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Abstract 

This project is about the design and implementation 

of a new programming language, Mytran. Two new control 

statements are implemented in Mytran. Data abstraction is 

supported through parameterized types or "type 

constructors". 
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Chapter I 

Introduction 

This project is about the design and implementation 

of a language which supports data abstraction. The design 

is based on intuitive ideas of what a programming language 

should do. The implementation is as a Fortran 

preprocessor. In this chapter, I will outline the goals 

and objectives of the project by answering two questions. 

First, why design a language to support data abstraction. 

Second, why implement it as a Fortran preprocessor. 

To answer the first question, we need first of all to 

define what is meant by the term data abstraction. 

Hoare [1972] defines abstraction as the "recognition of 

similarities between certain objects and the decision 

to concentrate on these similarities and to ignore ••• the 

differences". 

Thus a set of objects may be represented by a general 

definition or abstraction, which only describes the 

similar aspects of the objects and leaves the unique 

aspects of each object open to later description. For 

example, a book, to a student, is a collection of pages, 
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bound in a cover. The nature of the information in the 

book, whether it is words or maps or tables, or whether it 

is blank and is to have words or maps or tables put into 

it, is not included in the abstraction. The specific 

cases of text book, atlas, book of tables, or note book, 

all add additional information to the book abstraction. 

However, the operations of opening the book to the first 

or last page, turning a page forwards or backwards, 

closing the book, etc., are all included in the abstract 

definition of a book, and do not change in the specific 

cases. 

From different points of view, the same set of 

objects may have a different abstraction. To a bookstore, 

the student's books are items that take up shelf space, 

sell at certain prices, must be reordered when they sell 

out, etc. 

In programming, abstraction allows us to define 

complex objects or models in independent layers. 

Continuing with our abstract books, the operations to be 

performed on a book, may be programmed without regard to 

the many forms of information that it may hold. And the 

operations on a page may be programmed without regard to 

the fact that it will be held in a book. In fact, the 
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less they know about each other, the better. A certain 

minimum interface is necessary. For example, let us say 

that one of the operations to be performed on a book, is a 

search for a word. The book abstraction defines the 

opening and turning of pages. But it must pass the word 

to the page abstraction to see if it is contained in a 

page. Thus if this search operation is to be part of the 

abstract definition of a book, each different abstract 

definition of a page must include the ability to search 

its contents. 

Abstraction has been supported by programming 

languages, via the subprogram, right from the beginning. 

A set of statements may be collected together under one 

name, and their execution invoked by referencing that 

name. Subprograms may be written to perform general 

operations on classes of objects through the use of 

parameters. Thus, by a careful discipline of programming, 

it is possible to define independent data abstractions in 

any language. Obviously, as the number of language 

facilities supporting data abstraction decreases, the 

difficulty of maintaining the discipline increases. For 

example, Fortran has only one language mechanism for 

handling collections of data, namely the array. It is a 

true abstraction in that an array may contain any type of 



4 

scalar information, integer, real, logical etc., for which 

the access remains the same and individual components may 

be operated on without reference to the fact that they are 

in an array. However, it requires an extremely messy 

discipline to implement anything approaching Pascal-type 

records in Fortran. Wirth [1980] gives a history of the 

development of data abstraction in programming languages. 

In particular, he comments that few good implementations 

exist. Those that do exist are not widely available. 

This makes the design and implementation of a new language 

a worthwhile goal. 

The second question is, why implement a new language 

via a Fortran preprocessor. This may be considered in two 

parts, first why implement a new language via a 

preprocessor, and second why use Fortran as the target 

language. The reasons for using a preprocessor are 

related to the fact that this language design is 

experimental. This means that many attributes of a 

programming language are not of concern to us. For 

example the method of passing parameters, or the method of 

storage allocation are not of interest. A preprocessor 

allows new language features to be added to the source 

language, while allowing any of the required attributes of 

the target language to be retained. Also, the efficient 
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generation of efficient code is not a requirement. So a 

preprocessor is a relatively easy technique for 

implementing a new language. 

The reason for using Fortran as the target language 

is precisely the same reason that it is currently 

considered unacceptable by many programmers. It has no 

rigorous type-checking of parameters, and allows very easy 

use of lots of statement labels. These two properties 

which make reading and checking of programs so confusing, 

are absolutely necessary for generating code. Another 

advantage of Fortran is that it is widely available. This 

combined with the preprocessor approach, means that a 

language implemented in this manner is easily made 

available on a wide range of computers. 

So the goal of this project is to produce a language 

that supports data abstraction, and is reasonably 

portable. We will also design some new control statements 

since those in Fortran do not readily support structured 

programming. Since this is an experimental language, we 

will try to design new control statements rather than 

implement some that already exist in other languages. 

The rest of this report describes the design and 
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implementation processes. Chapter 2 discusses 

preprocessor techniques and examples. Chapter 3 discusses 

principles and examples of control statements. Chapter 4 

does the same for data structures. Chapter 5 discusses 

the implementation techniques used. Chapter ~ discusses 

the successes and failures of the project. 



Chapter II 

Preprocessor Techniques 

A preprocessor is a translator. It converts a 

program written in a source language into one written in a 

target language. A compiler is also a translator and 

though there are some translators which are clearly 

considered to be compilers and others that are clearly 

considered to be preprocessors, there is no precise 

definition that separates the two. On the one hand a 

compiler normally translates from a high level language to 

an executable or near executable language and there is a 

large difference between its source and target languages. 

On the other hand a preprocessor normally translates from 

a high level language to another high level language. 

There are usually only small differences between its 

source and target languages but this is not always the 

case. For example, a preprocessor might be used to 

translate a program written in an extended version of 

Pascal into a program written in standard Pascal. The 

Pascal compiler would then be used to translate the 

program into executable code. However a preprocessor 

could also be used to translate from Algol to Fortran, 

which are very different source and target languages. 

7 
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Solntseff and Yezerski [1974] give a very detailed 

analysis of the different stages of translation and the 

nature of the extensions that can be made at each of these 

stages. For the remainder of this chapter, preprocessors 

are considered to be simple translators, falling into 

Solntseff and Yezerski's lexical and syntactic extension 

classes. 

Preprocessors of this type are used to add new 

features or otherwise enhance an existing language. This 

is much cheaper than writing or modifying a compiler. The 

preprocessor need only examine the source program for 

those features that it is adding. Any features already in 

the language may just be copied to the target program, to 

be handled by the compiler. 

We now look at some general classes of preprocessors and 

their properties as well as some examples. This is not 

intended to be an exhaustive description of preprocessors 

but rather it is a brief introduction to them. 

2.1 Macro Preprocessors 

A macro preprocessor translates from source to target 

language by using patterns of text. There is a source 
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pattern, and a target pattern. The patterns consist of 

fixed text and may or may not include text collecting and 

generating parameters. 

The fixed text in the source pattern may take the 

form of keywords which set the boundaries of the 

parameters, as in 

(1) ADD %1 TO %2 GIVING %3 

Or the fixed text may just be a macro name, with 

parameters separated by commas, as in 

(2) SUM %1, %2, %3 

In the source pattern, the parameters collect text. 

A macro is invoked by using its name, or its first 

keyword. The pattern is th~n matched and source text is 

assigned to the parameters as they occur in the pattern. 

Thus, pattern (1) would be invoked by 

(3) ADD A TO B GIVING C 

and pattern (2) would be invoked by 

( 4) SUM A, B, C 

In either case, parameters %1, %2, and %3 would be 

assigned the text A, B, and C respectively. 
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In the target pattern, the fixed text consists of 

full or partial statements in the target language. The 

parameters, which now generate text, are interspersed 

within the fixed text, to complete partial statements or 

generate entirely new statements. A reasonable target 

pattern to use with source patterns (1) or (3) is 

( 5) LOAD %1 
ADD %2 
STORE %3 

An equally valid target pattern is 

(~) %3 = %1 + %2 

The target code is generated by copying the fixed text and 

when a parameter is encountered, the text collected by the 

source pattern is generated. Thus, pattern (5), whether 

used with source pattern (1) or (3), when invoked by the 

appropriate statement will generate 

(7) LOAD A 
ADD B 
STORE C 

Also, pattern (6), used with either source pattern will 

generate 

(8) C = A + B 

Macro preprocessors were originally used with 

assembly languages and are still most commonly associated 
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with them. However, as we have seen, a general purpose 

macro processor makes no requirements on its source and 

target languages. In fact, it may be used on any file of 

text. 

A number of Fortran macro processors are available. 

One that was written for use with Fortran, but is in fact 

general purpose, is Mortran2 [Cook 1975]. It is normally 

used with a preamble of macros which implement a 

structured version of Fortran. The programmer may then 

add to or override this set. A typical macro in the 

Mortran2 preamble is 

(9) %'UNTIL# < # >' = 
':1: IF #1 GOTO :2:; #2; GOTO :1:; :2: CONTINUE' 

Mortran2 uses colons to indicate labels and semi-colons to 

separate statements. This macro will cause the source 

statement 

(10) UNTIL (I .GT. 20) <I=I+l; PRINT i*i> 

to be translated into 

(11) 1 IF (I .GT. 20) GOTO 2 
I=I+l 
PRINT I*I 
GOTO 1 

2 CONTINUE 

Lexical macro preprocessors have been used for a long 

time. They have become a powerful language extension 
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tool. One problem with them is that since they know 

nothing of the syntax of their source languages, they 

cannot even recognize errors, let alone recover from them. 

Another problem is that the syntax for defining macros is 

usually very different from the syntax of the source 

language. This adds to the complexity of the programming 

task and adds confusion to the reading of programs. Much 

more complete discussions of macros are given in 

[Solntseff 1974], (Brown 1974], (Campbell-Kelly 1973]. 

