due to the difference between the assumed transverse displacement function and the real distribution of the transverse displacement. Nevertheless, as long as the boundary value problem is concerned, this method gives good approximate values of stress couples along the boundaries and is satisfactory for the design purpose. The distribution of stress resultants is not sufficiently accurate near the boundaries, since in the calculation of the stress resultants, membranal strains $\frac{\partial u_{x}}{\partial x}$ and $\frac{\partial u_{y}}{\partial y}$ which have a major effect on stress resultants near the boundaries were neglected in expression (II-3-6). Therefore, instead of using the values of stress resultants obtained by this approximate method, it is better to consider them rather as indicative for the design.

For the shells of simply supported boundaries, the effect of surface displacements u_{x} and u_{y} on the transverse displacement u_{z} is large as discussed in section (3-4). Therefore, unless u_{x} and u_{y} are included in every expression, the result of
stress couples and stress resultants obtained by this method should be used for design with great care.

The results for shells with mixed boundaries should lie somewhere between these results. The author suggests to include the membranal displacement in all expressions when the shell is not very shallow, say H / b near $1 / 5$, but to exclude the membranal displacement.in all expressions when the shell is very shallow, i.e. for shells with $H / b=1 / 10$.

DERIVATION OF STRAIN ENERGY EXPRESSION FOR SHALLOW SHELLS LECTURE NOTES BY Dr. JOHN SCHROEDER

A directional tensor quantity of the second order is defined as a homogeneous bilinear vector-form

$$
\begin{aligned}
\overline{\bar{A}} & =A_{11} \bar{e}_{1} \bar{e}_{1}+A_{12} \bar{e}_{1} \bar{e}_{2}+A_{13} \bar{e}_{1} \bar{e}_{3}+ \\
& +A_{21} \bar{e}_{2} \bar{e}_{1}+A_{22} \bar{e}_{2} \bar{e}_{2}+A_{23} \bar{e}_{2} \bar{e}_{3}+ \\
& +A_{31} \bar{e}_{3} \bar{e}_{1}+A_{32} \bar{e}_{3} \bar{e}_{2}+A_{33} \bar{e}_{3} \bar{e}_{3} \\
& =A_{i j} \bar{e}_{i} \bar{e}_{j}
\end{aligned}
$$

where $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$ are unit base vectors along three orthogonal curvilinear directions, and repeated indices imply summation.

Following definitions, the general stress and strain tensors in elasticity are defined by,

$$
\begin{aligned}
\overline{\bar{\sigma}} & =\sigma_{11} \bar{e}_{1} \bar{e}_{1}+\sigma_{12} \bar{e}_{1} \vec{e}_{2}+\sigma_{13} \bar{e}_{1} \bar{e}_{3}+ \\
& +\sigma_{21} \bar{e}_{2} \bar{e}_{1}+\sigma_{22} \bar{e}_{2} \bar{e}_{2}+\sigma_{23} \bar{e}_{2} \bar{e}_{3}+ \\
& +\sigma_{31} \bar{e}_{3} \bar{e}_{1}+\sigma_{32} \bar{e}_{3} \bar{e}_{2}+\sigma_{33} \bar{e}_{3} \bar{e}_{3} \\
& =\sigma_{i j} \bar{e}_{i} \bar{e}_{j}=\bar{e}_{i}\left(\sigma_{i j} \bar{e}_{j}\right)=\bar{e}_{i} \bar{\sigma}_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\epsilon} & =\epsilon_{11} \bar{e}_{1} \vec{e}_{1}+\epsilon_{12} \vec{e}_{1} \bar{e}_{2}+\epsilon_{13} \bar{e}_{1} \bar{e}_{3}+ \\
& +\epsilon_{21} \bar{e}_{2} \vec{e}_{1}+\epsilon_{22} \bar{e}_{2} \bar{e}_{2}+\epsilon_{23} \bar{e}_{2} \bar{e}_{3}+ \\
& +\epsilon_{31} \bar{e}_{3} \bar{e}_{1}+\epsilon_{32} \bar{e}_{3} \vec{e}_{2}+\epsilon_{33} \bar{e}_{3} \bar{e}_{3} \\
& =\epsilon_{i j} \bar{e}_{i} \cdot \bar{e}_{j}=\bar{e}_{i}\left(\epsilon_{i j} \bar{e}_{j}\right)=\bar{e}_{i} \bar{\epsilon}_{i}
\end{aligned}
$$

Furthermore, the double-dot product of $\overline{\overline{\boldsymbol{\sigma}}}$ and $\overline{\overline{\boldsymbol{\epsilon}}}$ is defined in its trinomial form

$$
\overline{\bar{\sigma}}: \overline{\bar{\epsilon}}=\bar{e}_{r} \bar{\sigma}_{r}: \bar{e}_{s} \bar{\epsilon}_{s}=\bar{e}_{r} \cdot \bar{e}_{s} \bar{\sigma}_{r} \cdot \bar{\epsilon}_{s}=\delta_{r s} \bar{\sigma}_{r} \cdot \bar{\epsilon}_{s}=\bar{\sigma}_{r} \cdot \bar{\epsilon}_{r}
$$

Its component form is

$$
\overline{\bar{\sigma}}: \overline{\bar{\epsilon}}=\sigma_{i j} \epsilon_{l m}\left(\bar{e}_{i} \cdot \bar{e}_{l}\right)\left(\bar{e}_{j} \cdot \bar{e}_{m}\right)=\sigma_{i j} \epsilon_{i j}
$$

Hence

$$
\begin{equation*}
\delta v^{(s)}=\int_{v} \overline{\bar{\sigma}}: \delta \overline{\bar{\epsilon}} d v \tag{1}
\end{equation*}
$$

in which v denotes the volume of an elastic body.
From the traditional definition, the stress-strain
relation for isotropic Hookean materials, which excludes the thermal effects, is

$$
\begin{equation*}
\overline{\bar{\sigma}}=2 \mu \overline{\bar{\epsilon}}+\lambda(\overline{\bar{\epsilon}}: \overline{\overline{1}}) \overline{\overline{1}} \tag{2}
\end{equation*}
$$

where μ, λ are Cauchy-Lamé's First and Second Elastic Constants, $\bar{\epsilon}: \overline{\overline{1}}=\epsilon_{11}+\epsilon_{22}+\epsilon_{33} \quad$ denotes the First Strain Invariant,
$\bar{l}=\bar{e}_{i} \bar{e}_{i}$ designates the Idemfactor, Unitary Tensor, or Identity Tensor. Substituting. (2) into (1) yields

$$
\begin{aligned}
\delta U^{(s)} & =\int_{v}(2 \mu \overline{\bar{\epsilon}}+\lambda(\overline{\bar{\epsilon}}: \overline{\overline{1}}) \overline{\overline{1}}): \delta \overline{\bar{\epsilon}} d v \\
& =\int_{v}(2 \mu \overline{\bar{\epsilon}}: \delta \overline{\bar{\epsilon}}+\lambda(\overline{\bar{\epsilon}}: \overline{\overline{1}}) \overline{\overline{1}}: \delta \overline{\bar{\epsilon}}) d v \\
& =\delta \int_{v}\left(\mu \overline{\bar{\epsilon}}: \overline{\bar{\epsilon}}+\frac{\lambda}{2}(\overline{\bar{\epsilon}}: \overline{\overline{1}})^{2}\right) d v
\end{aligned}
$$

The strain energy is thus

$$
\begin{equation*}
U^{(s)}=\int_{v}\left(\mu \overline{\bar{\epsilon}}: \overline{\bar{\epsilon}}+\frac{\lambda}{2}(\overline{\bar{\epsilon}}: \overline{\overline{7}})^{2}\right) d v \tag{3}
\end{equation*}
$$

For thin shells, the thickness always represents a small quantity in comparison with its other two dimensions, therefore, it is usually possible to treat thin shell theory as an approximate bidimensional continuum problem. In this approximation, the Kirchoff-Aron Hypothesis is enforced and $\epsilon_{13}, \epsilon_{31}, \epsilon_{23}$,
and ϵ_{32} are assumed to be identically zero. But, for the purpose of simplifying the final expression of strain energy the normal strain component ϵ_{33} is retained by imposing the condition of plane stress $\sigma_{33}=0$, and ϵ_{33} is thus expressed as a function of ϵ_{11} and ϵ_{22} in virtue of the stress-strain relation. Even though this procedure is not quite consistent, yet since ϵ_{33} is normally a much smaller strain than $\epsilon_{\|}$and ϵ_{22}, the final results are not appreciably affected by this approximation. Consequently, the strain tensor reduces to its simplified form

$$
\begin{equation*}
\overline{\bar{\epsilon}}=\epsilon_{11} \bar{e}_{1} \bar{e}_{1}+\epsilon_{12} \bar{e}_{1} \bar{e}_{2}+\epsilon_{21} \bar{e}_{2} \bar{e}_{1}+\epsilon_{22} \bar{e}_{2} \bar{e}_{2}+\epsilon_{33} \bar{e}_{3} \bar{e}_{3} \tag{4}
\end{equation*}
$$

Substituting (4) into (3), and observing the fact that strain tensor is symmetric, expression (3) becomes
$U^{(s)}=\mu \iint_{A}\left[\int\left[\epsilon_{11}^{2}+\epsilon_{22}^{2}+\epsilon_{33}^{2}+2 \epsilon_{12}^{2}+\frac{\nu}{1-2 \nu}\left(\epsilon_{11}+\epsilon_{22}+\epsilon_{33}\right)^{2}\right] d \alpha_{3}\right] d A$
Since $\lambda=2 \nu \mu /(1-2 \nu)$, now, assuming $\sigma_{33}=0$

$$
\begin{align*}
& \sigma_{33}=\frac{2 \mu \nu}{1-2 \nu}\left(\epsilon_{11}+\epsilon_{22}\right)+\frac{2 \mu(1-\nu)}{1-2 \nu} \epsilon_{33}=0 \\
& \epsilon_{33}=-\frac{\nu}{1-\nu}\left(\epsilon_{11}+\epsilon_{22}\right) \tag{6}
\end{align*}
$$

