
A C.A.I. PROGRAM TO AID COMPUTER SCIENCE STUDENTS

A COMPUTER ASSISTED INSTRUCTIONAL PROGRAM

TO AID SECONDARY SCHOOL STUDENTS IN

UNDERSTANDING COMPUTERS

by

GRAHAM STEEVES, B. Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

September 1980

MASTER OF SCIENCE (1980)
(Computation)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES :

A Computer Assisted Instructional Program
to Aid Secondary School Students in
Understanding Computers.

Graham Steeves, B.Sc. (McMaster University)

Professor K.A. Redish

57

ii

ABSTRACT

The project describes the implementation of a

program to simulate a simple computer. The program

is implemented on a micro-computer for portability.

A Secondary School student, in the Ontario

Educational System, at about the grade 10 or 11 level

may write programs for the simulated computer. The

student may also simulate, interactively, some of the

processes involved in executing his program.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor

K. A. Redish for his guidance and enthusiasm during

the preparation of this work.

I would also like to thank the following people:

Jeanette, Tash, Kelly and Jenny for their constant

support; Kathleen, Mary Ann, Mark, John, Owen, and

Miss Hodd for their friendship; Joanne for her typing

skill; and Jane's Cougar.

iv

Dedicated to all of my students who have ever

asked: "How does a comupter work?"

v

T A B L E OF C 0 N T E N T S

Page

CHAPTER I: INTRODUCTION

1.1 Purpose and Objectives of Project 1
1.2 Bell Laboratories "Cardiac" 4
1.3 Classroom Experience 8

CHAPTER II: HARDWARE-SOFTWARE SELECTION

2.1 Computer choice. 9
2.1.1 The Challenger Series 9
2.1.2 Data General Nova 2/10 10
2.1.3 Radio Shack TRS 80 10
2.1.4 The Commodore Pet 11
2.1.5 The Apple Computer 11
2.1.6 Hewlett-Packard 2647A 11

Graphics Terminal

2.2 Language Choice 13

2.2.1 Criteria 13
2.2.2. Hewlett-Packard Terminal 14

Basic

CHAPTER III: DESCRIPTION OF SIMULATOR

3.1
3-2
3·3
3.4
3·5
3.6
3·7
3-8
3·9
3.10
3.11

Instruction Format
Data
Instruction Set
Input/Output
Memory
Instruction Register
Program Counter
Instruction Decoder
Accumulator
Sequencing
Control

CHAPTER IV: PROGRAM OPERATION AND CURRICULUM PLACEMENT

4.1 Overview
4.2 Menu Selection
4.3 Error Diagnostics
4.4 Sample Programs

4.4.1 Multiplication
4.4.2 Reversing Digits
4.4.3 Double Precision
4.4.4 Subroutines

20
20
20
25
25
25
26
26
26
27
27

28
28
31
32

32
33
34
35

4.5 Placement in the Ontario Ministry of 37
Education Curricula

vi

CHAPTER V: RESULTS AND CONCLUSIONS

5.1 Project Evaluation
5.2 Areas for further development
5.3 Conclusions

APPENDIX A: INSTRUCTION SET

APPENDIX B: PROGRAM LISTING

REFERENCES

BIBLIOGRAPHY

vii

Page

41
42
43

45

46

56

57

LIST OF ILLUSTRATIONS

Page

1. Cardiac Title Page 5

2. Cardiac Processor 6a

J. Cardiac Memory 6b

4. Computer Display for Simulator Program 7

viii

CHAPTER I

INTRODUCTION

1.1 Purpose and Objectives of Project

As a secondary school teacher, I am often asked by

my bright and eager students: "How does a computer work?"

They naively assume that the reply will be a simple, one

sentence, answer which will explain all. Because of this

repeated question over the years, and because it is a very

good question - central to the study of computer science -

I have attempted, as a basic goal of this project, to answer

it.

The thrust of the project, therefore, is aimed at a

fourteen year old student who is just beginning to study

computer science. Because of this, my objective was to

keep the presentation simple, perhaps overly simplistic in

several instances, yet sufficiently complex to allow the

student to explore more complicated aspects of computers

and computing.

It is of interest to note how the Ministry of

Education for the Province of Ontario put this objective in

a curriculum for computer science:

"With an awareness of how a computer is organized ••••

the student is ready to begin programming. It is suggested

that he be introduced to both high-level and low-level

1

..

2

languages. He does not need to master either type of

language but it is important for him to understand the

basic concepts of each. Low-level or machine languages

have the distinct advantage of being closely associated

with the way the machine actually does computations.

Hence, the mysteries that so often surround high-level

languages can be dispelled by an understanding of a

low-level language. The instruction set need not be

extensive but should include branching and testing

instructions so that the power of looping can be

demonstrated." (OME 1, 1970).

Another objective which I feel is necessary for

any computer assisted learning program is that it be

interactive. This permits the student to become involved,

especially when·program segments can be corrected if errors

are made.

More specifically, my objective was to illustrate

the following computer concepts to the beginning student:

1) The various parts of a computer including:

a) Input and output devices

b) Central processing unit

c)· Memory

2) Instruction Sets

3) Instruction Formats

4) Data

5) Addressing

3

6) Instruction Decoding

7) Sequencing

8) Loops

9) A Loader

10) Cycling

11) Assemblers

12) Compilers

13) Absolute and relative addressing

It is also of interest to note the lack of computer

assisted learning material for the subject of computer

science. Teachers in other areas of study have taken

advantage of the computer and produced many good instructional

programs for their disciplines. As a typical example, in

the 1980 catalog of Plato Courses (a collection of user

written programs available from Control Data (CON, 1980))

material can be found on topics from astronomy, to basic

Chinese, to Valence Electrons.

On looking closely at the material listed under

computer science, most deal with computer programming in

Fortran, APL, Compass, and PL/1. Only a few deal with

computer structures themselves, for example: Disk Drive

Fundamentals, Input/Output Supervision, and an Introduction

to Computers.

Another objective of this project was to produce a

program which was portable. The assumption is that with

4

minimal modification to the program, it will be runnable on

several other computers.

Finally, I intend to use this project write up as

the basis for a teacher manual which would be useful for

others developing computer science courses. Thus, much

of what I have written is intended for the secondary school

teacher who is just beginning to teach computer science or

for the teacher who has had very little exposure to computers.

1.2 Bell Laboratories "Cardiac"

In 1968, Bell Laboratories produced a device that

they called Cardiac - a cardboard illustrative aid to

computation. It involved pieces of cardboard which were

punched out and fitted together to form a display. The

operator slid the moving parts up and down to illustrate the

operations of a computer. Bell Laboratories provided these

aids free of charge to schools, including instructional

manuals and also a Cardiac kit made of ascetate for overhead

projector use.

This project is based on the Cardiac idea and

attempts to implement the concepts of Cardiac as closely as

possible.

•••••••••••••• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• ••••• • ••• •••••••••••••• •••••••••••••• •••• • •• ••••• ••• • ••• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• ••••• ••• • ••• •••••• • •••• •••••••••••••• •••••••••• • •• • •• • •• •••• ••••• ••• c:
•••••••••••••• .2 ~ ~ ;
•••••••••••• Q.

•••• ••••• ••• E •••• ••••• • •• ••••• ••• •••• 8. •••••• • •••• •••••••••••••• 0 ~ •••• • •••••••• •••• • •••••••• ••••• • ••••••• ~
•••••••••••••• > ~ ~
::::·.:::.·::: ~
•••••••••••• :s •••• ••••• • •• ••••• ••• • ••• •••••• • •••• •••••••••••••• •••••••••••••• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• •••• ••••• • •• ••••• • ••• •••••••••••••• ••••••••••••••

-·-·

5

)Iii,

CD
D
D •

0
u

~il {~ ~,-

~~X~')., :;• ~ .~

~·.

ft: ~ -·~·.

~c: .·~'"::.e.::' (•' ::~~·
~-~- . ~·~ ~"" ""~

.;r -~:, ~- >·.· .
~-.,
~·

,
24 ,..
23 ,.
22 ,.
21 ,.
20 ,.
19 ,..
18 ,..
17 ,..
16 ,..
15 ,..
14 ,..
13! ,.
121 ,..
11 I ,. I

10 i ,.
9

)---~---

INPUT.

~---. 31

llJ -

Q
Q

Code
0
I

2
3

4
s
6
1
8
9

ftltlllllllffllflllflllllllllllf\Jtt~flllllllllflllflfff·
~IIIl111lliT T T T T •.. T TTTTTT T T'

~ IllS! ++ -~- .. !:

1,. ~ I ! •.
1
1

.. . .. t t: + + • .,; +•
+ + t ~~~ ~~ ti

!tt ! it 1 1+!! • 1 +1++1! .: ~ • 4 I ~· ~ .±~. • ~~ 1 t
OP CODE

Copyright·fD Bell Telephone laboratories

INSJRUCTION DECODER
Abbr. Meon_ing
INP Input
(LA (lear

and odd
ADD Add
fA(Test

AHumulolor
lonlents

SFT Shiff
OUT Output
STO Store
SUB Subtract
JMP Jump
HRS Holt

and reset

----· .
SUBTUO (QHHNJS OF (Ell 4 7 FROM A((UMULATOR.

I ADYAN([URO.) I '"' 10 (!ll 00.) 8
I INSTRUCTION

REGISTER
ACCUMULATOR JUT 7_4(7

II - ..

-EE>I I I I I
MOVE BUG AHEAD
ONE CELL.

MOVE SLIDES 10
AGREE WITH
CONTENTS OF THE
BUG'S (Ell.

