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CHAPTER I

INTRODUCTION

Recent developments in nuclear spectroscopy have flourished to
& high degree of sophistication in data acquisition equipment and tech=
niques, _Multi-channel analyzers with up to 16,000 channels are
becoming increasingly common. As a consequence,of the sheer bulk of data
generated the experimenter must perforce have a less intimate contact
with raw results and take recourse to automatic data processing. Fortun-
ately this approach is made possible by the increasing availability of
high speed and large memory capacity computers. |

The physically meaningful parameters are in general not directly:
available from the raw data. Usually it is necessary to create a family
of mathematical models for the spectrum and then apply a process of
selecting a particular model uhightwill adequately describe the observed
datas The required physical quantities are then éontained within the
perameters of this model. Construction and mathematical methods of §r0~
cessing such models will be the main subject of this thesis.

-The nuclear spectra considered here possess two particular
characteristics which iendér their analysis difficult. Firstly, the
detector response to mono-emergetic radiation\is usually a complicated
function which wmay contain more than one peake Secondly, the number of
counts accumulated in each analyzer channel is subject to statistical

deviations. As a consequence, the observéd spectrum may bear little

1



similarity to the actual distribution of energies emanating from the nu-
clide under study. An example of such response is given in Figure 1 which

shows the 137

Cs y-ray spectrum taken with a NaI(T4) scintillator. This
particular nuclide decays by B~ emission to 1375 wnich subsequently de-
excites by emitting a 662 keV y-ray. The main peak shown in channel 157
is produced by the photo-electpic effect which usually results in deposition
of all incident y-ray energy inside the scintillator. Structure to the
left of this peak is due to partial energy losses. The plateau below
channel 110 is caused by Compton scattering events after which energy-
degraded photons may escape from the detector. Compton-scattered v-rays
from material outside the scintillator produce the small peak at channel k46,
The entire response displays effects of a Gaussisn resolution which is
daused in part by statistical fluctuations of the number of electrons col-
lected in tﬁe photo-multiplier. This effect presents the greatest difficulty
vhen the spectrum contains y-rays with small energy separation. Most-
types of response functions considered in this thesis will take the Gauss-
ian resolution into consideration.

It is possible to derive a general"mathemafical expression for the
| observed spectrum. ILet the deteétor response function to incident radiat-
- ion of energy y be given by R(x,y)s = If we stipulate the condition of

normalization

. 08

f R(x,y)ax=1 , - 1.1
o]

then we can think of R(x,y)dx as the probability that an event of energy

Y in the true spectrum will produce a response in the energy interval x to

A}
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to x + dx. The concept of the "true" spectrum T(y) as used in this context
- perhaps needs some clarification., Imagine am experiment performed with a
perfect detector having the response function R(x,y) = 8(x-y). When accum-
ulated into channels the results represent a histogram with statistical
uncertainties, If we now let the channel width A approach an infinit-
esimal value dy and tal;e the average of a large mamber of identical
experiments (approaching infinity in number), then the histogram approaches
a smooth function given by T(y)dy. In other words, T(y) is proportional
to the probability demsity function t(y) of the sample emitting radiation

having energy y. We can therefore write
T(y) = GNO t(}') 9 E 1.2

where € is the detector efficiency and N o is the average mumber of
emissions radiated over the duration of experiment. Since t(y) must be
normalized to unity, we have

o0 P

f T(y)ay = €N . ' 1.3
o .

As our next step we can consider the effects of response R(x,y)
being other than a delta function. The original function T(y) is modified

to another function M(x) according to the convolution integral

[~-]

M(x) = f R(x,y) T(y)at ‘ 1ol
o .

Note that by virtue of eq.(1l.1) the area under the function is conserved,

i.e.
[~}

jM(X)dx = GN@ ® : . 1.5

o



If we think of x as the pulse height, then the probability demsity function
of pulse heights entering the analyzer is given by M(x)/(eNo). The analyz-

er sorts these pulses into chamnels centered at positions x.,. For the moment

i
we ignore any analyzer nonlinearity effects and assume that everywhere we |
have the same constant difference iy~ % = A. If now the ith channel

bhas a pulse acéeptance profile Pi(x), then the contents of this channel are

on the average given by »

00 -
m, = f ‘M(x) Pi(x)dxo 1.6
(
An ideal channel profile would have the shape

- |
P,(x) = 3 for gxi-x\<%
=0 for [x, =%x[>A. L7
% - =>4

In pz‘actice the profile does not have such shai'p cut-off edges(l)

s how=
ever we can use the form of (1.7) withéut departing too much from reality.
Substituting accérdingly in eqo (1.6) we obtain
xim/z
’ M’(x)dx. o 1.8
xi—-A/ 2

=

B

mi,

Up to now we talked about g@ectationvalues of spectra and ignored

statistical effects, In a particular experiment one observes a statistical
)
i.D
exclusively for the purpose of indicating statistisal quantities, As

| spectrum which we denote by m Throughout this thesis primes will be used

. - i
shown in Appendix I the probability of obtaining a particular value my is

glven by the Poisson frequency fumction



J
lei .
m w=iij
PCmi,mi Jo Heeme T, . 1.9
('mi)!

The same appendix also shows that for large m, expression (1.9) is close=
ly approximated by a Gaussian frequency function, i.e. we have the

Asymptotie expression
(m, )2
N |

2 m
o i 1,10

]
plm, ,m, )~
4ii 2nmi

We cam thus separate the statistical part of the spectrum and write

8
b o~ mi'-a-’ a;. 9 . , 1.11

w;here 8y =my - my s , | 1,12

end the statistical part has the frequency funetion
¢ 2 '

()

Zm B

i e i @ 1. 13

=3

L]
f(s,,m. ) =
v ,ir_-ﬂ-aum

i
Collecting the results of egse (lo4), (1.8) and (1.11) we have the

final mathematical model of the observed spectrum,

X, +A
2 6o
RO dx (%33 )T(y) : 1.1k
miMZ’ Rx,y'l‘ydyea-ai o .
X, =A b
i3

This spectrum can be modified somewhat by addition of pulses which occur within
the electronic resolving time. Such events may be due to chance or they

may occur on account of two nmuclear transitions being in prompt cascade.



Corrections (both experimental and analytical) for these effects have been

(243,445) and a short summary is given in

discussed by various authors
Appendix II. In the main text we shall assume that, if necessary, the
appropriate corrections have beem made and that egq.(l.1ll) represents the
experimental spectrum,

Our problem is to determine T(y) as accurately as possible from
the given set of observed values m;e An exact determination is of course
impossible, mainly due to the statistical uncertainty in s; and the integrat-
ion of data into a finite number of channels.

There appear to be two main avemnues of approach in determining
T(y)e The first approach is based on inversion of the response matrix and
will be treated in Chapter II, 1In this approaéh n@ assunptions about the
particular form of T(y) are necessary; however the condition that T(y) bve
non-negative can be put to effective ﬁse in reducing statistical uncertain~
tiese The second approach‘diseussed in Chapter III requires that T(y) be |
described by a model function in which the pérameters are adjusted to give
a best fit to the data. Usually this approach results in a weighted least
squares calculation.

Chapter II includes a detailed description of matrix inversion
" methods applied to resclution corrections of P-ray spectra taken with organ=
ic scintillators. Linear Fermi-plots are obtained for almost the entire
range of the energy spectrum. In addition this chapter presents a deriv-
ation of an inverse matrix in closed form for a certain class of infinite
8lze response matrices, The class is limited to response functions which
have shapes essentially independent of enérgyo‘

Chapter III includes discussion of two-~dimensional time-correlation



experiments, A method of reducing the large scale problem to a simplified
solution by parts is presented together with the statistical properties of
the parameters thus obtained. A model calculation with y-ray coincidence
spectra is used to illustrate how one may determine y-ray cascades, branch-
ing ratios ané absolute transition rates.independently of knowledge of
detection efficiencies, The effects of various least squares calculation
weighting functions are also studieds

The important class of least squares calculations with model
functions which are non-linear in their parameters is discussed in some
detail in Cﬁapter III, Conditions are given under which the probability
density function of estimates of parameters departs éignificantly from a
Gaussian shape. Approximate probability density functions are derived for
a certain class of models and compared to the results of Monte Carlo
calculations.

Chapter IV summarizés the results and discusses relative merits of
the two above-mentioned approaches in determining T(y)e It is shown how

under certain conditions the two approaches merge to become identical.



CHAPTER II

RESPONSE MATRIX APPROACH

2.1 Matrix Model of System Response
o In this chapter we shall treat the detector response problem
by methods of matrix algebra. The experimental spectrum m;~of model
equation (1.14) is already of a form which can be expressed by a

vertically arranged vector (one column matrix)

P

=]
N =
1]

2. l.l

=
i

Hoe o oo

As indicated by the subscript of the last component, we are limiting
ourselves to consideration of a data field with N phannels. In a

similar way we can define the random vector:
t §

51
1
S2
w §° = . S;' ° ‘ 2162
S
\ sN
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The response function R(x,y) and true spectrum T(y) have in principle
continuous arguments and cannot be exactly fepresented by matrices with‘
a finite number of elements; It thus becomes necessafy to make the
approximating assumption that the true spectrum T(y) can be replaced

by a digitized version

N .
™(y)—> & &5 8(y=y.) s . 2.1.3
=1 ]
y-"‘é \ -
i3 : | ,
" where t al- ‘ T(y)dy. : ' 2.1 b
J A o
-4
Y 2

Note that these definitiomns preserve the original normalization condit-
ions | 4 : ’ !
oo N
Ty = ty=€N . 215
o .
Substitution of definitions (2.1.3) and (2. 1.4) in model equation

(1.1 &) yields the result

X A
N v 2 b} |
§ l ]
m, = . = R{x,y.)dx|t, + & p 20266
. A 3 J i
3:.-1 : .
o xi_é
2

We can now define a response matrix

rll rlaeoooofm

I°21 raa e o @ o @ Z'ZN
R = 9 20 107
@ & 0o © @ o e © ¢ 0 @ o




where the elements are given by

A
*+3
r.. =% R{x ,y.)dx, 2.18
ij = & KE ~ .
X, =A
Ry 5

Using these definitions we can replace eq. (2.1.6) by the simplified

expression
‘L3 t, + 8, 2.19
m, = r. . s + B ) .
i j=1 ij '3 i

By the rules of matrix multiplication and addition this last statement

is just the matrix equation

$ ¢

Mggg'ﬂ'ﬁ g. 201‘910

o=

where T is a vertical vector with components tjo
- Solution for T can be attempted by methods of matrix algebra.
If one obtains the inverse of response matrix R, then multiplication

=L

of eqo (2.1.10) by R~ from the left will produce the result

rlu=r4+pts" . 2.1.11

Unfortunately the right hand side of this expression contains the un-

desirable statistical vector 5?1

S'. For inverse matrices gfl
containing elements much larger than unity this vector may represent

a great magnification of the original statistical uncertainties? even
to the extent as to overshadow the structure of the true spebtrum Z?
This is notably true for Gaussian response shapes having widths extend-

ing over many channels. However, there are cases where gfl does not

contain large elements and practical application of matrix inversion



can be made, as is iilustrated by the response corrections to B=ray
spectira treated in a later secti&n of this chapter. Even in cases
where magnification of statistical uncertainties is large the results
might be salvaged;by applying the condition that the true vector 2
mist be non-negativéo\ This procedure may result in considerable
reduction of statistical deviétions.\ The statistical effects created
by various inverse matrices gfl and the application of non-negativity
are discussed in the last two sections of the present chapter,

Expression (2.%f3) contains the assumption that the true spect-
rum consists of delta functions placed in the middle of each channel.‘
Consequently a spectrum T(y) containing entries at intermediate posit-
ions has no representation in the matrix model: When T(y) is a slowly
varying function of y, this limitation is not serious since fhe get
of “sampling" values tj adequately defines T(y)s However, if the true
T(y) contains a delta function betweenvchannel centers, the unfolded
spectrum gfi ﬂg tends to split the contents between the two adjacent
channels{ Therefore the matrix model cannot distinguish one delta
function placed between channel centers from two delta functions placed
at centers of adjacent channelsi This effect is illustrated by calcul-

N

ations in section 2.5, .

A mumber of numeriéal methods of unfolding (correction for

(6471849510)

response matrix) have beem previously reported These

methods generally require involved calculations, the difficulty of which
increases rapidly with N, the number of channels used. Apparently the
6,2),

simplest to apply are the iterative methods However, their rate

of convergence depends considerably on the type of response matrix Re
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In particular, when the response has a Gaussian shape, the convergence
can be very slows The Gaussian resolution correction has been treated
analytically by Dixon et §;<ll): Their solution for T(y) is given in
series form containing increasing orders of derivatives of the observ-~
ed spectrum M(y), Since high urder'deriQatives are difficulf to
evaluate the series must perforce be terminatedt This has the effect
of introducing oscillations in the calculated spectrum. Various meth-

ods of numerical matrix inversion are discussed in section 2¢39‘

Since in practice the inversion of matrices by numerical meth-

ods is limited to remk not much larger than, say, 50, the present work

is concentrated on attempts to obtain a representation of the inverse
matrix in eclosed formi A great advantage of this approach is the fact
that data fields of almost unlimited number of channels can be con=-
sidered. Computer calculations can be performed quite rapidly Qithout
the danger of large rounding-off errors that are often encountered
during numerical inversién of large size matrices..

Correction for Analyzer Nonlinearity

Usually amalyzers possess some degree of.nonlinearity vhich
results in pulse heights being distributed into bins of unequal width
8. Although as a rule slight, the effects of this phenomenon are two%
fold: {firstly, the abscissa,or pulse-height scale is distorted and
secondly, channels with greater widths receive more than their proyper
share of counts. TFor linear pulse-height scales the response matrix
can often be derived from physical considerations (see section 2.4 on
B-ray spectra)s It may thus be desirable to correct the observed

spectrum by transferring its contents to a pew set of channels which

span equal pulse-height intervalse.
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The required pulse-height vs. channel curve can be obtained by
the use of a calibrated pulser. From the set of analyzer addresses x,
obtained at various pulse-height settings y, the following curve was
derived for a 256 channel analyzer:
=l xz) .

y = A(B + x + 1,09 x 10 26201

’fhe parameters A and B represent thé gain and origin shift respective~
ly. Thus for a particular set-up.of instruments only these two
parameters need be determined for a full ealibration.

Having obtainéd the explicit relationship y = £(x) we can
‘proceed with the correction as iilustrated in Figure 2K Channel bins
which vary in width on the pulse~height scale are shown at the tope
The position of the right edge of the ith ﬁin is calculated by sub-
stituting x = i + % in formula (2.2.1)s The new bins of constant
width Ay are shown at the bottome Counts from the channel bins are
transferred to the bottom bins in direct proportion to the corresp-
onding overlapi If counts in the original spectrum are given by Dgy
then according to Figure 2 the cpunts in the jth bin of the new spectrum
becoue ' |

y; = (3-Lay oy -y5

m, = ’ n. + g
" A ) i ¥5aY;

ni+l P / 20202

In thisAderivation it was assumed that all pulses spanned by
the width of an original channel occurred with equal probability.
When the spectrum has a prohouhced»slope in the region considered this
assumption is not strictly true since the rate of pulse arrival diff-

ers at the two channel sides. However, if this effect is too pronocuncedy
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mich available information is lost due to channel integration and the
need for a new experiment with finer channel mesh would be indicated.

Mumerical Methods of Matrix Inversion

This section is not essential to thé‘main development presented
in this thesis si;ce'the methods proposed are largely dependent on
response matrices which can be inverted in closed form. However, for
the sake of completeness, it is deemed advisable to includé a short
discussion of some nmumerical inversion methods. A short study of in-
version difficulty as a function of matrix size is also providedﬂ This
laﬁter consideration will perhaps serve to illustrate the advantages
gained by héving the inverse matrix in clbsed'formﬂ

In this section it is being assumed that the inverse matrix gfl
exists. A necessary and sufficient condition for this to be true is
that matrix R have rank N (i.es all N columns of the matrix constitute
a set of linearly independent N-dimensional vectors). An equivalent
éecessary and sufficient condition is that detQQ)ﬁk O. The response
matrices encountéred here generall& satisfy these conditions so that
their inverses can be calculated. Section 2.5 will cover. a few special
types of response matrices which under certain conditions become singu-
lars ‘

The subject of matrix inversion has received attention in numer-

KA
ous volumes (see for example references (12,1,,14,15,16))0 A number of

(17,18,19)

papers have discussed the subject from the point of view of
electronic computer application..
Numerical methods of matrix inversion ¢an be divided into two

broad classes - direct methods and iterative methods. The direct methods



17

obtain the required solution in a finite mumber of operations, whereas
iterative methods only approach the true sblution with each iteration.
After a certain number of iterations the remaining corrections may become
insignificant and the process is then terminated. For large size matrices .

the iterative methods are often more economical in effort and may yield

more accurate answerss

Perhaps the simplest of direct methods is the Gauss'® method of
systematic elimination., The process is analogous to solution of linear

equations by progressive elimination of unknown variables., One wishes

to find the inverse matrix Efl such that

R'R=1, 2,301

AN

where I is an N by N size ‘identity maﬁrix having elements equal to
unity along the principal diagonal and zero elsewhere. Suppose that we
divide the matrices gfl'and I into N row vectors and denote the result-

ing vesctors by g;l and Zi respectively, Then for each value of index i
Ay

we have a set of N linear simultaneous equations

§ gl ger L T 232
ki =i == ; «3

which can be written out in the detailed form

=1L ml -1_ :
ril rll + ria ral + ocee + I, r = b,
-1 -1 : -1
T Tip tTyp Tpp keee * Ty Tyo = By,
2.3,3

0P OPODIROOSIOOPOOONDPIOIOCO V00000080 FOCQRRROELILPDSCO

=1 =1 -1

ril rlN + rla raN + o000 + riN TNN = 6iN .