If $\epsilon_{11}\left(\bar{r}_{0}\right), \epsilon_{22}\left(\bar{r}_{0}\right), \epsilon_{12}\left(\bar{r}_{0}\right)$ denote the strain components of an arbitrary point in the middle surface, then the strain in the surfaces parallel to the middle surface are given in terms of the geometric properties of the middle surface
$\epsilon_{11}(\bar{r})=\epsilon_{11}\left(\bar{r}_{0}\right)+\alpha_{3} \delta K_{2}^{(n)}$
$\epsilon_{22}(\bar{r})=\epsilon_{22}\left(\bar{r}_{0}\right)+\alpha_{3} \delta K_{1}^{(n)}$
$\epsilon_{12}(\bar{r})=\epsilon_{12}\left(\bar{r}_{0}\right)+\alpha_{3} \delta K^{(9)}$

ELEMENT OF SHELL

From Fig(2), $\quad d S_{1}=A_{1} d \alpha_{1}\left(1+\alpha_{3} K_{2}^{(n)}\right)$

$$
d S_{2}=A_{2} d \alpha_{2}\left(1+\alpha_{3} K_{1}^{(n)}\right)
$$

and

$$
d S_{1} d S_{2} \doteq d A
$$

It was mentioned in the earlier part of this thesis, that $K_{1}^{(n)}\left(\bar{F}_{0}\right)=K_{1}^{(n)}$ and $K_{2}^{(n)}\left(\bar{F}_{0}\right)=K_{2}^{(n)}$ are very small quantities, thus the terms $\alpha_{3} K_{1}^{(n)}$ and $\alpha_{3} K_{2}^{(n)}$ in $d s_{1}$ and $d s_{2}$ when compared
 with unity, can be neglected. This simplification represents the so-called LOVE First Approximation, which reduces d_{1} and ds_{2} to the simple form

$$
d S_{1} \doteq A_{1} d \alpha_{1}, \quad d S_{2} \doteq A_{2} d \alpha_{2}
$$

Substituting (6), (7) and $\mathrm{ds}_{1}, \mathrm{ds}_{2}$ into (5) and integrating it over α_{3} between limits $-h / 2$ and $h / 2$ yields the approximate expression of total strain energy in the shell

$$
\begin{align*}
U^{(s)}=\mu \int & \left\{\left[\epsilon_{11}^{2}\left(\bar{r}_{0}\right)+\epsilon_{22}^{2}\left(\bar{r}_{0}\right)+2 \nu \epsilon_{11}\left(\bar{r}_{0}\right) \epsilon_{22}\left(\bar{r}_{0}\right)+2(1-\nu) \epsilon_{12}^{2}\left(\bar{r}_{0}\right)\right] \frac{h}{1-\nu}+\right. \\
& \left.+\left(\left(\delta K_{1}^{(n)}\right)^{2}+\left(\delta K_{2}^{(n)}\right)^{2}+2 \nu \delta K_{1}^{(n)} \delta K_{2}^{(n)}+(1-\nu)\left(\delta K^{(g)}\right)^{2}\right] \frac{h^{3}}{12(1-\nu)}\right\} d A(\tag{8}
\end{align*}
$$

APPENDIX B
DETERMINATION OF FOURIER COEFFICIENTS FOR NORMAL DISPLACEMENT
FUNCTION - FOR SHELLS WITH FIXED EDGES

Substituting equations II-3-2 into II-2-3 yields

$$
\begin{aligned}
U^{(s)}= & D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\right. \\
& \left.\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2}\left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y+ \\
& +\frac{D}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) A_{m n}-\right. \\
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} \\
& \left(1+\frac{1}{2}\left(K_{x}^{(n)}\right)^{2} x^{2}+\frac{1}{2}\left(K_{y}^{(n)}\right)^{2} y^{2}\right) d x d y
\end{aligned}
$$

Assuming $D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]=\phi$

$$
\begin{aligned}
U^{(5)} & =\phi \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2} d x d y+ \\
& +\frac{\phi}{2}\left(K_{x}^{(n)}\right)^{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2} x^{2} d x d y+ \\
& +\frac{\phi}{2}\left(K_{y}^{(n)}\right)^{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2} y^{2} d x d y+ \\
& +\frac{D}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) A_{m n}-\right. \\
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} d x d y+ \\
& +\frac{D\left(K_{x}^{(n)}\right)^{2}}{4} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) A_{m n}}{a}\right. \\
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} x^{2} d x d y+
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} y^{2} d x d y \\
& =U_{1}^{(s)}+U_{2}^{(s)}+U_{3}^{(s)}+U_{4}^{(s)}+U_{5}^{(s)}+U_{6}^{(s)} \\
& U_{1}^{(s)}=\phi \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2} d x d y \\
& =\phi \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)^{2}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)^{2}+\right. \\
& +\sum_{m=0}^{\infty} \sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} A_{m r} A_{m s}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)^{2}\left(1+\cos \frac{2(2 r+1) \pi y}{b}\right)\left(1+\cos \frac{2(2 s+1) \pi y}{b}\right)+ \\
& +\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{S n}\left(1+\cos \frac{2(2 r+1) \pi x}{a}\right)\left(1+\cos \frac{2(25+1) \pi x}{A}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)^{2}+ \\
& r \neq S \\
& +\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{\substack{\infty \\
p=0}}^{\infty} \sum_{\substack{q=0 \\
p \neq q}}^{\infty} A_{r p} A_{s q}\left(1+\cos \frac{2(2 r+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 s+1) \pi x}{a}\right) . \\
& \left.\cdot\left(1+\cos \frac{2(2 p+1) \pi y}{b}\right)\left(1+\cos \frac{2(2 q+1) \pi y}{b}\right)\right] d x d y \\
& \int_{-\frac{a}{2}}^{\frac{a}{2}} \cos (m x) \cos (n x) d x=\left\{\begin{array}{lll}
\frac{a}{2} & \text { if } & m=n \\
0 & & m \neq n
\end{array}\right. \\
& U_{1}^{(s)}=\phi\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2} \frac{9 a b}{4}+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{\substack{s=0 \\
r \neq S}}^{\infty} A_{m r} A_{m s} \frac{3 a b}{2}+\sum_{\substack{=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{3 a b}{2}+\right. \\
& \left.+\sum_{r=0}^{\infty} \sum_{S=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} A_{r p} A_{s q} \frac{4}{3} a b\right] \\
& r \neq 5 \quad p \neq q \\
& =\frac{3 \phi}{4}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 3 A_{m n}^{2} a b+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{\substack{s=0 \\
r \neq S}}^{\infty} 2 A_{m r} A_{m s} a b+\right.
\end{aligned}
$$

$$
\begin{aligned}
&\left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} 2 A_{r n} A_{s n} a b+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{r=s}^{\infty} \sum_{r=0}^{\infty} \sum_{q=0}^{\infty} \frac{4}{3} A_{r p} A_{s q} a b\right] \\
& U_{2}^{(s)}=\frac{1}{2} \phi\left(K_{x}^{(n)}\right)^{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\right]^{2} x^{2} d x d y \\
&=\frac{1}{2} \phi\left(K_{x}^{(n)}\right)^{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)^{2}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)^{2} x^{2}+\right. \\
&+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} A_{m r} A_{m s}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)^{2}\left(1+\cos \frac{2(3 r+1) \pi y}{b}\right)\left(1+\cos \frac{2(2 s+1) \pi y}{b}\right) x^{2}+ \\
&+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n}\left(1+\cos \frac{2(2 r+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 s+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)^{2} x^{2}+ \\
&+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{p=0}^{\infty} A_{r p} A_{s q}\left(1+\cos \frac{2(2 r+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 s+1) \pi x}{a}\right) \cdot
\end{aligned}
$$

$r \neq s \quad p \neq q$

$$
\left.\cdot\left(1+\cos \frac{2(2 p+1) \pi y}{b}\right)\left(1+\cos \frac{2(2 q+1) \pi y}{b}\right) x^{2}\right] d x d y
$$