2.2 Statement Preprocessors 

This class of preprocessors adds new statement types 

to an existing language. When the term preprocessor is 

used, it most often refers to this type of system. In 

fact the most common use of the preprocessor concept is to 

add new statement types to Fortran to allow structured 

programming techniques. 

These preprocessors work like restricted macro 

processors. In the terminology of Solntseff and Yezerski 

they are called syntactic extension mechanisms. Source 

patterns and target patterns are used but they are built 

into the system. For example, the IF statement in 

DEFT [Steele 1974] uses the source pattern 



13 

(12) IF %1 THEN %2 ELSE %3 END 

and the target pattern 

(13) IF %1 GOTO Ll 
GOTO L2 

Ll %2 
GOTO L3 

L2 %3 
L3 CONTINUE 

DEFT checks the syntax of this statement and its 

parameters. For instance, if parentheses are not balanced 

in a condition, this will be flagged as an error, and some 

recovery attempted. 

A wide variety of statements is supported by this 

class of system, usually one or more variations of the 

IF-THEN-ELSE statement and several loop structures. 

IFTRAN allows the following statement 

(14) WHILE (I .LT. J) 
I = I + 1 
END WHILE 

which generates 

(15) 99999 CONTINUE 
IF (.NOT. (I .LT. J)) GOTO 99998 
I = I + 1 
GOTO 99999 

99998 CONTINUE 

Ratfor [Kernighan] allows 



14 

(16) FOR (I=l; I<20; I=I+l) 
PRINT I*I 

which generates 

(17) I=l 
GOTO 99999 

99998 CONTINUE 
I=I+l 

99999 IF (.NOT.(I.LT.20)) GOTO 99997 
PRINT I*I 
GOTO 99998 

99997 CONTINUE 

As with these examples, the translation of individual 

statements is always very simple and straightforward. 

However, when structures are nested more than two or three 

levels deep, it becomes quite difficult to duplicate the 

translation manually. 

Many of these systems also support other features, 

for example long variable names, alphanumeric labels, or 

free format statement entry. 

2.3 Miscellaneous Preprocessors 

There are as many of these as there are ideas about 

what a programming language should do. 

Many algorithms are most naturally expressed 

recursively. It is quite difficult to write some of these 
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in a language which does not support recursion. Another 

large class of algorithms uses the concept of coroutines. 

Both of these concepts involve a different way of handling 

the linkage between subprograms. There are several 

preprocessors which support these capabilities. They use 

new statements to indicate when the alternate linkages are 

to be used. For example, the Star (Arisawa 1979] system 

uses the statements RECCAL and RECRET to indicate a 

recursive call and a recursive return. These new 

statements are translated in a straightforward manner into 

the target language. This is much the same as the 

statement preprocessors. However, these statements also 

generate calls to system routines to maintain return 

address and variable stacks. The system described by 

Skordilakis [1978] uses the RESUME statement to restart a 

coroutine at the point at which it was last interrupted. 

The statement 

(18) RESUME A 

is translated into 

(19) IP = 2 
CALL SYS (2,2,3) 
CALL A 

902 CONTINUE 

IP is a local variable which is used by a computed GOTO to 

branch to statement 902, when this routine is RESUMEd. 
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SYS keeps track of return addresses. The parameters are 

codes for the type of statement, the calling routine, and 

the called routine. Although the translation is quite 

simple, the net effect is quite complex. 

Another common problem is that of handling 

non-standard data types. This involves defining storage 

for variables, and also new operators to use with them. 

The Augment system [Crary 1974] allows the programmer to 

define subprograms to perform operations on a non-standard 

data type. These subprograms are then associated with one 

of the standard infix operators, or possibly with some new 

operator symbol. For example, a routine to multiply two 

double precision complex numbers may be written, and 

associated with the symbol * When a statement such as 

(20) A = B * C 

is encountered in the source, where A, B, and C have been 

declared to be double precision complex, a call to the 

subroutine is generated. If the multiplication occurs as 

part of a longer expression, the call will be generated 

using a temporary location for the result. This temporary 

location will then be passed as an operand to some other 

routine. This means that support packages for 

non-standard data types may be written. Then algorithms 



17 

written for standard data types, may be recompiled in 

conjunction with the appropriate support package. If all 

the necessary routines are in the package, the algorithm 

will then work on the new data type. 

2.4 Summary 

We have seen that a wide variety of programming 

language features may be implemented by preprocessing. 

The major disadvantage of all of these systems is that 

they are an extra layer between the programmer and the 

computer. That means an extra layer of processing to get 

a source program into executable form and an extra layer 

of tracing during debugging. The latter can be quite 

frustrating, since many systems have only recently begun 

to give high level language tracebacks and snapshots of 

error points, which unfortunately refer to the target 

language of the preprocessor, not the source. The 

advantage is that preprocessing is a fast and cheap way to 

provide new language features. 



Chapter III 

Control Statements 

Control statements alter the sequence of execution of 

other statements. The statement 

IF (condition) 
blockl 

ELSE 
block2 

END IF 

alters the sequence of execution in one of two possible 

ways. Either the first block is executed and the second 

block is skipped. Or the first block is skipped, and the 

second executed. There are two types of control 

statements used in structured programming. One type 

controls the selection of statements for execution. The 

other controls repeated execution of statements. The 

IF-ELSE-ENDIF statement above is an example of a selective 

control statement. 

Control statements do not change the values of any 

program variables. They determine which statements that 

do change program variables will be executed. So they 

have a much more far reaching effect on the results of a 

program than other executable statements. Because of 

18 
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this, it is quite important that the effect of a control 

statement be very clear. 

3.1 Selective Control Statements 

A selective control statement determines which of the 

statements under its control will be executed. The 

simplest form of this is the Fortran IF statement. 

IF (condition) statement 

This allows a single statement to be executed or not, 

depending on the evaluation of a single condition, 

obviously a limited form of control. It is most often 

used in conjunction with unconditional branches to model 

more complex control statements. A more complex form is 

the IF-ELSE-ENDIF statement used in many languages. 

IF (condition) 
blockl 

ELSE 
block2 

END IF 

This allows any number of statements to be controlled. 

And the statements are organized into two blocks, only one 

of which is executed depending on the evaluation of a 

single condition. The range of control and the effect of 

the statement are made clear by the keywords. This form 

encourages binary thinking. That is, problems are solved 

by repeatedly dividing them in half. This is not always 
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the most natural approach. 

Another selective control statement is the CASE 

statement. 

CASE OF (expression) 
CASE (expression) 

block 
CASE (expression) 

block 

ELSE 
block 

ENDCASE 

This allows the selection of one block of statements from 

any number of blocks. The selection is made by comparing 

the first expression to the expressions in each of the 

following CASE lines. If an equality is found, the 

associated block is executed and the rest of the statement 

is skipped. If no equality is found, the block associated 

with the ELSE is executed. This statement is most comonly 

used in (and in some languages is restricted to) 

situations where the first expression is simply a 

variable, and the subsequent expressions are constants. 

The conditions being evaluated are then quite simple and 

the meaning of the statement easily understood. 

A common property of all of these statements is that 
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some default for continued processing always exists if 

none of the specified conditions is true. Either the 

statements associated with an ELSE are executed, or if no 

ELSE is used, the statement is skipped. Thus no matter 

what the state is on entering the statement, processing 

always continues after leaving it. This can be very 

dangerous if some condition has been overlooked, or some 

invalid input is given. 

The original Pascal Case statement which did not 

include an ELSE block and a more recent proposal by 

Dijkstra [1976] do not have this property. In Dijkstra's 

IF statement, blocks of statements are associated with 

boolean guards. The guards are evaluated in some possibly 

random order. If one is found to be true, the associated 

code is executed, and the rest of the statement is 

skipped. If none of the guards are true, execution is 

aborted. This means that all possible conditions must be 

considered. If some unforseen circumstance arises, 

execution does not proceed along some default path. 

3.2 Repetitive Control Statements 

A repetitive control statement determines how many 
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times the statements under its control are executed. This 

is done by repeatedly executing a statement or group of 

statements until there is some reason to stop. The 

simplest form of this is the DO-TIMES statement. 

DO n TIMES 
block 

END DO 

This executes the block of statements as many times as 

required. Another form is the WHILE or UNTIL loop used in 

many languages. 

WHILE (condition) 
block 

ENDWHILE 

This continues to execute the block of statements as long 

as the condition is true. Once the condition is false, 

the statements are no longer executed. 

These statements consist of two parts. They have a 

single condition for stopping, and a loop body that is to 

be repeatedly executed. More flexible versions of this 

have bBen proposed. These allow multiple stopping 

conditions and/or placement of stopping conditions 

anywhere in the loop body. The ANSI Fortran committee 

have identified ten variations of the two part loop, and 

are considering ways of accommodating them in a new 

standard [Martin 1978], ~Meissner 1978], [Wagener 1978]. 
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Unfortunately, a two part loop does not contain or 

identify all of the components of a repetitive construct. 

Loop initialization takes place outside of the loop and 

the iteration mechanism is not identified as a separate 

component. Even the original Fortran DO statement 

contained these pieces, although on a very simple level. 

The initial value, stopping value, and iteration increment 

may all be specified. However, they are each restricted 

to be a single integer assignment. 

The RATFOR [Kernighanl preprocessor extends the 

Fortran DO statement in a very nice way. Each of the 

three components in the loop header is allowed to be a 

single Fortran statement, including a call to a 

subroutine. This gives each of the four components a 

little more power, reducing the need for mixing the 

iteration mechanism in with the loop body, etc. However, 

the sequence of execution of the components is still 

implicit and fixed. 

A loop statement that does not fit this pattern is 

the DO statement of Dijkstra [1976] 
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(guard) block 
(guard) block 

Blocks of statements are associated with boolean guards, 

or conditions. In each iteration, the guards are 

evaluated, and when a true-one is found, its block is 

executed. This continues until none of the guards are 

true. 

