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obtain expressions for the inverse. matrix elements in closed form. Reduct-

ion of statistical uncertainties is accomplished by application of non-

negativity conditionse The second approach is based on the method of 
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CliAPrER I 

INTRODUCTION 

Recent developments in nuclear spectroscopy have flourished to 

a high de~ee of sophistication in data acquisition equipment and tech-

niqueso ,, Multi-channel analyzers with up to 161 000 channels are 

becoming increasingly common. As a consequence of the sheer bulk of data 

generated the experimenter must perforce have a less intimate contact 

with raw results and take recourse to automatic data processing. Fortun­

ately this approach is made possible by the increasing availability of 

high speed and large memory capacity computers. 

The physically meaningfUl parameters are in general not directly· 

available from the raw data. UsuallY it is necessary to create a familJ 

of mathematical models for the spectrum and then app~ a process of 

selecting a particular model which will adequately describe the obs~rved 

datae The Tequired physical quantities are then contained within the 

p&rameters of ,this modelo Construction and mathematical methods of pro­

eessing such models will be the main subject of this thesise 

The nuclear spectra considered here possess two ~ticular 

characteristics which render their ana~sis difficult. First~, the 

detector response to mono=energetic radiation is ~sually a complicated 

function which m~ contain more than one pe~ Second~~ the number of 

counts accumulated in each ana~zer channel is subject·to statistical 

deviations. As a consequence, the obsex-ved spectrum m~ bear little 

1' 



similarity to the actual distribution of energies emanating from the nu­

clide under study. An example of such response is given in Figure 1 which 

shows the l3? Cs y-ra:y spectrum taken with a Nai(T,B) scintillator. This 

particular uuclide dec~s by p- emission to l37Ba which subsequently de­

excites by emitting a 662 keV y-rEq. The main peak shown in channel 157 

is produced by the photo-electric effect which usually results in deposition 

of all incident y-rrq energy inside the scintillator. Structure to the 

left of this peak is due to partial energy· losses. The plateau below 

channel 110 is caused by Compton sca~tering events after which energy-

degraded photons m~ escape from the detector. Compton-scattered y-r~s 

from material outside the scintillator produce the small peak at Channel 46. 

The entire response displays effects of a Gaussian resolution which is 

caused in part by statistical fluctuations of the number of electrons col-

lected in the photo-multipliere This effect presents the greatest difficulty 

when the spectrum contains y-rays with small energy separation. Most· 

types of response functions considered in this thesis will take the Gauss-

ian resolution into consideration$ 

It is possible to derive a general. mathematical expression for the 

observed spectrum. Let the detector response function to incident radiat-

ion of energy y be given by R(x,y) •. If we stipulate the condition of 

normalization 

1.1 

then we can think of R(x,y)dx as the probability that an event of energy 

y in the true spectrum will produce a response in the ener g:r interval x to 
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to x + dx. The concept of the ntrue" spectrum T(~) as used in this context 

· perhaps needs some clarification. Imagine an experiment performed with a 

perfect detector having t~e response fUnction R(x,y) = 6(x-y)~ When accum-

ulated into channels the results represent a histogram with statistical 

uncertainties. If we now let the channel width b approach an infinit~ 

esimal value dy and take the average of a large number of identical 

experiments (approaching infinity in number), then the histogram approaches 

a smooth function given by T(y)t\J'. In other words, T(y) is proportional 

t© the probability density function· t(y) of the sample emitting radiation 

having energy y. We can therefore write. 

where S is the detector efficiency and N
0 

is the averase number of 

emissions radiated over the duration of experiment. Since t(y) must be 

:normal.i~ed to unity, we have 

1.3 

As our next step we can consider the effects of response R(X9J') 

being other than a delta fUnction. The original function T(y) is modified 

to another function M(x) according to the convolution integral 

00 

M(x) "' 1 R(x,y) T(y)dt 

Note that by virtue of eq. (lo l) the area under the function is coDServed~ 

Oo 

J[M(x)dx.= 6N0 • 1 • .5 
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If we think of x as the· pulse height, then the probability density functioXA 

of pulse heights entering the analyzer is given by M(xy(sN
0

). The analyz-

er sorts these. pulses into.channels centered at positions x1• For the moment 

we ignore ~ analyzer nonlinearity effects and assume t~at everywhere we 

th h 1 have the same constant difference xi+l - x1 = b.. If now the i c anne 

has a pulse acceptance profile P1 (x), then the contents of this channel are 

on the average given by' 

00 ' 

m1 ,. J M(x) Pi (x)dx. 

0 

b. ideal channel profUe would have the shape 

Pi(x) l for lxi - x \ ( =t; il y 

= 0 for fxi .... x J >A • 
. 2 

1.6 

1.7 

In practice the profile does not have such sh~p cut-off edges (l) B how-

e,-er we can use the form of (l.?) without departing too much from reality. 

Substituting according~ in eqe (1.6) we obtain 

1 
Xo+b/2 

1 

· M(x)dx • 

x1-b/2 

1.8 

Up to now we talked about· eXpectation values of spectra and ignored 

~tatistical effectso In a particular experiment one observes a statistical 

' spectrum which we denote by m
1

e Throughout this thesis primes will be used 

exclusive~ for the purpose of indicating statistical quantitieae As 

. u 
shown in Appendix I' the probability of obtaining a particular value m1 is 

given b7 the Poisson frequenc.y function 
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The same appendix also shows that for large m. expression (1. 9) is close-
1. 

l.y approximated by a. Gaussian frequency function, i.e. we have the 

asymptotic expression 

We ca:n thus aeparate the statistical part of the spectrum and writs 

ft ' mi ........., mi·+ si ' 
@ tJ 

where "i = mo 
l. 

~ mi i 

and the statistical part has the frequency function 
~ 2 

(si) 

2mi 

1.10 

l.ll 

1.12 

1.13 

Collecting the results of eqs. (1.4)w (l.S) and (1.11) .we have the 

final ma.thematical·model of the ·observed spectrum9 

X.+fl 
.l.-2 

This ep~ctrum can b~ modified somewhat by addition of pulses which occur within 

the electronic resolving timeo Such events m~ be due to chance or they 

may occur on account of two nuclear transitions being in prompt eascadea 
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Corrections (both experimental and analytical) for these effects have been 

discussed by various. authors (2, 3 , 4 ~5 ) and a sh~rt summary is given in 

Appendix II. In the main text we shall assume that, if necessaryv the 

appropriate corrections have bee~ made and that eq.(l.l4) represents the 

experimental spectrumo 

Our problem is to determine T(y) as accurately as possible from 

' the given set of observed values m.o An exact determination is of course 
l. 

' impossible, mainly due to the statistical uncertainty in s1 and the inte~at-

ion of data into a finite number of channels. 

There appear to be two main avenues of approach in determining 

T(y)o The first approach is based on inversion of the response matrix and 

will be treated in Chapter II~ In this approach no assumptions about the 

particular form of T(y) are necessary; however the condition that T(y) be 

non-negative can be put to effective use in reducing statistical uncertain~ 

ties~ The second approach discussed in Chapter III requires that T(y) be 

describ~d by a model function in'which the parameters are adjusted to give 

~ best fit to the data. Usually this approach results in a weighted least 

squares calculatione 

Chapter II includes, a detailed description of matrix inversion 

· methods applied to resolution corrections of 13-ray spectra taken with organ-

ic scintillators. Linear Fermi-plots are obtained for almost the entire 

range·ot the energy spectrums In addition this chapter presents a deriv-

ation of an-inverse matrix in closed form for a certain class o£ infinite 

size response matrices~ The class is limited to response functions which 

have shapes ®ssentially independent of energy. 

Chapter III includes discussion of two-dimensional time-correlation 
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experiments. A method of reducing the large scale problem to a simplified 

solution by parts is presented together with the statistical properties of 

the parameters thus obtained. A model calculation with y-r~ coincidence 

spectra is used to illustrate how one m~ determine y-ray cascades, branch­

ing ratios an4 absolute transition rates independently of knowledge of 

detection efficiencies. The effects of various least squares calculation 

weighting fUnctions are also studied. 

The important class of least squares calculations with model 

functions which are non-linear in their parameters is discussed in some 

detail in Chapter III. Conditions are given under which the probabilit.f 

density fUnction of estimates of parameters departs significantly from a 

Gaussian shape. Approximate probability density functions are derived for 

a certain class of models and compared to the results of Monte Carlo 

calculations~ 

Chapter IV summarizes the results and discusses relative merits of 

the two above~entioned approaches in determining T(r). It is shown how 

under certain conditions the two approaches merge to become identical. 



CHAPTER II 

RESPONSE MATRIX APPROACH 

2.1 Matrix Model of System Response 

In this chapter we shall treat the detector response problem 

' by methods of matrix algebra. The experimental spectrum m. ·of model 
l. 

equation (1.14) is already of a form which can be expressed by a 

vertically arranged vector (one column matrix) 

.. 
~ 

t. 

m2 

,. 
I m3 

1:!. = e 

• 
• 
" 
' mN 

2.1.1 

As indicated by the subscript of the last component, we are limiting 

ourselves to consideration of a data field with N channels. In a 

similar way we can define the random vector·. 

' sl 

; ,. 
s !! 63 • -

• 
• 
• 
• 
I 

SN 
9 

f 

2.1.2 
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The response function R (x,y) and true spectrum T(y) have in principle 

continuous arguments and cannot be exactly represented by matrices with 

a finite number of elementse It thus becomes necessary to make the 

approximating assumption that the true spectrum T(y) can be replaced 

by a digitized Yersion 

·where 

N 
T(y)~ ~ tj 6(y-yJ.) 9 

j=l' 

T(y)cy., 

2.1.3 

Note that t_hes® definitions preserve the original normalization condit-

t. ~ SN !l 

J 0 

Substitution of definitions (2.1.3) and (2.1.4) in model equation 

(1.1 4) y~elds the result ··1 Xi+~ ' N 1 
mi ~ _I: :6 

' J=l' 
l_ x. -.6 

:!,2 
We can now define a response matrix 

2.1.? 

(/,1 r 
NN 



where the elements are given by 
A 

Xi+ 2 

x.-~ . l.-
2 

11 

2.18 

Using these definitions we can replace eq. (2.1.6) by the simplified 

expression 

2.19 

By the rules of matrix multiplication and addition this last statement 

is just the matrix equation 

2.lel0 

where ~ ~ a vertical vector with components tj~ 

Solution for ! can be attempted by methods of matrix algebra. 

If one obtains the inverse of response matrix Rt then multiplication 

=l 0 of eqe (28lel0) by~ from the left W1ll produce the result 

B,-1 !1w = ! + ~-1 2.11 2.1.11 

Unfortunately the right hand side of this expression contains the un-

-l v -1 
desirable statistical vector ~ 2 9 For inverse matrices li 

containing elements much larger than unity this vector may represent 

a great magnification of the original statistical uncertainties, even 

to t~e exte~t as to overshadow the structure of the true spectrum ~~ 

This is notably true for Gaussian response s~pea having widths extend-

ing over ill8.Izy' channels0 
. -l 

However, there are cases where ~ does not 

contain large elements and practical application of matrix inversion 



can be made, as is illustrated by the response corrections to ~-ray 

spectra treated in a later section of this chapter. Even in, cases 

where magnification of statistical uncertainties is large the results 
I 

might be sal.vaged" by applying the condition that the true vector ~ 

must be non-negative., This procedure may result in considerable 

reduction of statistical deviations., The statistical effects created 

by various inverse matrices !-l and the application of non-negativit,y 

are discussed in the last two sections of the present chaptero 

Expression (2.le3) contains the assumption that the true spect-

rum eonsists of delta functions_ placed in the middle of each channel. , 

Consequently a spectrum T(~) containing entr~es at intermediate posit~ 

ions has, no representation in the matrix modelo When T(y) is a slow~ 
' \ 

varying function of . :r 7 this limitation is not serious since the set 

of "sampling" values t a.dequatel3 defi.nes T(y)o However, if the true 
j 

T(y) contains a delta function between channel centers,, the unfolded 

-1 g 
spectrum R ~ tends to split the contents .between the two adjacent 

channels. Therefore the matrix model cannot dis~inguish one delta 
' 

function placed between channel centers from two delta functions placed 

at centers of adjacent channels. This effect is illustrated by calcul-
\ 

I.. 

ations in section 2.5. , 

A number of numerical methods of unfolding (correction for 

response matrix) hav@ been previously reported(6 ,7,B,9,lO)~ These 

methods generally require involved calculations, the difficulty of which 

increasss rapidl.y' with N, the number of channels used. Apparently the 
\ 

simplest to apply are the iterative methods(6,?)~ However, their rate 

of convergence depends considerably on the type of response matrix !t• 
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In particular, when the response has a Gaussian shape, the convergence 

can be very slow~ The Gaussian resolution correction has been treated 

analytically by Dixon !i !! (ll) ~ The~ solution for T(y) is given in 

series form containing increasing orders of derivatives of the observ-

ed spectrum M(y). Since high order ·derivatives are difficult to ,-

evaluate the series must perforce be terminated. This has the effect 

of introducing oscillations in the calculated spectrum. Various meth-, 

ods of numerical matrix inversion are discussed in section 2938 
\ 

Since in practice the inversion of matrices by numerical meth-

ods is limited to rank not much larger than 9 say, 50, the present work 

is concentrated on attempts to obtain a rePresentation of the inverse 

matrix in closed form. A great advantage of this approach is the fact 
' 

that data fields of almost unlimited number of channels can be con.., 

sidered. Computer calculations can be performed quite rapidly without 
' ' " . ' 

the danger of large rounding-off errors that are often encountered 
I 

during numerical inversion of lar@e size matriceso, 

2.2 Correction for Ana;yzer Nonlinearity 

Usually analyzers possess some degree of nonlinearity which 

results in pulse heights being distributed into bins of unequal width 

Ae, Although as a ~le ~light~ the effects of this phenomeno.n ~e two­

fold: firstly, the abseissa~or pulse-height scale is distorted ~~ 

secondly 9 channels with greater widths receive more than their proper 

share of counts ... For linear pulse-height seal~~ the response matrix 

can often be derived from physical considerations. (see section 2e4 on 

~-ray spectra)~ It may thu~ be 4esirable to correct the observed 

spectrum by transferring its contents to a new set of· channels which 

span equal pulse-height intervals. 
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The required pulse-height vsa channel curve can be obtained by 

the use of a calibrated pulsar. From the set of analyzer addresses x~ 

obtained at various pulse-height settings y ' ... the following curve was 

derived for a 256 channel analyzer: 

-4 2) y = A(B + X + 1.09 X 10 X • 

The parameters A and B represent the gain and origin shift respective~ 

lyE~ Thus for a particular set-up of instruments only these two 

parameters need be determined for a full calibration. 

Having obtained the explicit relationship y = f(x) we can 

proceed with the correction as illustrated in Figure 2. Channel bins 
\ 

which vary in width on the pulse-height scale are shown at the top •. 

The position of the right edge of the ith ~in is calculated by sub= 

sti tuting x :s i + ~ in formU.la (2. 2.1). The new bins of constant 

width ey are shown at the bottom!D Counts from the channel bins Fxie· 

transferred to the bottom bins in direct proportion to the corresp~ 

onding overlap~ If counts in the original spectrum are given by ni, 

then according to Figure 2 the counts in the jth bin of the new spectrum 

y i = (j-l)cy jey .... y i 

mj = Yi - Yi~l ni + Yi+l-yi ni+l Q 

In this derivation it was assumed that all pulse~ spanned by 

the width of an original channel occurred with equal probability. 

When the spectrum has a pronounced slo.pe in the region considered this 

assumption is not strictly true since the rate of pulse arrival diff-

era at the two channel sides. However,.if this effect is too pronounced9 
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much available information is lost due to channel integration and the 

need for a new experiment with finer channel mesh would be indicated. 

2.3 Numerical Methods of Matrix Inversion 

This section is not essential to the main development presented 

in this thesis since the methods proposed are largely dependent on 

response matrices which can be inverted in closed forma Howeverg for 

the sake of completenessv it is deemed advisable to include a short 

discussion of some numerical inversion methods. A short study of in= 

version difficulty as a function of matrix size is also provided. This 
\ 

latter consideration will perhaps serve to illustrate the advantages 

gained by having the inverse matrix in closed form. 
\ 

In this section it is being assumed that the inverse matrix R-l 

exists@ A necessary and sufficient condition for this to be true is 

that matrix R have rank N (i.et~ all N columns of the matrix constitute · 

a set of linearly independent N-dimensional vectors). An equivalent 

necessary and sufficient condition is that det~)jf Oe The response 

matrices encountered here @enerally satis~ these conditions so that 

their inverses can be calculated. Section 2.5 will cover_ a few special 

types of response matrices which under certain conditions become singuiiO 

The subject of matrix inversion has received attention in numer~ 

(12 13 14 15 16). ous volumes (see for example references ' ' ' ' )e A numbex- of 

papers (l?wlB~l9) have discussed the subject from the point of view of 

electronic computer application., 

Numerical methods of matrix inversion can be divided into two 

broad classes - direct methods and iterative methods. · The direct methods 



17 

obtain the required solution in·a finite number of operations, whereas 

iterative methods only approach the true solution with each iteration. 

After a certain number of iterations the remaining corrections may become 

insignificant and the process is then terminated. For large size matrices 

the iterative methods are often more economical in effort and may yield 

more a~curate answers. 

Perhaps the simplest of direct methods is the Gauss (I method of 

systematic eliminat~on.~ ~he process ia analogous. to solution of linear 

equations by progressive elimination of unknown variables. One wishes 

to find the inverse matrix R-l such that 
= 

-1 R R = I , 2.3.1 - .... - "\. 

where ! is an N by N size 'identity matrix having elements equal to 

unity along the principal diagonal and zero elsewhere. Suppose that we 

divide the matrices R~1 and I into N row vectors and denote the result-- ..,., 
-1 ing v~ctors by & and l. respectively. Then for each value of index i 

~-db -l. . '\ 

we have a set of N linear simultaneous equations 

-1 R. R ~ I. 
-1 - -l. ' \ 

which ~an be written out in the detailed form 

csl =1 -1 ru rll + ri2 r2l + o•~t + riN rNl = 

-1 -1 -1 
r.l rl2 + ri2 r22 + ••• + riN rN2 = 

J.' 

0il 

0i2 

The symbol 6ij is a Kroenecker delta having the property 

2.3.2 
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6 = 0 for i ..L J" , ij ,. 

= 1 for i = j • 2.3.4 

As an initial step the first equation of gro~p (2.3.3) is divid­

ed by r 11.\ Next it is multiplied by r 12 and subtracted from the second 

equation, which gives us a new second equation with the unknown variable 

-l 1" . t d r il e l.DlJ..na e • In a similar way we can eliminate r ~i from a.J.l succeed-

ing equations, which concludes the first eta~., In the next stage w~ 

divide the new second eq~ation by the coefficient of r~~ and.the~·pro­

ceed to eliminate this variable from all succeeding equations using the 

same process as described in stase one • After N stages o~ such 

calculations we end up with a triangular set of equations. 

