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Even with a good fit to nucleon-nucleon scattering 

data, there is considerable freedom in the off-energy-shell 

behaviour of the nuclear reaction matrix because of (1) the 

unavailability of the elastic scattering data in the high 

energy region and (2) the assumptions about the non-locality 

of the interaction. We have investigated off-energy shell 

behaviour by developing 'super' soft core potentials and 

several pairs of phase shift equivalent separable, local and 

momentum dependent potentials. Nuclear matter calculations 

were done using these potentials in order to study the 

sensitivity of the binding energy to the differences in the 

off-energy-shell behaviour. The effective range formula 

has been extended to the off-energy-shell case. 
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CHAPTER I 

INTRODUCTION 

I-1. Any problem in nuclear physics involving three or 

more particles requires off-energy-shell elements of the 

nucle2r reaction matrix K, i.e., of <p1 ,p2 jKjp1' ,p2> where 
P p2 pI 2 pI 2 - - ,.... ""' 

E ___ 1 + _2 ~ E' 1 2 
2m 2m r = 2m + 2m . These can be determined 

uniquely only if the nuclear potential is fully known. Our pre-

sent information about it comes mainly from the properties of 

thedeuteron and the analysis of the two particle elastic 

scattering data. Since there are about 1000 items of data, 

differential cross-section measurements, polarisation,corre-

lation and triple scattering measurements at various energies 

and angles, it is clear that these data are quite detailed. 

Nevertheless the data determine the partial wave scattering 

amplitudes up to only about 350 MeV laboratory energy. 

Equivalentiy one can say that theydetermine the on-energy

shell reaction matrix(E=E0 or the phase shifts in the same 

range. Beyond this,in the high energy region,the data are 

incomplete and largely inaccurate. Furthermore, analysis 

becomes difficult because of a large number of partial 

waves taking part in the scattering process and because of 

the diffraction effects due to pion production. Therefore 

in practice the available information about the scattering 

1 



2 

parameters is phenomenologically extrapolated to the high 

energy region by imposing various model constraints. This in-

troduces uncertainty in the nuclear forces particularly at 

small distances. 

Even if the data were determined unambiguously at 

all energies by high precision elastic scattering experiments, 

the interaction can be determined uniquely (in the absence of 

any bound state) only if it is assumed to be local or having 

a specified form of non-locality. There can be infinitely 

many types of non-locality of the interaction which corre-

spond to the different off-energy-shell extensions of the K-

matrix, even if on-energy-shell they are all equivalent, i.e., 

correspond to the same phase shifts. If a particular nuclear 

process involves matrix elements which are strongly off-energy-

shell, then theoretical predictions for that process will be 

strongly dependent on the potential model used in the calculation. 

We have studied how far these two limitations (1) the 

absence of the data in the high energy region and (2) the 

assumptions about the uon-locality of the interaction, affect 

the off-energy-shell behaviour of the reaction matrix elements 

and to what extent the differences in this behaviour are 

reflec~d in the physical properties. 

In the next section we review the procedures used to 

* investigate the off-shell behaviour for various types of 

* For ease of writing we shall speak of on-energy-shell and 

off-energy-shell matrix elements as on-shell and off-shell 

matrix elements respectively. 
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interactions. We also indicate in what respects our attempt 

differs from others. Section I-3 gives the general plan 

followed in the thesis. 

I-2. In principle, inelastic experiments such as electron-

deUEIOn scattering,deuteron photo-disintegration, neutron

deuteranscattering, proton-proton bremsstrahlung, etc. 

which depend on the off-shell behaviour could serve as a 

starting point to determine the various features of the 

nuclear interaction. But these experiments have been per

formed only at very few energies and are not far off-shell. 

There is another difficulty in attempting an explicit 

parameterization of the reaction matrix based on its off

shell behaviour: the analytic properties of the off-shell 

reaction matrix are not fully known. 

One, therefore, follows the alternative of choosing 

a potential which provides a good description of the 

available nucleon-nucleon data and then calculates the 

off-shell matrix elements via the Lippmann Schwinger equa

tion. These matrix elements are then used in calculations 

involving off-shell behaviour in an attempt to distinguish 

between different potentials and find criteria for favouring 

a particular one. This approach can be supplemented by 

theoretical guidance as to the terms to be includedl-S in 

the potential, for example at large distances it must 

agree with the one pion exchange potential (.OPEP). This 
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procedure naturally has inherent limitations, since it seeks 

to generate a function of two variables (the initial mo-

mentum ki and the final momentum kf' ki#kf) starting from 

its values on a part of the ki=kf line in the kikf-plane. 

As a result, many potentials 6- 12 have been proposed. They 

differ, partly, in the assumption they make about the on

shell matrix elements at high energies where the data do not 

exist (e.g. hard core, Yukawa core and finite square core 

local potentials) and partly in the form of non-local inter-

action assumed (purely local or momentum dependent) • 

Separable potentials13- 21 hav~ also been used because of 

the simplicity they bring to the calculations. They have 

the additional advantage that the reaction matrix elements 

can sometimes be written as specific functions of the 

potential parameters rather than only occuring as numbers 

in the computer output. The requirements of time reversal 

invariance, off-shell .unitarity and the condition of re-

duction to on-shell analytic properties of the partial wave 

scattering amplitude can be easily satisfied and do not put 

any significant restrictions on the form of the potential. 

A number of calculations 22- 26 involving off-shell 

matrix elements have been done using different potentials. 

These calculations are difficult enough so that when two 

potentials are compared one does not know whether to ascribe 

the different results to different approximations in the 

calculation, to different on-shell behaviour, or to different 
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forms of non-locality (and therefore differen£ off-shell 

extensions). This realization has prompted a direct com-

parison of the off-shell reaction matrix elements. 

Laughlin and Scott27 have studied some local 

potentials in the 1=0 state to see the effect of the hard 

core. These potentials were designed to fit only the low 

energy data (up to about 10 MeV laboratory energy) • 

In order to compare potentials which may not agree 

on the energy shell it has been proposed to use the Kowalski-

28 29 . 2 2 
Noyes ' half-shell funct~on fjp,k) = t 1 (p,k;k )/t1 (k,k;k) 

instead of t 1 (p,k;k2). The differences in on-shell be

haviour are thereby compensated. Mongan30 used this 

function for comparing several potentials. 

We have developed very soft local potentials for 

the neutron-proton scattering in the 1s
0 

state. These are 

based on a high energy phase shift extrapolation radically 

different from that of the other local potentials. We stu-

died their off-shell properties and their implications in 

relation to other local and non-local potential models. 

In these comparisons it is difficult to identify 

a particular feature with the high energy on~shell behaviour 

of the model assumed or with its off-shell properties. 

The former can be isolated from the latter if the potentials 

used correspond to precisely the same S-matrix at all 

energies. That infinitely many such potentials exist was 

pointed out by H. Ekstein31 • Three practical methods have 
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been proposed to construct phase shift equivalent pot~ntials. 

d b . d ld 32 . f . 1 d In the one propose · y F1e e ey , a set o equ1va ent secon 

rank separable potentials is obtained by choosing, rather arbitrar-

ily, one of the form factors an:i calculating the other from the on-sheJl d3. ta. 

Another approach has been followed byCoester 33 et. al. They have 

chosen the unitary operator of Ekstein to be an operator 

of rank two. Starting from a local potential, this produces 

a short range non-locality. A third method is to construct 

. * 2 a family of equivalent p -dependent potentials generated 

. **34-36 by isometric point transformat1ons • In this method 

one picks a fairly arbitrary function v 2 (r) and constructs 

a corresponding function v
1

{r) such that 

reproduces the phase shift of a given static potential. 

Different choices of v 2 (r) give different equivalent 

potentials. Such potentials have been used in nuclear 

33 37 38 38 matter ' ' , proton-proton bremsstrahlung and deuteron 

photo-disintegration39 studies, but no systematic com-

parison of their off-shell behaviour has been done so far. 

We study this behaviour in relation to the equivalent local 

potential and as a function of the strength and the range 

* phase shift {or on-shell) equivalent. 

** These are unitary transformations induced by the distortions 

of the radial scale. Details are given in Section V-5. 



of the p 2-dependent term. 

In addition we have followed a different procedure 

of obtaining equivalent potentials. Starting with a 

specified s-matrix, we analytically construct pairs of 

non-local separable and local interactions. This method 

generates only one pair of equivalent potentials, but 

because the separable force is in a sense "very" non-local 

7 

it is an interesting comparison. By combining our procedure 

with that of the isometric point transformations and the method 

proposed by Fiedeldey, one can generate and compare the 

off-shell behaviour of a family of separable potentials, 

a local potential and a family of p 2-dependent potentials; 

all being equivalent on the energy shell. Such comparisons, 

naturally, are useful only in conjunction with many-body 

calculations, so that one can discover what sort of off-shell 

properties lead to particular physical effects. 

I-3. In Chapter II we outline the two body scattering 

theory, enumerate the analytic properties of the Jost func

tions, the scattering amplitude etc. for the case of local 

and non-local (separable) potentials, discuss the separable 

approximation of Noyes to the off-shell transition matrix 

and present the method used to calculate the off-shell 

reaction matrix elements. Chapter III contains explicit 

details of Marchenko's method for constructing a local 

potential from a rationalS-matrix having simple poles-in 

the upper half k-plane. Generalization for the case of higher 



order poles is given in Appendix A. These two chapters 

present the necessary apparatus which is used in Chapters 

8 

IV and v. In Chapter IV we construct two soft potentials for 

n-p scattering in the 1s
0 

state and discuss the possible 

implications of the differences in their off-shell properties. 

In Chapter V we present a procedure to obtain in the 1s 0 

state a local potential which corresponds to precisely the 

same s-matrix as a given separable potential. We also use 

isometric point transformations to construct p 2-dependent 

potentials. The off-shell properties of such equivalent 

potentials are then studied. Chapter VI contains the summary 

and general comments. 

In Appendix B we have presented a detailed investi

gation of the low energy behaviour of off-shell reaction 

matrix elements. 



CHAPTER II 

THE TWO BODY SCATTERING PROBLEM 

This chapter is devoted to the basic ground work. 

In Sections II-1 and II-2 we briefly review the ordinary 

scattering theory and give the .analytic proper.ties. of the 

scattering matrix, etc. In Sections II-3 and II-4 we define 

the off-shell transition and reaction matrices, give 

their analytic structure and introduce the separable 

approximation of Noyes. In Section II-5 we present the 

method used to calculate the off-shell reaction matrix 

elements for the local and p 2-dependent interactions. 

II-1. Introduction 

The two particle Schroedinger equation, in the centre 

of mass system, may be written as 

<rjv'!r'> ~ (r')dr' ...,.,.., """""" k ~ """"" ....... 
,(IIl.l) 

where Land£' are the relative coordinates. The potential 

times m!h 2 is V and 2fi 2k 2/m is the energy of the incident 

particle in the laboratory frame. The nucleon mass or more 

precisely twice the reduced mass of the nucleon pair is 

m. In momentum space, absorbing factors of 2TI into the 

9 
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potential, eq. (II-1.1) can be written as 

• (II-1.2) 

For the purpose of scattering theory it is con-

venient to replace this by the Lippmann Schwinger integral 

equation, which incorporates the boundary condition that at 

large distances the wave function consists of a plane wave 

plus an outgoing spherical wave 

l~k (+)> = I~+ (k 2-H
0
+iE)-l vl~k (+)> . (II-1.3) 

..._ ....... 

H0 is the kinetic energy in units of m/~2 . The superscript 

'+'on~ indicates an outgoing solution. The usual definitions 40 

of the S-matrix and the transition matrix T are 

<plslk> = <~ {-) 1~ (+)> 
- - p k - -

(II-1.4) 

with 

• (II-1.5) 

For a spherically symmetric potential, ~ and T have partial 
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* wave expansions. Ignoring the possible tensor force 1 we get 

= 
oo 1 Q, (kr) 
I i Q, < 2Q,+l> kr P Q, <cos akr> 

Q,=O 
(II-1.6) 

<rl'¥ (+)> 
00 ,.Q, ljJ Q, {+) (k

1
r) 

= I ~ ( 2.Q,+l) p Q, (cos ekr) (II-1.7) 
- k kr 

"""' .Q,=O 

00 

2 <p!Tjk> 1 I ( 2Q,+l) P Q, (cos epk) (II-1. 8) = 
2'1T2 

tQ,(p,k;k ) - - Q,=O 

where ~Q,(z), the Ricatti Bessel function of the first kind, 

is given by 

and 

2 tQ,(p,k;k) 

Asymptotically, 

1 = pk 

1.Q, (kr) -+ sin (kr-Q,'IT/2) 

00 

f 4£ (kr)V 1/J£ (+) (k,r)dr 

0 

I 

ljJ Q, ( +) ( k, r) -+ sin 
io Q, (k) 

(kr-Q,7l·/2) + e sin 6 Q, (k) 
i (kr-Q,'IT/2) e 

• (II-1.9) 

* The factor _!_in the expansion for <p!Tik> sets our nor-
2'1T2 ........ ....... 

malization such that the on-shell tQ,-matrix 

2 ioQ,(k) 
t Q, ( k 1 k ; k ) = - e sin o Q, ( k) /k • 
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The partial wave Lippmann Schwinger equation is 

1/J~ (+) (k,r) = ~~ (kr) + 
004 2 ~ J ~(qr) t~(q,k;k) 

'IT k2 2+. 
q 2dq . (II-1.10) 

-q ~E 

0 

Although T was introduced only for !PI = lkl in eq. (II-1.4), - - . 

it is convenient to define it for !PI ~ lkl also, so that 
""""' --

eq. (II-1.5) can be written as 

• (II-1.11) 

The on-shell T matrix required in eq. (II-1.5) is obtained 

h k
2 . w en w+ +~E. This is why the partial wave t~-matrix has 

been given three parameters. 

The scattering state wave function 1/J~ (+) (k,r) can 

be expressed in terms of the so called Jost solutions: 

1/J~ (+). (k,r) 
~'ITi/2 

= 2 ~ f~ (-k) (f~ (k) f.Q, (-k,r) - f~ (-k) f~ (k,r)) 

• (II-1.12) 

The Jost solutions f.Q,(±k,r) are the solutions of the radial 

Schroedinger equation 

u" (r) + (k 2 - Q, (~+l) - V(r)) u(r) = 0 
r2 

with simple exponential behaviour at large r, i.e., 

lim ±ikr 1 r+oo e f~(±k,r) = 

,(II-1.13) 

, (II-1.14) 



and the Jost functions fx,(±k) are defined by the Wronskian 

W(filcpi) 

fx,(±k) = W(fi(±k 1 r) 1 <Px,(k 1 r)) 

= f i ( ±k, r) cp .Q_ ( k 1 r) - f _Q, ( ±k 1 r) cp i ( k 1 r) 

13 

lim i = (2i+l) r+o r fx,(±k,r) I (II-1.15) 

where <Px,(k,r) is another solution of eq. (II-1.13) defined 

by the boundary condition at the origin 

<Px,(k,r) 
r=O 

---;.... i+l 
r • (II-1.16) 

It can be shown41 that the Jost function fi(-k) 

is the Fredholm determinant of the Lippmann Schwinger equa

tion for the ith partial wave. 

From eqs. (II-1.9), (II-1.12) and (II-1.14) the phase 

shift is given by 

since 

fx,(k) 

fx,(-k) 

2i6 ll (k) ii1T X. e = e 

~i (+) (klr) + ir<s(k) ei(kr-i1T/2) - e-i(kr-i1T/2)) as r+oo 

• (II-1.17) 

The usual scattering amplitude is then 

00 

F(k, cos e) = - l: (2i+l) t.Q, (k,k;k2) pi (cos 6) I (II-1.18) 
.Q.=O 
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with 

2 1 
t~(k,k;k) = 2ik(l-S(k)) 

1 io~(k) . 
=- k e s~n o~(k) (II-1.19) 

being the on-shell t~-matrix element. 