It has been found that $\int_{-\frac{a}{2}}^{\frac{a}{2}} x^{2} \cos (m x) \cos (n x) d x=\left\{\begin{array}{cl}\frac{a^{3} b}{24} & \text { if } \begin{array}{l}m=n \\ 0\end{array} \quad m \neq n\end{array}\right.$

$$
\begin{gathered}
\int_{-\frac{a}{2}}^{\frac{a}{2}} x^{2} \cos \frac{2(2 m+1) \pi x}{a} d x=0 \\
U_{2}^{(s)}=\frac{1}{2} \phi\left(K_{x}^{(n)}\right)^{2}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left(\frac{a^{3} b}{12}+\frac{a^{3} b}{24}+\frac{a^{3} b}{24}+\frac{a^{3} b}{48}\right)+\right. \\
+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} A_{m r} A_{m s}\left(\frac{a^{3} b}{12}+\frac{a^{3} b}{24}\right)+ \\
+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n}\left(\frac{a^{3} b}{12}+\frac{a^{3} b}{24}\right) \\
\\
\left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{k=0}^{\infty} A_{r p} A_{s q} \frac{a^{3} b}{12}\right\} \\
=\frac{1}{2} \phi\left(K_{x}^{(n)}\right)^{2}\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{3}{16} A_{m}^{2}+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{1}{8} A_{m r} A_{m s}+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{8} A_{r n} A_{s n}+\right. \\
\left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{p=0}^{\infty} \frac{1}{12} A_{r p} A_{s q}\right) a^{3} b
\end{gathered}
$$

$$
r \neq s \quad p \neq q
$$

From the property of symmetry

$$
\begin{aligned}
& U_{3}^{(s)}=\frac{1}{2} \phi\left(K_{y}^{(n)}\right)^{2}\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2} \frac{3}{16}+\sum_{m=0}^{\infty} \sum_{\substack{m=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} \frac{1}{8} A_{m r} A_{m s}+\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{8} A_{r n} A_{s n}+\right. \\
& \left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{i=0}^{\infty} \sum_{q=0}^{\infty} A_{r p} A_{s q}\right] a b^{3} \\
& U_{4}^{(s)}=\frac{D}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) A_{m n}-\right. \\
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} d x d y \\
& =\frac{D}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } A _ { m n } ^ { 2 } \left[-\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)-\right.\right. \\
& \left.-\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\right]^{2}+ \\
& +\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{i=0}^{\infty} A_{m r} A_{m s}\left[-\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 r+1) \pi y}{b}\right)-\right. \\
& r \neq s \\
& \left.-\left(\frac{2(2 r+1) \pi}{b}\right)^{2} \cos \frac{2(2 r+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\right]\left[-\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a} .\right. \\
& \left.\cdot\left(1+\cos \frac{2(2 s+1) \pi y}{b}\right)-\left(\frac{2(2 s+1) \pi}{b}\right)^{2} \cos \frac{2(2 s+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\right]+ \\
& +\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{S_{n}}\left[-\left(\frac{2(2 r+1) \pi}{a}\right)^{2} \cos \frac{2(2 r+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)-\right. \\
& r \neq 5 \\
& \left.-\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 r+1) \pi x}{a}\right)\right]\left[-\left(\frac{2(25+1) \pi}{a}\right)^{2} \cos \frac{2(25+1) \pi x}{a} .\right. \\
& \left.\cdot\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)-\left(\frac{2(2 n+1) \pi)^{2}}{b} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(25+1) \pi x}{a}\right)\right]\right\} d x d y \\
& =\frac{2 \pi^{4} D}{a^{4}}\left[\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } A _ { m n } ^ { 2 } \left[3 a b(2 m+1)^{4}+2 a b(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}} \dagger\right.\right. \\
& \left.+3 a b(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right)+ \\
& +\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{\substack{s=0 \\
r \neq s}}^{\infty} A_{m r} A_{m s} \frac{6(2 m+1)^{4} a b}{3}+ \\
& \left.+\sum_{\substack{r=0 \\
r \neq S}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{6(2 n+1)^{4} a b}{3} \frac{a^{4}}{b^{4}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& U_{5}^{(s)}=\frac{D\left(K_{x}^{(n)}\right)^{2}}{4} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos \frac{2(2 m+1) \pi x}{a}\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right) A_{m n}-\right. \\
& \left.-\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \cos \frac{2(2 n+1) \pi y}{b}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right) A_{m n}\right\}^{2} x^{2} d x d y \\
& =\frac{D\left(K_{x}^{(n)}\right)^{2}}{4} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left\{\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } \left[\left(\frac{2(2 m+1) \pi}{a}\right)^{4} \cos \frac{2(2 m+1) \pi x}{a} x^{2}\left(1+\cos ^{2} \frac{2(2 n+1) \pi y}{b}\right)+\right.\right. \\
& +\left(\frac{2(2 n+1) \pi}{b}\right)^{4} \cos ^{2} \frac{2(2 n+1) \pi y}{b}\left(1+\cos ^{2} \frac{2(2 m+1) \pi x}{a}\right) x^{2}+ \\
& \left.+2\left(\frac{2(n+1) \pi}{b}\right)^{2}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \cos ^{2} \frac{2(2 n+1) \pi y}{b} \cos ^{2} \frac{2(2 m+1) \pi x}{a} x^{2}\right] A_{m n}^{2}+ \\
& +\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{r=0}^{\infty} A_{m r} A_{m s}\left[\left(\frac{2(2 m+1) \pi}{a}\right)^{4} \cos ^{2} \frac{2(2 m+1) \pi x}{a} x^{2}\right]+ \\
& r \neq s \\
& \left.+\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{s=1}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n}\left\{\left(\frac{2(2 n+1) \pi}{b}\right)^{4} \cos ^{2} \frac{2(2 n+1) \pi y}{b} x^{2}\right]\right\} d x d y \\
& =\frac{1}{2} \frac{b \pi^{4} D\left(K_{x}^{(n)}\right)^{2}}{a}\left[\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } A _ { m n } ^ { 2 } \left[\frac{1}{2}(2 m+1)^{4}+\frac{1}{3}(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+\right.\right. \\
& +\frac{1}{2}(2 n+1)^{4} \frac{a^{4}}{b^{4}}+ \\
& \left.+\sum_{m=0}^{\infty} \sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{\substack{s=0}}^{\infty} A_{m r} A_{m s} \frac{(2 m+1)^{4}}{3}+\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{(2 n+1)^{4}}{3} \frac{a^{4}}{b^{4}}\right] \\
& U_{6}^{(s)}=\frac{1}{2} \frac{b \pi^{4} D\left(K^{(n)} y^{2}\right.}{a^{3}}\left[\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } A _ { m n } ^ { 2 } \left[\frac{1}{2}(2 m+1)^{4} b^{2}+(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{3}+\right.\right. \\
& +\frac{1}{2}(2 n+1)^{4} \frac{a^{4}}{b^{2}}+ \\
& \left.+\sum_{m=0}^{\infty} \sum_{\substack{\infty=0 \\
r \neq 5}}^{\infty} \sum_{s=0}^{\infty} A_{m r} A_{m s} \frac{(2 m+1)^{4} b^{2}}{3}+\sum_{\substack{r=0 \\
r \neq 5}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{(2 n+1)^{4} a^{4}}{3 b^{2}}\right] \\
& \frac{\partial U^{(s)}}{\partial A_{m n}}=\frac{\partial U_{1}^{(s)}}{\partial A_{m n}}+\frac{\partial U_{2}^{(s)}}{\partial A_{m n}}+\frac{\partial U_{3}^{(s)}}{\partial A_{m n}}+\frac{\partial U_{4}^{(s)}}{\partial A_{m n}}+\frac{\partial U_{5}^{(s)}}{\partial A_{m n}}+\frac{\partial U_{6}^{(s)}}{\partial A_{m n}} \\
& \therefore \frac{3 \phi}{2}\left[3 A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 2 A_{m r}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} 2 A_{r n}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} \sum_{\substack{p=0 \\
p \neq n}}^{\infty} \frac{4}{3} A_{r p}\right] a b+ \\
& +\frac{\phi\left(K_{x}^{(n)}\right)^{2}}{2}\left[\frac{3 b^{2}}{8} A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} \frac{a^{2}}{4} A_{m r}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} \frac{a^{2}}{4} A_{r n}+\sum_{\substack{r=0 \\
r \neq m=0 \\
r \neq \pm n}}^{\infty} a^{2} / 6 A_{r p}\right] a b+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\phi\left(K_{y}^{(n)}\right)^{2}}{2}\left[\frac{3 b^{2}}{8} A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} \frac{b^{2}}{4} A_{m r}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} \frac{b^{2}}{4} A_{r n}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} \sum_{p=0}^{\infty} \frac{b^{2}}{6} A_{r p}\right] a b+ \\
& +\frac{4 D \pi^{4}}{a^{4}}\left(A_{m n}\left(3(2 m+1)^{4}+3(n+1)^{4} \frac{a^{4}}{b^{4}}+2(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}\right)+\right. \\
& \left.+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 2 A_{m r}(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} 2 A_{r n}(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right] a b+ \\
& +\frac{\Pi^{4} D\left(K_{x}^{(n)}\right)^{2}}{2 a^{4}}\left[A_{m n}\left[a^{2}(2 m+1)^{4}+\frac{a^{6}}{b^{4}}(2 n+1)^{4}+\frac{2 a^{4}}{3 b^{2}}(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& \left.+\sum_{\substack{r=0}}^{\infty} A_{m r} \frac{2 a^{2}(2 m+1)^{4}}{3}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n} \frac{2 a^{6}}{3 b^{4}}(2 n+1)^{4}\right] a b+ \\
& +\frac{\Pi^{4} D\left(K_{y}^{(n)}\right)^{2}}{2 a^{4}}\left[A_{m n}\left[b^{2}(2 m+1)^{4}+\frac{a^{4}}{b^{2}}(2 n+1)^{4}+\frac{2 a^{2}}{3}(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& \left.+\sum_{\substack{r=0}}^{\infty} A_{m r} \frac{2 b^{2}(2 m+1)^{4}}{3}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{r n} \frac{2 a^{4}}{3 b^{2}}\right] a b=\frac{\partial V^{(s)}}{\partial A_{m n}}
\end{aligned}
$$

The work of external applied forces is

$$
\begin{aligned}
W & =\int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} P \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi y}{b}\right)\left(1+\frac{x^{2}}{2}\left(K_{x}^{(n)}\right)^{2}+\frac{y^{2}}{2}\left(K_{y}^{(n)}\right)^{2}\right) d x d y \\
& =P \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\frac{a^{2}\left(K_{x}^{(n)}\right)^{2}}{24}+\frac{b^{2}\left(K_{y}^{(n)}\right)^{2}}{24}\right) a b \\
\frac{\partial W}{\partial A_{m n}} & =P\left(1+\frac{a^{2}\left(K_{x}^{(n)}\right)^{2}}{24}+\frac{b^{2}\left(K_{y}^{(n)}\right)^{2}}{24}\right) a b \\
\frac{\partial V}{\partial A_{m n}} & =\frac{\partial U^{(s)}}{\partial A_{m n}}-\frac{\partial W}{\partial A_{m n}}=0
\end{aligned}
$$