-1 -1 -1 
ril + ~i2 a21 + ri3 a31 + ••• -1 

+ riN. ·~1 

•••••cteeeeeaDeeeo•••a•e•••••••oeesoeeeee•••••••• 

= b.N l. • 

2.3.5 

The coefficients bik are zero for k ( i since up to the ith stage there 

is no contribution from the Kroenecker deltas. 

It is interesting to note the number of multiplications and 

divisions performed~ These operations require a greater effort than 

subtractions and hence provide an indication of the over-all difficult,y. 

For the moment we shall consider only the operations performed on the 

th left side of the equality sign. In the k stage we are operating on 

(N-k+l) equations. There are (N-k) numerical divisions by the. coeffic­

~ent of r~ • The subsequent eliminations will require (N-k) multi­

plications performed for each of the (N-k) equations. Thus the total 

w 



number of operations performed in the kth stage is 

2 
~ = (N = k) + (N - k) • 

Summing the operations of all stages we obtain the result 

These M_ operations define all coefficients a which need not be 
-"T mn 

recalculatedct 
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Calculation of coefficients bij on the right side of equalit,y 

signs will require additional operations the number of which will depend 

on index io Consider the kth stage of elimination, where k :?i It 

Ther® will be one division and (N-k) muitiplicatio.ns.. Summing over all 

stages with k .:> i we get the number of operatlons 

(N - k + 1) 

2 
(N + ~)i + (N + l) (~ + l) o 

2 ' 
=- = 

To obtain the full inverse of matrix s_ we shall need to obtain a tria.n= 

gular form akin to (2.3.5) for each value of index i. Therefore we 
tl 

sum the Ni s with the result 

N 
NT = I: 

i=l 
N. 

J. 

Nl N 1 = N(,.- + - + -.) 
0 2 . 3 

Hence the total number of multiplications and divisions required to 

obtain the N triangular sets (2.3.5) is given by 
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~ 
= 2 {N + 1) 8 

The final calculation of inverse matrix elements is perform~ 

ed by a process of back-substitution. In equations (2.3.5) the element 

-1 . . b 
'!: ik 16 gJ.ven y 

N 
I: -l 

J=k+l ri~ aJ.k ' 

which requires (N - k) multiplications. For ali values of k the number 

of multiplications is 

.B 1: 
i = k=l (N-k) 

N 
:= 2 (N-1) e · 

~is number is the same for all N sets of equations (2.305)~ so that the 

total back~ubstitution effort can be represented by 

N2 
B = -- (N = 1) • 

2 
2.,3.9 

We are now in a position to write down the overall effort factor 

for complete matrix inversion 

2e3ol0 

T.his cubic relationship presents a serious practical limitation on the 

size of matrices which can be inverted by the direct methods~ 

In the foregoing derivation it was assumed that the divisor used 



2l 

th 
in the k stage of elimination was non-zero. \Vhen this condition does 

not hold it is necessary to use a modified method. Even when the 

divisor is finite but small the results may be unsatis·factory due to 

accumulation of large rounding-off errors. A way out of these difficult-

ies is to search each equation for the largest coefficient and then use 

it as the divis9~~· for the purpose, of elimination. This method is 

sometimes referred to as the "Gauss' Method with Selection of the 

Pivotal Element". 

Another method popular in automatic computer calculations is 

the Gauss-Jordan method of elimination. During the kth stage of elimin-

. -1 at1on the unknown rik is eliminated from all the preceding as well as 

the succeeding equations. Thus the equations (2.3.3) are reduced to 

diagonal form and np back-substitution is necessary. However a lar~r 

number of operations is required during the process of elimination with 

the result that the total number of multiplications and div'isions 

remains N3• 

There are various other direct methods of inversion which shall 

not be discussed here. In particular, when the matrix is symmetrical 

there are special techniques available which provide a greater econo~ 

in efforte These techniques are amply discussed in the literature and 

the interested reader may find them in the references quoted above. 

The special case of a triangular matrix shall be considered 

since some of the response matrices in this thesis take that form. 

Consider the upper-trian~lar matrix ~ with elements r .. = 0 for 
l.J 

i )> j. In this case the matrix equation (2.3.1) can be represented 

by the set of algebraic equations 



22 

2.,3.ll 

Note that in equation (2.3.11) when k /' j we also have k 7 i ,.· 

Therefore the right hand side is zero and the equation is satisfied 

by setting 

-1 
rki = 0 for k 7 i. 

In other words, the inverse matrix is also upper-trian~lar and 

equation (2.3.11) can be replaced by 

2.·3.12 

Triangular matrices are particularly easy to inv.ert since the 

process can be carried out row by row independently of other rows. 

Consider a general kth row of the inverse matr~ Using expression 

(2.3.12) we can w.rite a set of (N- k +'l) equations which alreaqy 

are in triangular form 

. -1 
(j=N) rkk rkN + 

-l 
r k+l N + • • • + r kN r NN: = 0 

• • • e G • • • o • • • e • • • • o • e • o o o • ~ • • o 2o3ol3 

(2=k+l) r; -l 
rkk+l + rkk+l r k+l k+l = 0 

I 

(j=k) -1 l • rkk rkk = 

Thus the inverse elements of kth row can be calculated by a simple 

proces~ of back-substitution. Evaluation of r; will require one 

-l division. The next term rk k+l will require one multiplication and 

one division. It is easily seen that the number of operations increases by 
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one in each step. Hence the total number of operations required is 

given by 

= 

(N-k+l) 
1: 

.t=l 

~
2 

- (N + ~)k + ~ (N + 3) + l. 

The number of operations for all rows of the inverse matrix is obtained 

by summing over k, i.e. 

N. 
B = 1:· Bk 

k=l 

~ IN 1 
= N(~ .+ 2 + 3) • 2.3.14 

For large values of N this effort factor is about one sixth of the 

factor for general matrix inversion. 

In many response ma~ices the _diagonal elements are lar@e in 

magnitude compared to. other elements. Under these conditions the it­

erative methods may have gpod convergence properties(l5 ) and lead to 

fair_ly rapid calculation of the inverse .matrix. An example of iterative 

techniques is provided by the Gauss-Seidel method discussed below. 

Equations (2.3.3 ) can be rewritten in the following form: 

-1 1 
(oil 

-1 -l 
rNl) ril = - - ri2 r2l - ... - ~N. rll 

-1 1 -l -1 
rN2) ri2 =- (oi2 - ril rl2 - ... -riN 

r22 2.3.15 

·······~···································· 

-1 1 
r =-

iN rNN; 
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-1 One starts with initi~l 'guesses for the unknowns r .. and substitu·tes them 
l.J 

at the right hand sides of equations (2.3el5). The resultant values at 

the left are the first approximations (r~~) 1@ In the second step these 

new values can be substituted at the right sides 9 yielding second approx-

0 t• ( -l ) J.ma ~ons r . . ·
2

• 
~J 

This process is repeated until the changes become 

insignificant. The last estimates (r~~)n give the ith row elements 

of the inverse matrix. 

2.4 Application to @-Ray Spectra Obtained with Organic Scintillators 

One of the first attempts· to correct f3""'ray spectra for resolut­

ion effects was mad~ by Freedman~ ~(G). Their studies revealed that 

the response to monoenergetic electrons was of the form shown in·Figure 

3 where the peak is associated with the totally absorbed (3-rayso In 

addition to the peak there is a constant-height tail which arises from 

partial energy losses due to scattering-from the c.rystal(2o). 

The method proposed by Freedman et a1(6) was an iterative pro-
=-=- ' 

cedure~ One makes a first estimate ! 1 ~or the true ~pectrum and then 

obtains a second estimate ~~ fr~m the relation 

0 
where ~· is the observed spectrum and ~ is the response matrix. This 

process is continued using the algorithm 

ij: 

T l = T + M - R T o 
-Ill+ -m - _.. -m 

By using progressive back-substitution we can express this last 

equation in terms of the first estimate ! 1 • The result is 

ll'L. -l r m J t 
!m+l = <! =B) :£1 + g L.! - <!-R> !1 ., 

2o4.2 

Here I is the identity matrix and the inverse R-l is assumed to exist. 
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If lim (! - R)m = o, 
m~oo 

then lim m......,.co 

CUJ.d successive estimates approach the unfolded spectrum. , Freedman !l 

!!(6) found that for a·good initial estimate only two to four iter= 

ations were required to obtain a spectrum T 1 such that R T 1 repro-
. -m+ - ~+ 

' duced the observed spectrum !1 within about 2%" 
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· This iterative procedure haS·· the advantage that the invex-se matrix 

R~l does not have to be evaluated directlJe As indicated in the last 

sectiqn, the inversion of matrices having sizes corresponding to data 

fields of 200 or more channels can be quite difficult.. Even if the fUll 

response matrix could be inverted there are reasons why its use might be 

undesirableo The responae shapes shown in Figure 3 contain the Gaussian 

' ·resolution function. AS will be shown in section 2.5, correction for this 

effect involves an inverse matrix with very large positive and negative 

~lementse Consequent~ the statistical uncertainties originally pres~nt 
8 

in~ can be grossly magnified.~ 

\~en the iterative formula (2.4.2) is used to correct fc;>r the 

Gaussian response alone, the statistical deviations show a roughly linear 
., \ 

increase with each iteratione If the results finally converge to the re~ 
.... 

quired unfolded spectrum t~en this expansion of st~tist~cal deviations 

can be expected to. continue until a levelling-off is reached near values 

corresponding to multiplication by the inverse matrix of Gaussian response. 

It is therefore important to obtain a very good first estimate which would 

allow the iterations to be kept down to a minimume 

The method of respons® correction presented here ~as first des­

cribed in a paper by Slavinskas, Kennett and Prestwich (2l). . It is 



27 

based on -writing the full response matrix as a product of an upper-

triangular matrix and a Gaussian matrix. The triangular matrix represents 
·~ 

the tail part .of. the response and can be inverted ~n closed form. After 

·correction for this .response effect is made, the Fermi=plot of the ~= 

ray spectrum is ·round to be very nearly linear. This allows a very good . '\ 

first guess !l of the true spectrum in1 formula (2.4.1). Thus only one 

iteration is required to correct for the remaining.Gaussian resolution~' 

It will be shown later in this section that multiplication by the in~ 

verse of the triangular matrix produces only a small effect on.the 

statistical deviationso 

The response functions sho\~ in Figure 3 can be represented by 

·the convolution of a Gaussian G(E,E ) with a second function L(E 11 E ) 9 . . 0 0 

where 

[

""(E ·= E ) 2 ]. exp o 

2o'2 
. 0 . 

for E t;;:.. E 
0 

2.4.4 

. Ji. ·./·1~ . . .. jr 
__ '-~~1 

.r·-·~----­

r· 
I C ..., 

2.4 .. 6 

= 0 forE 7 E • 
0 0 

Parameter k
0 

is related to the tail height of response to ~ rays with 

energy E and cr is the standard deviation of the Gaussian resolution 
0 0 

at the same energy (full width at half-maximum All three 

functions are normalized to have unit area. 

_:_.;-, 
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Using ~he digitizing approximations discussed in section 2.1 we 

can replace the response functions by matrices of rank N. 

replaced by an upper-triangular matrix ~ in which the rows are indexed 

by values of E and the columns indexed by E e Similarly we can replace 
. 0 

G(E,E
0

) by a matrix ~· The overall response matrix ~ can then be writ~ 

ten in the form 

2.4.7 

In accordance with equation (2®1.10) we can express the ob~ 

served spectrum as 

; 

where ! is the true spectrum without response effects and 2 is a random 
i 

vector of statistical deviations8 Operation on ~ by the inverse matrix 

L=l will result in -

Apart from statistical deviations this is just the true spectrum ! as 

11seenn through a Gaussian resolution. Since 13-ray spectra are con-

tinuous and usually have widths large compared to that of Gaussian 

resolution, the spectrum ~ ~ is very similar to the true spectrum !e 

Evaluation of inverse matrix 1-l is straight-forward and can be 

~itten in closed form. This is a great advantage since we are no long-

er limited to small arrays and one can obtain the inverse for almost 

a:ny size data field. The delta function in eq~ation {2.4e~) represents 

~-rays which deposit their full energy within the crystal. If we define 
I 

the area under this full-energy peak by a . we can -write 
J 

2.4.9 
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The area under the tail is given by the complement 

"j = 1- a.j • 2.4.10 

With these definitions matrix L has the form i - I 

~ !3N 
i, 

... "1 132 2 • • • • • • • ·N::r 

~ ~N 3 tl~ 
0 -, 

"2 2 • • • • • • • ·N::r ;· 

~N: 
l.f~·-

L = 0 0 «3 • • • .. • • • .- • 
N-1 

2.4.11 

• • • • " • • • • • • • • • • • • • 

0 0 0 • • • • • • • • • 

Derivation of the inverse matrix is given in Appendix III. If 

we define the quantity 

where j > l, then the 

-1 1 J .. = - ' ~J. a. 
1 

-1 
0 .eij = 

" . y = 1 - J 
j (j-l)"j 

inverse matrix elements 

for i > j t 

j-1 
-1 1-

(yj - 1) IT yk for i .eij =-cz. 
l. k=i+l 

' 
. 2.4.12 

are given by 

2.4.13 

< j. 

Trial and error calculations with experimental spectra having 

end-point energies up to 2. V MeV indicated that linear Fermi-plots 

can be obtained by using_ constant values for parameters aj and ~j. 

This fact implies that the fraction of electrons scattered outside 
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the crystal is independent of incident energy. Experimental support 
\ 

for this conclusion is provided by the work of Bothe(22 ) who found 

that for a given scattering materi~l the back-scattering coefficient .. , 

of low-energy electrons is constant~_ The values used in the succeed­

ing calculations are a = o. 7 2 and 13 = 0. 28. \ 

From equation (2.4.12) it is apparent that all values of y j are 

less than unity. -1 This means that in any given row of L the diag-
, -

onal element 1/a = 1.39 has the largest numerical value and all 

elements to the right progressively become smaller. Therefore the 

magnification of statistical uncertainties produced by the operator 

!! -l is small enough as to be of no practical significance·. 

Sample calculations of resolution correction were performed on 

three essentially single group spectra of 90y, 9ly, 143Pr and a 

mixture of 9°sr with 90y in secular equilibrium. All experimental 

spectra were obtained under identical conditions with the sources 

mounted 1 em from a 5 x 5 em .type NE-102 or-ganic scintillator coupled 

to an EMI 9536 photo-multiplier tube. The_ pulses were fed to a DD2 

amplifier ~d ;-ecorded in a multi-channel analyzer. Sources were 

·impregnated into filte~ paper and had a thickness_ corresponding ·to 

approximately 3 mg/cm2• 

Before applying resolution corrections the spectra were correct-

ed for analyzer nonlinearity by the use of the technique described in 

section 2.2. The parameters A and Bin formula~.2.Uwere determined 

from internal conversion lines of l37cs, 207Bi and initial estimates of 

the ~-ray spectra end-points. All S-ray spectra were then converted 

from the original channel base to a linear energy scale with bins 



AE = 10 keV widee Values used for the two parameters were 

A = 9~444 keV/channel 

and B = 12. 0 channels o 

143Pr has a ~ + ground state which decays by 13""' to the ~ - gTound 

state in 143Nd(23) e Thus we have a change in spin ~J = 1 and a· 
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parity change, the combination_ of which corresponds to a first fe>rbidde.n 

transition(24). Many first forbidden transitions have spectra corres~ 

ponding to those of allowed, transitions (25 ) and the case of 143Pr 
. ...--, 

appears to fall in this classe The energy distribution of allowed 

transition ~-rays is given by 

T(E) = D PW F(z·~E) (E = E)
2 

9 . m 2.4.14 

where D is a constant and F(Z 9E) is a Coulomb effect ·correction factor 

dependent on the atomic number Z and electron kinetic energy Eo 

Numerical values of F(Z~E) which included electron screening effects 

were obtained from reference(26 )e The factor F(ZgE) is essentially 

constant at high 13-ray energies and has little effect on the shape of 

the spectrum~ Other factors in formula (2.4.14) are the electron 

momentum 

and the total electron energy 

2 
W=E+mc ~ 

0 

Parameter E is the total transition energy and thus represents the 
m 

upper energy limit of the {3-ray. When E ~ E the remaining energy is m 

·carried awqy by the neutrino (nuclear recoil energy can usually be 

neglected). 
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It is customary to represent the data in the form of so-called 

Fermi (or Fermi-Kurie) plots. These can be obtained ·by plotting 

}T/(PWF) as a function of E. The result should be a straight line 

with an intercept E = E on the abscissa. Thus one obtains a conven­m . 

ient indication of transition energy E • 
m 

The ~= transitions of 90sr 9 
90y and 9ly are characterized by 

/.1J = 2 and a change in parity. Thus they fall in. the class of first 

forbidden transitions. On account of the spin change ~J = 2 the 

spectra are expected to have unique shapes (25 ) which are distinguish-

ed from the allowed shapes (2.4.14) by having an extra factor s. The 

shape factor was calculated from the relation 

2.4.15 

where Q is the neutrino momentum and ~l is an energy-dependent para­

meter (close to unity) tabulated by Kotani and Ross(2?). 

Langer ~ !:.! (2
B) have reported the ne~essity of an additional 

shape correction for 90y and 9ly. Based on their precise magnetic 

spectrometer.measurements, this additional factor takes the form 

c = 1 

h . th t t 1 1 J • 
2 "t d b . w: ere w J.s e o a e ec tron energy :l.n m c uru.. s an J.s an 

0 

empirical parameter having a numerical value between 0.2 and o.4o In 

the calculations presented here the intermediate value b ~ 0~3 was 

used. Due to these additional factors the expression V~/(PWFSC) 

was used to calculate Fermi plots for 90Sr 9 90y and 9ly~ 

Fermi plots of 143Pr 9 
9ly and 90y are shown in Figures 41) 5 

and 6 respectively. Each Figure contains three plots Which illustrate 

thr various stages of resolution correctiono Plots labelled (a) 
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were calculated before application of any resolution corrections. 

They tend to show an upward curvature for decreasing energies. This 

effect is caused mainly by the low-energy tail in the scintillator 

response and makes the determination of end-point energy uncertain. 

Fermi plots ( b) were obtained after multiplying the spectra by 

0 t o L-1 1nverse ma r~x • - A considerable improvement in linearity is 

evident, so that accurate end-point determinations can now be made. 

The remaining slight curvature near maximum energies is presumably 

caused by Gaussian resolution effects. This residual has the effect 

of slightly modifying the apparent end-point energy. Calculations 

with theoretical model spectra gave an estimate of the error magnit-

ude. A number of theoretical spectra with different maximum energies 

were multiplied by the Gaussian resolution matrix. Fermi plots were 

then calculated and "best" straight lines were drawn through the 

resulting poin'ts. It was found that these lines gave correct inter-

cepts with the ordinate axis but underestimated the end-point energy 

by about 8 keV. 

