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CHAPTER 1

INTRODUCTION

By definition, a shell is a three dimensional body
bounded by two curved surfaces
whose one dimension is negligibly
small compared with the other two
dimensions. (See Fig. I-1)

The surface which lies at equal

nuDDLE distances between these two
SURFACE
FlG 1-1 - bounding external surfaces defines
the middle surface of the'shell.
o3 Dy definition, a shallow shell has
% ' ’
APEX a configuration that its rise of

its middle surface H from the

base plane is less than 1/5 of the
projected length of the shortest
édge of the middle surface measured
in its base plane. If the shell

in Fig. I-2 is shallow, then its
geometric configuration éatisfies
the condition'H<b/5, for b<a.

A shell of translation is a shell
whose middle surface is generated
by a curve translated along another
fixed curve as shown in Fig., I-3,.

Therefore, a thin shallow translational

FIG. I-3

shell is a shell which'satisfies all

the criteria mentioned above,.



The functions chosen to describe the middle surface of
thin éhallow shells of translation are generally of the
hyperbolic pParaboloidal, elliptic paraboloidal of parabolic
cylindrical type. The present investigation is restricted
to the elliptic paraboloidal type of thin translational shell.

The purpose of this study, which was carried out in41964
is to present a simple yet pradtical method for analyzing the
transverse flexure of thin shallow translational shell structures
of moderate proportions. The major purpose of this theéis lies
in an attempt to develop some general solutions for the behaviour
of the translational shell in transverse bending by mgans of
variational trial-function technique in the form of the
Rayleigh-—-Ritz method as expounded in COURANT texts in 1953 and
1965, by MORSE and FESBACH in 1953 and KOPAL in 1961. The
exact general solution of the basic differential equations of
such translational shells is still to be found. For general
techniques of solution of differentiél equations see KOSHLYAKOV,
SMIRNOV and GLINER in 1964. The rajor reason for the absence
of a general exact solution lies presumably in the exéeptional
conplexity of the basic differential equations and in the
requirements imposed by the general boundarf conditions.

For special types of boundary conditions,

Sergei A. AMBARTSUMYAN in 1947, Konrad HRUBAN in 1953, and

Wilhelm FLUGGE and D.A. Conrad in 1959, have derived restricted
solutions. In 1957, Gunhard AL. ORAVAS Qerived a solution for

a special type of such shells éy using the DONNEL-MUSHTARI-VLASOV's

equation of shallow thin shells, in combination with



Friedrich TOLKE's pseudo-complex function method in order to
arrive at the solution in the form of the stress function and
normal displacement function representing a combined series

of exponential and trigonometric functions. The Norwegian engineer
Kristoffal APELAND developed a generaldized D. BERNOULLI-LEVY
semidiréct solution for translational shells with various
boundary conditions in 1961 by adopting AMBARTSUMYAN'S
method. Soﬁe analyses and tests for translational shells over
circular and'rectangular bases have been carried out by

Mario G. SALVADORI in 1956; In Europe, Pal CSONKA in 1955;
Wolfgang ZERNA in 1953; and his student Goswin MITTELMANN in
1958, contributed to the approximate momentless and fiexural
théory of thin translational’shells. In.l959, the Italian
engineer Pietro MATILDI analyzed shells of translation over
rectangular and.square bases by a method of‘SUPerPOSiticn”

similar to TIMOSHENKO's method for plates.



CHAPTER 2
ENERGY METHOD IN ANALYZING

THIN SHALLOW TRANSLATIONAL SHELLS

2-1. General Equation of Strain Energy for Thin Shallow Shells

The general expression of strain energy for thin elastic
shallow shells.has long been established by the use of the
indirect scalar method. Recently, Dr. John SCIROEDER, formerly
of McMaster University, derived it By means of direct £eﬁsor |
methods. via kinematic considerations (see Appendix I). The

final formulation is as follows
2 2 h
U= « ff{( ch4e t2vE,6,, 12 ("“)6‘2.]"(:“,,

3
+(CSK™M) T(SK(“,) 4 21)5,(.(")5‘(;)”(,-u)(SKﬂl)z]mh“_m}

AR, dX, dot, (II-1-1)

in which & and X denote the curvilinear co-ordinates on the
surface of the shell. (see Fig. I-2) This expression encompasses
both membranal strain energy

UL = Jfleiteieave,ent2a-me] ]-—‘—‘{7 AA, dot dd

and the tranverse flexural strain enerqgy

“”~AH[(SK“’) +(SK‘§’) + 208K 8K+ 2¢1-v) (SKT) ]/2“ D,A Aldo( e,y

where

éuzé,,(ﬁ)»%‘%fm%%uzf@"’u; 7

€,= €,,(1,) = 7';2 %—u‘:&«» -—:—R; éa’l‘ u, t Kl Us

Cn=€a(®) =4 (R 2 (L) B2 (b)) b e
SKP'= (52, (520 k04 2% 5
ESKSE:[%ﬁ%ﬁlc%i%%a)"K?x%i%%%J



G =l LD (L Uy Dt Uy D

KM =Z{ R e 53, (A, 5, )~ %2 A, 5 T ASS,
(‘é) U3

Since the shell is very shallow and uniformly loaded,

d
l

than U3, hence they are negligible in the expression (II-1-2).

becomes zero and Uq s u2 are of comparatively higher order

Furthermore, owing to the shallowness of the shell,vit is
admissible to approximate the strain components by their
projections along the directions of the base Cértesian
co-ordinates x and y. Also, it is reasonable tolreplace the

normal displacement u., by the vertical displacement u, . After

3
thése simplifications, the equations (II-1-1) and (II-1-2) are

reduced to the following forms:

é X = K‘xh’ué . Ky U}
my_ _ Sy u »__ 24 NPT
SKy == 5x2, 8K 3”,? , KV =-5n;, 0 Imm2n)

, 2 2

(K4 (SKS™) 4 20 SKVSKS + 2-0) (SKD)”]

h%
|2(l"D)} ﬂlﬂl d°(Q d“l

= A SRR OGN 20 77 o 570t

2z
.‘.[(,a..ﬁ‘r.a_y%) 201~ D)(’b’gayz (buby) )J

12a4- v)} ARy do{ dely (11-1-3)

2-2, Elliptic Paraboloidal Shells of Translation

For translational shells over sguare or rectangular
sy gy
bases, it is always pos ssible to reduce the term 2(-»)[ S5z 2A* Dyt

in expression (II-1-3) to be identically zero. This

hay) J

»



can be demonstrated in various ways. The simplest way is by

applying the method of integration by parts. Since.

Dy MUy =& 2 ( 2U3 ¢ Py 15 4
Jf axay axay dxdy a)(a)/ J.-_.lzd f bbez 2 y
= 32“% aua b U313
G t)XA)’ ] dx - s 372] dy

- ] b Ll; aU§
\, + {f 5 Sy d%’éy
2u :
for rectangular or square base plan, ?ﬁ§:0along the edges
‘ 2
y = constant, and BUgﬁV2==O along the edges x = constant.
Hence, the first two integrals in the above expression

become identically zero. Therefore, it gives
d’Uzy Uy (2 U%)
oAt Jy: =y

This reduces the expression (II-1-3) to the following form

>

h " h
U = I gy 20 KK Uy
ot (I1-2-1)
+(—5'5<%- * oyz vzu-v)} ARz 4, 4% |

For a second degree shallow elliptic paraboloidal shell of
translation, the variations of_the normal curvatures at
different points are usually so small that tﬁe normal curvature
‘itself appears approximately as a constant. Moreovéf,

if the thickness h of the shell is also assumed to be alconstant,

then:the energy expression (II-2-1) becomes

ny 2 n) (TY)

U= '_u L+ (kG + 20 KK Jff u;A,Rzléot,do(,_

.uh’ 2%y | aus (II-2-2)
.2(.-;»”( Tk ) A AL Ao, do<2



If the function of the middle surface is described in the

EULERIAN form

F=2xX8 +Y& +3(x,y) €3
where .

3xy) = (X *tcay?) +C3

-for parabolic generators shown in Fig. (II-1) and (II-2)

% \ & ApEX
A .
A
N H
t‘,f*@ | _ .
= b2
P r“o £ -
X €x 7
Y
Flg. I—~1 X FIG. ™~-2
then
93 8*3 & _ ™ K
B2k, Fhi-kl=ze, voo=-
b} ) >2% ., ) . - K(h,
T R R
When x = 0, y =0, z = Cy = H.

(h)

The position vector r of any point P on the middle
surface is

F:xgx’+‘a-é~*,+5€5



nh)

= %8y +y&, + [- 5 (KX + Ky y2-2R)] &;

KUY P~ SV~ L e~ =

-a~i-ex“Kx 'Xe%’ -S-j—-:ey—\(y ye%
r ofr " 2 2 . _ 1.2 244
-g-;‘é—;:[ (KS")Py2= A% 7 A= Lk (k)P y? ]2
= - " 2 . - (w.2 2 ’.'2,

Expanding the expressions Al‘and A2 into binomial series yields
= 2.2, ...
A=+ 5 (KDY x5t 7)

A=t K Y2e . )
2 { w2, (222
A.sz(|+é(K(;))9X2+é(K‘;’)Yzf;;,:(ﬁ(,g?(K,)X)“f ).