Another way of looking at repetitive control 

statements is to observe that in many cases, each 

iteration selects a component from a data structure, and 

performs some operation on it. Thus the iteration 

mechanism is related to the data structure. Again, the 

Fortran DO loop is an excellent example. The fixed 

integer increment is a very reasonable mechanism for 

selecting elements from arrays, or rows from matrices. 

However, even without sophisticated data structuring 

facilities, it is quite common to model trees or lists 

using arrays. When this is done, more complex iteration 

mechanisms are required to select components. This 

approach has been taken in Alphard [Wulf 1977], which 

allows specification of an iteration mechanism for user 
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defined structures. This mechanism is called a generator 

and includes the initialisation and stopping conditions as 

well. It is invoked by a special statement and the 

sequence of initializing, selecting components for each 

iteration, and testing for termination is fixed. 

3.3 Mytran Control Statements 

In designing new control statements for this 

language, the main consideration has been that this is an 

experimental language. Therefore, it is more important to 

design something different than to copy a design that has 

already proven itself. Apart from this, there are also 

the considerations of clarity, flexibility, and ease of 

use. The effect of the statement must be easy to 

understand. The statements must handle a wide variety of 

situations. And the statements must be a convenient, 

concise notation for the control function they are 

performing. 

3.3.1 IF Statement 

The function of a selective statement, as stated 

earlier, is to determine which of the statements under its 

control will be executed. The design used in Mytran is 
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based on Dijkstra's IF statement. Blocks of statements 

are associated with boolean expressions. 

IF 

FI 

(KEY GT ENTRY) 
LOW = MID 

(KEY LT ENTRY) 
HIGH = MID 

(KEY EQ ENTRY) 
FOUND = TRUE 

When the statement is executed, all of the expressions are 

evaluated. Exactly one of them must be true. The block 

of statements associated with that expression is executed. 

If none of the expression are true, or more than one of 

them is true, execution is aborted. 

This statement form allows as many conditions as 

necessary to be tested at the same level of nesting. The 

example above would require two levels of nesting using 

the IF-ELSE statement. The requirement that exactly one 

alternative be true and the lack of an ELSE block, means 

that conditions are very carefully specified. 

The following example shows how a Fortran IF 

statement could be written in Mytran. 

IF (A.LT.B) A=A+l IF 

FI 

(A LT B) A=A+l 
(A GE B) 
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The extra condition is required since at least one 

condition must be true or execution will abort. The next 

example shows how a Pascal IF-THEN-ELSE statement is 

written in Mytran. 

If (A LT B) IF 
Then A := A + 1 (A LT B) A = A + 1 
Else (B LT A) B = B + 1 

If (B LT A) (A EQ B) A = 2 * A 
Then B := B + 1 FI 
Else A := 2 * A· I 

Here, the third condition is implicit in Pascal but must 

be explicitly stated in Mytran. The next example shows 

how a Pascal Case statement could be written in Mytran. 

Case I of IF 
1 A := A + 1; (I EQ 1) A = A + 1 
2 B := B + 1; (I EQ 2) B = B + 1 
3 A := A * 2; (I EQ 3) A = A * 2 

End; FI 

In both of these statements execution aborts if I does not 

have the value 1,2 or 3. 

3.3.2 LOOP Statement 

The Mytran repetitive control statement has four 

parts. They are initialization, stopping conditions, loop 

body, and iteration mechanism. Each of these consists of 

a keyword followed by any number of statements. The parts 

are executed in the order in which they occur in the text 

and, except for initialization which must come first, the 
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parts may be used in any order. Any of them may be left 

out if they are not needed. To allow nesting of loops, 

the entire statement is bracketed by the keywords LOOP and 

ENDLOOP. 

LOOP 
GIVEN block 
WHILE block 
DO block 
LOOPBY block 

END LOOP 

The initialization section consists of the keyword 

GIVEN, followed by any number of statements. 

GIVEN 
CURRENT = ROOT 
LEN = STRLEN (KEY) 

If it is used, it must immediately follow the keyword 

LOOP. It is executed only once, before the repetitive 

portion of the loop is entered. In fact, the word GIVEN 

has no effect on execution. The reason it is included is 

that loops usually require some initialization. This may 

be assigning a starting value to a loop control variable, 

or it may be zeroing a matrix, which itself requires a 

loop. By using the GIVEN block, the initialization is 

clearly identified as part of the loop. The repetitive 

portion of the loop begins at the end of the GIVEN block. 

The stopping conditions section of the loop consists 
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of the keyword WHILE followed by any number of statements 

and conditions. 

WHILE 
(CURRENT NE 0) 
ENTRY = TREE (CURRENT,3) 
PTR = STRING (ENTRY,l) 
LEN = STRING (ENTRY,2) 
RESULT =MATCH (KEY,KEYLEN,CHARS(PTR) ,SLEN) 
(RESULT NE EQUAL) 

Conditions are boolean expressions enclosed in 

parentheses. The entire WHILE block is executed 

sequentially in each iteration and as conditions are 

encountered, they are evaluated. As soon as one evaluates 

to false, it causes a branch to the end of the loop. Any 

number of conditions may be included in a WHILE block and 

are evaluated independently. In the above example, the 

two stopping conditions could not be combined into a 

single one. The calculation of the second one is invalid 

if the first one is false. If a standard single condition 

loop were used, additional branches and boolean variables 

would be necessary. Statements are also allowed as part 

of the WHILE block. This is because, as in the above 

example, there are frequently some calculations which are 

solely related to stopping the loop, rather than producing 

some result. 

The iteration mechanism section of the loop consists 
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of the keyword LOOPBY, followed by any number of 

statements. 

LOOPBY 
IF 

(RESULT EQ LESS) CURRENT= TREE (CURRENT,l})) 
(RESULT EQ GREATER) CURRENT = TREE (CURRENT,2) 

FI 

As with the GIVEN block, the keyword LOOPBY has no effect 

on execution, though it is part of the repetitive portion 

of the loop. It merely serves to identify those 

statements in the loop which are used to "get from" one 

iteration to the next. In a simple counting loop, this 

would be the increment or decrement of the loop control 

variable. In a tree search, as above it is the selection 

of the appropriate subtree for continued searching. 

These three sample blocks give a complete searching 

loop. It is typical of searching loops that there is no 

loop body. This is because there is no information being 

accumulated. All we are doing is getting the next item to 

look at, and deciding whether or not to stop. 

The loop body section consists of the keyword DO 

followed by any number of statements. These are the 

statements which actually accumulate a result. Again the 

keyword DO has no effect on execution. As an extension to 
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the above examples, if in addition to searching we wanted 

to keep track of the pathway used, we could add the 

following. 

DO PATH (LEVEL) = RESULT 

Of course, the variable LEVEL would have to be 

initialised, tested for overflow, and incremented, in the 

other blocks as well. 

The syntax of this statement is somewhat wordy since 

there are more keywords than are usual in control 

statements. However, it is a more complete framework 

within which to design a loop, or determine what a loop is 

doing. 

The following example shows how a Fortran DO loop is 

written in Mytran. 

DO 10 I = 1' 5 LOOP 
10 A (I) = 0 GIVEN I = 1 

DO A (I) = 0 
LOOPBY I = I + 1 
WHILE (I LE 5) 

END LOOP 

One of the common complaints about the Fortran DO loop is 

that it does not allow 0 iterations. The following 

example shows how this can be done in a Mytran loop. 
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DO 10 I = J, K LOOP 
10 A (I) = 0 GIVEN I = J 

WHILE (I LE K) 
DO A (I) = 0 
LOOPBY I = I + 1 

END LOOP 

The next example shows how a Pascal While loop can be 

written in Mytran. 

I : = 1; 
While (A(I) NE K) DO 

I := I + 1; 

LOOP 
GIVEN I = 1 
WHILE (A ( I ) N E K) 
LOOPBY I = I + 1 

END LOOP 

The loop initialization is contained in the GIVEN block rather 

than being outside the loop. The Pascal Repeat-Until loop 

is easily translated into Mytran since the Mytran WHILE 

block can occur after the DO and LOOPBY blocks. 



Chapter IV 

Data Types 

4.1 Definitions 

For the purposes of this discussion the following 

definitions will be used. A "data type" is a set of 

values together with operations defined on members of that 

set. A "data structure" is a member of the set of values 

of a particular type. A data structure may be an 

indivisible unit or it may be a collection of items and 

each item may be an indivisible unit or a further 

collection of items. For example, an integer is a data 

type. Its set of values is the set of integers and its 

operations are integer arithmetic. The number 27 is a 

data structure of type integer. An array of three 

integers is also a data type and (3, 6, 2) is a data 

structure of that type. In programming languages, a 

variable is a named object which is declared to be of a 

certain type. It has as its value a data structure of 

that type. Operations defined for the type are applied to 

the data structure by using the name of the variable. For 

example, I and J are integers and their values are 27 and 

13. To indicate that these values are to be added 
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together, an operation which is defined for integers, we 

write I + J. 

Data structures are used to model "real world" 

objects and situations. As these become more complex it 

becomes necessary to use more complex data structures and 

this requires that we be able to describe more complex 

data types. In order to build these, we need some 

primitive types, some rules for combining them and a 

language for describing a type in terms of these primitive 

types and rules. All programming languages have some 

ability to build data types, for example in Fortran the 

primitive types are the scalar types, Integer, Real, 

Logical, etc. which may be combined as arrays. The 

language for describing types is the language of the 

Fortran declaration statements. The Fortran array allows 

a fixed number of items of a single scalar type to be 

combined. A typical declaration is 

INTEGER A (10) 

This says that the variable A is of type "array of ten 

integers". Thus we have built a type called "array of ten 

integers" and declared a variable A to be of that type. 