When <~lvl~> is a separable potential the Lippmann 

Schwinger equation can be solved explicitly. We write the 

potential in the rotationally invariant form 

2 oo N~ 
<plvlk> - """' 

1i. 1 = - - 2- L: ( 2 ~ + 1) L: a i ~ g i ~ ( p) g i ~ ( k) P ~ ( cos e pk) 
m 2TI ~=0 i=l 

• (II-1. 20) 

The sign factor cri~ is -1 for an attractive component and 

+1 for a repulsive component. The Lippmann Schwinger equa-

tion for the ~th partial wave becomes (k is initial momentum) 

00 

lj!~(+)(k,p) = O(p-k) +; J 
N~ 

dq pq 2: 
i=l 

0 

Dropping now the index ~, we define 

G .. (+) (k)= 
l.J 

00 

0 

~ ~ g. (q) gJ. (q) 2 
l. J l. - q dq 

k
2 2 . -q +l.E 

The solution of eq. (II-1.21) can now be written as 

lj!n(+)(k,p) = o(p-k) + [detlo .. +G .. <+)(k)f.]-l 
>!J l.J l.J 

. (II-1.21) 

. (II-1. 22) 



N.Q. 
X L: 

i,j=l 

;a: rcr-: g. (p) g]. (k) j 
1. J 1. - pk d ( ) 

k
2 2 . . -p +l.E 1. 

15 

, (II-1.23) 

j 
where d( ) is cofactor 

i 
of the element~ .. +G .. (+) (k) in 

Jl. Jl. 
the determinant l' o .. + 

l.J 
G .. (+) (k)j. Noting that the scattered 

l.J 
wave in momentum space is t.Q.(p,k;k 2)/(k2-p2+iE), we see 

2 t.Q,(p,k;k) = 
~ ~ g.n(P) g. n{k) j 

l.;v J!V l.;v ]!V d( ) 

I < + > I . .Q, i, j =1 det o . . + G. . n (k) . 1. l.J l.J,;v . 

Fully off-shell t.Q.-matrix element is given by 

2 t.Q,(p,q;k ) = 
~ ~ gi.Q, (p) gj.Q, (q) j 

I <+> I d<i>.Q. det o . . + G. . n(k) 
1.) l.J f!V 

and the Jost function by 

fn (-k) = detl 8 .. + G.<:) (k) I )(, l.J l.J,.Q, 

• (II-1. 24) 

(II-1. 25) 

• (II-1.26) 

For a single term separable potential eq. (II-1.25) reduce to: 

f

oo g2 (k') 
_Q, k I 2dk I] 

. k'2 k2 . - -l.E 
0 

(II-1.27) 
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II-2. Analytic Properties 

The Jest function fik), the S-matrix and the partial 

wave ~-matrix elements can be considered as functions of com

plex variables. Their analytic properties naturally depend 

upon the nature of the potential, and have been studied in 

detail for local forces 42 . We here summarise the well known 

results which have been proved. 

Consider the on-shell partial wave scattering amplitude 

tt(w=k2 ) = 2fk(l-S(k)), in the absence of bound states. In 

the complex w-plane it (i) has a branch cut of order two 

from w=O to +oo, the physical value being the one on the 

upper edge of the cut, and (ii) tends to zero as w+oo except 

for hard core potentials. "Driving singularities", repre-

senting the interaction, exist on the lower or unphysical 

sheet of the cut w-plane. For example, for a Yukawa potential 

-1 2 of range 11 , there is a branch cut -oo<w<-11 /4 while for a 

potential which is expressed as a finite sum of exponentials 

the dynamical left hand cut degenerates into a sequence of poles com

mencing at -11 2/4.The Jest function ft(-k) is analytic in the 

upper half k-plane. A zero of ft(-k) on the positive 

imaginary axis would represent a bound state. The singular-

ities of ft(-k) in the lower half k-plane are the potential 

or driving singularities. 

The potentials we will consider, the extended Bargmann 

class, have a rationals-matrix. The Jest function ft(-k) 

is meromorphic in the lower half k-plane. In general, the 
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range of the potential is determined by the smallest 

imaginary part of one of the potential singularities as in 

the exponential example. The analytic properties of fi(k) 

follow from the reflection relation 

f (k*) = f* (-k) i i 
(II-2 .1) 

From this it follows that zeros of fi(k) on the real axis 

make f (-k) vanish as well, giveing S(k) the indeterminate 
i 

form 0/0. This property was exploited by Tabakin17 to form 

his single term separable potential, our case III below. 

The wave function and half-shell ti -matrix are well behaved 

in such a case. If Im fi(k) has an roth order zero and 

Re fi(k) an nth order zero at some real k=kc value, ti(k) 

will pass through zero at k=kc if m>n and the phase shift 

will 'change sign' if m-n is odd. This corresponds, however, 

to having a bound state in the continuum43 . 

Gutkowski and Scalia44 have studied analytic pro-

perties for the case of a separable potential. They showed 

that the Jost function f n (-k)' given by det I 0 .. +G.(:) n (k) I I 
~ l.J l.J,~ 

is again analytic in the upper half k-plane, has no zeros 

there in the absence of bound states, can be considered as 

the Fredholm determinant of the Lippmann Schwinger equation, 

is meromorphic in the lower half k-plane and satisfies the 

relationship eq. (II-2.1), provided (i) the form factors 

gii(p) are nonsingular and real for real p (ii) there exists a 

unique analytic continuation of gii(p) into the complex 



18 

p-plane, such continuation being an even meromorphic function 

of p, and (iii) 

(II-2.2) 

along a semi-circle C of radius k is the upper half k-plane. 

The separable potentials we study here belong to this class, 

as do any others of which we are aware. 

II-3. The Off-Shell Reaction Matrix 

The off-shell T operator was defined by the equation 

T ( z) = V + V(z-H +ic:)-l T(z) , 
0 

whose formal solution is 

T(z) = V + V(z-H+ic:)-l V 

(II-3.1) 

(II-3.2) 

where H = H +V. In the partial wave representation of Section 
0 

II-1, these relations become 

2 
T (p,k;z) = vi(p,k) + w 

2 = vi(p,k) +,. 

(II-3.3) 

(II-3.4) 

In eq. (II-3.4) we have assumed that there is no bound state 

in the t th partial wave. For a fixed z and for a hermitian 



potential, t~ is symmetric in p and k. It is real for z<O 

and satisfies the off-shell unitarity relation 

19 

(II-3.5) 

The phase shifts are related to the on-shell value by the 

relation 

(II-3.6) 

In a practical calculation it is more convenient to 

calculate the reaction matrix Kt(p,k;z) which is defined for 

real z by the corresponding equation with a principal value 

integral 

Kt (p,k;z) 2 p Ioo = vt(p,k) + :;r 

0 

(II-3.7) 

One can then find tt from the Heitler damping equation* 

tt(p,q;k2 ) = Kt(p,q;k 2 ) - ik8(k2 ) Kt(p,k;k 2 ) tt(q,k;k
2

) 

. . 45 (II-3.8) 
gJ.VJ.ng 

2 tt(p,q;k ) 
2 = Kt (p,q;k ) -

The inverse relation is 

2 Kt(p,q,k) 
. 2 

= tt(p,q;k ) + 

2 2 2 
ike(k) Kt(p,k~k) Kt(q,k;k) 

1 + ik Kt(k,k;k2 ) 
(II-3.9) 

2 2 2 ik8(k) tt(p,k;k) ti(q,k;k) 

2 i - ik tt(k,k;k ) 
(II-3.10) 

*The symbol 8(x) defines the step function ~(1 + x/jxj). 
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Eqs. (II-3.9) and (II-3.10) are the generalizations of the 

on-shell relation 

2 t.Q,(k,k;k ) = 

2 K.Q,(k,k;k) 
(II-3.11) 

and show that K.Q, will be separable in initial and final 

momenta if t.Q, is so. It also follows from them that the 

2 half-shell matrix elements t.Q,(p,k;k) have a common phase 

factor e 
iot(k) · 

The reaction matrix is real and hermitian and its 

on-shell value is related to the phase shifts by 

• (II-3.12) 

K.Q,(k) has no cut from 0 to +oo along the real axis in the 

z (=k 2) plane and has poles in z at the actual position of 

resonances and not on the unphysical sheet as is the case 

46 with t.Q, (k) 

The fully off-shell t.Q,-matrix elements can be expressed 

in terms of the half-shell ones. This follows at once from 

eq. (II-3.4) by considering one half-shell and one off-shell 

case: 
00 

2 2 2 f 2 * 2 t.Q, (p,q;k ) = t.Q, (p,q;q ) + :rr t.Q, (p,h;h ) t.Q, (q,h;h ) 

0 

• (II-3.13) 
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Such a relation is not surprising because according to 

eq. {II-1.10) the half-shell matrix elements completely de-

termine the scattering wave function at each energy, which 

should constitute a complete knowledge of the system in the 

absence of any bound state. 

II-4. Separable Approximation 

The calculations become much easier if the matrix 

elements K~(p,k;z) are separable in the initial and final 

momenta p,k. For example the kernel of the Faddeev equations 

becomes separable. In this section we consider the poss-

ibility of approximating the K~-matrix by a factorable form. 

Several different factorable forms 47 - 50 have been studied 

with a view to practical applications. If the potential is 

separable, the reaction matrix obtained from it has this 

characteristic. For a single term separable potential, it 

is of the form g(p) D(z) g(k). 

29 N Noyes has proposed a simple approximation t~ for 

the t~-matrix of a local potential. It may be derived by 

using the unitarity relation (eq. (II-3.5)) in eq. (II-3.13) 

2 * 2 as follows: We write the factor h t~(p,h;h) t~(q,h;h) on 

the R.H.S. of eq. (II-3.13) as 



to obtain 

1 
X ( 2 2 . 

q -h +~e: 

2 = t.Q,(p,q;q ) 

1 
X ( 2 2 . 

q -h +~e: 
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1 * = - 2i f$1, (p,h) f$1, (q,h) [t$1, (h) -t )1, (h)] 

00 

+ !.,.. J 
7T~ 

-oo 

1 
2 2 )hdh 

k -h +ie: 
00 

+ !.,.. I 
7T~ 

-oo 

1 
2 2 )hdh 

k -h +ie: 
.(II-4.1) 

In the above we have used29 

(II-4.2) 

and 

In eq. (II-4.1}, if we consider only the 8-function contri

butions from the poles at h=k+ie: and h=q+ie:, we get the 



Noyes approximation 

2 t.R, (p,q;k ) ~ 
N 2 t.R, (p,q;k ) = 

2 2 t.R,(p,k;k) t.R,(q,k;k ) 

2 t.R,(k,k;k ) 
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• (II-4.3) 

Noyes showed that the exact t.R, may be written as this plus 

a term which vanishes when either p or q takes the value k. 

As an approximation, it has the virtue of being unitary and 

is trivially correct for half-shell matrix elements. It is 

exact at poles on the negative real z (=k 2) axis and at 

resonances on the unphysical sheet. 

II-5. Calculation of Off-shell Reaction Matrix Elements 

A. Local Potential 

We solve the equation 

K ( z) = v + v .....!:._ K(z) 
z-H 0 

(II-5.1) 

in the coordinate space. Introducing a wave function ~~kz> -such that 

K(z) ll? = vl~kz> , (II-5.2) 
""" 

we get 

,(II-5.3) 

(Ho +v-z) l'±'kz> = • (II-5.4) 
......, 
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In the coordinate space, it is 

• (II-5.5) 

Using the partial wave expansion (II-1.6), we write, ignoring 

the tensor force 

00 

'l!k (r) = 2:: 
_,z ,_ i=O 

(II-5.6) 

00 

<giK(z) I~= 2~2 t:o (2i+l) Ki(p,k;z) Pi(cos epk) ,(II-5.7) 

where 
00 

Kt(p,k;z) = plk J ~~(pr) v(r) ~t(k,z,r)dr 
0 

and the wave function ~i(k,z,r) satisfies 

2 
(~ + z- v(r) - i(£+l)) ~n(k,z,r) = 
dr2 r2 N 

(II-5. 8) 

At the origin, or inside a hard core, ~i vanishes. At large 

r the behaviour is determined by the fact that the principal 

value operator in eq. (II-5.3) is half the sum of incoming 

and outgoing waves. This implies 

lim d 
r+oo ~ ~ ( k , z , r) = ij t ( kr) - A~ ( k , '! ) n i ( '! r) , (II-5.10) 

where A is a constant determined by the equation and n~ 
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is the RicattiBessel function of the second kind. The 

boundary conditions on ~~ suggest defining the wave defect 

I (II-5 .11) 

satisfying the equation 

2 
(~ + z- v{r) - ~(~+l)} (k ) = 
dr2 r2 X~ ,z,r -v(r) 1~(kr) ,(II-5.12) 

with the boundary conditions 

X~(k,z,r=c) = t~(kc) at the hard core edge 

or 

x~(k,z,r=O) = 0 if there is no hard core (II-5.13) 

and 

X ~ ( k , z I r+oo) = A~ ( k , T ) n ~ ( T r} . (II-5.14) 

In the case z<O, it is well known that x~ decays exponentially 

at large r. 

Eqs. (II-5.12-14) represent a two point boundary 

value problem of the type 

2 
(~ + f(r))x(r) = g(r) 
dr2 

x'(b) + Sx(b) = B 

(II-5.15) 

(II-5.16) 

(II-5.17) 



over an interval c<r<b. The outer radius b can be chosen 

between 10 and 20 fm. These equations can be solved in 

several ways 51 • For z<O it was shown by Bhargava and 

Sprung 22 that the Ridley method52 is very convenient and 

efficient. The same applies for positive z, but with some 

additional complications. 

In the ordinary Ridley method, one factorizes the 
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L.H.S. of eq. (II-5.15), reducing the problem to the solution 

of three first order equations 

where 

f {r) 

g {r) 

ds s2 f dr - = 

dw 
dr - sw = g 

~+ sx = w dr 

= z-v(r) - ~(i+l) 
r2 

= -v {r) 1 ~ (kr) 

(II-5 .18) 

(II-5.19) 

, (II-5.20) 

Starting at the outer radius b, where eqs. (II-5.14) and 

{II-5.17) imply S=-T tan Tb and B=O, we put s(b)=S and 

w(b)=B. The two eqs. (II-5.18-19) can be solved in to r=c 

and then eq. (II-5.20) solved back out to r=b generating 

the desired solution. There is no danger of building any 

spurious solution of x(r) on the outward integration because 
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a first order equation is being solved. 

The complication, when z>O, arises because over most 

of the interval in question, we have 

f(r) = (z-v(r) ~ ~(~~l))>O 
r 

(II-5.21) 

which causes s(r) to have poles. This does not happen when 

the energy parameter z is negative. For example if f(r)=c 2 , 

a constant, the solution would be s(r)=C tan cr, which has 

poles. If we had f(r)=-c 2 , we would have s(r)=C tanh cr, 

which is well behaved. This problem is overcome by in-

traducing the 'Ridley-alternate' method where we have three 

new functions 

s 1 w w z = - I = - I = w-sx s s 

1 w w-sz (II-5.22) or s = s I w = s X = 

which satisfy 

dS -1 s f(r)S (II-5.23) dr = -

dW S(g(r) f (r) W) (II-5.24) dr = -

dZ = g (r) f (r) (W-SZ) . (II-5.25) dr -

Whenever the solution s(r) begins to grow, say at lsl=2, 

we switch over to the alternate method. Since the operation 

eq. (II-5.22) is reflexive this is very convenient on the 



computer; one needs only to keep a record of the step at 

which a flip-flop was performed, so that on the reverse 

integration for x (or Z) the corresponding operation is 
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effected. Eqs. (II-5.22-25) apply equally well to the case 

of coupled partial waves, where f, g, s, s, w, W, x and z 

become 2x2 matrices. Since s and S are symmetric, only three 

of their four elements need be solved. 

If it were desired to start the integration process 

at the origin (or core radius) where the boundary condition 

is X~(c)=t~(kc), it would be necessary to begin in the 

'variant mode' with S(c)=O, W(c)=~~(kc). At negative z 

this is convenient only when one is looking for the 

Moszkowski-Scott separation distance 53 , determined by the 

first zero of W(r). 

