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CHAPTER 1 


INTH.ODUCTION 


By definition, a shell 	is a three dimensional body 

bounded by two curved surfaces 

whose one dimension is negligibly 

small compared with the other two 

dimensions. (See Fig. I-1) 

MIDt>l..c 
SVRFAC£: 

FIG- I-1 

APEX 

FIG-. I-2 


FIEr. I-3 

The surface which lies at equal 


distances between these two 


bounding external surfaces defines 


the middle surface of the shell. 


Dy definition, a shallow shell has 


a configuration that its rise of 


its middle surface H from the 


base plane is less than 1/5 of the 


projected length of the shortest 


e of the middle surface measured 

in its base plane. If the shell 

in Fig. I-2 is shallow, then its 

Y 	geometric configuration satisfies 

the condition II<b/5, for b<a. 

A shell of translation is a shell 

whose middle surface is generated 

by a curve translated along another 

fixed curve as shown in Fig. I-3. 

Therefore, a thin shallow translational 

shell is a shell which satisfies all 

the criteria mentioned 	above. 
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The functions chosen to describe the middle surface of 

·thin shallow shells of translation are generally of the 

hyperbolic paraboloidal, elliptic paraboloidal or parabolic 

qylind~ical type. The present investigation is restricted 

to the elliptic paraboloidal type of thin translational shell. 

The purpose of this study, which was carried out in 1964 

is to present a simple yet practical method for analyzing the 

transverse flexure of thin shallow translational shell structures 

of moderate proportions. The major purpose of this thesis lies 

in an attempt to develop some general solutions for the behaviour 

of the translational shell in transverse bending by means of 

variational trial-function technique_in the form of the 

Rayleigh--Ritz method as expounded in COURANT texts in· 1953 and 

1965, by HORSE and FESBACH in 1953 and KOPAL in 1961. The 

exact general solution of the basic differential equations of 

such translational shells is still to be found. For general 

techniques of solution of differential equations see KOSHLYAKOV, 

StHRNOV and GLINER in 1964. The major reason for the absence 

of a general exact solution lies presumably in the exceptional 

complexity of the basic differential equations and in the 

requirements imposed by the general boundary conditions. 

For special types of boundary conditions, 

Sergei A. AHBARTSUNYAN in 1947, Konrad IIRUBAN in 1953, and 

Wilhelm FLUGGE and D.A. Conrad in 1959, have derived restricted 

solutions. In 1957, Gunhard lill.ORAVAS derived a solution for 

a special type of such shells by using the DONNEL-MUSHTARI-VLASOV's 

equation of shallmv thin shells, in combination with 
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Friedrich TOLKE's pseudo-complex function method in order to 

arrive at the solution in the form of the stress function and 

normal displacement function representing a combined series 

of e:x:ponential and trigonometric functions. The Nor-v1egian engineer 

Kristoffal APELAND developed a general-ized D. BERNOULLI-LEVY 

semidirect solution for translational shells with various 

boundary conditions in 1961 by adopting AMBARTSUHYAN'S 

method. Some analyses and tests for translational shells over 

circular and rectangular bases have been carried out by 

Mario G. SALVADORI in 1956. In Europe, Pal CSONKA in 1955; 

Nolfgang ZERNA in 1953; and his student Goswin MITTEL!1AN!'.t in 

1958, contributed to the approximate momentless and flexural 

theory of thin translational shells. In 1959, the Italian 

engineer Pietro MATILDI analyzed shells of translation over 

r~ctangular and square bases by a method of superposition 

similar to TIMOSI-IENKO' s method for plates. 



CHAPTER 2 


ENERGY METHOD IN ANALYZING 


THIN SHALLOW TRANSLA'fiONAL SHELLS 


2-1. General Equation of Strain Energy for Thin Shallow Shells 

The general expression of strain energy for thin elastic 

shallow shells has long been established by the use of the 

indirect scalar method. Recently, Dr. John SCHROEDER, formerly 

of McMaster University, derived it by means of direct tensor 

methods via kinematic considerations (see Appendix I). The 

final formulation is as follows 

tJ::: ..a ff { ( E ~ -+ €::1 t .2 v E 11E 2 .z. t 2 C•-v) E-~2.) I~J.J 

(II-1-lJ 

in which ol1 and 0(2. denote the curvilinear co-ordinates on the 

surface of the shell. (see Fig. I-2) This expression encompasses 

both membranal strain energy 

u~>=A JJ fE-~t ti;.. +2.v eu€12 -t 2(1-JJ) €,~ J. I~V A,Az Jo<., do(2 

and the tranverse flexural strain energy 

2 
~ . 

U~> ::.A fJ(( ~ !<.~"') 2 
-t CSK~'l-t 2 vSk~"JJk~~' t 2 o-v) ( Sk l

1j ) 11;, -v' A, A1- Joi,dal2 

where 

/'. (- I ~U., t oA• tttlc;,,::. t., r.J::. A,~+ P.,A1.. oCI{_l u2. -tK, U3 

1~ ::. E ct~) =- 2Hh + - 1- ~A, u t K'-"' u
~1.. J2. Q f\1 ~ol..,_ f\,Az. ~oc., I 2. 3 

(II-1-2) 
E12 =E12 (f.) ~ J. (~ 2- ( ~)+ _&. .R-. (~)]

2- A, ~0{, l't-z. A2 o<Xl p., 
1Skt"'=(-' ~ (- AU1 ) - v('aJ _L dltJ, J 

I Ac ,oo{, f\ 1 J«, 1' 2 A;. ;)rx2 

4 
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(' Kl'))--:!_ ( .l. £_ ( j_ ~UJ.)- t<."~'-' Jl!.i -t--'- J_ ·(.L ~.1 ) 
o - ~' At..oo<t.. A, dC/(. 1 1.. At. oc<2 A, c)o<, A-2. c)oC.2 

t K(~J -' ~}
\ R 1 ¢ot.i 

Since the shell is very shallow and uniformly loaded, 

<3> 
becomes zero and u1 , are of comparatively higher orderK1 u 2 

than u 3 , hence they are negligible in the expression (II-1-2). 

Furthermore, owing to the shallowness of the shell, it is 

admissible to approximate the strain components by their 

projections along the directions of the base Cartesian 

co-ordinates x and y. Also, it is reasonable to replace the 

normal displacement u by the vertical displacement uz. After
3 

these simplifications, the equations (II-1-1) and (II-1-2) are 

reduced to the follmving forms: 

(II-1-2') 

Uc5> = Ajf { ((:"~-tty~ 1" 2-JJ fxx E:y'f) ,h_l> 

-+ ( ( SK~') 2
"' ( ~ k~" 1) 2 -t 2 JJ $}(~ttlSK~h' t 2 u- JJ) ( S1((

3'J 
2

] 

h?. }
t2c•~tJJ A,Al.&o<, dot.2.. 


: fl JJ {(t<.~1)~-t (K;h1J
2+2v K~"'K~"' J U~ -f-P + 


1 

-t ( ( tU_a. + _tUa: ) 2- 2(1AJJ) ( ~~? - (~1U~ )~ )]
~ .) X1 ~Y'- PX,_ ~Y2. ~X '41 

h3 . (II-1-3)- JAd\l do{, dol2 
t?..(l-p) 

2-2. Elliptic Paraboloidal Shells of Translation 

For translational shells over square or rectangular 
~2tJ1T ~ 

bases, it is ah;rays possible to reduce the term l lt-v) ( 1>.(" Jj1- _. 

in expression (II-1-3) to be identically zero. This 
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can be demonstrated in various ways. The simplest way is by 

applying the method of integration by parts. Since. 
. ~ ~ Q 

Jf ~'"U} 3'-Ua d d _ ):.. J:JU~ (~~J z d jf ~U~ ( o lli} J7 dy 
A oX()'j ~ X '/ - ~ -;s;,;Jy ~ >\ -i )\' - A J1f Mi12 - ~ 

. =f ~:~; d'tfL\ d)(- t ~~uf(~~~J_! ay 

ff o
2u~ 01u? :z. 

t ~ cy?.. &>f"Jy 
A ~~~ 

for rectangular or square base plan, ~=oalong the edges 
2. 

y = ·constant, and oU3/Jy2. = 0 along the edges X = constant. 

Hence, the first tvJO integrals in the above expression 

become identically zero. Therefore, it gives 

3 
2 
Uil d'-u~ _ ( o1 U3 ) z::: 0o'X-2 /3'j 2 oXJ'I .­

This reduces the expression (II-1-3) to the following form 

(II-2-1) 

For a second degree shallow elliptic paraboloidal shell of 

translatiOn 1 the Va-riatiOnS OI __ the DOrmal CUrVatUreS at 

different points are usually so small that the normal curvature 

itself appears approximately as a constant. l-1oreover, 

if the thickness h of the shell is also assumed to be a constant, 

thelY:the energy expression (II-2-1) becomes 
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If the function of the middle surface is described in the 

EULERIAN form 

F=X e.)( -t yey 1- ~ cx,y) e3 

where 

.for parabolic generators shown in Fig. (II-1} and (II-2} 

} D" APE:X 

X 
y 

Flq.. JI.-1 X 

then 
(h) 

o~} ..!. ("' ­ =- J:S...a_d~ =2C. 'X 0 ~2. -- K7( - 2 c., I ' I 
C I 2.o'}( ' 

Fl~. JI-2 

H 

~ .:: -K't1'::: 2 C. 
~ yz Y 2., 

When x == 0, y == 0, z == c 3 ==H. 

. 2 
~ . a::.-~ (K~'-x2 + K~.,, y - 2H) 

The position vector r of any point P on the middle 

surface is 
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• ~F - t.,, ­
• • ()"':::e)(- K.~ '_X e~ I 

(h} 2 2 J J..• • P.z == ( 1+ ( Ky ) y 2. 