There are two obvious limitations to the types that 

may be built in Fortran. First, only items of the same 
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type may be combined and second, only items of scalar type 

may be combined. There is also a problem with the 

notation of Fortran declarations, namely that the 

declaration of variables is mixed in with the description 

of their types. A more powerful type building language 

must remove these two limitations and improve on the 

notation. The first limitation may be removed by allowing 

items of different types to be combined. The second 

limitation may be removed by allowing items of any type to 

be combined. The removal of this limitation implies that 

recursion is allowed, since the type of an item in a 

collection may be the same type as the type of the 

collection itself. This is necessary for the description 

of recursive types such as trees and lists. Finally, a 

more natural notation can be achieved by separating type 

descriptions from variable declarations. 

4.2 Pascal Data Types 

Pascal is one language that has powerful type 

building capabilities. The primitive elements for 

building types in Pascal are, as in Fortran, the scalar 

types. Items of the same type may be combined into arrays 

and items of different types may be combined into records. 

The Pascal type building language allows types to be 
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described and given a name which may be used in other type 

descriptions or variable declarations. Items of any type 

may be combined into arrays or records. A typical Pascal 

type description is 

ShortArray =Array [1 •• 50] of Integer; 

This says that anything of type ShortArray is an 

array of fifty integers. This can be used to describe a 

more complex type as in 

SmallSet = Record 
Size: integer; 
Set: ShortArray 

End; 

These may be used to declare variables, as in 

A: ShortArray; 
B: SmallSet 
C: ASmallSet; 

The declaration for C means that it is of type 

"pointertoSmallSet" and its value will be a pointer to a 

structure of type SmallSet. 

Up to this point we have only considered how to 

combine types into more and more complex types and have 

ignored their corresponding operations. Operations fall 

into four groups as follows: (1) Selectors, which access 

data structures, (2) Assigners, which replace data 

structures, (3) Predicates, which carry out tests on data 

structures and (4) Operators which don't fit into the 
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first three groups. We now look at some examples of 

operators and their notation in Pascal. The following are 

examples of the different types of notation used for 

selection in Pascal. 

A 
A [ 4] 
B.SIZE 
c~ 

The first denotes access to a data structure which is the 

current value of A. The second denotes access to a data 

structure which is a single element of the array data 

structure which is the current value of A. The third 

denotes access to a data structure which is the value of 

the SIZE field in the record data structure which is the 

current value of B. The fourth denotes access to the data 

structure which is pointed to by the current value of c. 

If we use the type and variable declarations from the last 

examples, then A accesses an array of fifty integers, 

A [4] accesses an integer, B.SIZE accesses an integer and 

C~ accesses a record containing an integer and an array of 

fifty integers. These selectors may be applied repeatedly 

to access a low level component from a complex structure. 

For example, 

C~. SET [ 4] 

uses all four types of selector notation to denote access 
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to an integer. 

Assigners in Pascal exactly parallel selectors. Any 

data structure which can be accessed by a selector can be 

replaced with another data structure of the same type 

using an assigner. The notation for assigners is exactly 

the same as that for selectors and the only distinguishing 

feature is that assigners appear on the left hand side of 

an assignment statement and selectors appear on the right 

hand side. If the notation of the last selector example 

appears on the right, it causes access to an integer 

value, but if it appears on the left it causes replacement 

of the current integer value with a new integer value. 

This similarity of notation is natural from an 

implementation point of view since in both cases the 

translator ultimately generates a machine address, however 

it confuses the functional point of view since selectors 

and assigners are clearly very different. A formal 

treatment of selectors and assigners is given in 

Six [1980]. 

Predicates in Pascal are comparisons between two 

scalar data structures. Any two structures of the same 

scalar type may be compared for equality or inequality and 
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if the type is ordered, they may be compared for relative 

position in the ordering. There are no predicates defined 

for array or record type structures. The following 

examples show how the notation is used. 

A [ 4] = 5 or A [ 4] EQ 6 
B.SIZE NE A [1] 
C~.SET [1] > 0 

In the above expressions, the selectors access the 

appropriate data structures and then the predicate is 

applied to them. 

Operators in Pascal, outside of those in the first 

three groups, include binary and unary arithmetic 

operators and type conversion operators. These are 

defined only for scalar type structures and not for record 

or array type structures. These operators produce new 

data structures which are not simply structural 

recompositions of their operands. For example, integer 

addition takes two integer values as operands and produces 

a new integer value as its result. Binary operators are 

written in infix notation and unary or type changing 

operators are written in prefix notation. The following 

are some examples: 

I + J 
8 * c 
J DIV 2 
CHR (I) 
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where DIV is the integer division operator and CHR is the 

integer to character type changing operator. 

As a summary of the Pascal operators and types that 

we have looked at, we can say that selectors and assigners 

are defined for structures of any Pascal type and 

predicates and other operators are defined only for 

scalars. Since we have defined data types as a set of 

values plus operations, we require the ability to define 

new predicates and operators. This can be done by writing 

procedures and functions to operate on structures of a 

particular type. For example, addition is not defined in 

Pascal for structures of type ShortArray so we may define 

our own addition operator as a procedure, which has three 

parameters of type ShortArray and returns the sum of the 

values of the first two as the value of the third. Thus 

it is both an addition operator and an assigner. Within 

this procedure, the addition may be described using any 

combination of selectors, assigners, predicates and 

operators that are supported by Pascal. Outside of it, we 

treat it as an operator which adds two data structures 

together and produces a third one. Clearly selectors and 

assigners can also be written as procedures and functions. 

4.3 Type Constructors 
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Flon [1975] describes parameterized types as a 

specification tool. Parameters may be integers or other 

types and are used in the description of a new type. For 

example an integer parameter may be used for the upper 

bound of an array. Then when this parameter is filled in, 

an array type of specific size is created. A type 

parameter may be used as the base type of an array and, 

when it is filled in, this creates a specific array type. 

Flon suggests that the use of parameters in type 

descriptions will give them much wider applicability in 

the same manner that it does for procedures. He calls 

them "type constructors" since they may produce widely 

differing types from different parameters. If we examine 

this concept, we can see that a type constructor is a rule 

for combining types to produce new types. In fact, the 

array is a type constructor, since it is described in 

terms of parameters which are the upper and lower bounds 

of its ranges and its base type. Its operators are the 

selectors and assigners described earlier and it is used 

to describe types by filling in appropriate parameters as 

in 

Array [-4:9] of Integer; 

The Pascal record is another type constructor and 

along with the array may be considered to be a primitive 
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type constructor. With these two, it seems to be possible 

to construct any type. However, additional type 

constructors are still needed, both for their notational 

convenience and the greater degree of abstraction that 

they allow in type descriptions. New type constructors 

can be made part of the language definition as additional 

primitive type constructors, or the language can be given 

the capability of describing new type constructors. The 

former approach has been taken in Pascal where the Set and 

the File type constructors are also included. Each of 

these may be used with parameters to describe a type and 

the type described then has selectors, assigners, 

predicates and other operators associated with it. Adding 

new type constructors to a language definition is not a 

solution since it does not give extensibility. A much 

more general solution is achieved by providing the 

capability for describing new type constructors. 

For example, a tree is a type constructor. Its nodes 

can be described as having keys, information and pointers 

to other nodes. The pointers and their manipulation can 

be described fully, but the type of key and the type of 

information are parameters. When a specific tree type is 

described, these parameters are filled in with appropriate 

types, such as in the type "a tree with integers for keys 
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and ten-character strings for information". 

4.4 Mytran FORMs 

In order to describe new type constructors, we need 

some primitive types, some primitive constructors and a 

notation in which to express the description. Mytran is a 

language which supports the description of type 

constructors. Its primitive types are Fortran scalars, 

and its primitive constructors are the array and record. 

Type constructors are defined as FORMs which are based on 

Flon's [1975] parameterized types. The notation and 

capability of a FORM is shown in the following examples. 

A FORM for a stack may be defined as follows, 

(1) FORM INTSTACK (MAX : INTEGER) 

RECORD 
PTR : INTEGER 
ST : ARRAY (MAX) OF INTEGER 

ENDREC 

SUBROUTINE PUSH (VALUE) 
VALUE : INTEGER 
BEGIN 

IF (PTR GE MAX) STOP "STACK OVERFLOW" 
(PTR LT MAX) PTR = PTR + 1; ST (PTR) = VALUE 

FI 
RETURN 
END 

SUBROUTINE POP (VALUE) 
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ENDFORM 

The declaration 

( 2) s STACK (100) 

will create a variable S which will be of type "stack of 

100 integers". The value of Swill be a record whose 

fields may be accessed using the same selector notation as 

for Pascal records. In addition the operators PUSH and 

POP are defined for the value of S and the notation for 

invoking them is 

(2) CALL S.PUSH (I) 
CALL S.POP (I) 

Another declaration 

( 4) T STACK (50) 

will create a variable T of the new type "stack of 50 

integers". To invoke operations on the value ofT, the 

notation is 

(5) CALL T.PUSH (I) 
CALL T.POP (I) 

A more general stack form may be defined as follows 

(6) FORM STACK (MAX:INTEGER, ENTRY:FORM) 

RECORD 
PTR : INTEGER 
ST : ARRAY (MAX) OF ENTRY 

ENDREC 

IMPORT FROM ENTRY ASSIGN (El, E2) 
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SUBROUTINE PUSH (VALUE) 
VALUE : ENTRY 
BEGIN 

IF (PTR GE MAX) STOP "STACK OVERFLOW" 
(PTR LT MAX) PTR = PTR + 1 

FI 
RETURN 
END 

CALL ST (PTR) .ASSIGN (VALUE, ST (PTR)) 

SUBROUTINE POP (VALUE) 