The symbol 6ij is a Kroenecker delta having the property
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O for igfj,

lfori=3j. | 2.3, b

5. .
ij

As an initial step the first equation of group (2.3.3) is divid-
ed by ryqe, Next it is multiplied by rys and subtracted from the second
equation, which gives us a new second equation with the unknown variable

-1 =1

Ty eliminateds In a similar way we can eliminate Ty

ing equations, which concludes the first stage. In the next stage we

from all succeed~

2
ceed to eliminate this variable from all succeeding equations using the

divide the new second equation by the coefficient of r;l and then pro-

same process as described in stagerne o After N stages of such

calculations we end up with a triangular set of equations.

1, rta +r1la + + rt = b
11 ¥ Fi2 % *TFiz % teee YN . T P
-1 1. -1 .
Tip  * Tz 8z heeet Tiy By, = b, 2.3.5

P00 0B IV GCEP066C606000F0CHNIGOEIOENDLEGCOREENPGOCEOEOISIRICESIT

-1
Tin = bin .

\
The coefficients bik are zero for k { i since up to the ith stage there
is no contribution from the Kroenecker deltas.

IE is interesting to note the mumber of multiplications and
divisions performed. These operations require a greater effort than
subtractions and hence provide an indication of the over=all difficultyx
For the moment we shall consider only the operations performed on the
left side of the equality sign. In the kth stage we are operating on
(N-k+l) equations. There are (N-k) numerical divisions by the coeffic-
ient of r;i o The subsequent eliminations will require (N-k) multi-

plications performed for each of the (N~-k) equations. Thus the total



19
number of operations performed in the kth stage is

M= (N = k) + (N = K,

Summing the operations of all stages we obtain the result

N
= 3
o= Z M
= g (Na - 1)0 20306

These MT operations define all coefficients &n which need not be
recalculated,

Galculation of coefficients b 13 on the right side of equality
signs will require additional operations the number of which will depend
" on index i, Consider the kth stage of elimination, where k > 1 .

There will be one division and (N-k) mitiplications. Summing over all

stages with k > i we get the number of operations

N, = £ (N-k+1)

-/
= EI. (N + z):i. + (N 4 1) (g + 1) °
2 2 '

To obtain the full inverse of matrix R we shall need to obtain a trian-
gular form akin to (2.3.5) for each value of index i, Therefore we

! 2
sum the Ni s with the result

N
\ N,= I N, )
T i=l L
R o

Hence the total number of multiplications and divisions required to

obtain the N triangular sets (2.3.5) is given by
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T= MT + NT

= gﬁ (N +1) . : 2038

The final calculation of inverse matrix elements is perform-

ed by a process of back-substitution. In equations (2.3.5) the element

x;; is given by
N
=1 _ z =1
Tik = Pikc T gekel Tig %

which requires (N = k) multiplicatioms. For all values of k the number

of multiplications is

N
, T
By =4 (N=k)
N
= 3 (N=1) o ..

This number is the same for all N sets of equations (2.3.5), so that the

total back-substitution effort can be represented by

2
B='1\L (Nul) ° 20309

2
We are now in a position to write down the overall effort factor

for complete matrix inversion
E=T+23B

=, 2.3,10

This cubic relationship presents a serious practical limitation on the
size of matrices which can be inverted by the direet methods,

In the foregoing derivation it was assumed that the divisor used



in the kth stage of elimination was non-zero. When this condition does
not hold it is necessary to use a modified method. ZEven when the
divisof is finite but small the results may be unsatisfactory due to
accumulation of large rounding-off errors. A way out of these difficult-
ies is to search each equation for the>largest coefficient and then use
it as the divisor " for the purpose. of elimination. This method is
sometimes referred to as the "Gauss' Method with Selection of the
Pivotal ElementM,

Another method popular in automatic computer calculations is
the Gouss-Jordan method of elimination. During the kP stage of elimin-
ation the unknown r;i is eliminated from all the preceding as well as
the succeeding equations. Thus the equations (2.3.3)4are reduced to
diagonal form and no back-substitution is necessary. Howgver a larger
number of operationé is required during the process of elimination with
- the result that the total number of multiplications and divisions
rémains N30

There are various other direct methods of inversion which shall
not be discussed here. In particular, when the matrix is symmetrical
there are special techniques available which provide a greater economy
in effort. These techniques are amply discussed in the literature and
the interested reader may find them in the references quoted above.

The special case of a triangular matrix shall be considered
_since some of the response matrices in this thesis take that form.
Consider the upper-triangular matrix R with elements rij = 0 for

i > j. 1In this case the matrix equation (2.3.1) can be represented

by the set of algebraic equations



J
z rki rij = ﬁkj ° 2'3.011

Note that in equation (2.3.11) when k 7> j we also have k 7 1.
Therefore the right hand side is zero and the equation is satisfied
by setting

-1 .
ryg = 0 for k¥ 7 i.
In other words, the inverse matrix is also upper=-triangular and

equation. (2.3.11) can be replaced by

ki . rij = kj 0. - 203012

Triang;dlar matrices are particularly easy to iﬁvert since the
process can be carried out row by row independently of other rows. ‘
C;)nsider a general kth row of the inverse matrix., Using expression
(2.3.12) we can write a set of (N - k + 1) equations which already

are in triangular form

. -1 -l -1
(=) r Ty Y Tl Tk Nttt Ty Tww = ©
@ * o ] L] ® L] [ ] @ L ] ® "] (-] ] e e [ 2 * L] d [ ] o ® ® * (<] [ ] @ [ ] 2’ 3. 13
. -1 -1
(3=ktl) vy Doy * Pl Tkl kel =0
A
(j—k) rlﬂk rkk = l ®

Thus the inverse elements of kth row can be calculated by a simple

process of back-substitution. Evaluation of r;; will require one

division. The next term rlzlk-a-l will require one multiplication and

one division. It is easily seen that the number of operations increases by
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one in each step. Hence the total number of operations required is

given by

{(N-k+1)

B, = z 4
k =1

2

™

1]
op=

- (N + %)k + g (N+3) +1.

The number of operations for all rows of the inverse matrix is obtained

by summing over k, i.e.

¥ N

1
= N(g_ -+ 'é' + 3) ° ; 2.301""

For large values of N this effort factor is about one sixth of the
factor for general matrix inversion.

In many response matrices the diagonal elements are large in
magnitude compared to other elements. Under these conditions the ite

(15)

erative methods may have good convergence properties and lead to
fairly rapid calculation of the inverse matrix. An example of iterative
techniques is provided by the Gauss-Seidel method discussed below.

Bquations (2.3.3 ) can be rewritten in the following form:

“1_ 1 ! _ -l
i1 T ry v TazTay Teer T AN T
-1 1 -1 -1
Porn == (8,0 = Pes Ton = s0e = Lo L)
i2 r22 i2 il " 12 iN " N2 2.3.15
Tin T 5 (Byy = T3y Ty =eee = Tiny Ty ) e

NN:
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One stagts with initial guesses for the unknowns r;§ and substitutes them
at the right hand sides of equations (2.3.15). The resultant values at
the left are the first approximations (r;%)lg In the second step these |
new values can be substituted at the right sides, yielding second approx-
imations (rE% )29 Thisvprocess is repeafed until the changes become
insignificant., The last estimates (rgg)n give the 1B row elements

of the inverse matrix.

Application to B~Ray Spectra Obtained with Organic Scintillators

One of the first attempts to correct B-ray spectra for resolute

(6)

ion effects was made by Freedman et al' ‘s Their studies revealed that

the response to monoenergetic electrons was of the form shown in Figure
3 where the peak is associated with the totally absorbgd B=rays. In

addition to the pesk there is a constant-height tail which arises from

partial energy losses due to scattering from the crystal(ZO).

6)

The method proposed by Freedman et al was an iterative pro=

cedure. One makes a first estimate T, for the true spectrum and thexn

1
obtains a second estimate 22, from the relation
i "oRrT | 24,1
=2 = 21 +M BRIy o

. ‘
where M 1is the observed spectrum amd R is the response matrix., This

process is continued using the algorithm

'8 ‘
T =T + M =-RT o 2o léo 2
=N+ =m et - o=}

By using prdgressive back-substitution we can express this last

equation in terms of the first estimate 21 o The result is

. =1 m ¥ .
2= T-R"% +R L; - (I-R) ] M. 24,3

Here T is the identity matrix and the inverse R™T is assumed to existe
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If lim (I - R)" = 0,
m-—>» oo

then lim T = R
m — oo ~{li+. =

=1 gf

and successive estimates approach the unfolded spectrum. - Freedman et
glcs) found that for a good initiél estimate only two to four iter-
ations were required to obtain a spectrum 2m+1 such that 2-$m+1 repro-
duced the observed spectrum ﬁ’ within about 2%.

' This iterative procedure has the advantage that the inverse matrix
g{él does not have to be evaluated directly. As indicated in the last
section; the inversion of matrices having sizes corresponding to data
fields‘of 200 or more channels can be quite difficﬁlt.d Even if the full
response matrix could be inverted there are reasons why its use migh? be
undesirable. The resbonSe shapes shown in Figure 3 contain the Gaussian
(-resolution function. As will be shown in section 2.5, correction for this
effect involves an inverse matrix with very large positive and negative
elements. Gonsequenfly the statistical uncertainties originally present
in ﬁﬁ can be grossly magnifieds .

When the iterative formula (2.472) is used to correct fqr the
Gaussian response along, the statistical deviation§ show a roughly linear
increase with each iteration: If the results finally couverge to the re=-
quired unfolded spectrum then this expansion of statistical deviations
can be expected to continue until a leveliing—off is reached near values
corresponding to multiplication by the inverse matrix of Gaussian response.
It is therefore important to obtain a #ery good first estgmate which would
- allow the iterations to be kept down to a minimum.

The method of response correction presented here was first des-

cribed in a paper by Slavinskas, Kemnett and Prestwich(Zl).- It is
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based on writing the full response matrix as a product of an upper-
triangular matrix and a Gaussian matrix;\ The triangular matrix represents
the tail part of the reéponse and can be inverted in closed form: After
‘correction for this:response effect is made, the Fermi-plot of the B=

ray spectrum is found to be very neafly linear‘ This allows a very good
first guess T, of the true spectrum in formla (2'4'1)\ Thus only one
iteration is required to correct for the remaininglGaussian resolutions
It will be shown later in this sec¢tion that multiplication by the in- |
verse of the triangular matrix produces only a small effect on the
statistical deviations.

The response functions shown in 'Figure 3 can be represented by

. the convolution of a Gaussian G(E,Eo) with a second function L(EgEo)g

namely
R(EQE°> = L(EQEI)G(ElgEo)dEl 9 ’ 2«""»4I
where .
' 2 .
G(E,E ) = L exp -(E - E,) 2.4 5
- Ver 4 2 L(C -
~ ['e] 2 Ko ) )
A )
and : £ |
k + 8(E-E) Ry — _WJ
L(EgEg) e e e for E é’.Eo 1 !
oo 2,46 °
=0 a for B 7 Eo o

Parameter k@ is related to the tail height»of response to B rays with
energy Eo and (To is the standard deviation of the Gaussian resolution
at the same energy (full width at half-maximum = 2.35 (ﬁ;) o All three

functions are normalized to have unit area.
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Using the digitizing approximations discussed in section 2.1 we
can replace the response functions by matrices of rank N. L(EQEO) is
replaced by an upper-triangular.matrix L in which the rows are indexed
by values of E and the columnsligdexed by Eoo Similarly we can replace |
G(E,Eg) by a matrix G. The overall response matrix R can‘then‘be writ=
ten in the form

R=LG. | 2.4,7

In accordance with equation (2.1.10) we can express the ob=
served spectrum as
M =LGI+§ o | - 2.b.8
where T is the true spectrum witﬁout responée effects and §'is a random
vector of statistical deviations. Operation on g' by the inverse matrix

=1

L will result in

GT+LTs .

Apart from statistical deviations this'is just the true spectrum T as
geen® through a Gaussian resolution. Since PB-ray spectra are con-
tinuous and usually have widths.large compared to that of Gaussian
resolution, the spectrum G T is very similar to the true spectrum T.

Evaluation of inverse matrix Lfliis straight-forward and can be
written in closed form. This is a great advantage since we are no long=
er limited to small arrays and one can obtain the inverse for almost
any size data field. The delta function in equation (2.4.6) represents
P-rays which deposit their full energy within the crystal. If we define

the area under this full-energy peak by “j we can write

1

2.4 9
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The area under the tail is given by the complement |

R Lo 2.4,10
& %5 I
With these definitions matrix L has the form %
y ‘
L] ’ ' Ol B .EB- L] * L] * * L4 ® ® -;B']:I. | ’:’ /,/1
" 1 e 2 N-1 1 ".“ ,
B By || | 2
2 N
O az 2 e & ¢ o o o o o N‘l 5
By
L = 0 0] 0(3 e o6 ¢ 0 0 & o o™ o 2o Ll'o 11
N-1
» O 0 o L] * L] L] L ] * ® L] . aN |

Derivation of the inverse matrix is given in Appendix III. If

we define the quantity

B

Yj =1 = ?3:%y;§ . - 2.4,12
where j » 1, then the inverse matrix elements are gfven‘hy
-1 1
ag ) = v 9
ii o
-1 . .o\ 4 L
,eia. = 0 for i > d s 2o the 13

' -1
-1 1. ‘r7* ’ R .
=i+l
Trial and error calculations with experimental spectra having
end-point energies up to 2.27 MeV indicated that linear Fermi-plots
can be obtained by using constant values for parameters aj and Bj.

This fact implies that the fraction of electrons scattered outside
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the crystal is independent of incident energy. Experimental support

for this conc¢lusion is provided by the work of Bothe(aa)

who found
that for a given scaftering materi@% the back—scattering'coefficient
of low-energy electrons is constant, The values used in the succeed-
ing calculations are a = 0,72 and B = 0.28. .

From equation 2. ’4. 12) it is apparent that all values of Yj are
less than unity. This means that in any given row of Lfl the diag-
onal element 1/« = 1,39 has the largest numerical value and all
elements to the right progressively become smaller. Therefore the
magnification of statistical uncertainties produced by the operator
gfl is small enough as to be of no practical significance.

Sample calculations of resolution correction were performed on
three essentially singlé group spectra of 90Y, 91Y, lthr and a

f 9OSr withvgoY in secular equilibrium. All experimental

mixture o
speptra were obtainéd under identical conditions with the sources
mounted 1 cm from a'5 x 5 cm type NE-102 organic scintillator coupled
to an EMI 9536 photo-multiplier tube. .The’pulses were fed to a DD2
amplifier and recorded in a multi-cﬁaénel aﬁalyzer. Sources wvere
‘imprégnaéed into filter paper.aﬁd had a thickness corresponding to
approximately 3 mg/cma. |

Before applying resolution corrections the sPebtra were correcte
ed forAanalyzer nonlinearity bf the use of the technique described in
section 2.2, The parameters A and B in formula @.2.1) were determined
from internal conversion lines of lB?Cs, 2O7Bi and initial estimates of
the B-ray spectra end-points. All B-ray spectra were then converted

from the original channel base to a linear energy scale with bins
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AE = 10 keV wide. Values used for the two parameters were

A= 9.&44 keV/channel
and B = 12,0 channels
143Pr has a §'+ ground state which‘decays by B~ to the % - ground
étate in 143Nd(23)9 Thus we haﬁe a change in spiﬁ Ad = 1 and &

parity change, the combination of which corresponds to a first forbidden

(2&)

transition o Many first forbidden transitions have spectra corres-

(25) 3,

el

appears to fall in this classs The energy distribution of allowed

ponding to those of allowed transitiouns and the case of

transition B-rays is given by

T(E) = b PW F(ZgE)(Em = E)Z 0 24,1k

where D is a constant and F(Z,E) is a Coulomb effect correction factor
dependent on the atomic mnumber Z and electron kinetic energy Eo
Numerical values of F(Z,E) which included electron screening effects

(26)

were obtained from reference o The factor F(Z,E) is essentially
constant at high P-ray energies and has little effect on the shape of

the spectrum. Other factors in formula (2.4.14) are the electron

1 / 2 2
P = P E + 2Em°c

and the total electron energy

momentum

2
W=EFE+ moc a

Parameter Em is the total transition energy and thus represents the
upper energy limit of the B-ray. When E-<'Em the remaining energy is
‘carried away by the neutrino (nuclear recoil energy can usually be

neglected).
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It is customary to represent the data in the form of so-called
Fermi (or Fbrmi-Kuriej plots. These can be obtained‘by plotting
T/(PWF) as a function of E. The result should be a straight line
with an intercept B = Em on the abscissa. Thus one obtains a conven-
ient indication of transition energy Em .

Psr, P and Py are characterized by

‘The B°= transitions of
AJ = 2 and a change in parity. Thus they fall in the class of first
forbidden transitions. On account of the spin change‘AJ = 2 the

(25)

spectra are expected to have unique shapes which are distinguish-
" ed from the allowed shapes (2.4.14) by having an extra factor S. The

shape factor was calculated from the relation

S = Qa -+ 7\-1 PZ 9 . 2.4015
where @ is the neutrino momentum and Xl is an energy-dependent para-
meter (close to unity) tabulated by Kotani and Ross<27).