I 

.... f',== (c-t(K~"'l~x2J2 

Expanding the expressions A and A into binomial series yields1 2 

' ( (t1))2 2 ""\A2 = ( t t 2 Ky Y + · · · 1 

· h · . h ( (,, )2 (IJ> )zS1.nce t e shell 1.s restr1.cted to be a s ·allow one 1 Kx. X ( l(j y
1 

are assumed to be of much smaller magnitude in comparison 'Vli th 
. ' (h) 2( (h) ~ :1. z 

unity 1 therefore 1 it seems reasonable if the term 4- lK){ ') l(y ') X :1 

is neglected as a small quantity. The same argument may be 

applied to the term -k, (K<;'/2x.'J. t l CK~J) 2y 2 • For the time being 1 

I (11Jt:>- t. J. (hi 1. A 
the term 2.(1<xJ"'A~2 (KylJis retained. Substituting expression A, 2. 

=. t-1- ~ O<~ht{'x,_+-!"CI<~.,JIJ..)'2 in (II-2-2) 1 where o<,,o<2. now become 
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3-3 ..Shells with All Four Edges Fixed 

For a shell with all four edges fixed, a function for 

u has been chosen to fulfill all the following geometricz 
boundary conditions, say 

ua= o when ?( = + 0./'l.J y :: :t b/2 

~u~:::o, oU~=o ?I ;:: .t o.fz, y =-- ::!: vfz (II-3-1}ox o'l 

o'ul 
 'J( =± 'Y2()'X2.:fo 

2a u~ 
t}y'J. dt 0 

A suitable displacement function is 

'"" = - ~ r A~11 ' , + (..ri 2 ( 2 111 + , , 1f ,( ) < • +~ 2l 2 t1 + , 27T Y. > <I I-3-2 > 
a. \11'=0 \'\:0 0.. b 

Substituting this expression into (II-2-3} 1 and integrating with 

respect to x and y 1 (see Appendix II} the follov.ring 
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oo eo e'13 :1 (117 2 '].. (111)'1.. 

t ~ )_ ~ A A (2Wt+l)4 (2t.0-.ll<x)-'-.J£~)-t
tnr mS 6 2. ' 6 2 . ltt=O r.::::o ~::to 

r~S 
()0 ~ c>O 

t1. I­ 2­r=o 5::::0 l'I=O 

t-~S 

The external work is easily found to be 

The total potential energy of this shell is 

V =U(5>-w (II-3-4) 

The Stationary Potential Energy Pririciple is postulated as 

follows: 

"Among all the displacements satisfying kinematic 

compatibility and g~ven kinematic boundary conditions, those 

which satisfy the equilibrium conditions make the potential 

energy assume a stationary value". 

&v =o 
which leads to 

oV =o 
oAm.., 

Let 
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After the numerical values of h, a, b, .....t..\ 1 V, Kc~, 1<1' 
are given, the Fourier coefficients A can be .solved bymn 

substituting the values m, n from 0 to k (k is any desirable 

integer) into expression (II-3~5). Usually, a set of simultaneous 

equations containing A as unknown is obtained through ttris 
mn 

procedure. 

Once the Fourier coefficients are found, the vertical 

displacement u of the shell can be obtained by substituting.
z 

these coefficients into expression (II-3-2) , and all stress 

resultants and stress couples can b~ evaluated by the expressions 

(II-3-6), (see Fig. (II-3)). The derivation .of these expressions 

is given in Appendix 

~ 

e& 
y 

III. 

>-~----------~--------~------~Y 
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\==~~> ::: D '( K~'-t v K~.,, >U3 ;;. D ' ( K~tl't v 1<~111 ) U~ 


:::-D '( K~h'+ V K~"')io ~o Amn (I+ CoS 2( 2m;t) 11X)(1-t GOS 2 (.2hbl J1T>') 


1.11(0"")- D ~Ll3 ..:. 
fVI-J.j - · o:X 2 ­

~ m:::::nz 2 
m=o "=o 

J 2
Ua-

D ox.1. 
2At'<ln (< l(Zrn+tJtf) c.os 2l2m+tJ7T>f (r+c...os 2(~h+tJ1iY)) 

~ £A b 

Mco--J = -D ~,C.h = -D ~lua 
'jX b y2._ ?Jy2 


=-Dl r_ At'<\~ (c lCltt+l}ll)'"(ltc..ost(ttJ't-rt>nx)c.os 2(211+-ozr'J 

t1'!=0 )'\::0 b a.. b 


(0"') _ ?>2 
U3 ~ o1U~ 


M "" - D ox?>'J - D i><C>Y 
00 _ CiJ A (j.(2m+r>n)(zc2n+IJ.Jl.) • :Htm+I)7TX~2.l1-f'l+tJ7fY 

. - D 2 :£. " - b ~ C\. b\'l1r1 
~:0 )1:::0 

(()') (CtJ
Myy. = - M.x)( 

f(,.> = -D(V2 Ju3) ~ -D(v2~u»)~n ~ ;_ A (C2(2m+-tJ7f)~(2t2n-~+1)7fX.)
JC~ 0 ')( oX m:a n:.o mn c:\ G\ 

(I+ (.DS 2(2t'\t-1)7f)') t (2C2n+t )-rr)2(~)~ 2(21HtiJ1fJ( CoS 1-0H+I)'ffj] 
b b 

F(<r> . ::: - D t v '1 ou3 ) _:._. - D ( v,_ (J u~ ) 
y~ {; 'j J'j 

= D f ~ A (< 2.o.n+t)1f)3 • 
_ )Y\:0 YI:O ~h b ~ 

t ( 2(2t11-H )1f )l ( 2C2.h+l} Tr) C.OS 
"'- b 

A. ~ b 

2c~h+t >7TY :J.('J.VH-t-IJTTX) +
b ( f + (.0$ 0... 

Z (2.»t+I)1TX A1-. 2(2tr-I-I)Tf"'/ J (II-3-6) 
a.. b 

It is obvious that expressions (II-3-3) and (II-3-5) are 

l tn> 2 '2 I ,,,{l 2. 
very complicated, therefore, the terrn 2 (t<x)?C+zU<y)Ywhich is small 

in A A2 , is henceforth neglected. The equations (II-3-3) and1

{II-3-5) reduce separately to the follov1ing expressions 

http:j.(2m+r>n)(zc2n+IJ.Jl
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(II-3-8} 


Geometrically speaJdng, this simplification means that the 

integration of the strain energy density over the middle surface 

of the shell is instead carried out over the projected base 

plan of the middle surface. ~f the shell is a shallow one, this 

approximation yields sufficiently accurate results for practical 

purposes. In section . (~-2-1) of the next chapter, it can be 

seen that this approximation is quite sufficient for the present 

case. All later analyses are based upon this approximation. 

2-4. Shells with One Pair of Edges Fixed and Another Pair of 

Edges Simply Supported 

For a shell with one pa~r of edges fixed and another pair 

of edges simply supi_Jorted, say, the t\vo edges at x = ± a/2 

are fixed, and those at y = ± b/2 are simply supported, the 
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function u must fulfill the follov1ing geometric. boundary
z 

conditions: 

0.7(--+- y- +12.U~=O when - - 2 } u~ == o when -.- 2. 


<)U~ -x-+_g_ ~~0 1= + ~ 
 (II-4-1)o)( ::o -- 2..., 


c)zu~ C)Z(..(a. ­7(= + ~ '!=+E.-\0 - 2. , (Jy2-0 -z0 ~2. 

The function u is chosen as z 
co co (II-4-2)

u~:::.-~ ~A (l-t(os 2 CZtn+l)"JT)()C.OS(2h"tt>1TY 

d )tt::.O )1::0 tr111 CA. b 


Pursuing, exactly, the same procedure as - '"as followed in the 

preceeding section, equations corresponding to (II-3-7), (II-3-8) 

1 1D' ( (l<~h ) 2 t (K~"' /·t .2V !<~'K~111)( ~Am, t ~o· Ar,.,) f 
r~m 

2 2+ 4D7f4- fA (c 2 1'l1ttJ4+ 2(2rn+-IJ.,.(J.tltt) ll +.3(::zl1-t-l)..+ ~4-) _,.
"-.4 1 Wtn 4-b~ t6b4 . 

co 4- t\4 n .2P+ ~o Ar11 2(2n+ I) 16 b4-- (-t > p..,t-1).,. = o (II-4-4) 
r~~ . 

2-5. Shells with All Four Edges Simply Supported 

The boundary conditions of this type of shell are: 

"- + ~ U~=O whe.n II - - :;2.. I 


ou~ ~ 

0 )( ..,.. 0 

(II-5-1) 
~ L.(~ .,t.. 'j=±_g--;:r 4: 0 2. 

ol«;
-=0 

P'\'" 
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'I'he sui table function for the vertical displacement u is z 
U =~ ~ A C.oS ( 2m+\)JI?( CDS (:lh+t >1f>' (II-5-2) 

~ ln"o n=-o mn (\ b 

Just as it has been done in the two preceeding sections, the 

Stationary Potential Energy Principle is again applied, and the 

expressions corresponding to expressions (II-3-7) and (II-3-8) 

are 

mt ,/ DJT4 4- 2. 2-a 2 

f\t'Yltl = (-1) Yl S P; {('l.mrl) lJ.Vl-t 1) 1T 2 
( -:- t\4 (cz~+t) t 2 (2m -t 1) (2n+l) h-i] t­2 

+v'r (K~'l·-r c1(~') 2 +2 v l<~u't<1~'J J1 (II-5-4) 



CH~.PTER 3 

~.PPLICATIONS 

3-1. Convergence of the Displacement Function 

Before going to the applications, the problem of 

convergence of the chosen series of the pisplacement functions 

in their application to various geometric configurations of 

translational shell is subjected to a careful consideration at 

this stage. In expressions (II-3-8), (II-4-4) and (II-5-4) in 

the last chapter, the portion which is derived from the membranal 

(II-3-8) 

(III-1-lb) from (II-4-4) 

(III-1-lc) from (II-5-4) 

It is obvious that these expressions are functions of the 

Kthl Kch' . .
thickness h and the normal curvatures .)(, y only 1.e., that 

expressions (III-1-la,b,c} may be assumed to be constant with 

respect to the series indices m and n. Therefore, the problem 

becomes large.ly dependent upon hov1 the expressions (III-1-la,b ,c) 

influence the convergence of various shapes of translational 

shells, and under their influence, hovl rapidly will the vertical 

displacement series converge. For the first question, a procedure 

has been derived in the following paragraphs. For the second 

question, a series of numerical calculations have been prepared 

to establish a general estimation. 