Although the two corrected intercepts thus obtained are. suff-

icient to determine the required experimental spectrum parameters, 

:further calculations were applied in an attempt to correct for the 

Gaussian resolution. A quadratic variation of cr 2 with energy was 
0 

assumed. After a few trial calculations the particular form adopted 

was 

cr 2 
= 0.0027E

2 
+ E + 3000 , 

0 

where both 0""'
0 

and E are expressed in keV. One iteration 

2.4.1? 
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as defined by equation (2.4.1) was applied to each of the three 

spectra. The first estimates ! 1were calculated by the use of correct­

ed intercepts of Fermi plots (b). Results are shown in part (c) of 

Figures 4, 5 and 6. Linearity near the end-points is seen to be 

considerably improved. Some points lie belo\oJ the E-axis because im-

aginary values (obtained where the unfolded spectrum was negative) 

are plotted as negative numbers. 

A summary of end-point energy results is given in Table I. 

The largest deviation from Nuclear Data Sheet values(29) (column 2) 

occurs for the end-point of 90sr, the difference. being 20 keV. Er-

rors in other isotopes are considerably smaller. This is partly 

caused by the fact that the experimental end-points were included in 

the determination of the energy scale. Since all spectra were obtain-

ed under identic~l experimental conditions, the energies should be 

internally consistent. This requirement is satisfied within the 

estimated uncertainty of ~ 20 keV. 

. 90 90 The two-component spectrum of Sr and Y was analyzed for 

relative intensities as well as for end-point energies. Intensities 

are expected to be equal since the system was in secular equilibrium 

with the 28 year 90Sr decaying to the 64 hour 90y. Fermi plots of the 

results are given in Figure 7. Part (a) shows the total spectrum af­

ter multiplication by L-1• The long linear part of the 90y component 

provided good estimates of the intercepts. These were used to cal­

culate a theoretical 90y spectrum which was multiplied by the Gaussian 

response matrix and then subtracted from the total. A Fermi plot of 

the remaining 90sr spectrum is shown in part (b). Finally, part (c) 
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TABLE I 

End-Point Energies 

E (lv.IeV) 
Isotope m 

Nuclear Data 
Sheets(29) Present \vork 

90sr 0.54 0.56 ± 0.02 

143 
+ Pr 0.93 0.93 - 0.02 

9ly 1.54 1.54 ! 0.02 

90y 2.27 '+ 2.27 - 0.02 
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shows the Fermi plot of 90sr after correction for Gaussian resolut­

ion. Experimental intercepts obtained for 90sr and 90Y were used to 

calculate the corresponding theoretical spectra. These were then 

·summed over all channels to obtain a measure of intensities. The 

results gave a total of (1. 02 :!: .10) x 106 counts for 90sr and 

(1.04 ! 0.05) x 106 counts for 90y, which indicates good agreement 

with the expected equal intensity condition. In principle, this pro-

cedure of "stripping" could be applied to a spectrum with any number 

of components. The limitation9 of course, is that the end-points 

have separations sufficiently large to leave recognizable straight 

line segments in the Fermi plot after the operation ~-l • 

It is shown in Appendix III that the number of multiplicative 

and divisional operations required to invert ~-l has a quadratic de­

pendence on matrix size N. This is a . considerable improvement over 

the cubic dependence (2.3.14) which obtains for general triangular 

matricesiD Thus one can perform rapid analysis even \'Vhen the data 

fields are quite large. For example, using the IBM 7040 electronic 

computer, corrected Fermi plots were calculated in 2 min. and 16 sec. 

for a 64 by 64 ~-Y coincidence spectrum. 

2.5 Application to Energy-Independent Response Shapes 

In this section we shall consider response functions of the 

form R(x-y), which implies a fixed response shape for all incident 

energies y. Nuclear radiation detectors usually do not satisfy this 

requirement; for example, the Gaussian resolution width in spectra 

obtained with Nai(Tt) detectors varies rough~ as the square root of 

incident y-ray energy. However, it is possible that future develop-
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ments of analyzers(30) will provide the option of storing the spectra 

on a channel base proportional to ~ Obtaining thus an approximate-

ly constant resolution width would result in most efficient use of the 

available memory storage capacity (or number of channels). In some 

instances (e.g. lithium-drifted Ge detectors) the variation in resol-

ution width is very small over the energy range covering one peak. 

With some modifications the method of this section might still be used 

to apply resolution corrections for such spectra. 

The technique described below need not be limited to nuclear 

spectra alone. There is a wide class of other applications where some 

signal may have suffered distortion due to undesirable frequency com-

component filtering - or equivalently convolution - effects. Such may 

be the case when dataare transmitted, for example, over long telephone 

lines. In some instances a short pulse .may be purposefully distorted 

into a long wave train, which technique permits transmission of in-

creased energy when the peak power of a transmitting device is limited. 

Examples of this technique are found in ... some radar systems (3l) and. 

in seismic eXploration methods using surface sources (32). \41hen this 

extended signal is received, some method of de-convolution is usually 

required in order to obtain the original short pulse. The present 

section investigates a method of de-convolution which is applicable 

to data having digitized form. 

In the present section we shall derive a general expression for 

the inverse of an infinite rank response matrix g_ having elements 

r .. which are dependent on (i-j) only. This matrix consists of ident­
l.J 

::.cal columns which are shifted by one row with respect to their neigh-
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bours. The derivation of inverse matrix elements will be accomplished 

by the use of Fourier transforms and the convolution theorem(33). 

\tJe start by considering the convolution integral 

M(x) = 
QO 

~ R(x-y) T(y)Qy , 

- CX3 

and then try to find an inverse function R. (x) such that 
J.n 

T(x) = 
c:o 

f Rin (x-y) M(y)Qy. 

-00 

For this purpose we shall need the Fourier transform pair 

1 
M(x) = 2i 

m(oo) = J:(x) -icox 
e dx. 

2.5.1 

Capital and lower case l-etters shall be employed to represent the 

functions in the x-domain and the ~-domain respectively. A short 

derivation of the convolution theorem is given in Appendix IV. 

Given the convolution relationship in the x-domain 

the theorem states that in the w-domain we have the produ~t 

Similarly, for convolution in the w-domain 

0<) J ~ (w-"-) ~ ("-)di\. 

-GO 
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we have 

The method of finding R. (x) can now be outlined as follows. 
J.n 

Applying the convolution theorem to equations (2.5.1) and (2.5.2) we 

can write the products 

m(w) = r(w) t(w) 

and 

't(<.o) = r. (oo) m(oo) • 
:tn 

To satisfy these last two relations we must have 

1 r. (oo) = :::-~':"':"'\' • 
J..n. r\WJ 

2.5.7 

Thus the relation (2.5.8 a) gives us the Fourier transform of the 

required inverse function R. (x) • Accordingly we can transform back J.n 

to the x-domain which yields the result 

l oo i<.ox 

er(oo) 
-""> 

dol. 

Often r. (w) is unbounded and the inverse function R. (x) does 
J.n J.n 

not exist. This is usually the case with continuous functions R{x). 

As an example we can consider the Gaussian response. function 

R(x) = 1 

{2;,<r 
which has the Fourier transform (see Appendix IV) 

[ 
(j2 2 J 

r(w) = exp - ; ~ 

It is clear that the reciprocal ~r(w) approaches infinity together 

with w,· hence the value R. (0) as defined by (2.5.8 h) is infinite . . J.n 
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and the desired inverse function does not exist. However, the inverse 

can frequently be found in matrix form when the response functions are 

digitized into discrete channel bins. The Gaussian response falls 

into this class of invertable digitized functions. 

A form of digitization can be accomplished by making use of 

the following set of equally spaced delta functions 

0'0 

D(x) = Z o(x-n) 9 n=-co 

which, according to Appendix IV, has the Fourier transform 

Qa . 

d(m) = 211: L: n=-oo o (m-27tn) .. 2.5.10. b 

Thus the digitized response function can be \vri tten as the product 

d R (x) = R(x)D(x) • 

According to the scheme outlined above we will try to find the 

inverse function R~ (x) by calculating the.Fourier transform of Rd(x) 
J.n 

and then transforming the reciprocal 1/rd((l)) back to the x-domain. 

Proceeding with the execution of the first step we write the Fourier 

transform 

d 
r (w) = 

= 

00 I R(x) 

-oo 

-iwx e E n=- oo 

R (n)e -ioon • 

o(x-n)dx 

This expression contains a summation which may consist of many terms 

when R(x) covers a wide range of integral values of x. For such cases 

.it ~ight be more convenient to express rd(w) in another form which 

can be particularly useful when the function r(w) is easily obtained. 
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Applying the convolution theorem to expression (2.5.11) we can write 

d 1 
r ((I)) = 2i 5 (A.-2n:n) dA 

00 

= ~ r(~-2n:n) n=- oo 

From expression (2.5.13) it is clear that, although r(w) may approach 

zero for large values of w, rd(w) will not do so on account of the 

periodicity inherent in the summatione Except for special cases in 

which r(2n:n) = 0 for all values of n~ the reciprocal ~rd(w) will 

remain finite everywhere. Figure 8 illustrates the effect of digit­

ization by showing the reciprocal functions 1/r(w) and l/rd(ro) 

obtained for a Gau~sian response with cr = 1. 

Transformation to' the x-domain is accomplished by noting that 

~rd((l)) is periodic in w with period 2n:. Thus after defining the 

truncated function 

f(<D) 

we can express 

1 
d r (Ol) 

1 
=~-

rd(<D) 

1 1 
= 2 rd((},)) 
= 0 

()o 

~ 
= n=- oo 

for 

for 

for 

f(w-2n:n) 

l <DI < 1t 

I rol = 1t 

lwl>Tt 

00 

Jf<(J)-"-) 
00 

= I:' o(A.-2n:n) 
n=-oo 

-oo 

1 
=2i 

00 s f((J)-A) d(A) dA • 
-oo 

dA. 

The required inverse function R. (x) i_;:;, given by the Fourier trans­J.n 
,.,· d 

form or J/r (oo). Using (2.5.15) and the convolution theorem we can 
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express the inverse function in the form of the product 

where 

R (x) :: F(x) D(x) ~ 
in 

F(x) = k J 
n: 

-TC 

iwx e 
d r (co) 

dw • 
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2.5.17 

The inverse function (2.5.16) is seen to contain the original 

digitizing function D(x). This factor is U1Strumental in replacing 

the de-convolution integral (2.5.2) by a summation so that the pro-

cess becomes analogous to multiplication by an inverse matrix of in-

finite dimension. Carrying out the substitution in (2.5.2) we 

obtain 

T(x) = 

Oo 1 F(x-y) nioo 
-~ 

6 (x-y-n) M(y )dy 

c>O = E F(n) M(x-n) Q n=-oo 

Since the respol1Se function was digitized 9 the spectrum N(x-n) will 

have non-zero values only for integral values of the argument (x-n)o 

Thus we need consider only integral values of x, and upon making the 

transformation m = x-n in equation (2.5.18) we get the result ' 

00 

T(x) = E F(x-m) M(m) • m=-c;o 

If the digitized response function (2.5.11) is substituted in 

the original convolution integral (2.5.1), we obtain 

PO 

M(x) = ~ R(x-n) T(n) G 

n=-oo 

Expressions (2.5.19) and (2.5.20) can be replaced by the matrix eq-

at ions T = F M - --
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and 

2.5.22 

where [ is an infinite square matrix having elements 

fij = F(i-j) 

and R is likewise an infinite square matrix with elements 

! and ~ are infinite one-column vectors. It is clear that 

-1 F = R 2e5.25 
- - Sl 

and after collecting the results of equations (2~5.23), (2.5.17) and 

(2.5.13) we can write down the inverse matrix elements 

iro(k-.e) 
e 

00 

}:! r(w-2nn) 
n=-t:lrO 

where r(w) is the Fourier transform of the response function R(x)e 

The denominator of the integrand can be replaced by the alternative 

expression (2.5el2) if the latter proves to be more conve11ientQ 

The foregoing derivation used response functions which were 

digitized by sampling R(x) at integral values of x corresponding to 

channel positionse Hov1ever, if the data are of ·the histogr:-am type 9 

it is necessary to include the effects of integration over channel 
... 
widthg as is done in the model (2.1.8). Using unit channel width we 

can write the new digitized response function 

R(y)dy. 

The channel profile is assumed to be flat-topped and is given by the 
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function 

P(x) 1 1 
= for }xl ~ 2 

1 for lxl= 1 
= 2 2 

0 for {xl > 1 = 2 ~ 

As shown in_Appendix IVv the Fourier transform of P(x) is 

p(oo) 2 . ((I)) = - sJ.n -
00 2 

Expression (2.5.27) can be put· in the form of a convolution integral 
QO 

Rd(x) = D(x) ~ P(x-y) R(y}dy, 
-oo 

which enables us to use the convolution theorem and obtain the Fourier 

transform 

d 00 
r (w) = E 

n=- oo 
( 2 ) sin i(oo-2nn) 

r w- n:n 1 ( ""l- ) 2" W-c;.u.n • 2.5.30 

Therefore the inverse matrix elements for channel-integrated response 

are given by 
1t 

-l 1 J e ioo (k-t) 

rk.t = 2rt oo dw • 

[ 
sin t (t:.>-2n:n)J 

-rc n~-GO r(w-Z7tn) f(t~-2rcn) 

2.5.31 

Some examples of matrices and their inverses are provided in 

Table II. An integrated eA~ression could be obtained only for the first 

entry (damped sine-wave response). The integrals in other entries must 

be evaluated by numerical methods. In some cases the inverse matrix 

does not exist for certain values of the response parameters. For 

examplej in the matrix for damped sinusoid response we must satisfy 

a~ 7C and in the matrix corresponding to a triangular response funct-



TABLE II 

Examples of Inverse Matrices 

===="'=""=-- '='=""=~= -~--""""'"""'""'=='' -- -~'=="'""'?"==== -"-'~===-"""""= -i--==-=~~- --~~=~-;.,.~~=---=-

rij 

D9.mp~ d Sine· \1ave 

r. =A sin a(i~j) 
J.j a(i-j) 

a = n n; + k~ 

n = 1~ 2, 3s 

0 ~ k< X 

~~~~~~~~~~~~~~~~-~~~-~-

Rectangle 

1 
for li'""'jf ~ N r =-=== ij 2N+l 

= 0 for /i-jJ > N 

~~~~~~~~~~~~~~~~~~~--~-

Triangle 

R .• = A(q - I i-J·I) 
·l.J 

= 0 

q = n + k , 

n = 1, 2, 3s 

0 < k < 1 

for Ji-=jl ~ q, 

for lic=oj I > q. 

=-=---=---~='~ . 

-1 cij a 
r - "-=-=-
ij - Art2 n(n-tl) 

a [ (n+l)n .., k] 
= 2 

A1t n(n+l) 

.cij = (ocl)i-j+l 

= 1 

1t 

r.ij 

sintk(i"3j)] 
-=(i~j) 

for n odd~ 

for n eveno 

for i F j ' 

for i ~ j" 

r-1 =~ 1 
ij 1t 

sin(~) cos [w(i=j'] 
doo 

0 

1t 

-1 1 
r -~ 
ij - Ax 

sin(~)+ 2 cos[~ (N+l~ 

cos [oo(i.,j)] 

q + 2 . }- [q ""t] cos (fllt) 
J=l 

. (Nw) s~n 2 

dw 

\.n 
0 

----~------------------~----------~--------------------------· 
-continued-



TABLE I I(cont 'd) 

Examples of Jnvorse Hatrices 

''""""'=~""'==--~""""""'======--'-"-=-" - -=--=-=- -

r· . l.J I ~j 
,-=-=~~· ,r~--~ ~~ - ~T.~ '~-==---=- -===--=-=-,~-=============---=---==~==~ 

Gauss :tan 

rij "' IT Alf2t exp[-(i-j)2/(2 cr2>] -1 1 l'Jt 
rij =lit o 

2 2 [ J exp( (J __ a_~) C9~ W (i-=;tL 
00 2 z= exp[2tn cr (w-=Jn)] 

.e::: -oo 

dw 

I ~ -=- -=:=> ~ -o -=- ~ ~ -=:Ia ~ ~ -- c:;::::!i tbll:l ~ ~ ~ ~ ~ ~~ ~ ~ t:::l II::;:) E::::;;;J ~ -- ..... ~ ~ ~ ~ ~ C;::;;l C;;;;lll iRID' ~ IKiflill ~ ~ lit::::::;:) -=::1 ~ -- ~ -=::::11 ..,. ~ ~ ~ c::::;) ~ c::::::a C!:;:) ~ ~ ~ 

Channel~Integrated Gaussian 

r ~ 
'ij 

1 

crV2i' 

ia:oj-?f 

[ 
2 ' 2 ,"') 

exp eoX A2(i )J rlx 

1t 

-1 1 r ~"""' 
"ij - 1t 

0 

00 = el!J! ( 0" 2,l/2) cos rlll(i-j)] 
7: [ 2 , .. l . [ -= d(!) 
1.=-00 exp ae~ (/" (w-tn~ sJ.n _t<~- ~2.tn)] 

\J1 
1-' 
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tion the parameter q cannot have integral values other than unity. 

The last two entries contain the factor exp ( a- 2w2/2) in the inverse 

matrix integrands. This may lead to very large inverse matrix el-

elements for high values of a- and thus render application of the 

inverse matrix unpractical when .the spectrum contains statistical 

deviations. 

The matrices considered in this section have the restriction 

·that their elements depend only on their distance (k-t) from the 

principal diagonal. This restriction reflects the assumption that 

the shape of response functions is independent of the incident energy 

(e. g. constant value of rr for Gaussian response functions). In 

general a response matrix has e.lements 

(j)r .. = (j)R(i-J") 
l.J 9 

2.5.32 

where the superscript j signifies the dependence of response function 

on column·number. Under certain conditions it is possible to obtain 

a good approximation to the inverse of this generalized matrix. Sup-

pose we fix the superscript j at a certain value ~ and then obtain the 

inverse matrix (t)~-l by the method outlined above. This inversion 

can be carried out in turn for various other fixed values of t. Then 

we construct a matrix R-l in which the ~th column is given by the 
-o 

corresponding column of (£)R-1• If the elements of (t)~-l are given 

by 

2.5.33 

then the condition that 

R R-l ~ 1.. 
- -o 

can be stated in the detailed form 



53 

(j) (k) 
L: R(i-j) 
j 

F(j-k) ~· 6ik • 

Equality would obtain in this last expression if we could replace 

(j)R(i-j) by (k)R(i-j)e If the response shape varies slowly with en-

ergy, then close to the value of k there is a range of j-values for 

which (j)R(i-j) ~ (k)R(i-j) • Suppose that outside this range of 

j-values the contribution to the sum in (2.5.34) is negligible; then 

-1 -l 
R can be a good approximation to the true inverse matrix R • In -o 

the case of Gaussian .response with the standard deviation U'(E) these 

necessary condiJcions are sa·tisfied l'rhen d a- /dE ~< 1. 