(28)

Langer et al have reported the neéessity of an additional

90Y and 91Y. Based on their precise magnetic

shape correction for
spectrometer measurements, this additional factor takes the form

C=1+2 ., A | 2.4.16
w .

where w is the total electron energy in moc2 units and b is an
empirical parameter having a numerical value between 0.2 and Ok In
the calculations presented here the intermediate value b = 0.3 was

used. Due to these additional factors the expression \/@/(PWFSC)

was used to calculate Fermi plots for 9oSr9 Py ang

143§r9 9y and Py are shown in Figures 4, 5

Y,
Fermi plots of
and 6 respectively. Each Figure contains three plots which illustrate

the various stages of resolution correction. Plots labelled (a)

\
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were calculated before application of any resolution corrections.
They tend to show anlupward curvature for decreasing energies. This
effect is caused mainly by the low-energy tail in the scintillator
response and makes the determination of end-point energy uncertain.
Fermi plots ( b) were obtained after multiplying the spectra by
inverse matrix'gfl e A considerable improvement in linearity is
evident, so that accﬁrate end-point determinations can now be made.
The remaining slight ;urvature near maximum energies is presumably
caused by Gaussian resolution effects. This residual has the effect
of élightly mod;fying the apparent end-point energy. Calculations
with theoretical model spectra gave an estimate of the error magnit-
udes A number of theoretical spectra with different maximum energies
were multiplied by the Gaussian resolution matrix. Fermi plots were
then calculated and Ybest" straight lines were drawn through the
resulting points., It was found that theseklines gave correct inter-
cepts with the ordinate axis but underestimated the end-point energy
by about 8 keV.

Although the two corrected intercepts thus obtained are. suff=
icient to determine the required experimental spectrum parameters,
‘further calculations were applied in an attempt to correct for'the
Gaussian resolution. A quadratic variation of 052 with energy was
assumed. After a few trial calculations the particular form adopted
was

7, 2 . 0.0027E°% + E + 3000 , 2.14.17

where both GB and E are expressed in keV. One iteration
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as defined by equation (2.4 1) was applied to each of the three
spectra. The first estimates glwere calculated by the use of correct-
ed intercepts of Fermi plots (b). Results are shown in part (¢) of

'Figures L, 5 and 6. Linearity near the end-points is seen to be
considerably improved. Some points lie below the E-axis because im-
aginary values (obtained where the unfqlded spectrum was negative)
are plotted as negative numbers.

A summary of end-point energy results is given in Table I.
The largest deviation from Nuclear Data Sheet values(zg) (column 2)
occurs for the end-point of 9OSr, the difference being 20 keV. Er=-
rors in other isotopes are considerably smaller. This is partly
caused by the facf that the experimental end~points were included in
the determination of the energy scale. Since all spectra were obtain-
ed under identical experimental conditions, the energies should be
internally consistent. This requirement is sa£isfied within the

estimated uncertainty of I 20 keV,

The two-component spectrum of 9OSr and 9OY was analyzed for
relative intensities as well as for end-point energies, Intensities
are expected to be equal since the system was in secular equilibrium
with the 28 year 9OSr decaying to the 64 hour 9OY. Fermi plots of the
results are given in Figure 7. Part (a) shows the total spectrum af-

90,

ter multiplication by Efl. The long linear part of the “ Y component

provided good estimates of the intercepts. These were used to cal-
culate a theoretical 90¥ spectrum which was multiplied by the Gaussian
response matrix and then subtracted from the total. A Fermi plot of

90

the remaining “ Sr spectrum is shown in part (b). Finally, part (c)
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End-Point Energies
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Em(MeV)
Isotope ‘
Nuclear Data _
Sheets(ag) Present Work
Per 0.5k 0.56 ¥ 0.02
143
Fr 0. 95 0.93 ¥ 0,02
i Lo 5k 1.54 ¥ 0,02
r 2.27 2.27 ¥ 0,02
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90

Sr after correction for Gaussian resolut~

g0 90.

Sr and Y were used to

shows the Fermi plot of
ion. Experimental intercepts obtained for

calculate the corresponding theoretical spectra. These were then

‘summed. over all channels to obtain a measure of intensities. The

%0

results gave a total of (1.02 % ,10) x lO6 counts for “ Sr and

(1 o4 % 0,05) x 10° counts for 90Y, which indicates good agreement
with the expected equal intensity condition. In principle, this pro=
cedure of "stripping'" could be applied to a spectrum with any number
of components. The limitation, of course, is that the end-points
have separations sufficiently large to leave recognizable straight
line segments in thé.Fermi plot after the operation Efl .

It is shown in Appendix III that the number of multiplicative
and divisional operations required to invert Qfl has a quadratic de=
pendence on matrix size N. This is a considerable improvement over
the-cubic dependence (2.3.14) which obtains for general triangular
matrices., Thus one can perform rapid analysis even when the data
fields are quite large., For example, using the.iBM 7040 electronic
computer, corrected Fermi plots were calculated in 2 min. and 16 sec.

for a 64 by 64 B~y coincidence spectrum.

Application to Energy-Independent Response Shapes

In this section we shall consider response functions of the
form R(x~y), which implies a fixed response shape for all incident
energies y. DNuclear radiation detectors usually do not satisfy this
requirement; for example, the Gaussian resolution width in spectra
obtained with NaI(Tf) detectors varies roughly as the square root of

incident y-ray energy. However, it is possible that future develop-
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(30)

ments of analyzers will provide the option of storing the spectra
on a channel base proportional to VEE Obtaining thus an approximate-—
ly constant resolution width would result in most efficient use of the
available memory storage capacity (or number of channels). In some
instances (e.g. lithium-drifted Ge detectors) the variation in resol-
ution width is very small over the energy range covering one peak.
With some modifications the method of this section might still be used
to apply resolution corrections for such spectra.

The techunique described below need not be limited to nuclear
spectra alone. There is a wide class of other applications where some
signal may have suffered distortion duevto undesirable frequency com-
component filtering - or equivalently convolution - effects. Such may
be the case when dataaxe.transmitted, for example, over long telephone
lines. Ia some instances a short pulse may be purposefully distorted
into a long wave train, which technique permits transmission of in-
creased energy when the peak power of a transmitting device is limited.

Examples of this technique are found in -some radar systems(Bl) and

in seismic exploration methods using surface sources(32). When this
extended signal is received, some method of de-=convolution is usually
Arequired in order to obtain the original short pulse., The present
section investigates a method of de-convolution which is applicable
to data having digitized form.

In the present section we shall derive a general expression for
the inverse of an infinite rank response matrix R having elements
rij which are dependent on (i-j) only. This matrix consists of ident=-

a3al columns which are shifted by one row with respect to their neigh-
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bours. The derivation of inverse matrix elements will be accomplished

(33)

by the use of Fourier transforms and the convolution theorem

We start by considering the convolution integral

o0

M(x) = fR(x—y) T(yldy , 2.5.1

-0

and then try to find an inverse function Rin(x) such that

-
T(x) = j[Rin(x-y) M(y)dye 2.5.2
For this purpose we shall need the Fourier transform pair
. _
M(x) = o= fm(w) e qw , 2.5.3 a
2n .
~0o
o0
n(w) = [ M(x) e % ax, 2.5.3 b
-0 .

. Capital and lower case letters shall be employed to represent the
functions in the x-domain and the w-domain respectively. A short
derivation of the convolution theorem is given in Appendix IV,
Given the convolution relationship in the x-domain

Co

FB(X) = Fl(Xiy) Fa(y)dy,_ 2.5.k a

the theorem states that in the w-domain we have the product

fB(w) = fl(m) fz(w) . 2.5.4 b

Similarly, for convolution in the w~domain

83(m) = J/Pgi(m~h) ga(h)dh 2.5.5 a

-0
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we have

G3<x) = 21 Gl(x) Gz(x) o 2.5.5 b

The method of finding Rin(x) can now be outlined as follows.
Applying the convolution theorem to equations (2.5.1) and (2.5.2) we

can write the products

n(w) = r({e) t(w) » 2.5.6

and
tlw) = rin(co) nlw) . 2.5.7
To satisfy these last two relations we must have
L
rin(w) =5y ¢ , : 2.5.8 a
Thus the relation (2.5.8 a) gives us the Fourier transform of the

required inverse function Rin(x) + Accordingly we can tramsform back

to the x-domain which yields the result

o0
1 eiwx
Rin(X) = ’2"1':' -—I'T(;) dw [ 205.8 b
~— 2
Often rin(w) is unbounded and the inverse function Rin(x) does

not exist. This is usually the case with continuocus functions R(x).

As an example we can consider the Gaussian response. function

R(x) =

1 x?
- s 2.5.9 a
Vo o exp[ 20'2] ’

which has the Fourier transform (see Appendix IV)

22
r(w) = eXp [" g : ] e 20509 b

It is clear that the reciprocal 1/r(w) approaches infinity together

~with w; hence the value R; (0) as defined by (2.5.8 b) is infinite



and the desired inverse function does not exist. However, the inverse
can frequently be found in matrix form when the response functions are
digitized into discrete channel bins. The Gaussian response falls
into this class of invertable digitized functiouns.

A form of digitization can be accomplished by making use of

the following set of equally spaced delta functions

(2~
D(x) = o 5(x~n) , 2.5.10 a
which, according to Appendix IV, has the Fourier transform

oo -
d(w) = 27: 2 6(0.)-21'511). 2.5010‘ b
Q== co

Thus the digitized response function can be written as the product
a .
R (x) = R(x)D(x) . 2.5.11

According to the scheme outlined above we will try to find the
inverse function Rgn(x) by calculating the Fourier transform of Rd(x)
and then transforming the reciprocal 1/1.‘1(@,) back to the x-domain.

Proceeding with the execution of the first step we write the Fourier

transforu
oo
rd(w) = R(x) —iwx ;-. 6 (x-n)dx
= e == co
- oo
oo -
=iwn
= Em R(n)e o 2.5.12

This expression contains a summation which may consist of many terms
when R(x) covers a wide range of integral values of x. For such cases
. . . d . .

it might be more convenient to express r (w) in another form which

can be particularly useful when the function r(w) is easily obtained.
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Applying the convolution theorem to expression (2.5.11) we can write

(=]

rd(m) =L r{w=A) 2n ;:o d(A~2nn) an
27: = oo
- 00
= n)_:‘.___ o r({w=21n) 2.5.13

From expression (2.5.13) it is clear that, although r{(w) may approach
zere for large values of w, rd(u':) will not do so on account of the
periodicity inherent in the summation. Except for special cases in
which r(2nn) = O for all values of n, the reciprocal l,/x'd(m) will
remain finite everywhere. Figuré 8 illustrates the effect of digit-
ization by showing the reciprocal functions 1/r(w) and l/rd(m)
obtained for a Gaussian response with O = 1,

Transformation to the x-domain is accomplished by noting that
l/rd(w) is periodic in w with period 2m. Thus after defining the

truncated function

f(w) = dl for lw] < =
r (W)
= %- -d—l—- for Jwl = x _ '2.5.14
r (w)
= 0 for o] > =

we can express

Co
1 = f(w-2mn)
4 7 Nm-oo
r (w)

f fon) T 6(h-2mm) @

- = jf(w-}\) a) an . 2.5.15
-0 V
The required inverse function R., (x) i: given by the Fourier trans-—

form o.f'Vrd(w)’. Using (2.5.15) and the convolution theorem we can
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express the inverse function in the form of the product

in
where
A
1 eiwx .
F(x) = 5= - dw . 2.5.17
- r (w)

The inverse function (2.5.16) is seen to contain the original
digitizing function D(x). This factor is instrumental in replacing
the de-convolution integral (2.5.2) by a summation so that the pro-
cess becomes analogous to multiplication by an inverse matrix of in=

finite dimension. Carrying out the substitution in (2.5.2) we

obtain
(x) = J{ F(x=y) e d(x=y-n) M(yldy
= ;g_ooF(n) M{x=-n) . T 2.5.18

Since the response function was digitized, the spectrum M(x-n) will
have non-zero values only for integral vaiues of the argument (x-n).
Thus we need consider only integral values of x, and upon making the

transformation m = x-n in equation (2.5.18) we get the result

7(x) = ;g;co F(x-m) M{m) « 2.5.19

If the digitized response function (2.5.11) is substituted in

the original convolution integral (2.5.1), we obtain

o0
M({x) = % R(x-n) T(a) . 245420
N==c0 .
Expressions (2.5.19) and (2.5.20) can be replaced by the matrix eg-

ations | T=FMN 2.5.21
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and
M=RT, 2.5.22

where F is an infinite square matrix having elements

fij = F(i-j) : 2.5.23

and R is likewise an infinite square matrix with elewents

rk‘g = R(k—,@) © 2.5.2}‘!‘

T and ¥ are infinite one-column vectors. It is c¢lear that
F=R 9 2.5.25
and after collecting the results of equations (2.5.23), (2.5.17) and

(2.5.13) we can write down the inverse matrix elements
T
r'l 1 elw(k-ﬁ)
"kl T 2n

dw 4 2.5.26

o
- n§-oa r (w=21n)

where r(w) is the Fourier transform of the response function R(x).
The denominator of the integrand can be replaced by the alternative
expression (2.5.12) if the latter proves to be more convenient,

The foregoing derivation used response functions which were
digitized by sampling R(x) at integral values of x corresponding to
channel positions. However, if the data are of the histogram type,
it is necessary to inclﬁde the effects of integration over channel
QWidthg as is done in the model (2.1.8). Using unit channel width we
can write the new digitized response function

X4z

R%(x) = D(x) R (y )y 2.5.27
Xz
The channel profile is assumed to Ve flat-topped and is given by the
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function
P(x) =1 for x| < % )
1 1 :
=5 for || = 5 2.5.28 a
=0 for [x|>3 .

As shown in Appendix IV, the Fourier transform of P(x) is

2 . w
plw) = = sin (-?:) 2.5.28 b
Expression (2.5.27) can be put in the form of a convolution integral
(o]
Rd(x) = D(x) jP(x-y) R(y)dy, ’ 2.5029
- 00

which enables us to use the convolution theorem and obtain the Fourier
transform

sin +(w-2nn)
L (w=21n) °

rd(m) = ng_m r (w=2nn) é.5.30

Therefore the inverse matrix elements for channel-integrated response

are given by

b3 ‘
iw(k-2)
I‘l-{i = 3-2"]; e dw ° 2-5031
°§ [r(m-Znn) sin +(w-2rn)
~ft NE=oo +(w=210n)

Some examples of matrices and their inverses are provided in
Table I1I. An integrated expression could be obtained only for the first
entry (damped sine-wave response). The integrals in other entries must
be evaluated by numerical methods. In some cases the inverse matrix
does not exist for certain values of the response parameters. For
example, in the matrix for damped sinusoid response we must satisfy

a2 n and in the matrix corresponding to a triangular response Ifunct-



TABIE II

Examples of Inverse Matrices

rﬁlA
Tij ij
Damp=d Sine VWave
C..a . .
. . -1 ij sz.nrk(:,mj):] .
r _ p 5in a(i-3) ) r.. = = for 1 # 3§,
ij ~ A a(i-j) ! iJ A‘it? n(n+l) 4 - (=3
a=nmn+k v : _a[(n+l)1‘t=k] for 4 =
- 2 - ©
n=ly 2, 3, =em= An“ n(n+l)
Osgk<m ' C.. = (-3 for n odd,
id
=1 : for n even.
- oS D am e em e e me e m.-a—.—._-:--—mn—n—hu——a-—--——————-.--:-— ——————————————————————
Rectangle T
1 v
r., = S for Ji-j| € N
33 e r"l 2N sin («%) cos Ew(iw;j)J q
=0 for [i-j] > N ij " wn . ®
o . fo ) . [Nw
S}n(2)+ 2 cos| 3 (N+l)] s:.n( 2)
Triangle x
Ry = Aa - Ji-31) for |i-jl £ q, |
i ) . -] 1 fe=
=0 for |i=jl > 4. i3 = S Lot-p] do
q+ 2 Z_f[qn,zj cos (wf)
g =n+k, ad £=1
3
n=1; 2y 3 ===
0<k €1
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TARLE II(cont'd)

Examples of Inverse Matrices

o % . - - = G N

!
Tij id
Gaussian T
A L2 2 -1 . 2.2 .
Y15 % T v exp[--Dz o) T ezpl & w /2) °°S—£L: TXCEE) B
o ‘G;Z“;é expEZ,en o “(u-fn) ]
Channel=Integrated Gaussian
. T
i-Jod
r 1 2, 2. <1 1 exp ( a*zwz/z) cos f'_m(im;j):j
Th m@a = exp | -x /& )J. dx Tiy= R i " - cinl2Co 227] do
VR . 7 _ 1 (w ~ )
fejed o = exo [280 & “o-sr)] ¥ Cw-24m)

T8
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tion the parameter g cannot have integral values other than unity.
The last two entries contain the factor exp (<T2m%/2) in the inverse
matrix integrands. This may lead to very large inverse matrix el-
elements for high values of ¢ and thus render application of the
inverse matrix unpractical when the spectrum contains statistical
deviations.

The matrices considered in this section have the restriction
that their elements depend only on their distance (k-£) from the
principal diagonale This restriction reflects the assumption that
the shape of response functions is independent of the ipcident eneréy
(e.g. constant value of ¢ for Gaussian response functions). In
general a response matrix has eléﬁents

3, _ @

r.

where the sﬁperscript j signifies the dependence of response function
on column number. Under certain conditions it is possible to obtain
a good approximation to the inverse of this generalized matrix. Sup-

pose we fix the superscript j at a certain value 4 and then obtain the

inverse matrix (£>gfl by the method outlined above. This inversion

can be carried out in turn for wvarious other fixed values of f. Then

we construct a matrix 3;1 in which the ﬂth column is given by the

corresponding column of (z)gfl (z)gfl

. If the elements of are given

by .

(Z)r_-:l - ()

» F(i-3) , 2.5.33

then the condition that

-1
RE — L

can be stated in the detailed form
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23

(3 (k)
£ R(i-3)  F(jk) ~—s b
J

ik 2.50 3k

Equality would obtain in this last expression if we could replace

(3 (k)

R(i-j) by R{i~j). If the response shape varies slowly with en-

ergy, then close to the value of k there is a range of j-values for

which (J)R(i-j) = (k)R(i—j) « Suppose that outside this range of

j=values the contribution to the sum in (2.5.34) is negligible; then

g;l can be a good approximation to the true inverse matrix gfl. In

the case of Gaussian response with the standard deviation O (E) these

necessary conditions are satisfied when 4 0 /dE <4< 1.