16 

http:large.ly


17 

If the shell thickness h is fixed to 4 inches in the 

expressions (III-1-la ,b, c) \vhich is a reasonahle thickness of 

a reinforced concrete shell of moderate proportions, the only 

factors which would influence the magnitudes of these expressions 

are the norma1 curvatures Kx.<"J and K'J'"' • Thus the maximum and 

minimum values of expressions (III-1-la,b,c) depend upon the 

maximum and minimum values of the expression 

(III-1-2) 


Now, returning to the function of the middle surface of the shell, 

which is 
('III-1-3)

} =- ~ ( K~"1 ~ 2+ K~'y 2 ) + H 

let a~b, II= b/w, in v.Jhicho)~S, then, \vhen x = a/2, y = b/2, 

and z = 0, expression (III-1-3) becomes 

i ( k~h'o.2.-t 1<~~, ~) = ~ 
(h} 2 . Sb K(n)~Z


K ~ Yl>
=--­X !A. r. (III-1-4) 
KcnJ ::: B~ _ b:z.Kj'1J 

J( ~G\2. G\. '2 
or 

k (H)- Sb :=- Jz_2 I< (kJ 

J( lU G\ 2. t:\2. y 


. K("'- 0..
2 

(Kfhl 8b ) (III-1-5)' ' J -- h2. x - W£\2. 

Since for elliptic paraboloidal shells of translation with a 

positive GAUSSIAN curvature, the pJ;:!incipal curvatures K;"J and 

I( 
(hi 

are of the same sign, then 

K(..,Kc"' __ ~ t<'.,'( K("' _ 8 b ) > 
If. 'Y - b:L l( J( cJq.Z. 0 

and 

1 
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or 

. . 
This means that K~"' is bounded by the closed interval 0::; k~.,J;;; ~~,_ 

2 . 2 2
Substituting 8b/a ~=A', b /a = B' into (III-1-4) and (III-1-5) 

gives 

f<t;J = A'- B' K~' 

1<(.,, _ P.'- Kt;'
y - I (III-1-6) 

f3 (I'll 2 
( K'.,')2= CA'-l<x ) (III-1-7) 

y ( B'>2.. 
and substituting the expressions (III-1-6) and (III-1-7) into 

(III-1-2) gives 
( 

1 (h/)2 I (ttJ).
M :::. ( K ,.,,) 2+ 11 - K.x - + 2.. v J<l"' rA - K " 


X (f3'J 2. :X B' 

I I L1 1 2c.,, 2 r :2-v) K<.,'( 2JJA - 2:lL ) + (..!:!..)= ( K.x ) (I+ (IYJ2- B' + .x ---e;' (B)Z 8' 

Set 
oM _ l~' _,_ _ :2.11) 2vA' _ (11!)2) _ 
0 k:X' - 2 kx (I+ (B'J2 B' -t ( -gr 2 .8' - o 

K~.. , =(~/ ( ~, -1:')]/[ I+ l~'P -
2~ J 


0~ _ 2 (I+ J,z - ~B~) == 2 +z{; ( -1; - 2 v)

0 (1<~"~').. ({3J 

since a/b ~ 1 and 2 v< 1, therefore, 
()2.M 


0 ( t<~'J2. ·> 0 


2V
So Kt"'= ~ (_!_ - J) )/(1 +_l_ B') assumes a minimum value of M.x B I B I . (B92 

It can be observed that r-~ is a quadratic form in K~"'' , therefore, 

the absolute maximum value of H must be at one of the two termini 

of the closed interval of K~"'. First, substituting K~"'= Bb/o..,_w =A' 

4 2 2into N, !1 = A' 2 (1- a 4;b ) + A' /B' , then, substituting l<~hl==o 
2 2into I-1, M = A I /B I • Since 1 - a 4/b4 1:: 0, th~n the niaxirtmm value 

This is a cylindrical she~l which 

represents a special case of translational shells. There is 

of M must occur at 
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another special case when the shell has a square base plan and 

its M assumes a minimum value, i.e. a = b, so B' = 1 

A' ...L )
1<'h'- 13' ( B'-)..) ::: A' 

. J( -c _, -.2J)) z
1+ lB'J2 lY 

(.,>_ A'-l<~h'- p.'

Ky - 6' - 2 


This case represents a spherical shell. 

· For translational shells with all edges fixed, the above 

derivations show that the spherical shell assumes a minimum 

membranal strain energy, while the cylindrical shell assumes a 

maximum merrbranal strain energy. The ordinary paraboloidal 

translational shell assumes a membranal strain energy 't-rhich lies 

in between the strain energies 'of the spherical and cylindrical 

shells. Therefore, the displacement series for the spherical 

shell with a square base plan possesses the fastest rate of 

convergence, while for the cy~irldrical shell the convergence is 

the slowest. In order to show hm\r fast the displacement series 

will actually converge, a few special cases have been considered. 

Vertical displacements at the apex of a series of shells have 

been calculated and tabulated in Table (III-1}. The results 

agree with the above theory. 

Table (III-1) shov:s that the difference betHeen u and z 1 


is always less than 3%, while the difference betvmen
uz 2 uz 2 

and uz is less than 1% for all shells listed. So it should be3 

reasonable to say that the surnw.ation of eight terms of displacenent 

series will give quite satisfactory values, and twelve terms of 

displacement series will give still better values of u , ~~)
Z XX 



TABLE III-1 


a b M SUV.tHATIONS OF DISPLACE~1ENT SERIES RATE OF CO~~ERGENCE IN PERCENTll 
(ft) (ft) UZ·l' 8 terms' uz 2 1 12 terms uz 3 1 16 terms 
 [(uz2-uzl)/uzl]% [ (uz3-uz2)/uz2Ji 

10-310-3 .2509 X 10-3 
 0.24%.2515 X 
 1.95%40 
 ~.AX. .2463 X
40 
 5 

-3 -310-3.• 4121 X 
 0.17%MIN. .4064 X 10 
 .4128 X 10 
 1.40%40 
 40 
 5 


10 -3 10-3.8749 X 10-3 
 0.11%40 
 .8668 X 
 .8759 X 
 0.93%40 
 10 
 r.-'.J\X • 
-2-2 10-2I 0.07%.1416 X 
 .1417 X 10 
 0.64%40 
 10 
 MIN. .1470 X 10
40 


10-3 .9949 X 10-3 
 .1001 X 10-2 
 0.61%2.15%60 
 5 
 :r-UN. .9740 X
60 

-2 -2 -2 0.14%1.03%HIN. .3474 X 10 
 .3510 X 10 
 .3515 X 10
60 
 10
60 


10-310-310-3 0.42%.HAX. .2646 X 
 .2657 X 
 2.76%40 
 5 
 .2575 X
60 

-210-2 10 -2 0.16%1.24%MIN. .1214 X 
 .1229 X 
 .1231 X 10
40 
 5
60 

-3-3 10-3 0.23%40 
 NAX. .9456 X 
 .9478 X 10 
 1.47%10 
 .9319 X 10
60 

-210-2 10-240 . 
 0.05%MIN. .4185 X 
 .4212 X 
 .4214 X 10 
 0.65%10
60· 
-3-3 .2017 X 10-3 
 0.60%.2029 X 10 
 2.75%35 
 5 
 HAX. .1963 X 10
70 
 _., 

10-210-2.2515 X 10 ._ 
 0.08%.2542 X 
 1.04%MIN. .2541 X
35 
 5
70 

-3-3 10-3 0.27%.7274 X 
 .7293 X 10 
 2.06%.rviAx. .7127 X 10
35 
 10
70 


-2 -2 -2 0.02%0.51%HIN. .8479 X 10 
 .8522 X 10 
 .8524 X 10
35 
 10
70 

-2-2 10 -2 0.02%.4770 X 
 .4771 X 10 
 0.78%AVE. .4735 X 10
35 
 10
*70 

10-210-210-2 0.06%.5720 X 
 .5723 X 
 1.42%MIN. .5640 X
50
100 
 5 

-1 -1 -1 o+o,

'o.1950 X 10 
 .1966 X 10 
 .1966 X 10 
 0.77%MIN.50 
 10
100 

-

REHZ\RKS : 1. u 
1 

, u. and u are the disPlacement at the anex.z z 2 . z 3 ­
2. All shells have fixed boundaries 

,L 

N 

3. *K(n) = 0.004 K(n) = 0.00633 
X y 

0 
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and F(~~ The convergence of the functions of the stress couplesyy 

M(~f M(~) M(~) and M(~) is slower than .for the displacements, 
xy ' yx ' xx YY 

since they are functions of the second derivatives of u • z Hence 

a satisfactory solution for the stress couples may be expected 

to be procured by employing a much larger number of terms in 

the vertical displacement series. The transverse stress 

resultants F(~) and F(~) are functions of the third derivatives 
yn xn 

of the vertical displacement series, therefore, the convergence 

of these quantities will be even slower ~1an those of the stress 

couples. 