. . . 2 2
Since the shell is restricted to be a shallow one, (K)(:"x)’ (K;"y)

are assumed to be of much smaller magnitude in comparison with

20 (0, 2,,2,2
unity, therefore, it seems reasonable if the term 7;_‘(/(,(") (Ky) 2™

is neglected as a small quantity. The same argument may be

2
applied to the term —é—(Kﬁ") xz‘l'?'g(K()?)zyz. For the time being,

o (R 2
the term é(K;’,}?’iefiL(Ky/}is retained. Substituting expression AA,
. 2 1 22
= \'%-‘Z(K;M)X +é‘(K;))’ in (II-2-2), where &, &5 now become
x and y, yields |

2 thy () % % 2 1 tm 22 o )2 2
S AR ) (k) 20K Ky 12 7w bR +Z U0y ) dxdy
"2 2

U= e o B s S 7
Mh?' ?_9_2 2 I (n) 2“2+.L Kn)y )d)(dy

+ 12(1-Y) jfalzy,_blz (ax?—+ §y2) (“" Z(KX ) 2 ¥4

Letting Mh =p' and -—-—-—-"""'3 =D, gives ‘
] ! 6(1-») ! o
‘ & h h % zZ 2 ' 22 4 w22
U(S)_._ D’[(K‘;J)H(K‘y ')?~+ 2y K‘«’K; >] f’%f/b/z u;“*i (Ky 2745 (Ky)y )dxc}y
4 (Y. ry 2 2 . 2 N
+%f,a§@f,.;(%§+%-—‘ﬁ) (15 (K54 3 (K'S) y2)dxdy (I1-2-3)



3-3. Shells with All Four Edges Fixed

For a shell with all four edges fixed, a function for

u, has been chosen to fulfill all the following geometric

boundary conditions, say

u3= o | When’
(11-3-1)

o%%
0%us
oy?

A suitable diqplacement function is

¥ 0 | - y=2b)

q3=—m20§ AM“(|+MW)( +co<)...£2!li’.‘ll"l.)  (II-3-2)

Substituting this expression into (II-2-3), and integrating with

respect to x and y, (see Appendix II) the following

expression is obtained:

n . K ) (ns 2
U‘S’-D((K‘"’) 24Ky 20 Ky K;"’ P ‘M”Amn(aw*i ‘;_‘ + 2 b2y
(r1 2
43 5 s Amrﬁms(2+“ L..a.—’f b (Ky))_,
wm=0 r=0 $=0
+£35 5 A,,,‘AS,\(2+““‘2“+ “"7))+
Y=0 926 N30
o0 oo » & 2 (W42 ()
4 , A% (K'x) b K )
+\~2=o§—=o%_o§;o Ar?ﬁs%( 3 + q 2 ta 9 )} t
| rx$ vvﬂ; o (O
r2pabntc€ & A% (aament(ar g “"‘ e B Gy
(0} m=9 =0

at, o° (¢ at (K'Y

| & (2 ar kYD)
+(amn)2ann)? (2t S v G WP S 4
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$s¥ a* tny2 (MIZ
tZ L. Amr"ms(2m+o"'(2+€”%'2+b~ (K72 4
r%S ) ~ i

o ® oo Qa° (K;{‘} [£) (K( ) } (TT-3-3)
12, Z, o, ArnRon nd 0% (29 4 (5 30 e G (2

The external work is easily found to be

a b :
W=Ii(i (~P)(u3,)(:+u<§<’)2xz/2 +H2y%0 ) dxdy
a* (K% b2 (K
‘O\b[Pz S A (14 95 57 + 22 (Ky) ))]

mzo wnw=

The total potential energy of this shell is

V=U®-w

The Stationary Potential Energy Principle is postulated as

(I1-3-4)

follows:

"Among all the displacements satisfying kinematic
compatibility and given kinematic boundary conditions, those
which satisfy the equilibrium conditions make the potential

energy assume a stationary value"

6V =0
which leads to _

oV

P =0

dAmn
Let n "
DY (G 20K T = ¢
then

(w) 2 og a? (K(h))z b2 (K(lnl
+ = L Y
-%{Amh‘“?ﬂ%’ YO+ Ame 2t KRG 3
rih
wr 2 1) 2 2 2,,.0M2
B re SR 9PN EE ke ),
r:k:m \"iﬂ"\’i’%‘ﬂ ,
4 2, othy 2 q6 (K"" 4 (I(("’
+ 4010 {A ((ﬁmft)4(3+2 (KZ 7% £ (JS%—)) (antt) T 46“ 2 tar a

q4
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Ql 0‘4 (K(MQ_ 2 (K(m)
+c'm+'>2m+')2<%+ e 2 t % ]t

2 (CIRVA 2 (h2
+z Ay (2Mt1) (”2 ‘—’52114»%”‘ )+z A (20+0) (2“ +
r#n rxm
6 (KW Ok 24 +a2 (KD + (&)
+ a (Kx)+ a (K,v))} P ( X ) (I1-3-5)

ot 2 6 b* 24

"After the numerical values of h, a, b M, Y, Km’l<?’
are given, tﬁe Fourier coefficients Amn can be solved by‘
substituting the values m, n from O to k (k is any desirable
integer) intb expression (Ii~3~5). Usually, a set.of simultaneous
eqqations containing Amn as unknown is obtained through tHis
procedure,

Oncé the Fourier coeffiéients are found, the vertical
displacement u, of the éhell can be obtained by substituting.
tbese coefficients into expression (I1-3-2), énd all stress
resultants and stress couplechan be evaluated by the expressions
(II-3-6), (see Fig..(II—3)). The derivation .of these expressions

is given in Appendix III.

FiIG, 1I-3

(n)

Fi% =D (K‘“’WK"") Uz = D(KGHPKG ) Uy

2(2n+0)TWY
)

) w2 & 20 2m+1) 71X
= DKL) S S Ay, (14 cos 22D -

Y(1+cos
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B =D'(KS+» " U3 = D (K§,“’+uk§"’) Us

(m ) 2(2m+0) X 2¢2n+127TY
=D VKD, E A (14 cos ERZLIIIN 1t cos AL

(@ Mz . dlus
Mxy = Daxz DS5xz

— 2(2m+0) W 2(2mH )TN 2(20+1)71)
D)nz—'o%oA'“" [( ---—-—-—-—) e Y U (1+coS S )J

M = -p 2z« _p 22Uy

byz. ayz
--DS. 5 A an [( -—-—-——————wl‘g"ﬂ)“) (lfc,osw)w5 (2HH)_7_I ]
m=0 y\'O
(¢1 > u; . u
-p%% =Dl
= DZ }:_ A (2(2m+t)n)(2(2n+l)ﬁ> 2(2m:)77x pin 2(2n;l)7f)’
mn
m20 n=0 .

Myy = = Mxx

(2(2»1H)ﬂ) (2(2m+1)TTX)

) au o
F(U' "“D(VZ 3)"‘ D(V ) DZO%O Mn( a Qa

(1+ o5 &C_&E)JEX) + (220 +b121[)2(2(2n:\+!.._”f)p1‘ 2(2:":)”:( o5 zzzm:)_frz]

FW* QAUB) QBU})

it

2(2n+1)T7\3 . ,
A (=) 200+ OTY (4 o5 ZMNTTIXY 4

D b b o

IMs

[ o]
=
=

(-] o]

2024 2/, 2¢(2n+1)TT 2(2M+I)TIK & 2(2a+1)Ty © (II-3-6)
202k OTy2 (22RO Ty o5 2(ZMUITK ), 220 #0TY ]

+ (——=

It is obvious that expressions (II-3-3) and (II-3-5) are
. vV w22 22 .
very complicated, therefore, the teﬁ“szx)%+§JKﬂ7wh1ch is small
in A

lA2, is henceforth neglected. The equations (II-3-3) and

{II-3-5) reduce separately to the following expfessions


http:j.(2m+r>n)(zc2n+IJ.Jl
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n " 2 , &3¢
U= DL 20 175 T 252 {2 2 3P 4 222 Arnr P
rxS
55 5 A A +F 5 % 3
+r§o§o n=02 rnfirs + z::o 520 $=0 4= Ar%AS?}+
r¥S rX —?*%
2Dab 4
-——-———a—,r-—- EO%OAM“B(zmM) + b“ (2h+|)4+ bz (2m+|) (2'1~H) ]+
Pa'e] ao P oo o0 ;’_ 244 4
I LT, R R 2came1)* tZ e BenAsn 55 c2net) } (11-3-7)
L2 3 r%s
2D (kS 2Ky T { 3A +z S 4
2 X Y X Ky mn 2Am,.+2 2Arn + Z 2 3 ﬂrp}‘f’
r‘#h r#m r#h’;?th

4+ 4D7° 4.D7T {Amr [3(2m+l) 4 34 (2n+1)*+ 2;2 (2mt1)*(znt1) %] +
(II-3-8)

r=o =
ri{n : r:\:m

-’rE. Amr2(2m+n‘°“+z, Apn b4(zn+;)4} =pP
Geometrically épeaking, this simplification means that the
integration of the strain energy density over the middle surface
of the shell is instead carried out over -the projected base
plan of the ﬁiddle éurface. If the shell is a shallow one, this
approximation yields sufficiently accurate results for practical
purposes. In section . ({3-2-1l) of the next chapter, it can be
seen thaf this approximation is quite sufficient for the present
case. All later aﬁalyses are based upon this approximation.