START. ACCUMULArOil

..
ACCUMU

lATOR TEST • • OP CODE

"cardiac" developed by David Hagelbarger

• ..
ADDRESS (2)

• ..
ADDRESS (1)

0>
IU

(24
1,.--
\r- -------22

---~

,,.-- 21

,,. ---- --2;; i
-- .. i

.,. -- 19 :

.,.- 18
·--- ---

,. 17

,. ---- 16

,. -- 15

1,. 14

:,..-- .. -- ··-··1-J
,..--

12
,,. 11
! -··---·
,,.... 10

1,. -- 9

,. -- 81

OUTPUT ...
r---------

5 ,

,.
0

2

M" E M 0 R Y C E l L S

CEll CONTENTS
NO.

CEll CONIPJTS
NO.

CELL CONTENTS
NO.

00 000/ 17 0 34 01
01 0 180 :35 0
02 0 190 36 0
03 0 20 0 37 0
04 0 _....21 0 38 0

..1"!! • ...

05 0~ ·:f!_ ,39 0
'-.· .

.!If-
40 0 06 0 - .. 3 o.

07 0 24 0 .41 0
08 0 25 0 42 0
09 0 26 0 43 0
10 0 27 0 44 0
110 28 0 ,45 0
12 0 29 0 46 0
13 0 30 0 47 0
14 0 31 0 48 0
15 0 32 0 .49 0
160 ,33 0 150 0

CEll CONTENTS
NO.

CELL CONTENTS
NO.

510 680

52 0 690

I

530 700

54 0 71 0
55 0 no
56 0 . 730
57 0 74 0
58 0 75 0
59 0 76 0
60 0 770
61 0 78 0
62 0 79 0
63 b 80 0
64 0 81 0
65 0 82 0
66 0 83 0

167 0 84 0

CEll CONTENTS
NO. .

85 01
86 0
87 0
88 0

'

89 0 !

90 0
91 0

' i

92 0
93 0
94 0
95 0
96 0
97 0
98 0
99 08~--

_@·~.

0>
0"

,...-------------------------------~- ---------.
D rl COt·1PUT~R S I t1lJLf-ITOR A' E .,.,-- ~·· .-t.., I"' ,:· ~- t! t! •••

...'~~1_-r .1"/·-l/.t.- .. rl-Ji,'?;/'.1 dl?t.-~'~?.~'- CELL COH- CELL CON- CEll CON- CELL CON-
input uo. TEHT NO. rnn HO. TENT 1·10. TEHT
car-d

1 '%B$ 16 t?! 31 t?! 46 7~Z
2 7&Z *17 039 32 7~Z 47 7~Z

~ 3 t?! 18 139 33 /.B$ 48 t?! ,.. v 4 t?! 19 .. u_o 34 XB$ 49 XB$ --
" v s t?! 20 239 3S 7~Z;I[[(/4J'i/./::1 r.:1/- v so t?!

I HSTRUCT I ON:
..., 6 t?! 21 640 36 t?! 51 7~Z v

SET ... v 7 %B$ 22 S40 37 /.B$ 52 %B$ 1!1-INP ,, v 8 t?l 23 900 38 7~Z 53 t?l 1-CUI .·• v

'-I

2-ADD .. , v 9 7&Z 24 t?! 39 t?! 54 %B$ 3-TAC , .. v 10 7&Z 2S /.B$ 40 t?! ss 7&Z 4-SHf .·'•. v
S-OUT A v 11 7&Z 26 t?! 41 /.B$ Sb :Y.B$ t:.-STR _ ... v 12 t?! 27 t?! 42 7&Z 57 7&Z ?-SUB c, v
8-JMP ·"'·· v 13 t?! 28 7~Z 43 7.B$ 58 t?! 9-HRS

... ..l/l;_ .. - /'. ... ,.1',-./" J ,.!'1~)1 :14 t?! 29 t?! 44 /.B$ 59 t?! I

inc remer.t PC /' .. ~g_ ... ".L~ /~ 15 t?! 30 7~Z 4S 7&Z 60 t?! J to HEXT cell . <«< ,..,.;,..-_.? .-.:.v.>/ ,?.'i
l>/'- ~,(.' c/./

input output
I is t """ST~RT·""·

8

1.3 Classroom Experience with Cardiac

I have personally used Cardiac in the classroom with

a reasonable degree of success. The major difficulty with

Cardiac is that it becomes very tedious to execute each

instruction when a loop is encountered. My implementation

avoids this by allowing automatic cycling at the user's

discretion.

CHAPTER II

HARDWARE, SOFTWARE SELECTION

2.1 Hardware Selection

Because the simulator program was to be used in a

classroom environment, I looked at computers which were

being used in the classroom. As well, I had to consider

what equipment was available and to which I might have

reasonable access.

Although there are many kinds of equipment on the

market today I considered only the following six systems:

1) The Ohio Scientific Challenger Series

2) Data General Nova Series

3) Radio Shack TRS 80 Series

4) The Commodore Pet

5) The Apple Computer

6) Hewlett-Packard 2647A
Intelligent Graphics Terminal

The following discussion by no means is a full and

complete comparison of the systems mentioned. I am

attempting to explain why under my circumstances I chose

the machine I did.

2.1.1 The Challenger Series

A number of the Challenger Series II

and III's micro-computers were available to

me at McMaster University. As well, disc

9

10

storage was available. Using the 6502 8K

B~sic appeared to put a restriction on the use

of the input command. I wanted to be able to

input values as well as display them anywhere

on the screen. On using an input statement

the cursor and prompt symbol always moved to

the bottom line of the screen. The poke

command did however, allow for the opposite

process of displaying data on the screen.

It was because of this inability to control

the positioning of the input prompt on the

screen, that I did not use the Challenger.

2.1.2 Data General Nova 2/10

This system is a mini-computer and

was available to me at my high school in Port

Elgin. I did in fact implement part of the

program on this system including the graphics

and processor modules. Display speed

(10 c.p.s.) and access to the machine was less

than satisfactory, so that work on this system

was not completed.

2.1.3 Radio Shack TRS 80

The TRS 80 with disc was another

possible micro-computer that could have been

used. They are quite popular and a number of

11

these systems are appearing in schools.

This system, however, was not available to

me, so that it too was not used.

2.1.4 The Commodore Pet

The Pet, as well, is another micro

that could have been used. Using the 40

characters per line would have necessitated

considerable change in the graphics display

portion of the program. Again, very popular

in the classroom but not readily available to

me.

2.1.5 The Apple Computer

The Apple is another very popular micro

and with Applesoft Basic and auxiliary disc

storage it would have been my choice of system

to use. The Applesoft Basic is very extensive

and with the colour graphics capabilities would

have made the simulator display very appealing.

This system again was not available to me, but

as an aside, the Bruce County Board of

Education, for whom I work, have just bought

five Apples and I intend to implement my

package on the Apple in the next year.

2.1.6 Hewlett-Packard 264?A Graphics Terminal

This was the micro-computer I finally

decided to implement my package on. Besides

12

having two such terminals readily available,

it offered a great number of features for the

programmer which really places it in the

"Cadillac" category of micros.

The following features indicate the

capabilities of this machine:

The Basic language available on the HP

Terminal is very extensive using high

level graphics commands, integer, floating

point and string arithmetic.

A graphics language (AGL) is an extension

to Basic which offers many easy to use

graphics commands.

Hardcopy was readily available using the

modem attached and routing to the Cyber at

McMaster.

Independent graphics and alphanumeric

memories offer great flexibility. The

graphics memory, consisting of 32K bytes

of RAM, stores a 360 by 720 dot pattern for

the graphics image. The alphanumeric

memory offers up to 15K bytes of RAM work

space.

Enhancement options allow characters to be

displayed in half-bright, underline,

13

inverse video and blinking.

Full editing capabilities including roll

up or down insert, delete, next page,

previous page and user defined soft

keys are great aids to programming.

Dual tape drives using the mini cartridges

each with capacity for 110,000 characters

of storage provided excellent program

storage facilities.

2.2 Language Choice

2.2.1 Criteria

Because one of the objectives of the

project was to have a program which could be

run on several other commercially available

micro-computers, the Basic language seemed to

be an obvious choice. Some form of Basic is

available on almost all micros. On the

negative side, Basic is not a structured

language and therefore lends itself to

unstructured computer code. Also the

restriction to two character variable names

leaves much to be desired in terms of writing

code which is readable and readily

understandable.

Perhaps a much more desirable language

would have beenPascal, a structured language

14

which lends itself nicely to structured

programming. It also allows multi

character variable names which improves

program readability. Several micros have

Pascal available on them, and more will soon

have it in the near future. Unfortunately,

no such micro was available to me, thus

Basic was selected as the implementation

language.

2.2.2. Hewlett-Packard Terminal Basic

The Basic interpreter can be loaded from

cartridge tape, and offers a wide range of Basic

commands and statements. It also contains

several special terminal oriented functions.

These functions allow the user to control the

terminal cursor and input data from the display

screen.

Also graphical operations can be controlled

using a special set of graphics language statements

within the basic program. This special extension

to Basic is called AGL - A Graphics Language, and

consists of a powerful set of graphics functions that

allow the user to perform graphics operations with a

minimum of programming.

At this point I would like to comment

15

on several of the Basic and AGL commands and

statements which I found very useful in

implementing my program.

Basic Commands and Statements:

Several statements may be assigned

to a single line number by separating

statements on a line with the "'" (Backs lash)

character.

Commands:

Auto (Starting line, increment)

This is a fairly common command which

allows the interpreter to generate line

numbers as the program is entered.

Extend

Although I did not use this particular

command, it could be very useful to some

programmers. The extend command allows a

user to add commands to the Basic interpreter.

Merge (Filename)

The Merge command loads a copy of the

specified file into the Basic workspace. The

new program is merged with any existing program.