It is interesting to observe that the rate of convergence 

of the vertical displacement series varies at different points 

of a shell. For an example, curves of the vertical displacement 

u of a translational shell \vi th square base, a = 40' , b = 40 '· and z 

clamped edges is shm·m in Fig. 3 -1) . Since the shell is 

doubly--symmetric, the curves are drawn only for a quarter of the 

shell, say, 0 ~xi a/2, 0 ~· y ~ b/2. The full line curves .represent 

the vertical displacement curves by expanding the function u 
z 

up to 24 terms. The broken line curves represent the same 

curves by expanding the same function up to 8 terms, vlhile 

the thin solid line curves represent the same curves by 

e·xpanding the same function up to 16 terms. It can be clearly 

observed that on the center line of the shell, the convergence 

of u is faster at those points within approximately the regionz 

-0.2<y/b-<.0.2, -0.2<x/a<0.2; than at points outside of this 

region. The convergence is slowest at those points approximately 

in the region (0.25"- x/a~ 0.35, 0.25< y/b< 0.35). Along the 



22 

-0.0000 r--------.--------.-------~------~~------~ 

-0.005 

~~ 
•tl 

--0.0010­N 
::J 

v.... -· b 

y -· 0.2
h 

y -· 0.1
b 

~~ == 0.0
b 

-- - - 8 •rcrr.s of .. n·lSp. Series 
-O.OOl~i 

16 Terms of Disp. Series 

24 Terms of Disp. Series 

0.0 	 0.1 0.2 0.3 0.4 0.5 
x/tt 

Fig. 3-1 DIS'l'RIDUTIO:'J OF l;OR!:l\.L DISPIJ1.CEtl1~ET u OF' SHALLOI<' z 
EI.LIP'riC PliR2\BOLOil!,\L SI:I~I.L OF 'l'RA:~SLATimJ vHTIT 

FIXED DOUNDAHIES. (a ::= 	 40', b :::: 40') 



23 

curves near the edge, say, along curve x/a = 0.4, it seems that 

the convergence is a little slower at those points close to the 

center or the edge of the shell. Along other curves, the figure 

shows that the vertical displacement series u converges quitez 

uniformly. 

3-2. Thin Shallow Translational Shells 

For the thin shallmv translational shells, a shell vli th 

the follovling data~ 

70, b ['"I Klh) 4 tl1) , 2 0 . /.0. -- = 3:> 1 J( ::o.oo , Ky =o.oOo3-., 1 p::: 1 0 Jb/ft2.1 

h= 4'
1

, E = 3X 10~ lb/in, ).) :::0.16 
vlill be analyzed as an example. 

Since the torsional stress couples M(~), M(~) and the 
XX YY 

transverse shear resultants F(r), F(r) are all negligible
xz yz 

cauanti ties compared with H {o-) M. (a-) F (o--) and F (t-) no calculation 
· xy ' yx ' xx yy ' 

is carried out for those quantities. 

3-- 2--1. Shell with All Four Edges Fixed 

First, substituting values of a, b, k(n), k(n), P, h, E 
X y 

and V listed above into expression (II-3-5) then (II-3-8) 
7 

different ~ets of Fourier coefficients are obtaine~, (see 

Table (III-2)). It is obvious that the differences bet"~tJeen the 

corresponding values in these two sets are extremely small, say, 

mostly less than 3%. This shov7s numerically that the approximation 

by using expression (II-3-8) instead of expression (II-3-5) is 

quite reasonable. After substituting these values into 

expression (II-3-6), all values of M(O'"') M(O'"') F(~) F(v) at 
xy ' yx ' xx ' YY 

various points of the shell are obtained as shown in Figures (3-2) 

(3 - 3) , (3 - 4) and (3 - 5). Since the shell is symmetric about 

the apex, all figures nre dra\vn for one quarter of the shell 



--

24 

TABLE III-2 

FOURIER COEFFICIENTS FOURIER COEFFICIENTS 
CALCULATED BY EXP~ll~3~5- CALCULATED BY EXP~II-3-8~ 

AOO ' 0.002539 0.002517 

AOl 0.001727 0.001716 

AlO 0.001327 0.001319 

All 0.0001344 0.0001336 

A02 0.00001929 0.00001907 

A20 0.0003352 0.0003342 ... 

Al2 0.00001922 0.00001905 

A21 0.00006294 0.00006198 

A22 0.00001160 0.00001150 

.A03 0.000004572 0.000004508 

]}~30 0.00009778 0.00009378 . 
Al3 0 ·• 000004970 0.000004918 

A31 0.00002532 0.00002641 

A23 0.000003297 0.000003263 

A32 0.000005811 0.000006140 

A33 0.000001806 0.000001929 

A04 0.000001715 0.000001688 

A40 0.00003382 0.00003376 

Al4 0.000001918 0.000001895 

A41 0.00001225 0.00001216 

A24 0.000001352 . 0.000001336 

A42 0.000003434 0.000003381 

A34 0.0000008051 0.0000008553 

A43 0.000001197 0.000001172 



25 


X 

800 

600 b..c ::::: li. 5 I 
r--i 2 
I .jJ 

4004-1 
4-l 
4-l 

~ 200·rl 

....... 
b:>-t 
'-'X 0'<"..... 

2 
-­ 3 5 1 

y 

Fig. 3-2 DISTRIBUTION OF STRESS COUPLE H (tt) OI·' SIIl\LLOW ELLIP'l'IC xy 
Pl\Pl\BOLOIDAL SHl~L.L OF TRANSLA'riON ~'liTH FIXCD BOlH-JDl\RIES. 



0 

-100 

-300 

26 

Fig. 3-3 DIS'rRIBUTION OF srJ'RI:SS COUPLE n (cr) OF SFl\LL0\·7 ELLIPTIC··yx 



-F
XX 
A 

+J 

IH 

......... 

.Q 
r-i -15,000 

::::: 
·r-l 

-b X 
"-'X 

r:r... 

-x 

y 2 

DISTRIBUTION OF STRESS RESULTl\.~:T F (cr) OF SHALLO%' ELLIPTICFig. 3-4 XX 
Pl\.Ri\DOLOIDAL SHELL OF TR.2\NSLATION ~YI'TH FIXED BOUNDARIES. 

~-10,000 

t-5,000 

0 I '':'::HIIIII !I.U J,.U.I~·I'.,j,l.!.,I..J.J.IJ...I.I J.,j,.I.&,.U, • .I..I !..l.A l.J,, J.U.~.u.J I'' I'll j II,....,.}'' I' I I'' I c:=n 

35'a 

17.5' 

= 


1\J 
-...! 



28 

of its base plan. 

For the purpose of evaluating the nature of convergency 

of the solution series for the stress resultants and stress 

couples, the vertical displacement u is also expanded into z 

eight and sixteen terms by using expression (II-3-8). The 

corresponding stress resultants and couples are calculated 

through expression (II-3-6). The results are plotted in Figures 

( 3- 6 ) , ( 3 ,.;..7 ) , ( 3-8 ) , ( 3-9 ) and ( 3 -I0) • In Fig. ( 3-6 ) 

it is shown that at certain points of the shell, the convergence 

of the stress couple M(r) is not sufficient by expanding uz into xy . 

eight terms. For an example, in the neighborhood of sections Y/b =o.o, 

X/~ =- 0.15, 0.225, 0.275 or 0.35, the ratio of the value of H(cr)
xy 

on curve A. and curve B is always larger than 2. This means 

that the value of M calculated by expanding u into 16 terms xy z 

is only less than 50% of the value calculated by expanding 

u into B terms. At sections y/b = 0.225 and 0.275, the signz 

is even reversed. Nevertheless, according to the same figure, 

there is little difference bet\veen the value of H~~) · on curve 

B or on curve C. This suggests that M(~) already possesses quite
xy 

a satisfactory convergence when it is calculated by expanding 

the deflection series u into 16 terms. Certainly, if 24 terms z 

of the series for transverse displacement u would be used to z 

calculate the stiess couple M(~), a good approximate result will 
xy 

be obtained. For Mi~), it is shown in Fig·. ( 3-7 ) that the 

corresponding variation is approximately the same as M(~), so 
. xy 

it also requires 16 terms of the vertical displacement series 

u to achieve a better convergence. Figures ( 3-& ) and (.3-9 )z 





30 


200 . 
+J 

'H 
 100 ........... 


..0 
r-1 

I 
 0.p 

'H 

t:: -100H 

-b >i -200-x 

..... .-. 
--....-..- ,,.

8 Terms of Disp. 
16 Ter~s of Disp. 
2~ Terms of Disp. 

Series 
Series 
Series 

""·'"'-< 0.0 0.1 0.2 I 0.3 0.4 0.5 x a 
Fig. 3-Ga DISTRIBUTION OF STRESS COUPLE M(~) ALONG SECTION y/b = 0.4 xy 

500 

250 

, 

0 

+J 
lj.~ 

' ..0 
r-1 
(. 

+J 
'H 0 Terms of Disp. Series---- u 

-250 
~ 16 Terms of Disp. Series 

·.-J 

......... 24 Terms of Disp. Seriesb :>-t -x..,_.. 
-~ 

-500 

0.0 0.1 0.3 0.40.2 x/u 0.5 

Fiq. 3-Gb DISTRIBUTION OF STRESS COUPLE M(V) ~LONG SECTION y/b = 0.2 
xy 

NO'rE: Fig. 3-6. DFPIC'l'S DIS'I'IUDUTTOP OP STRESS COUPLE M (<T) IN SHALLOT;? 
xy 

ELLIPTIC PAF!l\.DOLOID2\L SHELL OF 'rRANSLA'l'IOn \HTII FIXED 

BOUI:Dl\.RIES. (a= 70', b = 35') 



31 


750 


750 


500 

250 

0 

--250 

-500 

-750 


---- 8 

1G 

24 

/

"' 

I 
I 

I 

'l'cn'1s 

Terms 

Terms 

of Disp. 

of Disp. 

of Disp. 