2.6 Reduction of Statistical Deviations 

As was remarked in Chapter I 9 the spectra of nuclear counting 

exp.eriments contain statistical deviations which have very nearly 

Gaussian frequency functions~ Each channel of the observed spectrum 

therefore has an associated vexiance v~ = m., where m. is the eA~ect-
J J J 

th ation of the contents of the j channel~ Since' the contents of the 

charu1els are mutually statistically independent, all covariances v~. 
l.J 

are zero. ~!hen the observed spectrum is multiplied by an inverse 

matrix R-; the variances in the unfolded spectrum will naturally have 

magnitudes different from the original varianceso According to the 

error propagation formula given in section 3.2 9 the new variance in 

channel i will be 

2 

ui " E [r ~n v~ . 2.6.1 
j -1 

·chis expression it is clear that when the inverse matrix R 

contains elements of large magnitude 9 the unfolded spectrum will have 

greatly magnified statistical uncertainties. A lower limit on the 
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ratio of standard deviations in channel i is given by 

(:~tin = h:~ \0 2.6.2 

Expressions (2"5"26) and (2.5.31) defining the invers~ matrix 

elementsp show that the diagonal elements always have the largest 

nur.~~·l~·ical value. It is therefore of some interest to consider their 

magnitudes for various types of response functions and various values of 

response parameters. Figure 9a shows the diagonal inverse matrix el-

ement as a function of parameter q for a triangular response funct-

ion. The response matrix and inverse matrix are defll1ed in the third 

entry of Table II, \\There an amplitude factor A is included so as to 

conserve the normalization condition ~ r .. = 1. It is seen that, as 
j ~J 

parameter q takes 011 integral values greater than unity 11 the element 

-l b . f" •t r. . ecomes ~n ~n~ e. 
~l. 

This has the significance that for these values 

of q there is no unique unfolded solution. Figure 9b exemplifies 

this fact by sho\ITing two initially different spectra which become ident-

ical after a triangular response with q=2 is folded in" 

The inverse matrix element~ r :-~ for a channel-integrated Gauss­
l.J. 

ian response (see entry .5 of Table II) is sho\m as a function of a-

in E'igure 10" The extremely rapid rise with increasing a- is dictat­

ed by the factor ex.p( CT 
2w2/2) in the integrand of the e:Arpression 

for inverse matrix elementQ Since~ according to equation (2o6.2) 9 

the magnification in statistical uncertainties becomes rapidly un-

tenable 9 the practical application of this inverse matrix is limited 

to values of cr not much greater than unity., However 9 in practice 

it is c: ~;sirable ·-:.0 have a high channel density for the :purpose of 
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preserving as much of the fine structure as possiblee This leads 

to high values of CJ C1~1ich is measured in channel units) and we 

are thus faced with conflicting requirementsg 

Since the merits of fine channel mesh cannot be denied, the 

difficulty might be resolved by modifying the inverse matri::r~ In-

stead of attempting to "squeezen the Gaussian into one channel, one 

may have to settle for partial unfolding which would leave some 

residual but narrower response function Rn (x). The elements of a 

ttpartial inversion" matrix (see Appendix IV) are given by 

iw(k-.t) 
e 

d r (0)) 
r (w-2rr:n)dw , 

n 
2.6.3 

where rd(w) is defined by (2$5.12) and (2.5.13)g For a Gaussian 

response the value of 1/rd({l.>) :is especially large near the integrat-

. 1" •t + ~on ~m~ s w = - rr:g Therefore 9 if we are to keep the magnitude of 

-1 rk£ down to relatively low values~ we must choose the residual 

R (x) in such a way that its Fourier transform r (w) is very small 
n . . n 

or zero near w = ! rr:. It may also be desirable that R (x) have no 
n 

negative values. This can be ensured by choosing ar (ro) such that 
n 

it is the convolution of some other function with itself~ According to 

the convolution theorem R (x) is then some function squared and hence , n 

cannot have negative valuese Within these requirements there is con-

· siderable room for variation in the particular form of R (x) chosene 
n 

Some future effort may be warranted in search of an optimum shape 

such that for a given reduction in resolution v.ridth the magnification 

of statistical uncertainties is minimizedg 

A powerful method of reducing statistical deviations can be 



derived by making use of the ~priori knowledge that intensit! spectra 
I 

cannot have negative valueso If the observed spectrurn vector is ~ 
v 

(as defined in (2.1.10))9 then 9 due to the random nature of §. , the 
-1 ,. 

unfolded spectrum :g_ M will generally contain some negative as v1ell 

as positive components. The condition of non-negativity can be im-
v 

posed by adding a vector of corrections £ to ~ such that the result 

gives 

-1 v R C!.i + £) :: o. 2.6.4 

Equation (2.6.4) defines an infinite set of allo\ved vectors C • Out 

of this set we select a particular vector so as to maximize the like-

lihood function 

L Jv l l exp [- ~ l {2ic v. J 
l. 

l: ci 2 J 
l.
. 2 9 

v. 
l. 

where c. are the 
J. 

' 

2 components of vector C and v. are the 
- J. 

variances in 

spectrum H • Haximum L is obtained by minimizing the exponent~ i.ea 

we have the condition 
2 c. 

E' J. 
2 

i v. 
2.6.6 

J. 

It will be shown in section 3.4 that good estimate~ of the weights 

1/v. 2 are provided by 1/(nt~+ 1)9 where m~ are the components of the 
1 J. 1 . 

' · observed spectrum t1 • 

The problem as stated above can be given a meometrical inter-

pretation~ If· we consider spectra limited to N channels 9 the.n ex- · 

pression (2.6.4) represents N linear inequalities with N independent 

variables c.. Each inequality defines a region to one side of a 
~ 

hyper~plane in N-dimensional space. All inequalities combined de-

fine a feasible region for the vector £ in this space. The solution 
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is given by the particular point in this feasible region which will 

2 2 minimize the objective function ~(c. /v. )e This is a problem in 
• J.. ~ 
~ 

mathematical programming for which there are several methods of so-
(34) 

lution available~ However? the difficulty of solution is comparable 

to numerical matrix inversion and in the following sample calculat-

ion we shall use another approach which is simple~minded but perhaps, 

for this application, more practical. 

An example of unfolding by matrix inversion is given in 

Figure 11. Part (a) shows the assumed true spectrum T(x) in the form 

of a number of delta fUnctionsQ Note that T(x) includes two delta 

functions at the non-integral positions 7lo5 and 92Q5 for which there 

is no representation in the matrix model, as explained in section 2.1. 

' Part (b).. shows the spectrum M (x) obtained by folding in a channel-

integrated Gaussian response with Gr= 1 and adding appropriate stat-

istical deviations. The deviations were obtained by sampling from a 

set of normally distributed random numbers. After multiplication by 

the inverse matrix g_-l we obtain the spectrum shown in part (c)e 

Large positive and negative oscillations caused by magnification of 

statistical uncertainties are seen to obscure the true spectrum 

almost completely. Part (d) ·s-hows the result after application of 

non-negativity calculations 9 which were based on a very rapid iterative 

procedure. In each iteration a search was made for the largest neg-

ative value in the spectrum, which \1/as found,. say 9 at channel Yo 

Then the following combination of inverse functions F(x) was added 

to the spectrum: 

A F(x-y) - ~ [ F(x-y-1) + F(x-Y' +1)] 2.6.7 
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The amplitude A was chosen so as to make the spectrum component at 

channel y equal to zero" Inclusion of the last two terms avoids the 

introduction of a positive bias. The iterations were continued by 

searching again for the largest negative component and repeating 

the same process as above~ If after n iterations the spectrum is 

T (x)n then the addition of expression (2.6o7) to T (x) affects 
n · n 

only three channels in the spectrum R T " The value A is added to 
- -n 

channel y and ~ is subtracted from the channels (y-1) and (y+l). 

The spectrum in Figure ll(d) was obtained after 1200 such 

iterations performed on a base of 200 channels. The result is a 

considerable improvement over the spectrum in part (c). All doublets, 

except. the one near channel 70 are now clearly resolved. It is 

interesting to note that the delta function originally placed at 

position 92.5· ended. up distributed between channels 92 and 93 in 

about equal proportions. In principle~ the results should be better 

if the constraint of non-negativity 1r1ere applied properly. by minimiz-

ing the objective function (2o6.6)" 



CHAPTER III 

LEAST SQUARES APPROACH 

3.1 Model Equation and Solution for Parameters 

In Chapter II we dealt ~dth the matrix model in which it was 

assu~ed that the true spectrum can be represented by the components 

of a vector-!• Various methods of response correction ~ere suggest­

ed for the pur~ose of obtaining a spectrum which would approximate ! 

as closely as possible. An advantage associated with these ;;~:;thods 

is that no previous knowledge of the mathematical form of ! is re­

quired. If the form of response matrix R is known9 then the same 

set of inversion calculations should be applicable to all spectra, 

independently of the number or intensity of components present. 

However, as was shown in section 2.1 11 the matrix model is limited 

in that some types of spectra cannot be exactly represented by the 

vector ! . For instance 11 _! cannot include transitions having energ­

ies which do not correspond to channel mid-points. This limitation 

is particularly important \~Then it is desired to make accurate trans­

ition energy determinationso 

The least squares approach does not have this limitation~ 

since it permits consideration of any energy positions~ In factg 

the energies can be used as continuously variable least squares 

solution parameters~ However, the least squares approach requires 

the use of a model function ~-:hich involves the response functions 

and a parame-'crized form of an assumed true spectrum. Construction 
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of this model function usually requires a detailed inspection of the 

observed spectrum followed by an educated guess as to the number and 

positions of the energy transitions present(;) 

Application of least squares methods to the analysis of one-

dimensional nuclear spectra has received considerable attention ~ 

previous literature (36 ~ 37 ~ ••• 9 48)e In the case of Nai(Tt) Y-r~ 

spectra one great practical difficulty is encountered in the generat-

ion of a library of accurate response functionse The usual procedure 

<47, 48 ) is to observe the response sha1Jes o! a number of standard 

isotopes having the simplest possible spectra~ preferably consist-

ing of a single energy transition~ These response shapes are divid-

ed into segments which can be fitted by some convenient parametrized 

functions. l~e parameters thus obtained are in turn fitted to some 

appropriate functions_ of incident Y-ray energyQ B,y methods such as 

these one obtains a set of pararaeters which permit calculation of 

response functions R(E 9E ) for a continuous range of incident energ­
o 

ies E e Since particular details of these methods are given else­
o 

where<47948) 9 they will not be discussed in this thesis and the 

subsequent development will proceed with the assumption that the 

response surface R(E 9 E ) is knowno 
0 

The surface R(x9y) is assumed here to be a continuous funct-

ion of both its argumen·tsv In a nuclear y-ray spectrum we need 

consider only a set of n discrete y-rays having energies y. t \'/here 
l. 

i = : . .., 2 9 ., • .. , n. Each y-ray ".c~ll have an associated response 

function which is diB'itized by integration into channel bins. If 

>3.ch chal"l.nel is assigned unit wid·;;h~ then these response functions 



have the form 

X. (x) 
l. 
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where x is allowed to have only inte ,g:ral valuesQ Summing over the 

contribut;ions of all y-rays we can write· do\m the observed spec·trum 

model function 

n 
:E a. X. (x) o 

. l J. l. 
J.= 

3-1~2 

The parameters a. are indicative of the y-ray intensities and can 
l. 

be e:l\.1Jressed by 

where ~ is the number of transitions y
1
• occurring in observation 

J. . 

timeT, and E. is the detection efficiency of transition y .• 
l. 2 

According to the statistical model derived in Chapter I 9 

~ 

the observed spectrum m contains statistical deviations s and can 
X X 

be w~itten as the sum 

For large numerical values of m ·the frequency function of s can 
X X 

be assumed to be normal \'.ri th zero mean and variance m • This fre­x 
~ 

quency function is given by f ( s ~ m ) in the expression (lolo 3) o 
X X 

Since the N channels under consideration are statistically indep-

endentg one cru~ obtain an N-dimensional frequency function for all 

the deviations s ., ... by simply v~i ting the product 
...... 

N 

TT V 
f( s m ) 

x=l . x9 x L = 
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n 
= (const). exp 

L is known as the likelihood func·tion of parameter~ ao and finds ex­
~ 

tensive application to statistical estimation problemsQ 

We can estimate the coefficients aa by the method of "maximum 
l. . 

likelihoodne It 1odll be shown in the follo1tring section that this 

method'ol based on maximizing L? is particularly advantageous in this 

application since it provides unbiased estimates with minimum pass-

ible variancese Obviously 9 L is maximized by minimizing the exponent 

in e~~ression (3~1.5)e This requirement leads directly to the well 

known condition of \'leighted least squares 9 namely 

N 
l: 

X=l 
a. X. (x) 

l. l. 

2 J - min. 

Differentiating (3Ql~6) with respect to ~ and equating the result 

to zero yields n normal equations 
ij 

N m ~(x) n 
E: _x ___ = l: 

x=l mx i=l 

~ 

a. 
J. 

3.1.7 

If the weights 1/m· \'lere known9 then we 
. X 

would be in position to use equations (3.1.7) for solution of the 
~ 

n unknowA quantities a.. In section 3Q4 it will be shown that the 
l. 

~ 

expression l/ (m + 1) provides good estimates of ·the '.:.reighting 
X 

factors; thus for all practical purposes \'le may assume that the 

weights q£e known and proceed with the solution for parameters a.o 
J. 

Since equations (3"lo7) are linear 9 they can be conveniently 

represented in matrix notationo We start by defining the N-row 

and n-column matrix 
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X (1) 
n 

X (2) 
::l • • lit e 

3.le8 X = - e•••e••e •••eoQ 

Q • • • X (N) 
n 

After also de fining t; he vectors 

M = - 3.le9 

and 

A= 3.lvl0 

" 

we ·can replace model equations (3.1.2) by 

v 
The statistical observed vector ti was already defined in (2.lol)" 

Since the least squares solution for ! ~v.ill have statistical prop-

erties (indicated by the use of a prime), we define the solution 

vector 



0 
A :;;;: 

v 
al 

0 

a2 

" 

" 

'iJ 

a 
n 

'lrle no\PJ can ~"'i te the vector of residuals 

\rJhere 

is the least squares estimate of vector 

the diagonal matrix of weights 

1 
0 0 0 Q 0 " (il Q 

ml 
!...o 0 Q " 0 0 0 0 
m2 

\nl 
0 o L " Q " " " 0 

::::; m3 ..,., 

" " " Gl. " 0 Q Q Q 0 0 

0 0 0 
1 

0 Q " " o-=-

~ 
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N " Upon introduction of 

~ 3"lol5 

the condition of least squares (3"1"6) can be rewritten 

u 
D -

~ 

where the superscript T indicates the transposition of vector D o 

Final~ 9 we are in position to rewrite the normal equations (3olQ7) 

in the new form 

If we define the design m~trix 
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then equation (3.1.17) becomes 

~ T i 
B A . = X tnJ M • --

~ 

To obtain a solution for ! we can multiply this last equation 

-1 by ;§. 9 provided the iil.verse matrix exists. The result is 

Matxix ~ has some important properties which we shall now 

investigate. First of all 9 it is easily seen that ~ is symmetric 

about the principal diagonal. In fact 9 from the.definition (3.1.18) 

we have 

eT = (!:_T !! ~) T = ~T ~ ~ = ~ • 

It is shown in textbooks on statistics (e.g. Cramer(49)) that~ 

provided the columns of matrix ! form a set of n linearlY indep-

endent vectors (i.e. ! has rank n) 9 then~ is a positive definite 

matriXe This means that det(B) > 0 and that the inverse matrix B-l 

exists. Th~e condition that response func·cions Xi (x) be linearly in­

dependent should always be. satisfied in a properly set up modelQ 

Linear dependence indic~tes that one response function can be written 

as a linear combination of others and is therefore redundant· o We 

can therefore assume that the inverse B-l exists and the solution 

(3.1.20) is obtainable. Since the inverse of a symme·cric matrix is 

also symmetric 9 we have 

-1 
:: ~ Q 

3. 2 :_~·~~.-i,~i_stical Properties of the Least Squares Solution 

The last section dealt ~~th a method of obtaining estimates 

for the coefficients a. and showed that the required solution exists8 
J. 
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In matrix notation this solution was expressed by equation (3"'lo20)o 

Now we turn to the investigation of statistical properties of ~he 
~ 

solution vector A Q 

ij 

First we shall show that the estimate ~ is unbiased9 ioeg 
11 

the expectation in~ or~ in other words~ the average value that 

would be obtained after a large number (approaching infinity) of 

identical experiments and solutions~ is given by Aa Using the symbol 

E for expectation we can tirite 

g -1 T i 

E(! ) = E(~ ! ~ li ) 

3"'2"'1 

-1 T Matrices ~ 9 ! and 1i w.ere moved to the left of the expectation sign~ 

" since they are definite quantitieso Since M is assumed to be normal--
ly distributed with mean value t!~ we have 

ij 

E(~ ) = ~ = ! ! o 

Thus equation (3e~.l) can be rewritten to yield the result 

0 
which proves the assertion· that estimates· A are unbiasedo 

The statistical properties of a normally distributed vectorg 

~ 

such as !i can be conveniently summarized by the use of a covariance 

ma·trix QMi • Individual elements of this matrix are defined by the 

expression 

_) c 7 = E r ( m ~ - m. ) (m: - m . ) J L MQ j ij - ~ ~ J J 

According to this definition the diagonal elements represent var-

iances of individual com·oonen"'cs m~., whereas the off-dia£!onal elements '""- J..,.. ._, 

I) 

are covariances bett'leen differen·c components m 
i 

Q 

andmo 
j 

In the 
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~ 

particular case ofobserved vector tf ~ the components are statist-

ically independent and he.nce all covru.'"'iances are zero"' Since the 

\'leigh t matrix ~J is diagor.J.al and has diagonal elements equal to 

reciprocals of variances m. ~ \ve immediately have the result 
J.. 

; 

The covariances in vector A are @eneral~ not zero and we 

shall now derive the full covariance matrix QA; .• If we make the 

substitution 

then we can rewrite equation (3~1920) in the simple= form 

0 
= p M --

There is a theorem(50) which states that 9 for a normally distribut-
I V 

ed vector t1, 7 "'~he vector ! is also normally distributed and has the 

covariance matrix 

Accordingly we can write 

C = B-l XT 'Vl t'l-l vJT X B-l 
~9 ........ -- .... - .... --

-1 
= B -

Equation (3.2~8) and the expectation statement (3o2o3) completely de-
; 

fine the statistical properties of solution vector ! o 

~ 

It is possible to s: .. -:. ~1 that the least squares solu ticn A :fll.""O-
- -

vides a best unbiased e;stimate of the true vector A in the sense that -
. 0 

components a..:- have minimum possible variances~ For this purpose we 

construct Fisher •s informatior. ;..,._,_ ~ ,'iX H t'lhich is defined (5l) Jc;o have -



elements 

h. 0 = 
J.J 

.... E ( a 
2 

lo? 1 ) aa. aa. 
~ J 

71 

Carrying out this double differentiation on the exponent of likeli-

hood function L we obtain the elemen\~e 

N 
= l! 

X=l 

X. (x) X .(x) 
l. J 

m 
X 

which are identical to the elements of design matrix ~" We now let 
n 

A have some other unbiased estimator ! with a corresponding covari-

ance matrix QA n,. Then according to an iraportan·i:; theorem (52) we have 

\there V is any ::a-dimensional vertical vector" Since !! = ~ and 9 con­

-1 sequently 'i !f. = ~CJ.. ~ 'il we can wri·ce the inequality 

v -
.th If we choose a particular vector y in which all but the J compon-

ent are zero 9 the above inequaliJG,Y reduces to 

• 

g 

This last expression proves that the estimate ! has minimum possible 

variances. 