Conflicting line numbers are replaced by the new

lines. This command is very useful where part

of the program is on one cassette tape and

part on another.

16

Remove STD/STDX

This command allows the user to remove

certain commands from the Basic interpreter.

Remove STDX provides an additional 5K Bytes

of user workspace.

Set(Condition)

Allows the user to select the default

mode of operation for the interpreter. Among

other things, one may "set" the default data

type for numeric variables.

Statements:

Call (Sub-Program Name) , (Parameters)

The Call Statement allows transfer of

control to a sub-program. Parameters are

matched in the call and sub-statements

according to position. Corresponding variables

must agree in type. This statement is part of

the STDX package which I removed in favour of

more workspace, thus it was not available to

me, however Gosub was.

Key Code (X)

Each of the keys on the keyboard has a

particular code value. The code number is

returned in the variable. This is a very

useful command as it allows the programmer to

select certain keys for user response. This

17

technique was used in the cycle control portion

of the program. The command is not found in

most Basics.

Restore (Line Number)

The Restore Statement resets the data

pointer to the specified data statement. This

is a useful statement as it allows the programmer

to control data input lists arbitrarily. The

line number option is usually not found in

Basic languages.

Some Built-in Functions:

Moves (R,C)

Moves the cursor to row R, column C.

R and C are screen-relative co-ordinates ranging

from (1, 1) to (24, 80).

AGL Commands:

regions:

AGL offers several types of graphics

1) The logical address space which is

the range of data values which may

be referenced by the terminal. It

may be larger than the physical limits.

2) Physical limits - define the physical

display area of the terminal.

3) Graph limits - define the desired

display area. This area is within

18

the terminal's physical limits.

Also, AGL offers the user three unit systems:

1) User Defined Units (UDU's

2) Graphic Display Units (GDU's)

J) Metric Units

In my application I used the Default GDU's which

had a range of (0,0) to (200,100).

Locate and Frame Commands

In combination, the two commands provide

an efficient way to draw a rectangle in any position

on the screen. The locate command specifies the

display space available for plotting data. E.G.

Limit (0,200, 0, 100)

The frame function draws a box around

the current region.

Several useful labeling commands are:

Lorg (Mode): allows the user to select the label

origin position: i.e. centered or right or left

justified.

LDIR (Angle): sets the letter direction of labels.

CSIZE (Height, Ratio, Slant): specifies the size and

aspect ratio of characters in a label.

Move (x, y): actually moves the graphics pen to

the desired co-ordinate position on the screen.

Print #O; Text: is the actual labeling command used

in graphics mode.

19

The foregoing, indicates just a few of the graphics

commands available on the HP 2647A intelligent graphics

terminal.

CHAPTER III

DESCRIPTION OF SIMULATOR

The simulator program displays for the user a block

diagram of a computer similar to that shown in figures (2)

and (3) on pages 6a and 6b. The user may then optionally

interact with the simulator program to process a program

written in a pseudo-machine language. (See page 7).

The following section attempts to define the various

parts of this simulated computer. The chapter following

gives the user a detailed description of how the simulator

operates.

J.1 Instruction Format

The instruction format is three decimal digits.

The left most digit represents the operation code.

The right two digits are interpreted as the operand.

No intervening blanks should occur between digits.

3.2 Data

Data values must be integer and 1n the range - 999

to 999 inclusive.

J.J Instruction Set

The instruction set consists of only 10 instructions.

This is consistent with the philosophy of keeping it simple

for the beginning student. The instructions are as follows:

20

21

Input (INF): OF Code 0

The operand of the input instruction

designates the memory cell location to which

the input value is to be assigned. E.G. the

instruction

052

indicates that the input value is to be assigned

to memory location 52.

Clear and Add (CLA): OF Code 1

This instruction has the effect of clearing

the accumulator (set it to zero) and adding to it

the contents of the memory location indicated by

the operand. E.G. the instruction

152

as an instruction means the accumulator is to be

set to zero and the contents of memory location 52

are to be added to it.

Add (ADD): OF Code 2

This instruction adds the contents of the

memory location indicated by the operand to the

accumulator. E.G. the instruction

252

Means: Add the contents of memory location 52 to

the contents of the accumulator.

Test Accumulator Contents (TAG): op Code J

This instruction represents a conditional

22

transfer. If the contents of the accumulator

are negative then a branch to the instruction held

by the memory cell location indicated by the operand

of the TAC instruction. Otherwise control passes

to the instruction in the next memory location.

E.G.

Location

15
16

Contents

352

If the accumulator is negative when the

instruction in location 15 is executed, control

passes to memory location 52.

passes to location 16.

Shift (SHF): OP Code 4

Otherwise control

The Shift instruction is the only

instruction whose operand does not refer to an

address in memory. Essentially it shifts the

number in the accumulator to the left "x" number of

places and then to the right "y" number of places.

The values of "x" and "y" are specified by the

second and third digits of the Shift instruction.

The following must be kept in mind when

using the Shift instruction:

From the point of view of the user, the

accumulator retains only 4 digits.

Digits which overflow the accumulator are

irretrievable. For example, if the accumulator

2.3

contents were 456, and the instruction register

contained 4.3.3, then the contents of the

accumulator would be shifted left .3 places and

then right .3 places:

4 5 6

shift .3 left

6 0 0 0

shift 3 right

,0 0 0 6

Also, when a digit is moved out it is

replaced by zero. For example, a four place

shift left would clear the accumulator to zero.

Output (OUT): OP Code 5

This instruction transfers the contents of

the memory location indicated by the operand of the

instruction to the Output device. E.G.

52.3

As an instruction transfers the contents of memory

location 2.3 to the Output list.

Store (STO): OP Code 6

This instruction places the contents of the

accumulator into the memory location indicated by

the operand. E.G.

62.3

As an instruction places the contents of the

24

accumulator into memory location 23. In fact,

if the accumulator contains a number with more than

3 digits, only the 3 least significant digits are

stored.

Subtract (SUB): OP Code 7

This instruction subtracts the contents of

the memory location indicated by the operand from

the accumulator. E.G.

723

As an instruction subtracts the contents of memory

location 23 from the accumulator.

Unconditional Jump (JMP): OP Code 8

This instruction causes control to transfer

to the instruction found in the memory location

indicated by the operand. E.G.

823

As an instruction causes control to pass to the

instruction at memory location 23.

Halt and Reset (HRS): OP Code 9

This instruction terminates the program and

resets the program counter to the memory location

indicated by the operand. E.G.

901

As an instruction halts program execution and resets

the program counter to 1.

25

J.4 Input

Because the traditional input device was the punched

card reader, input values are typed into a rectangular card

in the top left corner of the screen. Each value is then

listed below on the input list. Thus a user has a complete

visual record of all input.

Output

Output is handled in a similar way. Allvalues

output are listed on the output list.

complete visual record of all output.

3.5 Memory

Again, users have a

Memory consists of 60 locations which are displayed

with their contents and corresponding addresses. When a

particular memory location is being used, its contents are

displayed in full bright mode. This makes the program

easier to find and read, and also makes the display more

attractive. Where a memory location is unused, a random

collection of letters and symbols is displayed in half-bright

mode. The random collection of symbols is used to convey

the idea that unassigned memory locations contain essentially

garbage.

3.6 Instruction Register

The Instruction Register displays the instruction to

be executed. This register may be controlled automatically

or manually depending on the choice of the user. If cycling

is in automatic mode, the instruction register automatically

26

displays the correct instruction to be executed. If manual

mode is used, the user must type into the instruction register

rectangle the correct instruction. Retyping is allowed if

an error is made. A message is displayed if an error is

made.

J.? Program Counter (PC)

The Program Counter displays the address of the next

instruction to be executed. Like the instruction register,

the program counter may run in automatic mode or manual mode.

Also, on an error retyping is allowed - prompted by an

appropriate error message.

J.8 Instruction Decoder

The Instruction Decoder displays, in inverse video,

a statement in English describing the meaning of the

instruction which has just been fetched to the instruction

register. This is done automatically with no user input

required.

3.9 Accumulator

The Accumulator represents the computer's arithmetic

unit.

tested.

Here, numbers are added, subtracted, shifted, and

All accumulator operations are automatic, requiring

no user input. The accumulator variable A, is declared as

long (Double Precision Real) in order that shift operations

may be performed on its contents.

only 4 digits being retained.

The user is aware of

27

3.10 Sequencing

Sequencing begins with an instruction being fetched

from memory into the instruction register. The flow chart

path indicated by the arrows on the display is followed.

This is the way in which sequencing is controlled and

displayed to the user.

3.11 Control Unit

The three steps required in the fetch-execute cycle

are followed in the monitoring program's execution.

Those steps are:

1) The instruction indicated by the program counter

is fetched from memory and placed into the

instruction register.

2) The number in the program counter is incremented

to give the address of the next instruction to

be fetched.

3) Execution of the previously fetched instruction

occurs.

Cycling control, as indicated before, has two modes

of operation. The user may allow the program to cycle

automatically by holding the space bar down, or permit only

one fetch-execute cycle per time by hitting any other key.

4.1 Overview

CHAPTER IV

PROGRAM OPERATION

The program is designed for a single user, and

attempts to illustrate the operation of a computer to a

novice computer science student. The student is first

shown a series of program options which are graded with

respect to degree of difficulty. The user selects one

of these options which runs a program. By observing

the program being processed on the screen and optionally

interacting with the processing, the student learns a

number of things about the processing of a program by a

computer.

4.2 Menu Selection

4.2.1 Option #1

This option randomly selects one

of three pre-written programs, automatically

places it in memory and then allows the user

to process the instructions individually or

several at a time.