Reduction of Statistical Deviations

As was remarked in Chapter I, the spectra of nuclear counting
experiments contain statistical deviations which have very nearly
Gaussian frequency functionS. Each channel of the observed spectrum
therefore has an associated variance v? = mj9 where mj is the expect~
ation of the coantents of the jth channel, Since the contents of the
channels are mutually statistically independent, all covariances vij
are zero. When the observed spectrum is multiplied by an inverse
matrix gf} the variances in the unfolded spectrum will naturally have
magnitudes different from the original variances. According to the
error propagation formula giveﬁ in section 3.2, the new variance in

channel i will be

5 .
W’ =z [rfj.'] v, 2.6.1
i 3 ij 3
Fron this expression it is clear that when the inverse matrix gfl

contains elements of large magnitude, the unfolded spectrum will have

greatly magnified statistical uancertainties. A lower limit on the
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ratio of standard deviations in channel i is given by

u. '
( ..s) - |+ 262
Vi 11
min '

Expressions (2.5.26) and (2,5.31) defining the inverse matrix
elements, show that the diagonal elements always have the largest
nunzrical value. It is therefore of some interest to consider their
magnitudes for various types of response functions and various values of
response parameters. Figure 9a shows the diagonal inverse matrix el-
ement as a function of parameter g for a triangular response funct-
ion. The response matrix and inverse matrix are defined in the third
entry of Table II, where an amplitude factér A is included so as to
conserve the normalization condition g ris= 1. f is seen that, as
parameter ¢ takes on integral values greater than unity, the element
rgirbecomes infinite. This has the significance that for these values
of g there is no unique unfolded solution. Figure % exemplifies
this fact by showing two initially different spectra which become ident-
ical after a triangular response with q=2 is folded in.

The inverse matrix element r;i for a channel-integrated Gauss—
ian response (see entry 5 of Table II) is shown as a function of o
in Figure 10. The extremely rapid rise with increasing < is dictat-
ed by the factor exp( G‘Ewg/Z) in the integrand of the expression
for inverse matrix element. Since, according to equation (2.6.2),
the magnification in statistical uncertainties becomes rapidly un-
tenable, the practical application of this inverse matrix is limited
to values of ¢ not much greater than unity. However, in practice

it is <:sirable ©o have a high channel deunsity for the purpose of
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preserving as much of the fine structure as possible. This leads
to high values of ¢ (which is measured in channel units) andiﬁe
are thus faced with conflicting requirements.

Since the merits of fine channel mesh cannot be denied, the
difficulty might be resolved by modifying the inverse matrix. In-
stead of attempting to 'squeeze" the Gaussian into one channel, one
may have to settle for partial unfolding which would leave some
residual but narrower response function Rn(x)o The elements of a

"partial inversion! matrix (see Appendix IV) are given by

T
iw(k-£)
-1 _1 e <
r = 53 — e o rn(w-ann)dm . 2.6.3
- r (w)

where r%(w) is defined by (2.5.12) and (2.5.13). For a Gaussian
response the value of l/rd(m) is especially large near the integrat-
ion limits © = = T, Therefore, if we are to keep the magnitude of

rgé down to relatively low values, we must choose the residual

Rn(x) in such a way that its Fourier transform rn(w) is véry small

or zero near w = + m. It may also be desirable fhat Rn(x) have no
negative values. This can be ensured by choosing a.rn(w) such that

it is the convolution of some other function with itself, According to
the convolution £heqrem Rn(x) is then some function squared and hence
canhot have negative values. Within these requirements there is con-
‘siderable room for variationAin the particular form of‘Rn(x) chosen.
Some future effort may be warranted in search of an optimmum shape

such that for a éiven reduction in resolution width the magnification

of statistical uncertainties is minimized.

A powerful method of reducing statistical deviations can be
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derived by meking use of the a priori knowledge that intensity spectra
cannot have negative values. If the observed spectrum vector is g'
(as defined in (2.1,10)), then, due to the randoﬁ nature of §i, the
unfolded spectrum gfl ﬂr will generally contain some negative as well
as positive components. The condition of non-negativity can be im-
posed by adding a vector of corrections C to ﬂ' such that the result

gives

Rt +c) = o, _ 2,604

Equation (2.6.4) defines an infinite set of allowed vectors C . Out

lihood function

~ of this set we select a particular vector so as to maximize the like=-
2
"'_2'] 9 2¢6a5

T b

where ¢, are the components of vector C and v, are the variances in

I'\.'Oll--J

v
spectrum M . Maximum L is obtained by minimizing the exponent, i.e.

we have the condition

2
C, .
Z ‘-1—2‘ — mino 20 60 6
i A

It will be shown in section 3.4 that good estimates of the weights
l/viz'are provided by l/(m£+ 1), vhere m; are the components of the
" observed spectrum ﬁ' o

The problém as stated above can be given a geometricai inter-
pretation. If we consider spectra limited to N channels, then ex~
pression (2.6.4) represents N linear inequalities with‘N independent
variables Cse Each inequality defines a region to one side of a
hyper~plane in N-dimensional space. All ineqﬁalities combined de~

fine a feasible region for the vector C in this space. The solution
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is given by the particular point in this feasible region which will
minimize the objective function E(Ci%/viz). This is a problem in

i »
mathematical programming for which there are several methods of so=-

Jution available534I)Iowever9 the difficulty of solution is comparable
to numerical matrix inversion and in the following sample calculat-
“ion we shall use another approach which is simple-minded but perhaps,
for this application,; more practical.

An example of unfolding by matrix inversion is given in
Figure 11l. Part (a) shows the assumed true spectrum T(x) in the form
of a number of delta functions. Note that T(x) includes two delta
functions at the non-integral positions 71.5 and 92.5 for which there
is no representation in the matrix model, as explained in section 2.1.
Part (b) shows the spectrum M (x) obtained by folding in a channel-
integrated Gaussian response with ¢°= 1 and adding appropriate stat-
istical deviations. The deviations were obtained by sampling from a
set of normally distributed random numbers. After multiplication by
the inverse matrix gfl we' obtain the spgctrum shown in part (¢).
Large positive and negative oscillations caused by magnification of
statistical uncertainties are seen to obscure the true spectrum
almost completely. Part (d) shows the result after application of
non=-negativity calculations, which were based on a very rapid iterative
procedure. In cach iteration a search was made for the largest neg—
ative value in’the spectrum, which was found, say, at chamel y.
Then the following combination of inverse functions F(x) was added

to the spectrum:

A P(x=y) -% [F(x—y-l) - F(x-y-&-l)] o 2.6.7
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The amplitude A was chosen so as to make the spectrum couponent at
channel y equal to zero, Inclusion of the last two térms avolds the
introduction of a positive bias., The iterations were continued by
searching again for the largest negative component and repeating
the same process as above. If after n iterations the spectrum is
Tn(x),, then the addition of expression (2.6.7) to Tn(x) affects

only three channels in the spectrum R

-—

gno The value A is added to
channel y and % is subtracted from the channels (y-1) and (y+1).

The spectrum in Figure 11(d) was obtained after 1200 such
iterations performed on a base of 200 channels. The result is a
considerable improvement over the spectrum in part (c). All doublets,
except the one.near channel 70 are now clearly resolved. It is
interesting to note that the delta function originally placed at
position 92.5 ended up distributed between chamnels 92 and 93 in
about equal proportions. In principle, the results should be better
. if the counstraint of non-negativity were applied éroperly,by minimiz=

ing the objective function (2.6.6).



CHAPTER IIT

LEAST SQUARES APPROACH

3.1 Model Ecuation and Solution for Parameters

In Chapter II we dealt with thelmatrix model in which it was
assumed that the true spectrum can be represented by the components
of a vector T. Various methods of response correction were suggest-
ed for the purpose of obtaining a spectrum which would approximate T
as closely as possible. An advantage associated with these mzthods
is that no previous knowledge of the mathematical form of T is re-
quireds If the form of response matrix R is known, then the same
set of inversion calculations should be applicable to all spectra,
independently of the number or intensity of components present.
However, as was shown in section 2.1, the matrix model is limited
in that some types of spectra cannot be exactly represented by the
vector T » For instanceg'g cannot include transitions having ener g-
ies which do not correspond to channel mid-points. This limitation
is particﬁlarly iwportant when it is desired to make accurate tfans-
ition energy determinationsor

The least squares approach does not have this limitation,
since it permits consideration of any energy positioms. In fact,
the energies can be used as comtinuously variable least squares
solution paraumsters. However, the least squares approach requires
the use of a model function which imvolves %he response functions

and a perametrized form of an assumed true spectrum. Construction

62
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of this model function usually requires a detailed inspection of the
observed spectrum followed by an educated guess as to the number and
positions of the energy transitions present.

Application of least squares methods to the analysis of one-
dimensional nuclear spectra has received considerable attention in

(36,375 +evs 48)_

previous literature In the case of NaI(T4) Y-ray
spectra one great practical difficulty is encountered in the generat-
ion of a library of accurate response functioms. The usual procedure
(47,48) is to observe the response shapes of a number of standard
isctopes having the simplest possible spectra, preferably consist-
ing of a single energy transition. These respounse shapes are divide
ed into segments which can be fitted by some convenient parametrized
functions. The parameters thus obtained are in turn fitted to some
appropriate functions. of incident Y-ray energy. By methods such as
these one obtains a set of parameters which permit calculation of
response functions R(EQEO) for a continuous range of incident energ-
ies Eoo Since particular details of these methods are given else=-
where(q'?’brs)g they will not be discussed in this thesis and the
subsequent developuent Qill proceed with the assumption that the
response suriace R(EgEo> is known.

The surface R(x,y) is assumed here to be a continuous functe-
ion of both its arguments. In a nuclear y-ray spectrum we need
consider only a set of n discrete y-rays having energies Yy where
"4 =1, 2; eee 5 Ne Bach Y-ray 21l have an associated response

function which is digitized by integration into channel bins, If

zach channel is assigned unit width, then these response functions
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have the form
X+

Xi(X) = R(ﬁgyi)dxl 9 30101

K

where x is allowed to have only integral values. Summing over the
contributions of all y-rays we can write down the observed spectrum
model function
n
w = iil a; Xi(:x) o - 3ele2
The parameters a; are indicative of the Y-ray intensities and can

be expressed by
&, = 6. M 9 ' 30 183

i i i

where ///; is thg number of transitions Yi o;:curring in observation
 time T, and E,‘i is the detection efficiency of tramsition Yse
According to the statistical model derived in Chapter I,

¢

¢
the observed spectrum m, contains statistical deviations s - and can

be written as the sum
m o =m <+ S ° ' 39194_

For large numerical values of m the frequency function of s; can
be assumed to be normal with zero mean and variance . This fre=
quency function is given by f(s ;9 mx) in the expression (lole3).
Since. the N channels under consideration are statistically indep-

endent,; one can obtain an N-dimensional frequency function for all

]
the deviations s _ by simply weiting the product

N}
| ee )
L= gt "%
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1 N4 . n 2
= (const). exp -5 I =lm_ - I a; Xi(x) ] . 3ela5
x=1 "x &7 =1

L is known as the likelihood function of yarametemavai and finds ex-
tensive application to statistical estimation problems.

We can estimate the doefficients a; by the gethod of "maximum
likelihcod", It will be shown in the following section that this
method, based on maximizing L, is particularly advantageous in this
application since it provides unbiased estimates with minirum poss-
ible variances. Obviously, L is maximized by minimizing the exponent
in expression (3.1.5). This requirement leads directly to the well

known condition of weighted least squares; namely

N 1 [ n 2
= l_mx - I a; Xi (x) ] ——  mine 3,106
x=1 x i=l

Differentiating (3.1.6) with respect to a, and equating the result
to zero yields n normal equations

I
N m (x) n N X (x) X (2
= x;xk = T a£ = i Xk
X=1 x i=l

. 301e?

x=1 mx

where k = 1, 25 eoo ¢ no If the weights l/mk were known, then we
would be in position to use equations (3.1.7) for solution of the
n unknown quantities a;“ In section 3.4 it will be shown that the
expression 1/(m; + 1) provides good estimates of the weighting
factors; thus for all practical purposes we mey assume that the
welghts are known and proceed with the solution for parameters a e
Since equations (3.1.7) aré linear, they can be conveniently
represented in matrix notatiope We start by defining the N-row

and a-column matcrix
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©
®
L3

Xl(l) x2<1) o Xn(l)

xl(a) x2(2) e o o o xn(a)

X = . 3.1.8

¢ o ¢ S o e e o ¢ & @ 4o ¢ o

Xl(N) XZ(N) R

Xn(N)

After also defining the vectors

3.1.9

=
[{]
©

~and

é - ¢ 3. 1010

we can replace model equations (3.1.2) by

{[ =¥=éo 3.1011

¢
The statistical observed vector M was already defined in (2.1.1).
Since the least squares solution for A will have statistical prop=-
erties (indicated by the use of a prime), we define the solution

vector
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v
21
9
&2
¢
é = @ o 39 le 12
v
a
n
We now can write the vector of residuals
v 9 12
D =M =N o 3.1.13
08 '}
where M =X4A 3,101k

is the least squares estimate of vector M . Upon introduction of

the diagonal matrix of weights

2200 cecsa
L
0 %a-ouowo
0 ozg*f—-g“”o
w: m 9 391015
3
0 0 0 o000 oim
iy
the condition of least squares (3.1.6) can be rewritten
oT ;
P. Egﬁminog A301016

) ¢
- where the superscript T indicates the transposition of vector D .
Finally, we are in position to rewrite the normal equatioms (3.1.7)
in the new form

T 0
= WD =0, 301017

If we cdefine the design metrix

E = XT _-{ )é 9 391018

o
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then equation (3.1.17) becomes

el 3.1.19

S

B

i

. :
To obtain a solution for A we can multiply this last equation

by Qfl, provided the inverse matrix exists. The result is

9 o ¢
=3ty

I=

361.20

Matrix B has some important properties which we shall now
investigate. First‘of all, it is easily seen that B is symmetric
about the principal diagonal. In fact, from the definition (3.1.18)
we have

Be@fun’=-rur=28 .
It is shown in textbooks on statistics (e.g. Cramér(49>) that,
provided the columns of matrix X form a set of n linearly indep-
endent vectors (i.e. X has rank n), then B is a positive definite
matrix. This means that det(B) > O and that the inverse matrix B
exists. The condition that respounse functions Xi(x) be linearly in-
dependent should always be satisfied in a properly set up model.
Linear dependence indicates that one response function can be written
as a linear combination of others and is therefore redundant . We

can therefore assume that the inverse gfl

exists and the solution
(3.1.20) is obtainable. Since the inverse of a symmetric matrix is

also symmetric, we have

i .
(E-l) = B—l o

fo=tistical Proper%ies'bf the Least Squares Solution

The last section dealt with a method of obtaining estimates

for the coefficients a, aud showed that the required solution exists.
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In matrix notation this solution was expressed by equation (3.1.20).
Now we turn to the investigation of statistical properties of the
solution vector égo |

Pirst we shall show that the estimate gw is unbiased,; i.ee
the expectation in_gg or, in other words, the average value that
Qould be obtained after a large number (approaching infinity) of
identical experiments and solutions, is given by A« Using the symbol
E for expectation we can write

- ]
EET X wu)

E(4")

5L oI

¢
WEM) . 3.2.1

— -

Matrices B 1, X' and f were moved to the left of the expectation siga,

']
since they are definite quantities. Since M is assumed to be normal-

1y distributed with mean value M, we have

®
EM)=M=X4. 32,2

Thus equation (3.2.1) can be rewritten to yield the result

EQ) =BT BA=4A, 302.3

"~ which proves the assertion that estimates'é0 are unbiaseds

The statistical properties of a normally distributed vector,
such as gn can be conveniently summarized by the use of a covariance
matrix C, ., . JIndividual elements of this matrix are defined by the

M

expression

_ r{o_ w_
{.CM°} g = {(m -m) (mj mj)] o 3.2.k

According to this definition the diagonal elements represent var-
. s v .
iances of individual comgponents m., whereas the off-diagonal elemeats

. A , 0 ‘
are covariances between different components m and m_.. In the
i
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particular case ofocbserved vector Eﬁg the couponents are statist-
ically independent and hence all covariances are zero. Since the
weight matrix W is diagonal and has diagonal elements equal to
reciprocals of variances W, we immediately have the result

=L
Q.ZM? =Y N 34205

]
The covariances in vector 4 are generally not zero and we

shall now derive the full covariance matrix QA“ o If we make the

substitution

L T

P=EtEH .

then we can rewrite equation (3.1.20) in the simple: form

9 ¢

A =PM . 3.2.6
(50)

There is a theorem which states that, for a normally distribut-

¢ L
ed vector M ,the vector 4 is also normally distributed and has the

covariance matrix

Crﬂ =32 %M.r P @ . . 3-207

Accordingly we can write

n
o
L]
=
-
g
=

Cap =B X WU W LB

= § Py ) 30208
Equation (3.2.8) and the expectation statement (3.2.3) completely de-
‘ ‘ v
fine the statistical properties of solution vector 4 ..