2-4., Shells with One Pair of ILdges Fixed and Another Pair of

Edges Simply Supported

For a shell with one pair of edges fixed and another pair
of edges simply supported, say, the two edges at x = & a/2

are fixed, and those at y = * b/2 are simply supported, the
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function u, must fulfill the following geometric boundary
conditions:

Uz =0 when x=t 5 Uz =o hen y:.-_i:-g_-

u a od -t b

Z: =0 x=*3, —5"1’7 ¥o 7= =z )(II-4-1)
d*uy -+ a Uy -+ b

axz*’o x ..,2'1 ayz"o y—'—.i
The function u, is chosen as

(IT-4-2)

‘ 2(2m+1
ué—-zah o Apn (14 Cosw—e-all'—"-)cosgg_tgﬂl

Pursuing, exactly, the same procedure as - was followed in the

preceeding section, eqguations corresponding to (JI-3-7), (II-3-8)

are given as

&3 ' n1y2 (m, 2 o (n) 2 (305’) fg 5:0 A A, Ab
U = DK (Ky 220 Ky K,J =z A t2 2. Foo 7o rnfsn 252 ]+
r¥s
4
+ 2Dq71 mio Am"{(ZWH-I) ab+‘2m*’)2£f‘:’4*’) a (2ab)+(2h+/)~—-—b——(341>)}+
0N=20
L < E A a4
, tE, 2 2, Avn Asn 2(2n+D) !Gb‘*mb)] (II-4-3)
an r%S
0] Q) () -zA +§'A
D((Kx) 'f(K ) +11)/<x Ky )[2 mn T T, rn]+
ram
4 0*a* A
+ __,____493 { A [(2mt0)* 4 z‘lm:’bf“* 787 ¢ 3 Cant1) M] +
. 4 n 2P o : .
-+ %‘:MAM 2(2”4")4-,264_" ~1) m = O (IT1-4-4)
r

2-5. Shells with All Four Edges Simply Supported

The boundary conditions of this type of shell are:

Uz =0 | when X-‘-i%_, Yzi% \
"“Mo x=12
> II-5-1

Sts ot o )
oy | 2 |
o 223 /

=0 ——— ::‘f',q\_ —
OXE 1 2yrTe AT, Y=t
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The suitable function for the vertical displacement u, is

0° —F
Uy= = z'_ Amncos_%f_"j.‘)lliwsczmgrr)' (II-5-2)
Just as 1t has been done in the two preceeding sections, the
Stationary Potential Energy Principle is again applied, and the

expressions corresponding to expressions (II-3-7) and (II-3-8)

axre
U = 8 % %_ Az ((2meO*s utyiane)? -%;f(znﬂ )4,‘3—2] +
+D'[(K‘;')2+(K“") t2v K K("’] Z Z Am ab (IT-5-3)

m=0 N=0 4’

4

4 2 2 g%
Apn = 0" SP/{(’LMM)(IV\’H)712(%7(2((%"“> t2ezmei) nel) Gt

+ DT+ (KD 20 K5 T } C(T1-5-4)



CHAPTER 3

APPLICATIONG

3-1. Convergence of the Displacement Function

" Before going to the applications, the problem of
convergence of the chosen series of the displacement functions
in their application to various geometric.configurations of
translational shell is subjected to a careful consideration at
this stage. In expressions (II-3-8), (II-4-4) ana (IT-5~4) in
the last chapter, the portion which is derived from the membranal
energy is

[ LY

. 0 o o9
3D (K (K 2V KKy Y BAmn t 2 X FZ Arn

r=o-y<co
© O rin ' rim
'\'Eo %0 %Ar@} - (III-1-la) from (II-3-8)
rim kN ’
oo
D (KA (K4 2 KXK' T {2 Ao + Z, App } (TTI-1-1D) from (IT-4-4)
or ram '
DS 2o KRS | (III-1-1c) from (II-5-4)

It is obvious that these expressions are funétions of the
thickness h and the normal curvatureslﬁy,Ky’only i.e., that
expressions (III-1l-la,b,c) may be assumed to be constant with
respect to the series indices m and n. Therefore, the problem
becomes largely dependent upon how the expressions (III~l-la,b,c)
influence the convergence of various shapes of translational
shells, and under their influénce, how rapidly will the vertical
displacement series converge; For the first question, a procedure
has been derived in the follow}ng paragraphs. For the second

question, a series of numerical calculations have been prepared

to establish a general estimation.

16
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If the shell thickness h is fixed to 4 inches in the
expressions (III-l1-la,b,c) which is a reasonahle thickness of
a reinﬁorced concrete shell of moderate proportions, the only

factors which would influence the magnitudes of these expressions

are the normal curvatures Kg’and K;'. Thus the maximum and

v

minimum values of expressions (III-1-la,b,c) depend upon the
maximum and minimumvvalues of the expression
h ( )
M= (K ) (K™ 20 KK (I11-1-2)
Now, returning to the function of the middle surface of the shell,

which is »
3= -5 (KOAZHKYy2) + 1 (H=1=3)

.let aZb, H= Db/, in which® %5, then, when x = a/2,’ly = b/2,
and z = 0, expression (III—1~3) becomnes
1 (h) 'f‘ (h) =

K‘”’ az = ‘g-;‘?' el K(;,b

X w. (III-1-4)
:‘ (h)'_ 8b _b Ky,
or KX - qu qi
;n) gqu - b K(m
. “ b
o K)‘,’-- bz(}("" f)q?-) (III-1-5)

Since for elliptic paraboloidal shells of translation w1th a
positive GAUSSIAN curvatﬁre, the principal curvatures K"’

K;M are of the same sign, then

(n

(h) (h)_ - a* (h) b

and

bz K(n)( (h) bz) ‘__<_.O
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or
(ny 8b
{(nh)
. < ®b
- K= S

This means that K:(M:Ls bounded by the closed interval 0 —K“”< ‘giz

Substituting 8b/a = A', b /a B' into (III-1-4) and (III-1-5)

gives

n) .
Ky = AKX (ITI-1-6)
. 2 (/\' K(hl)’l
K8z (AT Rx / (IITI-1-7)
( ¥) (8%~

and substituting the expressions (III-1-6) and (III-1-7) into

(II1-1-2) gives

2 ! ¢ ‘- (”l)'
M= (kg LK (BK’ - 4 2vKI AKX ;x
1u (w zuA _24a’ ff 2
=( (h’) (I+(5)2 (=57 (5,)2)1‘(3’}
Set
oM (”I _ 2 2”/4 -2 _d_, 2 _
37(7.,,—-2/<X (t+(3)2 )+( 5,) ) =o
m“[”’( B’ ”)]/["L(EV)2 - %

since a/b>‘l and 2¥< 1, therefore,
M .
S >o
1

Al YV
K(h) ' (E‘—f‘ l 2

-V)/(l + — - Z+) assumes a minimum value of M.
Ty B
It can be observed that M is a quadratic form in K"", therefore,
the absolute maximum value of M must be at one of the two termini
" ’
of the closed interval of Ky'. First, substituting l(":.sb/q1u3=/%

into M, M (l - a /b ) o+ A'Z/B' , then, substituting Kx'”c’

1l

into M, M = A'Z/B'z- since 1 - a*/pizo, then the maximum value
(n . . .
of M must occur at /(x{— . _This is a cylindrical shell which

represents a spec1al case of translational shells., There is
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another special case when the shell has a sguare base plan and

its M assumes a minimum value, i.e. a = b, so B' = 1

‘ ’
K‘h’-’-‘- -%" ("é'l‘l’) _ _B_'

g% °
K")-— A"'K;M _ ﬁ_'
J - B ~— z

This case represents a spherical shell.

For translational shells with all edges fixed, the above
derivations show that the spherical shell assumes a minimum
membranal strain energy, while the cylindrical shell assumes a
maximum merbranal strain energy. The ordinary paraboloidal
translational shell assumes a membranal strain energy which lies
in between the strain energies of the spherical and cylindrical
shells. Therefore, the displacement series for the spherical
shell with a square base plan possesses the fastest rate of
convergence, while for the cyliﬁdrical.éhell the convergence is
the slowest. 1In order to show how fast the displacement series
will actually conQerge, a few speciai cases have been considered.
Vertical displacements at the apex of a series of shells have
been calculated and tabulated in Table (III-1l). The results

agree with the above theory.

