
MYTRAN:

A PROGRAMMING LANGUAGE FOR DATA ABSTRACTION

MYTRAN:

A PROGRAMMING LANGUAGE FOR DATA ABSTRACTION

By

TIMOTHY WEST SNIDER, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

1981

MASTER OF SCIENCE
(Computer Science)

MCMASTER UNIVERSITY
Hamilton, Ontario

TITLE: Mytran: A programming Language for Data Abstraction

AUTHOR: Timothy West Snider, B.Sc. (McMaster University)

SUPERVISOR: Professor Derick Wood

NUMBER OF PAGES: v, 84, A-12, B-9, C-9, D-67.

i i

Abstract

This project is about the design and implementation

of a new programming language, Mytran. Two new control

statements are implemented in Mytran. Data abstraction is

supported through parameterized types or "type

constructors".

iii

CONTENTS

Chapter I Introduction 1

Chapter

2.1
2.2
2.3
2.4

Chapter

II Preprocessor Techniques

Macro Preprocessors •••••••.
Statement Preprocessors
Miscellaneous Preprocessors
Summary

III - Control Statements

Statements Selective Control
Repetitive Control

3.3 Mytran Control
3.3.1 IF Statement
3.3.2 LOOP Statement

3.1
3.2 Statements

Statements

.7

... 8
• ••• 12
•••• 14

•• 17

18

...... 19
•.• 21

.25
••••••• 25
••••••• 2 7

Chapter IV Data Types .33

4.1
4.2
4.3
4.4
4.5

Definitions ••••••
Pascal Data Types
Type Constructors
Mytran FORMs
Other Languages

••••••• 33
•.• 35

........ 40

........ 43
...... 50

Chapter V Implementation ••••••.•••.•••••••••••••••••••• 55

Stage
Statement

5.1 First
5.1.1 IF
5 .1. 2 LOOP Statement

Stage ••••• 5.2 Second
5.2.1 FORMs

The
The
The

Macro Method
Interpretation Method
Dope Vector Method •••••

5.2.1.1
5.2.1.2
5.2.1.3
5.2.3
5.2.3

References ••••••••••••••
Imported Subroutines and Functions

iv

....... 55
•. 57

.63
.•• 64

.65
........... 67

.67
....... 68
....... 70

........... 74

Chapter VI - Conclusions 76

6.1 Control Statements
IF Statement
LOOP Statement

•••• 76
6 .1.1
6 .1. 2
6.2
6.3
6.4

Appendix A

Appendix B

Appendix c

Appendix D

Data Structures
Portability
Future Work

Sample FORMs

- Mytran Symbol

- Mytran Syntax

- Mytran Source

v

...... 76
..... 78

•• 7 9
••••••••• 80

.••••• 80

.••.•••••.••••..••.•••••.•••... A -1

Table B-1

Graphs C-1

Code ••••.......•...•••••••••• D-1

1

Chapter I

Introduction

This project is about the design and implementation

of a language which supports data abstraction. The design

is based on intuitive ideas of what a programming language

should do. The implementation is as a Fortran

preprocessor. In this chapter, I will outline the goals

and objectives of the project by answering two questions.

First, why design a language to support data abstraction.

Second, why implement it as a Fortran preprocessor.

To answer the first question, we need first of all to

define what is meant by the term data abstraction.

Hoare [1972] defines abstraction as the "recognition of

similarities between certain objects and the decision

to concentrate on these similarities and to ignore ••• the

differences".

Thus a set of objects may be represented by a general

definition or abstraction, which only describes the

similar aspects of the objects and leaves the unique

aspects of each object open to later description. For

example, a book, to a student, is a collection of pages,

2

bound in a cover. The nature of the information in the

book, whether it is words or maps or tables, or whether it

is blank and is to have words or maps or tables put into

it, is not included in the abstraction. The specific

cases of text book, atlas, book of tables, or note book,

all add additional information to the book abstraction.

However, the operations of opening the book to the first

or last page, turning a page forwards or backwards,

closing the book, etc., are all included in the abstract

definition of a book, and do not change in the specific

cases.

From different points of view, the same set of

objects may have a different abstraction. To a bookstore,

the student's books are items that take up shelf space,

sell at certain prices, must be reordered when they sell

out, etc.

In programming, abstraction allows us to define

complex objects or models in independent layers.

Continuing with our abstract books, the operations to be

performed on a book, may be programmed without regard to

the many forms of information that it may hold. And the

operations on a page may be programmed without regard to

the fact that it will be held in a book. In fact, the

3

less they know about each other, the better. A certain

minimum interface is necessary. For example, let us say

that one of the operations to be performed on a book, is a

search for a word. The book abstraction defines the

opening and turning of pages. But it must pass the word

to the page abstraction to see if it is contained in a

page. Thus if this search operation is to be part of the

abstract definition of a book, each different abstract

definition of a page must include the ability to search

its contents.

Abstraction has been supported by programming

languages, via the subprogram, right from the beginning.

A set of statements may be collected together under one

name, and their execution invoked by referencing that

name. Subprograms may be written to perform general

operations on classes of objects through the use of

parameters. Thus, by a careful discipline of programming,

it is possible to define independent data abstractions in

any language. Obviously, as the number of language

facilities supporting data abstraction decreases, the

difficulty of maintaining the discipline increases. For

example, Fortran has only one language mechanism for

handling collections of data, namely the array. It is a

true abstraction in that an array may contain any type of

4

scalar information, integer, real, logical etc., for which

the access remains the same and individual components may

be operated on without reference to the fact that they are

in an array. However, it requires an extremely messy

discipline to implement anything approaching Pascal-type

records in Fortran. Wirth [1980] gives a history of the

development of data abstraction in programming languages.

In particular, he comments that few good implementations

exist. Those that do exist are not widely available.

This makes the design and implementation of a new language

a worthwhile goal.

The second question is, why implement a new language

via a Fortran preprocessor. This may be considered in two

parts, first why implement a new language via a

preprocessor, and second why use Fortran as the target

language. The reasons for using a preprocessor are

related to the fact that this language design is

experimental. This means that many attributes of a

programming language are not of concern to us. For

example the method of passing parameters, or the method of

storage allocation are not of interest. A preprocessor

allows new language features to be added to the source

language, while allowing any of the required attributes of

the target language to be retained. Also, the efficient

5

generation of efficient code is not a requirement. So a

preprocessor is a relatively easy technique for

implementing a new language.

The reason for using Fortran as the target language

is precisely the same reason that it is currently

considered unacceptable by many programmers. It has no

rigorous type-checking of parameters, and allows very easy

use of lots of statement labels. These two properties

which make reading and checking of programs so confusing,

are absolutely necessary for generating code. Another

advantage of Fortran is that it is widely available. This

combined with the preprocessor approach, means that a

language implemented in this manner is easily made

available on a wide range of computers.

So the goal of this project is to produce a language

that supports data abstraction, and is reasonably

portable. We will also design some new control statements

since those in Fortran do not readily support structured

programming. Since this is an experimental language, we

will try to design new control statements rather than

implement some that already exist in other languages.

The rest of this report describes the design and

6

implementation processes. Chapter 2 discusses

preprocessor techniques and examples. Chapter 3 discusses

principles and examples of control statements. Chapter 4

does the same for data structures. Chapter 5 discusses

the implementation techniques used. Chapter ~ discusses

the successes and failures of the project.

Chapter II

Preprocessor Techniques

A preprocessor is a translator. It converts a

program written in a source language into one written in a

target language. A compiler is also a translator and

though there are some translators which are clearly

considered to be compilers and others that are clearly

considered to be preprocessors, there is no precise

definition that separates the two. On the one hand a

compiler normally translates from a high level language to

an executable or near executable language and there is a

large difference between its source and target languages.

On the other hand a preprocessor normally translates from

a high level language to another high level language.

There are usually only small differences between its

source and target languages but this is not always the

case. For example, a preprocessor might be used to

translate a program written in an extended version of

Pascal into a program written in standard Pascal. The

Pascal compiler would then be used to translate the

program into executable code. However a preprocessor

could also be used to translate from Algol to Fortran,

which are very different source and target languages.

7

8

Solntseff and Yezerski [1974] give a very detailed

analysis of the different stages of translation and the

nature of the extensions that can be made at each of these

stages. For the remainder of this chapter, preprocessors

are considered to be simple translators, falling into

Solntseff and Yezerski's lexical and syntactic extension

classes.

Preprocessors of this type are used to add new

features or otherwise enhance an existing language. This

is much cheaper than writing or modifying a compiler. The

preprocessor need only examine the source program for

those features that it is adding. Any features already in

the language may just be copied to the target program, to

be handled by the compiler.

We now look at some general classes of preprocessors and

their properties as well as some examples. This is not

intended to be an exhaustive description of preprocessors

but rather it is a brief introduction to them.

2.1 Macro Preprocessors

A macro preprocessor translates from source to target

language by using patterns of text. There is a source

9

pattern, and a target pattern. The patterns consist of

fixed text and may or may not include text collecting and

generating parameters.

The fixed text in the source pattern may take the

form of keywords which set the boundaries of the

parameters, as in

(1) ADD %1 TO %2 GIVING %3

Or the fixed text may just be a macro name, with

parameters separated by commas, as in

(2) SUM %1, %2, %3

In the source pattern, the parameters collect text.

A macro is invoked by using its name, or its first

keyword. The pattern is th~n matched and source text is

assigned to the parameters as they occur in the pattern.

Thus, pattern (1) would be invoked by

(3) ADD A TO B GIVING C

and pattern (2) would be invoked by

(4) SUM A, B, C

In either case, parameters %1, %2, and %3 would be

assigned the text A, B, and C respectively.

10

In the target pattern, the fixed text consists of

full or partial statements in the target language. The

parameters, which now generate text, are interspersed

within the fixed text, to complete partial statements or

generate entirely new statements. A reasonable target

pattern to use with source patterns (1) or (3) is

(5) LOAD %1
ADD %2
STORE %3

An equally valid target pattern is

(~) %3 = %1 + %2

The target code is generated by copying the fixed text and

when a parameter is encountered, the text collected by the

source pattern is generated. Thus, pattern (5), whether

used with source pattern (1) or (3), when invoked by the

appropriate statement will generate

(7) LOAD A
ADD B
STORE C

Also, pattern (6), used with either source pattern will

generate

(8) C = A + B

Macro preprocessors were originally used with

assembly languages and are still most commonly associated

11

with them. However, as we have seen, a general purpose

macro processor makes no requirements on its source and

target languages. In fact, it may be used on any file of

text.

A number of Fortran macro processors are available.

One that was written for use with Fortran, but is in fact

general purpose, is Mortran2 [Cook 1975]. It is normally

used with a preamble of macros which implement a

structured version of Fortran. The programmer may then

add to or override this set. A typical macro in the

Mortran2 preamble is

(9) %'UNTIL# < # >' =
':1: IF #1 GOTO :2:; #2; GOTO :1:; :2: CONTINUE'

Mortran2 uses colons to indicate labels and semi-colons to

separate statements. This macro will cause the source

statement

(10) UNTIL (I .GT. 20) <I=I+l; PRINT i*i>

to be translated into

(11) 1 IF (I .GT. 20) GOTO 2
I=I+l
PRINT I*I
GOTO 1

2 CONTINUE

Lexical macro preprocessors have been used for a long

time. They have become a powerful language extension

12

tool. One problem with them is that since they know

nothing of the syntax of their source languages, they

cannot even recognize errors, let alone recover from them.

Another problem is that the syntax for defining macros is

usually very different from the syntax of the source

language. This adds to the complexity of the programming

task and adds confusion to the reading of programs. Much

more complete discussions of macros are given in

[Solntseff 1974], (Brown 1974], (Campbell-Kelly 1973].

2.2 Statement Preprocessors

This class of preprocessors adds new statement types

to an existing language. When the term preprocessor is

used, it most often refers to this type of system. In

fact the most common use of the preprocessor concept is to

add new statement types to Fortran to allow structured

programming techniques.

These preprocessors work like restricted macro

processors. In the terminology of Solntseff and Yezerski

they are called syntactic extension mechanisms. Source

patterns and target patterns are used but they are built

into the system. For example, the IF statement in

DEFT [Steele 1974] uses the source pattern

13

(12) IF %1 THEN %2 ELSE %3 END

and the target pattern

(13) IF %1 GOTO Ll
GOTO L2

Ll %2
GOTO L3

L2 %3
L3 CONTINUE

DEFT checks the syntax of this statement and its

parameters. For instance, if parentheses are not balanced

in a condition, this will be flagged as an error, and some

recovery attempted.

A wide variety of statements is supported by this

class of system, usually one or more variations of the

IF-THEN-ELSE statement and several loop structures.

IFTRAN allows the following statement

(14) WHILE (I .LT. J)
I = I + 1
END WHILE

which generates

(15) 99999 CONTINUE
IF (.NOT. (I .LT. J)) GOTO 99998
I = I + 1
GOTO 99999

99998 CONTINUE

Ratfor [Kernighan] allows

14

(16) FOR (I=l; I<20; I=I+l)
PRINT I*I

which generates

(17) I=l
GOTO 99999

99998 CONTINUE
I=I+l

99999 IF (.NOT.(I.LT.20)) GOTO 99997
PRINT I*I
GOTO 99998

99997 CONTINUE

As with these examples, the translation of individual

statements is always very simple and straightforward.

However, when structures are nested more than two or three

levels deep, it becomes quite difficult to duplicate the

translation manually.

Many of these systems also support other features,

for example long variable names, alphanumeric labels, or

free format statement entry.

2.3 Miscellaneous Preprocessors

There are as many of these as there are ideas about

what a programming language should do.

Many algorithms are most naturally expressed

recursively. It is quite difficult to write some of these

15

in a language which does not support recursion. Another

large class of algorithms uses the concept of coroutines.

Both of these concepts involve a different way of handling

the linkage between subprograms. There are several

preprocessors which support these capabilities. They use

new statements to indicate when the alternate linkages are

to be used. For example, the Star (Arisawa 1979] system

uses the statements RECCAL and RECRET to indicate a

recursive call and a recursive return. These new

statements are translated in a straightforward manner into

the target language. This is much the same as the

statement preprocessors. However, these statements also

generate calls to system routines to maintain return

address and variable stacks. The system described by

Skordilakis [1978] uses the RESUME statement to restart a

coroutine at the point at which it was last interrupted.

The statement

(18) RESUME A

is translated into

(19) IP = 2
CALL SYS (2,2,3)
CALL A

902 CONTINUE

IP is a local variable which is used by a computed GOTO to

branch to statement 902, when this routine is RESUMEd.

16

SYS keeps track of return addresses. The parameters are

codes for the type of statement, the calling routine, and

the called routine. Although the translation is quite

simple, the net effect is quite complex.

Another common problem is that of handling

non-standard data types. This involves defining storage

for variables, and also new operators to use with them.

The Augment system [Crary 1974] allows the programmer to

define subprograms to perform operations on a non-standard

data type. These subprograms are then associated with one

of the standard infix operators, or possibly with some new

operator symbol. For example, a routine to multiply two

double precision complex numbers may be written, and

associated with the symbol * When a statement such as

(20) A = B * C

is encountered in the source, where A, B, and C have been

declared to be double precision complex, a call to the

subroutine is generated. If the multiplication occurs as

part of a longer expression, the call will be generated

using a temporary location for the result. This temporary

location will then be passed as an operand to some other

routine. This means that support packages for

non-standard data types may be written. Then algorithms

17

written for standard data types, may be recompiled in

conjunction with the appropriate support package. If all

the necessary routines are in the package, the algorithm

will then work on the new data type.

2.4 Summary

We have seen that a wide variety of programming

language features may be implemented by preprocessing.

The major disadvantage of all of these systems is that

they are an extra layer between the programmer and the

computer. That means an extra layer of processing to get

a source program into executable form and an extra layer

of tracing during debugging. The latter can be quite

frustrating, since many systems have only recently begun

to give high level language tracebacks and snapshots of

error points, which unfortunately refer to the target

language of the preprocessor, not the source. The

advantage is that preprocessing is a fast and cheap way to

provide new language features.

Chapter III

Control Statements

Control statements alter the sequence of execution of

other statements. The statement

IF (condition)
blockl

ELSE
block2

END IF

alters the sequence of execution in one of two possible

ways. Either the first block is executed and the second

block is skipped. Or the first block is skipped, and the

second executed. There are two types of control

statements used in structured programming. One type

controls the selection of statements for execution. The

other controls repeated execution of statements. The

IF-ELSE-ENDIF statement above is an example of a selective

control statement.

Control statements do not change the values of any

program variables. They determine which statements that

do change program variables will be executed. So they

have a much more far reaching effect on the results of a

program than other executable statements. Because of

18

19

this, it is quite important that the effect of a control

statement be very clear.

3.1 Selective Control Statements

A selective control statement determines which of the

statements under its control will be executed. The

simplest form of this is the Fortran IF statement.

IF (condition) statement

This allows a single statement to be executed or not,

depending on the evaluation of a single condition,

obviously a limited form of control. It is most often

used in conjunction with unconditional branches to model

more complex control statements. A more complex form is

the IF-ELSE-ENDIF statement used in many languages.

IF (condition)
blockl

ELSE
block2

END IF

This allows any number of statements to be controlled.

And the statements are organized into two blocks, only one

of which is executed depending on the evaluation of a

single condition. The range of control and the effect of

the statement are made clear by the keywords. This form

encourages binary thinking. That is, problems are solved

by repeatedly dividing them in half. This is not always

20

the most natural approach.

Another selective control statement is the CASE

statement.

CASE OF (expression)
CASE (expression)

block
CASE (expression)

block

ELSE
block

ENDCASE

This allows the selection of one block of statements from

any number of blocks. The selection is made by comparing

the first expression to the expressions in each of the

following CASE lines. If an equality is found, the

associated block is executed and the rest of the statement

is skipped. If no equality is found, the block associated

with the ELSE is executed. This statement is most comonly

used in (and in some languages is restricted to)

situations where the first expression is simply a

variable, and the subsequent expressions are constants.

The conditions being evaluated are then quite simple and

the meaning of the statement easily understood.

A common property of all of these statements is that

21

some default for continued processing always exists if

none of the specified conditions is true. Either the

statements associated with an ELSE are executed, or if no

ELSE is used, the statement is skipped. Thus no matter

what the state is on entering the statement, processing

always continues after leaving it. This can be very

dangerous if some condition has been overlooked, or some

invalid input is given.

The original Pascal Case statement which did not

include an ELSE block and a more recent proposal by

Dijkstra [1976] do not have this property. In Dijkstra's

IF statement, blocks of statements are associated with

boolean guards. The guards are evaluated in some possibly

random order. If one is found to be true, the associated

code is executed, and the rest of the statement is

skipped. If none of the guards are true, execution is

aborted. This means that all possible conditions must be

considered. If some unforseen circumstance arises,

execution does not proceed along some default path.

3.2 Repetitive Control Statements

A repetitive control statement determines how many

22

times the statements under its control are executed. This

is done by repeatedly executing a statement or group of

statements until there is some reason to stop. The

simplest form of this is the DO-TIMES statement.

DO n TIMES
block

END DO

This executes the block of statements as many times as

required. Another form is the WHILE or UNTIL loop used in

many languages.

WHILE (condition)
block

ENDWHILE

This continues to execute the block of statements as long

as the condition is true. Once the condition is false,

the statements are no longer executed.

These statements consist of two parts. They have a

single condition for stopping, and a loop body that is to

be repeatedly executed. More flexible versions of this

have bBen proposed. These allow multiple stopping

conditions and/or placement of stopping conditions

anywhere in the loop body. The ANSI Fortran committee

have identified ten variations of the two part loop, and

are considering ways of accommodating them in a new

standard [Martin 1978], ~Meissner 1978], [Wagener 1978].

23

Unfortunately, a two part loop does not contain or

identify all of the components of a repetitive construct.

Loop initialization takes place outside of the loop and

the iteration mechanism is not identified as a separate

component. Even the original Fortran DO statement

contained these pieces, although on a very simple level.

The initial value, stopping value, and iteration increment

may all be specified. However, they are each restricted

to be a single integer assignment.

The RATFOR [Kernighanl preprocessor extends the

Fortran DO statement in a very nice way. Each of the

three components in the loop header is allowed to be a

single Fortran statement, including a call to a

subroutine. This gives each of the four components a

little more power, reducing the need for mixing the

iteration mechanism in with the loop body, etc. However,

the sequence of execution of the components is still

implicit and fixed.

A loop statement that does not fit this pattern is

the DO statement of Dijkstra [1976]

DO

OD

24

(guard) block
(guard) block

Blocks of statements are associated with boolean guards,

or conditions. In each iteration, the guards are

evaluated, and when a true-one is found, its block is

executed. This continues until none of the guards are

true.

Another way of looking at repetitive control

statements is to observe that in many cases, each

iteration selects a component from a data structure, and

performs some operation on it. Thus the iteration

mechanism is related to the data structure. Again, the

Fortran DO loop is an excellent example. The fixed

integer increment is a very reasonable mechanism for

selecting elements from arrays, or rows from matrices.

However, even without sophisticated data structuring

facilities, it is quite common to model trees or lists

using arrays. When this is done, more complex iteration

mechanisms are required to select components. This

approach has been taken in Alphard [Wulf 1977], which

allows specification of an iteration mechanism for user

25

defined structures. This mechanism is called a generator

and includes the initialisation and stopping conditions as

well. It is invoked by a special statement and the

sequence of initializing, selecting components for each

iteration, and testing for termination is fixed.

3.3 Mytran Control Statements

In designing new control statements for this

language, the main consideration has been that this is an

experimental language. Therefore, it is more important to

design something different than to copy a design that has

already proven itself. Apart from this, there are also

the considerations of clarity, flexibility, and ease of

use. The effect of the statement must be easy to

understand. The statements must handle a wide variety of

situations. And the statements must be a convenient,

concise notation for the control function they are

performing.

3.3.1 IF Statement

The function of a selective statement, as stated

earlier, is to determine which of the statements under its

control will be executed. The design used in Mytran is

26

based on Dijkstra's IF statement. Blocks of statements

are associated with boolean expressions.

IF

FI

(KEY GT ENTRY)
LOW = MID

(KEY LT ENTRY)
HIGH = MID

(KEY EQ ENTRY)
FOUND = TRUE

When the statement is executed, all of the expressions are

evaluated. Exactly one of them must be true. The block

of statements associated with that expression is executed.

If none of the expression are true, or more than one of

them is true, execution is aborted.

This statement form allows as many conditions as

necessary to be tested at the same level of nesting. The

example above would require two levels of nesting using

the IF-ELSE statement. The requirement that exactly one

alternative be true and the lack of an ELSE block, means

that conditions are very carefully specified.

The following example shows how a Fortran IF

statement could be written in Mytran.

IF (A.LT.B) A=A+l IF

FI

(A LT B) A=A+l
(A GE B)

27

The extra condition is required since at least one

condition must be true or execution will abort. The next

example shows how a Pascal IF-THEN-ELSE statement is

written in Mytran.

If (A LT B) IF
Then A := A + 1 (A LT B) A = A + 1
Else (B LT A) B = B + 1

If (B LT A) (A EQ B) A = 2 * A
Then B := B + 1 FI
Else A := 2 * A· I

Here, the third condition is implicit in Pascal but must

be explicitly stated in Mytran. The next example shows

how a Pascal Case statement could be written in Mytran.

Case I of IF
1 A := A + 1; (I EQ 1) A = A + 1
2 B := B + 1; (I EQ 2) B = B + 1
3 A := A * 2; (I EQ 3) A = A * 2

End; FI

In both of these statements execution aborts if I does not

have the value 1,2 or 3.

3.3.2 LOOP Statement

The Mytran repetitive control statement has four

parts. They are initialization, stopping conditions, loop

body, and iteration mechanism. Each of these consists of

a keyword followed by any number of statements. The parts

are executed in the order in which they occur in the text

and, except for initialization which must come first, the

28

parts may be used in any order. Any of them may be left

out if they are not needed. To allow nesting of loops,

the entire statement is bracketed by the keywords LOOP and

ENDLOOP.

LOOP
GIVEN block
WHILE block
DO block
LOOPBY block

END LOOP

The initialization section consists of the keyword

GIVEN, followed by any number of statements.

GIVEN
CURRENT = ROOT
LEN = STRLEN (KEY)

If it is used, it must immediately follow the keyword

LOOP. It is executed only once, before the repetitive

portion of the loop is entered. In fact, the word GIVEN

has no effect on execution. The reason it is included is

that loops usually require some initialization. This may

be assigning a starting value to a loop control variable,

or it may be zeroing a matrix, which itself requires a

loop. By using the GIVEN block, the initialization is

clearly identified as part of the loop. The repetitive

portion of the loop begins at the end of the GIVEN block.

The stopping conditions section of the loop consists

29

of the keyword WHILE followed by any number of statements

and conditions.

WHILE
(CURRENT NE 0)
ENTRY = TREE (CURRENT,3)
PTR = STRING (ENTRY,l)
LEN = STRING (ENTRY,2)
RESULT =MATCH (KEY,KEYLEN,CHARS(PTR) ,SLEN)
(RESULT NE EQUAL)

Conditions are boolean expressions enclosed in

parentheses. The entire WHILE block is executed

sequentially in each iteration and as conditions are

encountered, they are evaluated. As soon as one evaluates

to false, it causes a branch to the end of the loop. Any

number of conditions may be included in a WHILE block and

are evaluated independently. In the above example, the

two stopping conditions could not be combined into a

single one. The calculation of the second one is invalid

if the first one is false. If a standard single condition

loop were used, additional branches and boolean variables

would be necessary. Statements are also allowed as part

of the WHILE block. This is because, as in the above

example, there are frequently some calculations which are

solely related to stopping the loop, rather than producing

some result.

The iteration mechanism section of the loop consists

30

of the keyword LOOPBY, followed by any number of

statements.

LOOPBY
IF

(RESULT EQ LESS) CURRENT= TREE (CURRENT,l}))
(RESULT EQ GREATER) CURRENT = TREE (CURRENT,2)

FI

As with the GIVEN block, the keyword LOOPBY has no effect

on execution, though it is part of the repetitive portion

of the loop. It merely serves to identify those

statements in the loop which are used to "get from" one

iteration to the next. In a simple counting loop, this

would be the increment or decrement of the loop control

variable. In a tree search, as above it is the selection

of the appropriate subtree for continued searching.