Option #1 offers very elementary

programs to the user to start with. None of

the randomly selected programs are identified

to the user, thus forcing him to read each

28

29

instruction to discover what the program is

doing. Two of the programs in option #1 are

similar in that they require user input of

two numbers, after which the sum or difference

of the two numbers is calculated, stored, and

then output.

The third program in option #1

requires the user to input a number. By

using the shift and addition instructions,

the product of the input numbers and the

number 11 is output. The reason for this

last example is pedagogical in nature. It

attempts to suggest to the student ways of

implementing a multiplication instruction

where one does not exist. It also

introduces the student to the shift

instruction which is an exceptional type of

instruction in that its operand does not

refer to a memory address.

4.2.2 Option #2

The second choice on the menu, is also

a pre-written program automatically placed

into memory. The program requires no input

and produces as output the numbers from 1 to

10. This program is intended to illustrate

the use of the unconditional branch and the

30

conditional branch instructions. It should

also suggest to the student other "counting

programs" such as:

counting by 2's, J's, 5's etc.

counting within a specific range. For

example numbers between 50 and 60.

counting a finite Fibonacci Sequence.

4.2.3 Option #3

This option is intended to be the one

which most students will use once they become

familiar with the instruction set. In this

option a loader is displayed in the first ten

memory locations and is then executed. It

allows the user to place his own program

into memory, starting at location 11 and then

have it executed.

End of program load is signalled by

entering any negative number after which

execution of the loaded program begins. This

end of program condition requires that any

loaded program must not contain negative data.

I consider this a minor restriction and in

fact should offer a good challenge to the

brighter student to program around.

After a program has been processed the

31

user is returned to the same menu selection

which also includes a stop option.

4.3 Error Diagnostics

A number of diagnostic messages are provided to

assist the user in de-bugging his program and in under

standing program execution. These messages appear

immediately below the memory window.

A number of messages occur when incorrect or invalid

input is entered. These messages are just warnings and do

not cause program termination. The user is asked to

re-enter the data. Data input is required for:

1) Program choice in menu

2) Input values

3) PC Incrementing Update

4) Instruction Register Update

Other messages which are given are error messages

which result in program termination. Error messages will

be displayed under any of the following conditions:

1) Out of memory condition i.e. assignment to a

memory location beyond 60.

2) Attempt to execute an unassigned memory

instruction.

3) Undefined OF-Code

4) Storing into memory locations reserved for

loader.

32

5) Accumulator Overflow.

6) Attempt to jump into memory locations

reserved for loader.

?) Instruction stored in memory location

reserved for loader.

4.4 Sample Programs

The purpose of this section is to present several

programs which students should reasonably be expected to

write and to indicate areas which a teacher could explore

using the instruction set of the simulator program.

4.4.1 Multiplication

One of the first criticisms students

will make of the instruction set is that

there are no multiplication or division

OF-Codes. The teacher could then explore

ways of programming these operations and thus

introduce such concepts as subroutines and

firmware to the student.

The following example is a program

which requires a single digit multiplier.

The mulitplicand may be one or two digits.

BC 2 digit multiplicand
cxA 1 digit multiplier

Product

Program:

Address

11

12

13

14

15

16

17

18

19

20

21

22

23

24

33

Contents

045

404

646

047

147

710

647

323

146

245

646

815

546

900

4.4.2 Reversing Digits

Comments

Input multiplicand

Clear Ace.

Store 0 (Future Sum)

Input Multiplier

Subtract 1 (From Loader
Program)

Test Ace.

Add Previous Sum

Add Multiplicand

Store Revised Sum

Output Product

Halt Reset

This program takes any three digit

number "XYZ", and reverses the digits to

output "ZYX". This type of problem is

very useful in introducing the shift

operation code. Typically, students can

develop a two-digit shift program first, and

then easily progress to writing this program.

Program:

Address

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

34

Contents Comments

029 Input "XYZ"

129 Clear and Add "XYZ"

431 Shift to Produce "Z 00"

630 Store "ZOO"

129 Clear and Add "XYZ" .
413 Shift to Produce "OOX"

230 Add to Produce "Z OX"

630 Store

129 Clear and Add "XYZ"

423 Shift to Produce "OOY"

410 Shift to Produce "OYO"

230 Add to Produce "ZYX"

630 Store

530 Output

901 Halt

4.4.3 Double Precision

The following program illustrates a

simple method of doing Double Precision

arithmetic. The program adds two six digit

numbers together and outputs their sum.

Because the "Hardware" in our simulator is

restricted to three digit numbers, the

technique used here is to store the three

Program:

Address

11

12

13

14

15

16

17

18

19

20

21

22

23

24

35

least significant digits in one memory

location and the three most significant

digits in another.

Contents

030

031

032

033

131

233

633

403

230

232

632

532

533

901

4.4.4 Subroutines

Comments

Input Most Significant Digits

Input Least Significant Digits

Input Most Significant Digits

Input Least Significant Digits

Add Least Significant Digits

Add Least Significant Digits

Store Least Significant Digits

Shift Overflow Right

Add Most Significant Digits

Add Most Significant Digits

Store Most Significant Digits

Output Most Significant Digits

Output Least Significant Digits

Halt

The concept of subroutine is a

profoundly important technique in programming.

The calling sequences can be illustrated in

an elementary form on the simulator.

The following program example uses

the previous double precision program as the

Program:

Location

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

JO

36

subroutine. The subroutine is called twice

in the main program sequence.

Contents

118

633

820

119

633

820

901

814

817

034

0)5

0)6

0)7

135

237

637

403

234

2)6

6)6

Comments

} Prepare Return Address

Call Subroutine

} Prepare Return Address

Call Subroutine

Halt

Return Address after
First Call
Return Address after
Second Call

Double Precision

Subroutine for Adding

Two 6 Digit Numbers.

37

Location Contents Comments

31 536

32 537

33 860

4.5 Placement in the Ontario Ministry of Education Curricula

As indicated by the Ministry of Education Circular

H.S.1., 1979- 81, there are several guidelines covering

computer science. They are:

1) Curriculum RP-33 Data Processing, 1966.

2) Elements of Computer Technology, 1970
Senior Division.

3) Computer Science, 1970 Senior Division.

4) Informatics, Intermediate and Senior Division
1972.

All of the above curricula refer to the need to teach

students a low level language, computer organization and

operation. It is best summarized in the Computer Science

Curriculum, 1970.

• • • • The Fortran statement X=A+B/C sheds no light "

whatsoever on precisely how the computer executes this

instruction. Hence, it is both interesting and enlightening

to study lower-level languages because such languages will

provide a general understanding of how a computer performs

basic operations. Another reason for studying lower-level

languages is that the most efficient programs are generally

written by those who know about the machine language counter-

part. These factors contribute to the student's general

38

understanding of the computer and to his ability to use it

effectively." (OME 2,1970).

The curriculum goes on further to comment on the

placement of low-level languages in a computer course.

The comment therefore is very appropriate for the placement

of this program in a computer course. It is as follows:

"There are arguments is favour of studying high

level languages before low-level, and conversely there are

arguments in favour of the reverse sequence. For instance,

some teachers find that students prefer to start using the

machine quickly by introducing very simple high-level

statements. Later in the course, they use the low-level

language to learn what actually happens. Other teachers

find that students prefer to start solving problems by using

a low-level language. Later the ease of use and the

relative power of the high-level language become apparent

when the student starts to use it. The important point

to note is that either sequence can be effectively used."

(OME 2 , 197 0) •

I personally use the former approach with the student,

allowing them some immediate "hands on" experience before

getting into the underlying concepts.

This C.A.I. Program could be introduced after

several weeks work with a high-level language. The program

itself relates to topics which cover about two weeks work.

39
The topics which this program illustrates are

listed quite completely in the previously quoted

Government Curriculum.

"A study •••••• will help to illustrate the

following concepts:

The relationship between the main sections of

a computer; input, output, storage or memory,

arithmetic unit, and control unit.

Various hardware features such as an accumulator

and instruction counter.

Storage, divided into a finite number of parts,

each capable of containing information referenced

by an address.

Stored information as either data or an

instruction.

The idea that instructions are usually executed

sequentially, unless interrupted by a branch or

a halt.

"It is suggested that only very simple programs be

done in the low-level language. The language used should

employ decimal numbers and should contain at least the

following instructions:

Input/Output: A method of reading and printing

a number.

Arithmetic: The operators +, - x, ~·

Data Movement

Transfer or Branch: At least an unconditional

40

transfer, a transfer on a zero condition and a

transfer on either a positive or a negative

condition.

Halt" (OlVIE 2 , 197 0) •

Thus this C.A.I. package has a very well defined

place in the Ontario Secondary School Curriculum. The

various curricula refer to several grade levels ranging

from the intermediate grade 10 to the senior grade 11 and

12 levels. The program would be very appropriate near the

beginning of an introductory course or as review material

in a second course in computer science.

CHAPTER V

RESULTS AND CONCLUSIONS

5.1 Project Evaluation

"Testing shows the presence, not the absence,

of bugs." -E. w. Dijkstra.

"A debugged program is one for which you have not

yet found the conditions that make it fail."- Jerry Ogdin.

And to further quote from Yourdon on the topic of

anti-bugging or defensive programming:

"Within your module, you should assume that every

thing that can possibly go wrong will go wrong. To

paraphrase one of Murphy's Laws: Even if nothing could

possibly go wrong, something inevitably will. You should

take this into account when you write your program."

(YOU, 1975).

The program was written with the previous comments

in mind. Considerable testing was done during the writing

as well as after the program was completed.

In terms of evaluating the implementation of the

"Cardiac" concept on a computer, the project was successful.

In fact, the project has much enhanced the Cardiac idea

because it allows for automatic cycling which removes a

great deal of the tedium in processing programs on Cardiac.