Table (IXII-1) shows that the difference between U1 and
u,, is always less than 3%, while the difference between U,
and u is less than 1% for all shells listed. So it should be

z3
reasonable to say that the summation of eight terms of displacement

series will give quite satisfactory values, and twelve terms of

displacement series will give still better values of u, ., Fii)



TABLE III-1

#x ()
X

= 0.004

(n)
R = 0.00633
Y

a b u M SUMMATIONS OF DISPLACEMENT SERIES RATE OF CONVERGENCE IN PERCENT _
(£t) | (£t) u_i,8 terms uzz,lz terms uz3,l6 terms [(uzz—uZI)/ﬁzl]% [(uZB—uz2)/u22E
40 40 MAX. .2463 x 1073 .2509 x 107°|.2515 x 107° 1.95% 0.24%
40 40 MIN. 4064 x 1073 .4121 x 1073.4128 x 107° 1.40% 0.17%
40 20 10| Max. .8668 x 107 °| .8749 x 1073|.8759 x 107> 0.93% 0.11%
40 40 10| MIN. 1470 x 1072 .1416 x 107%|.1417 x 1072 0.64% 0.07%
60 60 5 | MIN. 9740 x 1073 .9949 x 1073 {.1001 x 1072 2.15% 0.61%
60 60 | 10| MIN. | .3474 x 1072|.3510 x 1072 |.3515 x 10 2 1.03% 0.14%
60 40 MAX. 2575 x 107°] .2646 % 107°].2657 x 107> 2.76% 0.423
60 40 MIN. 1214 x 107%] L1229 x 1072 |.1231 x 1072 1.24% 0.16%
60 40 10| MAX. .9319 x 1073] .9456 x 107> {.9478 x 10> 1.47% 0.233
60 - 40 10| MIN. 4185 x 107%] .4212 x 1072 |.4214 x 1072 0.65% 0.053
70 35 MAX . 1963 x 1073] 12017 x 1073 [.2029 x 1073 2.75% 0.603
70 35 5 | MIN. 2515 x 10~ 2| .2541 x 1072 [.2542 x 1072 1.04% 0.08%
70 35 10| MAX. 7127 x 1073|7274 x 1072 {.7293 x 107° 2.06% 0.27%
70 35 10| MIN. .8479 x 1072] .8522 x 1072 |.8524 x 1072 0.51% 0.02%

%70 35 10| AvE. 4735 x 1072 .4770 x 1072 4771 x 1072 0.78% 0.02%
100 50 5 | MIN. .5640 x 10°2| .5720 x 1072 |.5723 x 1072 1.428 0.06%
1100 50 10| MIN. 1950 x 107Y .1966 x 1071 |.1966 x 10°% 0.77% ot
REMARKS: 1. u_., u, and ﬁz are the displacement at the apex.
2. All shells have fixed boundaries N
3, S
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and F(;z The convergence of the functions of the stress couples

p&) (o)
xy yX
since they are functions of the second derivatives of u, . Hence

' ' M(v) and M(V) is slower than for the diéplacements,
XX Yy :

a satisfactory solution for the stress couples may be expected

to be procured by employing a much larger number of terms in

the vertical displacement series. The transverse stress

() and F(W)

yn xn are functions of the third derivatives

resultants F
of the vertical displacement series; therefore, the convergence
of these quantities will be even slower than those of the stress
couples.

It is interesting to observe that the rate of convergence

of the vertical displacement series varies at different points

of a shell. For an example, curves of the vertical displacement

I

u, of a translational shell with square base, a 40', b = 40' and
clamped edges is shown in Fig. ( 3 -1). Sincé the shell is
doubly-symmetric, fhe curves are drawn only for a qﬁartef of the
shell, say, 04x%a/2, 05y£b/2. The full line curves represent
the vertical displacement curves by expahding the function u,
up to 24 tefms. The broken line curves represent the same
curves by expanding the same function up to 8 terms, while

the thin solid line curves represent the same curves by
expanding the same function up tol6 terms. It can be clearly
observed that on the center line Qf the shell, the convergence
.of u, is faster at those points within approximately the region
-0.2<y/b<0.2, -0.2<x/a<0.2; than at points outside of this

region. The convergence is slowest at those points approximately

in the region (0.254 x/a< 0.35, 0.25<1y/b<.0.35). Along the
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curves near the edge, say, along curve x/a = 0.4, it seems that
the convergence is a little slower at those points close to the
center or the edge of the shell. Along other curves, the figure
shows that the vertical displacement series u, converges guite

uniformly.

3-2. Thin Shallow Translational Shells
For the thin shallow translational shells, a shell with

the following data;

a=70", b=35", Ky =0.004, K| =0.00633, P =90 Ibf2
- - o '

h=4" E=3%x10°1b/in, p=o0.16

will be analyzed as an example.

(o) (o)

and the

Since the torsional stress couples MXX ' Myy
transverse shear resultants Fig), F;:) are all negligible
quantities compared with M(V), M(¢7, F(w& and F(r), no calculation
Xy yx XX Yy .

is carried out for those quantities.

3-2-1. Shell with All Four Edges Fixed

First, substituting values of a, b, kén), k;n), P, h, E
and Y listed above into expression (II-3-5) then (II~3"8)’
different sets of'Fourier coefficients are obtainea,(see
Table (III-2)). It is obvious that the differences between the
corresponding values in-these two sets are extremely small, say,
rostly less than 3%. This shows numerically that the approximation
by using expression (II-3»8) instead of expression (II-3-5) is

guite reasonable., After substituting these values into

(@) () L) o)
Xy Yy

A ’ at
yX XX
various points of the shell are obtained as shown in Figures (3-2)

expression (1I-3-6), all values of M

(3 - 3), (3 -4) and (3 = 5). Since the shell is symmetric about

the apex, all figures are drawn for one quarter of the shell
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TABLE III-2

FOURIER COEFFICIENTS FOURIER COEFFICIENTS
CALCULATED BY EXP J(‘II..-,B-,-S‘ CALCULATED BY EXP(II-3-8
A00 0.002539 0.002517
A01 0.001727 1 0.001716
Al0 0.001327 0.001319
All 0.0001344 0.0001336
A02 0.00001929 0.00001907
A20 0.0003352 0.0003342
Al2 0.00001922 0.00001905
A21 0.00006294 0.00006198
A22 0.00001160 0.00001150
A03 0.000004572 0.000004508
A30 0.00009778 0.00009378
A13 0.000004970 0.000004918
A3l 0.00002532 0.00002641
A23 0.000003297 0.000003263
A32 0.000005811 0.000006140
A33 0.000001806 0.000001929
A04 0.000001715 0.000001688
A40 0.00003382 0.00003376
Al4 0.000001918 0.000001895
A4l 0.00001225 0.00001216
A24 0.000001352 0.000001336
A42 0.000003434 0.000003381
A34 0.0000008051 0.0000008553
A43 0.000001197 0.000001172
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of its base plan.

For the purpose of evaluating the nature of convergency
of the solution series for the stress resultants and stress
couples, the vertical displacement ﬁz is also expanded into
eight and sixteen terms by using expression (II-3-8). The
corresponding stress resultants and couples are calculated
through expression (II-3-6). The results are plotted in Figures
(3-6), (3-7), ( 3-8), (3-9) and (B3-10). In Fig. ( 3-6)

it is shown that at certain points of the shell, the convergence

(v)

of the stress couple Mxy

is not sufficient by expanding u, into
eight terms. For an example, in the neighbérhood of sections Y/b=0.0,

%/ = 0.15, 0.225, 0.275 or 0.35, the ratio of the value of M}g)

on curve A and curve B is always larger than 2. This means
that the value of Mxy calculated by expanding u, into 16 terms’
is only less than 50% of the value calculated by expanding

u_ into 8 terms. At sections y/b = 0.225 and 0.275, the sign

is even reversed. Nevertheless, according to the same figure,

w0
X

there is little difference between the value of on curve

(o)

B or on curve C. This suggests that Mxy

already possesses quite
a satisfactory convergence when it is calculated by expanding
the deflection series v, into 16 terms. Certainly, if 24 terms

of the series for transverse displacement u, would be used to

(@

4xy ;, @ good approximate result will

calculate the stress coupie

;g), it is shown in Fig. (3-7 ) that the

(G)’ 50

xy
it also requires 16 terms of the vertical displacement series

'be obtained. For M

corresponding variation is approximately the same as M

uzbto achieve a better convergence. Figures ( 3-8 ) and (3-0))
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show that even less than 8 terms of vertical displacement series
u, might be sufficient for calculating the stress resultants

F(v) and F (T)
4 Yy

3-2-2. Shell with One Pair of Edges Fixed and Another Pair

of Edges Simply Supported

In this case, the same shell, as in the last section, .
except that one pair of edges a£ y = % b/2 become simply supported,
is calculated by expanding the vertical displacement series u,
“into 25 terms through expression (Xrr-4-4). All stress resultants
F(W), F(V) and stress couples M(V), M(Oo

YY Xy Y
expressions (II-3~6). The results of F

are calculated through

() o) ) ()
xx " Tyy " Txy T Tyx
and u, are depicted in Figures (.Bf'lg), (3 -14), ( 3 -11),

( 3 -12) and ( 3 —~15)

3-2-3., Shell with All Four Edges Sinply Supported

The same shell is calculated except that now allvits edges
are simply supported. The vertical displacement series u, is
expanded into 25 ferms through expression (II-5-4). Stress
(@) F(Uﬁ and stress couples M(T) and M(oJ are

xx ' Tyy Xy Yx
calculated through expressions (II-3-6) and are graphed as

resultants F

shown in Figures (3-20), ( 3-18), (3=19),( 3~16) and ( 3~17).