These three sample blocks give a complete searching

loop. It is typical of searching loops that there is no

loop body. This is because there is no information being

accumulated. All we are doing is getting the next item to

look at, and deciding whether or not to stop.

The loop body section consists of the keyword DO

followed by any number of statements. These are the

statements which actually accumulate a result. Again the

keyword DO has no effect on execution. As an extension to

31

the above examples, if in addition to searching we wanted

to keep track of the pathway used, we could add the

following.

DO PATH (LEVEL) = RESULT

Of course, the variable LEVEL would have to be

initialised, tested for overflow, and incremented, in the

other blocks as well.

The syntax of this statement is somewhat wordy since

there are more keywords than are usual in control

statements. However, it is a more complete framework

within which to design a loop, or determine what a loop is

doing.

The following example shows how a Fortran DO loop is

written in Mytran.

DO 10 I = 1' 5 LOOP
10 A (I) = 0 GIVEN I = 1

DO A (I) = 0
LOOPBY I = I + 1
WHILE (I LE 5)

END LOOP

One of the common complaints about the Fortran DO loop is

that it does not allow 0 iterations. The following

example shows how this can be done in a Mytran loop.

32

DO 10 I = J, K LOOP
10 A (I) = 0 GIVEN I = J

WHILE (I LE K)
DO A (I) = 0
LOOPBY I = I + 1

END LOOP

The next example shows how a Pascal While loop can be

written in Mytran.

I : = 1;
While (A(I) NE K) DO

I := I + 1;

LOOP
GIVEN I = 1
WHILE (A (I) N E K)
LOOPBY I = I + 1

END LOOP

The loop initialization is contained in the GIVEN block rather

than being outside the loop. The Pascal Repeat-Until loop

is easily translated into Mytran since the Mytran WHILE

block can occur after the DO and LOOPBY blocks.

Chapter IV

Data Types

4.1 Definitions

For the purposes of this discussion the following

definitions will be used. A "data type" is a set of

values together with operations defined on members of that

set. A "data structure" is a member of the set of values

of a particular type. A data structure may be an

indivisible unit or it may be a collection of items and

each item may be an indivisible unit or a further

collection of items. For example, an integer is a data

type. Its set of values is the set of integers and its

operations are integer arithmetic. The number 27 is a

data structure of type integer. An array of three

integers is also a data type and (3, 6, 2) is a data

structure of that type. In programming languages, a

variable is a named object which is declared to be of a

certain type. It has as its value a data structure of

that type. Operations defined for the type are applied to

the data structure by using the name of the variable. For

example, I and J are integers and their values are 27 and

13. To indicate that these values are to be added

33

34

together, an operation which is defined for integers, we

write I + J.

Data structures are used to model "real world"

objects and situations. As these become more complex it

becomes necessary to use more complex data structures and

this requires that we be able to describe more complex

data types. In order to build these, we need some

primitive types, some rules for combining them and a

language for describing a type in terms of these primitive

types and rules. All programming languages have some

ability to build data types, for example in Fortran the

primitive types are the scalar types, Integer, Real,

Logical, etc. which may be combined as arrays. The

language for describing types is the language of the

Fortran declaration statements. The Fortran array allows

a fixed number of items of a single scalar type to be

combined. A typical declaration is

INTEGER A (10)

This says that the variable A is of type "array of ten

integers". Thus we have built a type called "array of ten

integers" and declared a variable A to be of that type.

There are two obvious limitations to the types that

may be built in Fortran. First, only items of the same

35

type may be combined and second, only items of scalar type

may be combined. There is also a problem with the

notation of Fortran declarations, namely that the

declaration of variables is mixed in with the description

of their types. A more powerful type building language

must remove these two limitations and improve on the

notation. The first limitation may be removed by allowing

items of different types to be combined. The second

limitation may be removed by allowing items of any type to

be combined. The removal of this limitation implies that

recursion is allowed, since the type of an item in a

collection may be the same type as the type of the

collection itself. This is necessary for the description

of recursive types such as trees and lists. Finally, a

more natural notation can be achieved by separating type

descriptions from variable declarations.

4.2 Pascal Data Types

Pascal is one language that has powerful type

building capabilities. The primitive elements for

building types in Pascal are, as in Fortran, the scalar

types. Items of the same type may be combined into arrays

and items of different types may be combined into records.

The Pascal type building language allows types to be

36

described and given a name which may be used in other type

descriptions or variable declarations. Items of any type

may be combined into arrays or records. A typical Pascal

type description is

ShortArray =Array [1 •• 50] of Integer;

This says that anything of type ShortArray is an

array of fifty integers. This can be used to describe a

more complex type as in

SmallSet = Record
Size: integer;
Set: ShortArray

End;

These may be used to declare variables, as in

A: ShortArray;
B: SmallSet
C: ASmallSet;

The declaration for C means that it is of type

"pointertoSmallSet" and its value will be a pointer to a

structure of type SmallSet.

Up to this point we have only considered how to

combine types into more and more complex types and have

ignored their corresponding operations. Operations fall

into four groups as follows: (1) Selectors, which access

data structures, (2) Assigners, which replace data

structures, (3) Predicates, which carry out tests on data

structures and (4) Operators which don't fit into the

37

first three groups. We now look at some examples of

operators and their notation in Pascal. The following are

examples of the different types of notation used for

selection in Pascal.

A
A [4]
B.SIZE
c~

The first denotes access to a data structure which is the

current value of A. The second denotes access to a data

structure which is a single element of the array data

structure which is the current value of A. The third

denotes access to a data structure which is the value of

the SIZE field in the record data structure which is the

current value of B. The fourth denotes access to the data

structure which is pointed to by the current value of c.

If we use the type and variable declarations from the last

examples, then A accesses an array of fifty integers,

A [4] accesses an integer, B.SIZE accesses an integer and

C~ accesses a record containing an integer and an array of

fifty integers. These selectors may be applied repeatedly

to access a low level component from a complex structure.

For example,

C~. SET [4]

uses all four types of selector notation to denote access

38

to an integer.

Assigners in Pascal exactly parallel selectors. Any

data structure which can be accessed by a selector can be

replaced with another data structure of the same type

using an assigner. The notation for assigners is exactly

the same as that for selectors and the only distinguishing

feature is that assigners appear on the left hand side of

an assignment statement and selectors appear on the right

hand side. If the notation of the last selector example

appears on the right, it causes access to an integer

value, but if it appears on the left it causes replacement

of the current integer value with a new integer value.

This similarity of notation is natural from an

implementation point of view since in both cases the

translator ultimately generates a machine address, however

it confuses the functional point of view since selectors

and assigners are clearly very different. A formal

treatment of selectors and assigners is given in

Six [1980].

Predicates in Pascal are comparisons between two

scalar data structures. Any two structures of the same

scalar type may be compared for equality or inequality and

39

if the type is ordered, they may be compared for relative

position in the ordering. There are no predicates defined

for array or record type structures. The following

examples show how the notation is used.

A [4] = 5 or A [4] EQ 6
B.SIZE NE A [1]
C~.SET [1] > 0

In the above expressions, the selectors access the

appropriate data structures and then the predicate is

applied to them.

Operators in Pascal, outside of those in the first

three groups, include binary and unary arithmetic

operators and type conversion operators. These are

defined only for scalar type structures and not for record

or array type structures. These operators produce new

data structures which are not simply structural

recompositions of their operands. For example, integer

addition takes two integer values as operands and produces

a new integer value as its result. Binary operators are

written in infix notation and unary or type changing

operators are written in prefix notation. The following

are some examples:

I + J
8 * c
J DIV 2
CHR (I)

40

where DIV is the integer division operator and CHR is the

integer to character type changing operator.

As a summary of the Pascal operators and types that

we have looked at, we can say that selectors and assigners

are defined for structures of any Pascal type and

predicates and other operators are defined only for

scalars. Since we have defined data types as a set of

values plus operations, we require the ability to define

new predicates and operators. This can be done by writing

procedures and functions to operate on structures of a

particular type. For example, addition is not defined in

Pascal for structures of type ShortArray so we may define

our own addition operator as a procedure, which has three

parameters of type ShortArray and returns the sum of the

values of the first two as the value of the third. Thus

it is both an addition operator and an assigner. Within

this procedure, the addition may be described using any

combination of selectors, assigners, predicates and

operators that are supported by Pascal. Outside of it, we

treat it as an operator which adds two data structures

together and produces a third one. Clearly selectors and

assigners can also be written as procedures and functions.

4.3 Type Constructors

41

Flon [1975] describes parameterized types as a

specification tool. Parameters may be integers or other

types and are used in the description of a new type. For

example an integer parameter may be used for the upper

bound of an array. Then when this parameter is filled in,

an array type of specific size is created. A type

parameter may be used as the base type of an array and,

when it is filled in, this creates a specific array type.

Flon suggests that the use of parameters in type

descriptions will give them much wider applicability in

the same manner that it does for procedures. He calls

them "type constructors" since they may produce widely

differing types from different parameters. If we examine

this concept, we can see that a type constructor is a rule

for combining types to produce new types. In fact, the

array is a type constructor, since it is described in

terms of parameters which are the upper and lower bounds

of its ranges and its base type. Its operators are the

selectors and assigners described earlier and it is used

to describe types by filling in appropriate parameters as

in

Array [-4:9] of Integer;

The Pascal record is another type constructor and

along with the array may be considered to be a primitive

42

type constructor. With these two, it seems to be possible

to construct any type. However, additional type

constructors are still needed, both for their notational

convenience and the greater degree of abstraction that

they allow in type descriptions. New type constructors

can be made part of the language definition as additional

primitive type constructors, or the language can be given

the capability of describing new type constructors. The

former approach has been taken in Pascal where the Set and

the File type constructors are also included. Each of

these may be used with parameters to describe a type and

the type described then has selectors, assigners,

predicates and other operators associated with it. Adding

new type constructors to a language definition is not a

solution since it does not give extensibility. A much

more general solution is achieved by providing the

capability for describing new type constructors.

For example, a tree is a type constructor. Its nodes

can be described as having keys, information and pointers

to other nodes. The pointers and their manipulation can

be described fully, but the type of key and the type of

information are parameters. When a specific tree type is

described, these parameters are filled in with appropriate

types, such as in the type "a tree with integers for keys

43

and ten-character strings for information".

4.4 Mytran FORMs

In order to describe new type constructors, we need

some primitive types, some primitive constructors and a

notation in which to express the description. Mytran is a

language which supports the description of type

constructors. Its primitive types are Fortran scalars,

and its primitive constructors are the array and record.

Type constructors are defined as FORMs which are based on

Flon's [1975] parameterized types. The notation and

capability of a FORM is shown in the following examples.

A FORM for a stack may be defined as follows,

(1) FORM INTSTACK (MAX : INTEGER)

RECORD
PTR : INTEGER
ST : ARRAY (MAX) OF INTEGER

ENDREC

SUBROUTINE PUSH (VALUE)
VALUE : INTEGER
BEGIN

IF (PTR GE MAX) STOP "STACK OVERFLOW"
(PTR LT MAX) PTR = PTR + 1; ST (PTR) = VALUE

FI
RETURN
END

SUBROUTINE POP (VALUE)

44

ENDFORM

The declaration

(2) s STACK (100)

will create a variable S which will be of type "stack of

100 integers". The value of Swill be a record whose

fields may be accessed using the same selector notation as

for Pascal records. In addition the operators PUSH and

POP are defined for the value of S and the notation for

invoking them is

(2) CALL S.PUSH (I)
CALL S.POP (I)

Another declaration

(4) T STACK (50)

will create a variable T of the new type "stack of 50

integers". To invoke operations on the value ofT, the

notation is

(5) CALL T.PUSH (I)
CALL T.POP (I)

A more general stack form may be defined as follows

(6) FORM STACK (MAX:INTEGER, ENTRY:FORM)

RECORD
PTR : INTEGER
ST : ARRAY (MAX) OF ENTRY

ENDREC

IMPORT FROM ENTRY ASSIGN (El, E2)

45

SUBROUTINE PUSH (VALUE)
VALUE : ENTRY
BEGIN

IF (PTR GE MAX) STOP "STACK OVERFLOW"
(PTR LT MAX) PTR = PTR + 1

FI
RETURN
END

CALL ST (PTR) .ASSIGN (VALUE, ST (PTR))

SUBROUTINE POP (VALUE)

END FORM

The type of information held in the stack is now a

parameter so any type of stack may be built with this

constructor. An ASSIGN subroutine is imported from this

parameter, so any type which is used in a STACK

description must export an ASSIGN subroutine. Imported

functions and subroutines are the only way that a FORM can

describe operations on components whose types are

parameters. In the above example, a stack must be able to

store and return information via the PUSH and POP

operators. However the nature of this information is

unknown, so no precise definition of how to copy it can be

given. Instead the FORM requires that whatever type is

used must support a subroutine to do this copying. So for

example, the declaration

(7) S : STACK (100, INTEGER)

is not valid, since the Fortran type INTEGER has no

46

subroutines associated with it. However, a trivial form

may be defined

(8) FORM INTYPE INTEGER

EXPORTS INTASGN AS ASSIGN

SUBROUTINE INTASGN (Il,I2)
Il, I2: INTEGER
BEGIN I2 = Il
RETURN
END

ENDFORM

And now the declaration

(9) s STACK (100, INTYPE)

is valid, and creates a variable S of the same type as in

the first example. Obviously, this is a very messy way to

implement a stack of integers. However, if the following

FORM is defined

(10) FORM STRING (MAX : INTEGER)

RECORD
LEN : INTEGER
STR : ARRAY (MAX) OF INTEGER

ENDREC

EXPORTS STRCPY AS ASSIGN

SUBROUTINE STRCPY (Sl,S2)

END FORM

Now the declaration

(11) S :STACK (100, STRING (5))

creates a stack of 5-integer strings, without rewriting

47

any of the STACK routines. Assuming the declaration

(12) STR : STRING (5)

then the operation S.PUSH (STR) will push the string in

STR on top of stack s.

A FORM description has four parts, the header, the

structure, the import/export lists and the procedures.

The general syntax is

FORM name (parameters)
structure description
IMPORT import list
EXPORT export list
procedures

ENDFORM

The header contains the name of the FORM and any parameters.

Parameters may be either types or integers. They are used in the

structure description and in the procedures. Integer

parameters are typically sizes. In example (1), the

header is

INTSTACK (MAX : INTEGER)

MAX is the size of the stack, and is used as the dimension

for the array that holds the stack, and to test for

overflow in a procedure that adds items to the stack.

Type parameters are used to allow more general FORMs to be

described. In example (~), the header is

STACK (MAX:INTEGER, ENTRY:FORM)

MAX is again the size of the stack, and is used as before.

48

The parameter ENTRY is the type of the information to be

kept on the stack. Thus the FORM STACK is described

without regard to the nature of the information that it is

to hold. As in example (11), it is quite easy to describe

a stack of strings, and if a general string form is

described, to describe a string of stacks.

The structure description describes the other type

constructors and types being used. There are five types

of structure description, record, array, Fortran, form and

form parameter. Record descriptions are the same as

Pascal records. The syntax is

RECORD
FIELDl : structure
FIELD2, FIELD3 : structure

ENDREC

The structure of a field may be any one of the five

structure types.

Array descriptions are almost the same as Pascal.

The syntax is

ARRAY (rangelist) OF structure

The rangelist is a list of ranges separated by commas. A

range may be given as either a lower and upper bound

separated by a colon or an upper bound in which case the

lower bound is assumed to be 1. Bounds may be integer

49

constants or integer parameters. The structure of array

elements may be any of the five structure types.

Fortran descriptions are just the Fortran scalar

types, INTEGER, REAL, LOGICAL, etc. Form structures are

previously defined FORMs, with all necessary parameters.

The structure in example (2)

STACK (100)

is a form structure description.

Form parameter structure descriptions are simply type

parameters. The base structure of the array ST in example

(6) is ENTRY which is a parameter to the FORM STACK.

The Import/Export lists describe the interface

between FORMs. The Import list describes the operations

that must be supported by any type parameters. These are

procedures and functions that are used in procedures to

manipulate information in the FORM. In example (6), the

subroutine PUSH must be able to transfer information from

the variable VALUE into the stack. Since VALUE is of type

ENTRY, a parameter, there is no way to describe the

transfer. So a subroutine ASSIGN is called to do it.

This subroutine is imported from the FORM parameter ENTRY.

Thus any type which is used as an actual parameter in

50

describing a stack must export a subroutine ASSIGN.

export list describes operations that are

supported by a FORM. Subroutines and functions may be

exported via alias names. A routine may be exported by

more than one alias name. In example (10), the subroutine

STRCPY copies strings. It is exported under the alias

name ASSIGN.

The procedures for a FORM describe the operations

that may be performed on a structure of any type

constructed by the FORM. They are Fortran subroutines and

functions and may have parameters whose types are

parameters to the FORM. In example (6) the VALUE

parameter is of type ENTRY which is a parameter to the

FORM. Integer parameters to the FORM may be referenced in

the subroutines and functions of the FORM, typically for

checking bounds and overflows, as in example (6).

4.5 Other Languages

There are a number of modern languages which provide

type building capabilities. We will now look at some of

them and compare them to Mytran. Although we only discuss

their data type facilities, they all have many other

51

features to recommend them. A summary of their features

is given in Hanson et al [1979]. We will describe their

capabilities in terms of Pascal data types because they

are the most widely known.

The first level above Pascal types is the class of

Simula [Birtwhistle et al 1973] and Concurrent

Pascal (Brinch Hansen 1977]. This binds together a set of

local objects and procedures and functions that operate on

them. Variables are declared as instances of these

classes and information held by a variable may only be

manipulated by the operations of its class.

A different approach on the same level of complexity

is the module. This goes under different names in

different languages but generally it is a means to bind

together a set of objects and some procedures and

functions in the same way as in a class. The difference

between them is that a class is a type and variables are

created as instances of that type, whereas a module is an

information hiding mechanism, within which can be defined

any number of types and operations on them. Although a

variable may be declared to be of a type that is defined

in a module, and therefore operations in the module may be

used on it, the module itself is not a type. Languages

52

that use the module concept, such as Modula ~Wirth 1977]

and Euclid (Chang et al 1978], support the view that

processes consist of independent, communicating

subprocesses which have exclusive control of their own

data. This is a much broader concept than that of data

type, but it does encompass some aspects of it. A data

type may be described in a module complete with its

operators. Modules and classes at this level are fixed

specifications with no parameters. Although several

instances of a class may be created, they all have the

same properties. From the point of view of type building

the only extension offered is that operations are included

with the rest of the type description.

The next level of languages allow modules or classes

to have parameters which may themselves be modules or

classes. CLU [Liskov et al 1977], Alphard [Wulf 1977] and

an unnamed successor to Pascal (Robinson 1980] are

languages with this capability. Mytran is also at this

level. In addition, CLU and Alphard allow overloading of

operators. This means that an operator supported by the

language may be given a new meaning in a type description.

For example, in the description of a matrix, the operator

+ can be defined to perform matrix addition.

53

A further capability is supported in Alphard,

Mesa [Geschke et al 1977] and Modula-2 [Wirth 1980],

namely separate definition and implementation modules.

This means that the properties of a data type may be

defined separately from their implementation. This has

two advantages. One is that other programmers who wish to

reference a module need only see the definition module.

The second is that if an implementation module is changed,

a certain amount of consistency checking can be done

against the definition module. Although this does not

extend the capability to describe types, it does make them

easier to use and much more secure.

These last two features are not included in Mytran

though they could be added. A more basic difference

between Mytran and all of these languages is the manner in

which storage is allocated for data structures. This is

admittedly a problem of implementation rather than design,

but Mytran was designed so that it could be easily

implemented in Fortran.

These languages all use a stack based dynamic storage

allocation scheme. When the execution of a module is

initiated, the storage required for its structures is

allocated and variable names are bound to their

54

structures. Since a module is a coroutine, control may

leave it without terminating it, so its structures remain

active, though hidden from other modules. If another

instance of the same module is initiated, storage for a

new set of structures is allocated. Mytran uses Fortran

as its object language and therefore has static storage

allocation. The space needed for a variable is calculated

from its declaration at translation time and storage is

statically allocated. Also, since Fortran is the object

language, the values of variables local to a subprogram

are not active once control has left that subprogram.

Chapter V

Implementation

This chapter discusses the implementation of the

translator. An outline is given of implementation

problems, their solutions, and the implementation

strategy. There are also a number of examples of

translations of program or statement fragments. A

complete sample translation is given in Appendix A.

Mytran was implemented in two stages. The first

stage added the new control statements IF and LOOP. It

was written in itself and hand compiled. The second stage

added data structuring via the FORM. It was written using

the stage one language.

5.1 First Stage

This stage added two new control statements to

Fortran, the IF statement and the LOOP statement. The

Fortran IF and DO statements were dropped. The translator

is a statement preprocessor as described in Chapter I. It

55

56

looks for key words or symbols and performs a fixed

translation on them. Everything else is copied. The

result is a complete language in the sense that all Fortran

statement types are either copied or have an equivalent in

the new statements. For example Fortran Read and Write

statements are accepted as source and copied unchanged.

Fortran IF and DO statements are not accepted but their

function is replaced by the Mytran IF and LOOP statements.

Thus any program which may be written in Fortran, may also

be written, hopefully more easily, in Mytran.

The translator also allows multiple statements per

line. The need for this follows naturally from the new

control statements. First of all the Loop statement is so

wordy that it is a great help in simple cases to put

several parts of it on one line. More importantly because

these statements have a nested structure, that is the range

of control of an IF or LOOP statement may be any number of

statements, the notion of one statement per line no longer

makes sense. However, end of line is still considered a

statement terminator unless the following line is a

continuation line. The Fortran source format for

continuation and labels is also retained. These rules

improve readability. In particular if labels must be used,

they should be visible.

57

5.1.1 IF Statement

The following is a typical Mytran IF statement.

1 IF
2 (KEY .EQ. ID)
3 FOUND = .TRUE.
4 (KEY .LT. ID)
5 HIGH = MID
6 (KEY .GT. ID)
7 LOW = MID
8 FI

The semantics of this statement, as described in

Chapter III, say that all three of the conditions will be

evaluated simultaneously and the statement that is

associated with the one that is true will be executed. If

none of the conditions is true, or more than one is true,

then execution will be aborted. The first observation

about this with regard to implementation is that the

evaluation of conditions cannot really take place

simultaneously, so there will have to be some way of

simulating this via sequential evaluation. This can be

done by evaluating all the conditions in some order and

keeping track of those that are true. After all the

conditions are evaluated, if exactly one is true, the

statements associated with it are executed. If the

restriction is made that none of the conditions has side

effects then the sequence of evaluation doesn't matter.

58

This cannot be checked by the translator without

eliminating functions calls from conditions, and so it must

be a programmer discipline.

We can now identify some of the requirements of the

implementation. First, it must evaluate all conditions of

an IF statement. Second, if a condition evaluates to true,

there must be some way of transferring control to its block

of statements after all conditions have been evaluated.

Third, if a previous condition was true execution must be

halted with a suitable error message. This may be done

immediately upon finding the second true condition or after

evaluating all conditions. Fourth, after evaluation of the

last condition, either control must be passed to the block

of statements associated with the true condition, or if

none is true, execution must be halted with a suitable

error message. These error messages should give the line

numbers at which the errors occurred. And fifth, after

execution of a block of statements control must be

transferred to the statement following the end of the IF

statement. There are also two overall requirements.

First, translation should be done one statement at a time

with a minimum of information retained by the translator

between statements. Second, translation of nested control

statements must not require any special treatment.

59

To implement the first requirement we do the

following. If a condition is false branch immediately to

the next condition. If it is true set any necessary flags

and pointers and then branch to the next condition. To

satisfy the second through fourth requirements the

conditions in an IF statement are numbered sequentially

starting at 1 and if a condition is true a local system

variable, LABEL is given the condition's number. This can

be used as an index to get to the appropriate block of

statements after all conditions are evaluated. If LABEL

has been set previously then two conditions are true and

execution can be halted. And if after evaluating all

conditions LABEL has not been set then no condition is true

so execution can be halted. If a condition is true its

line number is recorded so it may be reported in any error

messages. The fifth requirement is satisfied by branching

at the end of each block to a point past the end of the IF.

Here is a complete translation of the example using

the above strategies, with source on the left and generated

code on the right.

60

1 IF LABEL=0

2 (KEY .EQ. ID) IF(.NOT.(KEY.EQ.ID))GOTO 20
CALL TEST0l(LABEL,LINE1,2,l,NAME)
GOTO 20

30 CONTINUE

3 FOUND = • TRUE. FOUND=.TRUE •

4 (KEY .LT. ID) GOTO 10
20 IF(.NOT.(KEY.LT.ID))GOTO 40

CALL TEST0l(LABEL,LINE1,4,2,NAME)
GOTO 40

50 CONTINUE

5 HIGH = MID HIGH=MID

6 (KEY .GT. ID) GOTO 10
4QJ IF(.NOT.(KEY.GT.ID))GOTO 60

CALL TEST0l(LABEL,LINE1,~,3,NAME)
GOTO 6QJ

70 CONTINUE

7 LOW = MID LOW = MID

8 FI GOTO 10
60 IF(LABEL.EQ.0)CALL ERR00l(l,NAME)

GOT0(30,5QJ,70) ,LABEL
10 CONTINUE

Code is generated for each component of the IF

statement as follows. When the keyword IF is found,

generate

LABEL = 0

This initialises the system variable which records the

number of a true condition. At the same tiime, a label is

generated for the end of the IF statement and the condition

counter for this IF is set to zero. When the first

condition is found, generate

61

IF (.NOT.(KEY.EQ.ID))GOTO 20
CALL TEST0l(LABEL,LINE1,2,l,NAME)
GOTO 20

30 CONTINUE

The label 20 is generated for the next condition, and the

label 30 is generated as the start of the associated block

of statements. If this condition is the only true one, a

branch will be made to this label. TEST01 is a system

routine that sets the necessary flags and indices for a

true condition. It is given the system variable LABEL

which holds the number of a true condition, and LINEl which

holds the line number of a true condition. The line number

of this condition, 2, is also given as is the condition

number, 1. The system variable NAME holds the name of the

current subroutine and will be used if an error is found.