Once x~(k,z,r), and therefore the wave function 

~~(k,z,r)=~~(kr) - x~(k,z,r), has been calculated, the 

matrix element K~(p,k;z) can be obtained from eq. (II-5.8). 

For soft core potentials it is probably easier to 

evaluate the Krmatrix elements in momentum space, but for 

hard core forces the coordinate space solution is necessary. 

B. Momentum Dependent Potential 

The Ridley equations (II-5.18-20) get slightly mod

ified in the case of a p 2-dependent potential. For a 

Hamiltonian of the form H = v 1 (r)p2 v 1 (r) + v 2 (r), eq. 

(II-5.12) satisfied by the wave defect x~(k,z,r), changes 



* to 

or 

or 

where 
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= {vl(r) (- d22 + t(t+1)) vl(r) + v2(r)- (- d22 + t(i+l))} 
dr r 2 dr r 2 

x ~ 2 (kr) 

v 
2 

(r) 
__;;;...,.-- + 
vl2(r) 

11. v'(r) 1 

= (1- / ) *2 (kr) + v~(r) tt<kr) 
v

1 
(r) 

v" (r) v
2 

(r) 
+ { 1 ( 1 1 ) i ( R-+1) _ . }~ (kr) v

1
(r) - - 2 2 2 t 

v 1 (r) r v
1 

(r) 

2 
9_+ (~ + h f)Xt = g 

dr 2 dr (II-5.26) 

h (r) 
2v i (r) 

= v
1

(r) 

v" (r) 
Q, ( t+ 1) v 

2 
(r) 

f(r) 1 + z = v
1

(r) 2 2 r vl2(r) v 1 (r) 

* 2 - 1 d2 ~2 A 

We have used p = - --- r + --2 , where t is the orbital 
r dr2 r 

angular momentum operator. 
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g(r) = (1 -

- ( 1 - 1 ) t ( t+ 1) 
vl2 (r) r2 

(II-5.27) 

and the prime over v1 and ~ indicates differentiation with 

respect to r. There is no change in the boundary conditions 

if v 1 (r) has a finite range. For a local potential v 1 (r)=l 

and the eq. (II-5.26) reduces to eq. (II-5.15). The Ridley 

method can again be used giving the following three first 

order equations 

ds + (h-s) s = f dr 

dw + 
dr (h-s) w = g 

9x+ 
dr sx = w . (II-5.28) 

These equations can be solved for Xt(k,~,r) as indicated 

earlier. Eq. (II-5.8) then gives the reaction matrix 

elements. 



CHAPTER III 

INVERSE SCATTERING PROBLEM 
MARCHENKO METHOD 

III-1. Introduction 

The inverse scattering problem aims at obtaining 

the interparticle potential from the phase shifts or the 

S-matrix. Starting from any given S-matrix, a local poten

tial can be constructed by using the Gel'fand and Levitan54 

or Marchenko 55 equations, and a one term separable potential 

by the methods proposed by Omnes 56 , Bolsterli and Mackenzie57 

and Tabakin58 • In both cases the potentials are unique in 

the absence of any bound state. Another inversion procedure 

valid only for Yukawian potentials has been proposed by 

Martin59 • 

We are interested in obtaining a local potential 

from a rational s-matrix. The general construction procedure 

using the Gel'fand and Levitan equations for such an s-

. . 60-63 
matr~x has been g~ven by a number of workers • Here 

we follow the Marchenko scheme which seems much easier. It 

is applicable only to the ~=0 case but can be modified for the 

higher partial waves also64 . 
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III-2. Method 

In this method one forms a kernel 

1 Joo F(x) = 21T {S(k) - l}eikxdk, 

-oo 
from the s-matrix and solves the Fredholm equation 

A(t,x) ~ F(t+x) + J
00

A(t,y)F(y+x)dy, 

t 
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(III-2 .1) 

(III-2.2) 

for the kernel A(t,x). If bound states are present, eq. 

(III-2.2) still holds in the same form provided F(x) is de-

fined as 
1 

roo 

- l}eikxdk + Iis e 
-f; X 

F(x) 
J 

{S (k) n = 21T n n 

-oo 
Here t;n 2 are the binding energies of the bound states and 

Sn are the residues of the s-matrix at bound state poles. 

~his kernel is square integrable in the range (t,~ in x 

and is related to the Jost solution by 

F(±k,x) = e+ikx + J
00

A(x,y)e+ikydy. (III-2.3) 

X 

~he potential is given by 

V(x) = - d 
2 dx A(x,x) (III-2.4) 

All the potentials which we have considered corres-

pond to a rational s-matrix of the form 
n rk-iam] nf3 [k+iSn 1 0\ 

S(k) = IT II (III-2.5) 
m=l k+iO\ n=l k-~s l m nJ 

where Re 0\m>O and Re Sn>O for all m and n. .The poles at 
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k = -ia , correspond to antibound states (a real) or m m 
resonances while those at k =iS are the, so called,'redun

n 

dant poles' or 'potential singularities'. The phase shift 

follows immediately 
ns 

a <k > = I 
n=l 

from eq. (III-2. 5) 
n 

1 S a -1 an 
tan- (kn) - I tan (~} 

n=l 
(III-2.6) 

For na = nS' the phase shift will vanish both at k=O and k=oo. 

If the S-matrix has only simple poles in the upper 

half k-plane, the kernel F(x+y) can be evaluated by closing 

the contour in the upper half k-plane. Only the poles at 

k = iS contribute, so that 
r 

ns [(k-i~r) Im f(k)J e -Br (x+y) 
F(x+y) = -2 I 

r=l f(-k) k=iS 
r 

ns -s (x+y) 
= I b e r 

r=l r 

ns 
= I F (x) F (y) 

r=l r r 

(III-2.7) 

is separable and the eq. (III-2.2) can therefore be solved 

by standard methods giving 

A (t, x) = 

with 

-s.x 
M. (t)e ~ 
~ 

(III-2.8) 



and 

t. (t} 

-a.t 
b.e ~ 
~ 

A(t) 

= ll + 

n-n - s 
2: I 

n=l j1;ij2;i 
. . . . 2: b. b. . . . . jn )1 )2 

b. -2S.x 
= det o .. + 

13 
!s e ~ 

where 

(n) 
p . . = 
j1'J2· ··Jn 

= 

~J . . 
~ J 

1 
'2'S:-

]1 

' .1. 

s. +s. 
J 2 J 1 

• 

1 
s. +(3. 
Jn J 1 

2 
-n 

S· 13· •••• S· 
Jl J2 Jn 

1 
S..; +s. . . . 

.J 1 J 2 

1 

21j . . • 
2 

. . • 

. • • 

1 
13. +S. . . . 
Jn J 2 

n rS· -s. 12 
IT 

Jr J s 

(3. +(3. J r<s Jr J s 
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b. b. • • io •• b. 
J1 J2 Jn-1 

(III-2. 9) 

. . . . b. 
Jn 

(III-2 .10) 

1 
(3. +(3. 

J 1 Jn 

1 
(3. +(3. 

J2 Jn 

1 
213. 

Jn 

(III-2.11) 



1 

1 

1 

= 

1 
e. +e. 

)1 )2 

1 
2r 

J2 

1 

n 
TI 

r<s 
r,s;il 
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1 . . • e. +e. 
J1 Jn 

1 . . . e. +S . 
J2 Jn 

. . . 

. . . 

. . . 

(III-2 .12) 

For t=x, the expression for A(t,x) simplifies to 

d 
A(x,x) = dx {logA(x)} {III-2.13) 

which is sufficient to obtain the potential. The scattering 

wave function asymptotic to sin(kx+o) has the simple ex-

pression 

S.M. (x) -S.x 
ljJ 0 (x) = 

ns 
<1 + I 

i=l 

1 1 e 1 )sin(kx+8) 
s.2+ k2 

n.(3 

+ ( 2. 
i=l 

1 

k M. (x) -s.x 
1 e 1 )cos(kx+o) 

s.2 + k2 
1 

(III-2 .14) 
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III-3 Generalisation for .the Case of Higher Order Poies 

If the S-matrix has higher order poles the solution 

becomes considerably more complicated. We have not been able 

to express it in a simple explicit form as above. A general 

procedure for handling several poles of second order is 

outlined in Appendix A. If iS is a double pole, we replace 

it by a pair of simple poles at iS(l±E} and take the limit 

E + 0 of the solution A(t,x). Even easier, for E = 0.001, 

the CDC computer would give an accurate construction of the 

potential using the above formulae for simple poles. In 

view of eq. (III-2.6) the error in the phase shift is of 

order SE 2/k and is important only at the lowest energies 

(of order one eV). 



CHAPTER IV 

SOFT CORE LOCAL POTENTIAL MODELS FOR 1s 0 NEUTRON-PROTON 

INTERACTION AND THEIR OFF-SHELL PROPERTIES 

IV-1. Introduction 

Local potential models for the nucleon-nucleon 

interaction in the 1s 0 state have usually included very 

6-9 . strong repulsive cores • Even the relatively soft poten-

tial of Bressel, Kerman and Rouben10 has a repulsive core of 

670 MeV. It has been widely believed that the existing 

experimental data require the use of very strong repulsive 

cores in the case of local potentials. We wish to investi-

gate whether the existing experimental data (more precisely 

the phase shifts) do require a substantial repulsion at 

small distances, and if not, what differences are produced 

in the off-shell behaviour. Following Bargmann65 , we make 

an ansatz that the S-matrix is of rational form (eq. (IV-2.1)). 

This implies that at infinite energy the phase shift will 

go to zero, ruling out the infinite hard core but little 

else. In principle this is little different than assuming, 

as for example Reid does, that the core shall be a Yukawa 

of certain range because the latter statement also implies 

the asymptotic behaviour of the phase shifts. 

In Section IV-2 we describe the construction of the 

37 
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potentials and point out their special feature~. In Section 

* IV-3 we compare Noyes-Kowalski half-shell function 

2 2 ft(p,k) = Kt(p,k;k )/Kt(k,k;k) for our potentials with 

those obtained from other local and non-local potential 

models. I~ Section IV-4 some implications of the existence 

of such soft potentials and the difference in their off-shell 

properties are considered. Section IV-5 gives our con-

elusions. 

IV-2. Construction of the Potentials 

We write 

S(k) = e2io(k) = 
N k+iS r 
IT (k-iS ) 

r=l r 

k-ia 
r 

(k+ia ) 
r 

(IV-2.1) 

and consider N=3. At least N=2 terms are required (see 

Section II-2) in order that the phase shift can change sign. 

We find it convenient to require that E a. = E s., which 
. 1 . 1 

1 1 

allows only one change of sign of the phase shift (Im f(k) 

vanishes for only one real value of k) • 

The parameters ar' Br were fitted to the 40 
1s 0 

n-p phase shifts of MacGregor et.a1~ 6 in the energy range 1 

to 460 MeV, giving a x2 value of 12.2. This fit is superior 

to any other potential model. The positions of the zeros 

and the poles of the S-matrix are shown in Fig. 1. There 

* This definition is completely equivalent to the usual one 

involving transition matrix elements. 



are three redundant poles in the upper half k-plane. In 

the lower half there is the 1s 0 antibound state pole near 

the origin and a pair of 'resonances' of very large width. 

The precise positions of these are very much model depen-

dent, so are not to be taken seriously. Once our S-matrix 

has been fitted to the data, the potential is completely 

determined and is calculated by using the method described 

in Chapter III. 

As a practical matter, in fitting the potential we 

introduced the following five real parameters 

c1 : scattering length 

c2 : effective range 

c 3 : energy at which phase shift changes sign 

c4 : phase shift at an arbitrary energy c6 

c 5 : governs asymptotic behaviour o(E+oo) ~ -C 5/E 3/ 2 • 
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The parameters a , B are the roots of a polynomial related 
r r 

to these new parameters by the following relations: 

3 
IT (k-iBr) (k+iar) = a + bk2 + ck4 + k 6 

- iek(f-k
2

) 
r=l 

where 

e = c (2!.._)3/2 
5 21'l2 

(IV-2.2) 



b = ~ efc2 - a/f (~) 3/2 
2112 

c = 2 2 6 4 [es(f-s ) cot (c4 ) - a - bs - s ]/s ; 
s2 rnc6 

- 2112 
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• ( IV-2. 3) 

We have used ~ 2/m = 41.47 MeV fm 2 • The fact that there are 

only five parameters reflects the constraint on the sum of 

a's and S's. c 1 and c 2 are well known, although a slightly 

better overall fit was achieved by letting these readjust 

slightly. 

The parameters c 1 to c 6 which define the potential 

are given in Table 1. In Fig. 2 our phase shifts are com

pared against those of Reid9 {who fitted p-p data, not n-p 

data) and the Livermore group66 . We are everywhere within 

a standard deviation. 

In Fig. 3 our potential (called SSC) is plotted 

alongside Reid Soft Core potential. The repulsive core in 

our case is of nearly the same radius (half height radius) 

but achieves a height of only 87 MeV. The narrow attractive 

pocket at the origin does not support a bound or resonant 

state and indeed has no significance. If the potential were 

cut off flat at its maximum the high energy phases would 

become only a few percent more repulsive (0.5° at 300 MeV). 

At large r our potential oscillates. We believe this is 
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TABLE 1 

PARAMETERS DEFINING THE POTENTIALS SSe AND SSe-NP-2 

Parameter sse SSe-NP-2 

e 1 (fro) -23.5518 -6.4719 

e
2 

(fro) 2.4653 2.3271 

e
3 

(MeV) 261.2205 263.3857 

e4 -0.1007 -0.11089 

e
5 

(MeV3/ 2 ) 3144.58 6353.98 

e
6 

(MeV) 335.0 325.0 

Joining Radius(fm) 1.86775 
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because the potentials of Bargmann class decay exponentially; 

the data, however, favour the OPEP Yukawa tail and this 

more rapid decay is simulated by the oscillations. 

In order to accommodate the OPEP tail, which is 

well established, we fitted a hybrid potential defined to 

have the functional form of sse at small r, and to be equal 

to OPEP at large r (beyond about 1.8 fm). The precise joining 

radius was selected so as to make the potential continuous, 

but with a discontinuity in slope. To avoid introducing 

further adjustable parameter we defined the tail potential 

following Reid9 

-1 
].l = 0.7 fm • ( IV-2. 4) 

Of course, simply replacing the large distance part of sse 

by OPEP would make the potential more attractive, so the 

parameters e1 - e5 defining the short range force were 

treated as adjustable parameters and again chosen to secure 

a best fit. This removes any direct physical significance 

of these parameters; in particular the S-matrix of the 

hybrid potential is very different from eq. (IV-2.1). The 

phase shifts in the combined potential were determined by 

numerically integrating the Schrodinger equation. Since the 

long range potential was fixed, considerable time was saved 

by integrating through it only once. At each stage in the 
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search procedure, one needs only to integrate through the 

short range potential. To see this, let M~(r) and P~(r) be 

solutions in the potential VTAIL with asymptotic forms 

M~(r) ~sin (kr- ~TI/2) 

P~(r) ~cos (kr- ~TI/2) • (IV-2.5) 

If d is the joining radius between the short qistance and 

tail potentials (or any greater distance), a solution ~(r) 

in the interior region can be matched at r=d to 

~(r) =A cos (o)[M~(r) + tan(o)P~(r)Jr=d 

~ A sin (kr + o - ~TI/2) as r~oo .(IV-2.6) 

Thus, o can be determined at the point d, provided that one 

has previously evaluated two independent solutions in the 

tail potential and has available their boundary values. 

Since for our potential, dis about 1.8 f~this procedure 

made for a great saving in effort. 

The searches were carried out by a computer programme 

MINI2 following the Powe11 67 method. x2 for the phase 

shifts at 20 energies (from 1 to 400 meV) was minimized. 

* The best solution found, called SSC-NP-2 , gave x 2 =3.9 with 

constants c1 to c6 as in Table 1. The quality of the fit 

* Another solution called SSC-NP-1 was discarded in favour 

of SSC-NP-2. 



is superior to the pure sse, which is consistent with the 

introduction of a new parameter. 
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The high energy phase shifts are completely differ

ent from those of the Reid or Hamada-Johnston potentials. 