3-3. Special Case ~ Thin Shallow Spherlcal Shell

For the thin spherical shell, an example is given with

‘the following data: a = 40', b = 40', k™= 0.02, k™= 0.02,
X y

6

P = 90 1b/ft%, h = 4", E = 3 10° 1b/in?, V= 0.16. F(9), F),

XX YY
1 (@) g (@) z i
M and M were calculated for this shell.

3-3-1. Shell with All Four Edges Fixed

Following the same procedurs employed in the last sections,
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the values of Fourier coefficient are calculated through
expreésions (I1-3-5) and (II-3-8), and are listed iﬁ Table (III-3)
as shown. It can be observed that the differences between these
two séts of values is always less thén 1. So the approximation
by using expression (II-3-8) instead of expression (II-3-5) is
even more suitable here than it was in section (III-1-1). The

next step is to calculate the vertical displacement u, . the
(@)

stress resultants F(r), F(T) and the stress éouples M and
XX Yy Xy

M;z) at various points in the middle surface of the shell.

All results are plotted in Figures (3-1), (. 3~22), ( 3-24),

(:83-21) and ( 3-23). Since the shell is completely symmetric,
() . p(e) (). (&) |

therefore, F and M at corresponding points.
XX Yy Xy yx .
This is to say that the absolute values of Mig) and Fig) along

some section y = constant are exactly the same as those of

Még) and F;;) along the corresponding section x = constant.

Therefore, Figures of Még) and Fég) are omitted.

From Figure ('83-23), it is noticed that even if 16 terms

(o)

- could still
Xy

ofuZ would have been used, the convergency of M
not have been satisfactory in certain intervals, such as

x/a = 0.225 to x/a = 0.275, of the shell. Fortunately, in this

interval the absolute value of Miy) is much smaller than those

at the edge or at the apex, and its evaluation is not too

important for actual design. If 24 terms in the series of u

()
Xy

Z

would have been used, the series for stress couples M could

have converged more satisfactorily at every point in the middle

surface of the shell.

(o)

<x is as good as it is in the last

The convergence of F
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section. TFigure ( 8- 24) shows that eight terms of u, will give

(o)

< at every point in the middle

a satisfactory value of F
surface of the shell.

3-3-2. Shell with One Pair of Edges Fixed and the Other

Pair of Ecdges Simply Supported

Similar to section (3-1-2), the edges of this shell
at x = *a/2 are fixed, while at y = *b/2 they are simply

supported, otherwise the shell is the same as in section (3-3-1).
(0)' M(0') F(W), F(Gﬁ
Xy X XX vy
expressions (II-4-4) and (II-3-6), and are expressed in

Values of M

' and u, are obtained through

Figures ( 3-25), ( 3-26), ( 3~27), ( 3~28) and ( 3-29).

3-3-3. Shell with All Four Edges Simply Supported

In this case, the calculation procedure is the same as
in section (3-2-3). The shell has the configurations as in

section (3-3-1). Expressions (II-5-4) and (II-3-6) are used

(w)’ F(u-)
Xy %X

(3-30), (3-31), (3~32),

and all results of M and u, are plotted in Figures

3-4. Influence of Strains

In this section, a study of the influence of membranal
displacements u, and uy,on the transverse displacementvuz for
cases of fixed boundaries and simply supported boundaries is
effected. Equation (II-1-2) is used to calculate the total
strain energy of the shell. Finally, instead of the single
expression (II-3-8) or (II-5-4), obtained by neglecting all
effects of u, and uy, a set of three simultaneous eguations
( 4-8a), ( 4-8b), ( 4-8c) or ( 4-15a), ( 4-15b), ( 4-15c) are

obtained, (see Appendix D). These three simultaneous eguations
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FOURIER COEFFICIENTS
CALCULATED BY EXxP.(II-3-5

)

FOURIER COEFFICIENTS
CALCULATED BY EXP.(II-3-8

AQ0
AQl

210

All
A02
A20
Al2
A21
A22
203
A30
Al3
A3l
- A23
A32
A33
204
240
Ald
a4l
A24
A42
A34
A43

0.0001083
0.00007473
0.00007473
0.00004381
0.00002067
0.00002067
0.00001437
0.00001437
0.000006238
0.000005515
0.000005515
0.000004603
0.000004603
0.000002464
0.000002464,
0.000001149
0.000001983
0.000001983
0.000001838
0.000001838
0.000001126
0.000001126
0.0000005963
0.0000005963.

0.0001081

-0.00007485

0.00007485
0.00004364
0.00002071
0.00002071
0.00001434
0.00001434
0.000006213
0.000005523
0.000005523
0.000004607

0.000004607
0.000002460

0.000002460
0.000001146
0.000001985
0.000001985
0.000001839
0.000001839
0.000001126
0.000001126
0.0000005944
0.0000005944
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are mﬁch more complicated than the_expression (11-3-8) or
(II-5-4). For the purpose of giving a numerical example to

- show the influence of the membranal displacements on the
transverse dispalcement, stress couples and stress resultants,
a simple case of a spherical translational shell in which
a=b= 40", kén)= k;n)= 0.02, P = 90 1b/ft? is calculated.
Owing to the condition.of complete symmetry, u, equals uy,»

so the three simultaneous equations reduce to twb as shown

in Appendix D; Using these reduced two simultaneous equations
to solve for the Fourier coefficients Amn of the transverse
displacement u, to 8 terms for the case of fixed boundafies,
and 25 terms for the case of simply supported boundaries, it

is found that the difference between these Fourier coefficients
to those obtained by neglecting u, and uy are small for the |
case of fixed boundaries, but large for the case of simply
supported boundaries. Therefore, any solution of stress
couples or stress resultants obtained by the approximate method
for a translational shell with simply supported boundaries should
be used very carefully for design (see next section and .
conclusion). The difference between stress couples and stress
resultants obtained by these new Fourier coefficients and
those obtained before are also small for the case of fixed
boundaries, séy, always iess than 10%, and mostly less than 5%.
This can be observed in Fig. ( B -33) and Fig. ( 3 -34).
Hence, though values of stress couples and stress resultants
obtained by neglecting u, and uy are not exact solutions,

they still can be reasonably used as guides for practical
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design purposes.

3-5. Comparison of the Solution of This Method with
SOARE's Method

As it is mentioned in the introduction, up to the present
time,'the rigorous solution of an elliptic paraboloidal shell
of translation with fixed béundaries still has not been
established. Therefore, a compérison of solutions of a
spherical translational shell with simply supported boundaries
is given. _ _

In Fig. ( 3 -35) and.Fig. (.3 -36) it can be clearly
observed that the difference between solutions obtained'ﬁ}
the approximate method and the method of SOARE's is qulte
large. espec1dlly for the stress couple N(g) near the
boundaries. The difference is more than 35% in terms of
SOARE's solution. Therefore, a complete solution obtained
by using expressiops ( 4-16a), ( 4-=16b) in Appendix D is
calculated. At first, Fourie£ coefficients obtained by
expreséion (ITI-5-4) are used as basic values. Following
a successive appfoximation procedure, these basic values are
substituted into ( 4-16b) to find out the Fourier coefficients
B+ then substituting coefficients B into ( 4-16a),
set of revised Fourier coefficients A . is obtained.