Dividing both $\frac{\partial U^{(s)}}{\partial A_{m n}}$ and $\frac{\partial W}{\partial A_{m n}}$ by ab yields

$$
\begin{aligned}
& \frac{3 \phi}{2}\left\{A_{m n}\left(3+\frac{a^{2}}{4} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)^{2}+\right. \\
& \left.+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n}\left(2+\frac{a^{2}}{6} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+\sum_{\substack{r=0 \\
r \neq m p=0}}^{\infty} \sum_{r=n}^{\infty} A_{r p}\left(\frac{4}{3}+\frac{a^{2}}{9} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{9} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right\}+ \\
& +\frac{4 D \pi^{4}}{a^{4}}\left\{A _ { m n } \left[(2 m+1)^{4}\left(3+\frac{a^{2}}{4} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{b^{2}}{4} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)+(2 n+1)^{4}\left(\frac{3 a^{4}}{b^{4}}+\frac{a^{6}\left(K_{x}^{(n)}\right)^{2}}{8 b^{4}}+\frac{a^{4}\left(K_{y}^{(n)}\right)^{2}}{8 b^{4}}\right)+\right.\right. \\
& \left.+(2 m+1)^{2}(2 n+1)^{2}\left(\frac{2 a^{2}}{b^{2}}+\frac{a^{4}}{6 b^{2}} \frac{\left(K_{x}^{(n)}\right)^{2}}{2}+\frac{a^{6}}{6} \frac{\left(K_{y}^{(n)}\right)^{2}}{2}\right)\right]+\sum_{r=0}^{\infty} A_{m r}(2 m+1)^{4}\left(2+\frac{a^{2}\left(K_{x}^{(n)}\right)^{2}}{12}+\frac{b^{2}\left(K_{y}^{(n)}\right)^{2}}{12}\right)+ \\
& \left.+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n}(2 n+1)^{4}\left(\frac{2 a^{4}}{b^{4}}+\frac{a^{6}\left(K_{x}^{(n)}\right)^{2}}{12 b^{4}}+\frac{a^{4}\left(K_{y}^{(n)}\right)^{2}}{12 b^{2}}\right)\right\}=P\left(\frac{24+a^{2}\left(K_{x}^{(n)}\right)^{2}+b^{2}\left(K_{y}^{(n)}\right)^{2}}{24}\right)
\end{aligned}
$$

DERIVATION OF STRESS RESULTANTS AND STRESS COUPLES

A. General Equilibrium Equations of Shallow Shells

From Fig. (1), it gives

$$
\begin{aligned}
& \sum \bar{F}(\sigma)=0 \\
& \Delta \bar{F}_{1}^{(\sigma)} A_{2} d \alpha_{2}+\Delta \bar{F}_{2}(\sigma) A_{1} d \alpha_{1}+\bar{P} A_{1} A_{2} d \alpha_{1} d \alpha_{2}=0
\end{aligned}
$$

Assuming that the changes of $\bar{F}_{1}^{(\sigma)}$ and $\bar{F}_{2}^{(\sigma)}$ are linear and neglecting terms of higher infinitesimal order, then

$$
\begin{align*}
& \quad \frac{1}{A_{1}} \frac{\partial \bar{F}_{1}^{(\sigma)}}{\partial \alpha_{1}} A_{1} A_{2} d \alpha_{1} d \alpha_{2}+\frac{1}{A_{2}} \frac{\partial \bar{F}_{2}^{(\sigma)}}{\partial \alpha_{2}} A_{1} A_{2} d \alpha_{1} d \alpha_{2}+ \\
& +\quad \bar{P} A_{1} A_{2} d \alpha_{1} d \alpha_{2}=0
\end{align*}
$$

or

FIG. 1
$\frac{1}{A_{1}}\left(\frac{\partial F_{11}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{1}+\frac{\partial F_{12}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{2}+\frac{\partial F_{13}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{3}\right)+\frac{1}{A_{1}}\left(F_{11}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{1}}+F_{12}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{1}}+F_{13}^{(\sigma)} \frac{\partial \bar{e}_{3}}{\partial \alpha_{1}}\right)+$
$+\frac{1}{A_{2}}\left(\frac{\partial F_{21}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{1}+\frac{\partial F_{22}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{2}+\frac{\partial F_{23}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{3}\right)+\frac{1}{A_{2}}\left(F_{21}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{2}}+F_{22}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{2}}+F_{23}^{(\sigma)} \frac{\partial \bar{e}_{3}}{\partial \alpha_{2}}\right)+$
$+\dot{P}_{1} \bar{e}_{1}+P_{2} \bar{e}_{2}+P_{3} \bar{e}_{3}=0$
If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ represent rectangular co-ordinates x, y, z, the expression (2) reduces to
$\left(\frac{\partial F_{x x}^{(\sigma)}}{\partial x} \bar{e}_{x}+\frac{\partial F_{x y}^{(\sigma)}}{\partial x} \bar{e}_{y}+\frac{\partial F_{x z}^{(\sigma)}}{\partial x} \bar{e}_{z}\right)+\left(\frac{\partial F_{y x}^{(\sigma)}}{\partial y} \bar{e}_{x}+\frac{\partial F_{y y}^{(\sigma)}}{\partial y} \bar{e}_{y}+\frac{\partial F_{y z}^{(\sigma)}}{\partial y} \bar{e}_{z}\right)+P_{x} \bar{e}_{x}+P_{y} \bar{e}_{y}+P_{z} \bar{e}_{z}=0$
This yields,

$$
\begin{equation*}
\frac{\partial F_{x x}^{(\sigma)}}{\partial x}+\frac{\partial F_{y x}^{(\sigma)}}{\partial y}+P_{x}=0 \tag{3-1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial F_{x y}^{(\sigma)}}{\partial x}+\frac{\partial F_{y y}^{(\sigma)}}{\partial y}+P_{y}=0 \tag{3-2}\\
& \frac{\partial F_{x}^{(\sigma)}}{\partial x}+\frac{\partial F_{y z}^{(\sigma)}}{\partial y}+P_{z}=0 \tag{3-3}
\end{align*}
$$

Again Fig. (1) gives

$$
\Sigma \bar{M}(\sigma)=0
$$

$\Delta \bar{M}_{1}(\sigma) A_{2} d \alpha_{2}+\Delta \bar{M}_{2}(\sigma) A_{1} d \alpha_{1}+\left(A_{1} d \alpha_{1} \bar{e}_{1}+\frac{A_{2} d \alpha_{2}}{2} \bar{e}_{2}\right) x\left(\bar{F}_{1}(\sigma)+\Delta \bar{F}_{1}(\sigma)\right) A_{2} d \alpha_{2}+$ $+\left(A_{2} d \alpha_{2} \bar{e}_{2}+\frac{A_{1} d \alpha_{1}}{2} \bar{e}_{1}\right) \times\left(\bar{F}_{2}^{(\sigma)}+\Delta \bar{F}_{2}^{(\sigma)}\right) A_{1} d \alpha_{1}-\frac{A_{2} d \alpha_{2}}{2} \bar{e}_{2} \times \bar{F}_{1}(\sigma) A_{2} d \alpha_{2}-$
$-\frac{A_{1} d \alpha_{1}}{2} \bar{e}_{1} \times \bar{F}_{2}^{(\sigma)} A_{1} d \alpha_{1}=0$

Assuming that the variations are all linear, then
$\frac{1}{A_{2}} \frac{\partial \bar{M}_{2}^{(\sigma)}}{\partial \alpha_{2}} A_{1} A_{2} d \alpha_{1} d \alpha_{2}+\frac{1}{A_{1}} \frac{\partial \bar{M}_{1}^{(\sigma)}}{\partial \alpha_{1}} A_{1} A_{2} d \alpha_{1} d \alpha_{2}-\bar{F}_{1}(\sigma) A_{2} d \alpha_{2} \times A_{1} d \alpha_{1} \bar{e}_{1}-$
$-\bar{F}_{2}^{(0)} A_{1} d \alpha_{1} \times A_{2} d \alpha_{2} \bar{e}_{2}=0$
or say.
$\frac{1}{A_{2}} \frac{\partial \bar{M}_{2}^{(\sigma)}}{d \alpha_{2}}+\frac{1}{A_{1}} \frac{\partial \bar{M}_{1}^{(\sigma)}}{\partial \alpha_{1}}+\bar{e}_{1} \times \bar{F}_{1}^{(\sigma)}+\bar{e}_{2} \times \bar{F}_{2}^{(\sigma)}=0$
Expanding expression (4) yields

$$
\begin{align*}
& \frac{1}{A_{1}}\left(\frac{\partial M_{11}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{1}+\frac{\partial M_{12}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{2}+\frac{\partial M_{13}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{3}+M_{11}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{1}}+M_{12}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{1}}+M_{13}^{(\sigma)} \frac{\partial \bar{e}_{3}}{\partial \alpha_{1}}\right)+ \\
& +\frac{1}{A_{2}}\left(\frac{\partial M_{21}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{1}+\frac{\partial M_{22}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{2}+\frac{\partial M_{23}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{3}+M_{21}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{2}}+M_{22}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{2}}+M_{23}^{(\sigma)} \frac{\partial \bar{e}_{3}}{\partial \alpha_{2}}\right)+ \\
& +\left(F_{12}^{(\sigma)} \bar{e}_{3}-F_{13}^{(\sigma)} \bar{e}_{2}\right)+\left(F_{23}^{(\sigma)} \bar{e}_{1}-F_{21}^{(\sigma)} \bar{e}_{3}\right)=0 \tag{5}
\end{align*}
$$