For SSC-NP-2 there is a minimum of about -12° at 635 MeV; 

thereafter they tend to zero. In Fig. 4 the high energy 

phases for a number of potentials are compared. Strongly 

repulsive cores behave essentially like a hard core, for 

which o0 = -kc, over an energy range up to several BeV. 

The means by which such a weakly repulsive potential 

can produce a reversal of sign in the phase shift is best 

illustrated in Figs.5(i-v) where we show the radial wave 

function normalized to be asymptotically sin (kr + o), at 

a number of energies. In contrast to strongly repulsive 

cores which make the short range ~ very rigid, we see that 

~ changes considerably with energy. Between E = 20 and 60 

MeV, our ~ is rather rigid inside 1 fm, but as the energy 

becomes comparable with the core height ~ begins to pen

etrate in towards the origin just as the Bessel function does. 

The wave function is just stiff enough to give the required 

negative phase shifts above 250 MeV. 

IV-3. Off-Shell Properties 

In Figs. 6(i-iv) we compare the behaviour of the 

half-shell functions f(p;k) of our potentials with those 

obtained from the well known Reid Soft core9 , Hamada-Johnston 7 
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and Mongan16 (separable) potentials. At p=k, this function 

is equal to one. Initial state energies k 2 corresponding 

to laboratory energies of 20, 60, 140 and 360 MeV were 

chosen as illustrating the overall behaviour. The final 

state momentum p runs up to 10 fm- 1 , corresponding to 8 BeV. 

There is noted a steady progression in behaviour 

from the SSC potentials through Reid to Hamada-Johnston, 

evidently reflecting the hardening of the core. At very 

high p, the Hamada-Johnston curve seems to be oscillating 

wildly due to its infinite hard core. Reid's potential 

seems to have gone about half way in softening of the core; 

we would expect potentials of intermediate softness to give 

intermediate results. Finally we see in every case that 

the separable potential of Mongan (his case 2) has a very 

different behaviour than any of the local potential examples, 

-1 particularly as p+O or at pp4 fm • At high momenta his 

off-shell matrix elements are much more repulsive than those 

for any local potential. It is noted,however, that not only 

do all potentials agree in f(k k)=l but that [ 0 f(p,k), ' ap Jp=k 

is very nearly the same for all of them. For processes in 

which one does not go far off the energy shell, all of these 

should give nearly the same result, separable potentials 

included. 

IV-4. Other Implications 

The existence of such 'super' soft core local 
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potentials raises a number of questions e.g. the use of 

perturbation theory in nuclear structure calculations, the 

2 evidence for an L -dependent potential, etc. 

The chief barrier to use of perturbation theory in 

nuclear structure calculations is the existence of the 

strong tensor force in the 3s1 - 3n1 wave, causing a sub

stantial second order contribution but none at all in first 

order. However, even in the 1s state the second order 
0 

term has far overwhelmed the leading order for all previous 

local potential models; even for the moderately strong 

core potential of Bressel Kerman and Rouben10 • Table 2 

summarizes the results of perturbation calculations in 

nuclear matter for the sse potentials considered here. 

TABLE 2 

* Perturbation theory, calculations in nuclear matter at 

-1 1 kF=l.4 fm I for the potentials sse and SSC-NP-2, so only 

considered. v
1 

and v2 are the first and second order poten

tial energy per particle. 

Potential 

sse 

SSC-NP-2 

* 

-v 1 

19.97 

19.74 

-v 2 

2.48 

2.85 

If an effective mass m* were considered, v 2 would be 

further reduced, proportional tom*. 

12.4 

14.4 
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The ratio of second to first order terms is 12 - 14%. The 

potential energy at normal density in first order is close 

to the results of nuclear matter reaction matrix calculations 

with the same potential; the second order term makes the 

result too large. It is unlikely that sse type potentials 

will improve the applicability of perturbation theory in 

the 3s state. 1 

One of the most striking evidences for the non-

static character of the nuclear force is the fact that the 

potentials fitted to the 1s0 data give a 1o2 phase shift 

twice too large at high energies. Reid~ in Fig. 5 of his 

paper makes the point that the potential inside 1 fm (at 

which point the centrifugal barrier reaches 250 MeV height) 

is irrelevant. His 1o2 potential is 40 MeV deep at 1 fm 

while his 1s0 potential is 80 MeV at the same point. Though 

our potentials have shallower attraction as well as less 

repulsion, we still find that the 1o2 phase shifts would 

require a weaker potential than our 1s0 force. Hence, 

there is still evidence for an L2-dependent potential 

although the non-static part is weaker than in the past. 

This would have implications for nuclear matter calculation 

at very high density, as considered by Razavy68 • 

* 

* Nuclear matter calculations were carried out using 

These calculations were done by Dr. P. K. Banerjee using the 

self-consistent method of Kallio and Day69 • 
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our potentia~in the 1s 0 state and Reid Soft Core potential 

in all others. Because Reid's potential is fitted in-

dependently to each partial wave, this is a reasonable 

procedure. A gain of up to 1.1 MeV in binding energy per 

particle was observed. This gain can be associated with 

a reduction of the "wound integral", which was .02 for the 

Reid potential, to about .006 for the potentials of SSC 

type. Little further gain can thus be expected in this 

state. However, there is every indication that an equal 

or greater increase in binding can be secured in the 3s1 

state from a similar softening of the repulsive core. Thus 

there is a good likelihood of achieving agreement with 

'experiment' in nuclear matter calculations without being 

forced to admit non-local nucleon-nucleon forces. 

For finite nucleus calculations, the matrix elements 

<n 1s0 jvjn 1s0> for our two n-p potentials between oscillator 

wave functions are of interest. These are shown as a fun

ction of oscillator size parameter b = ~~ in Fig. 7, mw 

where we compare them with the "Sussex matrix elements" 

of Elliott et. a1. 70 . For the lower principal quantum 

numbers (n=O,l,2) the agreement is quite good. Even for 

n=O, where the result is very sensitive to oscillator size, 

there is little to choose between the various sets. For 

the higher principal quantum numbers, where high energy 

phase shifts are given greater weight, there is a rather 

different trend, with our SSC-NP-2 values turning up 



49 

(saturating) as the oscillator size parameter increases. 

Assuming that perturbation theory would converge suffic-

iently well in finite nuclei, the Sussex matrix elements 

would give results very similar to those obtained with 

our potential. It is therefore quite possible that their 

prescription for fitting these matrix elements is related 

to the existence of sse type potentials. 

IV-5. Conclusion 

Two local potentials containing very soft repulsive 

* cores have been developed . One of them is of the Bargmann 

class; in the other the short range behaviour is of the 

Bargmann type while the long range form agrees with OPEP. 

The existence of these very soft core potentials indicates 

that infinite or very strong repulsive cores are not 

essential requirements of a potential model which fits the 

data. Theoretical considerations allow the existence of 

very strong cores but cancellations are possible and in 

any case strong cores are not required by theory. 

The half-off-energy-shell properties of our po-

tentials have been studied and found to be consistent with 

a natural progression from very hard core potentials through 

strong soft cores to our weak core potentials. All potentials 

* Similar potentials for the 1s0 proton-proton case have 

also been obtained71 . 
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studied show close agreement in the vicinity of the on

energy-shell point in the ratio f(p,k); substantial differ

-1 ences are noted however as p+O and for p~4 fm • The differ-

ences probably have scant effect on bremsstrahlung cal-

culations but could be important in nuclear matter. 

Mongan's separable potential shows radically different be-

haviour at both large and small momenta; it cannot be con-

sidered as qualitatively similar to a soft local potential. 

The results of nuclear matter calculations are 

slightly improved by use of our potentials in preference 

to Yukawa core potentials. our finite nucleus matrix 

elements are strikingly similar to those of Elliott et. al., 

and the existence of such weak local potentials may well be 

related to the success of their prescription for eval-

uating matrix elements directly from the phase shifts. 

As an alternative to the Sussex group's procedure, we propose 

to determine ~=0 matrix elements from sse type potentials, 

and ~~0 matrix elements from a phase shift approximation 

with correction terms 72 . 



CHAPTER V 

OFF-ENERGY-SHELL BEHAVIOUR OF PHASE SHIFT 
EQUIVALENT POTENTIALS 

V-1. Introduction 

In this chapter we make a comparative study of the 

off-shell behaviour of phase shift equivalent potentials. 

In Sections V-2,3 and 4 we consider pairs of equivalent 

separable and local potentials, while in Sections V-5 and 6, 

2 we compare equivalent local and p -dependent potentials. 

For simplicity, only 1s 0 state is considered. A nuclear 

matter binding energy calculation has been done using each 

of the potentials. In Section V-7, we give the details of 

these calculations and in Section V-8, the results. Section 

V-9 gives our conclusions. 

We have chosen three separable potentials. These 

are (i) the two term separable potential of Mongan16 (his 

case 2) , (ii) the two term separable potential of Tabakin14 and 

(iii) the one term separable potential of Tabakin17 . This 

choice covers a reasonably wide range of the.available 

separable potentials. The potential used by Lee19 and 

Hammann and Ho-kim21 is of the same form as Mongan's while 

th d b '13 ' ' '1 b k' I t t e one propose y Naqv1 1s s1m1 ar to Ta a 1n s wo erm 

separable potential (they differ slightly in the repulsive 

form factor). The earlier models proposed by Mitra73 and 

51 
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Yamaguchi 74 are good only for the low energy region. We 

have therefore not included them in our study. For each 

of the above three potentials an equivalent local potential 

has been constructed by first obtaining the corresponding 

s-matrix and then using the method given in Chapter III 

Separable Marchenko Local 
~ s-matrix • (V-1.1} 

Potential Method Potential 

2 We compare the half-shell Ki(p,k;k ) and fully off-shell 

Ki(p,q;s) matrix elements for both positive and negative 

s. We have preferred to use the reaction matrix K over the 

transition matrix T because the former is real and more 

directly used in nuclear reaction theory and nuclear struc-

ture calculations. 

For positive s we have studied the validity of the 

. . 29 * Noyes separable approx~mat~on to the reaction matrix 

Reiner 75 has compared this approximation with others 47 for 

a square well potential. He found it to be much better than 

other approximations over the entire energy range studied 

but he did not consider it sufficiently accurate to be 

* Noyes separable approximation applied to the Ki-matrix is 

completely equivalent to applying it to the ti-matrix. In 

both cases, it implies that the phase of the fully off-shell 

tt-matrix element tt(p,q;k2) is the same as the phase of 
ioi(k} 

the on-shell matrix element ti(k), e • 
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useful. Since the validity of the approximation depends on 

the potential, we feel it is interesting to consider several 

local potentials which agree with nucleon-nucleon scattering 

data and to compare the results with those from equivalent 

separable potentials for which the non-separable term in the 

reaction matrix is identically zero. 

Recently Baranger et. a1. 76 have pointed out the use-

fulness of studying the symmetric part of the half-shell 

transition matrix. For simplicity they consider the half
ic i (k) 

shell ti-matrix elements with the phase factor e 

removed: 

.(V-1.2) 

Considering 

, (V-1.3) 

a symmetric and antisymmetric part, they show how the un-

itarity (in the absence of any bound state) of the M~ller 

wave operator determines ai(p,k) algebraically once si(p,k) 

is specified. They propose to eliminate consideration of 

potentials by specifying si(p,k) arbitrarily (except 

~i(k,k) =-sin ci(k)/k). The hermiticity of Ki(p,q;k2) is 

no advantage here since it applies for fixed k 2 and the 



whole idea is to deal only with the half-shell matrix ele

ments in a convenient way. We have therefore included a 

study of the symmetric part for our pairs of equivalent 

potentials. 
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Starting from (i) the local potential equivalent to 

the Mongan's separable potential16 (his case 2) and (ii) 

the Hamada-Johnston potential7 , we have obtained equivalent 

p 2-dependent potentials by using the isometric point trans

formations (Section V-5). Their half-shell KQ,(p,k;k 2) and 

fully off-shell KQ.(p,q;s) reaction matrix elements are 

compared as before. 

Finally we have used all these equivalent potentials 

in nuclear matter binding energy calculations (Sections V-7 

and 8) to see how the differences in the off-shell behaviour are 

reflected in the results. In other words we seek to discover 

whether some systematic effects are introduced by replacing 

the local potential by its equivalent separable or p 2-dependent 

potential. We have chosen nuclear matter calculations for 

this purpose because they seem to be a more sensitive in

dicator than,for example, proton-proton bremsstrahlung or 

neutron-neutron scattering length predictions 38 . We feel 

that this comparison is of interest both as a test of the 

effects of non-locality and because separable potentials 

are widely used in the three body calculations. 

V-2. The Separable Potentials 

In the following we give detai.ls of the separable 
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potentials and obtain s-matrices corresponding to them~ 

Case I: The separable potential of Mongan16
1 his case 21 

is a two term separable potential 

<klvlk'> .(V-2.1) 

Both form factors are of Yamaguchi form74 

5.319 fm- 312 

-3/2 
p 2 = 58.776 fm 

* The Jost function is 

I 

• (V-2.2) 

.(V-2.3) 

The S-matrix has therefore two double poles in the upper 

half k-plane at k=iSj1 where 

(:31 = 1.7860 I (:32 = 6.1570 (V-2.4) 

and four simple poles in the lower half at k=-ia.l where 
J 

* See eqs. (II-1.22) and (II-1.26). 
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Cll = 0.0400 

().2 = 3.3816 

a3,4 = 6.2322 ± 16.6157i .(V-2.5) 

II h bl . 1 f b k' 14 . Case : T e two term separa e potent1a o Ta a 1n 1s 

again of the form eq. (V-2.1). The attractive form 

while 

factor is of Yamaguchi form 

' 
-1 

a = 1.1990 fro 

b = 1. 2 4 8 4 fm -l 
' 

-1 d = 1.4409 fm -3/2 
p 2 = 2.6632 fm • 

The Jost function is 

f(-k) = (1 + G (+) (k)) (1 + G (+) (k)) - G (+) (k) 2 
11 22 12 

(V-2.6) 

with 

G (+) (k) 
11 

k
2

- a
2 

2 
= ( 2 a - ik) g 1 ( k) 

G (+) (k) 
22 

( +) [ { ( a 
2 

( d 2 +b 2 ) 
2 

2 2 2 2 2 G (k) = + (d +b ) + a(2b-a) (d +b ) 
12 k2 
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.(V-2.7} 

The S-matrix has three double poles in the upper half k-plane 

at iS., where 
J 

81 = 1.1990 

-82,3 = 1.2484 + 1.4409i 

and six simple poles in the lower half at -ia., where 
J 

a 1 = 0.0441 

rv = 2.1740 ""2 

= 1.1912 ± 1.1270i 

a 5 , 6 = 1.3957 ± 2.2157i 

(V-2. 8) 

• (V-2.9} 

III b k . 17 h 1 d . 1 t Case : Ta a 1n as recent y propose a s1ng e erm 

43 separable potential which contains, in a sense 

both attraction and repulsion. The form factor is 

g (k) 

-3 -1 -1 400.8434 fm , k = 1.7 fm , a = 4.05 fm , c 

b = 1.08548 fm-l and -1 d = 1.683 fm 

' 
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It should be noted that this form factor vanishes at k=k . c 
The S-matrix has three double poles in the upper half plane. 

The calculations are simpler if we use the slightly gener-

alized form factor 

gmod(k) 
= p(k 2_k2) (k2+d2) 

c [(k4+al4) (k4+a24) (k2+bl2) (k2+b22)]; 

, (V-2 .10) 

with 

a 1 2 = a ± .005 , b 1 2 = b ± .005 and p2 = 400.840543. , ~, 

The six simple s-matrix poles in the upper half plane lie 

at iS., where 
J 

(31 = 1.0805 

82 = 1.0905 

85,6 = 2.8673(l+i) (V-2 .11) 

while the four simple poles in the lower half plane are at 

- io: . , where 
J 

0:1 

0:2 

0:3 

0:4 

= 0.0400 

= 1.4677 

= 2.1026 

=10.0157 • (V-2 .12) 
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Because there are more B's than a's, the phase shift starting 

from zero and taken continuous at k=k will tend to -TI at c 

large k. 