A.setrofjAmn‘Va1Ues;obtained-from two cycles of calculation

are compared to SOARE's solution in Table (III-4).
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Author's Solution I

e em e Soare's Solution
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Fig. 3~-36 COMPARISON OF DISTRIBUTION OF STRESS RESULTANT FXX

OF SPHERICAL TRANSLATIONAL SHELL WITH SIMPLY SUPPORTED

BOUKNDARIES BETWEEN SOARE'S SOLUTION AND AUTHOR'S
SOLUTICN. (a = 40", b = 40")
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FOURIER Byg'j:iggg BY SOARE'S METHOD
COEFFICIENTS o
oo 0.002836 0.002524
Al ~0.000724 ~0.000774
Doy 0.000298 0.000314
Bag ~0.000111 ~0.000111
By 0.000040 0.000040
Ry, ~0.000724 ~0.000774
Ay, 0.000239 0.000218
A, ~0.000090 ~0.000083
Aq 0.000032 0.000030
By, ~0.000012 ~0.000011
Ay, 0.000298 0.000314
AL, ~0.000090 ~0.000083
Ay, 0.000035 0.000031
Ay, ~0.000013 ~0.000012
2y, 0.000005 0.000005
Bos ~0.000111 ~0.000111
Ay, 0.000032 0.000030
Ays ~0.000073 ~0.000012
Bys 0.000006 0.000005
Dys ~0.000003 ~0.000002
By 0.000040 0.000040
By ~0.000012 ~0.000011
2y, 0.000005 0.000005
Py ~0.000003 ~0.000002
By, 0.000001 0.000001




CHAPTER 4

CONCLUSIONS

From the numerical results of examples in the last
chaptér, it is observed that for shells with fixed boundaries
stress couples are always larger at the apex as well as along
the boundaries than at any other point. This kind of
distribution is intuitively acceptable and is similar to the
experimentai results of spherical shells and cylinderical
shells which appear as special cases in this thesis. The»
absolute vaiue of stress couples at the apex seemé to be
larger than actual values. This is due to the‘difference
between the assumed transverse displacement function and the
real distribution of the transverse displacement. Nevertheless,
as long as the boundaryvvalue problem is concerned, this
method gives good approximate values of stress couples along
the boundaries and is satisfactory'for the design purpose.
The distribution of stress resultants is not sufficiently

accurate near the boundaries, since in the calculation of

the stress resultants, membranal strains %%{and %%fwhich have

a major effect on stress resultants near the boundaries'ﬁere
neglected in expression (II-3-6). _Therefore, instead of
using the values of stress resultants obtained by this
approximate method, it is better to consider them rather
as indicative for the design.

For the shells of simply supported boundaries, the effect
of surface displacements u, and uy on the transverse displacement
ﬁz is large as discussed in section (3-4). Therefore, unless

u and uy are included in every expression, the result of
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stress couples and stress resultants obtained by this method
should be used for design with great care.

The results for shells with mixed boundaries should lie
»somewhere between these results..The author suggests to
include the membranal displacement in all expressions when
the shell is not very shaliow, say E/b near 1/5, but to
exclude the membranal displacement .in all expressions when

the shell is very shallow, i.e. for shells with H/b = 1/10.
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APPENDIX A
DERIVATION OF STRAIN ENERGY EXPRESSION FOR SHALLOW. SHELLS

LECTURE NOTES BY Dr. JOHN SCHROEDER

A directional tensor quantity of the second order is

defined as a homogeneous bilinear vector-form

i\- = A"é‘é| '\' A‘zé‘éz+ A'}é‘éa"'
TALEE t Az ErBot A&, 8+
= Ay ece;

where él’ 52, 53 are unit base vectors along three orthogonal
curvilinear directions, and repeated indices imply summation.’
Following definitions, the general stress and strain

tensors in elasticity are defined by,

-
—

g = G’uE(el + 0115|EZ+ 013 EVEB +

g =<9 j €50 = 6.0
and
€ = e,,e,e, + 6(2 “-’:ez + 613 -: ‘.5 +

t €661 €)EE ¢ €,3 85+
+ €;/C36, t €3,836, +€336,8;

— 6‘j e‘-éj - e—‘: (6‘:3' é-J-) .':e'

AR
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Furthermore, the double-dot product of E amiZis defined in
its trinomial form

o€ = €, 0, : €5€5 = €, €5 5_}'@5 = grs ﬁr-é; = hr-'é‘r
Its component form is | ‘
&:f‘é = 0y €oom cec- eﬂ)(ea ‘) = 0} €
Hence , : :
Su = fvé:SZ dv. (1)
in which v denotes the volume of an elastic body; ‘

From the traditional definition, the streSSvstrainb
relation for isotropic Hookean materials, which excludes Ehe
thermal effects, is '

F=2UME+ACET)T . (2)
where 4{, X\ are Cauchy-Lamé's First and Second Elastic Constants,
€. ‘7 = €, t €z + €33 denotés the First Strain Invariant, ‘
and ; = ¢,e, designates the Idemfactor, Unitary Tensor, or

h N

Identity Tensor. Substituting (2) into (1) yields

6U“’=f (2UE+n(E:T)T): Sedv

= (2M&: §€+ N €:1)7:8€)dv
=<va (MEE+ 5 (E: 1)) dv

The strain energy is thus

- = (3)
u®= f(,ue e+>f(e:1)2)dv

For thin shells, the thickness always represents a small
quantity in comparison with its other two dimensions, therefore,
it is usually possible to treat thin shell theory as an approximate
bidimensional c¢ontinuum problem., In this approkimation, the

Kirchhoff-Aron Hypothesis is enforced and €5, €31, €23,
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and €3, are assumed to be identically zero. But, for the
purpose of simplifying the final expression of strain energy

" the normél strain component éaais retained by imposing the
condition of plane stress 033 =Q , and €33 is thus expressed
as a function of €,, and €,; in virtue of the stress-strain
relation. Even though this procedure is not quite consistent,
yet since €33 is normally a much smaller strain than e,; and

€2 , the final results are not appreciabkly affected by this

approximation. Consequently, the strain tensor reduces to its-

simplified form

€= ellelel +612 eleZ +€2,62 el + '6225252 + 633 E;'éa g (4)
Substituting (4) into (3), and observing the fact that strain
tensor is symmetric, expression (3) becomes

(S) v 2 ’
U ff[ff 6,,+€22+E 3 fzelz T72p (€t €1+ €;5) Jdox5 ) dA

Since A= Quj{/(.—zu) now, assuming 0‘3_3=O

\g Qf“” € 2M(1-~D) _
335 % ( “+62")+ 1-2p €337©

€33 = - "'—' 5 (€, +€,,) ‘ (6)
if €,,(R) , €,2(H) , é—,z(f’:) denote the strain components of
an arbitrary point iﬁ the middle surface, then the strain in
the surfaces parallel to the middle surface are given in terms
of the geometric properties of the middle surface
€, (F)= €, (F)t+as SKY
€52 (F) = €,,(R)+X35K}” | (7
€5 (F)= €5 (F)+ 05 SK?

(5)
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ELEMENT oF SHELL
From Fig(2), d$,= A,dx,(1+ ;K

dS, = A, do, (1+ % K)"™)

and

ds,ds, = dA

ELEMENT

It was mentioned in the earlier part

of this thesis, that K‘:"(F.,)=K(,")

and K;_”)(Fo): Ky’ are very small

P (n)
qgquantities, thus the terms & K,

and X; Kg" in ds, and dszwhen‘ compared FIG. 2

1
with unity, can be neglected. This simplification represents
the so-called LOVE First Approximation, which reduces_dél and
ds2 to the simple form

ds,zAd«, , d5,=A,dx,
Substituting (6), (7) and dsl,ids2 into (5) and integrating
it over Xzbetween limits -h/2 and h/2 yields the approximate

expression of total strain energy in the shell

(s) 2 _ 2 _ _ _ i
U™ = e f{{leicRr + €22+ 20e,, (R €,p(T)+ 20-2) €3] 725 +
A . ,

" Y] H -—-——————-h3
RS 4 208K KRS + 1-0XK)?] 7265 | 4A (®)



APPENDIX B
DETERMINATION OF FOURIER COEFFICIENTS FOR 1\.IORMAL DISPLACEMENT

FUNCTION - FOR SHELLS WITH FIXED EDGES
Substituting equations II-3-2 into II-2-3 yields

2(2 YT X

,, \m*oh o

(1+ s -2-‘32{—)'-’—"1)] (+ LK A2+ LK) Y2 ) dxdy +

Df J- © 2czm+\)n)20,5Z(ZW,.-—’)""U%@;ZQ.{"_L’!J’Z)AM“
_.,_{m-.Ono A b

O ,2¢2n+) T 2(2“*")7”' 2(2m+1)TF X 2
-3 5 (2EREUTY (s (1 +Cos A }
m:on:a( b ) b a )

(l+1({<(m) X2+ 2(K(m) >,2) dxdy

. f " “
Assuming D ((K‘ ’>2+<f<‘,’)2+zu KK = ¢

(5) ' ‘

?_m‘;’ 2/ f (Z3. m"mcos"”“”’"")(wcsﬂl—"?ﬂﬂ Adxdy+

(0} 2 2 "‘ 2(2 2
K ))'1[‘)2 [2 s Am(wcos.__!_"_g)_’ﬂ)(wcosg—-”:‘lbﬂ)-ﬂ)] Y axdy+

m=on=0

D[ f 2(2mﬂm 2 22m+1)TX 2(2n+1)
m:o “_o ) cos (1t cos —————wb )A,..,

— 2(20+1) 1T Iy
ZZ ( ( nbn )cos zczml;vm (14Cos 2(2m:\')7TX)A

h=0 n20

m,,}zdxdy +

L -2
(3
4 I—“[b {Z > (w) Cosw(,fc‘” 2(2n+l)7ry
z "7 lMoh=a )Ahm

- ¥ 2(1’11‘!)7! Z(ZHH)I"Y
M'ov\:o( )COS 'b"_—'(f'f'CQSW)A }szxd)/"'
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APPENDIX C