C' •,)erJ.es 

Series 
c ..._,cl"lCS 

0.0 	 0.1 0.2 O.J 0.4 0.5 
x/a 

Fig. 3-6c DIS'J'Ril1UTIOl1 OF S'TI~1~ESS COUPLE n<a-> ALONG SEC'riON y/b -- o.o xy 



32 


500 

250 

0 

-250 

-500 

("" .Tcrrns of Disp. ._,er~es ----- 8 

lG Terms of Disp. Series 

24 Tenns of Disp. Series 

0.0 0.1 0.2 0.3 0.4 0.5 

Fig 3-7a DISTRIBUTION OF S'l'RESS 
y/b 
COUPLE ni~) ALONG SEC'riON xja == 0. 4 

NOTE: Fig. 3-7 DEPICTS DISTRIBUTION OF smRpcC'' l. ...... vu COUPLF- ~· M(~)·y>: IN 

SHALLm'; ELLIPTIC PAEABOLOIDAL SHEU, OF TRANSLATION l'JITII 

FIXED BOUNDARIES. (a= 70 1 
1 b = 35') 



33 


500 

250 

. 
+J 
lH 
....... 

..0 
rl 
I 

+J 0 • 
4--1 

~ 
·r1 

,..... 
b X 
-~·-·~-~ 

-250 
8 'l'c rrns of Disp. C' • 

,_,cr~es 

16 'l'erms of: Disp. C' •,)erlcs 

2-1 'l'eims of Disp. Series 

-500 

0.0 0.1 0.2 0.3 0.4 0.5
y/b 

r-1 ( ())Fig. 3-7b DISTRIDtJTION OF STRESS COUPLE !\LONG yx 
SJXTION x/a - 0.2 



34 


750 

500 

250 . 
. p 
4-1 

.......... 


..Q 
r-1 

I 


+J 
4-1 

0 
~ 

•r-l 

,..... 
b X ......... 
_,>t 

,:::::_. 

-250 

-500 C' •- --- 8 ter~;s of Disp. .A~r1es 

16 terms of Disp. Series 
c .24 terms of Disp. L>er1es 

-750 

0.0 0.1 0.2 0.3 0.4 0.5 
y/b 

!'1 (C")Fig. 3-7c DISTRIBUTION OF S'l'RESf; COUPLr: ?\LONG SECTION x/a = n.o 
X 



(a= 70' b =~ 35') 

X 

a 
X-a 

= 

:::: 

X = 0.2----l 
a 

X ::: 0.1 
a 
X = 0. 0 --------S 
a ---- 8 Terms of Disp. Series 

16 Tcrr:~s of Disp. Series 

~------~~------~~------~~----~~------~ o.o 0.1 0.2 0.3 0.4 0.5 
y/b 

DIS'l'RIBUTION OF STRI:::SS RESULTANT F (0") OF SIIAI..LO'ilFig. 3-9 yy 
ELLIP'l'IC Pl\P.J\P.OLOIDAL SHELL OF THANSL2\'l'ION ~,;JTJ'!' · 

FIXED DOUND~RIES. (a= 70', b = 35') 

0 


-5000 

. 
+J 
1.}-j 

......... 

..0 

r-i 

~ 
•..-! 

,... -10000
b X 

........... ~ 


~ 

Fig. 3--8 

0 

-5000 

r.: 
··~ -10000 

-15000 

-20000 

y = b 
y = b 

v ..... = 
b 
y -· [ 

0.1 

0.0 

- ­ - - 8 Terms of 
Disp. SericE 

----16 Terms of 
Disp. Scrie!", 

0.1 0.2 0.3x/a 
DISTIUBUTIO~~ OF STEI~SS RCSUL'l'l\U'J'S 

PARl\BOLOIDl\.L SilELL OF 'l'H.2\l·7SI_,ATION 



36 

show that ev~n less than 8 terms of vertical displacement series 

u might be sufficient for calculating the stress resultants z 
F(o-) and F (':)

XX yy 

3-2-2. Shell with One Pair of Edges Fixed and Another Pair 

of Edges Simply Supported 

In this case, the same shell, as in the last section, 

except that one pair of edges at y = ± b/2 become simply supported, 

is calculated by expanding the vertical displacement series u z 

into 25 terms through expression (II-4-4). All stress resultants 

F(r) F(r) and stress couples H(Q""), H(<T) are calculated through
XX 1 yy xy yx 

expressions (II-3-6). The results of F(r) 
1 

F(r) M(~) M(~) 
~x yy ' xy ' yx 

and u are depicted in Figures (.~-lS), ( '3 -14), ( 3 -11),z 

( 3 --12.) and ( 3 --15). 

3-2-3. Shell with All Four Edges Sinvly Supported 

The same shell is calculated except that nm,, all its edges 

are simply supported. The vertical displacement series u is z 

expanded into 25 terms through expreision (II-5-4). Stress 

resultants F(u-) F(o-) and stress couples M(o--) and M(o--) are 
xx ' yy . xy yx , 

calculated through expressions (II-3-6) and are graphed as 

shown in Figures ( S -20 ) , ( S- 16) , ( 3 ·- 19 ). , ( 3- 16) and ( 3- 11) . 

3-3. Special Case - Thin Shallow Spherical Shell 

For the thin spherical shell, an example is given \vi th 

the follmving data: a = 40 I I b = 40 I 1 k(n)= 0.02, k(n)= 0.02,
X y 

p = 90 lb/ft2 
1 h = 4"1 E = 106 lb/in2 

V== 0.16. pCcr) F (o-)3 ' xx' yy' 

M(~) and MC~were calculated for this shell. 
xy yx 

3-3-1. Shell with All Four Edges Fixed 

Following the same procedurs employed in the last sections, 
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the values of Fourier coefficient are calculated through 

expressions (II-3-5) and (II-3-8), and are listed in Table (III-3) 

as shown. It can be observed that the differences between these 

two sets of values is always less than 1%. So the approximation 

by using expression (II-3-8) instead of expression (II-3-5) is 

even more suitable here than it was in section (III-1-1). The 

next step is to calculate the vertical displacement u , the z 
stress resultants F(r), F(r) and the stress couples M~) and 

xx yy xy 

N (0"') at various point's in the middle surface of the shell. yx 

All results are plotted in Figures ( 9 ....; 1) , ( 3- 22) , ( 3- 24) , 

( .g- 2\) and ( 3- 23). Since the shell is complete.ly symmetric, 

therefore, F(~)= F(~) and M(~}= M(~) at corresponding points.
xx yy xy yx . 

This is to say that the ahsolute values of M(~) and F(r) along
xy XX 

some section y = constant are exactly the same as those of 

M(~) and F(~) along the corresponding section x = constant. 
yx yy 

Therefore, Figures of M(v) and F(o-) are omitted. 
yx YY 

From Figure ( 3-23<:), it is noticed that even if 16 terms 

of u would have been used, the convergency of H(<r) could still 
z ~ 

not have been satisfactory in certain intervals, such as 

x/a = 0.225 to x/a = 0.275, of the shell •. Fortunately, in this 

interval the absolute value of M(Ci) is much smaller than those xy 

,at the edge or at the apex, and its evaluation is not too 

important for actual design. If 24 terms in the series of uz 

would have been used, the series for stress couples M.(G") could 
xy 

have converged more satisfactorily at every point in the middle 

surface of the shell. 

The convergence of F(~) is as good as it is in the last
XX 

http:complete.ly
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section. Figure ( g- 24) shows that eight terms of u will givez 

a satisfactory value of F~~) at every point in the middle 

surface of the shell. 

3-3-2. Shell with One Pair of Edges Fixed and the Other 

Pair of Edges Simply Supported 

Similar to section (3-1-2) , the edges of this shell 

at x = ±a/2 are fixed, while at y - ±b/2 they are simply 

supported, otherwise the shell is the same as in section (3-3-1). 

Values of Ivl(<t) N(o-) F(Q"') F(O"") and u are obtained throuqh 
xy ' yx ' xx ' yy z ­

expressions (II-4-4) and (II-3-6), and are expressed in 

Figures ( '3-25), ( 3-26), { 3-27), ( 3-28) and ( 3-29). 

3-3-3. Shell with All Four Edges Simply Supported 

In this case, the calculation procedure is the same as 

in section (3-2-3). 'l1 he shell has the configurations as in 

section (3-3-1) • Expressions (II-5-4) and (II-3-6) are used 

and all results of M(r) F(r) and u are plotted in Figures
xy 1 XX z 

<3-30), <'3-31), <S-32). 

3-4. Influence of Strains 

In this section, a study of the influence of membranal 

displacements ux and u .on the transverse displacement u for y z 

cases of fixed boundaries and siEply supported boundaries is 

effected. Equation (II-1-2) is used to calculate the total 

strain energy of the shell. Finally, instead of the single 

expression {II-3-8) or (II-5-4), obtained by neglecting all 

effects of u and u , a set of three simultaneous equations
X y . 


( 4-8a), { 4-8b), ( 4-8c) or 4-15a) '· ( 4-15b), ( 4-15c) are 


obtained, (see Appendix D). These three simultaneous equations 
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TABLE III-3 

FOURIER COEFFICIENTS 
CALCULATED BY EXP.(II-~-5 

FOURIER COEFFICIENTS 
CALCULATED BY EXP.(II-3-8 

AOO \ 0.0001083 0.0001081 

AOl 0.00007473 . 0.00007485 

A10 0.00007473 0.0000748.5 

All 0.00004381 0.00004364 

A02 0.00002067 0.00002071 

A20 0.00002067 0.00002071 

A12 0.00001437 0 •.00001434 

A21 0.00001437 0.00001434 
., 

A22 0.000006238 0.000006213 

A03 0.000005515 0.000005523 

A30 0.000005515 0.000005523 

Al3 0.000004603 0.000004607 

A31 0.000004603 0.000004607 

· A23 0.000002464 0.000002460 

A32 0.000002464. 
.. 