V-3. The Equivalent Local Potentials 

The equivalent local potentials are obtained by 

using the above S-matrices in the method described in 

* Chapter III. We find the following expressions for ~(x) , 

which are sufficient to determine the potential by differ-

entiation 

V(x) 
d2 

= -2 dx 2 {log~(x)} 

When the B's are all real the potential decays exponentially; 

for complex B's which occur in conjugate pairs the long 

range behaviour is damped oscillatory. 

case I: 

-2S 1x -2S x 
~(x) = 1 + (c1+c 2x) e + (c 3+c4x) e 2 

-4B X 
+ e 1 cs 

-4(:3 X 
e 2 

+ c6 

* See eq. (III-2.10). 
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The S-matrix has two double poles on the positive imaginary 

-1 -1 
axis, S1 = 1.7860 fm and S2 = 6.1570 fm • The coeffic-

ients ci are given in Table 3, while the potential is plotted 

in Fig. 8. It is quite similar to the Reid Soft Core poten-

tial which is included for comparison. 

Cases II and III: In both cases we have modified the S-matrix 

L1(x) 

by replacing the three double poles in the upper half 

plane by six simple poles as suggested earlier. Then 

6 -2S.x 6 -2(S.+S.)x 
1 + L: 

]. 
+ L: b .. e 1 J = a. e 

i=l 
]. 

i<j l.J 

6 -2((3.+f3.+Sk)x 6 
+ L: cijk 

e 1 J + L: 
i<j<k i<j 

6 
+ L: 

i 

-2(l:f3-S.)x -2(L:S)x 
e. e 1 + f e 

]. 

-2(L:S-s.-s.)x 
d .. e J. J 

l.J 

(V-3.2) 

where L:S indicates the sum of all six S's. In case II, 

sl = 1.2000 

s2 = 1.1980 

-63,4 = 1.2494 + 1. 44lli 

-6s,6 = 1.2474 + 1. 44lli .(V-3.3) 

For case III the S's are given in eq. (V-2.11). The coeffic-

ients a .••• fare in Table 4 and the potentials are plotted 

in Figs. 8 and 9. 

The potential of case II, equivalent to Tabakin's 

two term separable potential, has a weak repulsive core 
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TABLE 3 

NUMERICAL VALUES OF THE PARAMETERS ·IN EQ. (V-3 .1) FOR THE CASE I 

Parameter Value 

cl 0.493110 

c2 6.053838 

c3 - 0.048046 

c4 -15.011616 

c5 - 0.718093 

c6 - 0.371532 

c7 0.258126 

c8 - 9.259147 

C9 -27.520224 

c1o - 0.200245 

ell 0.988543 

Ci2 - 0.163112 

cl3 - 0.206260 

cl4 0.002244 



Parameter 

al 

a2 

a3 

a4 

as 

a6 

bl2 

bl3 

bl4 

blS 

bl6 

b23 

b24 

TABLE 4 

NUMERICAL VALUES OF THE PARAMETERS IN EQ. (V-3.2} FOR THE CASES II AND III 

Real 
Part 

-3.7S6761 

3.76S379 

1.349S27 

-1.3S8397 

-9.774074 

-4.046166 

4.037832 

4.072374 

Case II 

+2 

+2 

+1 

* a3 

+1 

* as 

-2 

+3 

* b13 

+3 

* blS 

+3 

* b23 

Imaginary 
Part 

0.0 

0.0 

S.2S5720 

-S.2S3018 

0.0 

3.340244 

-3.358981 

+1 

+1 

+3 

+3 

-3.3381SO +3 

Real 
Part 

3.4SlS41 

-3.344S41 

-3.095750 

3.094329 

-2.449323 

-3.808427 

3.813791 

3.641963 

------------------------------
Case III 

+1 

+1 

+2 

* a3 

+2 

* as 

-2 

+3 

* b13 

+3 

* blS 

+3 

* b23 

Imaginary 
Part 

0.0 

0.0 

-1.269441 +1 

1.214725 +1 

o.o 

3.419870 +3 

-3.423040 +3 

-3.319780 +3 0'1 
1:\) 



Parameter 

b25 

b26 

b34 

b35 

b36 

b45 

b46 

b56 

cl23 

cl24 

cl25 

cl26 

cl34 

cl35 

Real 
Part 

-4.064064 

-3.915986 

2.799282 

3.921977 

-3.928017 

3.174869 

-3.190577 

9.745833 

1. 903767 

Case II 

+3 

* b25 

+3 

-4 

+3 

* b36 

* b35 

+3 

-1 

* cl23 

-1 

* cl25 

+4 

-2 

TABLE 4 - CONTINUED 

Imaginary 
Part 

3.356967 

0.0 

7.601045 

1.211275 

0.0 

1.515587 

-1.500371 

0.0 

6.698608 

+3 

-4 

+1 

-1 

-1 

-3 

Real 
Part 

-3.647220 

-9.599783 

-1.457682 

9.594656 

-9.589630 

1.017967 

-1.059779 

-7.590705 

-1.244482 

Case III 

+3 

* b 25 

+4 

-1 

+4 

* b36 

* b35 

+4 

-1 

* cl23 

-1 

* cl25 

+5 

-1 

Imaginary 
Part 

3.322839 

0.0 

-1.171859 

-3.062266 

0.0 

-1.724350 

1.729172 

0.0 

1.151619 

+3 

-2 

+2 

0 

0 

~ _:,.. 

0\ 
w 

0 



Parameter 

cl36 

cl45 

cl46 

cl56 

c234 

c235 

c236 

c245 

c246 

c256 

c345 

c346 

c356 

c456 

Real 
Part 

-9.771690 

-9.797877 

-9.793739 

-1.908393 

9.819690 

-9.845972 

7.745994 

-7.773877 

Case II 

+4 

* cl36 

* cl35 

+4 

+4 

-2 

+4 

* c236 

* c235 

+4 

-2 

* c345 

-2 

* c356 

TABLE 4 - CONTINUED 

Imaginary 
Part 

-5.025020 

0.0 

o.o 

-6.864338 

5.048611 

0.0 

-7.998936 

7.676729 

+2 

-3 

+2 

-3 

-3 

Real 
Part 

7.599662 

-7.608834 

7.261035 

1.026247 

-7.269698 

7.278568 

4.526561 

-4.525643 

Case III 

+5 

* cl36 

* cl35 

+5 

+5 

-1 

+5 

* c236 

* c235 

+5 

+1 

* c345 

+1 

* 
c356 

Imaginary 
Part 

-3.934644 

0.0 

o.o 

-1.103269 

3.778693 

0.0 

2.000900 

-1.631969 

+3 

0 

+3 

0 

0 
0\ 
.l:>o 



Parameter 

dl2 

dl3 

dl4 

dl5 

dl6 

d23 

d24 

d25 

d26 

d34 

d35 

d36 

d45 

d46 

Real 
Part 

2.066158 

2.567335 

-2.584563 

-2.566448 

2.583444 

1.696956 

0.0 

-1.690495 

Case II 

-6 

-1 

* dl3 

-1 

* dl5 

-1 

* d23 

-1 

* d25 

0 

0 

* d36 

* d35 

TABLE 4 - CONTINUED 

Imaginary 
Part 

0.0 

-4.344502 

4.309236 

4.308745 

-4.273620 

0.0 

0.0 

1. 216371 

-1 

-1 

-1 

-1 

-2 

Real 
Part 

2.138569 

1. 202570 

-1.212267 

-1.273929 

1.284019 

1.225346 

-1.848729 

-1.221732 

Case III 

-2 

+2 

* dl3 

+2 

* dl5 

+2 

* d23 

+2 

* d25 

+2 

-4 

+2 

* d36 

* d35 

Imaginary 
Part 

0.0 

1.107107 

-1.093542 

-1.155370 

1.141063 

0.0 

2.232529 

-8.776514 

+2 

+2 

+2 

+2 

-5 

-1 
m 
Ul 



Parameter 

d56 

el 

e2 

e3 

e4 

e5 

e6 

f 

Real 
Part 

1.684146 

3.439914 

-3.414180 

-1.260843 

1.238232 

0.0 

Case II 

0 

-6 

-6 

-6 

* e3 

* e5 

TABLE 4 - CONTINUED 

Imaginary 
Part 

0.0 

0.0 

0.0 

-1.849740 

1. 850472 

0.0 

.".._.. -

-6 

-6 

---

Real 
Part 

1.218192 

-3.670860 

3.887291 

7.112685 

-8.680922 

-1.415755 

Case III 

+2 

-2 

-2 

-4 

* e3 

-4 

* e5 

-6 

Imaginary 
Part 

0.0 

0.0 

0.0 

1.315192 

-1.310391 

o.o 

-2 

-2 

1Each entry is followed by its exponent to the base 10. 
-6 The values less than 10 have 

been put equal to zero. The asterisk indicates the complex conjugate. 

0'\ 
0'\ 
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about .7 fm wide and maximum height 95 MeV outside a narrow 

attractive pocket (140 MeV deep and .11 fm wide). The outer 

attraction reaches a depth of about 45 MeV at 1.3 fm. In 

all respects this potential is similar to the sse potentials 

considered in Chapter IV. In contrast the case I potential 

has a strong repulsive core,~7.5 BeV at 0.1 fm. Thus there 

is a very great difference in the strength of the force 

engendered by the choice of the repulsive form factor. 

Tabakin14 emphasized that he chose this form factor so as 

to make the off-shell extension of his matrix elements 

smooth. The case III potential differs from bo±h of these. 

It has a very strong repulsive core <~ 100 BeV) followed 

by a deep attraction (~ 220 MeV) at about 0.9 fm where Reid 

Soft Core, for example, has a maximum depth of only 120 MeV. 

The potential then shows oscillations in strength. The 

solid line in Fig. 9 is the attractive part of the Hamada-

Johnston potential, whose hard core is the left hand axis. 

V-4. Discussion of the Off-Shell Behaviour of Equivalent 
Separable and Local Potentials 

We first discuss the behaviour of the half-shell re

action matrix elements K~(p,k;k 2 ). Initial state energies 

k 2 corresponding to 60, 200 and 360 MeV in the laboratory 

frame were chosen as illustrating the overall behaviour. The 

final state momentum p runs from 0 to 10 fm- 1 , corresponding 

to about 8 BeV. Figs. 10, 11 and 12 contain the matrix 

elements for our three potential pairs. For k 2 ~ 1.5 fm- 2 



(120 MeV lab.) and over a range in p of about 2 fm- 1 , the 

separable force and its equivalent local potential give 

very similar off-shell matrix elements. The agreement is 

best in case I. For larger p the local potential values 

oscillate, those for the separable force are more constant 

and more repulsive at higher p. The local potentials show 

a repulsive hump at p ~ 3 fm- 1 , reflecting the repulsive 

68 

core at r of order .5 fm. The height of this hump is corre-

lated with the strength of the repulsion, being 0.32 fm in 

case II, 0.5 fm in case I and 0.73 fm in case III (referring 

to the 60 MeV curves). 

The single term separable potential of Tabakin gives 

matrix elements which behave more like those from a local 

potential. The repulsive hump for the 60 MeV curve has a 

huge maximum of 1.44 fm at p ~ 4 fm- 1 • At the lower initial 

state energies, the local and separable force curves have 

nearly the same slope at the on-shell point where they 

cross; causing a broad region of agreement in the predic

tions. As k 2 increases the region of agreement narrows 

and is virtually non-existent above 350 MeV. This seems 

to indicate that bremsstrahlung at 50 MeV will not distin

guish between local and non-local forces, although at higher 

energies there is a possibility of a distinction. 

Figs. 13, 14 and 15 show the symmetric function 

s(p,k) for our three pairs. Each line refers to a fixed 

(p+k) and is plotted against jp-k). Thus, one is looking 



at cross-sectional cuts of the s(p,k)-surface from along 

the line k=p in the k,p plane. The curves become flatter 

-1 as p+k increases, reflecting in part the k factor in the 

diagonal value 
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s(k,k) =-sin o(k)/k . (V-4.1) 

In general the function s(p,k) is smoother for the separable 

potentials of cases I and II. These potentials, at least 

case II,· were genera ted with the intention of making a 

smooth off-shell extension. In contrast, the case III 

separable force shows very similar behaviour to the local 
-1 potential for p+k up to 5 fm . A general progression in 

behaviour is noted as we pass from the weakest core poten-

tial, case II, through case I to case III. The separable 

forcesshow the trend clearly; in case II the lines have 

negative slope, in case I they are flatter and in case III 

the slope is positive. 

We now examine the fully off-shell matrix elements 

Kt(p,q;k2). Those corresponding to case I are shown in 

Figs. 16(i-iv), for k 2 corresponding to 1, 40, 100 and 140 

MeV laboratory energy, and initial state momenta q corre-

spending to 20, 140 and 360 MeV. The final state momentum p 

varies from 0 to 8 fm- 1 • These figures also contain matrix 

elements, calculated by Noyes' separable approximation, to 

which we shall refer in a moment. The agreement between 

the separable and local potentials is rather good for p 
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and q up to 2 fm-l and for k 2 less than 150 MeV lab. For 

higher values of p or q (4 to 8 fm- 1), the matrix elements 

from the separable potential change little but those of 

the local potential show the characteristic repulsive hump. 

The height of the hump decreases as k 2 (off-shell energy) 

increases. The region of agreement between separable and 

local forces is limited to p, q and k 2 lying in the range 

0 - 100 MeV laboratory energy. We have also considered 

matrix elements for negative k 2 , which are used in bound 

state problems (for example, reference spectrum method in 

nuclear matter). Curves very similar to those in Figs. 

16(i-iv} are obtained, giving no new information; so they 

are omitted here. 

Instead, we consider variation with s=k 2 , (both 

positive and negative) of diagonal matrix elements K~(p,p;s} 

for several representative p values in Fig. 17 for case I 

and Fig. 18 for case II respectively. For positive s the 

local and separable potentials show rather different trends: 

those from the local force increase slightly more rapidly, 

then decrease much faster as a function of s. For s<O, 

however the curves show very similar shape. For p corre

sponding to 40 MeV in case I and 60 MeV in case II the 

separable and local potentials lead to almost identical 

matrix elements for s<O. We have no explanation for this. 

The close general agreement would imply that in a nuclear 

matter calculation the consequences of self consistency, 
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which amounts to a choice of s, would be similar for the 

pair of potentials. The precipitous drop in the matrix 

element as s~o reflects the presence of the antibound state 

near zero energy. The on-shell element has as its limiting 

value the scattering length of order -24 fm. See Appendix 

B for details. 

For the potentials of case III we have shown in 

Fig. 19 the s variation of just one diagonal matrix element 

to show the pole at s = 2.89 fm- 2 for the separable poten-

tial. The device which banished such poles from the half

shell matrix elements fails for the fully off-shell ones 17 • 

For negative s, however, the zero of the form factor leads 

to other consequences considered below in Fig. 22. 

In the reference spectrum approximation, the binding 

energy of nuclear matter is given by the diagonal but fully 

off-shell K-matrix elements K(p,p;-y 2 ) at negative energy 

s=-y 2 and for momenta p<kF. In Figs. 20, 21 and 22 we compare 

these matrix elements for a broad range of values of y 2 

-1 and for O<p<2.5 fm . In casesi and II the differences are 

very small which result ultimately in only small differ-

ences in their nuclear matter predictions (Section V-8) . 

In case III, however, the zero of the form factor at p = 1.7 

-1 fm is seen to have a dominating effect on the structure 

of the matrix elements. At the most probable momentum in 

~ -1 nuclear matter, p ~ 1 fm , the separable potential has 

matrix elements much less attractive than the corresponding 
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local potential. 

We now consider Noyes' separable approximation. 

For case I, the curves in Figs. 16(i-iv) show it to be 

excellent when s<.25 fm- 2 (20 MeV lab.) for the entire range 

of p and q. It continues to be accurate to several percent 

for higher s if p and q are less than 1.5 fm-l (200 MeV). 

Our conclusion differs from that of Reiner 75 who studied some 

typical square well and hard core potentials. A possible 

reason for this is the existence of the 1s
0 

antibound state 

which, along with the repulsion setting in at 240 MeV, 

dominates the structure of the matrix elements at low energy. 