DERIVATION OF STRESS RESULTANTS AND STRESS COUPLES

A. General Equilibrium Equations of Shallow Shells

From Fig. (1), it gives
Z_F'(V):. ,
AF‘lﬂ Ap dXgy + A.F—z(o_) A a4, +—§ A:A2 d"‘ld"(z =0
Assuming that the changes of ﬁg”and ngare linear and

neglecting terms of higher infinitesimal order, then

IBF” QFz
+ PA,Azdo(,do(z =0 il "R
or _ ' ' = "
1 QFY” 4+ L AFM +P=o0 Ead Fa(t)*AF(V)
Al o4, f\z &0(2 o, (1)

§§G+Aﬁf°

F(o+aE©®) -
F‘(v)f el M‘(G)H-\M‘m)

Expanding expression (1) yields

Fig, 1
QFns OF - JFY @ €, , ) 3, @€
A!( 3, ©'F v, St 5] e3)+ ,CF ""1”32 7,7 Fi3 ms)+
+ QFD@ SRS MFG - 088 , pw 38, pdEs
Az(axze ira ELS ¥ au,e5)*'Az(F 7. T F22 3z, 1 23‘M9)+

if OQ,\OQ_,“b represent rectangular co-ordinates x,y,z, the
expre551on (2) reduces to

SRz OFD 5 4 IF3 FR o OF9 = L AR5 <
Iyt —ﬁc )+(__.z-ex Y &+ --72:5 es)fPE’x'f'g,e +H€=0

“ox 3X oY

This yields,

F(O‘) (w4
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f.(r) (o-)

(3-2)
?__zl+ Py = : . » ,

aF%’ OFLY _ .
ax+”a‘§'"+P3‘° (3-3)

Again Fig. (1) gives

> M=o
AM,(5) Ay doty + AN A ety + (A dK,E,+ ﬁa_zﬁ’i@éz W+ AF ) A, dwy+

T(Azdelz€2+ é—l-;lf'ﬁlé",)X(-F—yf‘” +AFS) A dR - &-_%'ﬁ&é'zx Fio A, det ~

Ardety =
2

—

EXFD A dot, =0

Assuming that the variations are all linear, then

AM(W 3M|
S S Ay Az di, ety + o 2T

- FAdx X A, de; €, =0

A Ay d, 4o, — F,(V)AZ dolax A, du, é—t""

or say,

L 2N, 1 aMi™ o ‘

—_— g e)( (o) = = . 4

A, do<z+A‘ '+ F +e X F; o (4)

Expanding expression (4) yields

L BF“” aMﬁ’ a My’ w)éa () )e, W)de

A( a‘,(’ €+ d°( 2 """‘}e +M —-a—‘>-<--“l"/\4,Z d°(+M )’1"

(ﬂ') (o) (o)

+__ 2 g dMgz2 )My @ €, (wge t@ae
(ao(z Tw. B2t o Gt ML 5D HMaT S0 4 My S )

+ (,:w) F,;”C;_)-i-(F(‘T) F“”eg)—-o | (5)

Since thickness of a shell is of much smaller order than the

. . . . (
dimensions of its middle surface, the terms N4S),P4:? can be

reasonably neglected. So expression (5) reduces to

LM _ M@
— TR oM, (o) a () A€
An( 2 17 2%, €t My a\x + M2 aouz *
\ (0‘)~ (U’) e
.+E;(6Mue_faM vaéen Lwd 1)+

oKy ! )N; P Mzz PP
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% +0xy

. ' M.
o +0yy Ay Tyx A +M)(X bt
+
Y EDE - FOE A (R -F) e, = L I,
. € * +Myy L 7 _ _I_/z
: M
For rectangular co-ordinates +Myx ///',/
2 M(o\) 3 M (0) _ a to-) 3 (cr) LV Ve

v

- - G, 2
F[O) _ F;;')ey + (F‘O') Fy()(:'))e3 -0 Fig

The scalar components of the moment equation of equilibrium

are .
3:4xxx + 2;4;')( + F;;):.o (.7—1)
_iﬁ§¥.+ é£%§7 FE = 0 e
F(;-) F;g-) -0 (7-3)

Equation (3) together with equation (7) are called the
equilibrium equatiohs of a shallow shell.

B. Equilibrium Equations of Thin Shallow Translational

Shells Subjected to Uniform Transverse Load

For this case, Px = Py = 0, the equations (3), (7)

reduce down to the following expressions:

OFix 4 OF% - (8-1)
% ay - .
, L
if* aw=o ' (8-2)
X
) )
2, 2P L e 0 (8-3)
dX 2y 3
bM(‘r},)* aM(§) F(O‘) -0 o (8-4)
2Y ox 73 |
oM “’)+ IMYY £, (8-5)
ox ey



C. Stress Resultants and Stress Couples

From Fig. (2), it gives

T
\-——‘
Sty

FS =) T d3
"2
(o) 2
ol [ 2
Fyy "-f—.h, Tyy 4%
2
h
Miy= % 03 43
"2
(o) 3
_(=z
Myx= [} =05y d3
2
(o) b
M =2 - uy 343
2
3
(o)
My\/ =) o'yx}d%'
2 .
F;E;) = _2!“. Q"X's A}
2
o) L
2
F)’é :S-h 0y3 4%
2

From Appendix A, equation 2, it gives

h

h QA - = L = = = =
F‘,‘Tf‘—‘-f_; G;(xd3=jz €,6x: &d;:j: €,6c. (ZME +X(€:1)1)d3
> 2 "2

h
2.

h
- | Z V
- J:_: 2/“ exx + -y (.éxx"' éyy"’é;s) O‘é-

It
k'ﬁ
M N n)

2 M (€xx + ','?L Exx * ,'%Jéyy}d}

(9-1)
(9-2)

(9-3)
(9-4)

(9-5)

(9-6)

(9-7)

(9-8)
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|

= -Z?/:(exx‘*”éyy)dé—
2.
h -
= J_;(e,‘g‘,? ~35K ey w
2
=2'“ (K + K U}=D,(K‘;?)+VK(;))”§ (10-1)
" { : :
F;;)"D(K()')"'”Kxh)) Us | (10-2)

)

v—j @x%d}' j (r' %SKL,:‘)_‘_Ué;YO “pégkth))édé‘
. a/* b o ”5 y sy Sz, ) Su;
T (5% oxz Y ayz) ~D( > ';‘)Tz) (10-3)

m.. -1z - o'u u

My, f_: G754 = D( 54 +» 37373— (10-4)
_h_ h. - : - - = =
M“”=~j;z O“Xy%dﬁ“-j_; Exey . (2ME+AN(E-T1)1)3d3
h
- 2
= I-% 2/{,(6)(75&}”2/*] (ro 5—5/(‘”)50{5-
= ‘3)_-
24E Sk D - 7;’;?3%/ (10-5)
M(o') 132 = - (1= a 5 . _
f x343 =-D - ) Syax (10-6)

Expression (8-4) jields,

(® _ aM)((o-) aM(c} 32U3 azué azus azu5
Fxs ax Sy T ( Sx> v 3yz * 2y2 Y Y= )
3 _
= - u
D (vPus) (10-7)

and expression (8-5) yields,
RO 2 Myx _ aMs ( s Mz, Bz _ o tUs

=75y >X 371 Xz x> ax=

= -Df;,_(vzué) | | (10-8)
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Since the POISSON'S ratio Y of usual construction materials
is always a small quantity compared to unity, a further

approximation of stress couples is possible.