0.000002460 

A33 0.000001149 .0.000001146 

]1.04 0.000001983 0.000001985 

A40 0.000001983 0.000001985 

A14 0.000001838 0.000001839 

A41 0.000001838 0.000001839 

A24 0.000001126 0.000001126 

A42 0.000001126 0.000001126 

A34 0.0000005963 0.0000005944 

A43 0. 000000596 3. 0.0000005944 
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are much more complicated than the expression (II-3-8) or 

(II-5-4). For the purpose of giving a numerical example to 

shov1 the influence of the membranal displacements on the 

transverse dispalcement, stress couples and stress resultants, 

a simple case of a spherical translational shell in which 

a= b = 40', k(n)= k(n)= 0.02, P = 90 lb/ft2 is calculated. 
X y 

Owing to the condition of complete syrrmetry, ux equals uy,. 

so the three simultaneous equations reduce to tvw as shown 

in Appendix D. Using these reduced two simultaneous equations 

to solve for the Fourier coefficients A of the transverse· mn 

displacement u to 8 terms for the case of fixed boundaries,z 

and 25 terms for the case of simply supported boundaries, it 

is found that the difference between these Fourier coefficients 

to those ~btained by neglecting u and u are small for the
X y 

case of fixed boundaries, but large for the case of simply 

supported boundaries. Therefore, any solution of stress 

couples or stress resultants obtained by the approximate method 

for a translational shell with simply supported boundaries should 

be used very carefully for design (see next section and 

conclusion) . The difference between stress couples and stress 

resultants obtained by these new Fourier coefficients and 

those obtained before are also small for the case of fixed 

boundaries, say, always less than 10%, and mostly less than 5%. 

This can be observed in Fig . ( 3 - 3 3 ) and Fig . ( 3 -3 4 ) . 

Hence, though values of stress couples and stress resultants 

obtained by neglecting u and u are not exact solutions, 
. X y 

they still can be reasonably used as guides for practical 
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design purposes. 

3-5. 	 Comparison of the Solution of This ~-iethod with 

SOARE's Method 

As it is mentioned in the introduction, up to the present 

time, the rigorous solution of an elliptic paraboloidal shell 

of translation with fixed boundaries still has not been 

established. Therefore, a comparison of solutions of a 

spherical translational shell with simply supported boundaries 

is given. 

In Fig. { S -35) and Fig. ( 3 -36) it cap be clearly 

observed that the difference betV?een solutions obtained by 

the approximate n'tcthod and the method of SOARE' s is quite 

large; especially for the stress couple H{<r) near the 
xy 

boundaries. The difference is more than 35% in terms of 

SOARE's solution. Therefore, a complete solution obtained 

by using expressio~s ( 4-16al, ( 4~16b) in Appendix Dis 

calculated. At first, Fourier coefficients obtained by 

expression {III-5-4) are used as basic values. Following 

a successive approximation procedure, these basic values are 

substituted into ( 4-16b) to find out the Fourier coefficients 

B , then substituting coefficients Bmn into ( 4-16a) , amn ­

set of revised Fourier coefficients A is obtained. mn 

Aset>o~ Amn·values.obtained from two-cycles of .Calculation 

are compared to SOARE's solut-ion-in Table .(III-4). ­
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TABLE III-4 

FOURIER 
COEFFICIEN'l'S 

BY ( 4-16a) 
( 4-16b) BY SOARE'S METHOD 

Aoo 0.002836 0.002524 

AlO -0.000724 -0.000774 

A20 0.000298 0.000314 

A30 -0.000111 -0.000111 

A40 0.000040 0.000040 

.AOl -0.000724 -0.000774 

All 0.000239 0.000218 

A21 -0.000090 -0.000083 

A31 0.000032 0.000030 

A41 -0.000012 -0.000011 

A02 0.000298 0.000314 

Al2 -0.000090 -0.000083 

A22 0.000035 0.000031 

A32 -0.000013 -0.000012 

.A42 0.000005 0.000005 

A03 -0.000111 -0.000111 

Al3 0.000032 0.000030 

A23 -0.000073 -0.000012 

A33 0.000006 0.000005 

A43 -0.000003 -0.000002 

Ao4 0.000040 0.000040 

Al4 -0.000012 -0.000011 

A24 o. oooo·o5 0.000005 

A34 -0.000003 -0.000002 

.A44 0.000001 0.000001 



CHAPTER 4 


CONCLUSIONS 

From the numerical results of examples in the last 

chapter, it is observed that for shells with fixed boundaries 

stress couples are always larger at the apex as well as along 

the boundaries than at any other point. This kind of 

distribution is intuitively acceptable and is similar to the 

experimental results of spherical shells and cylinderical 

shells which appear as special cases in this thesis. The 

absolute value of stress couples at the apex seems to be 

larger than actual values. This is due to the difference 

betvJeen the assumed transverse displacement function and the 

real distribution of the transverse displacement. Nevertheless, 

as long as the boundary value problem is concerned, this 

method gives good approximate values of stress couples along 

the boundaries and is satisfactory for the design purpose. 

The distribution of stress re~ultants is not sufficiently 

accurate near the boundaries, since in the calculation of 

the stress resultants, membranal strains ~)(I( and ~which have 

a major effect on stress resultants near the boundaries were 

neglected in expression (II-3-6). Therefore, instead of 

using the values of stress resultants obtained by this 

approximate method, it is bet.ter to consider them rather 

as indicative for the design. 

For the shells of simply supported boundaries, the effect 

of surface displacements ux and uy on the transverse displacement 

u is large as discussed in section (3-4). Therefore, unless z 
u and u are included in every exp~ession, the result of

X y 

68 
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stress couples and stress resultants obtained by this method 

should be used for design with great care. 

The results for shells with mixed boundaries should lie 

somewhere between these results. The author suggests to 

include the membranal displacernent in all expressions when 

the shell is not very shaJ.lov.r, say H/b near 1/5, but to 

exclude the membranal displacement.in all expressions when 

the shell is very shallow, i.e. for shells with ~/b = 1/10. 

http:displacement.in


APPENDIX A 


DERIVATION OF STRAIN ENERGY EXPRESSION FOR SHALLOl'7 SHELLS 

LECTURE NOTES BY Dr. JOHN SCHROEDER 

A directional tensor quantity of the second order is 

defined as a homogeneous bilinear vector-form 

where el' e2, e3 are unit base vectors along three orthogonal 

curvilinear directions, and repeated indices imply summation.· 

Fo1lowing definitions, the general stress and strain 

tensors in elasticity are defined by, 

+ cr2,e2.el t 02_2 e2e2 + 0z3 e2e3 + 


+ o;, ~e. -t- 032 ~e.2 + <l33 e3e3 


and 

€ ::::. ~~~ e,e, + c,2 e, ~ + <=,~ e,e5 t 

t G.z1e2 e, -t E:z 2 e2 e2 -t. € ~ 3 e3.e3 + 

+ c-3,e3e, 1- €32 e3e2. t t.~3 e3e3 


:.: e.,i e;_. ei ~ e,_. (E,·i ei >= e,. E,, 
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Furthermore, the double-dot product of Cf and~ is defined in 

its trinomial form 

a::~ :.:: e... cr,... : es E:.s;:; 

Its component form is 

e,_· es (Jt· E 5 - ~rs O""r· Es 

0: >E 
Hence 

= C1'.:j E.Q.'m ( e,_" e~) (ei: ~) 

cS u ( $} = fv Q- ; $ ed v 

== ~~ El~ 

(1) 

in which v denotes the volume of an elastic body. 

From the traditional definition, the stress-strain 

relation for isotropic Hookean materials, which excludes the 

thermal effects, is 

cr­ = 2A e+ i\ cE : 1 ) 1 (2) 

whereA{,Aare Cauchy-Lame's First and Second Elastic Constants, 

denotes the First Strain Invariant, 
= 

a~d 1 = ~i~i designates the Idemfactor, Unitary Tensor, or 

Identity Tensor. Substitutin'g__ (2) lnto (1) yields 

6Uc5'=f C2.;-.te+/\.CE:1>1>: ~Edv 
v 

=f ( 2)-{ E: [ €. -t A (E: 1) 1:b~ ) d ~ 
v 

= cSf (A E : €+ 
v 

~ ( € :1 )2 
) d v 

The strain energy is thus 

u (S'= f (A E ; E+ .6 ( ~ 
v 2. 