41

42

The one difficulty encountered in implementing the

program was with the input command. To quote the HP Basic

Manual: "When data is read in, the input is taken from

the line containing the cursor. All characters,

including non-displaying control characters, to the right

of the "?"prompt are input." (HEW, 1979). This means

that any characters on the same line in the alphanumeric

memory will cause an error. Characters on the same line

but displayed from the graphics memory do not cause an error.

This difficulty was resolved by simply selecting for input

lines on the display which do not have any alphanumeric

data on them.

Evaluating the project for portability makes it less

successful. Most of the graphics portion of the program

would have to be re-written to allow it to run on another

micro.

One other area of success which I feel is important,

is the production of a document which would be useful for

other classroom teachers. I feel that this has been

accomplished and that many new teachers will find this

material very useful in planning course material for computer

science programs.

~ Areas for Further Development

There are any number of extensions and changes

which could be made to make the program simulate more

closely a real computer.

4J

Additional registers would enhance the simulator

considerably. This would in turn require that the

instruction set be enlarged resulting in a new instruction

format. The capability of doing floating point arithmetic

might also be considered. Another possible suggestion

might be a memory window, which would display different

areas of memory depending on the memory location of the

program.

5·3 Conclusions

Logically, the next step in a computer science

student's education would be to study and program in a

proper assembly language. It would not surprise me, to

find within ten years, in the Ontario Ministry of Education

Curriculum, a course in assembly language programming.

I say this in all seriousness as I recall my high school

mathematics teacher saying in the late 1950's that there

was no way the subject of calculus could be introduced into

the secondary school curriculum. He argued that it was

too complex, there was no room for it in the present math

courses and that there were much more important topics

such as logarithms, slide rule skills and solving triangles

using logs. At that time he was head of the mathematics

department, had been teaching for some time and was highly

respected. It is interesting to note that an introductory

course in integral and differential calculus has been

offered at the grade 13 level in Ontario since 1965.

44

In fairness to my teacher, the pocket calculator

had not yet arrived and skill in using trigonometric,

logarithmic and interest tables was required to do

much of the mathematics in those "good" old days.

The role of comupter science education at the

secondary school level is just beginning to be established

and depending on the public's attitude and interest in

computers, it will either grow or diminish in importance.

Number

0

1

2

3

4

5

6

7

8

9

APPENDIX A: Instruction Set

Mnemonic

INP

CLA

ADD

TAC

SHF

OUT

STR

SUB

JlVIP

HRS

45

Explaination

Input to Memory Cell

Clear and Add to
Accumulator contents

Add to Accumulator
contents of •••.

Test Accumulator, if
Negative jump to
Instruction .•.•

. . . .
of ••.

Shift Accumulator
Contents Left then Right

Output Contents of

Store Contents of
Accumulator into
Cell ••••

• • •

Subtract Contents of ...
from Accumulator

Jump to Cell .•.

Halt Computer and Reset

APPENDIX B: Program Listing

46

>LIST1-f7
1 ~EM
3 PF:M
5 RFH
7 I<'~M
q Pf"t
11 I>F H
13 REM
15 REM
1 7 l>f H
1C) Of~
21 REM
23 REM
25 PEH
2~ Rflot
27 PEM
?9 PfM
31 REM
33 PfM
15 P[M
37 REM
3CJ PEH
41 I<'FH
43 REM
45 ofH
47 REM
4<3 Pf M
51 °['1
53 REM
'>5 Df H
57 t<'E H
sq REM
f1 oFM
,:.3 REM
65 RF. H
,:. 7 PFH

>FXIT

•• • • • • • •
• • • • •
• • •
•
•
• • • •
• • • • • • • ..

~ A R I ~ 3 L E L I S T

A - ACCUt'IJLI\TOD
C3 - COLUt'N VARIAeLE FOR t'EMORY DISPLAY
C4 - COLUt'N PAPI\METER FOR PPINT SUBPOUTINE
0 - ACC. PAFAM~TER FOP PRINT SUBROUTINE

- ANO RIGHT SHIFT VAPJAALE
I - MPIOPY CELL COUNTED
I1 - INSTRUCTION VARIABLE.INPUT VARIAebE
I2 - INPUT VARIABLE FOR INSTR. ~[G. AN PC
L2 - lEfT SHifT VARIAELE
MloOd) MfMOPY A~PAY

HCI,OI-OP-COOE
Hft,U-OPEPANO
M(I,2)-R0w M[MCRY CELL DISPLAYED ON
Mll 1 3t-COLUM~ t'EMCRY CELL DISPLAYED ON

R - RI\N~CH VARIAPLE
P1 - OUTPUT LIST ROW
R2 - INPUT LIST ROW
P3 - PQW ~ARIABLf FOR ~E~CRY DISPLAY
04 - POW PARAMETER FO~ PRINT SUGRCUTINE
X - KfY3CAR3 COOE VARIABLE
X2 - PROG~AH CHOICE VARIAPLE

• • • ..
• ..
•
• • •
• • • • • • • • • • • • • • • • • •

~

>LISJ1-q!)C
1 P~l'!
2 Pf"M
3 REM
4 RC::M
5 PH'
,::.. PE~·

7 PEH

•••••••••••••••••••••••••••••••••••
• • • ~ENU SELECTION MODULE

•
• • •••••••••••••••••••••••••••••••••••

?0 PlflTP ~GPOI\ ~GCLP
21 PP.II\T CH~1127t ~;tHt:C~HR$127J :tJt
22 INTfGfP C~,C4,0,L2,P3,~4
?3 INTE._GfR MI6C,~I,Il,I?,~1t~2~REM
24 CSPE lf>,l,OP~Ovr 14'J,qul
:'5 LONr. A
21\ GSIZE 16,1,01~MOVf 14Q,q0)
~0 PPINT =o:tWFLCOME TOtt
40 PP{NT =~:tA COMPUTFO SIHULATORvvt
"iO HOVE l10,70t>C'.::I7f 11,1,2t

••SETUP MCOULE

FO PPII\T ;Q:;tTHr FOLLCWING CHOICES OF PROGRAMS APE AVtlLAELflt
70 MOVE llO,FJCPCSIH 12,1,())
~0 PPl~T =o:tCHOIC~ 71:t
90 :-lOVE (15,t;t;)>CST7F U,l,CI
110 PRINT =o:tPROGPAHS CONSIST OF f!THFR AOOiliON OR SUBTRACTION CF TWOt
1?0 PRINT =o:tNUHeERS SUPPLIED RY TH~ USE~ OR ~ULTIPLICATICN OF A NUHOERt
13Q PRINT =a~tPY 11 USING THE SHIFT ANC ACO INSTRUCTIOI\S.t
140 MOVE 110,4St>C5J7f 12,101
16C PRINT 70:tCHOICE =?tt
170 "10VE 115,4Cl?'CSIE lltltOl
1~0 P?INT =o:tTHIS PRCGRA~ 1~ ALSO PRE-WP!TTEI\. IT CCMFUTES ANO OUTPUTSt
1q0 PRINT =o:tTHE NUMPFPS FPC~ 1 TO 10 IN ASCENOJNG CRDEP.t
200 MOVE 11C,30l"CSIZE 12,1,01
?10 PRINT ::J:tCHO!CF =~tl
?20 MOVE 11?,25l?'CSIZE (l,t,Q)
230 PRINT ~Q;tTHI~ PPQ~PAH DISPLAYS 4 LOAOER WHICH ALLCWS USERS TC LOAOt
240 PRINT =o;tTHEID OhN PROGRA~S ANO HAVE THE~ PROCESSE0.1
250 MOVE f1),1'51!f.SIZE 16,1,01
~60 P~INT ::O~tJNPUT YOUR PROGRAM CHOICftt
270 PRINT ~OVCSI20,~Q)!
?60 INPUT tt,X2
262 ON X2 GOTO zqo,?gO,Z~~
284 PRINT MQVCqz3,Cl LtW~ONr; NLMPEP, TI<Y AGAHvt
?136 GOTO 270
zqo GCLR
400 Pfl'
401 '?f~
402 PEl"
40.3 RF M
404 PEt'
405 RF t'
40& PE ~

•• • •
• PPOGPAM liRPARY SET-UP ~OOULE •
• • ••

415 PPINT CHR~I271~t4t:CHRf.C27t:tJt
420 REt'
430 FOR I=l TO 60>p[H
440 Htl,O)=-q
450 MII,U =-q
4€-0 NEXT I
470 ON X? GOTO 460,595,670>PEM
460 RE '3TnRF: 490

•• MEMORY CELLS
•• ~ARKfO LNASSIGNEO

•• PRCGRAM CPTION

490 OATA 0,3FJ,0,37,1,3E,2,37,6,~R,5,J6,9,01~REt' 44 AOP.ITION PROGRAM
"iOO FOR 1=17 TC 23
510 READ M(J,OI,H(J,1)
'>20 NEXT T
530 R=RNO
~40 IF R>=.66 THEN 5RO?PEM
550 IF R<.66 AND P>=.3~ THEN MI20,0)=7~PEM