When the next condition is found, generate

GOTO 10
20 CONTINUE

IF(.NOT.(KEY.LT.ID))GOTO 40
CALL TEST01 (LABEL,LINE1,4,2,NAME)
GOTO 40

50 CONTINUE

The first line is generated because this condition

indicates the end of the block of statements associated

with the previous condition and if this block of statements

is executed it must end by branching past the end of the IF

statement. The label 10 has been allocated for this

purpose. The second line is generated because the previous

62

condition must be able to branch to this one. The rest is

generated as for the first condition and all subsequent

conditions are generated in the same manner as this one.

When the keyword FI is found, generate

GOTO 10
60 CONTINUE

IF (LABEL.EQ.0)C~LL ERR00l(l,NAME)
GOT0(30,50,70) ,LABEL

10 CONTINUE

The first line is generated to terminate the previous block

of statements. The second line is generated so that the

last condition can branch to here. All conditions will

have been tested at this point, so the third line is

generated to check that one of them was true, and if not,

to call an error routine. The next line is generated to

cause a branch back to the appropriate block of statements.

And the last line is the point to which each block of

statements branches.

This translation clearly works on a line by line

basis, and the translator only needs to retain several

label values and the condition counter between lines of the

statement. The fact that it works for nested IF statements

is slightly more subtle. The key point is that any nested

IF statement is part of a block of statements and therefore

cannot be encountered until all the conditions of the

63

current level have been tested and are finished with. At

this point all of the system variables such as LABEL are

free to be reused.

5.1.2 LOOP Statement

The following is a typical LOOP statement

LOOP
GIVEN I = 1
WHILE (I • LE. LIMIT)
DO A (I) = 0
LOOPBY I = I + 1

END LOOP

The semantics of this statement as described in

Chapter III say that the statement in the GIVEN block will

be executed once on entry to the LOOP statement and the

statements in the remainder of the blocks will be

repeatedly executed until a condition in the WHILE block

evaluates to false. This translation is very

straightforward. There are the following requirements.

There must be a branch from the end of the loop to the

start of the repetitive part of the loop, in this case the

WHILE block. If a condition in the WHILE block evaluates

to false it must cause a branch to the first statement

after the end of the LOOP statement. As can be seen from

the following translation of the example, most of the

keywords are simply discarded and cause no code to be

64

generated.

GIVEN I = 1
WHILE (I .LE. LIMIT)
DO A (I) = 0
LOOPBY I = I + 1

END LOOP

5.2 Second Stage

I=l
10 IF(.NOT.(I.LE.LIMIT))GOTO 20

A(I)=0
I=I+l
GOTO 10

20 CONTINUE

This stage added data structuring via the FORM. FORMs

are a major extension to Fortran data declarations and so

it was necessary to build a complex symbol table from the

source. There is an equally major extension to the manner

in which data may be referenced. This necessitated the

parsing of source statements into operands and operators,

and parsing operators into reference components. Many of

the usual parts of a compiler are present in the translator

though since it is generating Fortran rather than machine

code they are simpler.

65

5.2.1 FORMs

The following is part of a typical FORM.

FORM

SET (ELEMENT:FORM, MAX:INTEGER)

RECORD
A : ARRAY (MAX) OF ELEMENT
SIZE : INTEGER

ENDREC

IMPORT FROM ELEMENT
EQUAL (X,Y) :LOGICAL
COPY (X,Y)

EXPORT SETMEM AS MEMBER
SETADD AS INSERT

END FORM
A typical declaration using this FORM is

X : SET (ENTRY,50)

The semantics of this as described in Chapter IV say

that X is a structure containing 50 occurences of a

structure of type ENTRY which has been previously defined

and one integer. The components of X are referenced as

X.A, which refers to an array of 50 items of type ENTRY,

X.A (I) which refers to a single item of type ENTRY, and

X.SIZE which refers to a single integer. Any components

defined in the type ENTRY may be referenced by adding the

necessary information to the end of X.A (I). For example

if ENTRY is an array of integers then X.A (I) (J) will

66

refer to a single integer, or if ENTRY is a record with

field P of type integer, then X.A (I) .P refers to a single

integer. Also the type ENTRY must export a function under

the name EQUAL and a subroutine under the name COPY. Any

routines in SET that reference EQUAL or COPY will, if

invoked via X, actually reference the exported function or

subroutine.

When the FORM SET is encountered in the source there

no way of knowing that it will be used in conjunction

with ENTRY. Thus there is no way of knowing how big a

structure of FORM SET will be. In particular there is no

way of knowing how to access the components of a SET since

their size is unknown. On the other hand routines within

SET must be able to describe operations on these components

at least in a general manner. The first observation to

make is that in fact these routines may only be invoked via

a variable such as X in the example which has been declared

to be of FORM SET. This declaration will contain all the

necessary parameters to solve the referencing problem. It

remains only to determine a means of communicating this

information to the FORM. There are several possibile

methods which I will call the macro method, the

interpretation method, and the dope vector method.

67

5.2.1.1 The Macro Method

This method involves treating FORM routines as macros

which are expanded when a declaration is encountered. This

has been suggested by several people [Gries 1977],

[Holt 1979] and is used in the language

Model [Morris 1979]. Model expands small procedures in

line and generates new copies of larger ones for each new

declaration. This is comparable to generating index

calculations for a Fortran array as inline code. This is a

valid technique for a simple situation such as this.

However user defined access mechanisms may be arbitrarily

complex so there is the possibility of an explosion of

duplicated code.

5.2.1.2 The Interpretation Method

This method involves building a symbol table for each

FORM and each declaration. The declaration symbol table

for a variable is passed to any FORM routines accessed via

that variable. To access a component of a FORM, a system

routine is called at execution time and passed the

declaration symbol table for the current variable, the FORM

symbol table, and the component name. The system routine

68

searches for the component name in the FORM description.

If a form parameter is encountered its value is obtained

from the declaration symbol table. This method leaves the

bulk of the referencing work to execution time. As with

the macro method it may be acceptable for simple structures

but it is not a good general solution.

5.2.1.3 The Dope Vector Method

In this method as much of the work as possible for

calculating a reference is done at translation time. Any

sizes that are available are generated in a reference

expression. Any that are not available are assumed to be

in a dope vector at a specific address. When a variable is

declared all of the unknown information will be available

and the necessary values are put into the dope vector.

Whenever a FORM routine is accessed via this variable its

dope vector must be available to the routine. There are

two ways of doing this. The first is to keep the dope

vector in the structure. The second is to keep the dope

vector outside of the structure. The first is the most

powerful and convenient. If all structures carry their own

descriptions they can never be misused. However components

of structures must also contain their own descriptions and

this obviously leads to an explosive proliferation of

69

descriptions. The second method is not quite so convenient

since a structure cannot be understood without its dope

vector, and it may be misinterpreted if the wrong dope

vector is used. However dope vectors are completely

internal to the system. They are generated by the

translator so it is possible to ensure that the correct one

is always used.

5.2.2 Implementation of Dope Vectors

The dope vector method was chosen to implement Mytran

FORMs. The general implementation strategy is as follows.

When a FORM is scanned, a symbol table is built containing

any access information that is in the FORM. Also locations

are allocated in the dope vector for any information that

is not available but will be needed for references.

References within the FORM are generated in terms of the

known information and the appropriate dope vector

locations. When a variable is declared using the FORM a

symbol table is built for it which is a copy of the FORM

symbol table, expanded to include the new information that

is in the declaration. For example the FORM symbol table

for SET will say that the base type of the array A is a

parameter so its size is unknown. Any access expressions

involving this size will generate a reference to the dope

70

vector. When the declaration for X is found a symbol table

for it will be created. This will say that the base type

for array A is the type ENTRY and a complete description

including its size will be given. As this table is being

built all the information that was previously unknown is

put into the dope vector for use at execution time. Any

references to components of X will generate access

expressions entirely in terms of known sizes.

The dope vector is a convenient mechanism for

communicating information about a specific declaration to a

general FORM. The information in the dope vector is

determined by the requirements of the access expressions

which are generated for references.

5.2.3 References

In Mytran, structures are stored linearly. Regardless

of the hierarchical nature of a logical structure it is

mapped onto a linear physical representation. A reference

to a variable or a component of a variable is a reference

to the start of storage of the variable or component. For

example given the FORM SET and declaration X at the start

of this chapter, and assuming that the type ENTRY as an

array of 10 integers, then a reference to X is a reference

71

to the first word of X, and a reference to X.A is a

reference to the first word of X. A reference to X.A (4)

is a reference to the 31st word of X and a reference to

X.SIZE is a reference to the 50lst word of X. The

translator must accept logical references of this nature

and translate them into the appropriate physical

references. As discussed in the last section, not all of

the necessary information is available at translation time,

so the translator must actually generate access expressions

which will be evaluated at execution time.

Since Mytran is generating Fortran object code, a

declaration of a variable with hierarchical structure is

translated into a declaration of an appropriate length

one-dimensional Fortran array. Access expressions are

subscript expressions accessing the appropriate word in the

array.

There are two language supported selectors in Mytran.

They are the record and the array. Access to elements of

arrays is done by calculating the element number within a

linear address space and multiplying this by the size of

each element. This gives the offset from the start of the

structure to the desired element. Access to fields of

records is done by adding up the sizes of all preceding

72

fields. This again gives an offset. There are several

observations that may be made at this point. The first is

that several calculations are involved in changing a set of

indices into an element number and each index is

individually checked to ensure that it is within its

ranges. This can be most conveniently done by passing the

indices and a list of ranges to a function which will

perform the necessary operations. But this means that the

range list might as well be in the dope vector. The second

observation is that the size of the base element of an

array is needed, but may not be known within a form due to

parameterization.

the dope vector.

If this is the case, it must be put in

The third observation is that a field

reference always refers to a fixed location, so that the

sum of the preceding fields may be calculated at

translation time allowing a field to be accessed by a

single number at execution time. Again if the form of some

field is a parameter then the offsets for all following

fields are unknown within the current form so they must

come from the dope vector. The final observation is that

these access mechanisms may be applied sequentially to

reach a low level component of a complex structure.

5.2.4 Implementation of References

73

The implementation strategy is as follows. When a

reference to a variable is encountered, its symbol table

entry is found. If there are several levels of

specification in the reference the translator "walks

through" the structure description in the symbol table. As

a particular component is specified at each level the

translator uses information from the symbol table about

that component to generate an access expression. The

following are some sample references and their translations

based on the form SET and the declaration X.

(1) X.A
(2) X.SIZE
(3) X • A (I +J)

X(0+1)
X(500+1)
X (0+IX1 (LOCAL (n), I+J) *10+1)

Access expressions are calculated from a base of zero, but

Fortran arrays are addressed from a base of one, so the

translator adds one onto the end of each access expression.

In (3), IX1 is the system function that calculates the

offset and checks the range of indices for a

one-dimensional array. LOCAL is the local dope vector and

n is the start of the range list for the array. 10 is the

size of the form ENTRY. If a declaration of a variable of

form SET accurs within the form, its parameters are

unknown, as in the following

Y : SET

Access expressions for Y must now be generated in terms of

unknown information.

(1) Y.A
(2) Y.SIZE
(3) Y.A (I+J)

74

Y(0+1)
Y(TYPE(m)+1)
Y(0+IX1(TYPE(n) ,I+J)*TYPE(p)+1)

In (1} the offset to field A does not rely on any

parameters and so is known at translation time. In (2) the

offset to field SIZE is not known since the size of the

preceding field is based on a parameter. TYPE is the dope

vector which will be passed for a specific variable of form

SET and m is the location allocated to hold the offset of

field SIZE. In (3) IX1 is as described above, n is the

start of the range list though here the range list has been

passed in TYPE rather than being local and p is the

location allocated to hold the size of the base element of

array A.

5.2.3 Imported Subroutines and Functions

There is one remaining problem in generating code for

FORMs. This is related to calling imported subroutines and

functions. Just as there is no way of knowing at the time

a form is scanned how big a SET will be, there is also no

way of knowing how to call the function EQUAL and the

subroutine COPY. These are aliases and all that is

guaranteed is that whatever form is used for the parameter

ELEMENT it will export something under these aliases. As

discussed earlier one solution is to treat forms and their

75

routines as macros. When a call to COPY is expanded the

appropriate actual name can be generated. This generation

of duplicate code is unacceptable for the reasons stated

earlier, so another solution is required.

The method used in Mytran is to keep a table of

exported routines containing the form from which it was

exported, its exported alias and its actual name. Then

when a reference is made to an imported routine, it is

translated to a reference to the routine via its actual

name. Note that this translation takes place at execution

time, so that the desired reference is actually to the

address of the routine. The most efficient implementation

would be to have a table of subroutine and function

addresses and by selecting the correct address, call the

correct routine. These addresses could be held in the dope

vector. Due to differences between machines in handling

subroutine and function calls, this cannot be done in

Fortran. As a result Mytran generates "alias routines"

which contain calls to all routines exported under each

alias. So when the form SET calls the subroutine COPY, it

actually calls an alias routine which then calls the

appropriate routine depending on the parameters used in the

declaration of the variable through which SET has been

accessed.

76

Chapter VI

Conclusions

To determine whether this project succeeded or failed

let us review the goals and the extent to which they were

met.

6.1 Control Statements

The first goal was to design and implement some new

control statements. This resulted in the IF and LOOP

statements described in Chapter III. These statements were

implemented in the first stage of the project, which was

written using these statements and then hand translated.

The second stage was written using the stage one

translator. In all, about 7000 lines of code have been

written using these control statements. They were adequate

for all situations that occurred and were in some respects

superior to other control statements. The following

comments are based on this experience.

77

6.1.1 IF Statement

As can be seen in the examples in Chapter III, the IF

statement requires a certain amount of redundancy in

specifying conditions. Even if there is only one condition

which leads to an action, the opposite condition must still

be specified with no action. This redundancy has two

benefits. The first is that typing errors are trapped

since exactly one condition must be true. This is exactly

the type of error that turns into a persistent bug unless

it is caught early. The second is that there is a sense of

completeness to a selective control statement when it is

known that all possible conditions have been tested. Even

if some of them lead to no action, it is clear that the

condition was not overlooked but rather an explicit

decision was made to do nothing. The price to be paid for

this is that these redundant conditions must be written and

this can be very tedious.

One gratuitous effect of the IF statement is that the

threat of execution being aborted encourages careful

programming. If a number of complex conditions are

specified it may not be clear whether all possibilities

have been covered, or whether more than one of them could

be true. Rather than risk a fatal execution error, it is

78

easier to break them up into simpler conditions. This

means that the code is much easier to understand at a later

review.

6.1.2 LOOP Statement

The LOOP statement is an entirely new design. No

language that I have seen uses a repetitive control

statement that clearly identifies the four components of a

loop. As can be seen in the examples in Chapter III, a

LOOP easily models many other repetitive constructs. The

fact that multiple, independently tested stopping

conditions are allowed and that they may be placed anywhere

in the loop body, removes the need for additional boolean

variables to keep track of stopping conditions. However

its most important function is to provide a framework

' within which to describe a loop. This is an advantage both

when a program is being written and when it is being read

at some later date.

One feature that could be added is a Next Iteration

statement. This would cause an immediate branch to the

start of the LOOPBY section to generate the necessary state

for the next iteration. Unfortunately this would require

some rules concerning sequence of execution of the

79

components to ensure that the WHILE section was not

skipped.

6.2 Data Structures

The second goal was the support of data abstraction.

This resulted in the design of parameterized types or type

constructors called FORMs as described in Chapter IV.

These were implemented in the second stage of the project

and have not been used except for some small examples.

Therefore no very significant comments can be made

concerning their effectiveness. The only available measure

of success is a comparison with other languages. As noted

in Chapter IV, Mytran is missing several features that are

useful for data abstraction. But on the central issues it

is acceptable. Most writers say that the most important

consideration is the separation of implementation from

usage. The FORM is an adequate mechanism for achieving

this. Although there is no enforced hiding of information

local to a structure, it is easy enough to do this through

programming discipline. Of even greater importance, in my

opinion, is the ability to define several simple objects in

general terms, and then combine them into an object that is

far too complex to be easily described as a whole. The

Mytran FORM supports this at least as well as any other

80

language.

6.3 Portability

The third goal was to have a portable system. This

resulted in using a Fortran preprocessor for the

implementation. Portability cannot be claimed until it has

been done. Although every attempt was made to use widely

supported Fortran, there is no way to prove that the

translator can be moved, without moving it.

6.4 Future Work

There are number of interesting possibilities for

future work. The problems of I/0 and literals for

structured data have been ignored in Mytran, as they have

in most languages. The language PPL [Wallis 1980] is one

that contains some facilities for defining I/O and literal

formats though only for unparameterized structures. It may

be possible to extend these ideas for the parameterized

Forms of Mytran, or it may be necessary to design new

facilities. Another possible project is to add user

definition of infix operators for Forms. As discussed in

Chapter IV this is absolutely necessary to achieve

independence of data structures from algorithms. A related

81

project is to allow functions to return non-scalar

structures. These two features would allow many algorithms

to be written in a much more natural manner.

If any future work is to be done on Mytran, the

decision to implement it as a Fortran preprocessor should

be reviewed. Although anything can be done in Fortran,

there are some things which cannot be done easily. In

particular any modern ideas about nested scopes of

variables cannot be easily translated into Fortran. Also

recursion and dynamic storage allocation, although not

difficult on an ad hoc basis, are quite difficult to

translate in general. Thus another possible project would

be to change the Mytran preprocessor to a compiler. The

structure of the translator is such that generation of

machine code would not be difficult.

Bibliography

Arisawa, Makoto, Minoru Iuchi (19~9) "Fortran +
Preprocessor = Utopia 84", Sigplan Notices
Jan/79,p.12-l~. -

14,1

Barnard, David T., W. David Elliott, David H. Thompson
(1979' "Euclid and Modula", Sigplan Notices 13,3
May/78, p.70-84.

Bauer, F. L.
Course

(1974\ "Compiler Construction: An Advanced
",Springer-Ver1ag,Berlin,l974.

Birtwhistle, G. M., 0-J. Dahl, B. Myrhaug, K. Nygaard (1973)
"Simula Begin ",Auerbach Publishers Inc., Phila.

Brinch Hansen, P.
Programs "

(1977) "The Architecture of Concurrent
Prentice-Hall Inc., Englewood Cliffs, N.J.

Brown, P. ,J. (1974) "Macro Processors ", Wiley, London.

Campbell-Kelly, M. (1973) "An Introduction to Macros
Macdonal/American Elsev1er, N. Y.

Chang, Ernest, Neil E. Kaden, W. David Elliott (1978)
"Abstract Data Types in Euclid", Sigplan Notices
13,3 Mar/78, p.34-42.

"

Cheatham, T. E., Judy A. Townley (1974) "A Proposed System
for Structured Programming ",Harvard Univ., Ma. ·

Cook, A. James, L. ,J. Shustek (1975) "A User's Guide to
Mortran2 ", Computer Research Group, Stanford L1near
Accelerator Centre.

Crary, F. D. (1974) "The Augment Precompiler ",
MRC Technical Summary Report ~14~9, University of
Madison-Wisconsin.

Dijkstra, E. W. (197~) "A Discipline of Programming
Prentice-Hall,N.J.

Flon, Lawrence (19751 "Program Design with Abstract

"

Data Types ", Dept. of Comp. Sci., Carn~gie-Mellon
unrvers 1 ty.

Geschke, Charles M., James H. Morris Jr, Edmund H.
Satterthwaite (1977) "Early Experience with Mesa",
CACM 20, Aug/77, p.540-553.

Gries, David (19711 "Compiler Construction for Digital
Computers ", Wiley, N. Y.

82

8l

Gries, David, Narain Gehani (1977) "Some Ideas on Data Types
in High Level Languages", CAC~ 20 ,June/77, p.414-4?.0.

Hanson, s., R. Jullig, P. Jackson, P. Leng, T. Pittman
(1979) "Summary of the Characteristics of Several
Modern Programming Languages", Sigplan Notices 14,5
May/79, p.28-A5.

Hoare, c. A. R. (1972) "notes on Data Structuring",
Structured Programming , Academic Press, London.

Holt, Richard C. David B. Wortman (l979l "A Model for
Implementing Euclid Modules and Type Templates",
Sigplan Notices 14,8 Aug 79, pR-12.

Jensen, K., N. Wirth (1975) "PASCAL: User Manual
and Report, 2nd ed. ",Springer-Verlag, N.Y.

Kernighan, Brian W. "Ratfor - A Preprocessor for a
Rational Fortran ",Bell Laboratorle5, N.J.

Ledgard, Henry F., Robert W. Taylor (1979) "Two Views of
Data Abstraction", CACM ?.0 June/77, p.182-184

Liskov, B., Allan Snyder, Russell Atkinson, Craig Schaf
(1977) "Abstraction Mechanjsms in CLU", CACM 20
Aug/77, p.5~4-57~.

Martin, Jeanne T. (1978) "Looping Structures", Minutes
of ~4th Meeting , X1J3/10n, ANSI, p.79-R8.

Meissner, Loren P. (1978) "Control Structure Extension",
Minutes of ~5th Meeting , X3J1/l08, ANSI, p.55-~5.

Morris, ,James B. (1979) "Data Abstraction: A Static
Implementation Strategy", Sigplan Not_!_~~~ 14,8
Aug/79, p.l-7.

Pyster, Arthur B. (1980) "Compiler Design and Construction
Van Nostrand Reinhold, N. Y.

Robinson, k. (1980) "The Design of a Successor to
Pascal", Language Design and Programming
Methodology , Springer-Verlag, Berlfn-:--

Sakoda, James M. (1979) "Dystal?.: A General Purpose
Extension of Fortran", Sigplan Notices 14,1 Jan/79,
p.77-90.

Six, H.-w. (1980) "A Framework for Data Structures ",
cs Tech. Report No. 80-CS-2~, McMaster University.

"

84

Skordalakis, E., G. Papakonstantinou (lQ78) "Coroutines
in Fortran", Sigplan Notices 11,9 Sept/7R, p.7~-84.

Solntseff, N., A. Yezerski (1974) "A Survey of Extensible
Languages", Annual Review in Automatic Programming 7
Pergamon Press, Oxford.

Steele, C. A., A. E. Sedgwick (1974) "Deft- A Disciplined
Extension of Fortran " Technical Report No. (.)2,
UniverSity of Toronto.

Wagener, J. L. (1978) "Tutorial: Common Features in Looping
Proposals", Minutes of ~~rd Meeting , X3J3/l04,
ANSI, p.37-45.

Wallis, Peter ;r. L. (1980) "External Representations of
Objects of User-Defined Types", ACM Transactions on
Programming Languages and Systems ?,2 Apr/80,
p.l17 152.

Wirth, N. (1977) "Modula: A Language for Modular
Multiprogramming", Software Practise and Experience
,Jan/77, p.<-<5.

Wirth, N. (lq8rrn "The Module: A System Structuring
Facility in High-Level Programming Languages",
Language Design and Programming Methodology
Spr inger-Ve rlag;-se rl in. ·

Wulf, W. A., R. L. London, M Shaw (197~) "An Introduction
to the construction and verification of Alphard
Programs", IEEE Trans. Softw. Eng. , Dec/7~,
p.?53-?.n4. ----

Wulf, William A., Mary Shaw (lq77) "Abstraction and
Verification in Alphard - Defining and Specifying
Iterators and Generators", CACM 20 Aug/77 p.553-5~4.

Appendix A

This appendix contains a complete Mytran translation

of several FORMs. The program at the end contains

declarations of several of the types that may be

constructed from these FORMs.

A-1

FORM INTFORM INTEGER
EXPORT

A-/.

INTCMP AS COMPARE
INTASGN AS ASSIGN

FUNCTION INTCMP (Il,I/.)
INTCMP : INTEGER

BEGIN
IF

FI
END

<I1 LT I~~ INTCMP = -1
<Il EQ I2~ INTCMP = 0
<Il GT I?.~ INTCMP = 1

SUBROUTINE INTASGN (Il,I2)
BEGIN I2 = I1 END

ENDFORM

FORM STRING (ENTRY:FORM, LENGTH:INTEGER)
ARRAY (LENGTH) OF ENTRY
IMPORT

FROM ENTRY
COMPARE (Sl,S2) INTEGER
ASSIGN (Sl,S/.)