: 1)2 ) d v 
(3) 

For thin shells, the thickness always represents a small 

quantity in comparison vli th its other b7o dimensions, therefore, 

it is usually possible to treat thin shell theory as an approximate 

bidimensional continuum problem. In this approximation, the 

Kirchhoff-Aron Hypothesis is enforced and £ E- E
c:l31 31, .:l-31 
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and E32 are assumed to be identically zero. But, for the 


purpose of simplifying the final expression of strain energy 


·the normal strain component c33 is retained by imposing the 

condition of plane stress 0'33 :::a , and €:H is thus expressed 

as a function of c11 and e2.2. in virtue of the stress-strain 

relation. Even though this procedure is not quite consistent, 

yet since €: 33 is normally a much smaller strain than E 11 and 

€22 , the final results are not appreciably affected by this 


approximation. Consequently, the strain tensor reduces to its 


simplified form 


E=Eu e,e, + e.l2. e, e2. +E2r e2. e, + t22. e:ze-1. + (3:~3 e"le.~ (4) 


Substituting (4) into (3), and observing the fact that strain 


tensor is symmetric, expression (3) becomes 


U'c;'=..» ff[ [( e-:,+E/z+c~ -t 2 e:,~ + r~2.v ( <=,, + E2t 4- t·n)2Jdc<3) dA (5) 
A 

Since 7\. = 2JJA/c•-1V) now, assuming cr-33 =: 0
1 

()": - 2).{ )J ( € + ) '2.._)..(.(, lJ)
33- I -.l V '' E22. + 1-;v E33 =o 

€:.38 =- t~V (E .. -t-E22.) (6) 


If t 11 (Fa) , E22 ( t;: > , E-12 ( F"oJ denote the strain components of 


an arbitrary point in the middle surface, then the strain in 


the surfaces parallel to the middle surface are given in terms 


of the geometric properties of the middle surface 


(7) 
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ELEMENT oF sHELL 

prom Fig(2), clS, ==A, do<.,( 1+ o< 3 l<~'> 

Q52 = A2 d0(2.( I+ O(J K:.,1) 
and X F•<:r. 1 

ELEMENT 

It was mentioned in the earlier part 
OF SHt:LL 

of this thesis, that K~111 
( fo) =K~"J 

and K~"1( fc,):::: I<~"J are very small 

quantities, thus the terms 
(h)

~~K, 

d o( v (t1 Jan 3 '"'2 •1n ds 1 
dan d s2when dcompare Ft(t. 2. 

with unity, can be neglected. This simplification represents 

the so-called LOVE First Approximation, which reduces ds and
1 

ds 2 to the simple form 

d S. : A 1 de(, , 4 S 2 ; A 2 do<2. 

Substituting (6), (7) and ds ,_ds into (5) and integrating1 2 

it over oc3 between limits -h/2 and h/2 yields the approximate 

expression of total strain energy in the shell 



APPENDIX B 


DETERMINATION OF FOURIER COEFFICIENTS FOR NORHAL DISPLACEMENT 

FUNCTION - FOR SHELLS WITH FIXED EDGES 

Substituting equations II-3-2 into II-2-3 yields 

74 
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OP 00 cO 

t L L L A~r AW\ (I+ C..OS 20mtt)1fJ< f(HCo5 2(2rttJ"ff1)(t+CtJ51-(25+1JTrl) 
)nd r=o ~=0 s 0.... " b 

r~s 

110 ClO 00 . .

+12. L A.-, Asn (1 t tos 2(lt'"-ttHO()( I+cos lO)t l)ffX)( t+CPS l(ltt f'I)TT\)
2+ 

- h=o S:ow~o "- · ~ b 
r~S 

~ ~ .f~ eoscmx)~(nX)a><= { 
2 

-~ 0 

dJ "" tSJ eo 

t ;-o J;o ~o ~o At-t Ast 4 ~bJ 
t-\S -1'\:'k 
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OtJ DO 00 . 

+L-2 L. AmrA (1-+ cos 20 "''~+')1T'X'_) 2{Heos 2 r?r+t>1f'/_'(Jfcos 2 t 25+1J7T')_,:1 ...+ 
"YY\'::.0 r ...o s-:o ms ()... b .I b .) 

r~s 

Cl> ti> toO 2
+L. L. L:. A A ( 1-t-tos Z(.zr+\21l>L'(Itco.s- 2(.2.S+I)1TX)(I-fus2tz.n+JJ1f:L) ?1,_-r 

y-:o .S=-• \'):0 \'"1') .5h o.., l (J..., l:> 
r:\ s 
()I) ()6 ()lj (f) .

+L: ~ 2:. L_ A A ( 1+e-os2tzr-rJJ7TX){I+CAS 2C:JS+J)ffX)­
I-=o s::o -f>.::t> "&-==" rt si 0\ ~ 
r:\-s 1'~'&-

It has been found that 
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APPENDIX C 


DERIVATION OF STRESS RESULTANTS AND STRESS COUPLES 


A. 	 General Equilibrium Equations of Shallow Shells 


From Fig. (1), it gives 


L. f<tr"> == o 
A F (fJ'J A2 &t o( 2 + A F/o-J A d¢l 1 -t pA, A2 tfoc, Jo(.;z.:::. o

11 

Assuming that the changes of Fi>and Ff>are linear and 


neglecting terms of higher infinitesimal order, then 

I ~p<<rJ 	 I ~ F(O'"J
x, o~. f\ •p.,_ th<, Jo( z+ A;. arfz A ,A2 ao<, a<x'z. + -M,<O') 

If o< 1 ,~O(J.., eX., repre~~nt rectangular co-ordinates x,y,z, the 


expression (2) reduces to _ 

lrrJ :> "l F(~rJ . Co-) f Co? ' p.lcrJ - ­( ~ e 	T J F{& e + ~e ) + (°F)IY, e + J yY e + ~~ e )t P.. e ..,.Re t Be = 0ox J( Jx 'I ~>< ; JY .x jy Y ~ "x 'I Y ~ 3; 1 

This yields, 

\. Fco-.) 	 "" Fccr-J 
_O~)P_< i-	~ + p ::::! 0 (3-1)ox 	 oy .x 

-t P A, A2 £t o(1ao<z ::::. 0 - F,WJ 

or 

(1) 

(2) 

80 
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(3-2) 


(3-3) 


Again Fig. (1) gives 

L M(O") :o 

AM, ( o-) A,_ &<X2 +AMz.{G"") A' "'o(' +(A, de<, e, + A,.~ot,. e2. )1( Ffa-) -t L1f,<crJ)A2 d o(2. + 

-t (Azdc<.z. e2. T A ,~o<, e, )X( fi_CT) t A p~cr)) A, do<.,- ~2-a:?::. e2. X F,cu-J A2.do<z­

- A, drJ, c >< f<rTJ A cJo( - o2 I 2. I I ­

Assuming that the variations are all linear, then 
- <fl')J._ ~ M2. 1 J M tcrJ - _ 

A2- oo<2. A,A 2 do<,do(2-l- A, ~ A 1A2 dD<'1 4cx'2..- F,<r:J>A2 d~zX !+,dol,e,..;..0 1 
~ f:ill')A , 4c( I x A2 ao<.z. e = o2. 

or say, 

..!.. ~ "Mi_V") + _, c) M~<r) + e X plrr) t e X purJ =0 (4)
A2. ao<2. A, J o(' ' , z z 

Expanding expression (4) yields 
(tr) ((]') (0) - - ­

J_ ( c3 H IL e + 0 M,z. e + d fv1,3 e + fV1 ((J"} ~e, + fvf(rr) Jez. + M((f") d e3)-+
A' ao<, ' "~, :2. oo<, 3 ". oo<, tt. Jc(, /3 oo<, 

I ~M(O'J \ M(O'J (f1") - - ­

f - ( __!! e 1- ~2. e + ~Mu e + M{rr) Je, MCU") Je2. t M(O') Je1) + 
A2. ao<2. ' Jo<2. 2 70<2 J ,_, ~2 t 22. bo<"7- .23 ~2 

+ ( F Crt)- F ((f) - ) ( F (O") - F((J') - ) (5) 
12. e3 - 13 e .2. ;- .:z.3 e, - ;' e"J = o 

Since thickness of a shell is of much smaller order than the 

cuJ Cu-)
dimensions of its middle surface, the terms M 1 ~ , M2.} can be 

reasonably neglected. So expression (5) reduces to 

I ~[1.1Cr1) \fvf{u) - ­

A ( ~ e t ~ e -t /'v1 (rrJ J e, + /VI urJ J e z + 

I ~o(l I ~o(l Z. 1/ uc(l 12 de</ 


\ lO') u(U") 'e- le 
-t- - ( ~ M1., - + &!'~'22... e t fvft~J ~· + M(crJ ~) -t 

A2. oo<,_ e, de<,_ ]. 21 ;o<'l.. 22. J-o<2 

http:bo<"7-.23
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?(

+ 

01+ F;~1 e1 - f,~) e2- + C f1~ - F~~>) e3 == o 

For 	rectangular co-ordinates 
(d') (0') (0") fv1 (fl")­

ofvfxx e + Jli!ye- + ~Myx e- + ~ e 
~X 	 x d X 'j ~ Y )( J y y 

q) err>- Crr) (<T) -	 Fl(i-. 2. 
+ Fy~ ex - Fxl ey + ( Fxy - F7x ) e~ = o 

' 

The scalar components of the moment equation of equilibrium 

are oM(o-J LA ((J'J 

XX + ~ + pC<T) (7-1) 
ox ~y )'~ = () 

err> ·o M <rrJ 
__>'..._'i + J Mry - F (O'J ::. o 

(7-2)ax ~'I }(~ 

ptcr>_FccrJ_o 	 (7-3)
X'j Y'X. ­

Equation (3) together with equation (7) are called the 

equilibrium equations of a shallow shell. 

B. 	 Equilibrium Equations of Thin Shallow Translational 

Shells Subjected to Uniform Transverse Load 

For this case 1 P = P =· 0 1 the equations (3) 1 (7)
X y 

reduce down to the follmving expressions: 

oF<""' d F'o-> (8-1)~	 t ~ :=.o ex dY 
dfco-J JF'o-' (8-2)
~+ ~-=o 
oy ox 

p<cr> err> 
~ X) + ~ fy.} -t p = O (8-3)
Jx cy ~ 
aM (o·., d tvf ~0") (U) (8-4):..:._:]] ;- -Y F1-":l- ::. o 
"'I ox 4 

~ 1\A (cr) (CI') 
__:x_x + d Myx F<cr)- 0 	 (8-5) 

y~-ox -w-
F Cu> - F lo-J 

xy - YX 



83 

C. Stress Resultants and Stress Couples 

From Fig. (2), it gives 

(9-1) 

(9-2) 

(9-3) 

(9-4) 

(9-5) 

(9-6) 

(9-7) 

(9-8) 

From Appendix A, equation 2, it gives 
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(10-1) 

F;~' =D'( ky)+ u K~">) UJ (10-2) 

M<rr>= f~ o-; 2 a:t- =J% 2p (/cr.>- 2 'Kth>. u ctro)- ~ 'ut"'>)-< c{2._
Xj _.!:! XX-~ g -.h ....-=» Cxl( lJ t> + '1'1 · }) ~ 0 ")' cTx d 

2. 2 

==- Q)A ~ ( ~2.u~ + u ol.Lf~) =- D ( Jlu~ + lJ i·ui-) (l0-3) 
3 c•-v> 4 ~x:J. J'j 2- JX2.. tJY 2.. 