Since thickness of a shell is of much smaller order than the dimensions of its middle surface, the terms $M_{13}^{(\sigma)}, M_{23}^{(\sigma)}$ can be reasonably neglected. So expression (5) reduces to

$$
\begin{aligned}
& \frac{1}{A_{1}}\left(\frac{\partial M_{11}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{1}+\frac{\partial M_{12}^{(\sigma)}}{\partial \alpha_{1}} \bar{e}_{2}+M_{11}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{1}}+M_{12}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{1}}+\right. \\
& +\frac{1}{A_{2}}\left(\frac{\partial M_{21}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{1}+\frac{\partial M_{22}^{(\sigma)}}{\partial \alpha_{2}} \bar{e}_{2}+M_{21}^{(\sigma)} \frac{\partial \bar{e}_{1}}{\partial \alpha_{2}}+M_{22}^{(\sigma)} \frac{\partial \bar{e}_{2}}{\partial \alpha_{2}}\right)+
\end{aligned}
$$

$+F_{y z}^{(\sigma)} \bar{e}_{x}-F_{x z}^{(\sigma)} \bar{e}_{y}+\left(F_{x y}^{(\sigma)}-F_{y x}^{(\sigma)}\right) \bar{e}_{z}=0$
The scalar components of the moment equation of equilibrium are

$$
\begin{align*}
& \frac{\partial M_{x x}^{(\sigma)}}{\partial x}+\frac{\partial M_{y x}^{(\sigma)}}{\partial y}+F_{y z}^{(\sigma)}=0 \tag{7-1}\\
& \frac{\partial M_{x y}^{(\sigma)}}{\partial x}+\frac{\partial M_{y y}^{(\sigma)}}{\partial y}-F_{x z}^{(\sigma)}=0 \tag{7-2}\\
& F_{x y}^{(\sigma)}-F_{y x}^{(\sigma)}=0 \tag{7-3}
\end{align*}
$$

Equation (3) together with equation (7) are called the equilibrium equations of a shallow shell.
B. Equilibrium Equations of Thin Shallow Translational

Shells Subjected to Uniform Transverse Load
For this case, $P_{x}=P_{y}=0$, the equations (3),
reduce down to the following expressions:

$$
\begin{align*}
& \frac{\partial F_{x x}^{(\sigma)}}{\partial x}+\frac{\partial F_{y x}^{(\sigma)}}{\partial y}=0 \tag{8-1}\\
& \frac{\partial F_{y y}^{(\sigma)}}{\partial y}+\frac{\partial F_{x y}^{(\sigma)}}{\partial x}=0 \tag{8-2}\\
& \frac{\partial F_{x z}^{(\sigma)}}{\partial x}+\frac{\partial F_{y z}^{(\sigma)}}{\partial y}+P_{z}=0 \tag{8-3}\\
& \frac{\partial M_{y y}^{(\sigma)}}{\partial y}+\frac{\partial M_{x y}^{(\sigma)}}{\partial x}-F_{x z}^{(\sigma)}=0 \tag{8-4}\\
& \frac{\partial M_{x x}^{(\sigma)}}{\partial x}+\frac{\partial M_{y x}^{(\sigma)}}{\partial y}-F_{y z}^{(\sigma)}=0 \tag{8-5}\\
& F_{x y}^{(\sigma)}=F_{y x}^{(\sigma)}
\end{align*}
$$

C. Stress Resultants and Stress Couples

From Fig. (2), it gives

$$
\begin{align*}
& F_{x x}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x x} d z \tag{9-1}\\
& F_{y y}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{y y} d z \tag{9-2}\\
& M_{x y}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x x} z d z \tag{9-3}\\
& M_{y x}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}}-\sigma_{y y} z d z \tag{9-4}\\
& M_{x x}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}}-\sigma_{x y} z d z \tag{9-5}\\
& M_{y y}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{y x} z d z \tag{9-6}\\
& F_{x z}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x z} d z \\
& F_{y z}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{y z} d z \tag{9-8}
\end{align*}
$$

(9-7)

From Appendix A, equation 2, it gives

$$
\begin{aligned}
F_{x x}^{(\sigma)} & =\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x x} d z=\int_{-\frac{h}{2}}^{\frac{h}{2}} \bar{e}_{x} \bar{e}_{x}: \overline{\bar{\sigma}} d z=\int_{-\frac{h}{2}}^{\frac{h}{2}} \bar{e}_{x} \bar{e}_{x} \cdot(2 \mu \overline{\bar{\epsilon}}+\lambda(\overline{\bar{\epsilon}}: \overline{\overline{1}}) \overline{\overline{1}}) d z \\
& =\int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \mu \epsilon_{x x}+\frac{\nu}{1-\nu}\left(\epsilon_{x x}+\epsilon_{y y}+\epsilon_{z z}\right) d z \\
& =\int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \mu\left(\epsilon_{x x}+\frac{\nu}{1-\nu} \epsilon_{x x}+\frac{\nu}{1-\nu} \epsilon_{y y}\right) d z
\end{aligned}
$$

$$
\begin{align*}
& =\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{2 \mu}{1-\nu}\left(\epsilon_{x x}+\nu \epsilon_{y y}\right) d z \\
& =\int_{-\frac{h}{2}}^{\frac{h}{2}}\left(\epsilon_{x x}^{\left(\bar{r}_{0}\right)}-z \delta K_{x}^{(n)}+\nu \epsilon_{y y}^{\left(\bar{r}_{0}\right)}-\nu z \delta K_{y}^{(n)}\right) \frac{2 \mu}{1-\nu} d z \\
& =\frac{2 \mu h}{1-\nu}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) u_{z}=D^{\prime}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) u_{z} \tag{10-1}\\
& F_{y y}^{(\sigma)}=D^{\prime}\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) u_{z} \tag{10-2}\\
& M_{x y}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x x} z d z=\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{2 \mu}{1-\nu}\left(\epsilon_{x x}^{\left(\bar{r}_{0}\right)}-z \delta K_{x}^{(n)}+\nu \epsilon_{y y}^{\left(\bar{r}_{0}\right)}-\nu z \delta k_{y}^{(n)}\right) z d z \\
& =-\frac{2 \mu}{3(1-\nu)} \frac{h^{3}}{4}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+v \frac{\partial^{2} u_{z}}{\partial y^{2}}\right)=-D\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\nu \frac{\partial^{2} u_{z}}{\partial y^{2}}\right) \tag{10-3}\\
& M_{y x}^{(\sigma)}=-\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{y y} z d z=D\left(\frac{\partial^{2} u_{z}}{\partial y^{2}}+\nu \frac{\partial^{2} u_{z}}{\partial x^{2}}\right) \tag{10-4}\\
& M_{x x}^{(\sigma)}=-\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x y} z d z=-\int_{-\frac{h}{2}}^{\frac{h}{2}} \bar{e}_{x} \bar{e}_{y}:(2 \mu \overline{\bar{\epsilon}}+\lambda(\overline{\bar{\epsilon}}: \overline{\overline{1}}) \overline{\overline{1}}) z d z \\
& =-\int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \mu \epsilon_{x y} z d z=2 \mu \int_{-\frac{h}{2}}^{\frac{h}{2}}\left(-\epsilon_{x y}^{\left(\bar{x}_{0}\right)}-z \delta K^{(g)}\right) z d z \\
& =-\frac{2 \mu h^{3}}{12} \delta K^{(g)}=D(1-\nu) \frac{\partial^{2} u_{z}}{\partial x \partial y} \tag{10-5}\\
& M_{y y}^{(\sigma)}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{y x} z d z=-D(1-\nu) \frac{\partial^{2} u_{z}}{\partial y \partial x} \tag{10-6}
\end{align*}
$$

Expression (8-4) yields,

$$
\begin{align*}
F_{x z}^{(\sigma)} & =\frac{\partial M_{x y}^{(\sigma)}}{\partial x}+\frac{\partial M_{y y}^{(\sigma)}}{\partial y}=-D \frac{\partial}{\partial x}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\nu \frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}-\nu \frac{\partial^{2} u_{z}}{\partial y^{2}}\right) \\
& =-D \frac{\partial}{\partial x}\left(\nabla^{2} u_{z}\right) \tag{10-7}
\end{align*}
$$

and expression (8-5) yields,

$$
\begin{align*}
F_{y z}^{(\sigma)} & =-\frac{\partial M_{y x}^{(\sigma)}}{\partial y}-\frac{\partial M_{x x}^{(\sigma)}}{\partial x}=-D \frac{\partial}{\partial y}\left(\frac{\partial^{2} u_{z}}{\partial y^{2}}+\nu \frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial x^{2}}-\nu \frac{\partial^{2} u_{z}}{\partial x^{2}}\right) \\
& =-D \frac{\partial}{\partial y}\left(\nabla^{2} u_{z}\right) \tag{10-8}
\end{align*}
$$

Since the POISSON'S ratio ν of usual construction materials is always a small quantity compared to unity, a further approximation of stress couples is possible.

$$
\begin{aligned}
& M_{x y}^{(\sigma)}=-D \frac{\partial^{2} u_{z}}{\partial x^{2}} \\
& M_{y x}^{(\sigma)}=D \frac{\partial^{2} u_{z}}{\partial y^{2}} \\
& M_{x x}^{(\sigma)}=D \frac{\partial^{2} u_{z}}{\partial x \partial y} \\
& M_{y y}^{(\sigma)}=-D \frac{\partial^{2} u_{z}}{\partial y \partial x}
\end{aligned}
$$