For negative values of s which occur in bound state 

problems, Noyes' approximation does not apply. But the 

similarity of the matrix element behaviour for positive and 

negative s, as for example in Figs. 17 and 18, indicates that 

some separable approximation should work reasonably well. 

In nuclear matter theory arguments for separability have been 

advanced,generally based on the assumption of a hard core 

potential. In the 1s 0 state separability seems quite good, 

but it is less so in the 3s 1 state. Dahll, Ostgaard and 

Brandow77 and K5hler 78 have considered this •. In Fig. 23 we 

compare the exact K£(p,q;s) for case I with the approximation 

A 
K ~ ( p ' q ; s) = K ~ ( p ' p I ; s) K ~ ( p I ' q ; s ) /K ~ ( p I ' p I ; s ) .(V-4.2} 

In the figure, s = -1.20569 fm- 2 , p = .491058 and 1.299218 

fm- 1 , while O<q<4 fm- 1 • We have arbitrarily chosen 
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-1 
p' = .850538 fm • The agreement is remarkably good for 

-1 q<2 fm • Naturally the agreement could be improved by 

taking a sum of separable terms. 

V-5. Construction of Equivalent p 2-dependent Potentials 

Isometric point transformations provide a simple 

practical way to generate phase shift preserving unitary 

transformations. If we start from a given Hamiltonian 

2 in H=T+v=p +v and apply a ·unitary transformation U = e to 

this Hamiltonain, the transformed Hamiltonian is 

~ in -in ~ 
H = e (T+v) e = T+v .(V-5.1) 

Here n is an hermitian operator. If v is a local potential, 

the new potential 

~ in -in in -in v = e v e + e [T,e ] (V-5.2) 

will in general be a non-local one. The transformed Ham

iltonian ~ has the same spectrum as H, but does not yield 

in general the same phase shifts. Thus an arbitrary unitary 

transformation leads to a non-local potential, which is 

only equivalent in respect to the bound state energies. 

The usual invariance properties of the Hamiltonian are pre-

served if n commutes with the symmetry operators of rotation 

and of space and time reflection. 

Mittelstaedt and Ristig 34 have shown that the trans

formation does not change the phase shifts if <£1 inl~2 > 
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satisfies the condition 

• (V-5.3) 

Here ~k(£) is the scattered wave function. If ~1 1nl£2 > -is sufficiently localized ( (U-1) ~k(.~) is arbitrarily small -outside some fixed radius) , the integral 

will always exist and the condition (V-5.3) will be satisfied 

for any wave function ~k(£) . 
...... 

If n is of the form 

n = F(r) r.p + F(r) 
r -- £:!..-r (V-5.4) 

the condition (V-5.3) leads to the requirement 

lim 
r->-oo 

F(r) = F' (r) = F" (r) = 0 • (V-5.5) 

The primes indicate differentiation with respect to r. The 

requirement (V-5.5) will naturally be satisfied if F(r) has a 

finite range. The distortion of the radial scale is given 

by 

r-+-y(r) in -in 1 1 = e r e - r + 2F + 2 ! 2F ( 2F) 1 + 3T 2F ( 2F ( 2F) ') 1 + ••• 

(V-5.6) 



* and the transformed Hamiltonian by 

~ = B1 (r)p2 B1 (r) + B2 (r) + v(y(r)) + t2 ( 
2

1 

y (r) 

where 

1 = y' (r) 

and 
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2 B
1 

(r) 

2 ) 
r 

(V-5. 7) 

In practice the function F(r) need not be considered. 

Any suitable form of y(r) could be chosen, satisfying the 

conditions 

r + oo 

Y (r) r + oc!-) , y' (r) >0 
r 

(V-5. 8) 

for the correct asymptotic behaviour and the reversibility 

of the transformation. The conditions at the origin depend 

on the original potential and the nature of the transforma-

tion desired. For example, if a hard core (radius r 0 ) 

is present and is to be removed, y(O) = r 0 ; for a soft 

core potential y(O) = 0. 

The analytic expression for our point transformation 

* A 

.Q, is the orbital angular momentum operator. 
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* is given by 

y (r) F+ A log( 1 + 
ro/A 

1) -r/A = (e - e ) 

r r = w(r) 

-p r 
w(r) = 1 + ( i._) 

Ao 
plr e 0 • (V-5.9) 

The meanings of these parameters are: r 0 = hard core radius, 

A and p0 determine how rapidly y(r) converges to r. They can 

be considered as a qualitative measure of the range of the 

non-local parts in ~- p1 determines the strength of the 
-p r 

factor e 0 . The quotient A/Ao ensures that for A+O, the 

transformation approaches the identity. 

We have applied this transformation to our local 

potential of case I above and the Hamada-Johnston potential. 

For the case I local potential which has a soft repulsive 

core, we have set r
0

=o and Ao=A=l. This choice simplifies 

the transformation (V-5.9) to 

-p r 
Yr(r) = r/(1 + p1 e 0 ) , (V-5.10) 

and does not modify the conditions at the origin. The para-

meter Po has been chosen to generate 'short' range momentum 

dependence. We have considered two sets of Po and p1 , 

*This form has been used earlier by s. Kistler39 • 



their numerical values are given in Table 5. 

TABLES 

PARAMETERS DEFINING THE POTENTIALS I-a AND I-b 

Potential 

I-a 

I-b 

-1 
p

0
(fm ) 

2.8 

2.8 

-1 
p

1
(fm ) 

2.0 

3.0 

In the case of the Hamada-Johnston potential we have taken 
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r 0 = hard core radius = 0.4855148 fro. This choice completely 

eliminates the hard core; all the repulsion is simulated 

2 by the p -dependent terms. We have considered here four 

sets of values for the parameters. Table 6 gives their 

numerical values. 

TABLE 6 

PARAMETERS DEFINING THE POTENTIALS HJ-a, b, c AND d 

Potential 

HJ-a 

HJ-b 

A (fro) 

1 
21-l 

1 
21-l" 

1.0 

1 
21-l 

-1 
p

0
(fm ) 

-1 
p

1
(fm ) 

0.0 

2.0 
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TABLE 6 - CONTINUED 

HJ-c 1 
4].1 1.0 o.o 

HJ-d 1 
4ii 

1 
4].1 4].1 2.0 

The value 11-l = 1.41549 fm, for the pion Compton wavelength, 

has been used in the numerical calculations. 

The potential HJ-a produces 'intermediate' range, 

while HJ-c and HJ-d produce 'short' range momentum dependence. 

* The potential HJ-b is of a 'mixed' character. The choice of 

p1 equal to 2.0 and 3.0 for the case I potential and equal 

to 0.0 and 2.0 for the Hamada-Johnston potential is arbitrary. 

Our aim is only to study the changes in the off-shell 

properties as the strength and the range of the p 2-dependent 

terms in the potential are varied. 

V-6. Discussion of the Off-shell Behaviour of Equivalent 
Local and p2-dependent Potentials 

We first discuss the behaviour of the half-shell 

2 reaction matrix elements K~(p,k;k ). Initial state energies 

k 2 corresponding to 20, 140 and 360 MeV in the laboratory 

frame were chosen. The final state momentum p runs, as 

* The factor e-r/A in the transformation decays with the 
-p r 

range (2].1)-l while the factor e 0 decays with the range 

(4].1)-1. 



before, from 0 to 10 fm- 1 • Figs. 24(i-iii) contain these 

matrix elements for the local potential of case I and its 

equivalent p 2-dependent potentials I-a and I-b. We find 
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that, qualitatively, their behaviour is similar. The height 

of the repulsive hump at p ~ 3 fm-l is considerably increased, 

being 1.1 fm in the local case, 1.7 fm in I-a and 1.95 fm 

in I-b (referring to the k 2=20 MeV curves) • It is an in-

dication of the overall increase in the effective repulsion. 

At the lower initial state energies, as was the case with the 

local and equivalent separable forces, the curves for the 

local and the equivalent p 2-dependent potentials have nearly 

the same slope at the on-shell point where they cross, 

causing a broad region of agreement in the predictions. As 

k 2 increases, the region of agreement narrows and is virtually 

non-existent above 350 MeV. Figs. 25(i-iii) show the half-

shell matrix elements for the Ramada-Johnston and its four 

equivalent potentials HJ-a, b, c and d, for the initial state 

energies of 20, 140 and 360 MeV as before. Here we find 

that the p 2-dependent potentials are much softer than the 

parent local potential. We should keep in mind that the 

hard repulsive core present in the Ramada-Johnston potential 

has been removed by our choice of parameters in the trans-

formation. The potential HJ-a is softest of all. It does 

not show the usual repulsive hump for lower initial state 

energies. For k 2=360 MeV, the height of the hump in its 

case is only 0.12 fm, while for the Ramada-Johnston potential 
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it is 0.39 fm. The position of the repulsive hump in qll 

the four cases has moved to smaller values of p indicating 

a broadening of the effective repulsive region in the 

potentials. The region of agreement near the on-shell point 

is much narrower here. 

We now examine the variation with s (both positive 

and negative) of the diagonal matrix element Kt(k,k;s) for 

k 2=60 MeV in laboratory frame, in Fig. 26 for the first 

set (case I (local), I-a~and I-b) and Fig. 27 for the second 

set (Hamada-Johnston, HJ-a, b, c and d) respectively. Qual

itatively, the local and the equivalent p 2-dependent poten-

tials show similar behaviour. For positive s, the matrix 

elements from the potentials I-a and I-b decrease much faster 

(after the initial increase) with s indicating the presence 

of stronger repulsion. In the Ramada-Johnston family, all 

the p 2-dependent potentials .have weaker repulsion; their 

matrix elements decrease less rapidly. Actually the be-

haviour of HJ-a seems to be more like that of a separable 

potential (Section V-4). For negative s, all the potentials 

show a smooth variation. It should be noted that as we move 

away from s=O, the presence of a strong repulsion in the 

potential makes the matrix elements decrease faster (after 

the initial increase) for s>O and increase faster for s<O. 

We have also considered the variation with k of the 

diagonal matrix elements Kt(k,k;s) for several negative 

values of s. Curves very similar to those in Figs. 20 and 
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21 are obtained, giving no new information, so they are 

omitted here. 

V-7. Nuclear Matter Calculations 

Nuclear matter calculations have been carried out 

by the reference spectrum method 79 • For the separable forces 

the reaction matrix elements K~(p,q;k 2 ) for k 2=-y 2 give the 

reference spectrum GR-matrix. For the local potentials, 

22 the method of Bhargava and Sprung was used, with the 

difference that the potential energies of intermediate states 

were set equal to zero80 • Because we have only 1s 0 potentials, 

the interaction in other states was taken to be the Reid 

Soft Core potential9 • The potential energies of occupied 

states were taken from a recent self consistent calculation81 

with Reid's potential in all states; they can be satisfactor-

ily represented by a quadratic function of momentum. Hence 

the energy denominator can be expressed as 

(V-7.1) 
2 

where - ~ 6k 2 is the potential energy of an average m F 

particle in the Fermi sea, m* is the 'effective mass' for 

hole states, k0 is the relative and P the average momentum 

of the pair of particlesin the initial state. We replace P 

by its average value for a given k 0 . Table 7 gives the nu

merical values of 6 and m* for different values of the 
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Fermi momentum. 

TABLE 7 

OCCUPIED STATE ENERGY SPECTRUM PARAMETERS+ 6 AND m* 

m* 

1.0 .945 .775 

1.1 .938 .735 

1.2 .928 .704 

1.3 .908 .67 

1.36 .89 .65 

1.4 .879 .638 

1.5 .841 .609 

1.6 .789 .58 

+These values were obtained by Dr. P. K. Banerjee from a 

self consistent calculation using Reid Soft Core potential 

in all states. 

The nuclear G-matrix is a solution of 

GN GR + 
t 

= GR (1-Q)GN 
eN 

GR + 
t 

!::! GR (1-Q)GR + . . . . 
eN 

.(V-7.2) 
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The higher order corrections were estimated by the geo-

metric series approximation which is known to be accurate 

to better than 1% in the 1s 0 state77 • 

For the binding energy of nuclear matter we require 

the diagonal GN-matrix element averaged over sixteen spin 

and isospin states; this gives a statistical weight of 

3 1 R 8 to the s
0 

state. Denoting the partial wave G -matrix 

element by 

we have 

~~v(k) 
2 

= 4TI ~ l GN(k k) 
m 8 0 ' 

()() 

0 

(1-Q(k' ,P)) 

k'2+y2 

(V-7.3) 

x !G~(k,k') j
2k• 2dk' +higher order terms] 

(V-7.4) 

for the averaged nuclear G-matrix element; the suffix 'O' 

means ~=S=j=O. In the above we have used the angle 

averaged Pauli operator which is exact for the s-state20 . 

Since ~~v(k) now depends only on k, the contribution to 

the average potential energy is 22 

1 

J 
2 2 D. av u0 = 12p x (x-1) (x+2) q 0 (xkF) dx (V-7.5) 

0 



3 2 with the density p = 2kF /3TI • 

No attempt has been made to make the calculation 

self consistent because this would have only confused the 
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issue, reflecting more the properties of the Reid potential 

in other states. Rather for each potential we assume the 

same occupied spectrum. The differences directly reflect 

the differences in binding due to the different off-shell 

continuations. The adjustments for self consistency in 

general would reduce these differences but would be in large 

measure due to the 3s1 Reid interaction which is irrelevant 

for our study. 

V-8. Nuclear Matter Results and Their Discussion 

The 1s 0 state contribution to the binding energy 

per particle is shown in Figs. 28, 29 and 30 as a function 

of the Fermi momentum, for the various cases. 

We first consider the equivalent separable and local 

potentials (Fig. 28). In case I, where the local potential 

is quite hard, the separable and local potentials give 

practically the same contribution. For case II, the separ-

able potential is almost uniformly~ 0.5 MeV less attractive 

than the local potential. The situation is very different 

-1 in case III. At normal density (kF = 1.36 fm ) , the 

separable force gives only -9.5 MeV while the local poten

tial gives -14.6 MeV. The difference increases with density. 

It is due to a zero in the form factor g(k) employed by 
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Tabakin, resulting in a zero of the (off-shell) G-matrix 

element (eq. (V-7. 3) , .Fig. 22) . This generally reduces the 

size of the G-matrix elements significantly. It is also 

striking that potentials I and II give results very similar 

to that of the Reid potential also included in Fig. 28. The 

principal qualitative difference is that U(kF)/2A for Reid 

is increasing slightly less rapidly with increasing density. 

One would like to ascribe this tendency to a greater repulsion, 

but the local potential of case I is of comparable strength. 

Potentials I and II would saturate at a slightly higher 

density (by 0.05 fm- 1 ) than Reid, potentials III at a lower 

. -1 
density (1.2, 1.4 fm ) . 

2 The p -dependent potentials I-a and I-b produce 

(Fig. 29) a slower variation of U(kp)/2A with density in

dicating a greater role played by p 2-simulated repulsion. 

-1 At kF = 1.0 fm , they give same contribution (-8.5 MeV) as 

-1 
the equivalent case I local potential, but at kF = 1.6 fm 1 

their contributions are -19.7 and -18.2 MeV respectively while 

the local potential contributes -21.9 MeV. The situation is 

opposite in the case of Hamada-Johnston and its equivalent 

-1 
potentials HJ-a 1 .b, c and d (Fig. 30). At kF = 1.36 fm 1 

Hamada-Johnston gives a contribution of -13.9 MeV while its 

equivalent ones give -15.9, -16.5 1 -16.5 and -16.1 MeV 

respectively. HJ-b and HJ-c give practically the same 

-1 
contribution at all densities (kF = 1.0 to 1.6 fm ) • HJ-a 

is uniformly about 0.5 MeV more attractive than HJ-b and HJ-c. 



HJ-d shows a slightly different variation of U(kF). It is 

more attractive than HJ-a at lower kF' and less at higher. 