EXPORT
STRCMP AS COMPARE
STRCPY AS ASSIGN

FUNCTION STRCMP (Sl,S2)
S1,S?.. : STRING
STRCMP : INTEGER

BEGIN
LOOP

GIVEN I = 1
WHILE

<I LE LENGTH~

<S1 (I) .COMPARE fSl (I), S?.. (I)) EQ VI~

LOOPBY I = I + l
END LOOP
IF

<I GT LENGTH~ STRCMP = 0
<I LE LENGTH~ STRCMP = Sl (I) .COMPARE (S1 (I), S2 (I))

FI
END

A-3

SUBROUTINE STRCPY (Sl,S2)
S1,S2 : STRING

BEGIN
LOOP

GIVEN I = 1
WHILE <I LE LENGTH~

DO CALL Sl (I) .ASSIGN (S1 (I), S2 (I))

LOOPBY I = I + 1
END LOOP

END
ENDFORM

FORM TREE (KEYTYPE:FORM, VALUETYPE:FORM, MAX:INTEGER)
RECORD

ROOT, FREENODE : INTEGER
TRUNK : ARRAY (MAX) OF RECORD

KEY : KEYTYPE
VALUE : VALUETYPE
LEFT,RIGHT : INTEGER

ENDREC
ENDREC

IMPORT
FROM KEYTYPE

COMPARE 0<1 ,K2)
ASSIGN (Kl ,K2)

FROM VALUETYPE
ASSIGN (V1,V2)

EXPORT
TRSRCH AS SEARCH
TRADD AS ADD
TRINIT AS INIT

SUBROUTINE TRINIT (T)
T : TREE

INTEGER

BEGIN T.ROOT = 0; T.FREENODE = 1 END

SUBROUTINE TRADD (T,K,V,OK)
K KEYTYPE
V : VALUETYPE
T : TREE
OK, FOUND : LOGICAL
ADDRESS : INTEGER

BEGIN
CALL T.TRSRCH (T,K,FOUND,ADDRESS)
IF

<FOUND~ OK = FALSE
<NOT FOUND~

IF

FI
FI

END

A-4

<T.FREENODE GE MAX~ OK = FALSE
<T.FREENODE LT MAX>

N = T.FREENODE; T.FREENODE = T.FREENODE + l
CALL K.ASSIGN (K,T.TRUNK (N) .KEY)
CALL V.ASSIGN (V,T.TRUNK (N) .VALUE)
T.TRUNK (N) .LEFT = 0
T.TRUNK (N) .RIGHT = 0
IF

FI

<ADDRESS EQ 0~ T.ROOT = N
<ADDRESS NE 0>

D = K.COMPARE (K,T.TRUNK (ADDRESS) .KEY'
IF

<D EQ -l> T.TRUNK (ADDRESS) .LEFT = N
<D EQ l> T.TRUNK (ADDRESS) .RIGHT= N

FI

SUBROUTINE TRSRCH (T,K,FOUND,ADDRESS)
T : TREE
K : KEYTYPE
FOUND : LOGICAL
ADDRESS : INTEGER

BEGIN
LOOP

GIVEN
ADDRESS = (?I

NEXT = T.ROOT
WHILE

<NEXT NE 0>
D = K.COMPARE (K,T.TRUNK (NEXT) .KEY)
<D NE r!~

LOOPBY
ADDRESS = NEXT
IF

<D EQ -l> NEXT= T.TRUNK (NEXT) .LEFT
<D EQ l> NEXT= T.TRUNK (NEXT) .RIGHT

FI
END LOOP
IF

<NEXT EQ 0' FOUND = FALSE
<NEXT NE 0> FOUND = TRUE

FI
END

ENDFORM

A-S

FORM LOGFORM LOGICAL ENDFORM

PROGRAM TEST
c
C TII is a tree with integer keys and integer values
c

TII : TREE (INTFORM,INTFORM,20)
c
C TIS is a tree with integer keys an strings of 5 integers
C for values.
c

TIS : TREE (INTFORM,STRING (INTFORM,5) ,20)
c
C TSI is a tree with strings of 3 integers for keys and
C integer values.
c

TSI : TREE (STRING (INTFORM,3) ,INTFORM,l0)
c
C TSS is a tree with strings of 3 integers for keys and
C strings of 7 integers for values.
c

TSS : TREE (STRING (INTFORM,3) ,STRING (INTFORM,7) ,30)
I, ,J : INTFORM
Sl STRING (INTFORM,3)
S2 STRING (INTFORM,5)
S3 STRING (INTFORM,7)
OK LOGICAL

BEGIN
c
C This program simply shows the nature of the references that
C may be made to these variables and the translation of those
C references.
c

TII.TRUNK (Il .KEY= l
TSI.TRUNT< fi) .KEY (l) = l
TSS.TRUNK (I) .VALUE (J) = l
CALL TII.TRADD (TII,I,J,OKl
CALL TSS.TRADD (TSS,Sl,S3,0K)

END

A-G

FUNCTIONINTCMP(TYPE,Il,I2)
INTEGERINTCMP
INTEGERNAME(~) ,TYPE(1)
DATA NAME/"I","N","T","C","M","P"/
LABEL=0
IF(.NOT.(Il.LT.I2))GOTO 20
CALL TEST01(LABEL,LINE, l, 9,NAME)
GOTO ?.0

30 CONTINUE
INTCMP=-1
GOTO 10

20 CONTINUE
IF(.NOT.(Il.EQ.I2))G0TO 40
CALL TEST0l(LABEL,LINE, ?., l0,NAME)
GOTO 40

50 CONTINUE
INTCMP=0
GOTO 10

40 CONTINUE
IF(.NOT.(Il.GT.I2))GOTO 60
CALL TEST01(LABEL,LINE, 3, l1,NAME)
GOTO ~OJ

70 CONTINUE
INTCMP=l
GOTO 10

60 CONTINUE
IF(LABEL.EQ.0)CALL ERR00l(8,NAME)
GOT0(30,50,70) ,LABEL

10 CONTINUE
RETURN
END

SUBROUTINEINTASGN(TYPE,I1,I?.)
INTEGERNAME(7) ,TYPE(l)
DATA NAME/"I","N","T","A","S","G","N"/
I2=I1
RETURN
END

FUNCTIONSTRCMP(TYPE,Sl,S2)
INTEGERS1 (l) ,82 (l)

INTEGERSTRCMP
INTEGERCOMPARE
INTEGERNAME(6) ,TYPE(l)
DATA NAME/"S","T","R","C","M","P"/
I=l

80 CONTINUE
IF(.NOT.(I.LE.TYPE(3)))G0TO 90
IF(.NOT. (COMPARE (TYPE (TYPE (2)) ,Sl (DOPEl (LOCAL(4) ,I) *TYP

A-7

XE f t)) + 1) , S?. (DOPE 1 (LOCAL (1) , I) *TYPE (t:1) + l)) • EQ. 0) l G OTO 9 0
I=I+1
GOTO 8rl

90 CONTINUE
LABEL=0
IF(.NOT.(I.GT.TYPE(ll))GOTO
CALL TEST01(LABEL,LINE, 1,
GOTO 110

120 CONTINUE
STRCMP=Cil
GOTO 100

110
19, NAME)

1.1_ 0 CONTINUE
IF(.NOT.(I.LE.TYPE(3)))GOTO 110
CALL TEST01(LABEL,LINE, 2, 40,NAME)
GOTO 130

140 CONTINUE
STRCMP=COMPARE(TYPE(TYPE(2)) ,S1(DOPE1(LOCAL(4l ,I)*TYPE(

Xl1) + 1) , S 2 (DOPE 1 (LOCAL (4) , I) *TYPE (S l + 1))
GOTO 100

110 CONTINUE
IF(LABEL.EQ.0)CALL ERR001(1R,NAME)
GOTO (1 20, 140) , LABEL

100 CONTINUE
RETURN
END

SUBROUTINESTRCPY(TYPE,S1,S2)
INTEGERS1 (l l ,S2 (l)

INTEGERCOMPARE
INTEGERNAME(t)) ,TYPE(1)
DATA NAME/"S","T","R","C","P","Y"/
I=1

1501 CONTINUE
IF(.NOT.(I.LE.TYPE(3lllGOTO 1110
CALLASSIGN(TYPE(TYPE(2)) ,Sl(DOPE1(LOCAL(4) ,Il*TYPE(t:1l+1

X l , S 2 (DOPE 1 (LOCAL (4) , I) *TYPE (C))+ 1))
I=I+1
GOTO 150

1110 CONTINUE
RETURN
END

A-R

SUBROUTINETRINIT(TYPE,T)
INTEGERT (1)
INTEGERCOMPARE
INTEGERNAME(~) ,TYPE(1)
DATA NAME/"T","R","I","N","I","T"/
T(0+1)=0
T(1+1)=1
RETURN
END

SUBROUTINETRADD(TYPE,T,K,V,OK)
INTEGERK (l)
INTEGERV(1)
INTEG ERT (l)
LOGICALOK,FOUND
INTEGERADDRESS
INTEGERCOMPARE
INTEGERNAME(5) ,TYPE(1)
DATA NAME/"T","R","A","D","D"/
CALLTRSRCH(TYPE,T(l) ,K(1) ,FOUND,ADDRESS)
LABEL=0
IF(.NOT.(FOUND))GOTO 180
CALL TESTAl(LABEL,LINE, l, 90,NAME)
GOTO 180

l90l CONTINUE
OK=.FALSE.
GOTO 170

180 CONTINUE
IF(.NOT.(.NOT.FOUND))GOTO 200
CALL TEST0l(LABEL,LINE, 2, 9l,NAME)
GOTO 200

?.lOl CONTINUE
LABEL=0
IF(.NOT. (T(1+1) .GE.TYPE(4) ')GOTO 230
CALL TEST0l(LABEL,LINE, 1, 91,NAME)
GOTO 230

240 CONTINUE
OK=.FALSE.
GOTO 220

:nOJ CONTINUE
IF(.NOT. (T(1+l) .LT.TYPE(4)))GOTO 250
CALL TEST01(LABEL,LINE, 2, 94,NAME)
GOTO ?.51i1

2~11 CONTINUE
N=T(1+1)
T (1 + l) =T (1 + 1) + l
CALLASSIGNrTYPE(TYPE(2)) ,K(1) ,T(2+DOPE1(TYPE(5) ,N)*TYPE

x (un +0+ 1')
CALLASSIGN(TYPE(TYPE(3)) ,V(1) ,T(2+DOPE1(TYPE(5) ,N)*TYPE

A-9

X(l0'+TYPE(7)+1')
T (2+DOPE 1 (TYPE (5' , N) *TYPE (1 QJ) +TYPE (R '+ l' =0
T(2+DOPE1 (TYPE (5) ,N) *TYPE (l0)+TYPE (9)+l)=0
LABEL=0
IF(.NOT.(ADDRESS.EQ.0))GOTO 280
CALL TEST0l(LABEL,LINE, 1, 10l,NAME)
GOTO 280

?90 CONTINUE
T(0+l)=N
GOTO 270

280 CONTINUE
IF(.NOT.(ADDRESS.NE.0))GOTO 300
CALL TEST01(LABEL,LINE, 2, 102,NAME)
GOTO 300

310 CONTINUE
D=COMPARE(TYPE(TYPE(2)) ,K(l) ,T(2+DOPE1 (TYPE(5) ,ADDRESS)

X*TYPE(l0)+0+l))
LABEL=0
IF(.NOT.(D.EQ.-l))GOTO 330
CALL TEST0l(LABEL,LINE, 1, l05,NAME)
GOTO 330

340 CONTINUE
T(2+DOPE1(TYPE(5) ,ADDRESS)*TYPE(l0)+TYPE(8)+l)=N
GOTO 320

330 CONTINUE
IF(.NOT.(D.EQ.l))GOTO 350
CALL TEST0l(LABEL,LINE, 2, 10~,NAME)

GOTO 350
3t:i0 CONTINUE

T(2+DOPEl(TYPE(5) ,ADDRESS)*TYPE(l0)+TYPE(9)+1)=N
GOTO 320

350 CONTINUE
IF(LABEL.EQ.0)CALL ERR001(l04,NAME)
GOT0(341/1,3e}0) ,LABEL

320 CONTINUE
GOTO 27ril

300 CONTINUE
IF(LABEL.EQ.f/1)CALL ERR00l(l00,NAME)
GOTO (290, 310) , LABEL

270 CONTINUE
GOTO 220

250 CONTINUE
IF(LABEL.EQ.0)CALL ERR00l(q2,NAME)
GOT0(240,2t:i0) ,LABEL

220 CONTINUE
GOTO 170

200 CONTINUE
IF(LABEL.EQ.0)CALL ERR00l(R9,NAME)
GOTO(l90,210) ,LABEL

170 CONTINUE
RETURN
END

A-1.0

SUBROUTINETRSRCH(TYPE,T,K,FOUND,ADDRESS)
INTEGERT (l)
INTEGERK(1)
LOGICALFOUND
INTEGERADDRESS
INTEGERCOMPARE
INTEGERNAME(~) ,TYPE(1)
DATA NAME/"T","R","S","R","C","H"/
ADDRESS=0
NEXT=T (0+1)

370 CONTINUE
IF(.NOT.(NEXT.NE.0))GOTO 380
D=COMPARE (TYPE (TYPE(?.)) ,K (1) ,T (2+DOPE1 (TYPE (5) ,NEXT) *TY

XPE (l0)+0+l))
IF(.NOT.(D.NE.0))GOTO 380
ADDRESS=NEXT
LABEL=0
IF(.NOT.(D.EQ.-l))GOTO 400
CALL TEST0l(LABEL,LINE, l, l30,NAME)
GOTO 400

410 CONTINUE
NEXT=T(2+DOPEl(TYPE(5) ,NEXT)*TYPEfl0)+TYPE(8'+l)
GOTO 390

400 CONTINUE
IF(.NOT.(D.EQ.l))GOTO 420
CALL TEST0l(LABEL,LINE, 2, 13l,NAME)
GOTO 420

430 CONTINUE
NEXT=T(2+DOPEl(TYPE(5) ,NEXT)*TYPE(l0)+TYPE(9)+1)
GOTO 390

4?.0 CONTINUE
IF(LABEL.EQ.0)CALL ERR001(l?.9,NAME)
GOT0(410,430) ,LABEL

390 CONTINUE
GOTO 370

380 CONTINUE
LABEL=Of
IF(.NOT.(NEXT.EQ.0))GOTO 450
CALL TEST0l(LABEL,LINE, 1, 135,NAME)
GOTO 450

41:)0 CONTINUE
FOUND=.FALSE.
GOTO 440

450 CONTINUE
IF(.NOT.(NEXT.NE.0))G0TO 470

A-ll

CALL TEST0l(LABEL,LINE, 2, 11~,NAME)

GOTO 470
480 CONTINUE

FOUND=.TRUE.
GOTO 440

470 CONTINUE
IF(LABEL.EQ.0)CALL ERR001(l14,NAME)
GOT0(4n0,480) ,LABEL

440 CONTINUE
RETURN
END

INTEGER FUNCTION COMPARE(TYPE,Sl,S2)
INTEGER TYPE (1)
INTEGERINTCMP,STRCMP
GOTO (l , 2) , TYPE (l)

l CONTINUE
COMPARE=INTCMP(TYPE,Sl,S2)
GOTO 999

?. CONTINUE
COMPARE=STRCMP(TYPE,Sl,S2)
GOTO 999

999 RETURN
END

SUBROUTINE ASSIGN(TYPE,Sl,S2)
INTEGER TYPE (1)
GOTO(l,?.) ,TYPE(l)

1 CONTINUE
CALL INTASGN(TYPE,Sl,S2)
GOTO 999

2 CONTINUE
CALL STRCPY(TYPE,Sl,S2)
GOTO 999

999 RETURN
END

A-1?.

PROGRAMTEST
INTEGERTII(82)
INTEGERTIS (l (,)2)
INTEGERTSI((,)?.)
INTEGERTSS (:~ 1'1 :n
INTEGERI (l) ,,J (l)
INTEGERS1(1)
INTEGERS2(5)
INTEGERS3(7)
LOGICALOK
INTEGERLOCAL(94) ,NAME(4)
DATA LOCAL/3,11,12,20,1,20,1,2,3,4,1,1,3,11,12,20,1,20,

X1,1'1,7,R,l,2,7,5,1,5,1,1,3,11,18,1~,1,10,3,4,5,1'1,2,7,3,1

X,3,1,1,1,3,11,18,30,1,30,3,10,11,12,2,7,3,1,3,1,1,2,7,7
X,1,7,1,1,1,2,7,3,1,3,1,1,2,7,5,1,5,1,1,2,7,7,1,7,1,1/

DATA NAME/"T","E","S","T"/
TII (2+DOPE1 (LOCAL (5), I (l)) *4+0+1) =1
TSI (2+DOPE1 (LOCAL (35), I (1)) *~+0+DOPEl (LOCAL (4) ,1) *TYPE (

X6)+1)=1
TSS(?.+DOPE1(LOCAL(53) ,I(1))*12+3+DOPE1(LOCAL(4) ,J(1))*T

XYPE(I1)+1)=l
CALLTRADD (LOCAL (1) ,TII (l), I (l) ,,J (1), OK)
CALLTRADD(LOCALf49) ,TSS(1) ,S1(1) ,S3(l) ,OK)
RETURN
END

Appendix 8

The Mytran symbol table is stored in a linked

structure with variable length entries and links in two

directions, called "down" and "across". Different entries

contain different types of information. The following

entries are used to store FORM descriptions.

FormNameEntry contains 1) Name of FORM, 2) number of words

in dope vector, 3) FORM number. It is joined across to the

next FormNameEntry and down to the HeaderEntry.

HeaderEntry contains 1) number of parameters, and is

joined across to the DummyParmEntries and down to the

StructureEntry.

DummyParmEntry contains 1) the parameter name, 2) the

parameter type (FORM or INTEGER) and is joined across to

the next DummyParmEntry.

StructureEntry contains 1) the type of structure (Record,

Array, Fortran, Form, Parm or Current), 2) the size of the

structure if it is known, 3) some information depending on

the type of structure. This is the number of fields in a

record, the number of ranges in an array, the type of a

8-l

B-2

fortran scalar, the number of a parm or the pointer to the

current form. The type of entry to which it is joined is

also determined by the type of structure. A record entry

is joined across to its FieldEntries. An array entry is

joined across to its base StructureEntry, and down to its

RangeEntries. A form entry is joined down to its

FormSpecEntry. A parm entry is joined across to its parm

name.

FieldEntry contains 1) the field name, 2) the offset to

the field if it is known. It is joined across to the next

FieldEntry and down to its StructureEntry.

RangeEntry contains 1) the type of entry which may be a

value or a parameter, 2) the value or parameter number.

It is joined down to the next RangeEntry.

FormSpecEntry contains 1) the name of the FORM, 2) the

starting address in the dope vector, 3) a pointer to the

FORM. It is joined across to its ActualParmEntries.

ActualParmEntry contains 1) the type of entry (FORM or

INTEGER) and is joined across to the next ActualParmEntry

and down to its value or FormSpecEntry.

B-3

ImportEntry contains 1) the number of FORM parameters

which import something. It is joined across to its

ImportFormEntries and down to the ExportEntry.

ImportFormEntry contains 1) the FORM parameter name,

2) the number of imported items, 3) the parameter number.

It is joined across to the next ImportFormEntry and down

to its ImportitemEntries.

ImportitemEntry contains 1) the type of imported item

(Subroutine, or Function) and is joined across to its

ImportSubEntry and down to the next ImportitemEntry.

ImportSubEntry contains 1) the subroutine or function

name, 2) the number of parameters and if it is a function,

is joined down to its type.

ExportEntry contains 1) the number of exported items and

is joined across to its ExportitemEntries.

ExportitemEntry contains 1) its local name, 2) its alias

name and is joined across to the next ExportitemEntry.

The following entries are used to store variable

declarations and their expanded type descriptions.

VarNameEntry contains l) the variable name, 2) the address

of the start of its dope vector. It is joined across to

the next VarNameEntry and down to its StructureEntry.

StructureEntry is the same as the StructureEntry for a

FORM except that if the structure is the current form, it

is joined down to an expanded StructureEntry for the

current form.

The FieldEntry, FormSpecEntry and ActualParmEntry are all

the same as for a FORM except that where sizes and offsets

are stored, they are now either known values or addresses

in the dope vector.

RangeEntry contains 1' the starting address in the dope

vector of the range list.

The rest of this appendix contains some graphic

representations of the symbol tables for some of the FORMs

and types described in the example in Appendix A.

8-4

8-5

FORTRAN
STRING

ASSIGN 2

Symbol table for INTFORM and STRING FORMs.

8-~

Symbol table for TREE FORM, part i.

8--7

SUBROUTINE ASSIGN ?.

Symbol table for TREE FORM, part ii.

B-8

TRUNK ?

Symbol table for type of TII.

B-9

TRUNK 2

FORTRAN 1 INTEGER

Symbol table for type of TIS.

Appendix C

This appendix defines the syntax of Mytran. Any

non-terminal ending in "Name" is equivalent to the

non-terminal Name which is a letter followed by any number

of letters or digits. The non-terminals Lower, Upper and

Constant are equivalent to IntegerConstant which is a

digit followed by any number of digits.

C-1

C-2

Forms

Import/Export Procedures

FormHead

FormParmName

FormParmType

FormParmType

INTEGER

c-.3

Structure

FieldList

RangeList

FormSpec

C-4

ActualFormParm

Constant

Import/Export

Import ~--

_ __..,.L~GMPOR~ormParmNam~mportLisV)) ""

ImportList

------~ AliasName

Pa rmLi st

Pa rmName ,___--,..,...

Export

C-5

Procedures

cGrocHea~eclarationr8)

ProcHe ad

ProcName

Declarations

Structure

Body

C-6

Statement

Assign

--"'i Reference Expression r-~~

If

Condition

Loop

C-7

Call

Reference,___..,..

Condition

Expression

Expression

SimpleExpression

Term

C-8

Factor

Reference

Subscript

Field

C-9

ParameterList

-r--~ Expression 1----r--~

AddOp

MulOp

Appendix D

This appendix contains some of the code for the

Mytran preprocessor. The routines which parse and

generate the symbol table for FORMs, the routines which

expand a form specification into a type, and the routines

which generate access expressions from Mytran variable

references, are included. The routines which parse and

generate code for statements and expressions and all of

the service routines are not included.

D-1

c

SUBROUTINE FORM (OK)
IMPLICIT INTEGER (A-Z)
LOGICAL OK
COMMON /T/ TOKEN

D-2

COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
COMMON /CURFRM/ FRMPTR, HDPTR, STRPTR, IMPPTR, EXPPTR
COMMON /SCAN/ FORMM, DECL
COMMON /FNUM/ FNUM
LOGICAL FORMM, DECL
INTEGER T (3)

C Set LOCAL address to 0 and allocate a space for the
C Form Number.
c

c

WRITE (3,*) "Enter FORM"
FORMM = .TRUE.; DECL = .FALSE.
WRITE (6 ,*) " In FORM"
CALL GETRACE
IF (TOKEN .NE. @FORM) OK = .FALSE.

(TOKEN .EQ. @FORM)
CALL SETLOC
ADDR = NEWLOC (1)

C Scan the header, structure, import/export lists and
C procedures of a form and join them together in the symbol table.
c

c

CALL FORMHD (FRMPTR,HDPTR,OK)
IF (• NOT. OK)

(OK)
CALL JOINLL (FRMLST, FRMPTR, @ACROSS)
FRMLST = FRMPTR
CALL NEWLL (DUMPTR,l)
CALL JOINLL (HDPTR, DUMPTR, @DOWN)
CALL STRUCT (STRPTR, OK)
CALL JOINLL (DUMPTR, STRPTR, @ACROSS)

C Find out how many words in LOCAL were used by the form,
C and store it in the table.
c

CALL GETLL (FRMPTR,T)
T (2) = CURLOC (X); T (3) = FNUM
CALL STORLL (FRMPTR,T)
IF (. NOT. OK)

(OK) CALL IMPEXP (IMPPTR, OK)
IF (.NOT. OK)

(OK)
CALL JOINLL (DUMPTR, IMPPTR, @DOWN)
CALL SNAPLL
CALL SNAPAS

c

FI
FI

FI
FI

D-3

CALL PROC (OK)
CALL RSETLL; CALL RSETAS
VARLST = VARTAB
IF (.NOT. OK)

FI

(OK)
IF (TOKEN .EQ. @ENDFORM) CALL GETTKN

(TOKEN .NE. @ENDFORM) OK = .FALSE.
FI

WRITE (3,*) "Leave FORM"
RETURN
END

SUBROUTINE FORMHD (FRMPTR,HDPTR,OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (2?.)
INTEGER T (2)
LOGICAL OK

C A form header is a name followed by 0 or more parameters.
C Store the name in the form entry. The form entry points down
C to the header enter. The header entry contains the number of
C parameters and points across to the list of parameter entries.
c

WRITE (3,*) "Enter FORMHD"
CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
CALL NEWLL (FRMPTR, 3)
CALL ADDAS (FRMNAM, TKNSTR)
T (1) = FRMNAM
CALL STORLL (FRMPTR, T)
CALL NEWLL (HDPTR, 1)
CALL JOINLL (FRMPTR, HDPTR, @DOWN)
PRMCNT = 0
CALL GETTKN
IF (TOKEN .NE. @LEFTP)

(TOKEN .EQ. @LEFTP)
LOOP GIVEN LSTPTR = HDPTR

DO CALL FRMPRM (PRMPTR, OK)
IF (.NOT. OK)

(OK) CALL GETTKN
CALL JOINLL (LSTPTR, PRMPTR, @ACROSS)
LSTPTR = PRMPTR

c

FI

FI

D-4

PRMCNT = PRMCNT + 1
FI

WHILE (OK .AND. TOKEN .EQ. @COMMA)
END LOOP
IF (OK .AND. TOKEN .EQ. @RIGHTP) CALL GETTKN

(.NOT. OK .OR. TOKEN .NE. @RIGHTP) OK= .FALSE.
FI

T (1) = PRMCNT
CALL STORLL (HDPTR, T)
IF (.NOT. OK)

(OK) CALL SKPEOS
FI

WRITE (3,*) "Leave FORMHD"
RETURN
END

SUBROUTINE FRMPRM (PRMPTR,OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
INTEGER T (2)
LOGICAL OK

C A form dummy parameter is a name followed by a colon, followed
C by a parameter type. Parameters may be either forms or integers.
C Put the name and type in the symbol table in a
C Parameter Entry.
c

WRITE (3,*) "Enter FRMPRM"
CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
ADDR = NEWLOC (1)
CALL NEWLL (PRMPTR, 2)
CALL ADDAS (PRMNAM, TKNSTR)
T (1) = PRMNAM
CALL GETTKN
IF (TOKEN .NE. @COLON) OK = .FALSE.

(TOKEN .EQ. @COLON)

FI

CALL GETTKN
IF (TOKEN.NE.@FORM .AND. TOKEN.NE.@INTEGER)

OK = .FALSE.

FI

(TOKEN.EQ.@FORM .OR. TOKEN.EQ.@INTEGER)
T (2) = TOKEN
CALL STORLL (PRMPTR, T)

c

D-5

FI
WRITE (3,*) "Leave FRMPRM"
RETURN
END

SUBROUTINE STRUCT (STRPTR, OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /T/ TOKEN
LOGICAL OK, EMPTY
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
COMMON /S/ STRSET (10), STTSET (12), EXPSET (10)
LOGICAL SETMEM
WRITE (3, *) "Enter STRUCT"

C A structure definition has a recursive syntax. This is the
C driver routine for the structure parsing routines. When a
C recursive call is to be made, the calling routine pushes the
C name of the routine to be called onto the stack and returns
C to the driver, which looks at the stack and calls the
C appropriate routine. When a return is to be made, the routine
C removes its own entry from the stack and sets the direction
C flag to UP.
c

LOOP
GIVEN CALL PUSH (@STRUCTURE,l); OK= .TRUE.