In some applicatio.:r . .:= it is necessary to deal v.rith a nonlinear 
~ 

function of the .::;om1Jonents a. .., \fuen the variances of a. can be 
~ ~ 

assumed to be small9 it is possible to derive approximate express-
v v ~ ~ 

ions for the statistical properties of the function: (a1~a2~e·e~an)o 

Using a Taylor series expansion? in Which quadratic and higher order 
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terms are ne glected 11 \'le can 'IJ'Jrite 

q Z"l 
af: g 

f - ·f = z {ao - a.) (i) 

•' - oa . J. l. 
....... <'=>'*'!.,.,.,., 

J. 

Squaring both sides and talcing ·cheil ... e=q:>ecta-"cion values we obtain 

' 2 E(i -f) 
2 

=cr~ 
f 

= 

':I''he quantity viit:hin square brackets is~ by definit:ion 11 the covariance 
ij ~ 

bet\'Ieen components a. and a. (or variance if i = j) and is equal ·to 
l. J 

an element of the covariance ma·crix C /\ ~ o Hence lrJe can wri·ce do\'m 
- ... '1. 

the variance of function 

2 
n Of a:r 

{ CA, ~ .. (J"Q = L: - j;t 3e2Ql5 
f i'ilj=l oa. oa. 

J. J l.J 

The 
g 

ex-pectation in f is given by 
_., 

= f(~~ a2 ~~ a ) and within .l. OQe 
n 

the range of values where the linear assumption (3Q2"13) is good 9 

v 
the probability densi·cy function of f is 

'l 1 
P(f) = ----
~ ar~ 

exp 
v 2 

[ 
-(f - f) J e 

2 <T 2 
~ 

f 

3.2.16 

A commonly used measure of ~v goodness of fit~~ is the function 

N n 
1 

[ mxu - . ~l a~ X. (x)J 
2 

o 3 .. 2ol7 
m ~= J. J.. 

X 

is equal to the number of degrees of free-

dom'<l (N-j.~-~· . .s:~d the degree of depart1..1re from thi,=> value provides a 

measure of confidence in the correctness of the least squares model 
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employed. Excessively low values would indicate that the estimates 

of variances in the original data toJere too high',) 'VJhereas too large 

X
w2 

values of ' might be due to the model (3o 1" 2) being incorrecto 
")/11:2 

The tolerable limits for values of )l can be found in tables of 

most textbooks on statistics~ 

3.3 APPlication to Two-Dimensional Coincidence Spectra 

In this section we shall consider the least-squares analysis 

of two-dimensional time correlat~on experiments performed with det-

ectors x and yg Two methods of solution for the coincidence co-

efficients will be discussedg The first method is based on a full 

least squares solution which in some instances may require the in-

version of an impractically large design matri~ The second method 

avoids this difficulty by breaking up· t~e model equation into parts 

and then performing a least squares Cqlculation for each part in turn. 

In general9 the two solutions lead to estimates having different 

statistical propertiesg Full covariance matrices will be derived 

f.or both methods of solution and comparisons of relative variances 

will be madeQ 

Some practical uses of the coincidence coefficients a .. will 
l.J 

be also discussed together with some sample calculations. It will 

be shown how they can be used to determine y-ray cascades~ branch-

ing ratios and even absolut0 decay rates without requiring knowledge 

of detector efficiencieso 

Suppose that detector x produces response runctions X.(x)~ 
l. 

\v·here i = l, 2 The subscript i indexes the n types of 
X 

nuclear transitions to which detector x is sensitive. Similarly we · 
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let detector y haven response functions Y.(y)Q In general the 
y J 

numbers nx and ny may be differento We could have~ say~ detector 

x sensitive to [3-rays and detector y to y-rays(JJ The function X. (x) 
l. 

would in this case represent the experimental ~-ray spectrum with 

end-point E. ~ whereas Y . (y) would be the response to a y-ray of 
J. J 

energy Ej. In the particular case of a y-y coincidence spectrum we 

expect to have n = n g We assume that the normalization condition 
X y 

~ X. (x) = 2:: Y. (y) = 1 applies,. \olith this stipulation the response 
X l. y J 
functions can be thought of as being frequency functions over their 

respective channel basesQ 

If counters x andy operate freely without coincidence gating 

we have the one-dimensional model spectra 

and 

M (x) 
X 

= 

n 
X 

~ 

i=l 

n y 

a 
xi xi (x) . 

M (y) = E a . Y .. (y) \) 
y j=l YJ J 

where the coefficients can be erpressed.in the form 

an= Exi ~ 

ayj = cyj JVj " 

3 .. 3 .. 3 

The number of nuclear transitions y i in timeT is g"iven by J(. and the 

total detection. efficiencies are represented by cxi and Eyj~ 

When coincidences between detectors x and y are demanded the 

resultant spectrum fills a tv1o-dimen.sional array of size N N e Since 
xy 

detecd;or x is independent of detector y '.1 the tv;o-dimensional frequen-

cy function for a coincidence (i~j) is simply the product X~(x) Y.(y)o 
l. J 
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Upon summing the coincidences between all possible pairs (i~j) we 

obtain the spectrum model 

n~. n •'·- y 
I: z 

i=l j=l 
a .. X~ (x) Y. (y) o 

l.J l. J 

The coincidence coefficients are given by 

c . [w .. (e) .;Y: . -:- k JY: ArJ.J 9 Cy J l.J J.J l. ..// . 

3-3~5 

where ~iij (6) is the angular correlation function averaged over all 

relative angles subtended by the two detectors~ ../V: . is the number 
l.J 

of coincident transitions (i~j) and k is related to the coincidence 

resolving time 'C through the ex-pression 

21:' =kT. 

The second term in equation (3.3.6) represents the contribution due 

to chance coincidencese 

The funct.ion W •. (e) is usually unknown during the initial 
l.J 

stages of a dec~-scheme studye Howeverv its variations are relative-

ly small and for most practical purposes we can assume(53) 

W. a (9) ~ 1 
l..J 

Solution far coefficients a .. can be effected by the applicat­
l.J 

ion of least squares techniques to model equation (3~3~5)~ There are 

n n coefficients; hence the full least squares solution requires 
xy 

the inversion of an n n by n n size design matri.xo Clearly 9 this 
X y X y 

matrix can become prohibitively lal~@e when n and n reach the 
X y 

neighbourhood of 10 or moreQ 

For large scale p1 .. oblems we can u.se a solution by parts in 

which the dimensions of x and y are Jcreated separatelyQ Model equat-
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ion (3. 3.5) can be relrlri tten in the form of two coupled equations (l) 

n ...,.. 
.t\o 

M2 (xwy) = '\' qi (y) X" (x) -<-• 9 l. 
:.t,.;;;J. 

n 
y 

qi (y) = I! a .. Y. (y) ~ 

j~l :l.J J 

If the value of y is fixed~ equation (3$3~9) can be used as a model 

for a least squares fit in the x-dimensiong This calculation~ yield-

ing nx coefficients qi(y)~ can be carried out for all the NY values 

of y in the data field@ As a result 9 least squares estimates are 

obtained for all n N intermediate coefficients q.(y). Next we can 
xy 1 

fix the value of i and 9 using model equation (3.3Gl0) 9 ]erform a 

least squares fit in the y-dimension. After n such calculations one 
X 

obtains estimates of all n n values of a .. " 
X y :l.J 

'.l.'he solution by parts requires a total of N + n least y X 

squares calculations 9 each involving the inversion of a size nx by 

n or n by n design matrix which is considerably smaller than the 
X y y 

n n by n n design matrix in the full solution. This reduction in 
X y X y 

matrix size is a decided advantage in that a larger number of nuclear 

transitions can be considered in the analysiso 

1nere is another practical advantage to the solution by parts. 

The simultaneous solution does not provide estimates of intermediate 

coefficients q.(y) which represent a one-dimensional spectrum in co­
l. 

incidence with the ith nuclear ~~ansition~ These spectra are import-

ant because they provide addi tiona.l insight into the model" For 

instance 9 they may provide a basis for improving the accuracy of 

employed response functions or they may even reveal the existence of 
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new transitions 'v'Jhich \vere not included in the original modelWl 

When we write down definite (non-statistical) quantities 9 the 

coupled equations (3.3Q9) and (3~3.10) are mathematically equivalent 

to the model equation (3e3.5)e In the least squares calculations we 
v 

are dealing with statistical intermediate coefficients q.(y) which in 
J. 

general do not satisfy an equation like (3.3.10) but are distributed 

around its values. Therefore the solution by parts can be expected 

to yield estimates of a .. somewhat different from the true least 
J..J 

squares estima·tes of the full solution. The character of this 

difference shall be investigated belowe It shall be shown that both 

types of estimates are unbiased a11d that the solution by parts gives 

estimate variances greater than or equal to the full solution var-

iances~ This reduction in accuracy is the price exacted for the 

practical advanta~s offered in the solution by parts~ FortunatelY 

it turns out that the increase in variances is usually small - only 

a few percent in the examples considered below. Full covariance 

matrices of the coefficients a .. will be derived for both methods 
J..J 

of solutiono 

As was done in the foregoing sections~ we assume that the ob-
' ~ . 

served spectrum M2 (x9y) is normally distributed ~dth the variance in 

each channel being M
2

(x9y)e The contents of different channels are 

assumed to be statistically independen·t. We could again \vrite do\>m. 

a likelihood function and maximize it \>nth respect to the parameters. 

Hov1ever we go directly to the ensuing least squares condition 



= 

n 
X 

'I: 

n n 
X y 
I! E 

i=l j=l 
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2 

aij Xi (x) Yj(y) J / M2 (x.y) -+ min. 

3.3 .. 11 

Differentiating (3.3.11) with respect to ~~ and equating the result 

to zero we obtain n n normal equations 
xy 

Nx N 
y g 

I: I! ~(x) Y l(y) M2 (x.,y) I M
2 

(x.,y) 
X=l y:l 

n N N y II 
;j: y 

E a .. >:: E 3.3Ql2 
i=l j=l l.J x=l y=l 

~(x) Y p(y) X. (x) Y .(y) / M
2

(x.,y) 
N l. J 

Expression (3.3.12) represents the norma~ equations of the 

full least squares solution. In order to discuss the solution and 

its properties in a systematic manner 9 it is convenient to use methods 

of matrix algebra. Some matrices \v.ill co11aist of smaller submatrices 

and their detailed expression would normally require cumbersome spat-

ial arrangements of elements. For this reason a special type of 

notation is adopted. Matrices and vectors will be represented by 

enclosing a @eneral element between double vertical bars. Two super-

scripts outside the bars will indicate the number of rows and columns. 

Curly braces will be used to denote a general matrix element 9 wheth-

er it be just a· number or a submatrixe For example, we define the 

matrix of line shapes 



Y1 (1) Y2(1) • • • y (1) 
n y 

y = - Y1 (2) Y
2

(2) e • • y (2) 
n y 

. . . . • • • • • • " . • • 

yl (NY) Y2 (Ny)' • • y (N ) n y 
y 

= I { Yj(y) 1 . N 9n y y 
0 

y,J 

The subscripts y and j indicate the row and column of the gpneral· 

element. Carrying this notation one step further we define a G~at~rix 

of submatrices 

z = 

N ,n} y y 

x9 i· 

· N 7 n 
X X 

• 

The outer superscripts N and n refer to -'che number· of rows and 
X X 

columns of submatrices. For elements the number of rows and columns 

is N N and n n respectivelY. 
xy xy 

The spectrum M2(xQy) can be represented by the vertically 

arranged vector (one column matrix) 

!:12 = 

N lfl 
X 

Likewise, for the coefficients a .. we use the vector 
1J 1 

= 

n ' X 

• 

• 

3·3-16 

Wi.:'ch these ~a fini tions "Vle can \'.trite mode 1 equation (3. 3. 5) in ~~~e 

simplified matrix notation 
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To rev~ite the normal equations (3.3.12) we make use of two further 
i 

definitions. Let ~2 be the vector of residuals 

3-3-18 

where the primes on ~2 and !
2 

L~dicate the coresponding statistical 

vectors. We also introduce the diagonal matrix of weights 

l:-1 = -2 1 
hN 11 N 

X X 

• 3413.19 
x 9 i 

Now the normal equations (3.3.12) can be replaced by the equivalent 

expression 

~ T o 
~2 !2 =~ ~2~2 9 3.3.20 

where 

~2 = ZT 1r! Z 
- -2-

3.3.21 

is the symmetric design matrix. If we ob·tain the inverse of this 

matrix, then we can ~~ite down the full least squares solution 

3.3.22 

-1 A sufficient condition for the existence of inverse matrix ~2 
is that the response functions X.(x) and Y.(y) form two sets of 

l. J 

linearly independent vectors (see Appendix V)g 

The same arguments as were used in section 3412 can be 

applied here to derive the statistical properties of solution vector 
~ 

A2• We have the obvious result that the normallY distributed es-

• timate a2 is "1.~.:a.biased and that its covariance matrix is given by 
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i 

Since ! 2 is the result of a full least squares solution9 its individ-

ual components have minimum possible variances. 

We now turn to the problem of the solution by parts and con-

sideration of its statistical properties. As stated before, this 
n 

solution is expected to yield estimates A2 different from the full 
g 

solution estimates a
2 

• It will be necessary -"co introduce the follow-

ing quantities: the matrix of response functions in the x-dime.nsion 

{
x. i (x) } . 

N 9 n 
X X 

the data vectors 

X = -

i' 
M = -y 

Xgl. 

vectors of intermediate coefficients I { q~ (y) 
w 

1 i.l Sy = 

the diagonal matrix of wei~1ts 

1x.j { 6 . 1i/ XJ = M
2

(x:yr -y 

and the positive definite design matrix 

F 
T ::: X \·1 X • -y - -y-

N ,l 
X 

n ,l 
X 

N N x' x 

11 3.3 .. 26 

9 3.3.27 

3.3.28 

Using model equation (3.3.9) we can obtain least squares estimates 

of the intermediate coefficients 



82 

\1 

It can be easily shown that the estimates Sy are unbiased and that 

they have the covariance matrices 

Next we turn to model equation (3Q3ol0) ~n1ich we use for fitting the 

data in the y-dimensiono 
0 . 

In the set of n N coefficients q.(y) we 
xy l. 

will now have to fix the value of i and let y vary. Therefore the 

coefficients must be rearranged into a new set of vecto~s 

N Ql y 
Q 3103.31 

\1 

Since all components of Si are calculated from statistically in-

dependent sets of data9 the vector has a·diagonal covariance matri~ 

In ·fact we have 

o.} YJ 
y~j 

N ~N y y 

where is· the ith diagonal element of the inverse matrix 

-l F • 
-:1 

We define a matrix of weights 

and a vector of estimates for coincidence coefficients~ 

~~ 

A 
- = i 

II {a~.~. 
II J.J 

l s . 1 J<J 

. Then·by the use of model equation (393G10) we can obtain the solut-

ions 
110 -l T 0 

A o = K. Y v!. 0 • 
-J. "-:L _, -l. ~l. 
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where the positive definite matrix K. is defined by 
-J. 

T K. = Y \v. Y • 
-J. - -J. -

As before~ we have the result that the solutions are unbiased estim-

ates of the true coefficients a .. and that the covariance matrices 
l.J 

are given by 

3.3.37 

From this last expression one can obtain all variances of the estim-
II 

ates aij and also the covariances between terms \v.ith equal i. The 

other covariances are generally not zero and are as yet undetermined. 

In Appendix V it is shown that the full covariance matrix of 

the vector 

is given by 

c = -A" 
2 

K. Y U •• Y K. • { -1 T -l 1 I 
-l. - -:LJ - -J $ • l.,J 

The diagonal matrix U .. is defined by 
-:LJ 

"""' 
N 9 N 

{ fij(y) 0ey 
} k,y 

y y 
u .. = -l.J 

where ~ F;l } .. 
fij{y) = J.9J 

• 

[F;l }- . tF;l 1 
j9j l.vl. 

3-3·39 

9 3.3.40 

Consider no\'1 the diagonal submatrices of £,.. u• Putting j=i we obtain 
.o'-1.2 

[ 
-1 T -1 J K. Y U .. Y K. 

-J. - -l.J. - -+ . . 
l.vl. 

3.3.42 
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This result agrees \dth the covariance matrices given by equation 

(3.3.37). The off-diagonal subma·crices of fAn give covariances which 
2 

were not obtainable before 9 namely covariances between coefficients 
fl 

a .. having different values of i. 
J.J 

l'i 

According to the inequality (3.2.12)~ the variances in ~2 are 

greater than or equal to the corresponding variances in the full 
g 

solution vector ! 2• An exact comparison of variances can be made 

only after inverting the full solution design matrix ~2• This~ 

however, may be impractical in a routine calculation since one of the 

reasons for going to the solution by parts is precisely to avoid 

su~h a matrix inversion. It is therefore desirable to have some 
g· 

simple method o£ determining lo\.;er limits to the variances in P:,2• 

The design matrix _B2 can be wriJcten in terms of submatrices B .. 9 -l.J 

where 

B .. = 
-l.J 

X. (x) X .(x) Y (y) Y (y) I M
2
(x,y)} 

l. J .P q p,q • 

i ' It can be shown that for variances D(~.e) in the vector 8,2 the foll-

owing inequalities hold (see AppendixV) 

where the index i is given by 

i = (k-1) n + l Q y 

In expression (3.3.45) the second term represents the tth diagpnal 

element in the inverse~ of kth diagonal submatrix ~1~. It is the 



stronger of the two given lower limitsQ The weaker limit (last term 

in (3.3.45))is. just the reciprocal of ith diagonal element in matrix 

These limits can be used to establish upper bounds on the mag-

nification of variances introduced through the solution by partsQ 

Some examples of actual variance magnifications and calculated upper 

limits are given below. 

The models chosen for the purpose of comparing variances are 

based on the simple scheme· of two y-rays in cascade. A computer pro-

gram for generating response functions corresponding to a 311 x 3" Nai(T.t) 

detector at 10 em. from a y-ra,y source was used (Archer(4?)) ~ 

-Response functions were assumed to be identical in both dim-

ensions and were generated for an assumed anal.yzer gain of 40 keV/ 

channel •. Assuming that a11- a22 - 0 and that a12 = a21 = 100, the 

model coincidence spectrum is 

A set of 13 models characterized by different response functions 

X2 (x) was usede Function ~(x) was kept fixed with its photo-peal~ 

centeredin ·channel 20. The photo-peak position of x2 (x) was v~ied 

from channel 30 to 20.1 in steps· as sho\~ in column 1 of Table IIIQ 

The spectrum field size used was ~3 x 33 channels. With the 

given response functions (having shapes similar to the ones in Fig-

ure 13) the spectrum has some regions of zero contente ConsequentlY 

the weighting function 1/M2 (x9y) contains singularities. This dif­

ficulty was eliminated"by slightly modifying the response functions 

with the addition of a constant equal to 10-3. 
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:[ 
I, 
: 

Peak Positions, 

Channel Nos. 