Coester et. a1. 33 have given a very interesting 

argument relating the saturation properties of a family of 

phase equivalent central potentials to the wound integral 
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of the nuclear matter wave function. However, this argument 

ignores the decisive saturating effect of the tensor force, 

which would come into play when we combine our 1s0 potentials 

with the remainder of Reid potential. Since potentials I, 

II and Reid span a great range in the height of the re-

pulsive core, it seems clear that this by itself is not a 

great factor in increasing or decreasing the binding energy 

of nuclear matter. The reason for this apparent insensi-

tivity to greater core repulsion is that, once we have 

decided to use zero potential energy in intermediate states, 

there is no way for very high relative energy collisions 

to influence the calculation. However in all cases it will 

be necessary to add on the contribution from three body 

clusters. Here high energy collisions do occur. The results 

of Dahlblom82 and Day83 suggest that greater repulsion can 

cause a reduction of perhaps 1 to 2 MeV per particle, a 

third of which could be ascribed to 1s0 interaction. 

V-9. conclusion 

A practical method has been presented, for the 1s 0 
state, for the calculation of a local potential phase 
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equivalent to a given separable potential. The explicit 

solution given here covers the case where the S-matrix is of 

rational form, which includes the majority of separable 

models proposed to date. The method was applied to the 

* separable potentials of Mongan and Tabakin. An extensive 

comparison of the half-shell reaction matrix elements in-

dicated that at low initial momenta and for elements not too 

far off the energy shell, there is little difference between 

the predictions of phase equivalent local and separable poten-

tials. For initial or final state momenta greater than ~ 

1.7 fm-l (250 MeV) very different results can be obtained, 

but comparable differences are observed between strong core 

and soft core local potentials. A study of the off-shell 

matrix elements leads to similar conclusions. 

The potentials considered cover a range from very 

strong repulsive cores to very weak ones. This feature is 

* A better fit to the scattering data has, recently, been 

obtained with this potential model by Hammann and Ho-kim21 • 

The equivalent local potential obtained from it using new 
-3/2 . -1 

values of the parameters (p 1=18.275 fm , a 1=1.5 fm , 

-3/2 -1 p 2=56.262 fm , a 2=3.5 fm ; see eq. V-2.2) was found to 

be intermediate between those of case I and case II. It 

has a narrow attractive pocket (~2 BeV, width ~0.1 fm) 

followed by a repulsion of height ~400 MeV at 0.25 fm; 

the attraction reaches a maximum of 41 MeV at 1.1 fm. 
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reflected in the behaviour of the half-shell matrix elements, 

principally in Figs. 10, 11 and 12. The localization of 

repulsion inside 0.5 fm for a local potential is reflected 
-1 by the peak in the off-shell matrix elements at p ~ 3 fm . 

Conversely the separable potentials usually (not case III) 

give a more smooth behaviour in this region. 

Calculations of the symmetric half-shell function 

s(p,k) of Baranger et. al. were carried out. They give an 

idea of the behaviour of this function for realistic force 

models of the types generally considered. This function 

provides an alternative way of looking at the half-shell 

matrix elements. Some characteristic differences between 

strong core and weak core potentials may hold; Figs. 13, 

14 and 15 illustrate them. The separable forces do tend to 

give a more constant value for s(p,k) as one goes off-shell. 

This function seems to magnify the differences between 

different forces. How is it that we find such close 

agreement between the half-shell matrix elements of many 

potentials when Baranger et. al. have shown that the behaviour 

of s(p,k) is arbitrary for p~k? Apparently there is a 

built in compensation between the symmetric and antisymmetric 

functions s and a. "2 "2 Since s -a =1, this is likely to occur, 

especially near the on-shell point. 

The separable approximation of Noyes was found to 

be valid over a considerable range in p, q, or s for the 

reaction matrix. A similar separable approximation for 
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negative s matrix elements has been proposed by c. w. Wong 84 

and B. H. Brandow77 from their experience in nuclear matter 

calculations; we agree that this is remarkably good for 

uncoupled states. If it were really believed (which it 

is not) that the underlying potential were local, it would 

be much more accurate to use Noyes' separable approximation 

to the t~-matrix than to use a phase equivalent separable 

potential to generate a separable t~-matrix. In any case, 

the error in such an approximation is negligible compared 

to the basic uncertainty in the correct off-shell extension 

of the t~ (or K~) matrix. 

Equivalent momentum dependent potentials were ob

tained from the local potential of case I and the Hamada

Johnston potential. The comparison of the half-shell matrix 

elements indicated that wide variations in their behaviour 

could be produced; though, qualitatively, the shape of the 

curves remains similar to those from a local potential. 

When the hard core of the local potential was removed, the 

resulting p 2-dependent potentials were found to be much 

softer. It also had the effect of narrowing the small 

region of agreement around the on-shell point. 

Nuclear matter calculations were carried out using 

all the sets of equivalent potentials in the 1s0 state, 

and Reid Soft Core potential in the others. Small differ

ences (~0.5 MeV) in the energy per particle, were found for 

the local and separable pairs of case I and case II. In 



90 

case III, the separable potential gave ~s MeV less binding 

(at kF = 1.36 fm- 1) than the equivalent local potential. 

-1 Larger differences (~2 MeV at kF = 1.36 fm ) were found 

amongst the sets of equivalent local and p 2-dependent 

potentials. However, in all cases, the differences are 

smaller than what one would expect from the behaviour of 

off-shell matrix elements at very high momenta. The 

reason is that after the potential energies of unoccupied 

states are set equal to zero, there is no way for far 

off-shell matrix elements to play a great role. 



CHAPTER VI 

SUMMARY AND COMMENTS 

The off-shell behaviour of the nuclear reaction 

matrix has been investigated by developing (1) 'super' 

soft core local potentials sse and SSC-NP-2 and several sets 

of phase shift equivalent separable, local and p 2-dependent 

potentials. The potentials sse and SSC-NP-2 were developed 

(Sections IV-1 and 2) by assuming a very different high 

energy phase shift extrapolation (see eq. IV-2.1 and Fig. 4). 

The off-shell behaviour of these potentials was compared 

with that of the well known potentials of Reid and Hamada 

and Johnston in an attempt to see how the differences in the 

high energy on-shell behaviour (where the experimental data 

do not exist) affect the off-shell behaviour. Phase shift 

equivalent potentials (Sections V-2, 3 and 5) were employed 

to study the effects of different forms of non-locality 

on the off-shell behaviour. We have discussed our results 

at length in Sections IV-3, IV-4, V-4, V-6 and V-8, and 

gave our conclusions in Sections IV-5 and V-9. Here we 

summarize the main features and make some general comments. 

Our study with local potentials indicated that 

the reaction matrix elements K
0

(p,q;s), when plotted against 

p for fixed values of q and s, show a repulsive hump* 

* This feature was discussed by Bethe, Brandow and Petschek 79 

for the nuclear matter G-matrix. 
91 
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at p ~ 3.5 fm-l indicating the localization of the re-

pulsion at about 0.5 fm. The height of this hump decreases 

as the potential becomes softer. Greater differences in the 

behaviour are observed for higher q and s than for lower 

values indicating the greater role played by the repulsion 

as the energy increases. Momentum dependent potentials also 

give rise to similar behaviour, though the height of the 

hump and, to some extent, its position can be varied by 

choosing different expressions for the function y(r) 

(Section V-5). In contrast to this, the matrix elements 

from the separable potentials (with the exception of Tabakin's 

one term separable potential) show a smoother variation and 

-1 are more repulsive for p,q :p 3.5 fm • On the other hand 

diagonal matrix elements K(p,p;s) in all the cases show 

rather similar behaviour when plotted against p or s. 

At the on-shell point the curves for the equivalent 

potentials were found to have almost the same slope with 

the result that in a region of about 100 MeV around the 

on-shell point, their behaviours are very similar. As s 

increases this region shrinks and does not exist for 

-2 s ~ 4.5 fm . This shows why the experiments at low energy 

which do not go far off-shell are not suitable to study 

these differences. 

The effective range formula for the low energy be-

haviour of the on-shell reaction matrix elements was gen-

eralized to the off-shell case (Appendix B) • It was found 



that the expansion 

2 -1 [K
0

(p,q;k )J = 

93 

involving a parameter w0 besidesthe scattering length ao and 

the effective range r 0 , gives a very good empirical fit to 

our off-shell matrix elements for 2 
p ' 

2 
q ' k2 ~ 10 MeV. This 

parameter (w0) can be interpreted as the wound integral of 

the zero energy wave function (eq. (B.9)). 

In nuclear matter calculations the two term separ-

able potentials of Mongan and Tabakin and their equivalent 

local potentials give almost the same contribution to the 

energy per particle, although intermediate states up to 

about 3.5 fm-l are involved in the second order correction 

term. The reason is that (i) the factor l-QiP,~') appearing 
k' +y 

in the correction term (eq. (V-7.4)) severely damps the 

possible differences and (ii) the contributions from three 

and four body clusters etc. have been ignored. It appears, 

contrary to what we believed earlier, that even nuclear 

matter calculations are not a very sensitive means of dis-

tinguishing the off-shell behaviour so far as equivalent 

separable and local potentials are concerned. Equivalent 

p 2-dependent potentials show relatively larger differences 

in the binding energy per particle. The potentials HJ-a, b, 

c and d give about 2.5 MeV more binding than the Ramada

Johnston potential at kF=l.36 fm- 1 , indicating that additional 



94 

binding can be obtained by removing the hard core. This 

would, ordinarily, move the nuclear matter saturation point 

to higher values of the Fermi momentum kF. Our feeling is 

that its position can be maintained at any fixed value by 

applying similar isometric point transformations to other 

partial waves (in particular the 3s1 state) .and adjusting 

the parameters. 

Tabakin's one term separable potential has a very 

. * different behaviour because of the zero of the Jost function 

on the real k-axis. Its half-shell reaction matrix elements 

(where this zero does not matter) behave more like those 

from a local potential. Fully off-shell matrix elements 

K0 (p,q;s) naturally have a pole at s=kc 2 and vanish for 

s<O whenever p or q is equal to kc. In nuclear matter this 

potential gave a contribution of -9.5 MeV to the energy 

per particle at kF=l.36 fm-l whi~e its equivalent local 

potential gave a contribution of -14.6 MeV. 

It appears that proton-proton bremsstrahlung ex-

periments at an energy of about 200 MeV or more with protons 

scattered at angles less than ~ 25° will be more sensitive 

to the differences in the off-shell behaviour. These cal-

culations use half-shell matrix elements where the differ-

ences are more predominant (rather than fully off-shell 

* Some other unfamiliar features of this potential have 

recently.been discussed,by Leung and Park85 • 
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diagonal matrix elements which play the main role in nuclear 

matter calculations) and are free from uncertainties re-

garding the contributions from three and four body clusters 

etc. At lower energies proton-proton bremsstrahlung will 

naturally be much less sensitive than the nuclear matter 

calculations. 

Our method (Section V-1) of constructing a local 

potential from a separable potential gives only a pair of 

equivalent potentials rather than a whole family and is, 

therefore, not well suited to explore the off-shell behaviour 

over a wider range. We have no available free parameters 

to vary. In this respect phase shift equivalent p 2-dependent 

potentials have more room for manoeuvrability. One can start 

with a local potential having OPEP behaviour at large dis

tances and introduce p 2-dependent terms at small and inter

mediate distances 86 . Another advantage is that the method 

can also be used for higher partial waves and can easily 

include Coulomb, spin-orbit and tensor forces. 

If one is interested in reproducing a particular 

* off-shell behaviour, it may be advantageous to start from 

the symmetric function s 2 (p,k) of Baranger et. al. The 

off-shell and on-shell behaviours may be separated by writing 

* A similar suggestion, using Noyes-Kowalski half-shell 

A 30,87 
functions f 2 (p,k) instead of si(p,k) was made by Mongan . 



it as 

s.Q, (p,k) = sl (p,k) t.Q, (k) 

A A 

takes care of the on-shell data. The function st(p,k) 

can be varied arbitrarily with the condition si(k,k)=l. 

Figs. 13, 14 and 15 suggest that 

s'(p,k) = 1 + 
.Q, 

2 n 1 (p-k) 

2 
l+n 2 (p-k) 

may be a good form to use. n1 and n2 are the available 

parameters. Such a representation will be very useful in 

96 

determining isospin T=l matrix elements via the high energy 

proton-proton bremsstrahlung experiments. Havever, there is one 

disadvantage in this 33 : the difficulty in translating 

requirements on the tail of the potential (which is known 

to be OPEP) into restrictions on the t.Q,-matrix. 

* The separable approximation of Noyes was found to 

be quite accurate for energies less than about 200 MeV in 

the laboratory frame. We feel that, if the potential were 

really local, this approximation would be much more accurate 

than using a phase shift equivalent separable potential to 

generate a separable t&-matrix. 

* This approximation has recently been improved88 by adding 

additional separable terms. The non-physical poles in the 

Kowalski-Noyes approximation due to the zeroes of the on-

shell t.Q,-matrix are cancelled by these terms. 



APPENDIX A 

MODIFICATIONS IN THE METHOD OF CHAPTER III 
FOR THE CASE OF SECOND ORDER POLES 

Here we present the modifications required in the 

procedure given in Chapter III for calculating the kernel 

A(t,x) when the s-matrix has second order poles in the 

upper half k-plane. The method, in principle, consists 

of breaking these poles into neighbouring simple poles and 

then allowing them to coalesce. We first illustrate the 

the method by considering a simple S-matrix 

S (k) _ [(k-ia) (k+iS)] 
2 

- (k+ia) (k-iS~ J (A.l) 

We replace the double pole at k=iS by simple poles at iS 

and il3' = i(l3+e:). The kernelsF(x+y) and A(t,x) for the 

modified S-matrix can be easily obtained using eqs. (III-2.7) 

and (III-2.8) 

F(x+y) =-! (c'e-s' (x+y) 
e; 

-13 (x+y)) ce 

A(t,x) = l [c'e-13' (t+x) ce-S(t+x) 
e:Z(t) -

(A. 2) 

, -<s'+s>t 
+ CC ~ (13 I e- (13t+i3 'X) - se- (13 I t+13X) )] 

2(313 I ((3 '+(3") 

{A. 3) 

97 
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where 

' I \2 . ' + cd 
2 c = 2 S (cr 2 + 0'1 S 1/ (S 

(a 2 s
2

} I (S 
2 c = 2(3 + 0'1 + a) 

(A. 4} 

0'1 = 2a - s - s' 

' 2 + s t) • 0'2 = 2aSS - a (S 

The terms containing s' in eq. (A.2) can be expanded in a 

Taylor series 

C • e-s' (t+x) -ce-s (t+x) = (c + • • ) -a (t+x) (l ( ) ) 
0 E c 0 + •••• e -E t+x + •.•. 

-(co+ e: co+ ••••• )e-S(t+x) 

· • · -s (t+x) =e:{-c0 (t+x) + (c0-c0)}e + •••.• (A.5) 

Here c 0 = c(S'=S) = c' (S'=S), c~ 

Similarly 

= { (S+e:) (1 - E (t+x)+ ..•.. ) 

-s (1 - 2e:t + •••• ) }e -3St-Sx 

= E {S(t-x) + l}e-3St-Sx + ...• 

The limit E ~ 0 can now be taken. We find 

A(t,x) = ~<t) [{-c0 (t+x) + (c~- c 0 )} 

2 -2(3t 
+ coe {S(t-x)+l}]e-S(t+x) 

4S 3 

(A. 6) 

(A. 7) 



The function ~(t) appearing in eq. (A.7) can be similarly 
·~ 

treated. We 

~(t) = 1 + 

• I o 

co-co -2(3t 
---)e 

2(3 

It is to be noted that the relation 

A(x,x) = ~x {log ~(x)} 

is preserved. 

{A. 8) 
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In the case when there are more than one double pole 

the forms of eqs. (A.7) and (A.8) become a bit complicated. 

We have used the following procedure to evaluate them. 

We break each double pole into two simple poles (two 

I I 

members) sl' el = el + £1' (32, s2 = (32 + £2' etc. and treat 

the terms not involving any member of the double poles in 

the usual way (the limit£+ 0 can be taken straight away). 

The terms containing both members of the double poles are 

I 2 I 2 
treated in a similar way. The factors (S1-S1 } , (S 2-S 2 ) , etc. 