DOWN = .TRUE.; UP = .FALSE.
LOOPBY CALL LOOKAT (TOP, 1, EMPTY)
WHILE (.NOT. EMPTY) (OK)

DO
(SETMEM (STRSET, TOP))

IF
(DOWN)

IF

FI
(UP)

IF

(TOP .EQ. @STRUCTURE) CALL STRST (OK)
(TOP .EQ. @RECORD) CALL RECST (OK)
(TOP .EQ. @ARRAY) CALL ARRST (OK)
(TOP .EQ. @FIELDEF) CALL FLDFST (OK)
(TOP .EQ. @FORM) CALL FORMST (OK)
(TOP .EQ. @PARM) CALL PARMST (OK)

(TOP .EQ. @STRUCTURE) CALL STRND (OK)
(TOP .EQ. @RECORD) CALL RECND (OK)
(TOP .EQ. @ARRAY) CALL ARRND (OK)
(TOP .EQ. @FIELDEF) CALL FLDFND (OK)
(TOP .EQ. @FORM) CALL FORMND (OK)

c

D-11

(TOP .EQ. @PARM) CALL PARMND (OK)

FI
END LOOP

FI

(TOP .EQ. @EXPAND) CALL EXPAND (@FORM)
CALL POP (TOP,LEN)

STRPTR = CURPTR
WRITE (3,*) "Leave STRUCT"
RETURN
END

SUBROUTINE STRST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /CURPTR/ CURPTR
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP
COMMON /F/ FORSET (10)
COMMON /DIRECT/ UP, DOWN
COMMON /TS/ TKNSTR (22)
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
COMMON /SCAN/ FORM, DECL
LOGICAL FORM, DECL
INTEGER NAM (2), STR (4), S (2), T (4)
LOGICAL OK, SETMEM, FOUND, UP, DOWN
WRITE (3,*) "Enter STRST"

C A structure may be a Record, an Array, a Fortran scalar, or a
C Form. If it is a Form it may be the Current Form, a Parameter
C to the Current Form, or a previous Form.
c

c

CALL NEWLL (PTR, 4)
CURPTR = PTR
IF

C If it is a Record, make a Record Entry in the symbol table and
C make a recursive call to the record parsing routine.
c

c

(TOKEN .EQ. @RECORD)
S (1) = @RECORD; S (2) = PTR
CALL PUSH (S, 2)
T (1) = @RECORD; T (2) = @KNOWN; T (3) = 0; T (4) = 0
CALL STORLL (PTR, T)

C If it is a Array, make a Array Entry in the symbol table and
C make a recursive call to the array parsing routine.
c

(TOKEN .EQ. @ARRAY)
S (1) = @ARRAY; S (2) = PTR

c

D-7

CALL PUSH (S, 2)
T (1) = @ARRAY; T (2) = @KNOWN; T (3) = 0; T (4) = 0
CALL STORLL (PTR, T)

C If it is a Fortran scalar, make a Fortran Entry and since there
C can be no substructure, make a recursive return.
c

c

(SETMEM (FORSET, TOKEN))
T (1) = @FORTRAN; T (2) = @KNOWN; T (3) = 1; T (4) = TOKEN
CURSIZ = 1; CURKNO = @KNOWN
CALL STORLL (PTR, T)
CALL GETTKN
DOWN= .FALSE.; UP= .TRUE.

(TOKEN .EQ. @NAME)
CALL GETLL (CURNAM,NAM)
RESULT= ASCMP (TKNSTR,NAM (1))

C If it is the current form, make a current form structure
C entry. It must have no parameters.
C EXPAND will expand it into a type description.
c

c

IF (RESULT .EQ. @EQUAL)
T (1) = @CURRENT; T (2) = @UNKNOWN
T (3) = 0; T (4) = 0
CALL STORLL (PTR,T)
CALL PUSH (@EXPAND,l)
CALL EXPAND (@CURRENT)
CALL POP (S,LEN)
CALL GETTKN
DOWN = .FALSE.; UP = .TRUE.

(RESULT .NE. @EQUAL)
CALL SRCHPM (TKNSTR,NUM,PRMPTR,FOUND)

C If it is a parameter to the current form, make
C structure entry. It must have no parameters.
C parameter name with it for future searches.

a parameter form
Keep the

c
IF (FOUND)

T (1) = @PARM; T (2) = @UNKNOWN
T (3) = 0; T (4) = NUM
CALL STORLL (PTR,T)
CALL NEWLL (PNMPTR,l)
CALL ADDAS (NAME,TKNSTR)
T (1) = NAME
CALL STORLL (PNMPTR,T)
CALL JOINLL (PTR,PNMPTR,@ACROSS)
CALL GETTKN
CURSIZ = 0; CURKNO = @UNKNOWN
DOWN= .FALSE.; UP= .TRUE.

D-8

(.NOT. FOUND)
c
C If it is a form, it must have been previously defined. Look
C it up and get its structure entry. Use the size from this to
C make a Form Spec Structure entry.

c

CALL SRCHLL (@ACROSS,TKNSTR,FRMTAB,FRMPTR,FOUND)
IF (.NOT. FOUND) OK= .FALSE.

(FOUND)
STRPTR = FRMPTR
CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@ACROSS)
CALL GETLL (STRPTR,STR}
STRKNO = STR (2)
STRSIZ = STR (3)
T (1) = @FORM; T (2) = STRKNO
T (3} = STRSIZ; T (4) = 0
CALL STORLL (PTR,T)

C If this structure description is part of a variable declaration
C rather than part of a Form structure, push a recursive call to
C EXPAND, to be made after all the Form parameters have been parsed.
c

FI
FI

FI

IF (DECL) CALL PUSH (@EXPAND,l)
(FORM)

FI
S (1) =@FORM; S (2) = PTR
CALL PUSH (S,2)

(TOKEN .NE. @RECORD .AND. TOKEN .NE. @ARRAY .AND.
X TOKEN .NE. @NAME) OK = .FALSE.

FI
RETURN
END

SUBROUTINE STRND (OK)
IMPLICIT INTEGER (A-Z)
LOGICAL OK
WRITE (3,*) "Enter STRND"
CALL POP (TOP,LEN)
RETURN
END

c

SUBROUTINE ARRST (OK)
IMPLICIT INTEGER (A-Z)

D-9

C An array definition is a list of ranges, followed by a base
C structure. The range list is not recursively defined,
C so the parsing routine for it may be called directly.
C Store the range size in the Array Entry, temporarily.
C It will be used later to calculate the size of the array.
C Make a recursive call to parse the base structure.
c

c

COMMON /T/ TOKEN
COMMON /CURPTR/ CURPTR
INTEGER T (4)
LOGICAL OK
WRITE (3,*) "Enter ARRST"
CALL RANGE (CURPTR,NUM,K,RNGSIZ,OK)
IF (• NOT. OK)

(OK)
CALL GETLL (CURPTR, T)
T (2) = K; T (3) = RNGSIZ; T (4) = NUM
CALL STORLL (CURPTR, T)
CALL GETTKN
IF (TOKEN .NE. @OF) OK = .FALSE.

(TOKEN .EQ. @OF)

FI
FI
RETURN
END

CALL PUSH (@STRUCTURE,l)
CALL GETTKN

SUBROUTINE ARRND (OK)
IMPLICIT INTEGER (A-Z)

C The base structure of the array has been scanned and its
C structure is pointed at by CURPTR. Its size is in CURSIZ.
C Join the base structure to the array entry in the table.
C The range size is in the array entry. Multiply it by the
C base size to get the total array size. If either the range
C size or the base size is unknown at scan time, the array size
C will be unknown.
c

COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
INTEGER S (2), T (4)
LOGICAL OK
WRITE (3,*) "Enter ARRND"
CALL POP (S,LEN)
ARRPTR = S (2)

c

D-l0

CALL JOINLL (ARRPTR, CURPTR, @ACROSS)
CURPTR = ARRPTR
CALL GETLL (ARRPTR,T)
IF (T (2) .EQ. @KNOWN .AND. CURKNO .EQ. @KNOWN)

RANGE = T (3)
BASE = CURSIZ
CURSIZ = RANGE * BASE
T (3) = BASE

(T (2) .EQ. @UNKNOWN .OR. CURKNO .EQ. @UNKNOWN)
IF (CURKNO .EQ. @UNKNOWN)

FI

FI

T (3) = NEWLOC (1); T (2) =@UNKNOWN
(CURKNO .EQ. @KNOWN)

T (3) = CURSIZ; T (2) = @KNOWN

CURSIZ = 0; CURKNO = @UNKNOWN

CALL STORLL (ARRPTR,T)
RETURN
END

SUBROUTINE RANGE (PTR, NUM, K, RNGSIZ, OK)
IMPLICIT INTEGER (A-Z)

C A range list is a series of range entries separated by commas,
C enclosed in parentheses. A range entry is a lower and upper
C limit, separated by a colon, or just an upper limit, in which
C case the lower is assumed to be 1. Limits may be integers or
C form parameters. If any of the limits in a range list are
C parameters, the range size cannot be calculated.
c

COMMON /T/ TOKEN
COMMON /TV/ TKNVAL
COMMON /TS/ TKNSTR (22)
COMMON /SCAN/ FORM, DECL
LOGICAL FORM, DECL, FOUND
INTEGER T (2)
LOGICAL OK
WRITE (3,*) "Enter RANGE"
CALL GETTKN
IF (TOKEN .NE. @LEFTP) OK = .FALSE.

(TOKEN .EQ. @LEFTP)
LOOP

GIVEN
LSTPTR = PTR; NUM = 0; RNGSIZ = 1; K = @KNOWN

DO
CALL GETTKN
IF (TOKEN .EQ. @NUMBER)

Rl = @NUMBER; Vl = TKNVAL
CALL GETTKN

c

FI

D-11

(TOKEN .EQ. @NAME)
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND)
R1 = @NAME; V1 = PRMNUM
CALL GETTKN

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME)
OK = .FALSE.

IF (• NOT. OK)
(OK)

IF (TOKEN .NE. @COLON)
R2 = R1; V2 = V1

FI

R1 = @NUMBER; Vl = 1
(TOKEN .EQ. @COLON)

CALL GETTKN
IF (TOKEN .EQ. @NUMBER)

FI

R2 = @NUMBER; V2 = TKNVAL
CALL GETTKN

(TOKEN .EQ. @NAME)
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND)
R2 = @NAME; V2 = PRMNUM
CALL GETTKN

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME)
OK = .FALSE.

IF (.NOT. OK)
(OK)

C If this range list is part of a Form, then each upper and lower
C bound gets stored in a Range Entry in the symbol table.
C Storage is allocated in the dope vector and the starting address
C of the range list is stored in the symbol table.
c

IF (FORM)
ADDR = NEWLOC (1)
IF (NUM .EQ. 0)

CALL NEWLL (RNGPTR,2)
T (1) = @KNOWN
T (2) = ADDR
CALL STORLL (RNGPTR,T)
CALL JOINLL (LSTPTR,RNGPTR,@DOWN)
LSTPTR = RNGPTR

(NUM .NE. 0)

c

D-12

FI
CALL NEWLL (R1PTR,2)
T (1) = R1; T (2) = V1
CALL STORLL (R1PTR,T)
CALL JOINLL (LSTPTR,R1PTR,@DOWN)
CALL NEWLL (R2PTR,2)
T (1) = R2; T (2) = V2
ADDR = NEWLOC (1)
CALL STORLL (R2PTR,T)
CALL JOINLL (RlPTR,R2PTR,@DOWN)
LSTPTR = R2PTR

C If the range list is part of a declaration, then the values are
C put in the dope vector.
c

FI
c

(DECL)
ADDR = NEWLOC (1)
CALL PUTLOC (ADDR,Vl)
IF (NUM .EQ. 0)

FI

CALL NEWLL (RNGPTR,2)
T (1) = @KNOWN;T (2) = ADDR
CALL STORLL (RNGPTR,T)
CALL JOINLL (LSTPTR,RNGPTR,@DOWN)

(NUM .NE. 0)

ADDR = NEWLOC (1)
CALL PUTLOC (ADDR,V2)

C If both bounds are known, check them and calculate the range size.
c

FI
FI

IF (Rl .EQ. @NUMBER .AND. R2 .EQ. @NUMBER)
IF (V2 .LT. Vl) OK = .FALSE.

FI

FI

(V2 .GE. Vl)
IF (K .EQ. @UNKNOWN)

(K .EQ. @KNOWN)
RNGSIZ = RNGSIZ * (V2-Vl+l)

FI

(Rl .EQ. @NAME .OR. R2 .EQ. @NAME)
RNGSIZ = 0; K = @UNKNOWN

NUM = NUM + 1
WHILE (OK .AND. TOKEN .EQ. @COMMA)

ENDLOOP
IF (TOKEN .NE. @RIGHTP) OK = .FALSE.

(TOKEN .EQ. @RIGHTP)

c

FI
FI
RETURN
END

SUBROUTINE RECST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
INTEGER S (5)
LOGICAL OK

D-13

WRITE (3, *) "Enter RECST"

C A record description is a list of field descriptions.
c

c

S (1) = @FIELDEF; S (2) = CURPTR; S (3) = CURPTR
s (4) = 0; s (5) = 0
CALL PUSH (S,5)
RETURN
END

SUBROUTINE RECND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
INTEGER S (5), REC (4)
LOGICAL OK
WRITE (3,*) "Enter RECND"

C When a record definition is completed, put its size in CURSIZ.
c

CALL POP (S,LEN)
PTR = S (2)
CALL GETLL (PTR, REC)
IF (REC (2) .EQ. @UNKNOWN)

FI

CURSIZ = 0; CURKNO = @UNKNOWN
(REC (2) • EQ. @KNOWN)

CURSIZ = REC (3); CURKNO =@KNOWN

CURPTR = S (2)
IF (TOKEN .NE. @ENDREC) OK = .FALSE.

(TOKEN .EQ. @ENDREC) CALL GETTKN
FI
RETURN
END

c

SUBROUTINE FLDFST (OK)
IMPLICIT INTEGER (A-Z)

D-14

C A field definition is a list of names, separated by commas,
C followed by a colon, and then a structure.
c

c

COMMON /T/ TOKEN
COMMON /CURPTR/ CURPTR
INTEGER S (5)
LOGICAL OK
WRITE (3,*) "Enter FLDFST"
CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
LAST = CURPTR
CALL NAMLST (FRST, LAST, NUM, OK)
CALL POP (S, LEN)
S (3) = LAST; S (4) = FRST; S (5) =
CALL PUSH (S, 5)
IF (.NOT. OK)

NUM

(OK)
IF (TOKEN

(TOKEN
CALL
CALL

.NE. @COLON) OK = .FALSE.

.EQ. @COLON)

FI
FI
RETURN
END

FI

GETTKN
PUSH (@STRUCTURE,!)

SUBROUTINE FLDFND (OK)
IMPLICIT INTEGER (A-Z)

C The structure for the current field or fields is pointed at by
C CURPTR. Its size is in CURSIZ. Join the structure to each
C field entry. The offset for a field is the current record
C size. Accumulate the record size by adding the size of each
C field to it.
c

COMMON /T/ TOKEN
COMMON /DIRECT/ UP, DOWN
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
INTEGER S (5), T (4), FLD (3)
LOGICAL UP, DOWN
LOGIC~L EOSTKN
LOGICAL OK
WRITE (3,*) "Enter FLDFND"

c

D-15

CALL POP (S,LEN)
RECPTR = S (2); LAST= S (3); FRST = S (4)
NUM = S (5)
CALL GETLL (RECPTR,T)
NUMFLD = T (4)
RECSIZ = T (3); RECKNO = T (2)
STRPTR = CURPTR
STRSIZ = CURSIZ; STRKNO = CURKNO
LOOP GIVEN FLDPTR = FRST

WHILE (FLDPTR .NE. 0)
DO

CALL JOINLL (FLDPTR,STRPTR,@DOWN)
CALL GETLL (FLDPTR,FLD)
IF (RECKNO .EQ. @UNKNOWN)

FI

FLD (2) = @UNKNOWN
FLD (3) = NEWLOC (1)

(RECKNO .EQ. @KNOWN)
FLD (2) = @KNOWN
FLD (3) = RECSIZ

CALL STORLL (FLDPTR,FLD)
IF (RECKNO .EQ. @KNOWN .AND. STRKNO .EQ. @KNOWN)

RECSIZ = RECSIZ + STRSIZ

FI

(RECKNO .EQ. @UNKNOWN .OR. STRKNO .EQ. @UNKNOWN)
RECSIZ = 0; RECKNO = @UNKNOWN

NUMFLD = NUMFLD + 1
LOOPBY CALL NEXTLL (FLDPTR,@ACROSS)

END LOOP
T (2) = RECKNO; T (3) = RECSIZ; T (4) = NUMFLD
CALL STORLL (RECPTR,T)
CURSIZ = RECSIZ; CURKNO = RECKNO
IF (.NOT. EOSTKN (X))

(EOSTKN (X))
CALL SKPEOS

C If the next token is a name, then there is another field
C definition. Get its name list and make a recursive call to get
C their structure.
c

IF (TOKEN .NE. @NAME)
(TOKEN .EQ. @NAME)

DOWN= .TRUE.; UP= .FALSE.
CALL NAMLST (FRST,LAST,NUM,OK)
S (1) = @FIELDEF; S (2) = RECPTR; S (3) = LAST
S (4) = FRST; S (5) = NUM
CALL PUSH (S,5)
IF (• NOT. OK)

(OK)

c

FI
FI
RETURN
END

FI

D-16

IF (TOKEN .NE. @COLON) OK = .FALSE.
(TOKEN .EQ. @COLON)

CALL GETTKN
CALL PUSH (@STRUCTURE,l)

FI

SUBROUTINE NAMLST (FRST,LAST,NUM,OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMI'10N /TS/ TKNSTR (22)
INTEGER T (3)
LOGICAL OK
WRITE (3,*) 11 Enter NAMLST 11

C A name list is a list of names separated by commas. The names
C are stored in the symbol table and joined together.
c

LOOP
GIVEN NUM = 0; CALL NEWLL (PTR,3); FRST = PTR
DO

IF (TOKEN .NE. @NAME) OK = .FALSE.

FI

(TOKEN .EQ. @NAME)
CALL ADDAS (NAME, TKNSTR)
T (1) = NAME; T (2) = @KNOWN; T (3) = 0
CALL STORLL (PTR, T)
CALL JOINLL (LAST, PTR, @ACROSS)
LAST = PTR
NUM = NUM + 1
CALL GETTKN

WHILE (OK .AND. TOKEN .EQ. @COMMA)
LOOPBY CALL GETTKN; CALL NEWLL (PTR, 3)

END LOOP
WRITE (3,*) 11 Leave NAMLST 11

RETURN
END

D-17

SUBROUTINE FORMST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN

N /TS/ TKNSTR (22)
COMMON /CURPTR/ CURPTR
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
INTEGER T (4), S (3), FRM (3)
LOGICAL OK, FOUND
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
WRITE (3,*) "Enter FORMST"
CALL POP (S,LEN); PTR = S (2); CALL PUSH (S,LEN)
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
C Get the number of words needed in LOCAL, from the Form Entry,
C and allocate then. Put the form name, the LOCAL address,
C and the form pointer into the Form Spec Entry.
C If it has parameters, make a recursive call to parse them.
c

CALL NEWLL (SPCPTR,3)
CALL ADDAS (NAME,TKNSTR)
CALL SRCHLL (@ACROSS,TKNSTR,FRMTAB,FRMPTR,FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND)
T (1) = NAME
CALL GETLL (FRMPTR,FRM)
LOCSIZ = FRM (2)
ADDR = NEWLOC (LOCSIZ)
T (2) = ADDR; T (3) = FRMPTR
CALL STORLL (SPCPTR,T)
CALL JOINLL (PTR,SPCPTR,@DOWN)
CALL GETTKN
IF (TOKEN .EQ. @LEFTP)

FI

S (1) = @PARM; S (2) = SPCPTR
S (1) = SPCPTR
CALL PUSH (S,3)

(TOKEN .NE. @LEFTP)
DOWN= .FALSE.; UP = .TRUE.

FI
RETURN
END

c

SUBROUTINE FORMND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR

D-18

COMMON /CURSIZ/ CURSIZ, CURKNO
INTEGER S (2) , SPEC (4)
LOGICAL OK
WRITE (3,*) "Enter FORMND"

C When a Form is completely parsed, put its size in CURSIZ.
c

c

CALL POP (S,LEN)
CURPTR = S (2)
CALL GETLL (CURPTR,SPEC)
CURSIZ =SPEC (3); CURKNO =SPEC (2)
RETURN
END

SUBROUTINE PARMST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TV/ TKNVAL
COMMON /CURPTR/ CURPTR
INTEGER S (3) , T (1)
LOGICAL OK
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
WRITE (3,*) "Enter PARMST"

C A parameter to a Form may be an integer constant or a Form
C Specification. If it is an integer, store its value in the
C symbol table.
c

c

CALL GETTKN
CALL NEWLL (PRMPTR, 1)
CALL POP (S, LEN)
LSTPTR = S (3)
CALL JOINLL (LSTPTR, PRMPTR, @ACROSS)
S (3) = PRMPTR
CALL PUSH (S, 3)
IF (TOKEN .EQ. @NUMBER)

T (1) = @INTEGER
CALL STORLL (PRMPTR, T)
CALL NEWLL (VALPTR, 1)
T (1) = TKNVAL
CALL STORLL (VALPTR, T)
CALL JOINLL (PRMPTR, VALPTR, @DOWN)
DOWN= .FALSE.; UP= .TRUE.
CALL GETTKN

D-19

C If it is a Form Spec, make a recursive call to parse it.
c

c

(TOKEN .EQ. @NAME)
T (1) = @FORM
CALL STORLL (PRMPTR, T)
CURPTR = PRMPTR
S (1) = @FORM; S (2) = PRMPTR
CALL PUSH (8,2)

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME) OK = .FALSE.
FI
RETURN
END

SUBROUTINE PARMND (OK)
IMPLICIT INTEGER (A-Z)
CO.MMON /T/ TOKEN
INTEGER S (3), T (2)
LOGICAL OK
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
WRITE (3 ,*) "Enter PARMND"

C If a parameter is followed by a comma, there is another
C parameter. If it is followed by a right paren, then the
C parm list is complete.
c

CALL POP (S,LEN)
IF (TOKEN .EQ. @COMMA)

FI

DOWN= .TRUE.; UP= .FALSE.
CALL PUSH (S, 3)

(TOKEN .EQ. @RIGHTP)
CALL GETTKN

(TOKEN .NE. @COMMA .AND. TOKEN .NE. @RIGHTP) OK = .FALSE.

RETURN
END

SUBROUTINE IMPEXP (IMPPTR, OK)
IMPLICIT INTEGER (A-Z)
LOGICAL OK
WRITE (3,*) "Enter IMPEXP"
CALL IMPORT (IMPPTR, OK)
IF (.NOT. OK)

(OK) CALL EXPORT (EXPPTR, OK)
FI
CALL JOINLL (IMPPTR, EXPPTR, @DOWN)
WRITE (3,*) "Leave IMPEXP"
RETURN
END

c

D-20

SUBROUTINE IMPORT (IMPPTR, OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
INTEGER T (2)
LOGICAL OK, FOUND
WRITE (3, *) n Enter IMPORT ..

C The Import section is a list of parameters to the current form
C each followed by a list of subroutines and functions which
C it must support. The parameter name and number are stored in
C the symbol table and its import list is joined to it.
c

CALL NEWLL (IMPPTR, 1); FRMCTR = 0
IF (TOKEN .NE. @IMPORT)

FI

(TOKEN .EQ. @IMPORT)
WRITE (6,*) nin IMPORTn
CALL GETRACE
LOOP

GIVEN CALL GETTKN; LAST = IMPPTR
WHILE (TOKEN .EQ. @FROM)

DO
(OK)

CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND)
CALL NEWLL (FRMPTR, 3)
CALL JOINLL (LAST, FRMPTR, @ACROSS)
LAST = FRMPTR
CALL ADDAS (NAME, TKNSTR)
CALL IMPLST (FRMPTR, NUM, OK)
T (1) = NAME; T (2) = NUM; T (3) = PRMNUM
CALL STORLL (FRMPTR, T)
FRMCTR = FRMCTR + 1

FI
ENDLOOP

T (1) = FRMCTR
CALL STORLL (IMPPTR, T)
WRITE (3,*) .. Leave IMPORT ..
RETURN
END

c

D-21

SUBROUTINE IMPLST (FRMPTR, NUM, OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
COMMON /F/ FORSET (10)
INTEGER T (2)
LOGICAL OK
LOGICAL EOSTKN, SETMEM
WRITE (3, *) "Enter IMPLST"

C An import list is a list of subroutine and function names and
C parameter lists, and for functions, result types. The name
C and type of each imported item is kept in the symbol table.
C In addition a separate matrix of imports and the forms that
C export them is kept for use in generating alias caller routines.
C NEWIMP and SETYPE are used to set up this matrix.
c

LOOP
GIVEN CALL GETTKN; LAST = FRMPTR; NUM = 0
WHILE (TOKEN .EQ. 0NAME)

DO
(OK)

CALL NEWIMP (TKNSTR)
CALL ADDAS (NAME, TKNSTR)
CALL NEWLL {ITMPTR, 1)
CALL JOINLL (LAST, ITMPTR, @DOWN)
LAST = ITMPTR
T (1) = NAME; CALL STORLL (ITMPTR, T)
CALL NEWLL (SUBPTR, 2)
CALL JOINLL (ITMPTR, SUBPTR, @ACROSS)
CALL GETTKN
IF

(TOKEN .EQ. @LEFTP)
CALL PRMLST (SUBPTR, NUMM, OK)
IF (• NOT. OK)

(OK)
IF (TOKEN .NE. ~RIGHTP) OK = .FALSE.

(TOKEN .EQ. @RIGHTP)
CALL GETTKN
IF (TOKEN .NE. @COLON)

CALL SETYPE (@SUBROUTINE)
T (1) = @SUBROUTINE
T (2) = NUMM
CALL STORLL (SUBPTR, T)

(TOKEN .EQ. @COLON)
T (1) = @FUNCTION
T (2) = NUMM
CALL STORLL (SUBPTR, T)
CALL GETTT:<N

c

FI
FI

FI

D-22

IF (.NOT. SETMEM (FORSET,TOKEN))
OK = .FALSE.

FI

(SETMEM (FORSET,TOKEN))
CALL SETYPE (TOKEN)
CALL NEWLL (TYPPTR, 1)
CALL JOINLL (SUBPTR, TYPPTR, @DOWN)
T (1) = TOKEN
CALL STORLL (TYPPTR, T)
CALL GETTKN

(TOKEN .EQ. @COLON)
T (1) = @FIELD; T (2) = 0
CALL STORLL (SUBPTR, T)
CALL GETTKN
CALL STRUCT (STRPTR, OK)
CALL JOINLL (SUBPTR, STRPTR, @DOWN)

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @COLON)
FI

LOOPBY NUM = NUM + 1
IF (.NOT. EOSTKN (X)) OK = .FALSE.