20.,30 

20,27 

20,26 

20,25 

20v24 

20,23 

20,22 

20,21 

20, 20.5 

20,20.2 

20,20.1 

TABLE III 

Comparison of Variances 

Singularity Average 
Parameter Variance 

s w I D(a ij) 

.465 I 130 
i 

.445 

148 

l4L:· 

123 

.590 103 

.592 103 

·379 154 

3.71 X 10 -2 ?02 

4.41 X 10-4 8.05 X 1<Y 

2.25 X 10-6 1.23 x-lo5 
2.2 X 10-7 4.16 X 1c? 

\ 

Average 
Variance 
Ratio 

r 
~ 

~ 

~ 1G030 

I lo033 

1. oL:-o 

1.042 

Stronger 
Upper 
Limit 

.es 

19227 

1.255 

lo2?1 

1Q262 

lo2l8 

1.167 

1.163 

1.295 

86 

':leaker 
Upper 
Limit 

.tw 

1.502 

lo538 

, 1.582 

1Q620 

1.601 

1.466 

1-339 

1.336 

1.661 

1.036 2ol9 5ol3 · 

1.004 6.68 47.2 

1. ooQl.~ 26. 2 166? 

1.0001 46.9 2240 

! 
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i 

Variances of the full solution estimates a .. and the solution 
l.J 

l't 
by parts estimates a .. were calculated for each model. Column 3 of 

l.J 

Table III gives the average variru~ce 

1 
= l+ 

2 
I: 

i')j=l 

q 

D(a . .) 
l.J 

which is seen to increase quite rapidly as the two photo-peaks reach 

close proximity. The average ratio of variances 

1 
r = 4 

2 
E 

i,j=l 
[ 

vt ~ ~ D(a .. ) / D(a .. ) 
l.J l.J 

is given in column 4. It is seen that this ratio ~ very close to 

unityfl the greatest departure from that value being only 5.4%~ 

The second column of Table III provides a measure of the 

approach to singularity of design matrix ~2• Since ~2 is positive 

definite and symmetric 9 the ratio of its determinant to the product 

of diagonal elements cannot be greater than unity. In equation form 

we have the singularity parameter 

s = 

If !!2 \'lere diagonal this ratio \10Uld equal unity~ However, diagonal­

it.y cannot be had in ~2 since the response functions used do not pos­

sess any orthogonality properties. For photo-peak separations great-

er than one channel the value of s is near 0.5. As the separation 

is reduced, matrix ~2 app:roa.ches singularity _ru::d the ratio s tends 

to zero. Uncertainties in least squares solution become very 1~~ 

but the ratio of variances 9 r appears to approach unity. 
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Upper limits for the ratio r were calculated by the use of 

inequalities (3.3Q45). Column 5 of Table III gives values of the 

stronger upper limit 

1 2 [ "/{-1 1 . .J ,e = 2+ L: D(aij) ~ii 41 3-3-50 s 
i~j=l 

J? J 

The weak.er limit~ given in column 6~ is 

For most of the models tested both limits remain close to unity and 

therefore are useful. Howeveri these limits provide little inform-

ation when s approaches zero. This limitation is not serious 9 since, 

in the cases where s is very small~ the uncertainties are so great 

that the practical application of a least squares solution may be-· 

come unfeasible., 

Variances resulting from the two methods of solution were 

calculated also for the example given below, v1hich has four y-ray 

transitions and consequently 16 coincidence coefficients a. .• The 
J.J 

average variance ratio r was 1.01. It would thus appear that in 

most practical cases the ma&~ification of uncertainties intro-

duced by the solution by parts is insi~~ificant. 

In order to ill~strate the potential power of coincidence 

analysis an example of calculations .t·ras carried to conclusion. The 

hypo the tical dec.ay scheme used is shown in Figure 12. There are 

four y-ray transitions indexed from 1 to 4 in order of their ener-

gies 410, 600? 650 and 1250 keV. Intel1Sities are indicated by the 

total numbers of transitions v'f/: \v'hich occurred during the time 
l. 

of experiment. The first transiti::;-- Y 
1 

is shown to have occurr-
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ence of 107 counts. Following this there are 2 brancheso T.l~ans-

itions y2 and y3 in cascade have an occurrence of 70%9 whereas the 

- single r4 takes up the remaining 30%. 

In order of increasing energy the total efficiencies used 

were 0.2949 0.293 9 0.293 9 0.283 for detector x and Oo265 9 0.265 9 

0.265 9 0.254 for detector y. The parameter k in equation (3.3.6) 

90 

was fixe.d for 10% chance coincidences by setting k ~ = 0.1. Res­

ponse functions were generated using the different gains o£ 20 keV/ch. 

in the x-dimension and 25 keV/ch. in the y-dimension. ~1e set of 

functions for the y-dimension 9 Y. (y) is shown in Figure 13. A 
J 

data field of 3100 channels was used with N = 62 and N = 50. 
X y 

Model one-dimensional and two-dimensional (coincidence) 

spectra were calculated by the use of equations (3.3.1) through 

(3.3.6). Angular correlation effects were neglected by setting 

W •• {9) = 1. To simulate experimental spectra statistical deviat­
l.J 

ions sampled from appropriate normal distributions were added to 

the models. Resultant values were rounded off to the nearest int-

v v 
eger to give the final channel content M • If M came out negative 9 

it was arbitrarily set to zero,. 
Q 

The one-dimensional spectl~m in the y-dimension9 My(y) 9 is 

shown in Figure 14. All four response functions of Figure 13 show 

their presence in various intensitieso A least squares calculation 

produced estimates agj of 2o6528 x 106
9 lo8537 x 106

9 1.8556 x 106 
/ y 

and 7.6189 x 1QJ in order of increasing jo The largest fractional 

deviation from model value c Ar occurred in the first co-.... yj v'Vj 
; . 

efficient ayl and was 0811%. The content of each channel in spectrum 

M'(y) is quite large (M' > 4000). Consequently the statistical y 
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JiMy· 
deviations \•lhich are of the order V'M represen·!; a small percentage -

too small to be visible in Figure 1~-.. With these "good statisticsn 
v 

the use of weighting factor 1/1'-: in the least squares calculation 

provided an adequate approximation to the true weights 1/H. A sir.a-

~ 

ilar analysis of the spectrum M (x) in the x-dimension yielded X . 

coefficients ai. of 2.9417 x 106 ~ 2.0473 x 106 ~ 2.,0564 x 106 and 
Xl. 

8.4843 x 1a?. The lar@est fractional deviation from the model value 

· \vas 0. 26% in the third coefficient. These coefficients will be of 

use in determining the absolute intensities ~ later ono 
J. 

~ 

The generated coincidence spectrum M2(x,y) contains 
v 

areas of very low channel content • For these channels 1/N can 

be a very poor approximation of the true weight. P~ iterative 

1/M
~ 

process was used to obtain better weight estimates. Weights 

were used in a preliminary least squares solution by partse 

' Channels with H <... 5 were ignored in the calculatione The ensuing 

coincidence coefficients were then substituted in model equation 
n 

(3.3.5) to obtain the improved weight estimates ~M • A second 
Qi 

least squares solution by parts (rejecting channels with M -<. 5) 

" yielded the final estimates a. .• Comparison of results obtained 
. ~J 

with various weight estimates is made in the following section. 

~ 

Intermediate coefficients qi(y) are plotted in Figure 15u Each 

shown function corresponds to a spectrum in the y-dimension which 

is in coincidence with the ith transition recorded in detector x. 

Except for small contribution due to chance coincidences, we see only 



94 

10
5 I 1 ~~ 

li 

10
3

,10
51 10

4 

I " 

Qi (y) 

10
4 

10
3 

'10
5 

'10 2 

0 I 0 20 30 40 50 
. y 9 chan. F~GURE 15 
. I 

~NTER~~ED~ATE COEFF~C]ENTS qi(y) 



95 

~ Q 

transitions y
2

, y
3 

and r 4 in q
1 

(y); y
1 

and r
3 

in q2 (y); y
1 

and y2 
' ~ in q
3 

(y) and finally - only y 1 in qL:-(y). These spectra are simpler 

than the one-dimensional spectrum of Figure 14 and therefore can be 

advantageous in studying response fUnction shapes or in searching 

for new transitions not included in the old modelo 

Using equations (3.3.3) 9 (3.3.4) and (3.3.6) we. can obtain 

a. . A(. 
-

_J. .... J..__ - J. J 'k - + • 
axi a.y j vf'i .IVj 

Since ~i = O, the diagonal elements in the above array determine 

the parameter k. This can be subtracted from the whole array leaving 

the simplified elements .)(. . lc A'_. /Y:J. ). The 4 by 4 matrix of ~J I I J. 

these simplified elements (calculated from the results of least 

squares solutions) is given in Table IV. The value of the chance 

~ -8 
parameter k was calculated to be k = 1.017 x 10 ~ which is 1.7% 

above the model value. 

Diagonal elements of Table IV are expected to be zero. The 

degt"ee of their departure from this value is a rough indication of 

the overall accuracy of the entries in the table~ T.he large values 

of second, third and fourth elements in row 1 and column 1 indicate 

that transition y
1 

has.cascade coincidences with all other transit­

ions. Thus r
1 

cannot have any competing branches. Further examinat­

ion of Table IV reveals that transitions y 2 and y
3 

are in cascade 9 

whereas yh forms a separate branch • These conclusions are in agree-
' 

ment with the original~ assumed decay scheme of Fi~re 12o 

For J'Y: ~ ~ it is possible to l.vrite 
J. J 



TABLE "rV 

[ r v ' 
Matrix of Values Jl 0 o / ( )(0 

J.J J. 
PJ 8 A;) X 10 

~I I 
!i 

I· jr 

1 
~ 

2 
li 

3 4 
II 

,, li 
; i 

1 -0.018 10 .. 023 I 9·932 9~~975 
1! 

I 2 9.982 0.018 14.276 -0.039 
I 

3 9. 923 14.223 -0.011 -0.033 
i 

4 10.Q32 -0.003 -0.041 0.010 1', 

I I 
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.A(. I Cjj( Ar.) = 11'. a . . I ( f:cx .. A/:) . l.J J. JV j ./Vi J.J vii J. J.J l. 

where "· . is the traction· of transitions y. leading to transitio.ns 
l.J l. 

yj. Averaging elements with (i7 j) equal to (1;2) 9 (1~3)~ (1,4) 9 (2 91), 

) 4 8 -8 (3,1 and ( ,1) we thus obtain the value 9.97 x 10 9 the reciproc-

al of which yields 

J(~ = 1. 0022 X 107 " 

This result is only 0.22% above the model value Jri· Similarly9 from 

elements (2,3) and (3,2) we obtain the estimate 

g ~ 6 
){2 = JY

3 
= 7.018 X 10 9 

which exceeds the model value 7 x 10 6 by only 0.26%. An estimate 

of the intensity in the competing branch y 4 is obtained by simply 

' ~· 
taking the difference ~l - JV2 • 

These conclusions, derived from Table IV9 required no knowled-

ge of the detector efficiencies. Since the latter quantities are 

either unknown or difficult to obtain, their elimination can be a 

great advantage in studies of nuclear decay schemes~ 

3.4 Choice of WeigAting Function 

The general least squares solution disqussed in the first two 

sections of the present chapter requires advance knowledge of the 

weighting function. This information is often not available and 

one is forced to resort to the use of some estimate of the proper 

weights. When the data vector is normallY distributed 9 the required 

\'ieights are equal to the reciprocals of variances. Use of these 

weights accounts for the fact that various data points have un-
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equal uncertainties and hence must be assigned different degrees of 

importance in the least squares analysise 
1 

In nucle~ counting experiments the content M in any given channel 

has a Poisson frequency function (see Chapter I)e If the mean 9 or ex-

pectation, value is denoted by M~ then the variance is given by 

I 2 
E(M - M) = M. For large values of M (say M > 5) the Poisson frequency 

function assumes a nearly Gaussian shape; consequently the maximum like-

lihood criterion leads to the method of least squarese 

Since the true weights 1/N are unkno\·.rn~ a common practice is to 
v 

use the estimate 1/M • This can lead to some difficulties, especially 

' when the spectrum contains channels with low counts. The value of M may 

be zero~ leading to a meaningless infinite \veight even 'IIIhen the true 

weight 1/M is quite small. This necessitates special treatment (or com-

plete exclusion) of channels with zero content. Moreover~ the weight ex­

' pectation E(~M ) is ~nerally different from the more realistic weight 
I 

1/E(M ). Using the Poisson frequency function 

I _ _Mt I 
p(M ,M) = c~- 1 M ! ) -M 

e . ' 3.4.1 

we have 

,. 00 ' ' 
E(l/M ')= I! p(M ,M) (~M ) 9 3.4.2 

1-i'=M,e 

where M t is the lowest channel content not rejected from the least squares 

' fit. Ratios of E(~M ) to the true weight l/M are shown by the solid 

curves in Figure 16. The six curves were calculated for Ml = 1,2939 495 
,. 

and 10. It is seen that for most values of M the estimates ~M tend to 

be too high. For Mt = 1 the excess is almost 3~b at M = 4 and gradually 

diminishes with increasing M. At the high value M = 100 the excess is 

about l%. 
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It appears that a better estimate of weights can be ob­

' tained by using ~(M +1). With this estimate channels with zero content 

require no special consideration. For a given value of M we can express 

the weight expectation 

~] 
n~ • 3.4.3 

When no channels are rejected (i.e. M..e = 0) the ratio of E[ll{r·P+l)]to . 

1/M is simply 1 - e-M, -which rapidly approaches unity with increasing H. 

These ratios are shown in Figure 16 by the dotted curves calculated for 

M.,e = 09 1, 2, 3, 4, 5 and 10. It is apparent that the averages E [1/(M'+lB 

approach true vleigb.ts 1/M much faster than is done by values E(l/H') of 

the solid curves. 

Better weights than either of the two above estimates can be obtained 

by a process of iteration. The above weights can be used in an initial 

solution for the least squares parameters. The latter can then be sub-
tl 

stituted in the model equation to @at model spectrum estimates M for each 

point in the data field. A second least squares calculation can then be 

performed using the more accurate weight estimates 1/M". 

Various weighting schemes were tested by using the previously dis-

cussed (section 3.3) two-dimensional spectrum with 16 coefficients a . . Q 

l.J 

Least squares solutions by parts were performed with three varieties of 

weights and a number of acceptance limits M~. A basis of comparison was 

obtained by defining the dispersion parameter 

4 
d = E 

i,j=l 

It 2 
(a .. - a . .) 

l.J J.J 
2 a-. . 
:LJ 

• 3.4.4 
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The same set of variances a-~ . was used in all calculations of d. This 
l.J 

set was obtained from the covariance matrices K~l in the solution with 
·-l. 

' fl weights vi = 1/M and acceptance limi·:; M,e = 5. In a good fit d is ex-

pected to have a value near 16. Larger values will result when the 

n 
estimates a .. have excessive deviations from the model values a ..• 

l.J l.J 

Results are presented in Table v. Column 1 shows the acceptance 

limit M,e ranging from 0 to 25. Columns 2 and 3 give the number of chann­

els which f~ll below the limit Mt and were excluded from the least squares 

calculation. Results in column 2 obtain in calculations with weights 

I V I I 
\v = l/J:vi and W = l/ (M +1)., \vhereas column 3 corresponds ·co the weights 

' tl W = 1/M • The. last three columns give the parameter d obtained with 
n 

various wei~1ts. The iterative weights ~M were calculated from the 

' ' results of an initial solution with W = 1/N and M ..e = 5. 
v 

In all cases the weights l/ (M -rl) appear superior to the vJeights 

l/M ' in that their associated dispersion parameter d has smaller values. 

As expected, the difference diminishes with increasing Mt. Also ex­

pected is the observed general tendency for d to decrease at higher 
n 

values of M~. On the other hand, the iterative weights ~M yield 

values of d relatively independent of M,e within the range of values 

used. It thus appears that in cases where channels with very low con-
n 

tent must be used, the iterative weights l/M are preferable. When 

' M~ can be set at 15 or 20, the weights ~(M +1) seem to be a~equate. 

' The use of weights 1/M is not recommended for any condition. 
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TABLE V 

Test of Various Weighting Functions 

No .. of Channels I 
1 

Acceptance Dispersion Parameter d I 
Limit Rejected out of 3100 I ! 

v 
I. 

fl v ' w I uj 
M,e M < M,e M ~ Mt \II = J/M h'' = 1/(M +1) \v = 1/H I 

I 

j 0 0 - I - 55.0 -
1 167 193 l 38.5 26.8 12 .. 5 

5 588 570 25 .. 3 24.9 13.6 

10 750 765 33.4 32.3 14.7 

15 836 835 14 .. 9 14.7 ) 14.9 

20 890 897 16,.0 
l 

15 .. 9 14"7 
l- I 

25 939 947 
1 

13.8 l 13.6 14.7 
I 

l ~ 
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3.5 Application to Nonlinear Hodels 

The models considered thus far had the property of being 

linear functions of the least squares parameters" This led to 

linear normal equations which could be solved by relatively simple 

matrix methods. However~ the use of more complicated model funct­

ions usually results in a set of normal equations v1hich are very 

difficult to solve. Some modification in· approach is required to 

facilitate the practical solution for the pertinent parameters~~ 

Nonlinear models are essential for accurate determination of 

energies in nuclear spectra. Many detector response functions in­

volve a peak which has a shape well approximated by a Gaussian 

function (e.g. the photo-peak in Figure 1). In order to determine 

the central position-and hence the energy associated with the Gauss­

ian peak - it is necessary to perform a least squares calculation 

based on this nonlinear model. 

One practical method of solution(40944,47) linearizes the 

model function by expanding it in a Taylor series and neglecting 

terms which are higher than the first order. With this method it 

is necessary to provide initial estimates of the least squares 

parameters. If the estimates are good, then the required correct­

ions turn out to be small and the linear approximation is fairly 

accurate. The calculations can be repeated \vith the new correc·t­

ad values being used as estimates~~ After several such interations 

the calculated correctionsusually become insignificant and the pro­

cess can be stopped. 
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We define a general model function 

and denote by M0 (x) the func·cion obtained when initial estimates 

0 
a. are substituted in (3*5ol)e The function M(x) can be approx­

J. 

imated by the truncated Taylor series 

where 

n 
M1

(x) = M0
(x) + ~ 

i=l 

1 

0 
oM (x) 

0 ca. 
l. 

0 
A a. = a. 

l. J. 
- a. 

J. 

We can now state the least squares condition 

N 1 [ n 1 l2 
~ 1 Mw(x) - M0 (x) - t· 6M0 (x) A a~ ~ 

x=l M (x) i=l aa<? 
J. 

v 
where, as before 9 the data vector is represented by M (x) e Treat-

ing the corrections A1a. as our least squares parameters~ we obtain 
l. 

the set of n normal equations 

where the index k can have values 1~ 2~ e••t n. 

These results can be gathered into a neater matrix represen-

tation. Using the symbolism of section 3.4 we define the matrices 

and vectors 

f 1 ° l. M (x) - M (x) 



Al = [ blai 

\•Jl f 0. ~X = - I-ll (x) 

1. l n,l 
~,1 

l i,x 

0~1° (x) 
0 oa . 