, 
occurring in the denominator cancel exactly with those in 

the numerator. The terms involving members belonging to 

different double poles are grouped together according to 

the number of the members. The number of terms in a group 
nd 

is 2 where nd is the number of double poles. In the 

terms containing both members of some of the double poles, 

we take the limit £ + 0 corresponding to these double poles 

directly. Then such terms are grouped together and evaluated 
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as indicated above. 

This method can be generalized for higher order 

poles. 

McMASTER UNJVE.FxSIIY Llui\Mr"{'L 



APPENDIX B 

LOW ENERGY BEHAVIOUR OF OFF-SHELL REACTION 

2 MATRIX ELEMENTS K
0

(p,k;T ) 

The on-shell K-matrix elements obey the effective 

range formula at laboratory energies up to about 10 MeV 
2 -2 corresponding to T ~ 0.25 fm . This is simply a power 

series expansion of the inverse of the on-shell K-matrix 

element, the linear term in powers of momentum being absent. 

The inverse has to be used because of the nearby antibound 

state pole, which would otherwise limit the radius of 
2 < -2 convergence to T ~ 0.0016 fm • We now show that to 

describe the off-shell behaviour, a further parameter is 

required which can be interpreted as the wound integral of 

the zero energy wavefunction. 

Considering an uncoupled £=0 state, the off-shell 

K
0
-matrix element is determined by the solution of 

d 2 2 2 (2+s)1/J(k,s,r) = v(r)l/J(k,s,r)+(s-k )sin(kr), s=T 
dr 

(B .1) 

Introducing the wave defect 

x(k,s,r) == cj>(k,r) - 1/J(k,s,r) 

where cp(k,r) = sin(kr), we find 

d2 
(-

2
+s) X(k,s,r) = -v(r) 1/J(k,s,r) 

dr 
101 
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with 

x(k 1 s~r=O) = 0 

or x(k 1 s 1 r=cl = sin(kc) for hard core potential of radius c 

and 

X(kiS 1 r+oo) + A(k 1 T) COS(Tr) 1 S=T 2 >0 

-yr 2 ·· 2 
+ A(k,T)e 1 s=-y =T <0 

provided the potential can be neglected at large r. At 

large distances the asymptotic limit of X1 x, satisfies 

We require x at all r 1 just as in the usual derivation of 

(B. 2) 

(B. 3) 

the effective range theory. Combining eqs. (B.l) and (B.3) 

with the free wave equation 

d 2 2 ( -
2 

+p ) ¢ ( p , r) = 0 ( B • 4 ) 
dr 

we get 

~~(p,rlx' (k,s,r>-x(k,s,r>~· (p,r) liR + (T 2-p2 > rR ~(p,rlx(k,s,r)dr 
a ja 

= - JR ~(p,r)v(r)W(k,s,r)dr 
a 

I
R JR - - 2 2 -

{ ¢ ( p 1 r) x ' ( k , s 1 r) - x ( k , s 1 r ) ¢ ' ( p 1 r ) } + ( T -p ) ¢ ( p , r ) X ( k , s , r ) dr= 0 
a a 

Letting the distances R+oo, a+O only the value of x at r=O 



contributes from the boundary terms. This gives 

A(k,T) 
k (T:~E2 ) r• .(p,r){x(k,s,r)-ilk,s,r)}dr 

0 

= p~ J: •(p,r)v(r)~(k,s,r)dr 
2 = K

0
(p,k;T ) 
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(B. 5) 

Considering the half-shell element T2=p 2 '(possible only when 

T2 >0) we identify 

A(k,T) 

This gives 
,oo 

J •(p,r){~(k,s,r)-~(k,s,r)}dr. 
0 

(B. 6) 

Here w represents the asymptotic limit of w in analogy to 

eq. (B.3). A well known special case of this result is an 

expression for the half-shell element89 

2 K
0

(p,k;k ) = r

oo 
tan o0 (k) (p2-k2) 

k + -pk ¢(p,r){~(k,r) - w(k,r)}dr, 
J 0 

(B. 7) 

where W(k,r) ~ w(k,k2 ,r). Obviously the half-shell element 

in eq. (B.6) can be replaced by eq. (B.7). 

At low energies 

.!_ ¢(p,r) = Sin (Pr) 
p p 

'V rv r -
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while 

{~(k,s,r) - $(k,s,r)}~ lim {i(k,s,r) - ¢(k,s,r) 
k k + O(k,T). 

k,s-+0 

Thus if we are interested only in corrections of order p 2 , 

2 2 k , T (=s) we can write 

where 

lim 
k,s-+0 J

ooo r{~(k,s,r) - 1/!(k,s,r)}dr. 
k 

(B. 8) 

(B. 9) 

This is a wound integral in the same sense as in the 

77 Brueckner theory • However we should note that this zero 

energy wound integral has a value much larger than the 

usual Brueckner wound integral which is evaluated far off-

shell. 

or 

Using relation (B.8) in a half-shell case we deduce 

1 2 -r T 2 0 
(B .10) 

where we have used the effective range form of the on-shell 

K-matrix elements with the same accuracy as before. The 
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symbols a
0 

and r
0 

are the scattering length and the effective 

range. Thus the result is that three parameters, a
0

, r
0 

and w suffice to describe the low energy off-shell behaviour. 
0 

In Figs. 31, 32 and 33 we have tested this formula 

against our results for the case I local potetitial. The 

scattering length and the effective range for this case are 

-23.99 fro and 2.37 fro respectively, while the parameter w
0

, 

obtained from the limiting value of the slope of [K
0

(k,k;s)] 

vs k 2 curves for a fixed small value of s, is 16 fm3 . The 

inverse of reaction matrix element has been plotted against 

2 k 2 ( 2 ) f . . F" 31 h p , or s =T or ease 1n compar1son. 1g·. s ows 

diagonal matrix elements K
0

(k,k;s) plotted against k 2 for 

fixed values of s, while in Fig. 32 they are plotted against 

s for fixed k 2 • Fig·. 33 shows half-shell matrix elements 

K
0

(p,k;k2 ) plotted against p 2 • In all cases we find that 

2 2 2 the agreement is very good up top , k , s(=T) of order 0.1 

-2 fm ~ The curves are almost parallel straight lines; their 

-1 

curvature gradually begins to change as the energy increases. 

It is observ.ed that the slope of the half-shell curves in 

Fig. 33 is just half that of the fully off-shell ones of 

Fig. 31, in agreement with the prediction of the formula 

(B.lO) for the low energy behaviour. 

The on-shell effective range formula is often used 

for negative 2 
T I to relate the deuteron binding energy to the 

3s 1 state a
0 

and r
0

• The present off-shell formula (B.lO) 

should be equally applicable to negative T2 . However, 



we should keep in mind that K-1 (p,k;T 2) is not analytic 
0 
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at s=O in s(=T 2) plane. The step function in eqs. (II-3.8-

10) indicates just this. If K!-l defines the analytic 
0 

-1 2 2 continuation of K
0 

from T >0 to T <0, eqs. (II-3.9) and 

(II-3.11) give 

-1 
K 

0 
= t = K'-l - y 

0 0 

for T2 = -y 2<o. The expression (B.lO) gives this K' 

instead of K. The generalization 

1 2 -r T 
2 0 

(B .11) 

(B.l2) 

obtained by using (B.ll) in (B.lO) is applicable both for 
. 2 

positive and negative T • 
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Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure S(i) 

Figure S(ii) 

FIGURE CAPTIONS 

Complex k-plane, showing the redundant poles 

(marked x, at k=iS) and resonance poles 

{marked 0, at k=-ia) of the s-matrix, eq. 

(IV-2.1), fitted to observed phase shifts. 

N-P 1s 0 phase shifts of MacGregor, Arndt and 

Wright (a) compared to potential models sse 

(b), SSC-NP-2 (c), and Reid Soft Core (d) • 

Phases are in degrees. 

Potentials SSC (solid line), SSC-NP-2 (dash 

line), and Reid Soft Core (dot line), in MeV, 

plotted as functions of r (fm). 

High energy phase shift for several poten-

tials: (a) SSC-NP-2, (b) SSC, (c) Reid Soft 

Core, (d) Hamada-Johnston, (e) a pure hard 

core of radius 0.3 fm. Small circles are 

points on the energy dependent phase shift 

analysis (Ref. 66) while the error bars 

indicate three of their single energy 

analyses at 630 MeV. 

Radial wave functions compared to the un-

perturbed (sin kr) plotted for the potential 

SSC-NP-2 at E=20 MeV laboratory energy. 

Same as Fig. S(i), but for E=60 MeV. 
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Figure 5 (iii) 

Figure 5(iv) 

Figure 5 (v) 

Figure 6 (i) 

Figure 6(ii) 

Figure 6(iii) 

Figure 6(iv) 

Figure 7 

Figure 8 

Figure 9 

113 

Same as Fig. 5(i) but for E=l40 MeV. 

Same as Fig. 5(i) but for E=240 Mev. 

Same as Fig. 5 (i) but for E=360 MeV. 

Ratio of half-off-energy-shell to on-energy-

shell matrix elements as a function of the 

final state momentum p. Several potentials 

are shown as follows: (a) sse, (b) SSC-NP-2, 

(c) Reid Soft Core, (d) Hamada-Johnston, 

(e) the separable potential, case 2 of 

16 Mongan • Initial state energy is 20 MeV. 

Same as Fig. 6(i) but for initial state 

energy 60 MeV. 

Same as Fig. 6(i) but for initial state 

energy 140 MeV. 

Same as Fig. 6{i) but for initial state 

energy 360 MeV. 

Diagonal relative matrix elements of the 1s 0 

potential between oscillator states, as 

function of the oscillator length b = ~~ . 

Curve (a) is for potential SSC-NP-2, (b) 

for sse, (c) for the matrix elements of 

Elliott et. a1. 70 • 

Equivalent local potentials of case I 

(Mongan, dotted line) and case II (Tabakin 

two term, dash-dot line) compared to Reid 

Soft Core potential (solid line) • 

Equivalent local potential of case III 
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Figure 9 (cont'd.) 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

(Tabakin one term, dash-dot line) compared 

to Hamada-Johnston potential (solid line). 

The distance, in fm, starts at the Hamada-

Johnston hard core radius. 

Half-shell reaction matrix elements for case 

I. Lines a, c and e are for the local 

potential for initial energies of 60, 200 

and 360 MeV respectively. Lines b, d and 

f are the corresponding curves for the 

separable potential. 

Same as Fig. 10 but for case II. 

Same as Fig. 10 but for case III. Small 

insert at upper left belongs to the lower 

left corner. 

Symmetric half-shell function of Baranger 

et. al. for case I potentials. Broken 

lines are for the separable potential and 

the solid ones for the equivalent local 

potential. The left of the figure is the 

on-shell point for each curve. Pairs of 

lines a to g correspond to the indicated 

value of (p+k) in fm- 1 . The abscissa 

fp-kj measures the off-shell distance in 

-1 fm • 



Figure 14 

Figure 15 

Figure 16 

Figure 17 
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Same as Fig. 13 but for case II. Note again 

that the pair of corresponding lines join 

on the left. 

Same as Fig. 13 but for case III. 

Fully off-shell matrix elements for the po

tentials of case I. Solid lines are for the 

separable potential, dashed lines are for the 

local potential and dotted lines for the 

separable approximation of Noyes. The 

curves correspond to the initial momentum 

q as follows: a: 20 MeV, b: 60 MeV, c: 

140 MeV, d: 240 MeV, e: 360 MeV. The four 

parts correspond to different starting 

energies as follows: 16(i): k 2=1 MeV, 

16(ii): k 2=40 MeV, 16(iii): k 2=100 MeV, 

16(iv): k2=140 MeV. Note that in part (i) 

dotted lines for the separable approxi

mation of Noyes have not been drawn for q 

corresponding to 60 and 240 MeV. 

Off-shell behaviour of diagonal matrix 

elements for the case I potentials. Solid 

lines are for the local potential and dashed 

lines for the separable. Different pairs 

of lines correspond to different momenta k 

asfollows: a: 20 MeV, b: 40 MeV, c: 

60 MeV, d: 140 MeV, e: 360 MeV. 



Figure 18 

Figure 19 

Figure 20 

Figure 21 

Figure 22 

Figure 23 
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Same as Fig. 17 but for the case II potentials. 

Off-shell behaviour of a typical diagonal 

matrix element for the case III potentials. 

The momentum k corresponds to 60 MeV. Notice 

that the separable potential gives rise 

to a pole, due to the zero of the Jost 

fu~ction on the real s-axis. 

Diagonal off-shell negative energy matrix 

element for the case I potentials. Solid 

lines are for local potential and dashed 

lines are for separable potential. Curves 

a, b and c correspond to y 2 = 0.25, 2.25 

-2 and 5.76 fm respectively. 

Same as Fig. 20 but for the case II potentials. 

Same as Fig. 20 but for the case III potentials. 

Notice the zero of the off-shell matrix 

element for the separable potential due to 

the zero of the form factor at k=l.7 fm- 1 • 

Separable approximation to the negative 

energy off-shell matrix elements of the case 

I local potential. The abscissa is the 

momentum q -1 in fm • curves a and b are for 

momentum p corresponding to 40 MeV and 140 

MeV respectively. The solid line is the 

actual value and dotted line is the separ-

able approximation of eq. (V-4.2). 



Figure 24(i) 

Figure 24(ii) 

Figure 24(iii) 

Figure 25(i) 

Figure 25(ii) 

Figure 25(iii) 

Figure 26 

Figure 27 

Figure 28 
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Half-shell reaction matrix elements for 

the case I local potential and its 

equivalent p 2-dependent potentials I-a 

and I-b. Initial state energy is 20 MeV. 

Same as Fig. 24(i) but for initial state 

energy of 140 MeV. 

Same as Fig. 24(i) but for initial state 

energy of 360 MeV. 

Half-shell reaction matrix elements for 

Hamada-Johnston (HJ) and its equivalent 

p 2-dependent potentials HJ-a, HJ-b, HJ-c 

and HJ-d. Initial state energy is 20 MeV. 

Same as Fig. 25(i) but for initial state 

energy of 140 MeV. 

Same as Fig. 25(i) but for initial state 

energy of 360 MeV. 

Off-shell behaviour of a typical diagonal 

matrix element for the case I local po

tential and its equivalent p 2-dependent 

potentials I-a and I-b. 

Off-shell behaviour of a typical diagonal 

matrix element for Hamada-Johnston (HJ) 

and its equivalent p 2-dependent potentials 

HJ-a, HJ-b, HJ-c and HJ-d. 

Contribution to binding energy per par

ticle in nuclear matter from several 1s 0 



118 

Figure 28 (cont'd.) 

Figure 29 

Figure 30 

Figure 31 

Figure 32 

Figure 33 

state potentials. Curve RSC is for Reid 

Soft Core potential. Pairs of curves 

labelled I, II, III refer to pairs of 

phase equivalent local (solid lines) and 

separable (dashed lines) potentials of 

cases I, II and III respectively. 

Same as Fig. 28 but for the case I separable 

and local potentials and their equivalent 

2 p -dependent potentials I-a and I-b. 

Same as Fig. 28 but for Ramada-Johnston 

2 (HJ) and its equivalent p -dependent 

potentials HJ-a, HJ-b, HJ-c and HJ-d. 

Inverse of reaction matrix elements 

K0 (k,k;s) for s=O, 1, 2 and 4 MeV. Solid 

lines give exact variation for the case I 

local potential while the dashed ones 

correspond to the formula (B.lO). 

Off-shell behaviour of the inverse of 

diagonal matrix elements K0 (k,k;s) for (a) 

k=O.l5 fm-l and (b) k=0.3 fm- 1 . Solid 

lines give exact variation for the case I 

local potential while the dashed ones 

correspond to the formula (B.lO). 

Inverse of half-shell reaction matrix el-

2 ements K0 (p,k;k) for k=O.OS, 0.15, 0.25 
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Figure 33 (cont'd.) 

-1 and 0.35 fm • Solid lines give exact var-

iation for the case I local potential while 

the dashed ones correspond to the formula 

(B.lO). 
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