(EOSTKN (X)) CALL SKPEOS
FI

END LOOP
WRITE (3, *) "Leave IMPLST"
RETURN
END

SUBROUTINE PRMLST (SUBPTR, NUM, OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
INTEGER T (1)
LOGICAL OK
WRITE (3,*) "Enter PRMLST"

C Parameter names are stored in the symbol table. ADDPL adds the
C name to the parameter list in the Import/Export matrix.
c

LOOP
GIVEN CALL GETTKN; LSTPTR = SUBPTR; NUM = 0
DO

IF (TOKEN .NE. @NAME) OK = .FALSE.
(TOKEN .EQ. @NAME)

CALL ADDPL (TKNSTR)
CALL NEWLL (NAMPTR, 1)
CALL ADDAS (NAME, TKNSTR)

c

D-23

T (1) = NAME
CALL STORLL (NAMPTR, T)

FI

CALL JOINLL (LSTPTR, NAMPTR, @ACROSS)
LSTPTR = NAMPTR
NUM = NUM + 1
CALL GETTKN

WHILE (OK) (TOKEN .EQ. @COMMA)
LOOPBY CALL GETTKN

END LOOP
WRITE (3, *) "Leave PRMLST"
RETURN
END

SUBROUTINE EXPORT (EXPPTR, OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
COMMON /FNUM/ FNUM
INTEGER T (2), ACTNAM (22)
LOGICAL OK
LOGICAL EOSTKN
WRITE (3,*) "Enter EXPORT"

C The export section is a list of subroutines
C supported by the form and the aliases under
C being exported, for import by other forms.
C pair is stored in the symbol table and also
C which sets up the Import/Export matrix.

and functions
which they are
Each actual/alias
passed to NEWEXP

c
CALL NEWLL (EXPPTR, 1)
LSTPTR = EXPPTR; NUM = 0
IF (TOKEN .NE. @EXPORT)

(TOKEN .EQ. @EXPORT)
LOOP

GIVEN CALL GETTKN
WHILE (OK) (TOKEN .EQ. @NAME)
DO

CALL NEWLL (ITMPTR, 2)
CALL ADDAS (LOCNAM, TKNSTR)
LOOP GIVEN I = 1 WHILE (I .LE. TKNSTR (1)+2)

DO ACTNAM (I) = TKNSTR (I) LOOPBY I = I + 1
END LOOP
CALL GETTKN
IF (TOKEN .NE. @AS) OK = .FALSE.

(TOKEN .EQ. @AS)
CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)

c

FI

FI
END LOOP

FI

D-24

CALL NEWEXP (FNUM,ACTNAM,TKNSTR)
CALL ADDAS (GENNAM, TKNSTR)
T (1) = GENNAM; T (2) = LOCNAM
CALL STORLL (ITMPTR, T)
CALL JOINLL (LSTPTR, ITMPTR, @ACROSS)
LSTPTR = ITMPTR
NUM = NUM + 1
CALL GETTKN
IF (.NOT. EOSTKN (X)) OK= .FALSE.

(EOSTKN (X)) CALL SKPEOS
FI

WRITE (3,*) "Leave EXPORT"
T (1) = NUM
CALL STORLL (EXPPTR, T)
RETURN
END

SUBROUTINE PROC (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
LOGICAL OK
WRITE (3,*) "Enter PROC"

C A procedure is a heading, followed by declarations,
C followed by a body of statements.
c

LOOP
WHILE (TOKEN.EQ.@SUBROUTINE .OR. TOKEN.EQ.@FUNCTION .OR.

X TOKEN.EQ.@PROGRAM)
DO

CALL PROCHD (OK)
IF (• NOT. OK)

(OK)
CALL DECLS (OK)
IF (• NOT. OK)

(OK)

FI

CALL BODY (OK)
IF (.NOT. OK)

(OK)
CALL SKPEOS

FI

FI
END LOOP
WRITE (3, *) "Leave PROC"

RETURN
END

D-25

SUBROUTINE PROCHD (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /CURSTR/ CURSTR
COMMON /TS/ TKNSTR (22)
COMMON /NAME/ NAME (22)
COMMON /INFORM/ INFORM
LOGICAL INFORM, OK, EOSTKN
INTEGER TYPE (6), PROG (7), SUBR (10), FUNC (8)
DATA TYPE /4,4,"T","Y","P","E"/
DATA SUBR /"S","U","B","R","O","U","T","I","N","E"/
DATA FUNC /"F","U","N","C","T","I","O","N"/
DATA PROG /"P","R","O","G","R","A","M"/
DATA LP,RP,COMMA /"(",")",","/
WRITE (3,*) "Enter PROCHD"

IF (TOKEN .EQ. @SUBROUTINE) CALL NEWSTR (CURSTR,SUBR,10)
(TOKEN .EQ. @FUNCTION) CALL NEWSTR (CURSTR,FUNC,8)
(TOKEN .EQ. @PROGRAM) CALL NEWSTR (CURSTR,PROG,7)

FI
CALL GETTKN
IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
CALL ADDSTR (CURSTR,TKNSTR)
LOOP GIVEN I = 1 WHILE (I .LE. TKNSTR (1)+2)

DO NAME (I) = TKNSTR (I) LOOPBY I = I + 1
END LOOP
CALL GETTKN
IF (TOKEN .NE. @LEFTP)

IF (.NOT. INFORM)

FI

(INFORM)
CALL ADDCHR (CURSTR,LP)
CALL ADDSTR (CURSTR,TYPE)
CALL ADDCHR (CURSTR,RP)

(TOKEN .EQ. @LEFTP)
CALL ADDCHR (CURSTR,LP)
IF (.NOT. INFORM)

(INFORM) CALL ADDSTR (CURSTR,TYPE)
FI
LOOP

GIVEN CALL GETTKN
DO IF (TOKEN .NE. @NAME) OK = .FALSE.

(TOKEN .EQ. @NAME)
CALL ADDCHR (CURSTR,COMMA)
CALL ADDSTR (CURSTR,TKNSTR)
CALL GETTKN

D-26

FI
WHILE (OK) (TOKEN .EQ. @COMMA)
LOOPBY CALL GETTKN

FI

END LOOP
IF (TOKEN .NE. @RIGHTP) OK = .FALSE.

{TOKEN .EQ. @RIGHTP)

FI

CALL ADDCHR (CURSTR,RP)
CALL GETTKN

IF (.NOT. EOSTKN (X)) OK = .FALSE.
(EOSTKN (X)) CALL SKPEOS

FI
FI

IF (.NOT. OK) (OK) CALL FORSTR FI
WRITE (3,*) "Leave PROCHD"
RETURN
END

SUBROUTINE DECLS (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
COMMON /SCAN/ FORM, DECLL
COMMON /CURSTR/ CURSTR
COMMON /CURFRM/ FMPTR,HDPTR,STPTR,IMPTR,EXPTR
COMMON /INFORM/ INFORM
COMMON /NAME/ NAME (22)
LOGICAL FORM, DECLL, INFORM
INTEGER T (1)
LOGICAL OK
LOGICAL EOSTKN
INTEGER LP (l), RP (1), COM (1)
INTEGER INT (7), REL (4), LOG (7)
INTEGER VNAME (22), STR (5), VAR (1)
INTEGER SL (l), LOC {f1), NME (5), TYPE (7), DL (11), DN (10)
INTEGER FNAME (22), ITEM (1), I2 (1), FNC (2), F2 (2), TYP (1)
LOGICAL FOUND
DATA COMMA,SLASH,SL,QUOTE /",","/","/",""""/
DATA LOC /"L","O","C","A","L","("/
DATA NME /"N","A","M","E","("/
DATA TYPE /"T","Y","P","E","(","1",")"/
DATA DL /"D","A","T","A"," ","L","O","C","A","L","/"/
DATA DN /"D","A","T","A"," ","N","A","M","E","/"/
DATA LP, RP, COM/"(",")",","/
DATA INT /"I","N","T","E","G","E","R"/
DATA REL /"R","E","A","L"/
DATA LOG /"L","O","G","I","C","A","L"/

c

WR I T E (n , *) " I n DEC L S "
CALL GETRACE

D-27

WRITE (3,*) "Enter DECLS"

C Declarations are lists of variable names followed by
C a structure description.
c

c

FORM= .FALSE.; DECLL = .TRUE.
CALL SETLOC
LOOP

WHILE (OK) (TOKEN .EQ. @NAME)
DO

C A list of names is parsed, each name being entered into
C the symbol table and joined to the last name.
c

c

LOOP
GIVEN

DO

CALL NEWLL (VARPTR, 1)
FRST = VARPTR

IF (TOKEN .NE. ~NAME) OK = .FALSE.

FI

(TOKEN .EQ. @NAME)
CALL ADDAS (VARNAM, TKNSTR)
T (1) = VARNAM
CALL STORLL (VARPTR, T)
CALL JOINLL (VARLST, VARPTR, @ACROSS)
VARLST = VARPTR
CALL GETTKN

WHILE (OK) (TOKEN .EQ. @COMMA)
LOOPBY CALL GETTKN; CALL NEWLL (VARPTR, 1)

ENDLOOP

C The structure is parsed and its symbol table entry is joined
C to each variable name entry. A Fortran declaration is
C generated for each variable. Fortran scalars are declared
C with no change. Any non-scalar is declared as a
C one dimensional Fortran array of Integers.
c

IF (.NOT. OK)
(OK)

IF (TOKEN .NE. @COLON) OK = .FALSE.
{TOKEN .EQ. @COLON)

CALL GETTKN
CALL STRUCT (STRPTR, OK)
IF (.NOT. OK)

(OK)
LOOP GIVEN VARPTR = FRST

D-28

DO CALL JOINLL (VARPTR, STRPTR, @DOWN)
LOOPBY CALL NEXTLL (VARPTR, @ACROSS)
WHILE (VARPTR .NE. 0)

ENDLOOP
CALL GETLL (STRPTR,STR)
IF

(STR (1) .EQ. @FORTRAN)
DIM = 0
IF

FI

(STR (4) .EQ. @INTEGER)
CALL NEWSTR (CURSTR,INT,7)

(STR (4) .EQ. @REAL)
CALL NEWSTR (CURSTR,REL,4)

(STR (4) .EQ. @LOGICAL)
CALL NEWSTR (CURSTR,LOG,7)

(STR (1) .NE. (aFORTRAN)

FI
LOOP

CALL NEWSTR (CURSTR,INT,7)
IF

FI

(STR (2) .EQ. @KNOWN)
DIM = STR (3)

(STR (2) .EQ. @UNKNOWN)
DIM = 1

GIVEN VARPTR = FRST
DO

CALL GETLL (VARPTR,VAR)
VARNAM = VAR (1)
CALL GETAS (VARNAM,VNAME)
CALL EMPSTR (TEMP)
CALL ADDSTR (TEMP,VNAME)
IF

FI

(DIM .EQ. 0)
(DIM .NE. 0)

CALL NEWSTR (TEMP2,LP,l)
D = DIM
CALL NUMSTR (TEMP3,D)
CALL NEWSTR (TEMP4,RP,1)
CALL JOINST (TEMP3,TEMP4)
CALL JOINST (TEMP2,TEMP3)
CALL JOINST (TEMP,TEMP2)

CALL JOINST (CURSTR,TEMP)
LOOPBY CALL NEXTLL (VARPTR,@ACROSS)

IF (VARPTR .EQ. 0)
(VARPTR .NE. 0)

CALL NEWSTR (TEMP,COM,1)

c

FI
END LOOP

FI
FI

D-29

CALL JOINST (CURSTR,TEMP)
FI

WHILE (VARPTR .NE. 0)
END LOOP
CALL FORSTR
IF (.NOT. EOSTKN (X)) OK= .FALSE.

(EOSTKN (X)) CALL SKPEOS
FI

C Generate declarations for Imported functions
c

LOOP
GIVEN

NXTFRM = IMPTR
LOOPBY CALL NEXTLL (NXTFRM,~ACROSS)

WHILE (NXTFRM .NE. 0)
DO

LOOP
GIVEN NXTITM = NXTFRM
LOOPBY CALL NEXTLL (NXTITM,@DOWN)
WHILE (NXTITM .NE. 0)
DO

FNCPTR = NXTITM
CALL NEXTLL (FNCPTR,@ACROSS)
CALL GETLL (FNCPTR,FNC)
IF

(FNC (1) .NE. @FUNCTION)
(FNC (1) .EQ. @FUNCTION)

CALL GETLL (NXTITM,ITEM)
FNCNAM = ITEM (1)
CALL GETAS (FNCNAM,FNAME)
LOOP

GIVEN FRM2 = IMPTR; FOUND = .FALSE.
LOOPBY CALL NEXTLL (FRM2,@ACROSS)
WHILE

(FRM2 .NE. NXTFRM)
CALL SRCHLL (@DOWN,FNAME,FRM2,ADDR,FOUND)
(.NOT. FOUND)

ENDLOOP
IF

(FOUND)
(.NOT. FOUND)

TYPTR = FNCPTR
CALL NEXTLL (TYPTR,@DOWN)
CALL GETLL (TYPTR,TYP)

c

FI
END LOOP

END LOOP

FI

IF

D-30

(TYP (1) .EQ. ~INTEGER)
CALL NEWSTR (STR,INT,7)

(TYP (1) • EQ. @REAL)
CALL NEWSTR (STR,REL,4)

(TYP (1) .EQ. @LOGICAL)
CALL NEWSTR (STR,LOG,7)

FI
CALL ADDSTR (STR,FNAME)
CALL FORSTR

C Generate declarations and data statements for dope vectors.
c

CALL NEWSTR (CURSTR,INT,7)
L = CURLOC (X)
IF (L • EQ. 0)

FI

(L • GT. 0)
CALL NEWSTR (TEMP,LOC,6)
CALL JOINST (CURSTR,TEMP)
CALL NUMSTR (TEMP,L)
CALL ADDCHR (TEMP,RP)
CALL ADDCHR (TEMP,COMMA)
CALL JOINST (CURSTR,TEMP)

CALL NEWSTR (TEMP,NME,5)
CALL JOINST (CURSTR,TEMP)
CALL NUMSTR (TEMP,STRLEN (NAME))
CALL ADDCHR (TEMP,RP)
IF (• NOT. INFORM)

FI

(INFORM)
CALL ADDCHR (TEMP,COMMA)
CALL NEWSTR (TEMP2,TYPE,7)
CALL JOINST (TEMP,TEMP2)

CALL JOINST (CURSTR,TEMP)
CALL FORSTR
L = CURLOC (X)
IF (L • EQ. 0)

(L .GT. 0)
CALL NEWSTR (CURSTR,DL,11)
CALL LOCSTR (TEMP)
CALL JOINST (CURSTR,TEMP)
CALL NEWSTR (TEMP,SL,l)
CALL JOINST (CURSTR,TEMP)
CALL FORSTR

D-31

FI
CALL NEWSTR (CURSTR,DN,l0)
LOOP

GIVEN I = l
DO

CALL ADDCHR (CURSTR,QUOTE)
CALL ADDCHR (CURSTR,NAME (I+2))
CALL ADDCHR (CURSTR,QUOTE)

WHILE (I .LT. NAME (1))
LOOPBY I = I + 1

CALL ADDCHR (CURSTR,COMMA)
ENDLOOP
CALL ADDCHR (CURSTR,SLASH)
CALL FORSTR
RETURN
END

c

D-32

SUBROUTINE EXPAND (TYPE)
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP
COMMON /DIRECT/ UP, DOWN
COMMON /EXSET/ EXSET (12)
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG
LOGICAL EMPTY, OK, UP, DOWN, SETMEM
INTEGER S (4)
WRITE (3,*) "Enter EXPAND"

C These routines expand a Form Specification into a type.
C This is done by tracing the Form structure and generating a
C copy of it. Wherever a reference to a dummy parameter
C occurs in the Form, The actual parameter from the Form
C Spec is used in the copy. Any values which were unknown
C when the Form was parsed, due to parameterisation, will
C now be known, so the dope vector for the type is generated.
c

LOOP
GIVEN

IF (TYPE .EQ. @FORM)

FI

SPCPTR = CURPTR; CALL NEXTLL (SPCPTR,@DOWN)
CURFLG = .FALSE.
S (1) =@FORM; S (2) = SPCPTR; S (3) = 0; S (4) = 0
CALL PUSH (S,4)
DOWN= .TRUE.; UP= .FALSE.

(TYPE .EQ. @CURRENT)
CURFLG = .TRUE.
S (1) = @CURRENT; S (2) = CURSTR; S (3) = 0; S (4) = 0
CALL PUSH (S, 4)
DOWN= .TRUE.; UP= .FALSE.

LOOPBY CALL LOOKAT (TOP,l,EMPTY)
WHILE (.NOT. EMPTY)

DO
(SETMEM (EXSET,TOP))

IF
(DOWN)

IF
(TOP .EQ. @FORM) CALL XFRMST
(TOP .EQ. @PARM) CALL XPRMST
(TOP .EQ. @RECORD) CALL XRECST
{TOP .EQ. @FIELD) CALL XFLDST
(TOP .EQ. @ARRAY) CALL XARRST
(TOP .EQ. @STRUCTURE) CALL XSTRST
(TOP .EQ. @ACTUAL) CALL XACTST
(TOP .EQ. @CURRENT) CALL XCURST

c

FI
(UP)

IF

D-33

(TOP .EQ. @FORM) CALL XFRMND
(TOP .EQ. @PARM) CALL XPRMND
(TOP .EQ. @RECORD) CALL XRECND
(TOP .EQ. @FIELD) CALL XFLDND
(TOP .EQ. @ARRAY) CALL XARRND
(TOP .EQ. @STRUCTURE) CALL XSTRND
(TOP .EQ. @ACTUAL) CALL XACTND
(TOP .EQ. @CURRENT) CALL XCURND
(TOP .EQ. @RESET) CURFLG = .TRUE.; CALL POP (TOP,LEN)

FI
FI

END LOOP
STRPTR = CURPTR
RETURN
END

SUBROUTINE XFRMST
IMPLICIT INTEGER (A-Z)

C Get the unexpanded Form Spec Entry. This will contain
C a pointer to the form and the starting address in LOCAL.
C Get the form number from the Form Entry. Store the starting
C address, the form pointer, and the form number in the expanded
C Form Spec Entry. Put the form number in LOCAL. Get the
C first unexpanded parameter pointer and make a recursive call
C to expand it.
c

c

COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
INTEGER XSPEC (4), S (5), SPC (3), NAM (22), FRM (3)
LOGICAL FOUND
WRITE (3,*) "Enter XFRMST"
CALL POP (S,LEN)

C Get the unexpanded Form Spec Entry. This will contain
C a pointer to the Form and the starting address in LOCAL.
c

c

SPCPTR = S (2)
CALL GETLL (SPCPTR,SPC)
ADDR = SPC (2)
FRMPTR• = SPC (3)
CALL GETLL (FRMPTR,FRM)

C Get the Form number from the Form Entry. Store the Form
C number, the Form pointer and the starting address in the
C expanded Form Spec Entry.
c

c

D-34

FRMNUM = FRM (3)
XSPEC (1) = FRMPTR; XSPEC (2) = ADDR; XSPEC (3) = FRMNUM
CALL NEWLL (XSPECP,3)
CALL STORLL (XSPECP,XSPEC)

C Put the Form number in the dope vector LOCAL.
c

c

CALL PUTLOC (ADDR,FRMNUM)
S (3) = XSPECP
CALL PUSH (S,4)

C Get the first unexpanded parameter pointer and make a
C recursive call to expand it.
c

c

S (1) = @PARM
PRMPTR = SPCPTR; CALL NEXTLL (PRMPTR,@ACROSS)
S (2) = PRMPTR; S (3) = XSPECP; S (4) = XSPECP
s (5) = 1
CALL PUSH (S,5)
RETURN
END

SUBROUTINE XFRMND
IMPLICIT INTEGER (A-Z)

C There are two stages to expanding a form spec. One is expanding
C the parameters. The second is expanding the structure.
c

c

COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
INTEGER T (4), S (4), XSPEC (3)
WRITE (3,*) "Enter XFRMND"
CALL POP (S,LEN)
IF (S (4) . EQ. 0)

C If s (4) is 0, then the parameters have been expanded.
C Get the expanded Form Spec Entry which contains the
C Form pointer. Get the unexpanded structure pointer via
C the form pointer. Make a recursive call to expand the
C structure.
c

s (4) = 1
CALL PUSH (S,4)
XSPECP = S (3)
CALL GETLL (XSPECP,XSPEC)
FRMPTR = XSPEC {1)
STRPTR = FRMPTR

c

D-35

CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@ACROSS)
S (1) = @STRUCTURE
S (2) = STRPTR
S (3) = XSPECP
CALL PUSH (S,3)
DOWN= .TRUE.; UP= .FALSE.

C If S (4) is 1, the the structure has been expanded and is pointed
C at by CURPTR. S (3) has the expanded form spec pointer. Generate
C a form structure entry.
c

c

(S (4) .EQ. 1)
T (1) = @FORM; T (2) = @KNOWN; T (3) = CURSIZ; T (4) = 0
CALL NEWLL (XSTRP,4)
CALL STORLL (XSTRP,T)
XSPECP = S (3)
CALL JOINLL (XSTRP,XSPECP,@DOWN)
CALL JOINLL (XSPECP,CURPTR,@DOWN)
CURPTR = XSTRP

FI
RETURN
END

SUBROUTINE XPRMST
IMPLICIT INTEGER (A-Z)

C Get the unexpanded parm pointer off the stack. If it is 0, the
C parm list is finished. If it is not 0, get the parm entry.
C This may be an Integer or a Form parameter. If it is an
C Integer, generate an expanded parameter entry containing
C the value. Join this to the expanded parm list. If it is a
C Form, get its unexpanded Form Spec pointer and make a recursive
C call to expand it.
c

COMMON /DIRECT/ UP,DOWN
LOGICAL UP, DOWN
INTEGER XSPEC (4), SPC (3), S (5), PRM (1), VAL (1)
WRITE (3,*) "Enter XPRMST"
CALL POP (S,LEN)
PRMPTR = S (2)
XSPECP = S (4)
CALL GETLL (XSPECP,XSPEC)
ADDR = XSPEC (2)
PRMNUM = S (5)
IF (PRMPTR .EQ. 0)

CALL PUSH (S,LEN)
DOWN= .FALSE.; UP= .TRUE.

c

D-36

(PRMPTR .NE. 0)
CALL GETLL (PRMPTR,PRM)
IF (PRM (1) .EQ. @INTEGER)

PRMLST = S (3)

FI
FI
RETURN
END

CALL NEWLL (XPRMP,1)
CALL STORLL (XPRMP,PRM)
CALL JOINLL (PRMLST,XPRMP,@ACROSS)
PRMLST = XPRMP
VALPTR = PRMPTR
CALL NEXTLL (VALPTR,@DOWN)
CALL GETLL (VALPTR,VAL)
CALL PUTLOC (ADDR+PRMNUM,VAL)
CALL NEWLL (XVALP,l)
CALL STORLL (XVALP,VAL)
CALL JOINLL (XPRMP,XVALP,@DOWN)
CALL NEXTLL (PRMPTR,@ACROSS)
S (2) = PRMPTR; S (3) = PRMLST
CALL PUSH (S,S)

(PRM (1) .EQ. @FORM)
CALL PUSH (S,S)
S (1) = @FORM
SPCPTR = PRMPTR; CALL NEXTLL (SPCPTR,@DOWN)
S (2) = SPCPTR; S (3) = 0
CALL PUSH (S,3)
CALL GETLL (SPCPTR,SPC)
ADDR2 = SPC (2)
CALL PUTLOC (ADDR+PRMNUM,ADDR2-ADDR+l)

SUBROUTINE XPRMND
IMPLICIT INTEGER (A-Z)

C If the current parm pointer is 0, then
C If not, then a form parm has just been
C expanded parm entry to the parm list.
C parm pointer and make a recursive call
c

the parm list is finished.
expanded. Join the
Get the next unexpanded
to expand it.

COMMON /CURPTR/ CURPTR
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
INTEGER S (5), XPRM (1)
WRITE (3,*) "Enter XPRMND"
CALL POP (S,LEN)
PRMPTR = S (2)
IF (PRMPTR .EQ. 0)

(PRMPTR .NE. 0)

c

PRMLST = S (3)
XSTRP = CURPTR

D-37

CALL NEWLL (XPRMP,l)
XPRM (1) = @FORM
CALL STORLL (XPRMP,XPRM)
CALL JOINLL (PRMLST,XPRMP,@ACROSS)
CALL JOINLL (XPRMP,XSTRP,@DOWN)
PRMLST = XPRMP
S (3) = PRMLST
CALL NEXTLL (PRMPTR,@ACROSS)
S (2) = PRMPTR
PRMNUM = S (5)
PRMNUM = PRMNUM + 1
S (5) = PRMNUM
CALL PUSH (S,5)
DOWN= .TRUE.; UP= .FALSE.

FI
RETURN
END

SUBROUTINE XSTRST
IMPLICIT INTEGER (A-Z)

C An unexpanded structure may be a Record, Array, Fortran scalar,
C a Form, a Form parameter, or the Current Form.
c

c

COMMON /CURFRM/ CURNAM,CURHDR,CURSTR,CURIMP,CUREXP
COMMON /CURFLG/ CURFLG
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /DIRECT/ UP, DOWN
INTEGER S (4}, STR (4)
LOGICAL CURFLG, UP, DOWN
WRITE (3,*) "Enter XSTRST"
CALL POP (S,LEN)
STRPTR = S (2); CALL GETLL (STRPTR,STR)
XSPECP = S (3)
CALL PUSH (S,LEN)
IF

C If it is a Record, make a recursive call to expand it.
c

c

(STR (1) .EQ. @RECORD)
S (1) = @RECORD; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP
CALL PUSH (S,4)

C If it is an Array, make a recursive call to expand it.
c

(STR (1) .EQ. @ARRAY)

c

D-38

S (1) = @ARRAY; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP
CALL PUSH (S,4)

C If it is a Form, turn the current form flag off. Get the
C unexpanded form spec entry and make a recursive call
C to expand it.
c

c

(STR (1) .EQ. @FORM)
IF (CURFLG)

FI

CALL PUSH (@RESET,l)
CURFLG = .FALSE.