•• ADO IT ION
•• SURTRACTION

fjj

~EO IF R<.J3 THEN GOSUe 73~Q~REM •• SHIFT-MULTIPLICATION
•• MEMORY DISPLAY ~60 GOSUR 70GQ>QEM

59Q GOTO ROO>R !H
c:;qc; RESTORE E>OC

.,..,. GOTO PROCESSOR

608 ~ATA 5l26i1,?7,2~2&.6,26,1,2R,7,27.6,26,3,29w6~17~0f01,0~01~0,09,9,01
&2 FOR I= 7 0 zq~Rt M •• ~OUNl NG PI'<OGI'<AH
~30 PfAO M(I,Ol,Hfl,ll
640 NE)(T I

gg~ ~8YMBR~8~2~~EM !! ~n~8R~R8t~~~~~
n7C PESTORE 68C~REM •• LOADER
~6Q nATA 0 1 09,1{09~3,11,~,11,1,04,2,tG,6,04,8,01tOtOO~G 1 01 710 FOP I=1 TO O>t.>£M •• LOIIIJf!(PROGRAM
720 REAO Hfi,Cl,Mfi,tl
730 NEXT I
~~~ ~~~UR 7000>Rf~ 
733 PEM 
734 PE I' 
735 Pf I" 
736 PEt-
737 RF I" 

•• TO HEHORY DISPLAY 

····~····························· .,. PC(•) LOCATICN ~PDATE MODULE • .......................•. .,..,. ... .,..,. .. 
752 PPINT MOVC<::(Mfl+1,2),'1li+1,3)-5):CI-R$(27);;tAOA•t:CI1R$(27t;t~O~t 
76V r.OTO ~n,z>PFH •• TC PROCESSOR 
800 I=16~~FH •• STARTING ADDRESS - 1 
801 PRINT MOVCS(~(17,2l,Ml17,3J-S) :CHR1l27l:t~nA•t;CHRfC27J;t,.O~t 
8C2 Pt=J 
804 P2:l)>DFM •• CCO~OS FOR 1/0 DISPLAY 
808 IF I=O T4EN R12 
810 PPINT t-'OVCS(M(J,Z),M(l,j)-5) :t t>REM •• PIJ8CUJ PC 
1\12 I=I+1 
~14 PQINT 1-iOVCS(M(f,;>) ,~1(1,3)-Sl ;CHRJl27) ;t,.nA•t;CHR1f27l ;t"O~t 
IJ80 REt" 
1\1\1 ~ft" 
1\82 PE M 
I\R3 RF.t-1 
M4 Qfl" 
890 IF 1<=50 THEN 930 

.,..,. ............................•...... 
• MEMORY LOCATION CHECK MOOULE • ............•....... .,. .. .,. ............ . 

900 PRINT MOVCSf22,43);tOUT OF MEMORYt 
•• GCTC Pf5TART g?O GOSU~ gzoo~ GOTO g100~REH 

q30 IF M( I ~1 I<>-<) THEN CJ70 
gr,o PRINT MOVCS(2? 1 ft3) :tMEMORY CflL CONTENTS UNASS!GNEOt 
goO GOSUB g200~ GOIO 9100~RfM •• GOTO RESTART 

> 0 IT 

~ 
(.() 



>LIST961-1BCO 
%1 Pffl 
%2 PEl'! 
%3 PEt' 
'364 J;>f,. 
qf5 PE f' 
970 GE TKRfJ ON 

.................................................. 
• F-E CYCLE CONTROL MOCULE • ............................................. 

971 PRINT MOVC~f2?,441;tFOR AUTOHATICa HIT SPACE BARt 
972 PRINT ~OVC'Sl23,44J ~tf'lR USER INPUT I HIT ANY OTHER KEYt 
973 IF GETKOOfXJ=O THEN 97J 
975 PRINT HOVCS(2?,44J:t 
q7~ PRINT f'!f)VCSf?3,44J:t 
Q8{) IF X=32 TI-IFN GOSUB 6200~RF::I' 
qaz IF X<~32 THEN r,osu~ 6000~PEH 
qa3 Gf TKOIJ OFF 

t 
t 

•• AUTOMATIC CYCLING 
•• CYCLING WITH USER INPUT 

qa4 R~"' 
qas Pf,. 
986 PEt
q87 PE ~ 
91HI Pft' 

........................................... 
• OP-COUE PROCESSOR HOOLLE • ........................................ 

'390 ON Mfi,OJ+l GOTO 1030~1130J1240f1360f1490,1600,1660,1600,1920,1990 
1000 PRINT HOV~Sf22,4~t;tuP-C~LE NO OFF NEOt 
1020 GOSUR 9200~ GOTO 9100 
10~0 RFH 
1031 IF X2=3 THFN 1040 
103? IF Mfl 9 11>10 THEN GOTO 1040 

•• INPUT ~OOULE = 0 

1034 PRINT "OVCSf22,43J:t4TTEMPTEO lOAf I~TO AREA PESERVEC FOR LCAUERt 
1C38 GOSIJB 9200~ GOTO Q1JO 
1040 GOSU~ 7400 
1042 PPINT MOVCS(5,151~tCOPY O~TA FROM INPUT t 
1050 PPINT MOVCS(Il,151:fOEVICf TO CELLt;Mfitll 
106!1 P2=R?+1> IF R2=22 THEN 1<2=6 
107G PRlNf HOVCSI3,11jt t 
1072 PRIN HOVCS 3,21. 
1074 HPUT 11 
1090 IF A~Sfl11<=99q THEN GDTO 1121 
1100 PRINT HOVCSC2?,431~f-INPUT VALUE OUT Of ~A~Gf RE-E~TERt 
111 0 G C <;U q q? 0 e 
1120 GOTO 10 7 !J 
1121 MUHI,U,0)=11 OIV 100 
1122 MIMCI,U,U=Il-111 '11V 1001'~~-HO 
1124 0=11 
1121) GCSUF"l 70 CO 
1127 R4=R?~C4=4~D=I1~ GOSUB 7710~~fM 
1121\ GOTO A10 
1130 REM 
1140 GCSUIJ 74 00 
1142 PPINT MOVC$(5,15) ;t-COPY CCNTENTS OF CELL t 
1151] PRINT MOVCS(fl,1'5) ~Mli,U ;t INTO ACC. t 
11 6 :J A = 11 f "1 I I , 1 ) , 0 I • 1 0 0 + H I'M ( I , 1 I , 1 I 
1165 PRINT HOVCSC11,23J:t t 
1170 PRINT ~OVCSI11,24J;A 
1180 GOTO 810 
1240 REM 
1250 GCSUfl 7400 
1252 PPINT HOVfSl5,151 :tllOO CCHENTS OF CELL t 
1260 PRINT HO\ICSf6.151:M(!,t);HO ACC. f-
1270 A=A+HCMI1,1J,OI•100+HIMfi,U,U 
1260 IF A8SCAI<=32000 THFN 1320 

•• PRINT FORMAT HOOULE 

•• CLA MODULE = 1 

•• ADO MODULE = 2 

1290 PRINT HOV£S122,43J~tACCUHLLATOR CONTENTS OVERFLOHEO;t 
1310 GOSUB 9200~ GOTO 9100 
1320 PRINT HOVCSC11,23J;t 
1322 PRINT MOVCSI11,24J;A 
134i1 GOTO 810 
131\0 REH 

t 

•• TAC HOOULE = 3 

g: 



1362 
1381t 
13fl8 
1400 
1410 
1411 
1415 
1420 
1422 
1430 
141t0 
145() 
1470 
147S 
1480 
1490 
1500 
1502 
15 06 
1510 
1520 
1521 
1522 
1524 
1526 
1t;U 
1521\ 
1'530 

HH 
1534 
1540 
1550 
1570 
1'560 
1595 
lf.O 0 
H:O 4 
11)05 
1606 
1611) 
1630 
11)40 
1650 
1660 
1661 
1662 
1664 
1668 
1670 
1E:71 
1672 
1674 
1676 
1676 
1720 
1730 
1740 
1742 
1743 
1744 
1745 
1746 
1800 

>EXIT 

IF M(J,11>10 THEN 1400 
PRINT MOVCSC22,43J,tJUHP ATTEHTED INTO LCAOERt 
GOSUH q200! GOTO q100 
IF A>=O THEN 1420 
GOSUR 740( 
PRINT MOVCS(5,15t;tHOVE PC TC CELl t;HCI,tt 
GCTO 145 0 
GOSUR 740(1 
PRINT MOVCS(5,15J:tACC>=O, HOVE TO 
PRINT ~OVCSI6,15J~tNEXT I~STRUCTICN 
GOTO 810 
PRINT HOVCSIHli 1 21 1 Mfi,31-5t~t t 

t 
t 

I=MII,U 
PRINT MOVr~IMII,21,Mfi,31-51:CHR$(271;t~OA•t;CHR$(27l:tAD~t 
GOTO ftqo 
RPt 
HOVE fJ5 70 I 
L2=Hfl,tf DIV 10!0=Mfi,11-L2•10!REM 
GOSUA 74(10>REM 
PRINT HOVCS (1),15) ;tSHIFT ACC CONTENTS 
PRINT MO¥CS(6l15J:tlfFT t:l2;tRIG~T t;D 
If l 2 = 0 P.F N 5 2 7 
FOR J=1 TC L2 
A=A•tO! NFXT J 
A=A/100~0-INTIA/10000t~A=INTCA•10000I~~E~ 
IF 0=0 THEN 1'532 
FCR J=1 TC !l 
A=A/10~ NEXT J 
A=A/1000-JNTlA/100qt>A=INTfA•1000I~RE~ 
PRINT HOVCS (11, 231. t t 
PRINT MOVrSI11,24t:A 
IF A9S(At<=3200C TH~N 15~C 