§
It is possible to c..w that the least squares solution % pro-
vides a best unbiased estimate of the true vector A in the sense that

: v N - 3 . 3 »
components z. have wminimum possible variances. For this purpose we

” (51)

construct Fisher's information ... ix H vhich is defined %o have
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elements

2 .
-~ 3 log L
hij = B <-——-——-—-——-) o 36209

da, da.
i J
Carrying out this double differentiation on the exponent of likeli-

hood function L we cobtain the elements

N X, () X (x)
hyg= B
Jox=1 x
waich are identical to the elements of design matrix B. We now let

" ‘
4 have some other unbiased estimator A with a corresponding covari-

ance matrix Cpne Then according to an important theorem(sz) we have
T T ,.~1
CCnl > T HE Y, 502,10

vhere V is any n-dimensional vertical vector. Since H = B and, con=-
1

sequently, H =~ = Cyeo We can write the inequality
et >re, ¥t . 3.2,11

If we choose a particular vector V in which all but the jth compon=-

ent are zero, the above inequalilty reduces to

{'CA,,§ > {C‘“”} . 3.2.12
JJ Ji

9

This last expression proves that the estimate 4 has minimum possible
variancese.

In some applications it is necessary to deal with a nonlinear

i ¢

funct{ion of the components a; o When the variances of a; can be
assumed to be small, it is possible to derive approximate express=
. R . R . . _.,' ] ¢ ?
ions for the statistical properties of the function 7 (a gazge.ogan)o

1

Using a Taylor series expansion, in which gquadratic and higher order
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terms are neglected, we can write
el

PR - Bf ¢ )
£ =f= I == (ai -a) o 3.2.13

e dag
i

Squaring both sides and taking their expectation values we obtain

2
- 8f_ of
= b -——-—-L:.(a -a)(a -a)} 3. 2.1k
i j=1 %a aa,a. \

the quantity within square brackets is, by definition, the covariauce
between compornents ai and a:j (or variance if 1 = j) and is equal to

an element of the covariance matrix (',‘5‘9 . Hence we can write down

g
the variance of function £

2 z 2 g 2.1
O = .o A0 L4 30 o 5
£ igj=1 aai aaj

)
The expectation in £ is given by £ = f(alg By coo an) and within
the range of values where the linear assumption (3.2.13) is good,

L
the probability density function of £ is

2
B(£') = ——= em[ S CH) I) ] . 3,2.16
. \ 2n @}"

A commonly used measure of “goodness of £it" is the function

92 QT 9
X =p'up
A a
2y [ v 3
= %<1 m [Tﬂx - 1_1 ai XJ..CX)] o 3 20 l?
.2 x -

The expcctation in -X is equal to the mumber of degrees of free-
domg (N=i. . azd the &egrefe of departure from this value provides a

measure of confidence in the correctuess of the least squares model
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employed. Ixcessively low values would indicate that the estimates
of variances in the original data were too high, whereas too large
values of ?<a2 might be due to the model (3.1l.2) being incorrect.
The tolerable limits for values of }sz can be found in tables of

most textbooks on statisticse.

Application to Two-Dimensional Coincidence Spectra

In this section we shall consider the least-squares analysis
of two-dimensional time correlation experiments performed with det-
ectors x and yo Two methods of solution for the coincidence co-
efficients will be discussed. The first method is based or a full
least squares solution which in some instances may require the in-
version of an impractically large design matrix. The second method
avoids this difficulty by breaking ﬁp-t@e model equation into parts
and then performing a 1east>squares calculation for each part in turn.
In general, the two solutions lead to estimates having different
statistical properties. Full covariance matrices will be derived
for both methods of solution and comparisons of relative variances
will be made.

Some practical uses of the coilncidence coefficlents aij will
be also discussed together with some sample calculations. It will
be shown how they can be used to determine y-ray cascades, branch=
ing ratios and even absolute decay rates without requiring knowledge
of detector efficiencies,

Suppose that detector x produces response functions Xi(x)9

-~

where 1 = 1. 27 cee o n e The subscript i indexes the o types of

muclear transitions to which detector X is sensitive. Similarly we
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let detector y have ny response functions Yj(y)a In general the
numbers B and :a;y may be different. We could have, say, detector
X sensitive to P-rays and detecvor y to yv-rays. The function Xi(x)
would in this case represent the experimentzl B-ray spectrum with
end-point Ei* whereas YjQy) would be the response to a y-ray of
energy Ej. In the particular case of a Y=Y colncidence spectrum we

expect to have n = nye We assume that the normalization condition

W

"z Xi(x) =3 Yj(y) 1 applies. With this stipulation the response

X
functions can be thought of as being frequency functions over their
respective channel bases. . ‘

If counters x and y operate freely without coincidence gating

we have the one-dimensional model specira

e} .
- ,
Mx(x) = 5'2 axi Xi (X> 30301
i=1 '
and
pie
M) = % Y. (¥ 3632
y = 5e1 %3 3 Vv .2

where the coefficients can be expressed in the form

a = 5ﬁ/Vi . 3.3.3
a4 = €, /Vj . 3¢ 30k

The mumber of nuclear transitions Yy in time T is given by V4§ and the
total detection. efficiencies are represented by éixi and é;y3°

When coincidences between detectors x and y are demanded the
resultant spectrum fills a two-dimensional array of size N%ﬁy, Since
detector x is independent of detector y, the two-dimensional frequen-

cy function for a coincidence (i,3j) is simply the product Xi(x) Yj(y)a
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Upon summing the coincidences between all possible pairs (i,3) we

obtain the spectrum model

bl 4
w Ty
Ma (X«;y) = iil jil aij }Li(x> Yj(:’\]') o 30395

The coincidence coefficients are given by

a5 &g & l:wij(e) /!/;jafk% /}/‘J . 3.3.6
where ﬁij (®) is the angular correlation function averaged over all
relative angles subtended by the two detectors, “W;j is the number

of coincident transitions (i,3) and k is related to the coincidence

resolving time T through the expression

2T =k T, 30307
The second term in equation (3.3.6) represents the contribution due
to chance coincldences,
The function ﬁij(@) is usually unkunown during the initial
stages of a decay-scheme study. However, its variations are relative-

(53)

ly small and for most practical purposes we can assume
Wij (@) o l @ 30308

Solution for coefficients aij can be effected by the applicat-
ion of least squares technigues to model equation (3.3.5). There are
nxpy coefficients; hence the full least squares solution requires
the inversion of an nxpy by nxpy size design matrix, Clearly, this
matrix can become prohibitively large when n_ and ny reach the
neighbourhood of 10 or more.

For large scale problems we caa use a solution by parts in

which the dimensions of x and y are treated separately. Model equat=-
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ion (3.3.5) can be rewritten in the form of two coupled equations<1)
nx .
M, (hy) = T g () %), 3.3.9
ny
qiﬁy) = jzl 33 5 Yj (y) o 3.3.10

If the value of y is fixed, equation (3.3.9) can be used as a model
for a least squares fit in the x-dimension. This calculation, yield-
ing n coefficients qi(y)g can be carried out for all the N& values
of y in the data field, As a result, least squares estimates are
obtained for all an& intermediate coefficients qi(y). Next we can
fix the value of i and, using model equation (3.3,10), perform a
least squares fit in the y-dimension. After o such calculations one
obtains estimates of all nxgy values of aij o

lhe solution by parts requires a total of ﬂy +n, least
squares calculations, each juvolving the inversion of a size o by
n  or ny by gy design matrix which is considerably smaller than the
nXEY by nyyy design matrix in the full solution. This reduction in
matrix size is a decided advantage in tbat a larger number of muclear
transitions can be considered in the analysis.

L‘here is énother practical advantage to the solution by parts.
The simultaneous solution does not provide estimates of intermediate
coefficients qi(y) which represent a one-dimensional spectrum in co=-
incidence with the ith miclear transition. These spectra are import-
ant because they provide additional iusight into the model. For
instance, they may provide a basis for improving fhe accuracy of

empioyed response functions or they may even reveal the existence of
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new transitions which were not included in the original model.

When we write down definite (mon-statistical) quantities, the
coupled equations (3.3.9) and (Z.3.10) are mathematically equivalent
to the model equation (3.3.5). In the least squares calculations we
are dealing with statistical intermediate coefficients q;(y) which in
general do not satisfy an equation like (3.3.10) but are distributed
around its values., Therefore the solution by parts can be expected
to yield estimates of aij somewhat different from the true least
squares estimates of the full solution. The character of this
difference shall be investigated below. It shall be shown that both
types of estimates are unbiased and that the solution by parts gives
estimate variances greater than or equal to the full solution var-
iances. This reduction in accuracy is the price exacted for the
practical advantages offered in the solution by parts. Fortunately
it turnms out that the increase in variances is usually small - only
a few percent in the examples considered below. Full covariance
matrices of the coefficients aij will be derived for both methods
of solution.

As was done in the foregoing sections, we assume that the ob-
served spectrum M;(xgy) is normally distributed with the variance in
each channel being Ma(xgy)a The contents of different chaunnels are
assumed to be statistically independent. We could again write down
a likelihood function and maxdimize it with respect to the parameters.

However we go directly to the ensuing least squares condition
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2

N N

xyr‘,( >x:ch nz (x) c>:\/< )

z z M, (Xy) - L a,. X, (x) Y.(y M (X,¥) —> min.
x=1 y=1 \_2 1=1 gex 3T 2

2.3.11

Differentiating (3.3.11) with respect to &g and equating the result

to zero we obtain nxpy normal equations

N N

X ¥ v

Tz x(x) Yz(:r) My (x,3) / My(x:y)
x=1 y=1

ey N
n§§ T X 1) X6 TG /M (ay) 3.3.12
= ' a. . XY,,y - AKX .y Mny 9 e o
i1 g Mg x0T ERDO 2

where k = 19 29 ceoy nx and £ = lg 29 evayg ny .

Expression (3.3.12) represents the normal equations of the
full least squares solution. In order to discuss the solution and
its properties in a systematic mauner, it is convenient to use methods
of matrix algebra. Some matrices will consist of smaller submatrices
and their detailed expression would normally require cumbersome spat-
ial arrangements of elements. For this reason a special type of
notation is adopted. Matrices and vectors will be represented by
enclosing a general element between double vertical bars. Two super-—
scripts outside the bars will indicate the number of rows and columns.
Curly braces will be used to denote a general matrix element, wheth-
er it be just a number or a submatrix. TFor example, we define the

matrix of line shapes
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Yl(l) L, ... Yny(l)
Y = Yl(z) Y2(2) o o o Yn (2)
5

.Yl(Ny) YZ(Ny)' . o Yny(Ny)
; N .n

_ . vy

= {Yj(y) } ‘ ° 3.3.13
Tod

The subscripts y and j indicate the row and column of the geuneral
element. Carrying this notation one step further we define & matrix

of submatrices
N on
N .n x* T x
Yy

X, (x) Y.(y)} e 3e3e1lk
“{ * J Ysd

XQi’

({8
#

The outer superscripts Nx and n, refer to the numbexr of rows and
columns of submatrices. For elements the number of rows and columns
is NxNy and nxpy respectively.

The spectrum Mz(xgy) can be represented by the vertically

arranged vector (one column matrix)

&2 = {MZ(XQ') }y 1

qul
N oL
J
o 363615

X, 1

Likewise, for the coefficients a; . we use the vector

n,1
5.2 = {!

in ,l X
J . 3,3.16
i1

With these definitions we can write model equation (3.3.5) ia tie

“13 }M

simplified matrix notation

M_2 = E .%2 . A 3e3.17
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To rewrite the normal equations (3.3.12) we make use of two further

definitions. Let D, be the vector of residuals

9
Do =y~ Z Ay s 3.3.18

where the primes on ﬁe and &2 indicate the coresponding statistical

vectors. We also introduce the diagonal matrix of weights

§
N&gy ?Nx,Nx
& .
J
W, = ~4%—~—$ o_. s 30319
2 {ME “Jy %y'aj = X,
Now the normal equations (3.3.12) can be replaced by the equivalent
expression
R 20
By dp =% Wyl 3.3
where
B, =20 W, % 3.3,21
72 ha

is the symmetric design matrix. If we obtain the inverse of this
matrix, then we can write down the full least squares solution

- ¢
A =3t Zfwu

4 =B LY. 33.22

A sufficient condition for the existence of inverse matrix B,
is that the response functions Xi(x) and Yj(y) form two sets of
linearly independent vectors (see Appendix V).

The same arguments as were used in section 3.2 can be
applied here to derive the statistical properties of solutiomn vector
A;. We have the obvious result that the normally distributed es-

, :
timate AZ is unbiased and that its covariance matrix is given by
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C.,=38 . 3.3.23
a " =2

]
Since 52 is the result of a full least squares solution, its individe

ual components have minimum possible variances.

We now turn to the problem of the solution by parts and con-
sideration of its statistical properties. As stated before, this
#
solution is expected to yield estimates A, different ifrom the full

)
solution estimates 4, + It will be necessary to introduce the follow-

2
ing quantities: the matrix of response functions in the x-dimension
Nx’nx
X = {xi(x) 9 ) 3.3.24
: Xod
the data vectors
N_ o1
X
% ]
T I, : 3.3.25
x,1
vectors of intermediate coefficients n .1
- x’
v 0 .
g = o @ } g 3.3.26
A il
the diagonal matrix of weights N N
x*x

%]

W = . 02

and the positive definite design matrix

T
F =X W X e e Je 28

Using model equation (3.3.9) we can obtain least squares estimates

of the intermediate coefficients

o =Ty C 3.3.29
-hy-;dr—%_y. . /e .
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9
It can be easily shown that the estimates gy are unbiased and that

they have the covariance matrices

c.. =F o 303+30

Next we turn to model equatiom (3.3,10) which we use for fitting the
] .

data in the y-dimensiom. In the set of any coefficients qi(y) we

will now have to fix the value of i and let ¥ vafye Therefore the

coefficients wust be rearranged into a new set of vectors

’ N 1
Eqi(y) }y L

g J
q 3
Since all components of Q*i are calculated from statistically in-

9 = 3.3.31

o

dependent sets of datay the vector has a diagonal covariance wmatrix.

" In fact we have N N
' ¥

C =1 o . 03032
Q¢ = {Fy % Bz . g B33
lod Jed

vhere {F;]‘} is the ith diagonal element of the inverse matrix
S1,

We define a matrix of weights

-1
W = QQ? 363¢33
i
and a vector of estimates for coincidence coefficients,
' n .1
yQ
{ ] 3‘ 3034
13

391
. Then by the use of model equatlon (3.3,10) we can obtain the solute

ions

A=K YW 9 3.3.35
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where the positive definite matrix Ei is defined by

K, =Y W, r. 303036

As before, we have the result that the solutions are unbiased estim=-
ates of the true coefficients aij and that the covariance matrices

are given by
C ot = K @ 3.3037

From this last expression ome can obtain all variances éf the estim-

ates a;j and also the covariances betiween terms with equal i. The

other covariances are generally not zero and sre as yet undetermined.
In Appendix V it is shown that the full covariance matrix of

the vector

n ,1 ln_,1
Ali _ {a" } J X 3.3.38
=2 L3 dy 1,1
is given by
Con = u{ I_C.;l r LEg l&}l } 1 . 3.3.39
2 i,
The diagonal matrix gij is defined by
U.. = (y) & Y 343,40
=ij = {?ij Y %y }k,y ' "
where F-l
) = T D1 3.3.41
f13 "

J
-1 -1
F iy
{Y }iVi {S’ ‘gjai

Consider now the diagonal submatrices of Chue
2

{ xtyTy v KTl} = Kgl ¥ oy v k7T
igi

Putting j=i we obtain

. 30 3. 42



This result agrees with the covariance matrices given by equation
(3.3.37)e The off-diagonal submatrices of gAﬂ give covariances which
2

were not obtainable before, namely covariances hetween coefficients

1
aij having different values of 1.

- 10
According to the inequality (3.2.12), the variances in Ay

greater than or equal to the corresponding variances in the full

are

9
solution vector 52. An exact comparison of variances can be made

only after inverting the full solution design matrix 52. This,
however, may be impractical in a routine calculation since one of the
reasons for going to the solution by parts is precisely to avoid
such a matrix inversion. It is therefore desirable to have some

.
simple method of determining lower limits to the variaunces in éao

The design matrix §2 can be written in terms of submatrices §ij 9

x*"x
B = {Qij }ii l ’ 3:3.43
where n_ n
g ¥
_B_ij = {ng Xi(x) Xj(X) YP(Y) Yq(y)/ Ma(x’y)} N 3.3044

Peq
. ]
It can be shown that for variances D(aig) in the vector éa the foll-

owing inequalities hold (see Appendix V)

2
ipd

D(allg) 2 {Q}:i } > "B—L- s 3.3.45
Lok {- .
where the index i is given by

i-= (-1) n.y + 4o

h

In expression (3.3.45) the second term represents the £ diagonal

element in the inverse’of KB diagonal submatrix B, ,. It is the
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stronger of the two given lower limits. The weaker limit (last term
in (3.3.45))is. just the reciprocal of 18 diagonal element in matrix
..Bi.a‘

These limits can be used to establish upper bounds on the mag-
nification of variances introduced th:ough the solution by parts.

Some examples of actual variance magnifications and calculated upper
linits are given below.

The models chosen for the purpose of comparing variances are
based on the simple scheme of two y-rays in cascade. A computer pro=-
gram for generating response functions corresponding to a'3" x 3" NaI(T4)
detector at 10 cm. from a y-ray source was used (Archer(47)) .