END FORM 

The type of information held in the stack is now a 

parameter so any type of stack may be built with this 

constructor. An ASSIGN subroutine is imported from this 

parameter, so any type which is used in a STACK 

description must export an ASSIGN subroutine. Imported 

functions and subroutines are the only way that a FORM can 

describe operations on components whose types are 

parameters. In the above example, a stack must be able to 

store and return information via the PUSH and POP 

operators. However the nature of this information is 

unknown, so no precise definition of how to copy it can be 

given. Instead the FORM requires that whatever type is 

used must support a subroutine to do this copying. So for 

example, the declaration 

( 7) S : STACK ( 100, INTEGER) 

is not valid, since the Fortran type INTEGER has no 
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subroutines associated with it. However, a trivial form 

may be defined 

(8) FORM INTYPE INTEGER 

EXPORTS INTASGN AS ASSIGN 

SUBROUTINE INTASGN (Il,I2) 
Il, I2: INTEGER 
BEGIN I2 = Il 
RETURN 
END 

ENDFORM 

And now the declaration 

( 9) s STACK (100, INTYPE) 

is valid, and creates a variable S of the same type as in 

the first example. Obviously, this is a very messy way to 

implement a stack of integers. However, if the following 

FORM is defined 

(10) FORM STRING (MAX : INTEGER) 

RECORD 
LEN : INTEGER 
STR : ARRAY (MAX) OF INTEGER 

ENDREC 

EXPORTS STRCPY AS ASSIGN 

SUBROUTINE STRCPY (Sl,S2) 

END FORM 

Now the declaration 

(11) S :STACK (100, STRING (5)) 

creates a stack of 5-integer strings, without rewriting 
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any of the STACK routines. Assuming the declaration 

(12) STR : STRING (5) 

then the operation S.PUSH (STR) will push the string in 

STR on top of stack s. 

A FORM description has four parts, the header, the 

structure, the import/export lists and the procedures. 

The general syntax is 

FORM name (parameters) 
structure description 
IMPORT import list 
EXPORT export list 
procedures 

ENDFORM 

The header contains the name of the FORM and any parameters. 

Parameters may be either types or integers. They are used in the 

structure description and in the procedures. Integer 

parameters are typically sizes. In example (1), the 

header is 

INTSTACK (MAX : INTEGER) 

MAX is the size of the stack, and is used as the dimension 

for the array that holds the stack, and to test for 

overflow in a procedure that adds items to the stack. 

Type parameters are used to allow more general FORMs to be 

described. In example (~), the header is 

STACK (MAX:INTEGER, ENTRY:FORM) 

MAX is again the size of the stack, and is used as before. 
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The parameter ENTRY is the type of the information to be 

kept on the stack. Thus the FORM STACK is described 

without regard to the nature of the information that it is 

to hold. As in example (11), it is quite easy to describe 

a stack of strings, and if a general string form is 

described, to describe a string of stacks. 

The structure description describes the other type 

constructors and types being used. There are five types 

of structure description, record, array, Fortran, form and 

form parameter. Record descriptions are the same as 

Pascal records. The syntax is 

RECORD 
FIELDl : structure 
FIELD2, FIELD3 : structure 

ENDREC 

The structure of a field may be any one of the five 

structure types. 

Array descriptions are almost the same as Pascal. 

The syntax is 

ARRAY (rangelist) OF structure 

The rangelist is a list of ranges separated by commas. A 

range may be given as either a lower and upper bound 

separated by a colon or an upper bound in which case the 

lower bound is assumed to be 1. Bounds may be integer 
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constants or integer parameters. The structure of array 

elements may be any of the five structure types. 

Fortran descriptions are just the Fortran scalar 

types, INTEGER, REAL, LOGICAL, etc. Form structures are 

previously defined FORMs, with all necessary parameters. 

The structure in example (2) 

STACK (100) 

is a form structure description. 

Form parameter structure descriptions are simply type 

parameters. The base structure of the array ST in example 

(6) is ENTRY which is a parameter to the FORM STACK. 

The Import/Export lists describe the interface 

between FORMs. The Import list describes the operations 

that must be supported by any type parameters. These are 

procedures and functions that are used in procedures to 

manipulate information in the FORM. In example (6), the 

subroutine PUSH must be able to transfer information from 

the variable VALUE into the stack. Since VALUE is of type 

ENTRY, a parameter, there is no way to describe the 

transfer. So a subroutine ASSIGN is called to do it. 

This subroutine is imported from the FORM parameter ENTRY. 

Thus any type which is used as an actual parameter in 
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describing a stack must export a subroutine ASSIGN. 

export list describes operations that are 

supported by a FORM. Subroutines and functions may be 

exported via alias names. A routine may be exported by 

more than one alias name. In example (10), the subroutine 

STRCPY copies strings. It is exported under the alias 

name ASSIGN. 

The procedures for a FORM describe the operations 

that may be performed on a structure of any type 

constructed by the FORM. They are Fortran subroutines and 

functions and may have parameters whose types are 

parameters to the FORM. In example (6) the VALUE 

parameter is of type ENTRY which is a parameter to the 

FORM. Integer parameters to the FORM may be referenced in 

the subroutines and functions of the FORM, typically for 

checking bounds and overflows, as in example (6). 

4.5 Other Languages 

There are a number of modern languages which provide 

type building capabilities. We will now look at some of 

them and compare them to Mytran. Although we only discuss 

their data type facilities, they all have many other 
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features to recommend them. A summary of their features 

is given in Hanson et al [1979]. We will describe their 

capabilities in terms of Pascal data types because they 

are the most widely known. 

The first level above Pascal types is the class of 

Simula [Birtwhistle et al 1973] and Concurrent 

Pascal (Brinch Hansen 1977]. This binds together a set of 

local objects and procedures and functions that operate on 

them. Variables are declared as instances of these 

classes and information held by a variable may only be 

manipulated by the operations of its class. 

A different approach on the same level of complexity 

is the module. This goes under different names in 

different languages but generally it is a means to bind 

together a set of objects and some procedures and 

functions in the same way as in a class. The difference 

between them is that a class is a type and variables are 

created as instances of that type, whereas a module is an 

information hiding mechanism, within which can be defined 

any number of types and operations on them. Although a 

variable may be declared to be of a type that is defined 

in a module, and therefore operations in the module may be 

used on it, the module itself is not a type. Languages 
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that use the module concept, such as Modula ~Wirth 1977] 

and Euclid (Chang et al 1978], support the view that 

processes consist of independent, communicating 

subprocesses which have exclusive control of their own 

data. This is a much broader concept than that of data 

type, but it does encompass some aspects of it. A data 

type may be described in a module complete with its 

operators. Modules and classes at this level are fixed 

specifications with no parameters. Although several 

instances of a class may be created, they all have the 

same properties. From the point of view of type building 

the only extension offered is that operations are included 

with the rest of the type description. 

The next level of languages allow modules or classes 

to have parameters which may themselves be modules or 

classes. CLU [Liskov et al 1977], Alphard [Wulf 1977] and 

an unnamed successor to Pascal (Robinson 1980] are 

languages with this capability. Mytran is also at this 

level. In addition, CLU and Alphard allow overloading of 

operators. This means that an operator supported by the 

language may be given a new meaning in a type description. 

For example, in the description of a matrix, the operator 

+ can be defined to perform matrix addition. 
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A further capability is supported in Alphard, 

Mesa [Geschke et al 1977] and Modula-2 [Wirth 1980], 

namely separate definition and implementation modules. 

This means that the properties of a data type may be 

defined separately from their implementation. This has 

two advantages. One is that other programmers who wish to 

reference a module need only see the definition module. 

The second is that if an implementation module is changed, 

a certain amount of consistency checking can be done 

against the definition module. Although this does not 

extend the capability to describe types, it does make them 

easier to use and much more secure. 

These last two features are not included in Mytran 

though they could be added. A more basic difference 

between Mytran and all of these languages is the manner in 

which storage is allocated for data structures. This is 

admittedly a problem of implementation rather than design, 

but Mytran was designed so that it could be easily 

implemented in Fortran. 

These languages all use a stack based dynamic storage 

allocation scheme. When the execution of a module is 

initiated, the storage required for its structures is 

allocated and variable names are bound to their 
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structures. Since a module is a coroutine, control may 

leave it without terminating it, so its structures remain 

active, though hidden from other modules. If another 

instance of the same module is initiated, storage for a 

new set of structures is allocated. Mytran uses Fortran 

as its object language and therefore has static storage 

allocation. The space needed for a variable is calculated 

from its declaration at translation time and storage is 

statically allocated. Also, since Fortran is the object 

language, the values of variables local to a subprogram 

are not active once control has left that subprogram. 



Chapter V 

Implementation 

This chapter discusses the implementation of the 

translator. An outline is given of implementation 

problems, their solutions, and the implementation 

strategy. There are also a number of examples of 

translations of program or statement fragments. A 

complete sample translation is given in Appendix A. 

Mytran was implemented in two stages. The first 

stage added the new control statements IF and LOOP. It 

was written in itself and hand compiled. The second stage 

added data structuring via the FORM. It was written using 

the stage one language. 

5.1 First Stage 

This stage added two new control statements to 

Fortran, the IF statement and the LOOP statement. The 

Fortran IF and DO statements were dropped. The translator 

is a statement preprocessor as described in Chapter I. It 
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looks for key words or symbols and performs a fixed 

translation on them. Everything else is copied. The 

result is a complete language in the sense that all Fortran 

statement types are either copied or have an equivalent in 

the new statements. For example Fortran Read and Write 

statements are accepted as source and copied unchanged. 

Fortran IF and DO statements are not accepted but their 

function is replaced by the Mytran IF and LOOP statements. 

Thus any program which may be written in Fortran, may also 

be written, hopefully more easily, in Mytran. 

The translator also allows multiple statements per 

line. The need for this follows naturally from the new 

control statements. First of all the Loop statement is so 

wordy that it is a great help in simple cases to put 

several parts of it on one line. More importantly because 

these statements have a nested structure, that is the range 

of control of an IF or LOOP statement may be any number of 

statements, the notion of one statement per line no longer 

makes sense. However, end of line is still considered a 

statement terminator unless the following line is a 

continuation line. The Fortran source format for 

continuation and labels is also retained. These rules 

improve readability. In particular if labels must be used, 

they should be visible. 
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5.1.1 IF Statement 

The following is a typical Mytran IF statement. 