t 

•• SHIFT MODULE = 4 

•• L2 - LEFT SHIFT 
•• 0 - RIGHT SHIFT 

•• PETAl~ lAST 4 DIGITS 

•• RETAIN lAST 3 DIGITS 

PRINT HOVr.Sf22 1 43);tACCUH~lATOR HAS OVERFLOWEOt 
GOSU~ 9200! GOTO 9100 
PPINT ~OVCSf11,24t:A 
f.OTO "10 
PEM 
GCSU'l 71t00 

•• OUTPUT MODULE 

PRINT MOVCSf5,15t;tCOPY CONTENTS Of CEll t 
PRINT MOVCSf6,151:HIIdJ ;tiNTO OUTPUT OEVICEt 
R1=R1+1! IF ~1=22 THEN R1=4 
Il=Mf~CI,U ,Ill "'100+MOHit11 ,1) 
PRINT MOVCS(~1,3q);I1 
GOTO R1 0 

l f 1>10 THEN X2=g~RE~ 
F X 2 = J T 1-'f N 1 fJ 7 

I~ Hll,11>10 THEN 1~70 

•• STOI<E HODULE 

PRINT MOVCSf22 1 43);tLOAO INTO HEMCRY AREA ~ESERVEO FO~ LOAOERt 
GCSU" qzoo> GOTO q100 
GOSUIJ 740C 
PRINT MOVCS(5,15):tCOPY CCNTENT~ CF ACC t 
PRINT H'"JVCS(6,1?) :tiNTO CELl NUMBER t:HCI,U 
IF ABSCAI>q9q THEN 1742 
O=A~REM 
GOSIJA 7f'IOO!REM 
Hf11(1,1) ,OJ=A OIV 100~PEH 
HfHll 1 U,ti=A-fA OIV 10DJ•10G~REH 
GOTO n10 

•• A~Sif.N~ENT FOR SURPOUTINE 
•• MEMORY CEll LOAD 
•• OP CODE 
•• OPERAND 

PPINT MOVrSC22,431;tSTORI~G RIGHT 3 OIGITS OF ACC.t 
O=CA CIV 1000I•1000~~=A-O 
HfH(I,U ,Ot=D fJIV 100 
~(H(I,11,1J=0-(0 OIV 1001•100~RFM 
GOSUA 920~~ r;oTO 810 
REM 

•• STORI~G QIGHT 3 DIGITS 

•• SUBTRACTION HOOULE 

(11 ..... 



>LIST1800-7800 
1800 REM 
1808 GOSUB Tr.OO 

•• SUBTRACTION HOOULE 

1810 PRINT HOVCSCS,1SJ;~SUOTRACT CONTE~TS CFt 
1820 PRINT HOVCSCf-,,15l{•Mti.tJi"f. FROii ACCUHULATORt 
1840 A=A-CMIHCI,tt.O)• OO+MIH I,tJ,tll 
1850 IF ABSlAl<=32000 THEN 189C 
1e&O PRINT HOVCSf22f43l;tACCUHULATOR OVEPFLOWEOt 
1880 GOSUP 9200~ GO 0 q100 
1690 PRINT 110Vr.~l11,23l:t t 
189? PRINT HOVCSt11,24t:A 
1910 t;OTO 810 
1920 IF 1>10 T~EN XZ=O~REH 
1921 IF X2=3 T •EN 1<~30 
1922 IF Hli,1J>10 THEN 1930 

•• U~CONOITIONAL JUHP 

1924 PRINT MOVCSC2Z,431;~H~MORY AREA RESERVED fOR LOAOERt 
1928 t;OSU~ 1?.0C~ GOTO ~100 
1930 GOSU" 740C 

t:Hu,u 1932 PRINT HOVCSC5,15J :tMOVE PC TO CELL 
1950 PRINT MOVC~tMti,2l,Hir,31-5)~t t 
1970 I=HII,U 
1975 PRINT HflVCStM(l,2l,MII,3J-51 ;CHR$(27) H"rA•t;CHR$(271 ~t"O<t 
1~AO GOTO 890 
1990 REM •• HALT ANO STOP MODULE 
2000 GOSU'l 7400 
2002 PRINT HOVrSCS,1511tSTCP CCHPUTEPt 
2030 GOTO qH 0 
t;990 REM •••••••••••••••••••••••••••••••••••••••• 
5 qq 1 ~Et-1 • LSER CYCLE CONTROL HOOULE • 
'i'392 REM •••••••••••••••••••••••••••••••••••••••• 
<=;qqJ Pf'1 
f>OOO REM 
~010 REM 
~020 I1=HII,OI•100•Mti,1l 
6022 PRINT MOVCSI21,2EI;t 
f030 PPINf MOV('Sf23.27l; 
fOitO INPU I2 
&050 IF 11=12 THEN 6090 

t 

INSTR. REG. ~POATE 
WITH USER INPUT 

fOf>O PRINT MOVCSI22,4~t:tiNCOR~ECT CONTENTS,TRY AGAJNvt 
F:>07 0 GOSU~ q 2 00 6888 GOTO f>O JO 
f> q REM 
6100 REM 
6105 PPJNT HOVCSl22,13);t 
6110 PRINT ~OVCSl?.2,14l: 
H20 I t-JPUT I 2 
~130 IF !2=!~1 THEN f)180 

PC HOVE HITH USER INPUT 
~ 

6140 PRINT MOVCSI22,43):tJNCOPRECT CELL NUH~ER, TRY AGAINvt 
6150 GCSUIJ 9200 
f)160 GOTO H 10 
6180 RETURN 
6200 REM 
6220 I2=MlT,Ol'100•Hli,11 
~225 PRINT MOVCSl23.25J~t 
E230 O=I2~P4=23~C4=2<J 
6232 GOSUH 7710~RE~ 
6240 REM 
E245 PRINT HOVCSl22,12):t 
f250 PRINT MOVCSl22,141 ;1•1 
6270 RETURN 

t 

t 

I~STR. REG. LPOATE 

PRINT fORMAT MODULE 
PC HOVE UPOA TE 

&990 REH 
69<J1 REH 
f>C!q2 REM 
f993 REf1 
6994 REM 

••••••••••••••••••••••••••••••••••••••••••••• 
• ME~ORY CONTENTS DISPLAY MODULE • ••••••••••••••••••••••••••••••••••••••••••••• 

01 
1\) 



7000 GOSU9 ~QOQ>RVH MEMORY DISPLAY MODULE 
7004 C~IZ~ (1,2,0) 
7005 T=1 
7010 FO~ C 3=4q TO 7& STFP q 
7020 FOR R3= 7 TO ?1 
7~30 MU,lt=P3 
7040 M(T,l)=C3 
7060 IF Mll,1t<>-q THEN GOTO 7106 
7070 R=~NO 
7060 IF R>=.66 THE:~ PRINT ~OVCS(RJ,C.H ~CHR$(271 ;~"OH:;:"v~;CHR$(27) ;t"O~t 
70q0 IF R<.66 1\NO P>=• B THFN FRINT MCVGS(IH,C:H :CHR$(271 ;~AOH7AZt; 
7095 PRINT CHP$127) :t"D~t 
7100 IF ~<.33 lHEN PRINT MOVGSIR3,C3t :CHR$(27) :tA0Hi:e$t:GHR$127J ;;tAO~t 
7105 GOTO 7122 
7106 I1=10fo•HII,Ot+HCI,1l 
710~ IF 11>99 THEN 712C 
7110 IF I1 ,.q THEN 7111'> 
7111 PRINT MOVCSI~3,Cl+1t !Il 
7112 PRINT ~OVCSIP3,C3t~tOOt 
7114 GOTO 7122 

~if9 ~~INf ~R~E~~~~:E~\jlAt 
7118 GOTO 7122 
7120 PI'INT M()VCS IR3,C3-1J; I1 
7122 I=I+1 
7 30 tlf)(T RJ 
7140 NEXT C3 
7150 RETUR~ 
7300 RfSTOPE 7~1Q>~E~ 
7310 OIITA 0,39,1,3q,4,10,2,39,E,40,5,40,9,0 
7320 FOQ 1=17 TO 23 
7330 qfAD MII,Ol ,MHtit> t-lfXT P RETURt-o 
7390 REM 
7400 PRINT MOVCSI5,15) :CHR$ 127t :tA0'3 
7410 PRINT MOVC~(f),15l!GHR$C27);t ... DB 
7420 RET UP to.: 

•• SHIFT-MUll. HOOULE 

•• INSTR. OECCOER ERASE 
t:CHR$ l27J :tAO~t 
;t;CHI<$(27) ;;tAO<;;t 

715q0 REM 
75<11 REM 
7'592 QEM 
7593 ~EM 
7594 PEM 
7595 REM 

··~····~~···································· • FORMATTED PRINT SU8ROUTINES FOR MEMORY, • 
• IN~TR. REG. PC AND l/0 LISTS • ••••••••••••••••••••••••••••••••••••••••••••• 

7000 PPINT MOVCS(M(M(l,1),2) ,t1(H({,U,3)1 ;CHP'l(27) ;tA05 
7610 IF O>qg T~EN 7690 

t;CHR$C27l ;t ... 05t 

7620 IF n>q T~FN 766V 
7f.25 IF 0<0 THfN 76qQ 
7630 PRINT MOVC'3(MIMfi,U,2l,HP111t1l,3HU;o 
7640 PRINT MOVCSIM(H(I,U,2l,H(H(l,U,3l) :tOOt 
7650 PET UP N 
7E60 PPINT HCVCS(M(M(l,lt,2ltt'IMfi,1),3));C 
7£:70 PRINT MDVCS(t·HH(l,U,2l,MlMCI,U,3H:tOt 
7660 PfTUPN 
7F.ql) PPINT M()VCSCMCM(!,1),2),M(HCT,U,3l-U;O 
7700 RETURN 
7 71 0 IF 0 > qq T HE N 77 9 0 
772C IF O>q THIN 7760 
772S IF 0<0 THfN 77qC 
7730 PRINT ~OVCS(P~,C4+1l~U 
77~0 PRINT HOVCSlR~tC4t;~QOt 
77'50 RETURN 
7760 PRINT HOVCS(P4,C4l ;o 