- Regponse functions were assumed to be identical in both dim-

ensions and were generated for an assumed analyzer gain of L0 keV/

channel, . Assuming that a)4= 8oy = 0 and that P 100, the
model coincidence spectrum is

v _ . B

My Gay) = 100 160 X, + %, @) ] 3,316

A set of 13 models characterized by different response functions
Xz(x) was usede Function Xl(x) was kept fixed with its photo-peak
centeredin channel 20. The photo-peak position of Xa(x) was varied
from channel 30 to 20.1 in steps as shown in column 1 of Table III.
The spectrum field size used was 33 x 33 channels. With the
given response functions (having shapes similar to tﬁe ones in Fig-
ure 13) the spectrum has some regions of zero content. Consequently
the weighting function l/Ma(xgy) contains singularities. This dif-
ficulty was eliminated by slightly modifying the response functions

with the addition of a constant equal to 10,



TABLE IIX

Comparison of Variances

36

Peak Positions, | Singularity Average Average | Stronger| Weaker
Parameter Variance Variance| Upper Upper
- Channel Nos. s D('a«ij)' ' Ratio Lfémit ij‘it
S w
20,30 165 130 1,030 | 1.227 | 1.502
20,29 kS 136 1,035 | L.240 | 1.538
20,28 2l 143 1036 | 1.255 | 1.582
20,27 507 148 1040 | 1.271 | 1.620
20,26 21 144 1.OKL | 1.262 | 1.601
20,25 <1495 123 1.0k2 1.218 | 1. 466
20,24 .590 103 1,040 | 1.167 | 1.339
20,23 .592 103 1042 | 1,163 | 1.336
20,22 .379 154 1,058 | 1.295 | 1.661
20,21 3.71 x 1072 | 702 1.03%6 | 2.19 5.13 .
20, 20.5 b x 107 | 8,05 x 10° 1,00k | 6.68 | k7.2
20,20.2 2,25 x 1070 1,23 x 10° 1.000% | 26.2 1667
20,20.1 2.2 x 1077 | 416 x 107 1.0001 | 46.9  [2240
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! g
Variances of the full solution estimates a, . and the solution
1
by parts estimates aij were calculated for each model., Column 3 of

Table III gives the average variance

v 1 2 7

D(aij) =7 i,?:l D(aij) 3e3. 47
which is seen to increase gquite rapidly as the two photo-peaks reach
close proximity. The average ratio of variances ’

1 2 ] v

r=F I [D(aij) / D(a.ij)] \ 3.3.48
i, j=1 .
is givén in column 4. It is seen that this ratio is very close to
unity, the greatest departure from that value being only 5.4%,
The second column of Table III provides a measure of the

approach to singularity of design matrix ge. Since EQ is positive
definite and symmetric, the ratio of its determinant to the product

of diagonal elements cannot be greater than unity. In equation form

we have the singularity parameter

s = —2. £ 1. | 3.3.49

If §2 were diagonal this ratio would equal unity. However, diagonal-
ity cannot be had in §2 since the response functions used do not pos-
sess any orthogonality properties. For photo-peak separations great-
er.than one channel the value of s is near 0.5. As the separation

is reduced, matrix §2 approaches singularity and the ratio s tends

to zero. Uncertainties in least squares solution become very large

but the ratio of variances, r appears to approach unity.
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Upper limits for the ratio r were calculated by the use of

inequalities (3.3.45). Column 5 of Table III gives values of the

] o 3¢3.50

i 33
D(ay ) = [xi(x) )/ Ma(x,y)] . 3.3.51
J Xyy=1 J

stronger upper limit
2

1 " ~1
35 =% ig?zl [D(aij)/ {Eii %

The weaker limit, given in column 6, is
2
1
by=%
i,)=

Jg 3

1
For most of the models tested both limits remain close to unity and
therefore are useful. However, these limits provide little inform-
ation when s approaches zero., This limitation is not serious, since,
in the cases where s is very small, the uncertainties are so great
that the practical application of a least squares solution may be=
come unfeasible.

Variances resulting from the two methods of solution were
calculated also for the example given below, which has four y-ray
transitions and consequently 16 coincidence coefficients a .o The
average variance ratio r was 1.0l. It would thus appear that in
most practical cases the magnification of uncertainties intro-~
duced by the solution by parts is insignificante.

In order to illustrate the potential power of coincidence
analysis an example of calculations was carried to conclusion. The
hypothetical decay scheme used is shown in Figure 12. There are
four y-ray transitions indexed from 1 to 4 in or&er of their ener-
gies 410, 600, 650 and 1250 keV. Intensities are indicated by the
total numbers of transitions u/7; which occurred during the time

of experiment. The first transitiz- “(l is shown to have occocurre—
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ence of 107 counts. Following this there are 2 branches. Trans-
itions Y, and 73 in cascade have an occurrence of 70%, whereas the
- single Y, takes up the remaining 50%.

In order of increasing energy the total efficiencies used
were 0.29%, 0.293, 0.293, 0.283 for detector x amd 0,265, 0.265,
0,265, 0.254 for detector y. The parameter k in equation (3.3.6)
was fixed for 10% chance coincidences by setting k ¢?1 = 0.1, Res-
ponse functions were generated using the different gains of 20 keV/ch.
in the x-dimension and 25 keV/ch. in the y-dimension. The set of
functions for the y-dimension, Yj(y) is shown in Figure 13. A
data field of 3100 channels was used with Nx = 62 and N& = 50,

Model one-dimensional and two-dimemsional (coincidence)
spectra were calculated by the use of equations (3.3.1) through
(3.3.6)s Angular correlaéion effects wére neglected by setting
Wij (8) = 1. To simulate experimental spectra statistical deviat=-
ions sampled from appropriate normal distributions were added to
the models. Resultant values were rounded off to the nearest inte
eger to give the final channel content Me. Iz Mw came out negative,
it was erbitrarily set to zero.

The one-dimensional spectrum in the y-dimension, M;(y)g is
shown in Figure 1k, All four response functions of Figure 13 show
their presence in various intensities. 4 least squares calcﬁlation

6 6 6

produced estimates a . of 2,6528 x 107, 1.8537 x 107, 1.8556 x 10

P v
and 7.6189 x 10° in order of increasing jo The largest fractional
deviation from model value Eyj JVE occurred in the first co-

] N
efficient ayl and was Q.11%. The content of each channel in spectrum

M;r(y> is quite large (M' > L4000). Consequently the statistical
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deviations wvhich are of the order MT represent a small percentage -
too small to be visible in Figure 1&. With these 'good statistics®
the use of weighting factor l/‘}}w in the least squares calculation
provided an adequate approximation to the true weights 1/M. A sim-
ilar analysis of the spectrum M;(x),in the x~dimension yielded
coefficients a;i of 2.9417 x 10°, 2.0473 x 10°, 2.056% x 10° and
8.4843 x 10°. The largest fractional deviation from the model value

-was 0.26% in the third coefficient. These coefficients will be of

use in determining the absclute intensities ,%; later on.

The generated coincidence spectrum M;(x,y) contains
areas of very low channel content . TFor these chaunels ],/Mg can
be a very poor approximation of the true weight. An iterative
process was used to obtain befter wéight estimates. Veilghts l/Mq
were used in a preliminary least squares solution by parts.
Channels with M < 5 were ignored in the calculation. The ensuing
coincidence coefficients were then substituted in model equation
(3.3.5) to obtain the improved weight estimates I/M". A second
least squares solution by parts (rejecting channels with M”<L 5)

i
yielded the final estimates as Comparison of results obtained

j.
with various weight estimates is made in the following section.
¢
Intermediate coefficients qi(y) are plotted in Figure 15. Each
shown function corresponds to a spectrum in the y-dimension which
is in coincidence with the ith transition recorded in detector X.

Except for small contribution due to chance coincidences, we see only
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¢ 1
transitions v, Y5 and v, in ql(y); Y, end Y5 in qa(y); Y, and Y,
) ?
in q3(y) and finally - only Yy in qh(y). These spectra are simpler
than the one-dimensional spectrum of Figure 14 and therefore can be
advantageous in studying response function shapes or in searching

for new transitions not included in the old model.

Using equations (3.3.3), (3.3.4) and (3.3.6) we can obtain

a3 My
a_. & . . .
w Byy M

+ ke 343052

Since “W;i = O, the diagonal elements in the above array determine
the parameter k. This can be subtracted from the whole array leaving
the simplified elements ‘4£j /Q /7; ,43). The & by & matrix of
these simplified elements (calculated from the results of least
squares solutions) is given in Table IV. The value of the chance
parameter k was calculated to be k' = 1,017 x 1589 which is 1. 7%
above the model value.

Diagonal elements of Table IV are expected to be zero. The
degree of their departure from this value is a rough indication of
the overall accuracy of the entries in the table. The large values
of second, third and fourth elements in row 1 and column 1 indicate
that transition Yl has cascade coincidences with all other transite
ions. Thus Yy cannot have any competing branches. Further examinate
ion of Table IV reveals that transitions Ys and Y3 are in cascade,
whereas YQ forms a separate branch . These conclusions are in agree-

ment with the originally assumed decay sclhieme of Figure 12,

For ,Ag > /‘G it is possible to write



TABLE IV

ol ¥ ¥ 8
Matrix of Values [:./igj / (‘A[i /VJ)] x 10

J
5 1 2 3 L
1 -0, 018 10,023 9. 932 9. 975
2 9.982 0.018 | 14.276 | -0.039
5| 9.923 14,225 | -0.011 | -0.033
L 10,032 -0. 003 -0, Ok1 0. 010

)



3ot

Nos 7 My N = M w55/ Mgy S

= YV N 3.3.53
where aij is the fraction of transitions s leading to transitions
Y; Averaging elements with (1,3) equal to (1,2), (1,3), (1,4), (2,1),
(3,1) and (4,1) we thus obtain the value 9.978 x 10-8, the reciproc=-

al of which yields

My = 1.0022 x 107 .

This result is only 0.22% above the model value A

1° Similarly, from

elements (2,3) and (3,2) we obtain the estimate

JV; = JV; - 7.018 x 10°,

which exceeds the model value 7 x 10 6 by only 0.26%. An estimate
of the intensity in the competing branch Yy is obtained by simply
taking the difference in - JV; o

These conclusions, derived from Table IV, required no knowled-
ge of the detector efficiencies. Since the latier quantities are
either unknown or difficult to obtain; their elimination can be a

great advantage in studies of nuclear decay schemes.

Choice of Weighting Fumction

The general least squares solution discussed in the first two
sections of the present chapter requires advance knowledge of the
weighting function. This information is often not available and
one is forced to resort to the use of some estimate of the proper
weightss When the data vector is normally distributed, the required
weights are equal to the reciprocals of variances. Use of these

weights accounts for the fact that various data points have un-
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equal uncertainties and hence must be assigned different degrees of
importance in the least squares analysis.

In nuclear counting experiments the content Miin any given channel
has a Poisson frequency function (see Chapter I). If the mean, or ex-
pectation, value is denoted by My; then the variance is given by
E(M'- M)2 = M. For large values of M (say M > 5) the Poisson frequency
function assumes a nearly Gaussian shape; consequently the maximum like=
lihood criterion leads to the method of least squares.

Since the true weights 1/M are unknown, a common practice is to
use the estimate l/M‘. This can lead to some difficulties, especially
when the spectrum contains channels with low counts. The value of Mw may
be zero, leading to a meaningless infinite weight even when the true
weight 1/M is quite small., This necessitates special treatment (or com-
plete exclusion) of channels with zero content. Moreover, the weight ex-
pectation E(L/M ) is generally different from the more realistic weight

]
1/E(M ). Using the Poisson frequency function

pae' ) = off' s 'l oy ™, 3.4,1
we have
E/u"= ® pat'w) m) 3.4.2
ET

where Mg is the lowest channel content not rejected from the least squares
¥
fit., Ratios of E(1/M ) to the true weight 1/M are shown by the solid

curves in Figure 16. The six curves were calculated for Mﬁ = 1,2,3,4,5

¢
and 10, It is seen that for most values of M the estimates 1/M tend to

be too high. For MZ = 1 the excess is almost 30% at M = 4 and gradually

diminishes with increasing M. At the high value M = 100 the excess is

about 1%.
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It appears that a better estimate of weights can be ob-
tained by using 1/(M +1). Vith this estimate chamnels with zero content
reQuire no special consideration. For a given value of M we can express
the weight expectation

T ptura) [1/Quee)]
M=l ,

E |1 (41 ]

Mﬁ‘ n
l[_-M M]
i l-e n§o ar . 34,3

When no channels are rejected (i.e. M, = O) the ratio of E[:lﬁﬁ’+li]to

£
1/M is simply 1 = e_M,~which rapldly approaches unity with increasing M.
These ratios are shown in Figure 16 by the dotted curves calculated for

M, =0, 1, 2 3 k, 5 and 10, It is apparent that the averages Eg:l/(M'+lﬁ
approach true weights 1/M much faster than is done by values E(1/M') of

the solid curves.

Better weights than either of the two above eStimates can be obtained
by a process of iteration. The above weights can be used in an initial
solution for the least squares parameters. The latter can then be sub-
stituted in the model equation to get model spectrum estimates M" for each -
point in the data field. A second least squares calculation can then be
performed using the more accurate weight estimates 1/M'.

Various welghting schemes were tested Ey using the previously dis~
cusged (section 3.3) two-dimensional spectrum with 16 coefficients aij“
Ileast squares solutions by parts were performed with three varieties of

weights and a number of acceptance limits M A basis of comparison was

’g.
obtained by defining the dispersion parameter

L ( )
d = . z-: ai 2 ai
i, j=1 2
o

ij

_)2 . 3. b b
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The same set of variances crij was used in all calculations of d. This
set was obtained from the covariance matricesiggl in the solution with
weights W= l/M" and acceptance limi% ME =5, In a good fit d is ex=
pected to have a value near 16. Larger values will result when the
estimates a;j have excessive deviations from thé model values a, se
Results are presented in Table V. Column 1 shows the acceptance
limit M, ranging from O to 25, Columns 2 and 3 give the number of chann-
els which fell below the limit MZ and were excluded from the least squares
calculations Results in column 2 obtain in calculations with weights
w' = l/M‘ and w' = ].,/(M’+l)9 whereas column 3 corresponds to the weights
W= l/M". The last three columns give the parameter d obtained with
various weights. The iterative weights l/M" were calculated from the

4 '
results of an initial solution with W = 1/M and M, = 5.

4
9
In all cases the weights 1/(M +1) appear superior to the weights
' s
1/M 4in that their associated dispersion parameter d has smaller values.

As expected, the difference diminishes with increasing M Also eX-

o
pected is {he observed general tendénqy for d to decrease at higher
values of Mﬁ' On the other hand, the iterative weights l/M" yield
values of d relatively independent of Mﬁ within the range of values
used. It thus appears that in cases where channels with very low con-
tent must be uséd, the iterative weights l/M" are preferable. When

Mﬁ can be set at 15 or 20, the weights 1/(M'+l) seem to be adequate.

¥
The use of weights 1/M is not recommended for any condition.
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TABLE V

Test of Various Weighting Functions

g;;igtance ggg e:ieghizf:ei'? 3100 Dispersion Parameter d

M, W, |oH < H, wo=am o Ju =) fw o= v
0 0 - - 55.0 -

1 167 193 38.5 26.8 12.5

5 588 570 25.3 249 ' 13.6
10 750 765 35,4 32,3 14,7

15 836 835 14,9 1h.7 14,9

20 890 897 L 16.0 15.9 14,7

25 959 947 13.8 | 13.6 14.7
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3.5 Application to Nonlinear Models

The models considered thus far had the property of being
linear functions of the least squares parameters. This led to
linear normal equations which could be solved by relatively simple
matrix methods. However, the use of more complicated model funct-
ions usually results in a set of normal equations which are very
difficult to solve. Some modification in approach is required to
facilitate the practical solution for the pertinent parameters.

Nonlinear models are essential for accurate determination of
energies in nuclear spectra. Many detector response functions in-
volve a peak which has a shape well approximated by a Gaussian
function (e.g. the photo-peak in Figure 1), In order to determine
the central position-and hence the energy associated with the Gauss-
ian peak -~ it is necessary to perform a least squares calculation
based on this nonlinear model.

(40, bk, 47)

One practical method of solution linearizes the
model function by expanding it in a Taylor series and neglecting
terms which are higher than the first order. With this method it
is necessary to provide initial estimates of the least squares
parameteré. If the estimates are good, then the required correct-
ions turn out to be small and the linear approximation is fairly
accurates The calculations can be repeated with the new correct-
ed values being used as estimates. After several such interations

the calculated correctionsusually become insignificant and the pro-

cess can be stopped.
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We define a general model function

M(X) = M(alg aag eoe ¢ & ; X) 395.1
and denote by M°(x) the function obtained when initial estimates
o
a; are substituted in (3.5.1) The function M(x) can be approx-

imated by the truncated Taylor series

1 o Do (x) 1
M (x) =M (x) + = =322 A, , 3.5.2
. i
=l Ba,
i
where
1 0
A a; =a; -a; o 3e5e3

We can now state the least squares condition

N n
[ MG - ) - =
x-l Ml(x) i=1

2
a1° (x) Alaj] —3 min; 3.5.4
a2
i
where, as before, the data vector is represented by M'(x) ¢ Treat-
ing the corrections Alai as our least squares parameters, we obtain

the set of n normal equations

N N o el o
5 ll [M (x) = M ( ):’ oM (x) = 3 11 aM” (x) 5 oM (x) Algai ,
x=1 M (x) x=1 M (x) aa‘°k i=1 aa;’

3545
where the index k can have values 1, 2, e;., e
These results can be gathered into a neater matrix represen-
tation. Using the symbolism of section 3.4 we define the matrices

and vectors

N,1

1

Moo= 3.5.6

P

{te -w'w §, .
Nyn

& aMo( )
P . {_;_E . 3.5.7
da, . ‘ :
i X,
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n,1
él = {Alai % 9 30508
i1
N,N
&
1 .
ﬂ = { ix 9 3.509
M (x) i,x
T
3°= 2° ' o°
‘ {n.n
N o 0
- 5 1 M- (x) aMo(x) . 3.5.10
x=1 Ml(x) ad? da 3
‘ ig]
The model egquation (3.5.2) becomes now
it = p° At 3.5.11

and the normal equations (3.5.5) can be replaced by
=

Pt = 3.5.12
where
Ngl . : :
wt' - {M'(x) - 10 (x) } . 3.5.13
X1

4
Solution for the vector of corrections g& can be effected

by the inversion of design matrix §?a The components of this vector
are added to the initial estimates ag' to obtain a new set of es~

timates

1 2 .
1 o 1
ay = a; + A a; . 3.5.14%

If all superscripts are increased by unity, then the same set of
equations (3.5.2) to (3.5.14) will describe the second iteratiom.