2
M) = D a_;_;_i - (10-4")
>y e
M’(&') =D aax;)’ (10-5")
N I L ‘ (10-6")
MW =-D Y oX ,



APPENDIX D
CALCULATIONS OF FOURIER COEFFICIENTS FOR THE

MEMBRANAL DISPLACEMENT FUNCTIONS

The expressions (II-1-2), according to rectangular
Cartesian co-ordinates, gives

é(r°) = r)Llim_'_ K(h) )

X Hy
e = 2% K""u‘”
Y a)’ 0 .
)
) _ 3 Uy " (4-1)
é.K)( - axz.-. ‘
Sk = 245
oy* (R th)
(Fo) — 3 Uy, Uy’
€5 [ >t 5y ]
Sl 2 g
‘ aXdy

Substituting ( 4-1),into equation (II-1-1), gives

U= ” { (au, u‘“jz+ 2 a:«iﬁ’%%;ﬁ;
(R
4+ 5w [(5F 27} 24 (2) 2 2 5 %‘Lf’ |
t ()2 U+ (5 (U‘"’) +20 '<i"’/<§"'( ug™)*]
. (2 au,‘(" m ( K;")"‘ DK;")) + 2 (r. (r,) (K)l/")'fDK,((m
f ( utro) azu ) dx A)l (4-2)
| T 2o A ps 2y2

(I) Shells with fixed boundaries,
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= 0 0 DX 202nH)TY
Ldp)= }:'2} me,¢m«3£33§51—~ (2;—CA4-————T;———)

m=0 n=o
(4-3)
U =3 3 (., A 20ne0TY ( _ (o 2(2MHITX )
7 - mzo n=o mn b k
_ 2 < (2m+!) TX 2(2n+1) X
YT T T A (1 Coe ZEDTZEZ ) (14 008 _,.—_52~)
5 mso n=o
then
au§f°’ > S 202m+DT 2(2m+1)7TX 2(2n+D Y
3% —— S 2 — (oS
T, B o us B ) 7
__—-au(fa = g 22nNT v 509 X . STy
=Z —— A m+i 2 (zh+! ‘
R e S >
aU(-o) o oo YT (2 ’)ﬂ\/ 2(2m+l)7fx (4-4)
2n+\ 2(2n+ _
O =5 S (o 22025 o5 s (2- cos 22MILL: )
a)’ m=0 hze b
ug) 2 2 + \ \ o(2m)TX ,
é_._;(- D3 Cwm Z___(Zl"_a_\.'_)_ﬂw 2(2n+b\)772 i 202 2)
mz=po N= - |

The expressions ( 4-3) and ( 4-4) satisfy the given boundary

conditions
)
x=0 Uil=o,  JeXxo
- )
F re)
-y (o) QUi i o Uy
A== Ux =9 5% Y0, WFo, 5 #OL
(?o) (4_5)
- . (ro é_g] 0
- (.Fo) (r‘,)
y=t b noe oUy m) o Uy
2; y 0 3y RO, xe % O

Substituting (A4-3), (A4-4) and “g") into (A4-2) gives,



The external work W is derived as follows,

From Fig. (1) ‘

Since @y is very small —
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U0 5 ((FE o2t 1 222 b, 0, (202
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.(gzn;-|)ﬂ)z 8:&:) £ % %’_ an Cmn(;(lm;l)TT)(;)(Lr%l_)lL)% 4
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0 h=o
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+2 (Kt ”)[ZZ BrnAwn =& "4

M=o nTo
¢ o ¢ ~
2(2m+\)7T (m
432 2 B Ams BT ab ] + 2K +UK)
r%s
SS 2(2M+)T 3ab , 3 g% ()T
nEDT 34
[v%‘-u%:'o thA\Mn b 2 + Yz:'o'5=0h=° Y‘V)ASY\ a ]'i'
: r%s p 0 o
" ) b2 2 2 &
QAP 2ok 2 (B R At 2 T 2 Ane Arns ¢
: ' ‘ r&s
oo oo O o0 oo‘ o oo
+
Jr‘(zl:ozo%:oz Arh AT_S K E’z;%"%;o AY? Aj%]}
rs r&s %3

20 ® 4

2 ApneA,, 2(2M+\) +ZZZ ApnPsn =5 ﬁ(znﬂ)ﬂr}
S= r=oSsonTd b

r¥ . rxs (4-6)

a
din Oy = Tam Oy —-&._ K(M% - & . /
FiGg. 1. Section of a shell
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By the same argument, 4 By = 'K(;)Y

—-—

é,:é,'gxéx Ll E:’eyey+él'§353
= (0504 Ex+ 0 Ey+ K'n ey
= é.x"K;:)“Eé

)

€,= & ~Ky Y &

€,.= €, e,(e + 8, e,e,+en 33,
()

| '@:_pe%pp “"xe PK;”ye P&,

-ff( PRUYAE +PKY YE ~PEL) -
(ulel+u2§2 "M,,gn)dXd)’

:{\‘ ( PKx XU/"PKWy”z"‘Pun) dXd)/

Since the shell is very shallow, Uyr Uy u, are approximated

) () (o)

o o) 21w ’
, - , P be 00 @ pPob ky w© o
W= IR B T2 Comaminyr e Amn Fab e

therefore,

QU _ oW

mn &Amn y.‘elds

%D’[( K2 + (K +z»/<,‘<"’/<;“’] {380t Z_ 2A,n +z s 4 4 Apg ]t

0"!

"4’” 1,4:».1 g#n
+4Dc\TY {Amn[3(2m+!)4+ b4 | (2h+l)4 (2M+')2(2"+UQJ+

o0
+ Y§‘=:° Amr2(2m+‘)4+ ‘?‘;‘c Arn % (74”4‘\)4 } +
Fih , ram



4 D,( K‘;)flJij (an(szl)ﬂ’ 3 + zo B (2w;+l2‘rr )+

o
rén
HOP I (e T § 1 &, Cr R =P
aU(S) BVJ .
aan 3an ’ v (4-8a)

therefore,

W n )
{Z(K(}*DK( ))[Amn (2m:\l)7’f%+ Z AmrQ(QM-l‘ )TT]

r;n
[lBBMn(ZMH) +Z 16 By (2mP) * (15D B (20 41)° 6\;" +
)
+(\+D)Cmn(2h“‘|’”(2”+')—‘5]} = ;ﬁ%ﬁy (4_8b)
dUS/3¢C, = OW/D Cpun
therefore,
o0
h " (2nH)) 7]
{'Z(K()_tuK)l())A[Amn(ZV\Z\)TT g_ +Y§;~°Amrz 2 ]+
. rEn ‘
2 p*
+ “ - [18 Conn (2040 % Z 16 C,.,,(zn+l) 24 Q=) Cpun (2m41Y" 25
: r=\=m
T U=P) B, (2 ) (204D 5 ]} (znmﬂ (4-8c)

: ) F) gl - L) )
For shells with sguare base plan, LJ; ._uy , a b/ K _k>
( 4-8b) and ( 4-8c) become identical. The above expressions

( 4-8a), ( 4-8b) and ( 4-8c) reduce to
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SV 49 {380 + &, 2A0e + £, 2An+ 5E £ ALY+
r&n Favm yxﬁiih P

= 4'9" {A,,,,, [3G2m+1) +3(2VI'H)4+2(2mi~l)2(2n+l)2] +

+ z Am,- 2(2m+|)4+z_ A 2Gn+1 )t +

r‘-t:h Fem
w3 | <
D] e K ( 2 (B, ., ‘——wz““;"”w«s,,,,,—-—w‘z"’;{’“)atrgo B,y 22T
r&n
2(2HH)'71
't‘,z_; Bor ]} P . (4-9a)
r¥m ’ : '

%{Z“*W K:)(Amn (ZmtON 3 + §’_ A e 2(2w;\+|)1\'J +

A
¥ 2 (13 B 2m4 074 Z 16 Binr (2m41)3 (1-0)B,,,, (2n+1)%
rxh
(%
+(l+1))5nm(2h’)+l)[2n+l))} = jlff;%"; o (4-9b)

(II) Shells with simply supported boundaries

Let
oo 00
() _ v (2mE)TTX (2n+V)TTY
Uy = 2,2, Bian Aiw N (4-10)
my_2 2 C(2MEDTX 0 (2n0) T, -
Uy %ogr.o C Ow,_._._._‘o\ Aon B
au‘ﬁ” (2zm+) )
.___‘j_’\________ (¥ T
bx_ Ygov\..oblmn m*—-—-———*—— ~_B_~(L"+!)WY W
dUx” e
. (2 )X (znﬂ)ﬁ (zn+D)TY 4-11
2. v?—:o%oBm“M X (- e oy 5 (4
é_lg&)_. 2 (2n+O7T (errJTrX (2nt)DIY
= Cos L2
oYy %o%ocm b 0 a b y
au‘f"‘ ol (2zm+D)TT C2mb) TR M‘w
3X i oz, Cmn g P b
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- (]
uér.)___g % A C,OS sz-l)z[ Cos(znﬂb)'n'y
Expressions ( 4-10), ( 4-11) satlsfy the following boundary

" conditions, i.e.

") u
A=0 U, =0, aa,;‘ Xo0
Qa () () (R
A=tS U 2ha0, %o (4-12)
- (R _ auz‘"”
‘9' O, uy -"ol b7 ?O
R) )
—+b %) Uy 2 Uy
4 Tz, u} X0, 2y =0, ox ¥
()

Substltutlng ( 4- 10), ( 4-11) and IA} lnto ( 4-2), it glves,
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1250%’ CrpnBran (2D (20 11) ]
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The external work W is

)

w=[? f ( PK‘"’%uﬁ{'JrPK, y ujv '+ PugY )dxd)' (4-14)
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Therefore,

..Z.{Cmn[(.(}_l“_g')lr.)zl +(1- u)((2m+|)n) ]+
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For shells with square bas’e plan, uﬁ{" = u;f", "a = b,

po

(h) .
K%' =Ky’ ( 4-15a), ( 4-15b) and ( 4-15c) reduce to,
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