APPENDIX D

CALCULATIONS OF FOURIER COEFFICIENTS FOR THE

MEMBRANAL DISPLACEMENT FUNCTIONS

The expressions (II-1-2), according to rectangular Cartesian co-ordinates, gives

$$
\begin{align*}
& \epsilon_{x x}^{\left(\bar{r}_{0}\right)}=\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x}+K_{x}^{(n)} u_{z}^{\left(\bar{r}_{0}\right)} \\
& \epsilon_{y y}^{\left(\bar{r}_{0}\right)}=\frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y}+K_{y}^{(n)} u_{z}^{\left(\bar{r}_{0}\right)} \\
& \delta K_{x}^{(n)}=\frac{\partial^{2} u_{z}^{\left(\bar{r}_{0}\right)}}{\partial x^{2}} \tag{4-1}\\
& \delta K_{y}^{(n)}=\frac{\partial^{2} u_{z}^{\left(\bar{r}_{0}\right)}}{\partial y^{2}} \\
& \epsilon_{x y}^{\left(\bar{r}_{0}\right)}=\frac{1}{2}\left[\frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial x}+\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial y}\right] \\
& \delta K^{(g)}=\frac{\partial^{2} u_{z}^{\left(\bar{r}_{0}\right)}}{\partial x \partial y}
\end{align*}
$$

Substituting (4-1), into equation (II-1-1), gives

$$
\begin{align*}
& U^{(s)}=\frac{\mu h}{1-\nu} \iint_{A}\left\{\left(\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x}\right)^{2}+\left(\frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y}\right)^{2}+2 \nu \frac{\partial u_{x}^{\left(\bar{F}_{0}\right)}}{\partial x} \frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y}+\right. \\
&+\frac{1}{2}(1-\nu)\left[\left(\frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial x}\right)^{2}+\left(\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial y}\right)^{2}+2 \frac{\partial u_{y}^{\left(\bar{F}_{0}\right)}}{\partial x} \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial y}\right] \\
&+\left[\left(K_{x}^{(n)}\right)^{2}\left(u_{z}^{\left(\bar{r}_{0}\right)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}\left(u_{z}^{\left(\bar{r}_{0}\right)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\left(u_{z}^{\left(\bar{r}_{0}\right)}\right)^{2}\right] \\
&\left.+\left[2 \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} u_{z}^{\left(\bar{r}_{0}\right)}\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right)+2 \frac{\partial u_{y}^{\left(\overline{0}_{0}\right)}}{\partial y} u_{z}^{\left(\bar{r}_{0}\right)}\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right)\right]\right\} d x d y+ \\
&+\frac{\mu h^{3}}{12(1-\nu)} \iint_{A}\left(\frac{\partial^{2} u_{z}^{\left(\bar{r}_{0}\right)}}{\partial x^{2}}+\frac{\partial^{2} u_{z}^{\left(\bar{r}_{0}\right)}}{\partial y^{2}}\right)^{2} d x d y \quad(4-2) \tag{4-2}
\end{align*}
$$

(I) Shells with fixed boundaries,

Let

$$
\left.\begin{array}{l}
u_{x}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \sin \frac{2(2 m+1) \pi x}{a}\left(2-\cos \frac{2(2 n+1) \pi y}{b}\right) \\
u_{y}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} \sin \frac{2(2 n+1) \pi y}{b}\left(2-\cos \frac{2(2 m+1) \pi x}{a}\right) \\
u_{z}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}\left(1+\cos \frac{2(2 m+1) \pi x}{a}\right)\left(1+\cos \frac{2(2 n+1) \pi x}{b}\right) \\
\text { then }(4-3) \\
\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \frac{2(2 m+1) \pi}{a} \cos \frac{2(2 m+1) \pi x}{a}\left(2-\cos \frac{2(2 n+1) \pi y}{b}\right) \\
\frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial y}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \frac{2(2 n+1) \pi}{b} \sin \frac{2(2 m+1) \pi x}{a} \sin \frac{2(2 n+1) \pi y}{b} \\
\frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} \frac{2(2 n+1) \pi}{b} \cos \frac{2(2 n+1) \pi y}{b}\left(2-\cos \frac{2(2 m+1) \pi x}{a}\right) \\
\lambda 1\left(\bar{r}_{0}\right) \\
b
\end{array}\right\}(4-4)
$$

The expressions (4-3) and (4-4) satisfy the given boundary conditions

$$
\begin{aligned}
& x=0 \text {; } \\
& u_{x}^{\left(\bar{r}_{0}\right)}=0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} \neq 0 \\
& \begin{array}{llll}
x= \pm \frac{a}{2} ; & u_{x}^{\left(\bar{r}_{0}\right)}=0, & \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} \neq 0, & u_{y}^{\left(\bar{r}_{0}\right)} \neq 0, \\
y=0 ; & \frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y} \neq 0 \\
y= \pm b & u_{y}^{\left(\bar{r}_{0}\right)}=0, & \frac{\partial u_{y}^{\left(r_{0}\right)}}{\partial y} \neq 0 & \\
y \bar{x}^{\left(\bar{r}_{0}\right)} & \partial u_{y}^{\left(\bar{r}_{0}\right)} & (4-5)
\end{array} \\
& y= \pm \frac{b}{2} ; \quad u_{y}^{\left(\bar{r}_{0}\right)}=0, \quad \frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y} \neq 0, \quad u_{x}^{\left(\bar{r}_{0}\right)} \neq 0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} \neq 0
\end{aligned}
$$

Substituting $(A 4-3),(A 4-4)$ and $u_{z}^{\left(\bar{r}_{0}\right)}$ into (A4-2) gives,

$$
\begin{align*}
& U^{(S)}=\frac{\mu h}{1-\nu}\left\{\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n}^{2}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \frac{9 a b}{4}+\sum_{\substack{m=0}}^{\infty} \sum_{\substack{=0=0 \\
r \neq j}}^{\infty} \sum_{m p r}^{\infty} B_{m s} B_{m}\left(\frac{2(2 m+1) \pi}{a}\right)^{2}\right.\right. \\
& \left.\frac{8 a b}{4}\right]+\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m n}^{2}\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \frac{9 a b}{4}+\sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} c_{r n} C_{s n}\right. \\
& \left.\left(\frac{2(2 n+1) \pi}{b}\right)^{2} \frac{8 a b}{4}\right)+2 \nu \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} C_{m n}\left(\frac{2(2 m+1) \pi}{a}\right)\left(\frac{2(2 n+1) \pi}{b}\right) \frac{a b}{4}+ \\
& +\frac{1}{2}(1-\nu)\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n}^{2}\left(\frac{2(2 m+1) \pi}{a}\right)^{2} \frac{a b}{4}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n}^{2}\left(\frac{2(2 n+1) \pi}{b}\right)^{2}\right. \\
& \left.\frac{a b}{4}+2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} B_{m n}\left(\frac{2(2 m+1) \pi}{a}\right)\left(\frac{2(2 n+1) \pi}{b}\right) \frac{a b}{4}\right]+ \\
& +2\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right)\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} A_{m n} \frac{2(2 m+1) \pi}{a} \frac{3 a b}{4}+\cdot\right. \\
& \left.+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} B_{m r} A_{m s} \frac{2(2 m+1) \pi}{a} a b\right]+2\left(k_{y}^{(n)}+\nu k_{x}^{(n)}\right) \\
& r \neq s \\
& {\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} A_{m n} \frac{2(2 n+1) \pi}{b} \frac{3 a b}{4}+\sum_{r=0}^{\infty} \sum_{\substack{s=0 \\
r \neq 5}}^{\infty} \sum_{n=0}^{\infty} C_{r n} A_{s n} \frac{2(2 n+1) \pi}{b} a b\right]+} \\
& +\left[\left(k_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] \frac{3 a b}{4}\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 3 A_{m n} \sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{r=0}^{\infty} 2 A_{m r} A_{m s}+\right. \\
& \left.\left.+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} 2 A_{r n} A_{r s}+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} A_{r p} A_{s q}\right]\right\}+ \\
& r \neq 5 \quad r \neq 5 p \neq q \\
& +\frac{2 D a b \pi^{4}}{a^{4}}\left\{\sum _ { m = 0 } ^ { \infty } \sum _ { n = 0 } ^ { \infty } A _ { m n } ^ { 2 } \left[3(2 m+1)^{4}+\frac{3 a^{4}}{b^{4}}(2 n+1)^{4}+\frac{2 a^{2}}{b^{2}}(2 m+1)^{2}\right.\right. \\
& \left.\left.(2 n+1)^{2}\right]+\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{\substack{\infty \\
r \neq s}}^{\infty} A_{m r} A_{m s} 2(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq s}}^{\infty} \sum_{s=0}^{\infty} \sum_{n=0}^{\infty} A_{r n} A_{s n} \frac{2 a^{4}}{b^{4}}(2 n+1)^{4}\right\} \tag{4-6}
\end{align*}
$$

The external work W is derived as follows, From Fig. (1)

Since θ_{x} is very small

$$
\therefore \quad \sin \theta_{x}=\tan \theta_{x}=\frac{\partial z}{\partial x}=k_{x}^{(n)} x
$$