The iterations are continued until the added corrections in equation



106

(3.5.14) have negligible effects
In gemeral there is no assurance that the process converg-

2
es to give estimates a; which will minimize the function

- 2
3 N v 0 v
\ ’ 2 = n T‘v‘:“"‘ ‘_.V O 3‘:) S I4(3.19 a29 eee g an';; X)] @ 30 59 15

There may exist local minima which provide non-optimum estimates
aiq or the process may not converge at all. Much depends on the
model function used and the choice of initial estimates. Fortun~
ateLyAa Gaussilan model has good coavergence properties and its para-
meters are usually easy to estimate by a visual dinspection of the
spectrums Thus the method is well suited for determination of
transition energies. However, when the model includes more than one
peak located within the width ¢ , the results are not always pre-
dictgble. In such cases use might be made of the "parabolic method®
discussed in detail by Archer(47)9 Near its minimum value, X'Z is
nearly a quadratic function of the parameters a;. By calculating
X’Z at various values of a; and fitting the results to quadratic
functions it is often possible to find a set of parameters a; which
will minimize X“a.

In general the estimates a; are not normally distributed
when the model function is nonlinear, Their exact distributions
are not easily determined and may requiré numerical Moante Carlo
calculations. However, if certain conditions are satisfied, the
actual distributions can be nearly normal. Consider a Taylor ser-

ies expansion of M(x) about the unknown true values of parameters
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a.. We have
i

n

R oy Mx) ¢
M(alg a29 eve an H x> = M(X) + ‘2 3a. (ai,- ai)
i=1 i
+ (higher order terms) . 3.5.16

If we assume now that the variances in estimates a; are small, then
over the range of most probable values of a; the differences (a; - ai)
will also be small. Consequently we can neglect the higher order
terms and expression (3.5.16) becomes linear in the parameter estim-
ates a;. When the initial estimates a: are not too different from
the true values, the iterative solution is independent of the values
ag and converges to the same set a£ o Therefore we can assume that
our initial estimates were the true values a, without altering the
gistribution in a; . With the limear approximation in (3.5.16)

only one iteration will be required to cbtain the least squares es-
timates a; and this solution will have the same statistical proper-
ties as the solutions of the linear model in sections 3.1 and 3.2,
Congequently.hﬁe can say that the estimates a; are normally distrib-

" uted, that tﬁéy have expectation values given by

B (a;) = ai ’ 365017
and that their covariance matrix is
gg >= §'—1 4 . 5&5016
where
‘ n,n-
N ]
_ 1 aM(x)  audx) |
B= { Z WY Tha. dm. § . 3:5419
. x=1 i J 1,4
]

Since Gaussian functions find frequent application in non=-
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linear least squares calculations, it is perhaps worthwhile to
derive an explicit expression for the covariance matrix of this
particular model., As our model function we take the expression

(x - a )2 _

2

M(x) = a. exp - 365,20
1 2
2a3

and assume that the width oy is sufficiently large to permit
replacement of the summation in (3.5.19) by an integral sign.

We shall consider two particular cases. In the first in-
stance it will be assumed that the available data extends over the
full range of the Gaussian peak and the limits of integration used
will be = © to 4+00 , Another case of interest occurs when only
the right half of the peak approximates a Gaussian shape. For
example, the response shapes of NaI(T/) detectors may contain small
angle scattering events and contributions from the Compton scatter-
ing distribution which tend to distort the ieft half of the Gaussian
rhoto-peak. TFor this case only the right half of the peak will be
considered by using the limits of integration a, to o0

We start by considering the full Gapssian peak. Substitution
of M(x) and its partial derivatives in expression (3.5.19) yields

the design matrix

O o)
a2 ° %183
1
N
B = | © T 0 , 345021
a3
N 3N
o] 0 5
ala3 a
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- where Nb is the total number of counts under the peak,given by

NO = VZn al 33. 395022

The matrix is easily inverted to obtain the covariance matrix

3 a 2 a av
2N1 0 - 13

0 2N0

a 2
QA' = O I-‘Ié_ 0 @ 305023
o

=g, a a 2

L3 0 o

2N6 2N6

of some special interest is the central covariance matrix element
a32/No which provides the variance in estimate of the peak posit-
ion as v Q;}i .' To take a practical example, consider a Gaussian
peak consisting of Nb = 106 countses Its full width at half maximum
is given by 2.35 a3 and its central position is determined witﬁin
an accuracy of = . a}‘/VfT;° The ratio of position uncertainty
to the peak width is 1/2350. This high precision demonstrates the
power in the method of least squares analysis.

Next we turn to the case where usable data covers only half

of the peak., Using the integration limits to ©° we obtain

%2
the design matrix

N N
-2 1 —_0
2 -
2a1 Eala3
: N 2
B 1 2 :1 . 3.5.24

2a3 3

Y, 2 3

28.1&3 33 28.3 2
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After a considerable amount of algebraic manipulation it is poss=

ible to obtain the expression for the inverse matrix.

2 | i
-8} &1 1 G I Ay
(%:3) Cul RS = B =
i e B
- _a ' : 2n a3 : -\2n a3 3,5,25
e B = R S =) B ©
(b-n) 21%3, 5% %3 ) (r-2) %3
==3) §, | G=3) N ; @3 N,

From the above result we see that the use of only half the peak
di 0.-2 .
The uncertainty, or standard deviation, is increased by the factor
Vik,3 = 6.66. Uncertainties in the estimates of a;
increased by the factors 2,59 and 4,02 respectively.

has increased the variance by a factor 2n/(n-3) = Lk.3,

and a. have

3

In the foregoing discussion it was assumed that the Gaussian

width a3

tegration efféctso

is sufficiently large to permit neglection of channel in-

When a, is small it becomes necessary to replace

3
equation (3.5.20) by the more accurate expression

X+ 5
Cymaa)
M(x) = a exp | = - dy
1 2
2a3 .
X%
x»ima x—%-a
= --— erf [ =erf Tz‘"“’" vy 35026
vhere the error function is defined by
z
erf (z) = = 305027
VT J,

It also becomes necessary to retain the summation sign in design

matr;x definition (3.5.19), since the use of integrals would result
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in a too crude approximation. Conseéuently simple expressions for
the matfix elements are not available and the calculations were per-
formed by numerical methods.

Elements of design matrix B were calculated on the assumption
that data are available over the full range of the peak. Model eq-
ation (3.5.26) contains the three constants N, » a, and ag which were

used as the least squares parameters., Upon inversion of the design

matrix B it was possible to obtain numerical values of N 0'2,

2
independently of the wvalue No' Therefore it was necessary to vary

only the values of a and a3 in order to study the behaviour of

cri' at various parameter values.
2
The quantity N criv / a§ is plotted as a function of width

2
a3 in Figure 17, Two curves are shown: one for the peak placed in

the middle of a channel (aa = 0) and one for a peak position half-
way between channel centers (a2 = 4+)s Below the value ag = 0.5

the curves show considerable divergence, The curve with a, = +

- remains close to unity, conforming with the previous approximate re-

sult in covariance matrix (3.5.23), whereas the curve for a, = 0]
displays a sherp rise with decreasing values of the width 85
The significance of the variance 0‘29 at very low values
2

of az is questionable since the probability density function of

9
estimate a, loses its Gaussian shapes In fact, as the width a

3

vanishes, the peak position becomes indeterminate within the limits
‘ .

of channel width and the probability density function of a, assumes

the shape of channel profile P(x), as defined by (2.5.28a). 1In

this case the actual variance becomes
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2 \
O"a' =f xZ dx = i—a ‘ 3.5.28

and is independent of No' This channel variance manifests itself
at all values of a3 and the asymptotic expression for variance in
estimate a; is
2 1 2 1
Oat ™~ ¥ [aB + 1-2-]. 3e5.29
> o

A curve corresponding to this asymptotic expression is included in
Figure 17. It is seen that all three curves converge very rapidly
at a.3 = 0,5,
In order to test the actual distributions of estimates a;,

a number of Monte Carlo calculations were performed with various val-
ues of width parameter a3. Spectra were generated by usiﬁg values
obtained from the model (3.5.26) and adding normally distributed
random numbers having variances equal to M(x). Three cases were
'._studied with as fixed at 4,0, 0.5 and 0.2. Ineach case the model
values of No and a, remained constant at 100 counts and O channels
respectively. Figure 18 shows histograms of the least squares sol=
utions a;. Gaussian probability density functions with variances

G-ié taken from Figure 17 (curve with a,

the sake of obtaining a comparison. Except for the case with the

= 0) are also plotted for

1
low value ag = 0.2, the estimates 8, appear to be normally distrib-
uted.
Results of the above calculations can be summed up as follows.

The nonlinear least squares solutions provide normally distributed

estimates of Gaussian peak positions for values of No as low as 100
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| FIGURE I8
HISTOCRAMS OF PEAR POSITION ESTIMATES
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counts (or lower) and values of width a, as low as 0.5 channels.

3

¥
When ag > 0.5, the variances in position estimates a

2
closely approximated by the asymptotic expression (3.5.29). Values

are very

of a_ smaller than 0.5 channels should be avoided due to the possib-

3

ility of a .large loss in accuracy. Since a, is measured in channel

3

widths, its value can be increased by redesigning the experiment to

yield a finer channel mesh,



CHAPTER IV

CONCLUSIONS

The methods of analysis presented in this thesis were discussed
with special emphasis to application in nuclear spectroscopy. However,
use of this emphasis was not intended to be indicative of a limitation in
possible applications. The techniques presented can be generally applied
to digitized statistical (or nonstatistical) data which contain the dis=-
torting effects of apparatus reéponse functions. Statistical consid=-
erations were based on Poisson and Gaussian frequency functions which are
found to occur in a wide class of physical measurements.

Two esséntially different methods of approach were discusseds DBoth
are concerned with the same problem of obtaining the physically meaning-
ful parameters with least possible errore. The matrix inversion approach
requires no initial knowledge of the form the unfolded spectrum might
take. It is thus convenient in cases where this information is unavail-
able or difficult to oﬁtain. On the other hand, the least squares approach
generally requires a model of the unfolded spectrum to the extent that
the number of components and their approximate positions must be specified
in advance. This often requires a detailed inspection of the original
data followed by an educated guess of the pertinent unfolded spectrum
parameters. However, the least squares approach has also some important
advantages. Unlike the matrix model approach, it is not limited to in-
tegral values of the spectrum components. The removal of this restrict-

ion is important when accurate position determinations of narrow peaks
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are required. In some applications the two appfoaches might be combined
to take full advantage of their relative merits. A preliminary applicate
ion of response matrix inversion may provide a useful visual representat-
ion of the‘unfolded spectrum and thus delineate the appropriate least
squares model with a smaller element of uncertainty.

It was shown in Chapter II that the application of some inverse
response matrices may lead to a grosslmagnification‘in statistical un;
‘certainties. Two methods of combating this undesirable effect were
suggested. It is possible to obtain a "partial inverse" matrix which will
in effect replace the originally broad response functions in the observed
spectrum by a set of narrower ones of some specified shape. Since this
partial inverse! matrix has elements smaller in magnitude than the full
inverse matrix, the statistical uncertainties in the unfolded spectrum
can be greatly.reducede Another method of dealing with statistical dev-
iations is based on the a priori knowledge of non=-pegativity in spectral
intensities. Corrections are added to the.observed spectrum so as to
render the unfolded spectrum positive (or zero) in every channel. The
particular set of corrections to be added is determined by the condition
that the sum of the weighted squares of their individual values should be
minimized.

When the data vector is multiplied by the inverse matrix it is a
simple matter ?p calculate the statistical variances in the resultant
unfolded spectrum (see formula(2.6.1)). However, after application of
non-negativity the determination of statistical uncertainties is some=-
what more difficult. After non-negativity corrections are added to

the observed spectrum, the result is-a linear combination of response
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functions with non-negative amplitude coefficients. These coefficients -
one for each chamnnel = represent the unfolded non-negative spectrum. The
same unfolded spectrum would be obtained in a ieaét squares calculation
if one used a model equation which contains one response function with
non-negative amplitude'for each channel. The model could avoid negative
amplitudes by the use of quadratic coefficients, in.which case the non-
linear least squares techniques discussed in section 3.5 must be applieds
Therefore, in principle, one could obtain the statistical properties of
the completely unfolded non-negative spectrum from the inversg of the cor=-
responding least squares design matrix,

Similar arguments can be applied to cases where a "partial inverse'
matrix is used in conjunction with the application of nqn-hegativitf; In
order to obtain a least squares amalogy it is first necessary to consiruct
" a set of complementary response fuﬁctionse These can be obtained by un=-
folding the residual response functions from the full width original
response shapes. The corresponding least squares model is then construct=-
ed by placing one complementary response funcfion with non-negative ampli-
tude in each data channel., Since the least squares solution gives a
spectrum from which, in effect; the complementary functions have been un-
folded, the remaining response shapes will be the same as in the applicat=
ion of partial matrix inversion. The covariance matrix (inverse ;f the
design matrix) of this least squares model determines the statistical
-properties of the partially unfolded spectrum.

it is thus seen how the two basically different methods of approach
can become identical under certain conditions. However, when the data

fields are large, it is not practical to apply ordinary least squares
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techniques to the solution of intensities in each channel. The required
inversion of the design matrix becomes unfeasible due to its large size.
In these cases the response matrix approach can be of decisive advante
age when the inverse matrix elements are obtainable in closed form. The
proper application of non-ne gativity conditions may require exteysive
numerical calculations based on methods of mathematical programming.
However, it was demonstrated in section 2.6 that at least in some cases

a very rapid iterative method can be used.
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APPENDIX I

STATISTICAL PROPERTIES OF CHANNEL CONTENT

Assume that for a large number (approaching infinity) of ident-
ical experiments,the average count in channel i is given by mse It is
~desired to find the relative probabilities of obtaining various numbers
of counts m;e To do this we posfulate a large number N (NJ>> mi) of
Ypotential" counts. Each potential count Has a probability fim of be~
coming a 'real’ count and is statistically indepéndent of alfqotherse

g
The probability for a particular set of w, potential counts material-

izing and the remainder being not counted is given by

[ N ¢
m, =-mi

5 .
m, . m,
N N

Multiplying the last expression by the total mumber of such sets we

]
obtain the probability of getting my real counts in channel i, namely

Nl my * A ) v
— N T l-fﬁ- o Al.1
(N-mi)! (mi)!

We now let N approach infinity, under which condition

n!

N
et

(N-m;)! Nmi

m |\ 4 -m
(lm”’“‘ ""9’9 @

9

N

]
Therefore, in the limit, we obtain the required frequency function for m 59
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‘Q
my -,
¥ mi
pla,m, ) = P~y e . Al.2
m, ). \

It should be noted that this frequency fumction also holds true for the

contents of histogram bins, provided the histogram is made up of a large
- number of statistically independent experiments and is spread out over
many bins of non-zero content. If the histogram is concentrated around
one bin,‘then it is necessary to use expression (Al.1) with N set equal
to the total mumber of experiments.

When the average value mg is large, expression (Al.2) approaches a

- (5k)

Gaussian frequency function. To show this we use Stirling's formula

nt ~ e ' n 2nn . | Al.3
We can thus write
1 (a) + L) 10g = ( 'y - L 10g (2x )b
og p ~ (m, + %) log ;7 = (m; =m) -3 log m, Je
i
Next we use the series expansionch)
, v 9 3 v :
m, m, - m, -m
e 1 L
log(“%.’) = 2 L ::; + 3 ( = ]9. + oco - 3
qi m; + W m, + m,

in which the cubic and higher order terms can be neglected since, for

values of p significantly greater than zero, we have

<<1 . Al.L

We now can write the result
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(m, - m)

. % ¢
log p ~ (2mi + 1) —= f - (mi - mi) - % log (2nmi)
(m; +m,)
' 2
- (my - my) 2y 1
= ; - 5 log (2mm,) .
2 my (w, +m, )
-t i

When the strong inequality (Al.4) holds we have also the approximate

relation

m, + m,
1 8

in which case we can write the final asymptotic frequency function
' 2
=(my - m,)
L. e o . AL.5
Yenu,
i

A comparison between the Gaussian and Poisson frequency functions

plugymy) ~

is given in Figure 19 for various values of m, . It is seen that the
similarity is fairly good at m; = 5 and becomes increasingly better at

higher values of m, e
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APPENDIX 1II

CCRRECTIONS FOR COINCIDENCE AND CHANCE SUMMING

The nmumber of prompt coincidence summing events is given by

N _ =.%. E. €. N

es iy3 i T3 ij wij ' A2.1

where ‘/fg i is the number of transitions Y3 followed by Yj" wi. is the
angular correlation function integrated over the solid angle L) sub-
tended by the detector and é’i is the overall detection efficiency for

Yie Since efficiencies are proportional to L , we can write

I3 i = ki L, . A2.2
which results in

) .
N, = L izj ky kj inj wij . A2.3
9 .

The number of single events is simply

N, = ﬂiki%. A2. k4
Consequently the relative contri‘butidn from coincident summing, Nc S/Ns is
proportional to the solid angle L. . Therefore the effect can be reduced
by placing the source at a greater distance from the detector.

Contribution due to random sumi;:lg of uncorrelated events can be
calculated from the following considerations. We have Ns single events
occurring during observation time To Bach of these events has the probe-
ability 2 T N S/T of being followed or preceded by another event within
the electronic resolution time T . Therefore the expectation of the

total random summing events is
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2T 2 '
s = Né . A2.5

The relative contributionles/Ns is thus propértional to the counting
rate Ns/T and the effect can be reduced by using weaker sources or smal-
ler solid angle.