J 

N11 N 

The model equation (3.5.2) becomes now 

I n.n 

and the normal equations (3.5 • .5) can be replaced by 

1' OT' ~ 1• 
B

0 
A = D '~'r N ..._._ .... ~ ._.. 

where 
N,l 

f r o l M (x) - IVZ (x) L,l 
1 
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• 3.5.10 

3.5.12 

• 

Solution for the vector of corrections ~l can be effected 

by the in~ersion of design matrix ~0~ The components of this vector 

are added to the initial estimates a~ to obtain a new set of es-

timates 

l' 
a. 

l. 

0 
= a. 

J. 

~ 

·V 
1 + A a. 

~ • 

If all superscripts are increased by· unity 9 then ~he same set of 

equations (3.5.2) to (3.5.14) will describe the second iterationo 

The iterations are continued until the added corrections in equation 
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(3.5.14) have negligible effecto 

In general there is no assurance that the process converg-
v 

es to give estimates a. which will minimize the function 
J. 

r ;: '(;:) - 14(a~, a;, •••• a~, x)J 
2
• ··, 

, 
·'-

There may exist local minima which provide non-optimum estimates 
w 

a. 9 or the process may not converge at all~ Much depends on the 
l. 

model function used and the choice of initial estimates~ For tun-

ately a Gaussian model has good convergence properties and its para-

meters are usually easy to estimate by a visual inspection of the 

spectrum. Thus the method is well suited for determination of 

transition energiestl However~ \lfhen the model includes more than one 

peak located within the width cr 9 the results are not always pre-

dictable. In such cases use might be made of the "parabolic method" 

discussed in detail by Archer(4?)o Near its.minimum value~ Xw 2 is 

v· 
nearly a quadratic function of the parameters a.e By calculating 

J. 

x•2 at various values of a~ and fitting the results to quadratic 
J. 

0 
functions it is often possible to find a set of parameters a. which 

l. 

M.;ll • • • xu2 "'"'" mJ.nJ.ml.ze • 
~ 

In general the estimates ai are not. normally distributed 

when the model function is nonlinearo Their exact distributions 

are not easily determined and may require numerical Monte Carlo 

calculationso However? if certain conditions are satisfied~ the 

actual distributions can be nearly normal. Consider a Taylor ser-

ies expansion of I'1(x) about the unknovm true values of parameters 



a.. \ve have 
J. 

~ 

••• a n 

n 
x) = M(x) + ~ 

i=l 
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II 
(a .. - a.) 

:J. :L 

+ (higher order terms) • 

g 

If we assume now that the variances in estimates a. are small~ then 
~ 

~ q 

over the ranme of most probable values of a. the differences (a. -a.) 
:L :L 1 

\~11 also be small. Consequently we can neglect the higher order 

terms and expression (3.5~16) becomes linear in the parameter estim­

ates a~. \Vhen the initial estimates a? are not too different from 
1 J. 

the true values~ the iterative solution is independent of the values 
0 g 

a. and converges to the same set a. •. Therefore we can assume that 
J. J. 

our initial estimates were the true values a. without altering the 
J. 

v 
distribution in a. • With the linear approximation in (3.5.16) 

:1. 

only one iteration will be required_to dbtain the ieast squa+es es-
0 

timates a. and this solu·tion will have the same statistical proper.-J. . 

ties as the solutions of the linear model in sec-tions 3.1 and 3. 2g 
i 

Conaequently • we can say that the estimates ai are norma.lly distrib-

ute«, tltat ttity have expeolation values given by 

• E (a1_) = ai , 

and that their covariance matrix is 

C 
. " B.;-1 

-il == ...;;· • 

where 

B = - ~ ~ 1 aM(x) 

l 
M(Xj aa. 

X= l. 

n,n· 

• 

Since Gaussian functions find frequent application in non-



linear least squares calculations, it is perhaps worthwhile to 

derive an explic~t expression for the covariance matrix of this 

particular model. As our model function we take the expression 

M(x) = a
1 

exp [-
and assume that the width a

3 
is au~ficiently large to permit_ 

replacement of the summation in (3.5.19) by an integral sign. 
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We shall consider two particu~ cases. In the first in­

stance it will be assumed that the available data extends over the 

full range of the Gaussian peak and the limits of integration used 

will be - QO to + oo • Another case of interest occurs when only 

the right half of the peak approximates a Gaussian shape. For 

~xample, the response shapes of Nai(Tt) detectors may contain small 

angle scattering events and contributions from the Compton scatter-

ing distribution which tend to distort the left half of the Gaussian 

photo-peak. For this case only the right half of the pe~ will be 

considered by using the limits of integration a
2 

to oo • 

We start by considering the full Gaussian peak. Substitution 

of M(x) and its partial derivatives in expression (3.5.19) yields 

the design matrix 

N N 
0 

0 
0 

2 -
al ~a3 

N 

~ 0 0 0 3.5.21 = 2 ' 
~ 

N 3N 
0 

0 0 

~a3 2 a 
3 
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. where N
0 

is the total number of counts under the peak,given by 

N = J2; a
1 

a
3

• 3e5.22 
0 

The matrix is easily inverted to obtain the covariance matrix 

3 a1 
2 

0 
00 ala3 

2N 2N 
0 2 0 

~· = 0 ~ 0 • 3tJ5o23 
N 

0 

-ala3 
2 

0 ~ 
2N 2N

0 0 

Of some special interest is the central covariance matrix element 

a
3 

2/N
0 

which provides the variance in estimate of the peak posit-= 

ion a
2 

, ~v2 •. To take a practical example, consider a Gaussian 
2 

peak consisting of N = 106 counts. Its full width at half maximum 
0 

is given by 2e35 a
3 

and its central position is determined within 

an accuracy of :!: a
3 

/ ffo· The ratio of position uncertainty 

to the peak width is ~2350. This high precision demonstrates the 

power in the method of least squares analysisc 

Next we turn to the case where usable data covers only half 

of the peak. Using the integration limits a2 to oo we obtain 

the design matrix 

A= 

N 
0 

2a2 
1 

1 

1 
N 

0 

3 N 
0 

. 2 
2a3 
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After a considerable amount of algebraic manipulation it is poss= 

ible to obtain the expression for the inverse matrix. 

2 I 

(~) a.l 1 (4-rc) ala3 
1t-3 N - (lt-3) (n-3) N 

0· I 0 --- - ------- - -- ----
2 I 2 

1 2n: a3 I -V2i ~ = = (R-3) (n-3) -r I (n:-3) N 
3.5.25 

0 I 0 c:=.-------- -------2~---- --2 
(4-n:) ala3 -V2ii a3 .I (n:-2)" ~ 
(1t-3) N (n:-3) N' I (n:-3) N 

0 0 6 0 

From the above result we see that the use of only half the peak 

has increased the variance q
2

o, by a factor 2n/(n-3) = 44.3~ a •. 
2 

The ~noertain~y, or standard deviation, is increased by the factor 

~44.3 ~ 6.66e Uncertainties in the estimates of a1 and a3 have 

increased by the factors 2.59 and 4.02 respectively. 

In the foregping discussion it was assumed that the Gaussian 

width a
3 

is sufficiently large to permit neglection of channel in~ 

tegration effects. When a
3 

is small it becomes necessary to replace 

equation (3.5e20) by the more accurate expression 

M(x) ,. al[x+i exp 
x-i 

= f [ erf . [*A:~ ] -erftx~~ ~ } 

where the error function is defined by 
z 

~~1 erf (z) 

It also becomes necessary to retain the summation sign in design 

matrix definition (3.5.19), since the use of integrals would result 
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in a too crude approximation~ Consequent~ simple expressions for 

the matrix elements are not available and the calculations were per~ 

formed by numerical methodse 

Elements of design matrix ~ were calculated on the assumption 

that data are available over the full range of the peak. Model eq= 

ation (3.5.26) contains the three constants N
0 

, a2 and a3 which were 

used as the least squares parameters. Upon inversion of the design 

matrix B it was possible to obtain numerical values of N a-2 
r 

-= . o a2 
independently of the value N • Therefore it was necessary to vary 

0 

only the values of a2 and a
3 

in order to study the behaviour of 

2 (]'"a, at various parameter valuese 
2 

The quantity N o-2 
0 / a

3
2 

is plotted as a function of width o a
2 

a
3 

in Figure 17. Two curves are shown: one for the peak placed in 

the middle of a channel (a
2 

= 0) and one for a peak position half~ 

way between channel centers (a2 = t). Below the value a3 .= Oo5 

the curves show considerable divergence. The curve with a2 = t 
remains close to unityw conforming with the previous approximate re= 

sult in covariance matrix (3.5.23), whereas the curve for a2 = 0 

displays a sharp rise with decreasing values of the width a3~ 

The significance of the variance () 2 
v at very low values 

a2 

of a
3 

is questionable since the probability density function of 
0 

estimate a2 loses its Gaussian shapee In fact, as the width a
3 

vanishes, the peak position becomes indeterminate within the limits 
j . 

of channel width and the probability density function of a2 assumes 

the shape of channel profile P(x), as defined by (285e28a)s In 

this case the actual variance becomes 
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FIGURE 17 
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3.5.28 

and is independent of N • This channel variance manifests itself 
0 

at all values of ~ and the asymptotic expression for variance in 

' estimate a
2 

;a 
2 

CTa• 
2 

•1] + 12 • 

A curve corresponding to this asymptotic expression is included iri 

Figure 17. It is seen that all three curves converge very rapidly 

at BJ = 0 • .5. 

' In order to test the actual distributions of estimates a
2

, 

a number of Monte Carlo calculations were performed with various val-

ues of width parameter a3• Spe~tra were generated by using values 

obtained from the model (3.5.26) and adding normally distributed 

random numbers having variances equal to M(x). Three cases were 

studied with a
3 

fixed at 4.0, 0.5 and 0.2. In·~ach case the model 

values of N
0 

and a 2 remained constant at 100 counts and 0 channels 

respectively. Figure 18 shows histograms of the least squares sol-
li 

utions a 2• Gaussian probability density functions with variances 

2 
{j a 1 taken from Figure 17 (curve with a

2 
= 0) are also plotted for 

2 
the sake of obtaining a comparison. Except for the case with the 

' low value a3 = 0.2, the estimates a
2 

appear to be normally distrib-

uted. 

Results of the above calculations can be summed up as follows. 

The nonlinear least squares solutions provide normal~ distributed 

estimates of Gaussian peak positions for values of N as low· as 100 
0 
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FIGU~E IS 
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counts (or lower) and values of width a3 as low as 0.5 channelso 
g 

\Vhen a
3 

) 0.5, the variances in position estimates a2 are very 

closely approximated by the asymptotic expression (3.5.29). Values 

of a
3 

smaller than 0.5 channels should be avoided due to the possib­

ility of a.large loss in accuracy. Since a
3 

is measured in channel 

widths, its value can be increased by redesigning the experiment to 

yield a finer channel mesh. 



CHAPTER IV 

CONCLUSIONS 

The methods of analysis presented in this thesis were discussed 

with special emphasis to application in nuclear spectroscop,y. However, 

use of this emphasis was not intended to be indicative of a limitation in 

possible applications. The techniques presented can be generallY applied 

to digitized statistical (or nonstatistical) data which contain the dis-

torting effects of apparatus response functions. Statistical consid-

erations were based on Poisson and Gaussian frequency functions which are 

found to occur in a wide class of physical measurements. 

Two essentially different methods of approach were discussed. Both 

are concerned with the same problem of obtaining the physically meaning-

ful parameters with least possible error. The matrix inversion approach 

requires no initial knowledge of the form the unfolded spectrum might 

take. It is thus convenient in cases where this information is una.vail-
) 

able or difficult to obta~ On the other hand, the least squares approach 

generally requires a model of the unfolded spectrum to the extent that 

the number of components and their ·approximate positio~ must be specified 

in advance. This often requires a detailed inspection of the original 

data followed by an educated guess of the pertinent unfolded spectrum 

parameterse However, the least squares approach has also some important 

advantages.. Unlike the matrix model approach, it is not limited to in-

tegral values of the spectrum compone~ts. The removal of this restrict-

ion is important When accurate position determinations of narrow peaks 

116 
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are required. In some applications the two approaches might be combined 

to take full advantase of their relative merits~ A preliminary applicat-

ion of response matrix inversion may provide a useful visual representat-

ion of the unfolded spectrum and thus delineate the appropriate least 

squares model with a smaller element of uncertaintye 

It was shown in Chapter II that the application of some inverse 

response matrices m~ lead to a gross. magnification in statistical un-

certainties. Two methods of combating this undesirable effect were 

suggestedli It is possible to obtain a 11partial inverse" matrix which will 

in effect replace the originally broad response functions, in the observed 

spectrum by a set of narrower ones of some specified shape. Since this 

npartial inverse" matrix has elements smaller in magnitude than the full 

inverse matrix, the statistical uncertainties in the unfolded spectrum 

can be greatly reduced8 Another method of dealing with statistical dev-

iatioDS is based on the ! priori knowledge of non-negativity in spectral 

intensities. Corre.ctions are added to the.observed spectrum so as to 

render the unfolded spectrum positive (or zero) in ever,y channel. The 

particular set of corrections to be added is determined by the condition 

that the ~um of the weighted squares of their individual va;J.ues should be 

minimized. 

When the data vector is multiplied by.the inverse matrix it is a 

simple matter to calculate the statistical variances in the resultant 
I 

unfolded spectrum (see formula(2e6.l))u However, after application of 

non-negativity the determination of statistical uncertainties is some-

what more difficult. .After non-negativity corrections are added to 

the observed spectrum, the result is·a linear combination of response 
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functions with non-negative amplitude coefficients. These coefficients -

one for each channel = represent the unfolded non-negative spectrum. The 

same unfolded spectrum would be obtained in a least squares calculation 

if one used a model equation which contains one response function with 

non-negative amplitude for each channele The model could avoid negative 

amplitudes by the use of quadratic coefficients, in which case the non­

linear least squares techniques discussed in section 3.5 must be applied. 

Therefore, in principle, one could obtain the statistical properties of 

the completely unfolded non-negative s~ctrum from the inverse of the cor­

responding least squares design matrix. 

Similar arguments can be applied to cases where a "partial inversen 

matrix is used in conjunction with the application of n~n-negativity. In 

order to obtain a least squares analogy it is first necessary. to construct 

a set of complementary response functionse These can be obtained by un• 

folding the residual response fUnctions from the full width original 

response shapes~ The corresponding least squares model is then construct­

ed by placing one complementary response function \v.ith non-negative ampli= 

tude in each data channel. Since the least squares solution gives a 

spectrum from which, in effect, the complementary fUnctions have been un­

folded, the remaining response shapes will be the same as in the applicat­

ion of partial matrix inversion. The covariance matrix (inverse of the 

design matrix) of this least squares model determines the statistical 

-properties of the partially unfolded spectrume 

It is thus seen how the two basically different methods of approach 

can become identical under certain conditions. However, when the data 

fields are large, it i.s not practical to apply ordinary least squares 
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techniques to the solution of intensities in each chruL~el. The required. 

inversion of the design matrix becomes unfeasible due to its large size. 

In these cases the response matrix approach can be of decisive advant-

age when the inverse matrix elements are obtainable in closed form. The 

proper application of non-neg~tivity conditions may require exte~iye 

numerical calculations based on methods o~ mathematical programming. 

However, it was demonstrated in section 2.6 .that at least in some cases . 
a very rapid iterative m~thod can be usea. 
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APPENDIX I 

STATISTICAL PROPERTIES OF CHANNEL CONTENT 

Assume that for a large number (appro~ching infinity) of ident-

ical experiments~the average count in channel i is given by m1Q It is 

desired to find the relative probabilities of obtaining various numbers 
v 

of counts m. e To do this we postulate a large numb·er N (N >> m.) of 
1 ~ 

"potential" counts. Each potential count has a probability mi of 'J:?e-
, N 

coming a Ureal" count and is statistically independent of all otherse 
II 

The probability for a particular set of m. potential counts material­
~ 

izing and the ~emainder being not counted is given by 

' i m. N-m. 

( :) 1 ( 1- :) 1 

Multiplying the last expression by the total number of such sets we 
i 

obtain the probability of getting m. real counts in channel i, namelY 
l. 

v i 

m. N-m. 

(f) 1 (1 ) 
:l. 

Ni m. 
J. Al.l -- 0 

' ' I N (N-m
1
)! (mi)" 

We ~ow let N approach infinit,y, under which condition 

ll l ' (N-m~) ! rfli 

i 

Therefore, in the limit, we obtain the required frequency function form ., 
l. 



' p(m. ,m.) 
l. .l. 

m. 
l. 

~ 

m. 
l. 

: I 

(mi)! 
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-m. 
J. 

e • Al.2 

It should be noted that this frequency function also holds true for the 

contents of histogram bins~ provided the histogram is made up of a large 

number of statistically independent experiments and is spread out over 

maey bins of non-zero contente1 If the histogram is concentrated around 

one bin, then it is necessary to use expression (Al.l) with N set equal 

to the total number of experiments" 

When the average value m. is larg~ expression (Al.2) approaches a 
l. 

Gaussian frequency function. To show this we use Stjrlingvs formuia (54) 

We can thus write 

-n n e. n 

log p ,.., (m~ + ~) log(~) -
J. 

Next we use the series expansion(55) 

1 
+ -3 ( 

m .... m~ ) 
3 

J. ~ + ••• 
m. + mo 

J. l. J 
in Which the cubic and higher order terms can be neglected since~ for 

values of p significantly gTeater than zero, we have 

ll 
m. - m. 
l. l. 

i 

mi + mi 

We now can write the result 

<< 1 Al.4 



log p 
' 1 (in. - m • ) , 1 ~ (2m. + l) ~ ! - (m. - m.)- 2 log (2~m.) 

l. ( mi + mi ) l. l. J.. 

- (m~ - m. )
2 

l. l. 

2 tn. 
1 

2m. 
J.. 1 - 2 log (21tm1 ) • 

When the strong inequality (Al.4) holds we have also the approximate 

relation 

2m. 
J. 

• m. + m. 
~ 1 

l. l. 

in which case we can write the final 

I 1 
p(m. ,m.)- ---

l. l. ~~ 
v21tm~ 

::L 

asymptotic frequency 

-(m~ - m. )
2 

J. l. 

2m. e l. 

function 
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Al • .5 

A comparison between the Gaussian and Poisson frequency function.s 

is given in Figure 19 for various values of mi. It is seen that the 

similarity is fairly good at m. = 5 and becomes increasingly better at 
J. 

higher values of m .• 
J. 
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APPENDIX II 

CORRECTIONS FOR COINCIDENCE AND CHANCE SDMMING 

The number of prompt coincidence summing events is given by 

N
06 

=.I:. E. E. 
l.,J J.. J .IV'ij w .. 

l.J ' 

124 

A2.1 

where .JY.. is the number of transitions y. followed by y •i wl.. J" is the 
l.J 1 J 

angular correlation function integrated over the solid angle ..0. sub= 

te~ded by the detector and €. is the overall detection efficiency for 
l. . 

y .• · Since efficiencies are proportional to J1L , we can write 
J, 

E. = k . ...(}.. 
J., l. 

which results in 

N = _n_2 
cs 

The number of single events is simply 

N = 
6 

..0. E k. ~ • 
i 1 J. 