FIG. 1. Section of a shell

By the same argument, $\quad \sin \theta_{y} \doteq K_{y}^{(n)} y$

$$
\begin{aligned}
\bar{e}_{1} & =\bar{e}_{1} \cdot \bar{e}_{x} \bar{e}_{x}+\bar{e}_{1} \cdot \bar{e}_{y} \bar{e}_{y}+\bar{e}_{1} \cdot \bar{e}_{z} \bar{e}_{z} \\
& =\cos \theta_{x} \bar{e}_{x}+o \bar{e}_{y}+K_{x}^{(n)} x \bar{e}_{z} \\
& \doteq \bar{e}_{x}-K_{x}^{(n)} x \bar{e}_{z} \\
\bar{e}_{2} & \doteq \bar{e}_{y}-k_{y}^{(n)} y \bar{e}_{z} \\
\bar{e}_{n} & =\bar{e}_{n} \cdot \bar{e}_{x} \bar{e}_{x}+\bar{e}_{n} \cdot \bar{e}_{y} \bar{e}_{y}+\bar{e}_{n} \cdot \bar{e}_{z} \bar{e}_{z} \\
& =K_{x}^{(n)} x \bar{e}_{x}+K_{y}^{(n)} y \bar{e}_{y}+\cos \theta_{x} \bar{e}_{z} \doteq K_{x}^{(n)} x \bar{e}_{x}+K_{y}^{(n)} y \bar{e}_{y}+\bar{e}_{z} \\
\bar{P} & =-P \bar{e}_{z}=-P K_{x}^{(n)} x \bar{e}_{1}-P k_{y}^{(n)} y \bar{e}_{x}-P \bar{e}_{n} \\
& =\iint_{A}\left(P K_{x}^{(n)} x \bar{e}_{1}+P K_{y}^{(n)} y \bar{e}_{2}-P \bar{e}_{n}\right) \\
& =\iint_{A} \bar{P}_{x} \bar{u}_{x} d x d y \\
& =\iint_{A}\left(\bar{u}_{1}\left(P K_{x}^{(n)} x u_{2}+P \bar{e}_{2}-u_{n}^{(n)} y \bar{e}_{n}\right) d x d y\right.
\end{aligned}
$$

Since the shell is very shallow, u_{1}, u_{2}, u_{n} are approximated by $u_{x}^{\left(\bar{r}_{0}\right)}, u_{y}^{\left(\bar{r}_{0}\right)}, u_{z}^{\left(\bar{r}_{0}\right)}$.

$$
\begin{equation*}
\therefore W=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \frac{P a^{2} b K_{x}^{(n)}}{(2 m+1) \pi}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} \frac{P a b^{2} K^{(n)}}{(2 n+1) \pi}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} P a b \tag{4-7}
\end{equation*}
$$

therefore,

$$
\begin{aligned}
& \quad \frac{\partial U^{(s)}}{\partial A_{m n}}=\frac{\partial W}{\partial A_{m n}} \text { yields } \\
& \frac{3}{2} D^{\prime}\left(\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right]\left\{3 A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 2 A_{r n}+\sum_{\substack{p=0 \\
p \neq m \\
j=0 \\
q \neq n}}^{\infty} \frac{4}{3} A_{p q}\right\}+ \\
& + \\
& \frac{4 D \pi^{4}}{a^{4}}\left\{A_{m n}\left[3(2 m+1)^{4}+\frac{3 a^{4}}{b^{4}}(2 n+1)^{4}+\frac{2 a^{2}}{b^{2}}(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& + \\
& \left.+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} 2(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n} \frac{2 a^{4}}{b^{4}}(2 n+1)^{4}\right\}+
\end{aligned}
$$

$$
\begin{align*}
& +D^{\prime}\left[K_{x}^{(n)}+\nu K_{y}^{(n)}\right)\left(B_{m n} \frac{(2 m+1) \pi}{a} \frac{3}{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} B_{m r} \frac{2(2 m+1) \pi}{a}\right)+ \\
& \left.+\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right]\left[C_{m n} \frac{(2 n+1) \pi}{b} \frac{3}{2}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} C_{r n} \frac{2(2 n+1) \pi}{b}\right)\right]=P \\
& \frac{\partial U^{(s)}}{\partial B_{m n}}=\frac{\partial W}{\partial B_{m n}} \tag{4-8a}
\end{align*}
$$

therefore,

$$
\begin{align*}
& \frac{D^{\prime}}{2}\left\{2\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right)\left[A_{m n} \frac{(2 m+1) \pi}{a} \frac{3}{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} \frac{2(2 m+1) \pi}{a}\right]\right. \\
& +\frac{\pi^{2}}{a^{2}}\left[18 B_{m n}(2 m+1)^{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 16 B_{m r}(2 m+1)^{2}+(1-2) B_{m n}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+\right. \\
& \left.\left.+(1+\nu) C_{m n}(2 m+1)(2 n+1) \frac{a}{b}\right]\right\}=\frac{P_{a} K_{x}^{(n)}}{(2 m+1) \pi} \tag{4-8b}\\
& \partial U^{(S)} / \partial C_{m n}=\partial W / \partial C_{m n}
\end{align*}
$$

therefore,

$$
\begin{aligned}
& \frac{D^{\prime}}{2}\left\{2\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right)\left[A_{m n} \frac{(2 n+1) \pi}{b} \frac{3}{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} \frac{2(2 n+1) \pi}{b}\right]+\right. \\
& +\frac{\pi^{2}}{b^{2}}\left[18 C_{m n}(2 n+1)^{2}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} 16 C_{r n}(2 n+1)^{2}+(1-\nu) C_{m n}(2 m+1)^{2} \frac{b^{2}}{a^{2}}+\right. \\
& \left.\left.+(1-\nu) B_{m n}(2 m+1)(2 n+1) \frac{b}{a}\right]\right\}=\frac{P b K_{y}^{(n)}}{(2 n+1) \pi}
\end{aligned}
$$

For shells with square base plan, $u_{x}^{\left(\bar{r}_{0}\right)}=u_{y}^{\left(\bar{r}_{0}\right)}, a=b, K_{x}^{(n)}=K_{y}^{(n)}$. (4-8b) and (4-8c) become identical. The above expressions $(4-8 a),(4-8 b)$ and $(4-8 c)$ reduce to

$$
\begin{align*}
& 3 D^{\prime}\left(K_{x}^{(n)}\right)^{2}(1+\nu)\left\{3 A_{m n}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 2 A_{m r}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} 2 A_{r n}+\sum_{\substack { p=0 \\
p \neq m=0 \\
\begin{subarray}{c}{0 \\
q=\sim n{ p = 0 \\
p \neq m = 0 \\
\begin{subarray} { c } { 0 \\
q = \sim n } }\end{subarray}}^{\infty} \frac{4}{3} A_{p q}\right\}+ \\
& +\frac{4 D \pi^{4}}{a^{4}}\left\{A_{m n}\left[3(2 m+1)^{4}+3(2 n+1)^{4}+2(2 m+1)^{2}(2 n+1)^{2}\right]+\right. \\
& \left.+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} 2(2 m+1)^{4}+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} A_{r n} 2(2 n+1)^{4}\right\}+ \\
& +D^{\prime}\left\{(1 + \nu) K _ { x } ^ { (n) } \left[\frac{3}{2}\left(B_{m n} \frac{(2 m+1) \pi}{a}+B_{n m} \frac{(2 n+1) \pi}{a}\right)+\sum_{r=0}^{\infty=0} B_{m r} \frac{2(2 m+1) \pi}{a}+\right.\right. \\
& \left.\left.+\sum_{\substack{r=0 \\
r \neq m}}^{\infty} B_{n r} \frac{2(2 n+1) \pi}{a}\right\}\right\}=P \tag{4-9a}\\
& \frac{D}{2}\left\{2(1+\nu) K_{x}^{(n)}\left(A_{m n} \frac{(2 m+1) \pi}{a} \frac{3}{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} A_{m r} \frac{2(2 m+1) \pi}{a}\right\}+\right. \\
& +\frac{\pi^{2}}{a^{2}}\left[18 B_{m n}(2 m+1)^{2}+\sum_{\substack{r=0 \\
r \neq n}}^{\infty} 16 B_{m r}(2 m+1)^{2}+(1-\nu) B_{m n}(2 n+1)^{2}+\right. \\
& \left.\left.+(1+\nu) B_{n m}(2 m+1)(2 n+1)\right]\right\}=\frac{P_{a} K_{x}^{(n)}}{(2 m+1) \pi} \tag{4-9b}
\end{align*}
$$

(II) Shells with simply supported boundaries

Let

$$
\left.\begin{array}{l}
u_{x}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \sin \frac{(2 m+1) \pi x}{a} \cos \frac{(2 n+1) \pi y}{b} \\
u_{y}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} \cos \frac{(2 m+1) \pi x}{a} \sin \frac{(2 n+1) \pi y}{b}
\end{array}\right\}
$$

$$
u_{z}^{\left(\bar{r}_{0}\right)}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} \cos \frac{(2 m+1) \pi x}{a} \cos \frac{(2 n+1) \pi y}{b}
$$

Expressions (4-10), (4-11) satisfy the following boundary conditions, ie.

$$
\begin{align*}
& x=0, \quad u_{x}^{\left(\bar{r}_{0}\right)}=0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} \neq 0 \\
& x= \pm \frac{a}{2}, \quad u_{x}^{\left(\bar{r}_{0}\right)} \neq 0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x}=0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial y} \neq 0 \tag{4-12}\\
& y=0, \quad u_{y}^{\left(\bar{r}_{0}\right)}=0, \quad \frac{\partial u_{y}^{\left(\bar{r}_{1}\right)}}{\partial y} \neq 0 \\
& y= \pm \frac{b}{2}, \quad u_{y}^{\left(\bar{r}_{0}\right)} \neq 0, \quad \frac{\partial u_{y}^{\left(\bar{r}_{0}\right)}}{\partial y}=0, \quad \frac{\partial u_{x}^{\left(\bar{r}_{0}\right)}}{\partial x} \neq 0
\end{align*}
$$