My<.~J = - J_~_._ 0:: 2. et ~ = D ( i·Ua- + v J~t!J).,. i yy o tr Jy 2 Jx.t. cl0-4 > 


M ~~) == - l ~ C>xy ~ a1>- = - l t e.,. ey : ( 2ft e+A. ( t :1>1)~ d~ 

2. .2. 
n 

= -1~ 

(10-6) 

Expression (8-4) yields, 

()tv'I(~J Meet> 2 'U
F<o-J = ~ + ~ =-D £... ( ~ u~ + p ~ ; ­

X} ox o'J ~x ox'- ay2.. 


:= - D f-x (v 2 u~) 

(10-7) 

and expression (8-5) yields, 

(10-8) 
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since the POISSON'S ratio~ of usual construction materials 

is always a small quantity compared to unity, a further 

approximation of stress couples is possible. 

'1
M ((I} - - D d U} {10-3 I) 

'j'j DX2. 

M <cr> - D ~l.u~ (10-4')
'/X - 0 y 'J. 

M(cr) :::. D ol.U~ (10-5 I) 
XX. t)X t)y 

M <o-> =--D ~1-u~ (10-6 I) 
Y'/ ~YuX 



APPENDIX D 


CALCULATIONS OF FOURIER COEFFICIENTS FOR THE 


HEHBRANAL DISPLACEMENT FUNCTIONS 


The expressions (II-1-2) , according to rectangular 

Cartesian co-ordinates, gives 

"' cro) ­,.-_croJ c;~ Ux + Kul) ucroJ 

C"xx - dX x ~ 


bk~.., ::; 

€CfoJ ::
XJ 

~ k.C'):::: 

(4-1) 


(I) Shells with fixed boundaries, 
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.. 

The external \'lOrk v.J is derived as follows, 

From Fig. (1) 


since e.X is very s rna 11 4-------'--~f-----=~:::::-:J;==--...... 'J( 


~~. ~ e)( e i: a,v. ex =-~= l._ a_!../~2__J+-....__~a~~!.!!:2_.L___.-~. K c~J X ...__ 
"'• 

Flqo. 1. Secfc'on of o. shell 



--
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By the same argument I ~ ey = . K';' y 

e, = e, .e)( e)( +eI • e'I ey + e, ·elea­
- - !") ­= cos ex ex + o eY + 1<.x x e ~ 

• - Lrr) ­:::: eJ< - K71 1< e~ 

- • - ltl) ­e2 =e1 - Ky 1 e ~ 

et1 = en. e>< e)( + e1'1 • ey ey + e11. e~ el­

=}(';''X ex t J<')l 'I ey +Cos 8.)( etJ ..:_.1<.~"1~ ex +K~"'J>' ey t e~ 
- - lh) - (M) - ­p =-pe~ = -PKx -xe,-PK~ ye1 -pen 

W=- ff P·udxdj 
A 

::: ff (- PKc;>'X e, -1- PK';J Ye.2- pen)· 
A 


( L( 1 e, T U2. e - lA n ~ ) d I( dy
2 

= ff ( p K~l11 'X u, t p K~'Y U2 +PUn) dx dj 
A 

Since the shell is very shallo\<l, u 1 , u 2 , u are approximated
11 

by 1lf;J u<F,> <r.> 
'I. J 'I I U:, . 

2

: · W = f ~ 5 po?b K~> t f f C Po.b ky
1 +f. ~ A n Po.b (4-7)

m::o n:o rnn ( 2m+t)n m=o h"'O mro (2n+t) 1T m::o h=" m 

therefore, 

oU(SJ _ JW 

dAmn oAmt1 

~p'fi( K("'J;2 t ( t<.LhJ /·+2)) l<.(ti)K(k}J [3A f I 2 A +1. i A.. A J-t 
2. ll x 'j X 'j mn r;.o rn 1n•o i-.:' 3 p~ 

. ,.. '* h 1*-"" f:t-11 

3 4+ 4~+ fA,.. (3 (2Mtl)4 t ~ .(211+1) t \1 (2>+~+1/(<J.n+-ll] + 

4 
;- ~o AW!r2(2m-t\)+-+ ~ Arn 2

:.: ('2-n+1) } -t 
t":\h t"'4f'l'l 
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+ (K(IIJt /<C"'J (c (2t1+t)TT 1. + ~ c. ~(2n·f-l >rr )II :::: p
'j J) X mn b 2. 	 r=-~ rn b ') 


r'~M 


due~>_ ~w 
(4-8a)o6""n- JBrnh 

therefore, 

p'{z<K<IIJ-tJ>I<<nJ)(A (2h1+1)TI 3 +f. A 20M+I)1T)
2. .X 'j mn 	 ~ z r=o rnr o.. 

r~" 
2. 2 #() . 2. '2c.t' 


+~ (1BB)Yin(1..h'\+\) t~~~ 16 Brnr(2.Y>1tl) +(1-l.>)B""'"'(21'ltl) \;2- + 

.,.~, 

(h) 

-t (I+ l>) CMl1 (2~ +1)(2.11+ I) 	~1J (~::~) ;j- (4-8b) 

ou<s/'ocm., = oWjo Cntn 

therefore,

f { 2 ( K~h}+ v K~~~J)(Aml'l (2h~)7T ~ + %o AW\r .2(2h~\)7TJ t 
r~" 

2. co 2 2 b2. 

T ]!_ (r8 C (2.1-1+1)~+ L 16 Cl"n(211+1) -tCl-).))C~n(~mt-1) -n2 +


b2. r= c 	 V\Win 

r :\:WI c.,J 
'o 1 Pb K)[ · (4 8 )

i' t\-)))t)...,n(2m+\)(2~+1)~)j:: (7..1'1+1)11 	 - c 

For shells with square base plan, u~>:::ufol) ~=b/ i<~")=K;"'~ 

( 4-8b) and ( 4-8c) become identical. The above expressions 

( 4-8a), ( 4-Bb) and ( 4-8c) reduce to 
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I (Ill 2 f CO OC> orJ t14 4 
3D ( /<.x) ( 1+J>) 3 Am,., + ~0 2Amr -t l-o 2Arn -t ~~ ~Ayt;} +0 r~ t1 r;\-rn f*J'i~., 6 

4+4-~~4 [ Avnn (3(2m+t) +3t2n+1)4-+2(2m+-1)2f:tn+t) 2) + 

+~ Amr 2(2WJtl)++ i_ Arn 2{2.-tt t-1 )+} +
r=• r=o 
r~n r~m 

d)

+D'f<l-+-l>)K(">( l.(B (2rn-t-r>-rr tB Ott+I>1T)+ ~ B 2c2tntt21T-~. 
>< 2 ..., rt &l.. n t'l1 tJ... mr ~ '~6 

r$n 

t i B 2(2Ht1)7TJ} =p 
( 4-9a)\"'=O hr t\ 

r~m 

(II) Shells with simply supported boundaries 

Let 

(4-:-10) 

(4-11) 
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cr.> =~ ;:_ A eos <2.m+ • >7TK c.os c~"'+' )1TY
1-(j ~-:D )l::O W111 '\ b 

Expressions ( 4-10), ( 4-11) satisfy the following boundary 

conditions, i.e. 

d u;r.>
1)(=0 u~>=o tr'X~ 0I 

tr.> ~ u cFo> oucfo>?{-:::Ta, 
- 2.. Ux ~ o )( -() (4-12)

I Jox - ~ :!tr 0I 

Qutf.J
'} =0 u~>=o ~ 

I oj ~ o 

(4-13) 

The 

(4-14) 
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-r~i 4Po.b )
""'"'o ~::o (l.t'>\+I}(U1t"\ )1f2 

?racs, _ ~w 
1At"'"' - 2J Amn 

Therefore, 

(4-lSa) 

oUcsJ =- ?JW 

C> Bmn ~ BYI"rt 

(4-lSb) 
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Therefore, 
I 

D { c (( ('2t'1+1)1f )2j_ + ( 1-V) ( C2tn+I)TT)2-') + 
2. mn b 2. o... 1­

B ·c~ (2~-ti)(:2.H+I)7f 2+ (I-ll) (2111tl)(2t1tl)lT 
2J+ 

i" ~n 2. O.b 4 ~b 

CttJ k'~')A (21H·IJTTJt z ( Ky +1) X h111 4-b 

cmt-n) 4-P"'I<Y
("} 

.:=(-\) - (4 15)
(2.1-1'\+l)C111t1) 2 Jf3 - c 

... ~{;:;, - .~<F·>For shells with square bas_e plan, ""'.X - Vl-7 , a = b, 
{IIJ uCtt> · Kx. = "-y 1 ( 4-lSa) , ( 4-lSb) and ( 4-lSc) reduce to, .­

,_,,..> 

( {Ht+n) 4P '( ) ,...x TT [B (2m+)+-B ('2fH·l)) 


__-_Q__~~~m~+=J)(=2~~~~/)~~~--D__I_+_P~4~~~--~-n____ 1 
____H_m____~~--- (4-16a}

A}YJ., = 4 
( DTT ( ( 2mt 1)4f (2}1-)+1)~(211+1)2+ {2H +I )4) 't ])1

(/+JJ) (K~"J'2.)
"-1-4 4 ~ . 

(4-16b} 

' 
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