A2e2 

Consequently the relative contribution from coincident summing,N /N is c 6 

proportional to the solid angle .1l • Therefore the effect can be reduced 

by placing the source at a greater distance from the detectoru 

Contribution due to random summing of uncorrelated events can be 

calculated from the following considerations. We have N single events 
s 

occurring during observation time T. Each of these events has the prob-

ability 2 't' N
8
/T of being followed or preceded by another event within 

the electronic resolution time 't" e Therefore' the expectation of the 

total random summing events is 
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N 21:" N 2 
rs = T s 

The relative contribution N IN is thus proportional to the counting . , rEf s 

_rate N
6
/T and ~e effect can be reduced by using weaker sources or smal-

ler solid angle. 

Practical considerations often require relatively high counting 

rates which could necessitate correction for summing effects. It is 

possible to make these corrections by using special experimental tech-

niques or by applying appropriate post-experimental calculations. 

Random sum pulses can be rejected to some extent by electronic 

circuitry. which senses the pulse broadening(4). However this method is 

not 100% efficient and has no effect on coincident sum events. 

A powerful experimental technique can be .applied by the use of two 

identical detectors(3). The mixed outputfrom both detectors is stored 

in one subgroup of the analyzer memory. Another memory subgroup receives 

the gated sum of pulses whenever both detectors respond in coincidence. 

The contents of the gated subgt"OUp can then be subtracted from the mixed 

spectrum. A great advantage of this technique is that correction can be 

made for both random and coincident sum events(5). 

An expression for the spectrum of coincident sum events has been 

given by Heath (2 )" Let the response functions to transitions y. and y. 
l. J 

be given by R(x,y.) and R(x,y .) respectively. The two-dimensional prob-
l. J 

ability density function for yi to produce a pulse height x and for yj 

to produce a pulse-height z-x is given by the product 

R (x, y . ) R ( z-x, y . ) • 
l. J 

The one-dimensional probability density function of obtaining two pulses 



126 

which add up to the value z is given by the inte~al 

To obtain the total coincidence sum spectrum we must multip~ this last 

expression by the number of coincidences Jtiij' the efficiencies e i' Ej 

and then sum over all values of i and j. Thus we get the result 

z 

. Mcs(z) = i;j Ei Ej .Aij wij I R(x,y) R(z-x,yj)dx. 
0 

A2.6 

One limitation of this formula is that advance knowledge of the decay 

properties (in particular the values of vlft': .) is required. 
l.J 

The spectrum due to random summing events is more difficult to 

calculate since, due to possible time-separation, the resultant pulse 

height may be not equal to the sum of individual pulse heights. A meth-. 

od taking this effect into account has been described in detail by.Kennett 

!.! !;! (5) and shall not be discussed in this thesis. This random summing spectrum 

is independent of cascades and.can be calculated without knowledse of 

coincidences ~j· 



APPENDIX III 

DERIVATION OF INVER~E MA~IX ~-l 

-1 We wish to find the elements of matrix ~ , such that 

Since matrix!! is upper triangularfl the inverse !i-l also has the same 

property and we can immediate~ write 

-l 
.tij = 0 for i > j s 
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-1 th To find the diagonal ~lements of ~ we multiply the k row of 

The result is 

B.y definition (2.4.11) for matrix ~ we can express the elements 

~kk = '1tt 

.emn 
~n 

for n > m 9 = n::l 

= 0 for n <. m fi 

Consequently 9 by virtue of (A3.3) we have the diagonal elements 

-1 
.tkk 

-1 It remains to find the upper off-diagpnal elements of ~ a To 

accomplish thisw consider the product of the kth row of ~-l by the (k+j)th 

column of !!1 where 0 < j ~ N - ke Writing out this product in detail 

t'le have 



j -1 

I: ~+i ..ek+ik+j. 
i=O 

= 08 

Substitution of elements (A3.4) in (A3.6) yields the result 

j-l· 
-1 

I: tkk . ill 

i=l +l. 

By using similar arguments we can arrive at the expression 

-1 = = f3k+j+l j -1 
tkk+j+l "k+j+l (k+j) i:l tkk+i • 

Combining (A3.7) with (A3.8) we can obtain the recursion relation 

-1 
. J kk+j+l - f3k+'j+l 

.Rkj = 1~~ • - "k+j+l (k+j) 
""kk+J 
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A3.6 

Using the quantity y. defined by (2.4.12) the above ratio can be written 
J 

in the form 

A3.10 

We already have determined the diagonal inverse element in the kth 

row (see expression (A3.5)). To obtain the next element in this row we 
.-

th -1 th multiply the k row of ~ by the (k+l) column of ~ " This results 

in the expression 

A3.ll 

B,y the recursion relation (A3.10) the next inverse element in the kth row 

is given by 

1 A3.12 =-

It is easily seen that by repeated application of the recursion formula 

we obtain a general inverse matrix element 



(y.- 1) 
J 

j-1 

TI yi 
i=k+l 

for k <.j • 

This completes the derivation of expression (2.4.13). 
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A3.13 

It is of interest to derive an effort factor (total nun;1ber of multi-

plications and div~sions) required for inversion of matrix !!• There are 

(N-1) value~ of y.. Each requires one multiplication and one division 
l. 

to evaluate. This results in a total number of operations 

My = 2·.(N-l) • A3.14 

The recursion rel~tion (A3.10) involves a total of (N-2) factors. Since 

each factor is evaluated by two operations we haye a total of. operations 

MR = 2(N-2) • A3.l5 

Now we consider the evaluation of inverse elements. Each of the 

~(N+l) non-zero elements requires either one division or one multiplicat­

ion. Consequently the total number of operations is given by 

A3.16 

This is a considerable improvement over the cubic relation (2.3.14) for 

the inversion of a general triangular matrix. 

When parameters a and ~ are assumed constant the required effort 

is somewhat less than the effort given by (A3.16). After determination 

of {3/a each y. requires only one division. Therefore in this case 
l. 

M~ = (N-1) + l = N • 
w 

Since the y i a are different the number ~ remains the same as in (A3.l5). 



The diag<?nal elements are all equal to J../a and thus require only one 

division. _All. off~diagpnal elements are obtained by N{N-l)/2.multi-

plicationse Thus the total number of operations is 

= N + l 

130 

A3.18 



APPENDIX IV 

FOURIER TRANSFORrv'.LS AND CONVOLUTION 

First we prove the convolution theorem, which is used in section 

2.5. We have the convolution.expression (2.5.4a) in the x-domain and 

wish to derive the product (2.5.4b) in the w-domain. By substituting 

the Fourier transforms under the convolution integral we can write 

CIO 

F
3

(x) 1 ~~~ i~1 (x-y) if));! 
= 

(2Tt)2 
r
1

(w
1

)e f
2

(co2 )e dy dw1 doo2 
-CQ 

GO 
Oo 
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1 if fl(~l) f2((1)2) 
iw1x 

[~ 1 i(~2-~~~lly J 
=- e e dy dw1dw2 2Tt 

-oo -ao 

definition(35 ) The quantity inside the brackets is just one form of the 

for the delta function o((l)2-oo1). Thus we can make the substitution 

oo2~1 and drop the integration over w2• This leads to the expression 

Q) • 

1 J l.WlX r
3

Cx) = 2i f 1 (oo1 ) r2 ((1)1)e dw1 • 
-Clio 

A4.1 

Therefore F
3

(x) is the Fourier transform of. r
1 

(CJ>) f
2

((1)); but by defin-

ition it is also the same Fourier transform of f
3

(w). Hence we can 

write the equality 

A4.2 

\iJhen we have convolution in the oo-domain (as in (2.5.5a)), it is 

possible to arrive at the product exp~ession (2.5.5b) by using arguments 

identical to the ones presented above •. This would complete the proof of 

both aspects of the convolution theorem. 

• 
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Ne)Ct . we derive the Fourier transformS of so~e . expressions used in 

sec.tion 2.5. Consider the Gaussian function of (2.5. 9a). Its Fourier 

transform is given by 

1 
X"((&)) = ---

[2icr-

We can complete the square in the exponent and write it in the form 

- { X 

2 
iooo--) +-
{2 

Then, upon introducing the transformation 

X ioo CT 

'{2(]" 
y = +-

we oan rewrite expression (A4.3) , 

r(co) a = ==-

2 2 
(JCJ.) 

2 

2 2 
(A) c:r 

2 

1 

0 A4.4 

The definite integt"al has the numeri~al value {i. Hence the Fourier 

transform of the Gaussian response function (2.5.9a) is given by 

.-T"2 2 
.,.. v (!) 

2 = e 

Consider now the set of delta functions 

D(x) = o(x-n) • A4.6 
n=-oo 

Sinoe this set forms a periodic structure s,ymmetrical about the point 

x = 0~ we can expand it in a Fourier cosine aeries, 
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We have 

D(x)dx · ~ l , 

D(x) cos 2nfix dx 

t 

= 2 I o(x) cos 2nnx 

-t 

= 2 • A4.8 

Therefore we can write 

~ 

D(x) ~ l + 2 n~l cos 2~~ 

Taking the Fourier transform of D (x) we obtain 

II.» 00 

f -irox . QO f i.21tnx .,.i21tnx -ioox 
e dx + I: (e + e ) e 

n=l 
-oo · -oo · 

dx 

~ J e ix(2ll:n-oo) dx 

=~ 
n= .... oo 

00 

=2T£~ o(w - 2n:n) tl A4.l0 
n=-oo 

which·establishes the relation (2.5.10b). 

Now consider the· channel profile P(x) as defined in expression 

(2.5.28a). The Fourier transform is 
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p(oo) dx. A4.ll 

According to de Moivre's theorem, we have 

-iCJ>X 
e = cos wx -i sin wx • 

Being ~symetricali the second term has no contribution to the integral 

in (A4.ll); hence we can write 

= COS LUX dx 

2 . (-002) = - SJ.n 
(A) 

A4~12 

which pro?es the relation (2.5.28b). 

It remains now to derive the result (2.6.3) for "partial inversionrv 

matrix elements. We start by considering again the convolution integral 

(-2.5.1)' 

M(x) = 

Oo . -J R(x-y) T(y) ~ • 
-oo 

However'il this time we try to find a npartial inverse" function R . (x) pl.D. 

such that the unfolded spectrum retains a resolution function R (x), which . n . 

is narrower than the original response R(x). Therefore, instead of (2.5.2) 9 

we must write 

£t) 

j Rn(x-y) T(y)~ "' 

(X') J Rpin (x-y) M(y )d;y • A4.l4 
-cw;, -co 

Using the convolution theorem we can express these two equations in the 

CQoodomainv 

m(w) = r(oo) t(oo) 



and 

rn (OJ) t(co) :;g r . (co) m(w) • 
pl.n 

These two relations are satisfied when 

r pin (w) 
r (w) 

n 
= r(w} • 

When R(x) was digitized by the factor D(x) we had the result 

00 
d r (<O) = L r (<O - 21tn) '* n=-oo 
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A4.16 

A4.17 

A4.18 

as given by (2.5.1,3). In a similar way we digitize now the function R (x), 
n 

and obtain 

d 
r (w) = 

l! 

00 

L r (ro - 21tn) • 
n=-oo n 

After these digitizatioM we replace expression (A4 •. 1?) by 

r . ((J)) 
pu = 

rd(oo) 
n 

rd(oo) 
• 

A4.19 

A4.20 

Following the same procedure as in section 2.5, we define a truncated 

function. 

f~ (w) :§: r . (w) for leo\ t... 1t 
pl.n 

1 r . ((&)) forl<O\ = 2 = n pl.n 
.A4.21 

= 0 t forjw\ > n; 

which can be used to obtain the result 

Rpin (x) = F (x) D(x) , 
:n 

A4.22 

'It 

J 
irox 

where F (x) 1 e rd(w) doo = - 0 n 2rt rd(w) n 
A4.23 

-n: 
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If we now substitute (A4.22) in expression (A4.14) and use the digitized 

expression for R (x),we have 
n 

'00 

E R (m) T(x-m) 
n m=-oo 

= F (m) M(x-m) • 
n 

A4.24 

By using the transformation x-m = k this last expression can be rewritten 

C>O 

I: R (x-k) T(k) 
n 

k=-co 
= k=~oo 

This is analogous to a matrix equation 

F (x-k) M(k) • 
n 

R T = F _M , 
-n - -n 

A4.25 

A4.26 

where R. is a matrix containing the reduced width response functions and =-n 

F is a npartial inverse" matrix with elements 
-n 

ioo(k-,e) 
e 

d 
r (w) 

The relation (2.6.3) is thus established. 

d r (oo) dw e 
n 

· A4.27 
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APPENDIX V 

SUPPLEMENTARY PROOFS FOR SECTION 3. 3 

It is required to prove that the design matrix ~2 , as defined by 

(3.3.21), has an inverse B2-
1, provided the response functions X.(x) and - ~ 

Y .(y) form two sets of linearly independent vectors. The proof will be 
J 

complete if we can show that the vectors formed by the columns of matrix 

~ are linearly independent. We start by assuming that the columns are 

linearly dependent and then proceed to show that this leads to an impos-

sible condition. The linear dependence in ~ implies that we can find a 

non-zero vector 

v = - f 
such that 

z v = --
It is possible to write the 

form 

l :!1 
[ x1 (x) Yj(y) 

Jy,j 

n ,1 y 

N N ,l 
y X 

null-vector ~ ~ in the 

N ,n y y 

~v. ·1 l..J j,l 

= 0 -
N N ,l 

X y 

n ,l 
X 

• 

' 

A5.2 

more detailed 

ny,l~ N ,l 
X 

x,l 

If we look only at the subvectors indexed· by x we can say that 



N ,n y y n 

r ~ X. (x) v ij 1 
(i=l 1 )j,l 

n ,l y N ,1 
=Oy 
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A5.4 

for ever,y x = l, 2, ••• , N • The second factor in equation (A5.4) cannot 
. X 

be a null vector for every x since Vis not a null vector and the X.(x) are 
- 1 

linearly independent. But then equation (A5.4) implies that the Y .(y) are 
J 

linearly dependent, which is not true. Hence we must reject the assumption 

that the columns of ~ are linearly dependent. According to Cramer (49) 

the linear independence in ! is sufficient to insure that the inverse matrix 

-1 ! 2 exists. 

Next we turn to the derivation of expression (3.3.39) which gives 

" the full covariance matrix of estimate vector ! 2 • vie join all data 

vectors (3.3.25) to form one long vertical vector defined by 

·N 1 1 N l 

i 
X 

I y,l 

y' 
I l M; (x,y) } M = • A5.5 -o x,l 

Likewise, we string out the vectors of intermediate coefficients by defin-

ing 

l [ \\t q~ (y) 

nx,l 

1 
N ,l 
y 

I 

.J.l A5.6 ~ = • 
1, y,l 

Making use of these definitions we propose to find an n n by N N aize 
X y X y 

matrix~ such that· 
n' 1 

!2 = f. M • 
~ 

According to a theorem(50) mentioned in the text the required covariance 

matrix is then expressible in the form 



Equation (3.3.29) gives N least squares solutions in the x­y 
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dimension. These solutions can be grouped together and expressed in one 

matrix equation 

where 

H = -o 

' ' o = H M , 
~ -o -o 

n ,N 
X X 

0 . 
YJ. 

N ,N y y 

A5.9 

• A5.10 

Before we can group solutions (3.3.35) for the y-d.imension, we must re-
I 

arrange the intermediate vecto~ S so that it consists of a string of 

' vectors 31i. This is accomplished by a rearranging matrix R such that 
. . . -o 

= 

· N ,1 n ,1 

l· t q~(y) } y 
1
l y ~ i

1

l X 

A5.ll 

The desired rearranging matrix can be defined by 

\ 
N ,n } 

n ,N 

l fl i j fll<;y 1 k,i 
y X X y 

R = t A5.12 -o 
j,y 

as substitution in (A5.11) will readily show .. 

After introducing one more definition, 

r K':'l yT W 

n ,N 

}i,j 

n ,n 
y Y' X X 

R =· 6 •. 
' A5.13 -1 -J. - -i l.J 

·we can write down the final solution vector 

" ' A~ = R~ R H M • 
-t;, . - ... -o -o -o A5.14 

" Thus the covariance matrix of estimate ! 2 is given by 
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which reduces to ex~easion (3.3.39) after a certain amount of matrix 

algebra. 

It remains now to prove the inequalities in expression (3.3.45). 

It is shown by Cram~r(49 ) that the reciprocal of a diagonal element in the 

positive definite design matrix is not greater than the value of correspon-

ding diagonal element in the inverse matrix. This fact immediately estab-

lishes the inequality 

where i = (k-l)n + t. y 

1 
t 

i.,i 

Since the diagonal submatrix ~ is also positive defini.te, we have the 

second inequalit,y 

1 A5.17 
~ ~2 1. . C) 

~ ) i9i 

Next we consider the inequality between expressions 

{~ 1 e Matrix ~2 can be partitioned according to the following scheme; 
' ltt 

~2 = 

!11 

(n by n ) y y 
--
!21 

r(n -l)n by n l LX. y yJ 

1 
I 
I 
~ 

l 

I 

!12 

[n by (n ~l)n J y X y 
--

!2~ 

[ (n -l)n by (n -l)n.l 
X y X yj 

• A5.18 

-1 In a similar w~ we partition the inverse matrix ~2 and label the sub-

matrices by C. .• Upon multiplication of these partitioned matrices we -l.J 
can write 
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n 

!u £11 + A12 £21 = I y - ' A5.19 

£21 !.11 + £22 !21 = Q ' 
A5.20 

(n -l)n 
£21 !12 + £22 !22 = I X y ' . A5.21 -

where ! iS a diagonal identity matrix (with rank indicated by the superscript). 

From (A5.19) we have 

A5.22 

and from (A5. 20) we obtain 

• A5.23 

These last two expressions can be combined to yield the result 

A5.24 

We now let the positive definite matrix £22 have elements cij and define 

another set of elements tij such that 

-1 . 
Au ~12 = tt .. l 

l.J ) . . J.,J 

n ,(n-l)n 
y X y 

The second term in (A5.24) can now be written in the form 

·n (n -l)n (n -l)n (n -l)n 

• 

\1

. . yJX y X yJX y 

[tij ~. . bj 1 .. 
J.,J 1tJ 

it .. 1 
t l.J ) . l 

Jt 

= \{ 
(n -l)n 

X Y· 
I: 

k,j=l 

The Jth diagonal element of this matrix is given by 

(n -l)n 
X y 

E tt.k ckj ttj , 
k,j=l 

n ,n y y 

• 

A5.25 

(n -l)nv,n 
.3!. .., y 

A5.26 

which is a positive definite quadratic form by virtue of matrix £22 being 
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positive definite. Therefore, going back to equation (A5.24),we .see that 

the diagpnal elements of £11 are greater than or equal to the correspond­

-1 ing diagonal elements in ! 11 • This establishes the inequality 

for the index vaJ.ue k = 1. Similar arguments can be used to prove the .. 

inequality for other values of k. 
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