1 IF 
2 (KEY .EQ. ID) 
3 FOUND = .TRUE. 
4 (KEY .LT. ID) 
5 HIGH = MID 
6 (KEY .GT. ID) 
7 LOW = MID 
8 FI 

The semantics of this statement, as described in 

Chapter III, say that all three of the conditions will be 

evaluated simultaneously and the statement that is 

associated with the one that is true will be executed. If 

none of the conditions is true, or more than one is true, 

then execution will be aborted. The first observation 

about this with regard to implementation is that the 

evaluation of conditions cannot really take place 

simultaneously, so there will have to be some way of 

simulating this via sequential evaluation. This can be 

done by evaluating all the conditions in some order and 

keeping track of those that are true. After all the 

conditions are evaluated, if exactly one is true, the 

statements associated with it are executed. If the 

restriction is made that none of the conditions has side 

effects then the sequence of evaluation doesn't matter. 
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This cannot be checked by the translator without 

eliminating functions calls from conditions, and so it must 

be a programmer discipline. 

We can now identify some of the requirements of the 

implementation. First, it must evaluate all conditions of 

an IF statement. Second, if a condition evaluates to true, 

there must be some way of transferring control to its block 

of statements after all conditions have been evaluated. 

Third, if a previous condition was true execution must be 

halted with a suitable error message. This may be done 

immediately upon finding the second true condition or after 

evaluating all conditions. Fourth, after evaluation of the 

last condition, either control must be passed to the block 

of statements associated with the true condition, or if 

none is true, execution must be halted with a suitable 

error message. These error messages should give the line 

numbers at which the errors occurred. And fifth, after 

execution of a block of statements control must be 

transferred to the statement following the end of the IF 

statement. There are also two overall requirements. 

First, translation should be done one statement at a time 

with a minimum of information retained by the translator 

between statements. Second, translation of nested control 

statements must not require any special treatment. 
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To implement the first requirement we do the 

following. If a condition is false branch immediately to 

the next condition. If it is true set any necessary flags 

and pointers and then branch to the next condition. To 

satisfy the second through fourth requirements the 

conditions in an IF statement are numbered sequentially 

starting at 1 and if a condition is true a local system 

variable, LABEL is given the condition's number. This can 

be used as an index to get to the appropriate block of 

statements after all conditions are evaluated. If LABEL 

has been set previously then two conditions are true and 

execution can be halted. And if after evaluating all 

conditions LABEL has not been set then no condition is true 

so execution can be halted. If a condition is true its 

line number is recorded so it may be reported in any error 

messages. The fifth requirement is satisfied by branching 

at the end of each block to a point past the end of the IF. 

Here is a complete translation of the example using 

the above strategies, with source on the left and generated 

code on the right. 
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1 IF LABEL=0 

2 (KEY .EQ. ID) IF(.NOT.(KEY.EQ.ID))GOTO 20 
CALL TEST0l(LABEL,LINE1,2,l,NAME) 
GOTO 20 

30 CONTINUE 

3 FOUND = • TRUE. FOUND=.TRUE • 

4 (KEY .LT. ID) GOTO 10 
20 IF(.NOT.(KEY.LT.ID))GOTO 40 

CALL TEST0l(LABEL,LINE1,4,2,NAME) 
GOTO 40 

50 CONTINUE 

5 HIGH = MID HIGH=MID 

6 (KEY .GT. ID) GOTO 10 
4QJ IF(.NOT.(KEY.GT.ID))GOTO 60 

CALL TEST0l(LABEL,LINE1,~,3,NAME) 
GOTO 6QJ 

70 CONTINUE 

7 LOW = MID LOW = MID 

8 FI GOTO 10 
60 IF(LABEL.EQ.0)CALL ERR00l(l,NAME) 

GOT0(30,5QJ,70) ,LABEL 
10 CONTINUE 

Code is generated for each component of the IF 

statement as follows. When the keyword IF is found, 

generate 

LABEL = 0 

This initialises the system variable which records the 

number of a true condition. At the same tiime, a label is 

generated for the end of the IF statement and the condition 

counter for this IF is set to zero. When the first 

condition is found, generate 
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IF (.NOT.(KEY.EQ.ID))GOTO 20 
CALL TEST0l(LABEL,LINE1,2,l,NAME) 
GOTO 20 

30 CONTINUE 

The label 20 is generated for the next condition, and the 

label 30 is generated as the start of the associated block 

of statements. If this condition is the only true one, a 

branch will be made to this label. TEST01 is a system 

routine that sets the necessary flags and indices for a 

true condition. It is given the system variable LABEL 

which holds the number of a true condition, and LINEl which 

holds the line number of a true condition. The line number 

of this condition, 2, is also given as is the condition 

number, 1. The system variable NAME holds the name of the 

current subroutine and will be used if an error is found. 

When the next condition is found, generate 

GOTO 10 
20 CONTINUE 

IF(.NOT.(KEY.LT.ID))GOTO 40 
CALL TEST01 (LABEL,LINE1,4,2,NAME) 
GOTO 40 

50 CONTINUE 

The first line is generated because this condition 

indicates the end of the block of statements associated 

with the previous condition and if this block of statements 

is executed it must end by branching past the end of the IF 

statement. The label 10 has been allocated for this 

purpose. The second line is generated because the previous 
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condition must be able to branch to this one. The rest is 

generated as for the first condition and all subsequent 

conditions are generated in the same manner as this one. 

When the keyword FI is found, generate 

GOTO 10 
60 CONTINUE 

IF (LABEL.EQ.0)C~LL ERR00l(l,NAME) 
GOT0(30,50,70) ,LABEL 

10 CONTINUE 

The first line is generated to terminate the previous block 

of statements. The second line is generated so that the 

last condition can branch to here. All conditions will 

have been tested at this point, so the third line is 

generated to check that one of them was true, and if not, 

to call an error routine. The next line is generated to 

cause a branch back to the appropriate block of statements. 

And the last line is the point to which each block of 

statements branches. 

This translation clearly works on a line by line 

basis, and the translator only needs to retain several 

label values and the condition counter between lines of the 

statement. The fact that it works for nested IF statements 

is slightly more subtle. The key point is that any nested 

IF statement is part of a block of statements and therefore 

cannot be encountered until all the conditions of the 
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current level have been tested and are finished with. At 

this point all of the system variables such as LABEL are 

free to be reused. 

5.1.2 LOOP Statement 

The following is a typical LOOP statement 

LOOP 
GIVEN I = 1 
WHILE (I • LE. LIMIT) 
DO A (I) = 0 
LOOPBY I = I + 1 

END LOOP 

The semantics of this statement as described in 

Chapter III say that the statement in the GIVEN block will 

be executed once on entry to the LOOP statement and the 

statements in the remainder of the blocks will be 

repeatedly executed until a condition in the WHILE block 

evaluates to false. This translation is very 

straightforward. There are the following requirements. 

There must be a branch from the end of the loop to the 

start of the repetitive part of the loop, in this case the 

WHILE block. If a condition in the WHILE block evaluates 

to false it must cause a branch to the first statement 

after the end of the LOOP statement. As can be seen from 

the following translation of the example, most of the 

keywords are simply discarded and cause no code to be 
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generated. 

GIVEN I = 1 
WHILE (I .LE. LIMIT) 
DO A (I) = 0 
LOOPBY I = I + 1 

END LOOP 

5.2 Second Stage 

I=l 
10 IF(.NOT.(I.LE.LIMIT))GOTO 20 

A(I)=0 
I=I+l 
GOTO 10 

20 CONTINUE 

This stage added data structuring via the FORM. FORMs 

are a major extension to Fortran data declarations and so 

it was necessary to build a complex symbol table from the 

source. There is an equally major extension to the manner 

in which data may be referenced. This necessitated the 

parsing of source statements into operands and operators, 

and parsing operators into reference components. Many of 

the usual parts of a compiler are present in the translator 

though since it is generating Fortran rather than machine 

code they are simpler. 
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5.2.1 FORMs 

The following is part of a typical FORM. 

FORM 

SET (ELEMENT:FORM, MAX:INTEGER) 

RECORD 
A : ARRAY (MAX) OF ELEMENT 
SIZE : INTEGER 

ENDREC 

IMPORT FROM ELEMENT 
EQUAL (X,Y) :LOGICAL 
COPY (X,Y) 

EXPORT SETMEM AS MEMBER 
SETADD AS INSERT 

END FORM 
A typical declaration using this FORM is 

X : SET (ENTRY,50) 

The semantics of this as described in Chapter IV say 

that X is a structure containing 50 occurences of a 

structure of type ENTRY which has been previously defined 

and one integer. The components of X are referenced as 

X.A, which refers to an array of 50 items of type ENTRY, 

X.A (I) which refers to a single item of type ENTRY, and 

X.SIZE which refers to a single integer. Any components 

defined in the type ENTRY may be referenced by adding the 

necessary information to the end of X.A (I). For example 

if ENTRY is an array of integers then X.A (I) (J) will 
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refer to a single integer, or if ENTRY is a record with 

field P of type integer, then X.A (I) .P refers to a single 

integer. Also the type ENTRY must export a function under 

the name EQUAL and a subroutine under the name COPY. Any 

routines in SET that reference EQUAL or COPY will, if 

invoked via X, actually reference the exported function or 

subroutine. 