(.NOT. CURFLG)

S (1) = @FORM
CALL NEXTLL (STRPTR,@DOWN)
S (2) = STRPTR
s (3) = 0
CALL PUSH (S,3)

C If it is a Fortran scalar, copy the unexpanded entry to the
C expanded entry.
c

c

(STR (1) .EQ. @FORTRAN)
CALL NEWLL (XSTRP,4)
CALL STORLL (XSTRP,STR)
CURPTR = XSTRP
CURSIZ = 1
CURKNO = @KNOWN
DOWN= .FALSE.; UP= .TRUE.

C If it is a Parameter, make a recursive call to expand it.
c

c

(STR (1) .EQ. @PARM)
S (1) = @ACTPARM; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP
CALL PUSH (S,4)

C If it is the current form, make a recursive call to expand it.
c

(STR (1) .EQ. @CURRENT)
CURFLG = .TRUE.

S (1) = @CURRENT; S (2) = CURSTR; S (3) = 0; S (4) = XSPECP
CALL PUSH (S,4)

FI
RETURN
END

c

SUBROUTINE XSTRND
IMPLICIT INTEGER (A-Z)
INTEGER S (4)

D-39

WRITE (3,*) "Enter XSTRND"
CALL POP (S,LEN)
RETURN
END

SUBROUTINE XARRST
IMPLICIT INTEGER (A-Z)

C Get the pointer to the unexpanded array and generate an entry
C for the expanded array. Expand the range entries and get the size.
C Store the size in the expanded array entry. Get the unexpanded
C structure entry for the base type and make a recursive call
C to expand it.
c

c

INTEGER S (4) , T (4)
WRITE (3,*) "Enter XARRST"
CALL POP (S,LEN)
STRPTR = S (2); XSPECP = S (4)
CALL NEWLL (XSTRP,4)
CALL XRANGE (STRPTR,XSTRP,XSPECP,RNGSIZ)
T (1) = @ARRAY; T (2) = @KNOWN; T (3) = RNGSIZ; T (4) = 0
CALL STORLL (XSTRP,T)
S (3) = XSTRP; CALL PUSH (S,4)
S (1) = @STRUCTURE
CALL NEXTLL (STRPTR,@ACROSS)
S (2) = STRPTR; S (3) = XSPECP
CALL PUSH (S,3)
RETURN
END

SUBROUTINE XARRND
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG
INTEGER S (4) , XSTR (4) , STR (4) , XSPEC (4)
WRITE (3,*) "Enter XARRND"
CALL POP (S,LEN)
STRPTR = S (2); XSTRP = S (3); XSPECP = S (4)
CALL GETLL (XSTRP,XSTR)
CALL GETLL (STRPTR,STR)
XSTR (4) = STR (4)

C If this is the current form, and the size is unknown,
C then store this fact in the expanded structure entry.

c

c

D-40

IF (STR (2) .EQ. @UNKNOWN .AND. CURFLG)
XSTR (2) = @UNKNOWN; XSTR (3) = STR (3)
CALL STORLL (XSTRP,XSTR)
CALL JOINLL (XSTRP,CURPTR,@ACROSS)
CURSIZ = 0; CURKNO = @UNKNOWN; CURPTR = XSTRP

C If this is not the current form, or if the size is
C known, calculate the array size and store the base
C size in the expanded structure entry.
c

c

(STR (2) .EQ. @KNOWN .OR .• NOT. CURFLG)
RNGSIZ = XSTR (3)
BASE = CURSIZ
ARRSIZ = BASE * RNGSIZ
XSTR (3) = BASE
CALL STORLL (XSTRP,XSTR)
CALL JOINLL (XSTRP,CURPTR,@ACROSS)
CURPTR = XSTRP; CURSIZ = ARRSIZ; CURKNO = @KNOWN

C If the base size was previously unknown, put it in
C the dope vector.
c

c

IF (STR (2) .EQ. @KNOWN)

FI
FI
RETURN
END

(STR (2) .EQ. @UNKNOWN)
ADDR = STR (3)
CALL GETLL (XSPECP,XSPEC)
B = XSPEC (2)
CALL PUTLOC (ADDR+B-l,BASE)

SUBROUTINE XRANGE (STRPTR,XSTRP,XSPECP,RNGSIZ)
IMPLICIT INTEGER (A-Z)
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG
INTEGER RSTRT (2), XSTRT (2), XSPEC (4), RNG (2)
WRITE (3,*) "Enter XRANGE"

C This routine expands the range list and puts it in the
C dope vector. If this is the current form, then the
C starting address of the rangelist is copied from the
C unexpanded entry. If this is not the current form then
C the starting address for the range list is determined.
c

RNGPTR = STRPTR
CALL NEXTLL (RNGPTR,@DOWN)

c

D-41

CALL GETLL (RNGPTR,RSTRT)
LOCADD = RSTRT (2)
IF (CURFLG)

FI

ADDR = LOCADD
XSTRT (1) = @UNKNOWN

(• NOT. CURFLG)
CALL GETLL (XSPECP,XSPEC)
BASE = XSPEC (2)
ADDR = LOCADD + BASE - 1
XSTRT (1) = @KNOWN

XSTRT (2) = ADDR
CALL NEWLL (XSTRTP,2)
CALL STORLL (XSTRTP,XSTRT)
CALL JOINLL (XSTRP,XSTRTP,@DOWN)

C The routine XRNG gets the value for each bound. These
C values are checked and the range size is accumulated, and
C they are put into the dope vector.
c

IF (CURFLG)
(. NOT. CURFLG)

LOOP GIVEN RNGSIZ = 1
LOOPBY CALL NEXTLL (RNGPTR,@DOWN)
WHILE (RNGPTR .NE. 0)
DO

CALL XRNG (RNGPTR,Rl,XSPECP)
CALL NEXTLL (RNGPTR,@DOWN)
CALL XRNG (RNGPTR,R2,XSPECP)
IF (R2 .LT. Rl) STOP "BAD RANGE"

(R2 .GE. Rl)
RNGSIZ = RNGSIZ * (R2-Rl+l)

FI
CALL PUTLOC (ADDR,Rl)
ADDR = ADDR + 1
CALL PUTLOC (ADDR,R2)
ADDR = ADDR + 1

END LOOP
FI
RETURN
END

c

D-42

SUBROUTINE XRNG (RNGPTR,RNGVAL,XSPECP)
IMPLICIT INTEGER (A-Z)
INTEGER RNG (2), PRM (1), VAL (1)
WRITE (3,*) "Enter XRNG"

C If a bound value is a number, its value is returned.
C If it is a parameter, it is looked up in the list of
C actual parameters, which are joined to the expanded
C Form Spec Entry. The value of the actual parameter
C is returned.
c

c

CALL GETLL (RNGPTR,RNG)
IF (RNG (1) .EQ. @NUMBER)

RNGVAL = RNG (2)
(RNG (1) .EQ. @NAME}

LOOP
GIVEN NEXTP = XSPECP; I = 0
WHILE (I .LT. RNG (2)) (NEXTP .NE. 0)
LOOPBY CALL NEXTLL (NEXTP,@ACROSS); I= I+ 1

END LOOP
IF (NEXTP .EQ. 0) STOP "NOT ENOUGH PARMS"

(I • EQ. RNG (2))

FI
FI
RETURN
END

CALL GETLL (NEXTP,PRM)
IF (PRM (1) .NE. @INTEGER) STOP "WRONG TYPE OF PARM"

FI

(PRM (1) .EQ. @INTEGER)
CALL NEXTLL (NEXTP,@DOWN)
CALL GETLL (NEXTP,VAL)
RNGVAL = VAL (1)

SUBROUTINE XRECST
IMPLICIT INTEGER (A-Z)

C Get the unexpanded record pointer. Make an expanded Record Entry.
C Get the first unexpanded field entry and make a recursive call
C to expand it.
c

INTEGER S (5), T (4)
WRITE (3,*) "Enter XRECST"
CALL POP (S,LEN)
STRPTR = S (2); XSPECP = S (4)
T (1) = @RECORD; T (2) = @KNOWN; T (3} = 0; T (4) = 0
CALL NEWLL (XSTRP,4)
CALL STORLL (XSTRP,T)
S (3) = XSTRP

c

CALL PUSH (S,4)
S (1) = @FIELD

D-43

FLDPTR = STRPTR; CALL NEXTLL (FLDPTR,@ACROSS)
S (2) = FLDPTR; S (3) = XSTRP; S (4) = XSTRP; S (5) = XSPECP
CALL PUSH (S,5)
RETURN
END

SUBROUTINE XRECND
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG
INTEGER S (4), XSTR (4), STR (4), XSPEC (4)
WRITE (3,*) "Enter XRECND"

C Get the size from the expanded structure entry.
c

c

CALL POP (S,LEN)
XSTRP = S (3); STRPTR = S (2); XSPECP = S (4)
CALL GETLL (XSTRP,XSTR)
CURSIZ = XSTR (3)
CURKNO = @KNOWN
CURPTR = XSTRP
CALL GETLL (STRPTR,STR)
STRKNO = STR (2)
IF (STRKNO .EQ. @KNOWN)

(STRKNO .EQ. @UNKNOWN)
IF (CURFLG)

FI
FI
RETURN
END

XSTR (2) = @UNKNOWN; XSTR (3) = STR (3)
CALL STORLL (XSTRP,XSTR)
CURSIZ = 0; CURKNO = @UNKNOWN; CURPTR = XSTRP

(• NOT. CURFLG)

SUBROUTINE XFLDST
IMPLICIT INTEGER (A-Z)

C Get the unexpanded field pointer from the stack. Get the
C unexpanded field entry, and put the name address into the
C expanded field entry. Store the expanded field entry. Join
C it to the expanded field list. Push the unexpanded structure
C pointer for the field and make a recursive call to
C expand it.
c

c

D-44

INTEGERS (5), FLD (3), XFLD (3)
WRITE (3, *) "Enter XFLDST"
CALL POP (S,LEN)
XSPECP = S (5); FLDPTR = S (2)
CALL GETLL (FLDPTR,FLD)
XFLD (1) = FLD (1); XFLD (2) = @KNOWN; XFLD (3) = 0
CALL NEWLL (XFLDP,3)
CALL STORLL (XFLDP,XFLD)
XFLSTP = S (4)
CALL JOINLL (XFLSTP,XFLDP,@ACROSS)
XFLSTP = XFLDP
S (4) = XFLSTP
CALL PUSH (S,5)
S (1) = @STRUCTURE
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN)
S (2) = STRPTR; S (3) = XSPECP
CALL PUSH (S,3)
RETURN
END

SUBROUTINE XFLDND
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /CURFLG/ CURFLG
COMMON /DIRECT/ UP, DOWN
LOGICAL CURFLG, UP, DOWN
INTEGER S (5), XREC (4), XFLD (3), FLD (3), XSPEC (4)
WRITE (3,*) "Enter XFLDND"
CALL POP (S,LEN)
FLDPTR = S (2); XRECP = S (3)
XFLSTP = S (4); XSPECP = S (5)
CALL JOINLL (XFLSTP,CURPTR,@DOWN)
CALL GETLL (XFLSTP,XFLD)
CALL GETLL (FLDPTR,FLD)

C If this is th~ current form, or the size is unknown,
C store this fact in the expanded structure entry.
c

c

IF (FLD (2) .EQ. @UNKNOWN .AND. CURFLG)
XFLD (2) = @UNKNOWN; XFLD (3) = FLD (3)
CALL STORLL (XFLSTP,XFLD)

C If this is not the current form, or if the size
C is known, then the offset to this field is the current
C record size. Add the field size to the record size.
C Store the offset in the expanded Field Entry and
C store the record size in the expanded Record Entry.
c

c

D-45

(FLD (2) .EQ. @KNOWN .OR •. NOT. CURFLG)
CALL GETLL (XRECP,XREC)
RECSIZ = XREC (3)
OFFSET = RECSIZ
XFLD (3) = OFFSET
RECSIZ = RECSIZ + CURSIZ
XREC (3) = RECSIZ
CALL STORLL (XFLSTP,XFLD)
CALL STORLL (XRECP,XREC)

C If the offset was previously unknown, put it in the
C dope vector.
c

FI
c

IF (FLD (2) .EQ. @KNOWN)

FI

(FLD (2) .EQ. @UNKNOWN)
ADDR = FLD (3)
CALL GETLL (XSPECP,XSPEC)
BASE = XSPEC (2)
CALL PUTLOC (ADDR+BASE-l,OFFSET)

C If there is another field, make a recursive call to expand it.
c

c

CALL NEXTLL (FLDPTR,@ACROSS)
IF (FLDPTR .EQ. 0)

(FLDPTR .NE. 0)
S (1) = @FIELD; S (2) = FLDPTR
S (3) ~ XRECP; S (4) = XFLSTP; S (5) = XSPECP
CALL PUSH (S,5)
DOWN = .TRUE.; UP = .FALSE.

FI
RETURN
END

SUBROUTINE XACTST
IMPLICIT INTEGER (A-Z)

C This routine expands structures which are parameters.
C The actual parameters have already been expanded so it is
C simply a matter of getting the pointer to the expanded
C structure.
c
C Get the unexpanded Structure Entry, which contains the parm number.
C Get the expanded spec entry, which points across to the
C expanded actual parameters. Loop across until the right parm
C is reached. Its structure has been expanded already. Make
C a recursive return and pass it back.
C stack.

c

c

D-46

COMMON /DIRECT/ UP, DOWN
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG, UP, DOWN
INTEGER S (4) , STR (4)
WRITE (3, *) "Enter XACTST"
IF (CURFLG)

DOWN= .FALSE.; UP= .TRUE.
(• NOT. CURFLG)

CALL POP (S,LEN)
STRPTR = S (2); XSPECP = S (4)
CALL GETLL (STRPTR,STR)
PRMNUM = STR (4)
LOOP

GIVEN
XPRMP = XSPECP
I = 0

LOOPBY I = I + 1; CALL NEXTLL (XPRMP,@ACROSS)
WHILE (I .LT. PRMNUM) (XPRMP .NE. 0)

ENDLOOP
IF (XPRMP .EQ. 0) STOP "NOT ENOUGH PARMS"

FI
FI
RETURN
END

(XPRMP .NE. 0)
XSTRP = XPRMP; CALL NEXTLL (XSTRP,@DOWN)
S (3) = XSTRP
CALL PUSH (S,4)
DOWN= .FALSE.; UP= .TRUE.

SUBROUTINE XACTND
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
COMMON /CURSIZ/ CURSIZ, CURKNO
COMMON /CURFLG/ CURFLG
LOGICAL CURFLG
INTEGER STR (4), XSTR (4), XSPEC (4), S (4), T (4)
WRITE (3,*) "Enter XACTND"

C If this is the current form that is being expanded, it has
C no actual parameters, so generate a Parm Structure Entry
C with unknown size.
c

CALL POP (S,LEN)
IF (CURFLG)

STRPTR = S (2); CALL GETLL (STRPTR, STR)
PRMNUM = STR (4)
CALL NEWLL (XSTRP1,4)

c

D-47

T (1) = @PARM; T (2) = @UNKNOWN; T (3) = 0; T (4) = PRMNUM
CALL STORLL (XSTRP1,T)
NAMPTR = STRPTR; CALL NEXTLL (NAMPTR,@ACROSS)
CALL JOINLL (XSTRP1,NAMPTR,@ACROSS)
CURPTR = XSTRP1; CURSIZ = 0; CURKNO = @UNKNOWN

C Get the size from the expanded parameter structure.
c

FI

(.NOT. CURFLG)
XSTRP = S (3); XSPECP = S (4)
CALL GETLL (XSTRP,XSTR)
SIZE = XSTR (3)
CURPTR = XSTRP; CURSIZ = SIZE; CURKNO = @KNOWN

RETURN
END

SUBROUTINE XCURST
IMPLICIT INTEGER (A-Z)
COMMON /CURFRM/ CURNAM,CURHDR,CURSTR,CURIMP,CUREXP
INTEGER S (4), T (4)
WRITE (3, *) "Enter XCURST"
CALL POP (S,LEN); XSPECP = S (4)
T (1) = @CURRENT; T (2) = @UNKNOWN; T (3) = 0; T (4) = 0
CALL NEWLL (XSTRP,4)
CALL STORLL (XSTRP,T)
S (3) = XSTRP
CALL PUSH (S,4)
S (1) = @STRUCTURE; S (2) = CURSTR; S (3) = XSPECP
CALL PUSH (S,3)
RETURN
END

SUBROUTINE XCURND
IMPLICIT INTEGER (A-Z)
COMMON /CURPTR/ CURPTR
INTEGER S (4)
WRITE (3,*) "Enter XCURND"
CALL POP (S,LEN)
XSTRP = S (3)
CALL JOINLL (XSTRP,CURPTR,@DOWN)
CURPTR = XSTRP
RETURN
END

c

SUBROUTINE REFST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURSTR/ CURSTR
COMMON /T/ TOKEN

D-48

COMMON /TS/ TKNSTR (22)
COMMON /DIRECT/ UP, DOWN
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST
COMMON /CURFRM/ CURNAM, CURHDR, CURST, CURIMP, CUREXP
COMMON /CALL/ CALL
COMMON /REFLOC/ REFLOC
COMMON /REFTYP/ REFTYP, TYPSET
LOGICAL CALL, TYPSET
INTEGER S (6), STR (4)
LOGICAL FOUND, OK, UP, DOWN

C TKNSTR contains the current variable name, look it up.
C If it is found, it has a var Name Entry in the symbol table.
C The Var Name Entry points down to a Structure Entry.
C Get this and put the pointers to the Var Name Entry and
C its Structure Entry onto the stack. A ref may be followed
C by a subscript list, a parameter list, or a field name.
C This may be determined by the next token. REFGNl generates
C the necessary stack entries if it is a left paren, and REFGN2
C does the same for a period. If the reference is not followed
C by either a paren or a period, then the reference is complete.
c

c

WRITE (3,*) "Enter REFST"
CALL = .FALSE.
TYPSET = .FALSE.
CALL POP (S,LEN)
S (f)) = REFLOC
CALL SRCHLL (@ACROSS, TKNSTR, VARTAB, VARPTR, FOUND)
IF (FOUND)

STRPTR = VARPTR
CALL NEXTLL (STRPTR,@DOWN)
CALL GETLL (STRPTR, STR)
S (3) = VARPTR; S (4) = STRPTR
CALL GETTKN
IF (TOKEN .EQ. @LEFTP) CALL REFGNl (S, STRPTR, STR, OK)

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK)
IF (.NOT. OK) (OK) CALL GETTKN FI

FI

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD)
S (2) = @REFERENCE; CALL EMPSTR (S(5))
CALL PUSH (S,6)
CALL EMPSTR (CURSTR)
DOWN= .FALSE.; UP= .TRUE.

C If the name was not found, it may be an integer parameter

D-49

C to the current form. If it is found in the parameter list,
C put its parm number on the stack.
c

c

(.NOT. FOUND)
CALL SRCHPM (TKNSTR,NUM,PRMPTR,FOUND)
IF (FOUND)

S (2) = @PARM
S (3) = NUM
CALL PUSH (S,5)
CALL GETTKN
DOWN= .FALSE.; UP= .TRUE.

C If the name was not found, assume that it is an undeclared
C Fortran variable, function or subroutine. It may still be
C followed by a paren, and if it is, this must contain a
C parameter list.
c

c

FI
RETURN
END

FI

(.NOT. FOUND)
CALL ADDAS (NAME, TKNSTR)
S (3) = @FORTRAN; S (4) = NAME
CALL GETTKN
IF (TOKEN .EQ. @LEFTP)

FI

S (2) = @PARMLIST; CALL PUSH (S,6)
S (1) = @PARMLIST; CALL EMPSTR (S (2))
CALL PUSH (S,2)

(TOKEN .NE. @LEFTP)
S (2) = 0; CALL PUSH (S, 6)
DOWN= .FALSE.; UP= .TRUE.

SUBROUTINE REFND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURSTR/ CURSTR
COMMON /T/ TOKEN
COMMON /DIRECT/ UP, DOWN
COMMON /CALL/ CALL
COMMON /REFLOC/ REFLOC
INTEGER TAIL (2), S (6), STR (4), VAR (2), VARNAM (22)
LOGICAL CALL, OK, UP, DOWN
INTEGER TYPE (5)
DATA TYPE /"T","Y","P","E","("/
DATA TAIL /"1",") "/, LB /"("/, RB /") "/

C The Reference Entry on the stack contains an indication of
C which structure has just been parsed. If it was a subscript

D-50

C list, it may be followed by a further subscript, or a field.
C REFGNl and REFGN2 will generate the necessary stack entries.
C If it is not followed by a subscript or field, generate
c
c
c
c
c
c

c

an access expression
varname (access+l)

The routine WRAP determines whether a type changing function
must be wrapped around the reference.

WRITE (3,*) "Enter REFND"
CALL POP (S,LEN); LAST= S (2)
CALL JOINST (S (5) ,CURSTR)
IF (LAST .EQ. @SUBSCRIPT)

IF (TOKEN .NE. @RIGHTP) OK = .FALSE.

FI

(TOKEN .EQ. @RIGHTP)
STRPTR = S (4)
CALL NEXTLL (STRPTR,@ACROSS)
S (4) = STRPTR
CALL GETLL (STRPTR, STR)
CALL GETTKN
IF (TOKEN .EQ. @LEFTP)

FI

CALL REFGNl (S, STRPTR, STR, OK)
IF (• NOT. OK)

(OK) DOWN= .TRUE.; UP= .FALSE.
FI

(TOKEN .EQ. @PERIOD)
CALL REFGN2 (S, STRPTR, STR, OK)
IF (.NOT. OK)

FI

(OK) DOWN= .TRUE.; UP = .FALSE.;
CALL GETTKN

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD)
VARPTR = S (3)
CALL GETLL (VARPTR, VAR)
CALL GETAS (VAR (1), VARNAM)
CALL EMPSTR (CURSTR)
CALL ADDSTR (CURSTR,VARNAM)
CALL ADDCHR (CURSTR,LB)
CALL JOINST (CURSTR,S (5))
CALL NEWSTR (TEMP, TAIL, 2)
CALL JOINST (CURSTR,TEMP)
REFLOC = S (6)
CALL WRAP

C If the last structure was a field, then the reference is
C complete. Generate an access expression as above.
c

c

D-51

(LAST .EQ. @FIELD)
IF (CALL) CALL = .FALSE.

(.NOT. CALL)
VARPTR = S (3)
CALL GETLL (VARPTR, VAR)
CALL GETAS (VAR (1), VARNAM)

FI

CALL EMPSTR (CURSTR)
CALL ADDSTR (CURSTR,VARNAM)
CALL ADDCHR (CURSTR,LB)
CALL JOINST (CURSTR,S (5))
CALL NEWSTR (TEMP, TAIL, 2)
CALL JOINST (CURSTR,TEMP)
REFLOC = S (6)
CALL WRAP

C If the last structure was a reference, then there were
C no subscripts or fields. The routine TYPREF looks at the
C structure and if it is a Fortran scalar, records it.
C If this is a Fortran scalar reference, then the access
C expression is varname, if not it is varname (1).
c

c

(LAST .EQ. @REFERENCE)
VARPTR = S (3)
STRPTR = VARPTR; CALL NEXTLL (STRPTR,@DOWN)
CALL TYPREF (STRPTR)
CALL GETLL (VARPTR, VAR)
CALL GETAS (VAR (1), VARNAM)
CALL EMPSTR (CURSTR)
CALL ADDSTR (CURSTR,VARNAM)
CALL GETLL (STRPTR,STR)
REFLOC = S (6)
IF (STR (1) .EQ. @FORTRAN)

FI

(STR (1) .NE. @FORTRAN)
CALL ADDCHR (CURSTR,LB)
CALL JOINST (CURSTR,S (5))
CALL NEWSTR (TEMP, TAIL, 2)
CALL JOINST (CURSTR,TEMP)

CALL WRAP

C If the last structure was a parmlist, then the
C access expression has already been generated.
c

(LAST .EQ. @PARMLIST)
IF (TOKEN .NE. @RIGHTP) OK = .FALSE.

(TOKEN .EQ. @RIGHTP) CALL GETTKN
FI

(LAST .EQ. 0)

D-52

c
C If the last structure was a 0, then this is an
C undeclared Fortran scalar, so just generate its name.
c

c

NAME = S (4)
CALL GETAS (NAME, VARNAM)
CALL EMPSTR (CURSTR)
CALL ADDSTR (CURSTR,VARNAM)

C If the last structure was a parameter then this is an
C integer parameter to the current form. Its value will
C be in the passed dope vector TYPE so generate
C TYPE (parm#+l)
c

c

(LAST .EQ. @PARM)
CALL NEWSTR (CURSTR,TYPE,5)
PRMNUM = S (3)
P = PRMNUM + 1
CALL NUMSTR (TEMP,P)
CALL ADDCHR (TEMP,RB)
CALL JOINST (CURSTR,TEMP)

FI
RETURN
END

SUBROUTINE REFGNl (S, STRPTR, STR, OK)
IMPLICIT INTEGER (A-Z)
COMMON /TS/ TKNSTR (22)
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP
INTEGER STR (4), FRM (3), S (6)
LOGICAL OK

C REFGNl generates stack entries for the situation where a
C reference or a field is followed by a left parenthesis.
C This may indicate a subscript list, or a parameter list.
C This cannot be determined syntactically, but may be
C determined semantically, based on the structure of the
C preceding reference or field.
c
C If the structure is an array, this must be a subscript list.
c

c

WRITE (3,*) "Enter REFGNl"
IF (STR (1) .EQ. @ARRAY)

S (2) = @SUBSCRIPT; CALL PUSH (S,6)
S (1) = @SUBSCRIPT; S (2) = @ARRAY; S (3) = STRPTR
CALL EMPSTR (S (4))
CALL PUSH (S,4)

C If the structure is a form, this must be a subscript list.