7770 PRINT HOVCSIR4,C4l~t0t 
7780 RETURN 
7790 PRINT HOVCS IR4,C4-1 t ;o 
7800 RETURN 

01 
w 



7800 
74?qo 
7<)C)1 
79<)2 
7<)<}3 
7qCJ4 
7<)95 
8000 
~'C10 
RC20 
8030 
8()1;0 
8120 
813() 
1\140 
81'=i0 
e1ss 
8 6:1 
8170 
IH~O 
81<)0 
fl210 
11220 
8230 
t\240 
824'> 
11250 
8260 
1!271) 
112~0 
6290 
11300 
~31C 
1132!1 
e330 
~340 
6350 
113&0 
II.HO 
1\380 
IJ3<)0 
"400 
8410 
6420 
1143!) 
8440 
"450 
P46G 
84 70 
1'480 
8490 
850'1 
"51 0 
8520 
I\S3 :J 
8540 
11550 
8563 
8'=i70 
858 (I 
ll?g:J 
11600 
11750 
R761) 
~770 

PFTIJ~t\ 
PfM 
Pf~ 
REM 
REM 
PEM 
~EM 

••••••••••••••••••••••••••••••••••••••••••••• 
• GqAPHIGS MOOUl~ OISPLAYING 8LOCK • 
• ryiAGRA~ OF COMPUTER • ••••••••••••••••••••••••••••••••••••••••••••• 

LCCAT~ (Q,200,0 1 100l~fQA~E ~PfM •• DISPLAY 
LOCATE (5 1 15 10 80l~~PAH( ~RlH •• It\PUT 
HOVE (5,SPcSizf 11,2,(1) ~ PRINT ::c:tiNPUTt~ PRit\T ::o;tLISH 
LCCATE f'=i,15,87,<J5)~FPAMF >PE~ •• lt\PUT CAPO 
MOVE (5,8~) ?' PPII'\T ;:o;tJNFUTn PRINT ::o:tr::AROt 
LCCATf (?~ 9 50,'>,20)>fPAME >REM •• PC 
FRAME 
HOVE t25.17t 
PRINT ::O~f!NCRE~ENT PCt 
PRI~T ;:~;tTO NEXT CflLt 
REH tN~TPtCTION ~EGISTER 
LCCATF lf0,90,4,2c:;) 
FRAHf 
MCVf f65 iJ 
PPtNT ;:o!t~~STAPT,~f 
M c vr c 6 o , 2 o , 
C51ZE (4,3,135) 
PRINT ::o~tiNSTRUCTIONt 
PRINT =~:tRE~lSTERt> PPI~T ::o:tFETCH CONT~NTSt~ PRINT ::o;tOF PC CELLt 
REM •• ACCU~ULATCR 
LOCAT~ l45,80,5C,~51 
FPAMI'" 
~ 0 VF f 4 S , 6 0 I 
CSIH (1,1 gel 
PRINT =o:tACCU~ULATODt 
Pf11 
LCCATF (35,gO,!C,<J0) 
FRAMF 
MOVE" (4(1,1.151 
CSIZE (1,2,901 
Pr:?INT ;:[1 :tTNSTPUCTimt 11ECCOEPt 
RFM 
LOCAT~ (Q5,1GS,1Q,gOJ 
FRAMF 
MCVF (Qij 9 '5) 
CSI?f (1,2,0) 
PQJNT ;:Q!fOUTPUTt 
REM 
LCCAT~ C1(6,1q7,13,gQJ 
F0 AHf: 
MOVF f12<;,qQ) 
GS17f llt=•qOI 
PRINT ::c.t~ f H 0 ~ Y 
HOVE f11 0 ,R 5 I 
CSIZF (1,2,0) 

C [ L L St 

•• INSTRUCTION OECOOER 

•• OUTPUT 

•• ME:MORY 

PRINT =c:tCELL GCN- CfLL CON- CELL CON- CELL CON-t 
PRINT ?O!tNO. TENT NO. TENT NO. TENT NO. TENTt 
roo T=1 TC 15 
PRINT HOVCSl5+I,It5) :P NExT T 
FO~ I =lf} TO 10 
Pf\'INT MOVCS(l-g,<;J)!P NfH T 
FOP. 1-=31 TO 45 
PRINT HOVCSII-24,6?1:1~ NEXT T 
FOR 1=46 TO 60 
PRINT HOVCS(T-3g,71):T>. NfXl T 
MOVE UR,55J . 
C<:iiZE 11,1,0) 
PRINT =O!tlNST~UCTIONt 

~ 



s76R A7<L 
'1600 
BAl!l 
131~2 0 
8830 
8640 
'3850 
866 0 
R870 
8860 
R8CJO 
8~00 
11.10 
6920 
P93Q 
894 0 
A<35'l 
8CJf: 0 
1\970 
~qso 
8990 
9000 
<3010 
«)020 
C)030 
9090 
CJC'H 
989 2 
~ 93 
qQq4 
q100 
q11!) 
C)112 
q120 
CJ130 
9132 
CJ134 
CH36 
0 1311 
CJ14 0 
914? 
CJ144 
C)146 
CJ146 
CJ149 
q 15 0 
'UCJIJ 
CJ191 
q192 
C)l C)3 

CJ1CJ4 
q?Cll 
q2o? 
CJ210 
g220 
9225 
9230 
qz4o 
9250 

>fXIT 

PRINT ::n "I SFTt 
P~INT ~tl tO-INP~ 
PRINT :::0 t1-CLAt 
PRINT ::0 t2-AIJflt 
PRINT :::0 t3-TACt 
PRJNT :::0 14-')HFt 
PPINT :::0 t?-OIJTt 
PRINT :::0 t6-STD;t 
PRINT :::0 H-S 11'1t 
PRINT :::0 tA-JMPt 
PPINT =e tCJ-~D<:;t 
110VE f4(l,f7) 
CSI7~=" 11f1,0) 
FOR 1=1 I 18 
PRINT ::a ;;t-t 
NEXT T 
HOVE f8'5 ,681 
FOR I= 1 T G 1 ~ 
PRINT :::c:tvt 
NEXT T 
HOVE 150,13) 
~PINT ::o:t<<<<<t 
"" C VE f 4 0 , <:? IJ ) 
CSIZ~ (n, :,OJ 
PRINT ::o:tA CO~PUTER <:;IMULATOPt 
PETIJDN 
RFM 
PEM 
DJ:M 
Pf:M 
REH 
Rft1 

••••••••••••••••••••••••••••••••••••••••••••• 
• RESTART ~onuLE • ••••••••••••••••••••••••••••••••••••••••••••• 

PRINT MOVCSI2?,44l;CHP,f271:tA00P~OGRAH ENDEO SUCCESSFULLYt 
GOSUB <J2CC 
GCLR > PRINT CHR"I?.Tl: tHt~ PI-?INT CHR$(27): tJt 
PRINT MOVCSI7,10l ;tP0 0GPIIt' CHOICES AREtt 
PRINT HO\ICS!1G.15t:tt-SAMPLf t,- X PRCGRIIt'!St 
PPINT MOVCSI11,1SI :tz-c;~MPLE CUT~Lf 1 TO 10 PROGRAMt 
PRINT MOVCSI12,151~tJ-lOAC VOUP OhN PROGRA,t 
PRINT MOVCSI13.15) :t4-STOP t 
PRINT MOVCS I 1S, 10)! 
IN°UT tJNDUT YOUR C~OICEI t,X2 
IF X?=4 T~FN STOP 
ON X? f.OTC 2gQ,zgc,zqQ 
PRINT HOVCS(23,01 :twPCNG 1\UMfiER, TRY Af.AINvt 
PRINT MOV(S(1G,2g)~t t 
GOTO CJ14C 
RUt 
Rft1 
REM 
Rft-1 
REM 

······~······································ • CONTINUE ANO E~ROR ~fSSAG[ ERASE MO~ULE ' ••••••••••••••••••••••••••••••••••••••••••••• 
PRINT MOVCS!?3,44J;tHIT RETURN TO CONTINUEt 
GETKBO ON 
IF GETK~CCXJ=D T~EN CJ210 
IF )(<>239 THFN qz10 
GETKRO OFF 
PRINT MOVCS 122,43) ;t 
PRINT MOVr.S 12J,43t :t 
RETURN 

t 
t 

01 
01 



(CON, 1980) 

(HEW, 1979) 

( OME 1 , 1 97 0 ) 

( OME 2 , 197 0 ) 

(YOU, 1975) 

R E F E R E N C E S 

Control Data Education Company, 
1980 Catalog. Plato Courses. 

Hewlett-Packard, Terminal Basic Manual 
No. 02647-90005, 1979. 

Ontario Ministry of Education, 
Curriculum: Elements of Computer 
Technology, 1970 Senior Division. 

Ontario Ministry of Education, 
Curriculum: Computer Science, 
1970 Senior Division. 

Yourdon, E. Techniques of Program 
Structure and Design. 
New Jersey: Prentice Hall Inc., 1975· 



B I B L I 0 G R A P H Y 

Apple Catalog, Vol. 1, No. J, 1979 

Creative Computing, April 1980, Vol. 6, No. 4. 

Creative Computing, July 1980, Vol. 6, No. 7. 

Kanaroglou, P.S. "A Simulator and a Linker Loader 
for the Machine Mix", M.Sc. Project, 
McMaster University, 1979. 

Mano, M.M. Com£uter System Architecture 
New Jersey: Prentice-Hall Inc., 1976. 

Struble, G.W. Assembler Language Programming: 
The I.B.M. System 360 and 370, Addison-Wesley, 
Second Edition, 1975· 

TRS-80 Microcomputer Catalog, F-191 11/5/9 

57 