When the FORM SET is encountered in the source there 

no way of knowing that it will be used in conjunction 

with ENTRY. Thus there is no way of knowing how big a 

structure of FORM SET will be. In particular there is no 

way of knowing how to access the components of a SET since 

their size is unknown. On the other hand routines within 

SET must be able to describe operations on these components 

at least in a general manner. The first observation to 

make is that in fact these routines may only be invoked via 

a variable such as X in the example which has been declared 

to be of FORM SET. This declaration will contain all the 

necessary parameters to solve the referencing problem. It 

remains only to determine a means of communicating this 

information to the FORM. There are several possibile 

methods which I will call the macro method, the 

interpretation method, and the dope vector method. 
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5.2.1.1 The Macro Method 

This method involves treating FORM routines as macros 

which are expanded when a declaration is encountered. This 

has been suggested by several people [Gries 1977], 

[Holt 1979] and is used in the language 

Model [Morris 1979]. Model expands small procedures in 

line and generates new copies of larger ones for each new 

declaration. This is comparable to generating index 

calculations for a Fortran array as inline code. This is a 

valid technique for a simple situation such as this. 

However user defined access mechanisms may be arbitrarily 

complex so there is the possibility of an explosion of 

duplicated code. 

5.2.1.2 The Interpretation Method 

This method involves building a symbol table for each 

FORM and each declaration. The declaration symbol table 

for a variable is passed to any FORM routines accessed via 

that variable. To access a component of a FORM, a system 

routine is called at execution time and passed the 

declaration symbol table for the current variable, the FORM 

symbol table, and the component name. The system routine 



68 

searches for the component name in the FORM description. 

If a form parameter is encountered its value is obtained 

from the declaration symbol table. This method leaves the 

bulk of the referencing work to execution time. As with 

the macro method it may be acceptable for simple structures 

but it is not a good general solution. 

5.2.1.3 The Dope Vector Method 

In this method as much of the work as possible for 

calculating a reference is done at translation time. Any 

sizes that are available are generated in a reference 

expression. Any that are not available are assumed to be 

in a dope vector at a specific address. When a variable is 

declared all of the unknown information will be available 

and the necessary values are put into the dope vector. 

Whenever a FORM routine is accessed via this variable its 

dope vector must be available to the routine. There are 

two ways of doing this. The first is to keep the dope 

vector in the structure. The second is to keep the dope 

vector outside of the structure. The first is the most 

powerful and convenient. If all structures carry their own 

descriptions they can never be misused. However components 

of structures must also contain their own descriptions and 

this obviously leads to an explosive proliferation of 



69 

descriptions. The second method is not quite so convenient 

since a structure cannot be understood without its dope 

vector, and it may be misinterpreted if the wrong dope 

vector is used. However dope vectors are completely 

internal to the system. They are generated by the 

translator so it is possible to ensure that the correct one 

is always used. 

5.2.2 Implementation of Dope Vectors 

The dope vector method was chosen to implement Mytran 

FORMs. The general implementation strategy is as follows. 

When a FORM is scanned, a symbol table is built containing 

any access information that is in the FORM. Also locations 

are allocated in the dope vector for any information that 

is not available but will be needed for references. 

References within the FORM are generated in terms of the 

known information and the appropriate dope vector 

locations. When a variable is declared using the FORM a 

symbol table is built for it which is a copy of the FORM 

symbol table, expanded to include the new information that 

is in the declaration. For example the FORM symbol table 

for SET will say that the base type of the array A is a 

parameter so its size is unknown. Any access expressions 

involving this size will generate a reference to the dope 
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vector. When the declaration for X is found a symbol table 

for it will be created. This will say that the base type 

for array A is the type ENTRY and a complete description 

including its size will be given. As this table is being 

built all the information that was previously unknown is 

put into the dope vector for use at execution time. Any 

references to components of X will generate access 

expressions entirely in terms of known sizes. 

The dope vector is a convenient mechanism for 

communicating information about a specific declaration to a 

general FORM. The information in the dope vector is 

determined by the requirements of the access expressions 

which are generated for references. 

5.2.3 References 

In Mytran, structures are stored linearly. Regardless 

of the hierarchical nature of a logical structure it is 

mapped onto a linear physical representation. A reference 

to a variable or a component of a variable is a reference 

to the start of storage of the variable or component. For 

example given the FORM SET and declaration X at the start 

of this chapter, and assuming that the type ENTRY as an 

array of 10 integers, then a reference to X is a reference 



71 

to the first word of X, and a reference to X.A is a 

reference to the first word of X. A reference to X.A (4) 

is a reference to the 31st word of X and a reference to 

X.SIZE is a reference to the 50lst word of X. The 

translator must accept logical references of this nature 

and translate them into the appropriate physical 

references. As discussed in the last section, not all of 

the necessary information is available at translation time, 

so the translator must actually generate access expressions 

which will be evaluated at execution time. 

Since Mytran is generating Fortran object code, a 

declaration of a variable with hierarchical structure is 

translated into a declaration of an appropriate length 

one-dimensional Fortran array. Access expressions are 

subscript expressions accessing the appropriate word in the 

array. 

There are two language supported selectors in Mytran. 

They are the record and the array. Access to elements of 

arrays is done by calculating the element number within a 

linear address space and multiplying this by the size of 

each element. This gives the offset from the start of the 

structure to the desired element. Access to fields of 

records is done by adding up the sizes of all preceding 
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fields. This again gives an offset. There are several 

observations that may be made at this point. The first is 

that several calculations are involved in changing a set of 

indices into an element number and each index is 

individually checked to ensure that it is within its 

ranges. This can be most conveniently done by passing the 

indices and a list of ranges to a function which will 

perform the necessary operations. But this means that the 

range list might as well be in the dope vector. The second 

observation is that the size of the base element of an 

array is needed, but may not be known within a form due to 

parameterization. 

the dope vector. 

If this is the case, it must be put in 

The third observation is that a field 

reference always refers to a fixed location, so that the 

sum of the preceding fields may be calculated at 

translation time allowing a field to be accessed by a 

single number at execution time. Again if the form of some 

field is a parameter then the offsets for all following 

fields are unknown within the current form so they must 

come from the dope vector. The final observation is that 

these access mechanisms may be applied sequentially to 

reach a low level component of a complex structure. 

5.2.4 Implementation of References 
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The implementation strategy is as follows. When a 

reference to a variable is encountered, its symbol table 

entry is found. If there are several levels of 

specification in the reference the translator "walks 

through" the structure description in the symbol table. As 

a particular component is specified at each level the 

translator uses information from the symbol table about 

that component to generate an access expression. The 

following are some sample references and their translations 

based on the form SET and the declaration X. 

(1) X.A 
(2) X.SIZE 
( 3 ) X • A ( I +J ) 

X(0+1) 
X(500+1) 
X (0+IX1 (LOCAL (n), I+J) *10+1) 

Access expressions are calculated from a base of zero, but 

Fortran arrays are addressed from a base of one, so the 

translator adds one onto the end of each access expression. 

In (3), IX1 is the system function that calculates the 

offset and checks the range of indices for a 

one-dimensional array. LOCAL is the local dope vector and 

n is the start of the range list for the array. 10 is the 

size of the form ENTRY. If a declaration of a variable of 

form SET accurs within the form, its parameters are 

unknown, as in the following 

Y : SET 

Access expressions for Y must now be generated in terms of 

unknown information. 



(1) Y.A 
(2) Y.SIZE 
(3) Y.A (I+J) 
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Y(0+1) 
Y(TYPE(m)+1) 
Y(0+IX1(TYPE(n) ,I+J)*TYPE(p)+1) 

In (1} the offset to field A does not rely on any 

parameters and so is known at translation time. In (2) the 

offset to field SIZE is not known since the size of the 

preceding field is based on a parameter. TYPE is the dope 

vector which will be passed for a specific variable of form 

SET and m is the location allocated to hold the offset of 

field SIZE. In (3) IX1 is as described above, n is the 

start of the range list though here the range list has been 

passed in TYPE rather than being local and p is the 

location allocated to hold the size of the base element of 

array A. 

5.2.3 Imported Subroutines and Functions 

There is one remaining problem in generating code for 

FORMs. This is related to calling imported subroutines and 

functions. Just as there is no way of knowing at the time 

a form is scanned how big a SET will be, there is also no 

way of knowing how to call the function EQUAL and the 

subroutine COPY. These are aliases and all that is 

guaranteed is that whatever form is used for the parameter 

ELEMENT it will export something under these aliases. As 

discussed earlier one solution is to treat forms and their 
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routines as macros. When a call to COPY is expanded the 

appropriate actual name can be generated. This generation 

of duplicate code is unacceptable for the reasons stated 

earlier, so another solution is required. 

The method used in Mytran is to keep a table of 

exported routines containing the form from which it was 

exported, its exported alias and its actual name. Then 

when a reference is made to an imported routine, it is 

translated to a reference to the routine via its actual 

name. Note that this translation takes place at execution 

time, so that the desired reference is actually to the 

address of the routine. The most efficient implementation 

would be to have a table of subroutine and function 

addresses and by selecting the correct address, call the 

correct routine. These addresses could be held in the dope 

vector. Due to differences between machines in handling 

subroutine and function calls, this cannot be done in 

Fortran. As a result Mytran generates "alias routines" 

which contain calls to all routines exported under each 

alias. So when the form SET calls the subroutine COPY, it 

actually calls an alias routine which then calls the 

appropriate routine depending on the parameters used in the 

declaration of the variable through which SET has been 

accessed. 
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Chapter VI 

Conclusions 

To determine whether this project succeeded or failed 

let us review the goals and the extent to which they were 

met. 

6.1 Control Statements 

The first goal was to design and implement some new 

control statements. This resulted in the IF and LOOP 

statements described in Chapter III. These statements were 

implemented in the first stage of the project, which was 

written using these statements and then hand translated. 