Substituting $(4-10),(4-11)$ and $u_{z}^{\left(\bar{r}_{0}\right)}$ into (4-2), it gives,

$$
\begin{align*}
U^{(s)} & =\frac{D^{\prime}}{2}\left\{\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n}^{2}\left(\frac{(2 m+1) \pi}{a}\right)^{2} \frac{a b}{4}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n}^{2}\left(\frac{(2 n+1) \pi}{b}\right)^{2} \frac{a b}{4}+\right. \\
& +2 \nu \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} C_{m n} \frac{(2 m+1)(2 n+1) \pi^{2}}{a b} \frac{a b}{4}+ \\
& +\frac{1}{2}(1-\nu)\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n}^{2}\left(\frac{(2 m+1) \pi}{a}\right)^{2} \frac{a b}{4}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n}^{2}\left(\frac{(2 n+1) \pi}{b}\right)^{2} \frac{a b}{4}+\right. \\
& \left.+2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} B_{m n}(2 m+1)(2 n+1) \frac{\pi^{2}}{a b} \frac{a b}{4}\right]+ \\
& +2\left[\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} A_{m n} \frac{(2 m+1) \pi}{a} \frac{a b}{4}+\right. \tag{4-13}\\
& \left.+\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} A_{m n} \frac{(2 n+1) \pi}{b} \frac{a b}{4}\right] \\
& \left.+\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2} \frac{a b}{4}\right\}+ \\
& +\frac{D \pi^{4}}{8 a^{4}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n}^{2}\left[(2 m+1)^{4}+(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right]
\end{align*}
$$

The external work W is

$$
\begin{equation*}
W=\int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}}\left(P K_{x}^{(n)} x u_{x}^{\left(\bar{r}_{0}\right)}+P K_{y}^{(n)} y u_{y}^{\left(\bar{r}_{0}\right)}+P u_{z}^{\left(\bar{r}_{0}\right)}\right) d x d y \tag{4-14}
\end{equation*}
$$

$$
\begin{aligned}
=(-1)^{m+n} & {\left[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{m n} \frac{4 P a^{2} b K_{x}^{(n)}}{(2 m+1)^{2}(2 n+1) \pi^{3}}+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{m n} \frac{4 P a b^{2} K_{y}^{(n)}}{(2 m+1)(2 n+1)^{2} \pi^{3}}+\right.} \\
& \left.+\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{4 P a b}{(2 m+1)(2 n+1) \pi^{2}}\right] \\
\frac{\partial U^{(s)}}{\partial A_{m n}}= & \frac{\partial W}{\partial A_{m n}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& A_{m n}\left.=\frac{(-1)^{m+n} \frac{4 P}{(2 m+1)(2 n+1) \pi^{2}}}{\left[\frac{D \pi^{4}}{4 a^{4}}\left[(2 m+1)^{4}+(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right]+D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right] / 2\right]}\right] \\
&-\frac{D^{\prime}\left[K_{x}^{(n)}+\nu K_{y}^{(n)}\right] B_{m n} \frac{(2 m+1) \pi}{4 a}+\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) C_{m n} \frac{(2 n+1) \pi}{4 b}}{\left[\frac{D \pi^{4}}{4 a^{4}}\left[(2 m+1)^{4}+(2 m+1)^{2}(2 n+1)^{2} \frac{a^{2}}{b^{2}}+(2 n+1)^{4} \frac{a^{4}}{b^{4}}\right]+D^{\prime}\left[\left(K_{x}^{(n)}\right)^{2}+\left(K_{y}^{(n)}\right)^{2}+2 \nu K_{x}^{(n)} K_{y}^{(n)}\right\} / 2\right]} \\
& \text { or } \\
& \frac{\partial U^{(s)}}{\partial B_{m n}}=\frac{\partial W}{\partial B_{m n}} \\
& \therefore \frac{D^{\prime}}{2}\left\{B_{m n}\left[\left(\frac{(2 m+1) \pi}{a}\right)^{2} \frac{1}{2}+(1-\nu)\left(\frac{(2 n+1) \pi}{b}\right)^{2} \frac{1}{4}\right]+\right. \\
& \quad+ C_{m n}\left[\frac{\nu}{2} \frac{(2 m+1)(2 n+1) \pi^{2}}{a b}+\frac{(1-\nu)}{4} \frac{\left.(2 m+1)(2 n+1) \pi^{2}\right]+}{a b}\right. \\
& \quad+\left.2\left(K_{x}^{(n)}+\nu K_{y}^{(n)}\right) A_{m n} \frac{(2 m+1) \pi}{4 a}\right\} \\
&=(-1)^{(m+n)} \frac{4 P a K_{x}^{(n)}}{(2 m+1)^{2}(2 n+1) \pi^{3}} \\
& \frac{\partial U^{(s)}}{\partial C_{m n}}=\frac{\partial W}{\partial C_{m n}} \tag{4-15b}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \frac{D^{\prime}}{2}\left\{C_{m n}\left[\left(\frac{(2 n+1) \pi}{b}\right)^{2} \frac{1}{2}+(1-\nu)\left(\frac{(2 m+1) \pi}{a}\right)^{2} \frac{1}{4}\right]+\right. \\
& +B_{m n}\left[\frac{\nu}{2} \frac{(2 m+1)(2 n+1) \pi^{2}}{a b}+\frac{(1-\nu)}{4} \frac{(2 m+1)(2 n+1) \pi^{2}}{a b}\right]+ \\
& \left.+2\left(K_{y}^{(n)}+\nu K_{x}^{(n)}\right) A_{m n} \frac{(2 n+1) \pi}{4 b}\right\} \\
& =(-1)^{(m+n)} \frac{4 P a K_{y}^{(n)}}{(2 m+1)(2 n+1)^{2} \pi^{3}} \tag{4-15c}
\end{align*}
$$

For shells with square base plan, $u_{x}^{\left(\bar{r}_{0}\right)}=u_{y}^{\left(\bar{r}_{0}\right)}, \quad a=b$,

$$
\begin{align*}
& K_{x}^{(n)}=K_{y}^{(n)}(4-15 a),(4-15 b) \text { and }(4-15 c) \text { reduce to, } \\
& A_{m n}=\frac{(-1)^{(m+n)} 4 P}{\left[\frac{D \pi 4}{(2 m+1)(2 n+1) \pi}-D^{\prime}(1+D) \frac{K_{x}^{(n)} \pi}{4 a}\left[(2 m+1)^{4}+(2 m+1)^{2}(2 n+1)^{2}+(2 n+1)^{4}\right]+D^{\prime}(1+\nu)(2 m+1)+B_{n m}^{(n)}(2 n+1)\right]} \\
& \frac{D^{2}}{2}\left\{B_{m n}\left[\left(\frac{(2 m+1) \pi}{a}\right)^{2} \frac{1}{2}+(1-\nu)\left(\frac{(2 n+1) \pi}{b}\right)^{2} \frac{1}{4}\right]\right. \\
& \left.+B_{m n} \frac{(1+\nu)}{2} \frac{(2 m+1)(2 n+1) \pi^{2}}{a^{2}}\right\} \\
& =(-1) \tag{4-16b}\\
& (m+n) \frac{4 P a K_{x}^{(n)}}{(2 m+1)^{2}(2 n+1) \pi^{3}}-(1+\nu) K_{x}^{(n)} A_{m n} \frac{(2 m+1) \pi}{2 a} \frac{D^{\prime}}{2}
\end{align*}
$$

BIBLIOGRAPHY

1947 Ambartsumyan, S.A. "K Raschetu Pologikh Obolochek" Prikladnaya Matematika i Mekhanika, Vol. 11.

1953 Courant, R. and Hilbert, D. "Methods of Mathematical Physics" Interscience Publishers, New York, Vol. 1.

Hruban, K. "Biegetheorie der Translationsschalen und ihre Anwendung im Hallenbau" Acta Technica, Tomus VII, Fasciculi 3/4.

Morse, F.M. and Feshbach, H. "Methods of Theoretical Physics" McGraw-Hill, New York, Dart I and Part II.

Zerna, W. "Berechnung von Translationsschalen" Österreichishes Ingenieur-Archiv, Vol. 7, Heft 3.

1955 Csonka, P. "Results on Shells of Translation" Acta Technica, Tomus X, Fasciculi 1/2.

Csonka, P. "Special Kind of Shells of Translation with Two Vertical Planes of Symmetry" Acta Technica, Tomus XI, Fasciculi $1 / 2$.

1956 Salvadori, M.G. "Analysis and Testing of Translational Shells" Journal of the American Concrete Institute, Vol. 27, No. 10, June.

1957 Oravas, G. ※. "Transverse Bending on Thin Shallow Shells of Translation" , Osterreisches Ingenieur-Archiv.

1958 Mittelmann, G. "Beitrag zur Berechnung von Translationsschalen" Ingenieur-Archiv, Vol. 26.

1959 Flügge, W. and Conrad, D.A. "Singular Solutions in the Theory of Shallow Shells" Technical Report No. 101 , Div. of Engineering Mechanics, Stanford University, Sept.

Matildi, P. "Sul Calculo delle Cupole Sottili Ribassate su Pianta Rettangolare" Atti del'Istituto di Scienza dell Costruzioni dell'Universitá di Pisa, Publicazione No. 66 .

1961 Apeland, K. "Stress Analysis of Translational Shells" Journal of Eng. Mech. Div., Feb., Proceedings of A.S.C.E.

Kopal, Z. "Numerical Analysis" 2nd Edition, Chapman and Hall, London.

1962 Langhaar, H.L. "Energy Methods in Applied Mechanics" John Wiley and Sons, New York.

1964 Koshlyakov, N.S., Smirnov, M.M. and Gliner, E.B. "Differential Equations of Mathematical Physics" North-Holland Publishing Co., Amsterdam.