D-53

C Form structure has been expanded. Get form pointer from spec
C entry and structure pointer is below that.
c

c

(STR (1) .EQ. @FORM)
PTR = STRPTR
CALL NEXTLL (PTR,@DOWN)
CALL GETLL (PTR, FRM)
FRMPTR = FRM (1)
CALL NEXTLL (PTR,@DOWN)
STRPTR = PTR
S (4) = STRPTR
S (2) = @SUBSCRIPT
CALL PUSH (S,6)
S (1) = @SUBSCRIPT; S (2) = @FORM; S (3) = FRMPTR
CALL EMPSTR (S (4))
CALL PUSH (S,4)

C If the structure is the current form, this must be a subscript list.
C Current structure is expanded. Use current form pointer and
C get structure pointer below current structure pointer.
c

c

(STR (1) .EQ. @CURRENT)
FRMPTR = CURNAM
CALL NEXTLL (STRPTR,@DOWN)
S (4) = STRPTR
S (2) = @SUBSCRIPT
CALL PUSH (S,6)
S (1) = @SUBSCRIPT; S (2) = @CURRENT; S (3) = FRMPTR
CALL EMPSTR (S (4))
CALL PUSH (8,4)

C If the structure is a Fortran scalar, this must be a parameter list.
c

{STR (1) .EQ. @FORTRAN)
CALL ADDAS (NAME, TKNSTR)
S (2) = @PARMLIST; S (3) = @FORTRAN; S (4) = NAME
CALL PUSH (S,6)
S (1) = @PARMLIST; CALL EMPSTR (S (2))
CALL PUSH (8,2)

(STR (1) .EQ. @RECORD .OR. STR (1) .EQ. @PARM) OK= .FALSE.
FI
RETURN
END

c

D-54

SUBROUTINE REFGN2 (S, STRPTR, STR, OK)
IMPLICIT INTEGER (A-Z)
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP
INTEGER PRM (4), NAMSTR (22), S (6), STR (4), FRM (3), T (1)
LOGICAL OK, FOUND

C REFGN2 generates stack entries for the situation where a
C reference or a field is followed by a period. This may indicate
C a field name or a subroutine or function name. This can be
C determined semantically from the structure type of the
C preceding reference or field.
c
C If the structure is a record, this must be a field.
c

c

WRITE (3,*) "Enter REFGN2"
IF (STR (1) .EQ. @RECORD)

S (2) = @FIELD; CALL PUSH (S,6)
S (1) = @FIELD; S (2) = @RECORD; S (3) = 0; S (4) = STRPTR
CALL EMPSTR (S (5))
CALL PUSH (S,6)

C If the structure is a previously defined form, or the current
C form, this may be a field, or a subroutine or function. Put a
C pointer to the form on the stack, so that the field parsing
C routine can determine which.
c

c

(STR (1) .EQ. @FORM)
PTR = STRPTR; CALL NEXTLL (PTR,@DOWN)
SPCPTR = PTR
CALL NEXTLL (PTR,@DOWN)
STRPTR = PTR
S (4) = STRPTR
S (2) = @FIELD
CALL PUSH (S,6)
S (1) = @FIELD; S (2) = @FORM; S (3) = STRPTR; S (4) = SPCPTR
CALL EMPSTR (S (5))
CALL PUSH (S,6)

(STR (1) .EQ. @CURRENT)
FRMPTR = CURNAM
CALL NEXTLL (STRPTR,@DOWN)
S (4) = STRPTR
S (2) = @FIELD
CALL PUSH (S,6)
S(1) =@FIELD; S(2) = @CURRENT; S(3) = STRPTR; S(4) = FRMPTR
CALL EMPSTR (S (5))
CALL PUSH (S,6)

C If the structure is a parameter form, then this must be an
C imported subroutine or function. Find the form name in the

D-55

C import list, so that the field parser can look up the
C rout i n e n am e •
c

FI

(STR (1) .EQ. @PARM)
S (2) = @FIELD; CALL PUSH (S,6)
CALL GETLL (STRPTR,PRM)
PRMNUM = PRM (4)
PRMPTR = STRPTR; CALL NEXTLL (PRMPTR,@ACROSS)
CALL GETLL (PRMPTR,T)
NAMADD = T (1)
CALL GETAS (NAMADD, NAMSTR)
CALL SRCHLL (@ACROSS, NAMSTR, CURIMP, LSTPTR, FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND) S (1) = @FIELD; S (2) = @PARM
S (3) = PRMNUM; S (4) = LSTPTR
CALL EMPSTR (S (5))
CALL PUSH (S,f>)

(STR (1) .EQ. @FORTRAN .OR. STR (1) .EQ. @ARRAY) OK = .FALSE.

RETURN
END

SUBROUTINE FLDST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /TS/ TKNSTR (22)
COMMON /DIRECT/ UP, DOWN
INTEGER FLDNAM (22), S (6), STR (4), EXP (2), IMPFRM (3), FLD (3)
INTEGER IMP (2)
LOGICAL OK, FOUND, UP, DOWN
INTEGER SPC (3), TYPE (4), LOCAL (6), TYPE2 (10)
DATA TYPE /"T","Y","P","E"/
DATA LOCAL /"L","O","C","A","L","("/
DATA RIGHT/")"/
DATA TYPE2 /"T","Y","P","E"," (","T","Y","P","E","("/

c
C TKNSTR holds the current field name. The stack entry holds
C the type of the last structure parsed, and an appropriate
C pointer. This 'field' may be a field or a subroutine or
C function reference.
c

c

WRITE (3,*) "Enter FLDST"
CALL POP (S,LEN)
LAST = S (2)
PTR = S (4)

C If the last structure was a record, then the pointer is to
C the head of the field list. Search for the field name and

D-56

C get its structure. Put this info back on the stack. This
~ C field may be followed by another field or a subscript. This

C can be determined by looking at the next token. REFGNl and
C REFGN2 will set up the necessary stack entries.
c

c

IF (LAST .EQ. @RECORD)
CALL SRCHLL (@ACROSS, TKNSTR, PTR, FLDPTR, FOUND)
IF (.NOT. FOUND) OK= .FALSE.

FI

(FOUND)
S (3) = FLDPTR
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN)
CALL GETLL (STRPTR, STR)
S (4) = STRPTR
CALL GETTKN
IF (TOKEN .EQ. @LEFTP) CALL REFGNl (S, STRPTR, STR, OK)

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK)
IF (.NOT. OK) (OK) CALL GETTKN FI

FI

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD)
S (2) = 0; CALL EMPSTR (S(5))
CALL PUSH (S,6)
CALL EMPSTR (CURSTR)
DOWN= .FALSE.; UP= .TRUE.

C If the last structure was a parameter form, then the pointer
C is to the head of the import list. Look up the routine name,
C and put a pointer to it on the stack. It will be followed by
C a parameter list.
C A call to an imported subroutine or function must pass
C the dope vector of the variable through which it is
C called. This is contained in the dope vector TYPE but
C must be referenced indirectly through a pointer which
C is also in TYPE. This is because different instances
C of a form may have different length dope vectors.
C So generate TYPE(TYPE(parm*+l))
c

(LAST .EQ. @PARM)
CALL SRCHLL (@DOWN, TKNSTR, PTR, ENTPTR, FOUND)
IF (.NOT. FOUND) OK= .FALSE.

(FOUND)
PRMNUM = S (3)
S (3) = @PARM
S (2) = @PARMLIST
CALL GETLL (ENTPTR,IMP)
NAME= IMP (1); S (4) =NAME
CALL EMPSTR (S (5))
CALL PUSH (S,6)
S (1) = @PARMLIST

1001
FI

c

D-57

CALL GETTKN
CALL NEWSTR (S (2), TYPE2, 10)
P = PRMNUM + 1
CALL NUMSTR (TEMP,P)
CALL ADDCHR (TEMP,RIGHT)
CALL ADDCHR (TEMP,RIGHT)
CALL JOINST (S (2), TEMP)
CALL PUSH (S,2)
WRITE (3,1001) (TKNSTR(I+2) ,I=l,TKNSTR(l))
FORMAT (45X,"Generate call to ",20Al)

C If the last structure was a previously defined form, or the
C current form, then this may be a field name or a subroutine
C or function name. Get the structure of the form and if it is
C a record, look for the field name. If it is there, get its
C structure and put this info on the stack. It may be followed
C by a further field or subscript list. This may be determined
C by looking at the next token. REFGNl and REFGN2 will set up
C the necessary stack entries.
c

c

(LAST .EQ. @FORM .OR. LAST .EQ. @CURRENT)
STRPTR = S (3)
CALL GETLL (STRPTR, STR)
IF (STR (1) .EQ. @RECORD)

FI

CALL SRCHLL (@ACROSS, TKNSTR, STRPTR, FLDPTR, FOUND)
(STR (1) • NE. @RECORD) FOUND = • FALSE.

IF (FOUND)
CALL GETLL (FLDPTR, FLD)
CALL GETAS (FLD (1), FLDNAM)
S (3) = FLDPTR
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN)
CALL GETLL (STRPTR, STR)
S (4) = STRPTR
CALL GETTKN
IF (TOKEN .EQ. ~LEFTP) CALL REFGNl (S, STRPTR, STR, OK)

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK)
IF (.NOT. OK) (OK) CALL GETTKN FI

FI

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD)
CALL PUSH (S,6)
DOWN= .FALSE.; UP= .TRUE.

C If the form structure is not a record, or the name is not in
C the field list, then this must be a subroutine or function
C reference. It may be a reference to an exported or a local name.
C Look for it in the export list. If it is there, get the local
C name, else assume that it is a local name already.

D-58

C The dope vector of the variable through which it is being
C called must be passed. If its type is the current form
C then pass the dope vector TYPE, else pass the appropriate
C part of the dope vector LOCAL.
c

FI
FI
RETURN
END

(• NOT. FOUND)
WRITE (3,1001) (TKNSTR(I+2) ,I=l,TKNSTR(l))
IF (LAST .EQ. @FORM)

FI

SPCPTR = PTR
CALL GETLL (SPCPTR,SPC)
ADDR = SPC (2)
FRMPTR = SPC (1)
CALL NEWSTR (TEMP,LOCAL,6)
CALL NUMSTR (TEMP2,ADDR)
CALL ADDCHR (TEMP2,RIGHT)
CALL JOINST (TEMP,TEMP2)

(LAST .EQ. @CURRENT)
FRMPTR = PTR
CALL NEWSTR (TEMP,TYPE,4)

NEXT = FRMPTR
CALL NEXTLL (NEXT,@DOWN)
CALL NEXTLL (NEXT,@DOWN)
CALL NEXTLL (NEXT,@DOWN)
CALL NEXTLL (NEXT,@DOWN); EXPPTR =NEXT
CALL SRCHLL (@ACROSS, TKNSTR, EXPPTR, ENTPTR, FOUND)
IF (FOUND) CALL GETLL (ENTPTR, EXP); NAME= EXP (2)

(.NOT. FOUND) CALL ADDAS (NAME, TKNSTR)
FI
S (2) = @PARMLIST; S (3) = @FORM; S (4) = NAME
CALL EMPSTR (S (5))
CALL PUSH (S,6)
S (1) = @PARMLIST; S (2) = TEMP
CALL PUSH (S,2)
CALL GETTKN

c

SUBROUTINE FLDND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN

D-59

COMMON /DIRECT/ UP, DOWN
COMMON /CURSTR/ CURSTR
INTEGER S (6) 1 STR (4) 1 FLD (3) 1 FLDNAM (22)
INTEGER TYPEOF (5), TAIL (2), RIGHT (1)
LOGICAL OK, UP, DOWN
DATA TYPEOF /"T","Y","P","E","("/
DATA TAIL/")","+"/, PLUS /"+"/
DATA LEFT/"("/, RIGHT/")"/
WRITE (3,*) "Enter FLDND"

C The Field Entry on the stack contains an indication of
C structure has just been passed. If it was a subscript
C list, it may be followed by another subscript list or
C a field. REFGNl and REFGN2 set up the necessary stack
C entries for these cases. If it is not followed by a
C subscript or a field, then generate an access expression.
c

c

CALL POP (S,LEN)
CALL JOINST (S (5),CURSTR)
IF (S (2) .EQ. @SUBSCRIPT)

IF (TOKEN .NE. @RIGHTP) OK = .FALSE.
(TOKEN .EQ. @RIGHTP)

STRPTR = S (4)
CALL NEXTLL (STRPTR,@ACROSS)
S (4) = STRPTR
CALL GETLL (STRPTR, STR)
CALL GETTKN
IF (TOKEN .EQ. @LEFTP)

CALL REFGNl (S, STRPTR, STR, OK)
IF (• NOT. OK)

(OK) DOWN = .TRUE.; UP = .FALSE.
FI

(TOKEN .EQ. @PERIOD)
CALL REFGN2 (S, STRPTR, STR, OK)
IF (• NOT. OK)

FI

(OK) DOWN = .TRUE.; UP= .FALSE.;
CALL GETTKN

C The offset to the field is in the symbol table. If it
C is known then generate the value and join it to the rest
C of the current access expression. If it is unknown then
C it will be in the dope vector TYPE, so generate
C TYPE(offsetaddress)+
c

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD)

FI
FI

c

D-60

FLDPTR = S (3); CALL GETLL (FLDPTR,FLD)
K = FLD (2)
IF (K .EQ. @KNOWN)

OFFSET = FLD (3)

FI

CALL NUMSTR (CURSTR,OFFSET)
CALL ADDCHR (CURSTR,PLUS)

(K .EQ. @UNKNOWN)
ADDR = FLD (3)
CALL NEWSTR (CURSTR,TYPEOF,5)
CALL NUMSTR (TEMP,ADDR)
CALL JOINST (CURSTR,TEMP)
CALL NEWSTR (TEMP,TAIL,2)
CALL JOINST (CURSTR,TEMP)

CALL JOINST (CURSTR,S (5))

C If the last structure was a field then generate an access
C expression for it as above. The routine TYPREF looks at
C the type of the current field and records it if it is
C a Fortran scalar.
c

c

(S (2) .EQ. @FIELD)
FLDPTR = S (3); CALL GETLL (FLDPTR,FLD)
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN)
CALL TYPREF (STRPTR)
K = FLD (2)
IF (K .EQ. @KNOWN)

OFFSET = FLD (3)

FI

CALL NUMSTR (CURSTR,OFFSET)
CALL ADDCHR (CURSTR,PLUS)

(K .EQ. @UNKNOWN)
ADDR = FLD (3)
CALL NEWSTR (CURSTR,TYPEOF,5)
CALL NUMSTR (TEMP,ADDR)
CALL JOINST (CURSTR,TEMP)
CALL NEWSTR (TEMP,TAIL,2)
CALL JOINST (CURSTR,TEMP)

CALL JOINST (CURSTR,S (5))

C If the last structure was a parm list then generate
C name(parmlist)
c

(S (2) .EQ. @PARMLIST)
IF (TOKEN .NE. @RIGHTP) OK = .FALSE.

(TOKEN .EQ. @RIGHTP)
CALL GETTKN

FI
c

D-61

CALL GETAS (S (4), FLDNAM)
CALL EMPSTR (TEMP)
CALL ADDSTR (TEMP,FLDNAM)
CALL ADDCHR (TEMP,LEFT)
CALL JOINST (TEMP,CURSTR)
CURSTR = TEMP
CALL NEWSTR (TEMP,RIGHT,l)
CALL JOINST (CURSTR,TEMP)

C If the last structure was none of the above then generate
C an access expression as above but there will be no
C accumulated access expression to join it to.
c

c

(S (2) .NE. @SUBSCRIPT .AND. S (2) .NE. @FIELD .AND.
X S (2) .NE. @PARMLIST)

FLDPTR = S (3); CALL GETLL (FLDPTR,FLD)
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN)
CALL TYPREF (STRPTR)
K = FLD (2)
IF (K .EQ. @KNOWN)

OFFSET = FLD (3)

FI
FI
RETURN
END

CALL NUMSTR (CURSTR,OFFSET)
CALL ADDCHR (CURSTR,PLUS)

(K .EQ. @UNKNOWN)
ADDR = FLD (3)
CALL NEWSTR (CURSTR,TYPEOF,S)
CALL NUMSTR (TEMP,ADDR)
CALL JOINST (CURSTR,TEMP)
CALL NEWSTR (TEMP,TAIL,2)
CALL JOINST (CURSTR,TEMP)

SUBROUTINE PLSTST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /REFLOC/ REFLOC
COMMON /DIRECT/ UP, DOWN
LOGICAL UP, DOWN
INTEGER S (2)
LOGICAL OK
WRITE (3,*) "Enter PLSTST"

C A parm list consists of a left paren followed by 1 or
C more expressions separated by commas and terminated by
C a right paren.

c

c

D-62

IF (TOKEN .NE. @LEFTP)
DOWN= .FALSE.; UP= .TRUE.

FI

(TOKEN .EQ. @LEFTP)
REFLOC = @PARM
S (1) =@EXPRESSION; CALL EMPSTR (S (2))
CALL PUSH (S,2)

RETURN
END

SUBROUTINE PLSTND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /REFLOC/ REFLOC
COMMON /DIRECT/ UP, DOWN
COMMON /CURSTR/ CURSTR
COMMON /CALL/ CALL
INTEGERS (5), COMMA (1)
LOGICAL CALL, OK, UP, DOWN, EMPTY, EMPTST
DATA COMMA /lH,/
WRITE (3,*) "Enter PLSTND"

C As each parameter is completed add its string to the
C parameter list string, separating them with commas.
C if the next token is a comma, then get another parm.
c

CALL POP (S,LEN)
EMPTY= EMPTST (S (2))
IF (EMPTY)

FI

CALL JOINST (S (2) ,CURSTR)
(.NOT. EMPTY)

CALL NEWSTR (TEMP,COMMA,l)
CALL JOINST (TEMP,CURSTR)
CALL JOINST (S (2) ,TEMP)

IF (TOKEN .EQ. @COMMA)
CALL PUSH (S,2)
REFLOC = @PARM
S (1) =@EXPRESSION; CALL EMPSTR (S (2))
CALL PUSH (S,2)
DOWN= .TRUE.; UP= .FALSE.

(TOKEN .NE. @COMMA)
CURSTR = S (2)
CALL = .TRUE.

FI
RETURN
END

c

SUBROUTINE SUBST (OK)
IMPLICIT INTEGER (A-Z)
COMMON /REFLOC/ REFLOC
INTEGER S (4), STR (4)
LOGICAL OK

D-63

WRITE (3,*) "Enter SUBST"

C A subscript list is any number of simple expressions,
C separated by commas and enclosed in parentheses.
C If the last structure was a Form, make sure that the
C structure of the Form is an array.
c

REFLOC = @SUBSCRIPT
CALL POP (S,LEN)
LAST= S (2); PTR = S (3)
IF (LAST .EQ. @ARRAY)

CALL PUSH (S,4)
S (1) = @SIMPLEXP; CALL EMPSTR (S (2))
CALL PUSH (S,2)

(LAST .EQ. @FORM .OR. LAST .EQ. @CURRENT)
NEXT = PTR; CALL NEXTLL (NEXT,@DOWN)
CALL NEXTLL (NEXT,@DOWN)
CALL NEXTLL (NEXT,@ACROSS); STRPTR =NEXT
CALL GETLL (STRPTR,STR)
IF (STR (1) .EQ. @ARRAY)

FI
FI
RETURN
END

S (2) = @ARRAY; S (3) = STRPTR
CALL PUSH (S,4)
S (1) = @SIMPLEXP; CALL EMPSTR (S (2))
CALL PUSH (S,2)

(STR (1) .NE. @ARRAY) OK = .FALSE.

SUBROUTINE SUBND (OK)
IMPLICIT INTEGER (A-Z)
COMMON /T/ TOKEN
COMMON /REFLOC/ REFLOC
COMMON /DIRECT/ UP, DOWN
COMMON /CURSTR/ CURSTR
INTEGER TAIL (2), DIGIT (10), LOCAL (6), TYPEOF (5), DOPE (4)
INTEGER ARR (4), S (4), RNG (2)
LOGICAL OK, UP, DOWN
DATA TAIL/")","*"/
DATA DIGIT /"0","1","2","3","4","5","6","7","8","9"/
DATA LEFT/"("/, RIGHT/")"/, COMMA/","/
DATA LOCAL /"L","O","C","A","L"," ("/
DATA TYPEOF /"T","Y","P","E","("/

c

D-64

DATA DOPE /"D","O","P","E"/
DATA PLUS /"+"/
WRITE (3,*) "Enter SUBND"

C If the next token is a comma, then there are more
C subscripts to follow. Add the expression string to
C the subscript list string.
c

c

IF (TOKEN .EQ. @COMMA)
CALL POP (S,LEN)
CALL JOINST (S (4) ,CURSTR)
CALL ADDCHR (S (4) ,COMMA)
CALL PUSH (S,4)
REFLOC = @SUBSCRIPT
S (1) = @SIMPLEXP; CALL EMPSTR (S (2))
CALL PUSH (S,2)
DOWN = .TRUE.; UP= .FALSE.

C If it is not a comma, then the subscript list is complete.
C Generate an access expression as follows
C DOPEn(rangelist,parmlist)*basesize
C n is the number of ranges in this array. The rangelist is
C the upper and lower bounds for this array. If this array
C is part of the current form, then the rangelist will be
C in the dope vector TYPE. If not, then it will be in the
C dope vector LOCAL. The base size is in the symbol table
C entry for this array. If it is known then generate the
C value, if not generate TYPE (addr) •
c

(TOKEN .NE. @COMMA)
CALL POP (S,LEN)
ARRPTR = S (3)
STRPTR = ARRPTR; CALL NEXTLL (STRPTR,@ACROSS)
CALL TYPREF (STRPTR)
CALL GETLL (ARRPTR,ARR)
NUMRNG = ARR (4)
CALL NEWSTR (TEMP,DOPE,4)
CALL ADDCHR (TEMP,DIGIT (NUMRNG+l))
CALL ADDCHR (TEMP,LEFT)
RNGPTR = ARRPTR; CALL NEXTLL (RNGPTR,@DOWN)
CALL GETLL (RNGPTR,RNG)
IF (RNG (1) .EQ. @KNOWN) CALL NEWSTR (TEMP2,LOCAL,6)

(RNG (1) .EQ. @UNKNOWN) CALL NEWSTR (TEMP2,TYPEOF,5)
FI
CALL JOINST (TEMP,TEMP2)
ADDR = RNG (2)
CALL NUMSTR (TEMP2,ADDR)
CALL ADDCHR (TEMP2,RIGHT)
CALL ADDCHR (TEMP2,COMMA)

c

D-65

CALL JOINST (TEMP,TEMP2)
CALL JOINST (TEMP,CURSTR)
CURSTR = TEMP
CALL NEWSTR (TEMP,TAIL,2)
CALL JOINST (CURSTR,TEMP)
IF (ARR (2) .EQ. @KNOWN)

FI
FI
RETURN
END

BASE = ARR (3)
CALL NUMSTR (TEMP,BASE)
CALL ADDCHR (TEMP,PLUS)
CALL JOINST (CURSTR,TEMP)

(ARR (2) .EQ. @UNKNOWN)
CALL NEWSTR (TEMP,TYPEOF,5)
ADDR = ARR (3)
CALL NUMSTR (TEMP2,ADDR)
CALL ADDCHR (TEMP2,RIGHT)
CALL ADDCHR (TEMP2,PLUS)
CALL JOINST (TEMP,TEMP2)
CALL JOINST (CURSTR,TEMP)

SUBROUTINE WRAP
IMPLICIT INTEGER (A-Z)
COMMON /REFLOC/ REFLOC
COMMON /REFTYP/ REFTYP, TYPSET
COMMON /CURSTR/ CURSTR
COMMON /T/ TOKEN
LOGICAL TYPSET
INTEGER CVTR (5), CVTL (5), RP (1)
DATA CVTR /"C","V","T","R","("/
DATA CVTL /"C","V","T","L","("/
DATA RP /")"/

C All form type variables are generated as vectors of integers.
C Any non-scalar variables or components can only be operated
C on by subroutines or functions. However Fortran scalars may
C be operated on by infix arithmetic. This causes a problem
C since a reference to a real or logical component will be
C generated as a reference to an integer array. In order to
C correct this, a type changing function is wrapped around
C the reference.
c

WRITE (3,*) "In WRAP 11

IF
(REFLOC .EQ. @LHS)
(REFLOC .NE. @LHS)

IF

c

(.NOT. TYPSET)
(TYPSET)

.D-66

TYPSET = .FALSE.
IF

(REFTYP .EQ. @INTEGER)
(REFTYP .NE. @INTEGER)

IF
(REFLOC .EQ. @PARM .AND. (TOKEN .EQ. @COMMA .OR.

X TOKEN .EQ. @RIGHTP))
(REFLOC .NE. @PARM .OR. (TOKEN .NE. @COMMA .AND.

X TOKEN .NE. @RIGHTP))

FI
FI
RETURN
END

FI
FI

WRITE (3,*) "Wrapping"
IF

FI
IF

(REFLOC .NE. @PARM)
(REFLOC .EQ. @PARM)

REFLOC = @RHS

(REFTYP .EQ. @REAL)
CALL NEWSTR (TEMP,CVTR,5)

(REFTYP .EQ. @LOGICAL)
CALL NEWSTR (TEMP,CVTL,5)

FI
CALL JOINST (TEMP,CURSTR)
CURSTR = TEMP
CALL NEWSTR (TEMP,RP,l)
CALL JOINST (CURSTR,TEMP)

SUBROUTINE TYPREF (PTR)
IMPLICIT INTEGER (A-Z)
COMMON /REFTYP/ REFTYP, TYPSET
LOGICAL TYPSET
INTEGER STR (4), SPC (3)

C This routine records the type of a reference if it is
C a Fortran scalar or a form which is a Fortran scalar.
c

WRITE (3, *) "In TYPREF"
STRPTR = PTR
CALL GETLL (STRPTR,STR)
IF {STR (1) .NE. @FORM)

(STR (1) .EQ. @FORM)
LOOP

D-67

WHILE (STR (1) .EQ. @FORM)
LOOPBY

CALL NEXTLL (STRPTR,@DOWN)
CALL GETLL (STRPTR,SPC)
STRPTR = SPC (1)
CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@DOWN)
CALL NEXTLL (STRPTR,@ACROSS)
CALL GETLL (STRPTR,STR)

END LOOP
FI
IF (STR (1) .NE. @FORTRAN)

(STR (1) .EQ. @FORTRAN)
TYPSET = .TRUE.
REFTYP = STR (4)

FI
RETURN
END