Practical considerations often require relatively high counting
rates which could necessitate correction for summing effects. It is
possible to make these corrections by using special experimental t;ch-
niques or by'applying appropriate post-experimental calculations.

Random sum pulses can be rejected to some extent by electronic
circuitry‘which senses the pulse broadening(u). However this method is
not 100% efficient and has no effect on coincident sum events.

A powerful experimental technique can be applied by the use of two
identical detectors(B). The mixed output from both detectors is stored
in one subgroup of the analyzer memory. Another memory subgroup receives
the gated sum of pulses whenever both detectors respond in coincidence.
The contents of the gated subgroup can then be subtracted from the mixed
spectrum. A great advantage of this technique is that correction can be
made for both random and coincident sum events(s).

An expression for the spectrum of coincident sum events has been

(2)

given by Heath ‘. ILet the response functions to transitions Yi and Yj
be given by R(x,yi) and R(x,yj) respectively. The two-dimensional prob-
ability demsity function for Y5 to produce a pulse height x and for Yj

to produce a pulse-height z-x is given by the product

R(x,y,) R(z-x,yj).

The one-dimensional probability density function of obtaining two pulses



126

which add up to the value z is given by the integral

z

o
To obtain the total coincidence sum spectrum we must multiply this last
expression by the number of coincidences ./V;j, the efficiencies Ei} Ej

and then sum over all values of i and j. Thus we get the result

Z
M (2) = B0 &, E5 gy / R(x,7;) R(z-xy ) « A2.6
o)

One limitation of this formula is that advance knowledge of the decay
properties (in particular the values of u4;j) is required.
The spectrum due to random summing events is more difficult to
calculate since, due to possible time-separation, the resultant pulse
height may be not equal to the sum of individual pulse heightse. A meth-
od taking this effect into account has been described in detail by Kennett
et 21(5) and shall not be discussed in this thesis. This random summing spectrum
is independent of cascades and can be calculated without knowledge of

coincidences Vf;j.
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APPENDIX III

DERIVATION OF INVERSE MATRIX g‘l

We wish to find the elements of matrix _L_—l, such that

L1, A3.1

Since matrix L is upper triangular, the inverse 13:1’ also has the same

property and we can immediately write

oL

13 =0 for 4> o A3.2‘

To find the diagonal elements of Q’l we multiply the k' row of

'If‘l by the lcth column of L » The result is

-1 '
zkk ‘zkk = 1 ° A3.3

By definition (2.4.11) for matrix L we can express the elements

hae = %
By L
ben = o3 for n> m 4 A3. |
= o] for nd m,

Consequently, by virtue of (A3.3) we have the diagonal elements

.el:kl = ‘3;" ° AB.S
*x
It remains to find the upper off-diagonal elements of ;-l. To
accomplish this, comsider the product of the k' row of L' by the (k+j)™

column of L, where 0 { j£& N = k. Writing out this product in detail

we have
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J a
.E ‘ekk+i ‘gk+ik+j' = 0 A3.6
i=0 ‘ :

Substitution of elements (A3.4) in (A3.6) yields the result

-B . J-1
k+3 -1
(k+j=1) z zkk+i ¢ A3.7

by =
aC I P9 i=1

By using similar arguments we can arrive at the expression
-1 = Prrgia

3kk+j+1

i |
2 . 43,8
Cpriel (kej) =1 bacn

Combining (A3.7) with (A3.8) we can obtain the recursion relation

-1 .
R .= 5 igcegel _ Prejel e Qead=l) 1 ] 43,9
kj = -] = X B - ® .
gkk+j Ner el (k+d) k+j

Using the quantity Yj defined by (2.4.12) the above ratio can be written

in the form

Y, .. o=1 | |
R . = (Tsgu1 " Yy s o 43.10
J ( Yk_._j -1) +d

We already have determined the diagonal inverse element in the kth

row (see expression (43.5))s To obtain the next element in this row we

th -1

maltiply the k* row of L ~ by the (k+1)th column of L . This results

in the expression

-1 1, '
,ekkfl = § (‘rk+1 -1) . A3.11
By the recursion relation (A3.10) the next inyersebelement in the 1«:'th row
is given by
-1 1 _
zkk+2 = E; <Yk+2 -1) Vsl * A3.12

It is easily seen that by repeated application of the recursion formula

we obtain a general inverse matrix element
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J-1 '
z;i = é— (v, =1) ] Y; for k<j. A3.13
k 9 i=k+l ©

This completes the derivation of expression (2.4.13). ~

It is of interest to derive an effort factor (total number of multi-
plications and divisions) required for inversion of matrix L. There are
(N-1) values of Yie Each requires one multiplication and one division

to evaluate. This results in a total number of operations

MY = 2(N-1) . A3.14

The recursion relation (A3.10) involves a total of (N-2) factors. Since

each factor is evaluated by two operations we have a total 6f»operations

MR = 2 (N-Z) ® A30 15

Now we consider the evaluation of inverse elements. Each of the
g(N+1) non-zero elements requires either one division or one multiplicat=-

ion. Consequently the total mumber of operations is given by

M= gi + g + MY f 3&

.2,
-2

“hg

-6. A3.16
This is a considerable improvement over the cubic relation (2,3.1%) for
the inversion of a general triangular matrix.

When parameters o and B are assumed constant the required effort
is somewhat less than the effort given by (A3.16). After determination

of B/a each Y; requires only one division. Therefore in this case

c
MY

[}
Since the Y; 8 are different the number MR remains the same as in (A3.15).

= (N~-1) +1 =N. A3.17
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The diagonal elements are all equal to 1/a and thus require only one
division. All off-diagonal elements are obtained by N(N-1)/2 multi-
plications. Thus the total number of operations is

‘ 2
c N N
M° sN+14+ 5 =3

N N .
E‘é'*'i"a"l'lo A3018
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APPENDIX IV
FOURIER TRANSFORMS AND CONVOLUTION

\

First we prove the c§nvolution theorem, which is used in section
2.5. Ve have the convolution expression (2.5.4a) in the x-domain and
wish to derive the product (2.5.4b) in the w-domain. By substituting

the Fourier transforms under the convolution integral we can write

iw., (x=y) ) iw
FB(X) = (;n)a )(X}rfl(wl)e 1 fa(ma)e 2ydy do, du,

o0
[= -]
iw.x ilw,-w. )y
1 1 1 21
= 5= f[ fl(wl) fa(wz) e [Erc- je dy:‘ doo,-dw,,
-0 - DO

The quantity inside the brackets is just one form of the &efinition(Bs)
for the delta function 6(ma-wl). Thus we can make the substitution

W=ty and drop the integration over Wy This leads to the expression

2

o ‘X

1 iwg '
F3(x) = 5= J[ fl(ml) fa(ml)e do, . A1
(oY~ -
Therefore FB(X) is the Fourier transform of'fl(w) fz(w); but by defin-

ition it is also the same Fourier transform of f3(w). Hence we can

write the equality

fs(w) = fl(m) fz(w) . Ak.2

When we have convolution in the w-domain (as in (2.5.5a)), it is
possible to arrive at the product expression (2.5.5b) by using arguments
~ identical to the ones presented above. This would complete the proof of

both aspects of the convolution theorem.
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Next we derive the Fourier transforms of some expressions used in
section 2.5, Consider the Gaussian function of (2.5.9a). Its Fourier

transform is given by

1 ” - x2 : | -
r(w) = exp[ 5 - imx:l ax . Al 3
J2r @ . 2G ‘ :
-0 -
We can complete the square in the exponent and write it in the form
2 .

( x , oo ) o g2
- - ®
\yzo vz 2
Then, upon introducing the transformation
X + in o
V2 O V2

we can rewrite expression (Ak.3) ,

3

22
'
2 . .
'
r(‘n) = e fe dy o A’+¢1+
® - 00

The definite integral has the numerical value ym. Hence the Fourier

transform of the Gaussian response function (2.5.9a) is given by

-

r(w) = e e R A5

Consider now the set of delta functions

-

oo :
D(x) = z 6(x=-n) . Ak.6

iz OO

Since this set forms a periodic structure symmetrical about the point

x = 0, we can expand it in a Fourier cosine series,

e ,
D(x)ﬁ a, + n§l a  cos 2nnXe ‘ Alr.'?



We have

i. .
ao = f D(x)dx ' = 1 9
-g‘

%
D(x) cos 2max dx

.ﬁm
it
Y
b

2

B

6(x) cos 2mmx

e

= 2 ®
Therefore we can write
oo
x) = 1 +2 o cos 2T NXo

Taking the Fourier transform of D(x) we obtain

oo co A
=1wx . oo iZrnnx =ji2nnx ~iwx
d(w) = e ax + I (e + e )e
n=l
-0 -0
o
= > e dx
= OF) Lo

(=]
=21 5 6(w = 2rn)
Nn=w 00

which establishes the relation (2.5.10b).
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A4, 8

Ak, 9

AL, 10

Now consider the channel profile P(x) as defined in expression

(2.5.28a)c The Fourier transform is
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%
=iwx
ple) = e ax . Ab.11
-z
According to de Moivre's theorem, we have
-iwx
e = ¢os wx =i sin wx .

Being assymetrical, the second term has no contribution to the integral

in (A4.11); hence we can write

f
Q*“““\
: wofs
[+]
o
Q.
€
L
&

plw)

Ak, 12

I

€l

:
o
[\b] 4
L g

which proves the relation (2.5.28b).

It remains now to derive the result.(2.6.3) for "partial inversion®
matrix elements. We start by considefing again the cdnvolution integral

(’20501)3
co S
M(x) = “jﬁR(xﬁy) (y) &y . ' Ak, 13
- 00
However, this time we try to find a "partial inverse'" function Rpin(X)
such that the unfolded spectrum retains a resolution function Rn(x), which

is narrower than the original response R(x). Therefore, instead of (2.5.2),

we must write

oo [A¢d

f R_(x=y) T(y)dy = f R (y) MGy o Akl

Using the convolution theorem we can express these two equations in the
w-domain,

n{o) = r(o) t{e) Ak.15
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T, () t(w) = Toin (w) mlw) . Ak, 16

These two relations are satisfied when

rn(w)
rpin_ (w) = G Ak, 17

When R(x) was digitized by the factor D(x) we had the result

oo

r%w) = = r(w - 2mn) ,,' © Ak.18

N==00
as given by (2.5.13). In a similar way we digitize now the function Rn(x),

and obtain

[~
rg (w) = né_ r (0 = 2nn) » » ALk,19

oo ‘n
After these digitizations we replace expression (A4.17) by
d
r_(w)

rd(w)

I'Pin (W) = ) A.li'a 20

Following the same procedure as in section 2.5, we define a truncated

function

£, W) = rpin(w) , for|w| £ x
= % rpin(m) forjw] == Ak, 21
= 0, forjul > =

which can be used to obtain the result

Rpin (x) = Fn(x) D(x) , AL, 22
3
iwx
1 e d
where Fn(x) = 3= 3 rn(w) dw o Abe 23
r (w)
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If we now substitute (Al4.22) in expression (Ak.1l) and use the digitized

expression for Rn(x),we have

" oo

T R (m) T(x-m) = £ F (m) M(x-m) . Alre 2k
M= OO n ’ li== 00 R

By using the transformation x-m = k this last expression can be rewritten

as
o (-]
2 R (x-d) M) = , T F (x-k) Mk . Akl 25
k=-°0
This is analogous to a matrix equation
R T = F M , AL, 26

where ;13_1'& is a matrix containing the reduced width response functions and

En is a Ypartial inverse™ matrix with elements

1 | eiw(k—,@) d |
(fn)kf 2 = f ‘ rd(w) rn(m) dw - Ak, 27
-1 '

The relation (2.6.3) is thus established.
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APPENDIX V

SUPPLEMENTARY PROOFS FOR SECTION 3.3

It is required to prove that the design matrix 52,

(3.3.21), has an inverse gél, provided the response functions Xi(x) and

as defined by

Yj(y) form two sets of linearly independent vectors. The proof will be
complete if we can show that the vectors formed by the columns of matrix
Z are linearly independent. We start by assuming that the columns are
linearly dependent and.then proceed to show that this leads to an impos=
sible condition. The linear dependence in Z implies that we can find a

non-zero vector

ny,l nx,l

! = {v. } ] A5-l
| 13 51

such that .
N N ’1 T L AS.Z

. N
zy = gO’;
il

It is possible to write the null-vector Z V in the more detailed

form
ng {x (x) Y.(y) vy ' et L
(x y } Ve
i=l AT Dy, % 13 %;,1 %,1
N, N,1
X ¥
= 9 A503

If we look only at the subvectors indexed by X we can say that
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N ,n n ' nygl

{ ol ¥y ix ) ~§ N.s1 '
Y.(y E : T X.(x) v.. AS.4
I Jyyd N

i
lo

i=1

for every x = 1, 2, coes Nx « The second factor in equation (AS5.4) cannot
be a null vector for every x since V is not a mull vector and the Xi(x) are
linearly independent. But then equation (AS5.4) implies that the Yj(y) are
linearly dependent, which is not true. Hence we must reject the assumption
that the columns of Z are linearly dependent. According to Cramér (49)

the linear independence in Z is sufficient to insure that the inverse matrix

B-l

By exists.

Next we turn to the derivation of expression (3.3.39) which gives

1"

the full covariance matrix of estimate vector A We join all data

-2 L J
vectors (3.3.25) to form one long vertical vector defined by
' -Nx,l N&,l
' 1
KIO = iMa (x'y) } 'S A505
Xyl ¥sl

Likewise, we string out the vectors of intermediate coefficients by defin-

nx,l gy,l
} . A5.6
’l

J

ing

Q = ‘ { q;- (y) '}i,l

Making use of these definitions we propose to find amn nx%y by Nxﬁy size

matrix P such that
Ay = B M . S A5.7
According to a theorem(so) mentioned in the text the required covariance

matrix is then expressible in the form

Cun = B Cy £_>T. A A5.8
2 °
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Equation (3.3.29) gives gy least squares solutions in the x-
dimension. These solutions can be grouped together and expressed in one

matrix equation

] t
& =H M » A5.9
where
nx.Nx N&.N&
H = ity 5. . . 45.10
~o - = %y yi -
Tl

Before we can group solutions (3.3,35) for the y-dimension, we must re-
. ]
arrange the intermediate vector Q so that it consists of a string of

1
vectors Qi' This is accomplished by a rearranging matrix go such that

i gy,l Z ‘nx,l
t R L ]
QW = %qi(y) }
Fol ) i1
)
=EO g ° A_soll
The desired rearranging matrix can be defined by
qy'nx nx,N&
R, = {aij Sy ‘gk. ' A5.12
o1 .
JoY
as substitution in (A5.11) will readily show.
After introducing one more definition,
ny,gy ‘n.x,nx
No=1 .
R. = .Y v 0, . A5.13
=1 =i = ~i i . '
J i3
‘we can write down the final solution vector
A R H M AS.1k
2=% = ¢ 2
'
Thus the covariance matrix of estimate A' is given by
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1 G H L E

T T .T
-1

9
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AS5.15

which reduces to expression (3.3.39) after a certain amount of matrix

algebra.

It remains now to prove the inequalities in expression (3.3.45).

¢ .(49)

It is shown by Cramér

that the reciprocal of a diagonal element in'the

positive definite design matrix is not greater tham the value of correspon-

ding diagonal element in the inverse matrix, This fact immediately estab-

lishes the inequality

D(a;w) >

where i = (k-'l)ny + He

Since the diagogal submatrix §kk

second inequality

-1
B },, >
{8« 1,

=
{'2 Ei,i

1

TETY  .°
=2 %igi

45.16

is also positive definite, we have the

A5.17

@
Next we consider the inequality between expressions D(a ,) and
'Y/

Matrix B

{23‘. }us =B ‘

2

'{‘tﬂ

l

In a similar way we partition the inverse matrix g7t

matrices by gij'

can write

]
f
|
—_t —
|
!
|
I

[

42
[n by (n_~l)n ]

(nx-l)n by (n ~1l)n

22

!

can be partitioned aocording to the following scheme:

o A5.18

and label the sube

Upon multiplication of these partitioned matrices we
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n
. 1Y
A7 G * Hyp G = L7 45.19
S &3 * G 45 = 2 A5.20
. (nxrl)gy

where 1 is a diagonal identity matrix (with rank indicated by the superscript)e

From (A5.19) we have

- -1
Si1 = &7 = A7 A, Sy A5.22
and from (A5.20) we obtain
Co = = Co. A ATY . A5.23
S Cop Ao A7 - .

These last two expressions can be combined to yield the result

-1 -l : -1
"qll = A 1 + é]_l ﬂla .,0_22 &21 éll . A5.24

We now let the positive definite matrix 922 have elements cij and define

such that

{ti. }
04,3

The second term in (A5.24) can now be written in the form

another set of elements ti

3

n ,(nx-l)n

~ y y
P . A5.25

A1 &5 =

»‘ny5nx—l)ny ‘ (nx'-l)n.y:.(n.x--l)n.y (nx.-l)n;),,ny
{%. % &L .k t. . k
34,3 RCREW 1 5ol
(nx_l)%y‘ BsB
z
= K, §=1 tzk ckj tij } . A5.26
| &
The £th diagonal element of this matrix is given by
(nx-l)ny
pH t,. ¢ . t,.
k’j=l lek kJ 53 ?

which is a positive definite quadratic form by virtue of matrix €55 being
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positive definite. Therefore, going back to equation (AS.2k), we see that

the diagonal elements of gll are greater than or equal to the correspond-

ing diagonal elements in _Ei o This establishes the inequality

' : -1
Da, ) 2 {3 }
®x4 Kk §,
for the index value k = 1, Similar arguments can be used to prove the

inequality for other values of k.
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