The second stage was written using the stage one 

translator. In all, about 7000 lines of code have been 

written using these control statements. They were adequate 

for all situations that occurred and were in some respects 

superior to other control statements. The following 

comments are based on this experience. 
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6.1.1 IF Statement 

As can be seen in the examples in Chapter III, the IF 

statement requires a certain amount of redundancy in 

specifying conditions. Even if there is only one condition 

which leads to an action, the opposite condition must still 

be specified with no action. This redundancy has two 

benefits. The first is that typing errors are trapped 

since exactly one condition must be true. This is exactly 

the type of error that turns into a persistent bug unless 

it is caught early. The second is that there is a sense of 

completeness to a selective control statement when it is 

known that all possible conditions have been tested. Even 

if some of them lead to no action, it is clear that the 

condition was not overlooked but rather an explicit 

decision was made to do nothing. The price to be paid for 

this is that these redundant conditions must be written and 

this can be very tedious. 

One gratuitous effect of the IF statement is that the 

threat of execution being aborted encourages careful 

programming. If a number of complex conditions are 

specified it may not be clear whether all possibilities 

have been covered, or whether more than one of them could 

be true. Rather than risk a fatal execution error, it is 
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easier to break them up into simpler conditions. This 

means that the code is much easier to understand at a later 

review. 

6.1.2 LOOP Statement 

The LOOP statement is an entirely new design. No 

language that I have seen uses a repetitive control 

statement that clearly identifies the four components of a 

loop. As can be seen in the examples in Chapter III, a 

LOOP easily models many other repetitive constructs. The 

fact that multiple, independently tested stopping 

conditions are allowed and that they may be placed anywhere 

in the loop body, removes the need for additional boolean 

variables to keep track of stopping conditions. However 

its most important function is to provide a framework 

' within which to describe a loop. This is an advantage both 

when a program is being written and when it is being read 

at some later date. 

One feature that could be added is a Next Iteration 

statement. This would cause an immediate branch to the 

start of the LOOPBY section to generate the necessary state 

for the next iteration. Unfortunately this would require 

some rules concerning sequence of execution of the 
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components to ensure that the WHILE section was not 

skipped. 

6.2 Data Structures 

The second goal was the support of data abstraction. 

This resulted in the design of parameterized types or type 

constructors called FORMs as described in Chapter IV. 

These were implemented in the second stage of the project 

and have not been used except for some small examples. 

Therefore no very significant comments can be made 

concerning their effectiveness. The only available measure 

of success is a comparison with other languages. As noted 

in Chapter IV, Mytran is missing several features that are 

useful for data abstraction. But on the central issues it 

is acceptable. Most writers say that the most important 

consideration is the separation of implementation from 

usage. The FORM is an adequate mechanism for achieving 

this. Although there is no enforced hiding of information 

local to a structure, it is easy enough to do this through 

programming discipline. Of even greater importance, in my 

opinion, is the ability to define several simple objects in 

general terms, and then combine them into an object that is 

far too complex to be easily described as a whole. The 

Mytran FORM supports this at least as well as any other 
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language. 

6.3 Portability 

The third goal was to have a portable system. This 

resulted in using a Fortran preprocessor for the 

implementation. Portability cannot be claimed until it has 

been done. Although every attempt was made to use widely 

supported Fortran, there is no way to prove that the 

translator can be moved, without moving it. 

6.4 Future Work 

There are number of interesting possibilities for 

future work. The problems of I/0 and literals for 

structured data have been ignored in Mytran, as they have 

in most languages. The language PPL [Wallis 1980] is one 

that contains some facilities for defining I/O and literal 

formats though only for unparameterized structures. It may 

be possible to extend these ideas for the parameterized 

Forms of Mytran, or it may be necessary to design new 

facilities. Another possible project is to add user 

definition of infix operators for Forms. As discussed in 

Chapter IV this is absolutely necessary to achieve 

independence of data structures from algorithms. A related 
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project is to allow functions to return non-scalar 

structures. These two features would allow many algorithms 

to be written in a much more natural manner. 

If any future work is to be done on Mytran, the 

decision to implement it as a Fortran preprocessor should 

be reviewed. Although anything can be done in Fortran, 

there are some things which cannot be done easily. In 

particular any modern ideas about nested scopes of 

variables cannot be easily translated into Fortran. Also 

recursion and dynamic storage allocation, although not 

difficult on an ad hoc basis, are quite difficult to 

translate in general. Thus another possible project would 

be to change the Mytran preprocessor to a compiler. The 

structure of the translator is such that generation of 

machine code would not be difficult. 
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Appendix A 

This appendix contains a complete Mytran translation 

of several FORMs. The program at the end contains 

declarations of several of the types that may be 

constructed from these FORMs. 
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FORM INTFORM INTEGER 
EXPORT 

A-/. 

INTCMP AS COMPARE 
INTASGN AS ASSIGN 

FUNCTION INTCMP (Il,I/.) 
INTCMP : INTEGER 

BEGIN 
IF 

FI 
END 

<I1 LT I~~ INTCMP = -1 
<Il EQ I2~ INTCMP = 0 
<Il GT I?.~ INTCMP = 1 

SUBROUTINE INTASGN (Il,I2) 
BEGIN I2 = I1 END 

ENDFORM 

FORM STRING (ENTRY:FORM, LENGTH:INTEGER) 
ARRAY (LENGTH) OF ENTRY 
IMPORT 

FROM ENTRY 
COMPARE (Sl,S2) INTEGER 
ASSIGN (Sl,S/.) 

EXPORT 
STRCMP AS COMPARE 
STRCPY AS ASSIGN 

FUNCTION STRCMP (Sl,S2) 
S1,S?.. : STRING 
STRCMP : INTEGER 

BEGIN 
LOOP 

GIVEN I = 1 
WHILE 

<I LE LENGTH~ 

<S1 (I) .COMPARE fSl (I), S?.. (I)) EQ VI~ 

LOOPBY I = I + l 
END LOOP 
IF 

<I GT LENGTH~ STRCMP = 0 
<I LE LENGTH~ STRCMP = Sl (I) .COMPARE (S1 (I), S2 (I)) 

FI 
END 
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SUBROUTINE STRCPY (Sl,S2) 
S1,S2 : STRING 

BEGIN 
LOOP 

GIVEN I = 1 
WHILE <I LE LENGTH~ 

DO CALL Sl (I) .ASSIGN (S1 (I), S2 (I)) 

LOOPBY I = I + 1 
END LOOP 

END 
ENDFORM 

FORM TREE (KEYTYPE:FORM, VALUETYPE:FORM, MAX:INTEGER) 
RECORD 

ROOT, FREENODE : INTEGER 
TRUNK : ARRAY (MAX) OF RECORD 

KEY : KEYTYPE 
VALUE : VALUETYPE 
LEFT,RIGHT : INTEGER 

ENDREC 
ENDREC 

IMPORT 
FROM KEYTYPE 

COMPARE 0<1 ,K2) 
ASSIGN (Kl ,K2) 

FROM VALUETYPE 
ASSIGN (V1,V2) 

EXPORT 
TRSRCH AS SEARCH 
TRADD AS ADD 
TRINIT AS INIT 

SUBROUTINE TRINIT (T) 
T : TREE 

INTEGER 

BEGIN T.ROOT = 0; T.FREENODE = 1 END 

SUBROUTINE TRADD (T,K,V,OK) 
K KEYTYPE 
V : VALUETYPE 
T : TREE 
OK, FOUND : LOGICAL 
ADDRESS : INTEGER 

BEGIN 
CALL T.TRSRCH (T,K,FOUND,ADDRESS) 
IF 

<FOUND~ OK = FALSE 
<NOT FOUND~ 



IF 

FI 
FI 

END 
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<T.FREENODE GE MAX~ OK = FALSE 
<T.FREENODE LT MAX> 

N = T.FREENODE; T.FREENODE = T.FREENODE + l 
CALL K.ASSIGN (K,T.TRUNK (N) .KEY) 
CALL V.ASSIGN (V,T.TRUNK (N) .VALUE) 
T.TRUNK (N) .LEFT = 0 
T.TRUNK (N) .RIGHT = 0 
IF 

FI 

<ADDRESS EQ 0~ T.ROOT = N 
<ADDRESS NE 0> 

D = K.COMPARE (K,T.TRUNK (ADDRESS) .KEY' 
IF 

<D EQ -l> T.TRUNK (ADDRESS) .LEFT = N 
<D EQ l> T.TRUNK (ADDRESS) .RIGHT= N 

FI 

SUBROUTINE TRSRCH (T,K,FOUND,ADDRESS) 
T : TREE 
K : KEYTYPE 
FOUND : LOGICAL 
ADDRESS : INTEGER 

BEGIN 
LOOP 

GIVEN 
ADDRESS = (?I 

NEXT = T.ROOT 
WHILE 

<NEXT NE 0> 
D = K.COMPARE (K,T.TRUNK (NEXT) .KEY) 
<D NE r!~ 

LOOPBY 
ADDRESS = NEXT 
IF 

<D EQ -l> NEXT= T.TRUNK (NEXT) .LEFT 
<D EQ l> NEXT= T.TRUNK (NEXT) .RIGHT 

FI 
END LOOP 
IF 

<NEXT EQ 0' FOUND = FALSE 
<NEXT NE 0> FOUND = TRUE 

FI 
END 

ENDFORM 
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FORM LOGFORM LOGICAL ENDFORM 

PROGRAM TEST 
c 
C TII is a tree with integer keys and integer values 
c 

TII : TREE (INTFORM,INTFORM,20) 
c 
C TIS is a tree with integer keys an strings of 5 integers 
C for values. 
c 

TIS : TREE (INTFORM,STRING (INTFORM,5) ,20) 
c 
C TSI is a tree with strings of 3 integers for keys and 
C integer values. 
c 

TSI : TREE (STRING (INTFORM,3) ,INTFORM,l0) 
c 
C TSS is a tree with strings of 3 integers for keys and 
C strings of 7 integers for values. 
c 

TSS : TREE (STRING (INTFORM,3) ,STRING (INTFORM,7) ,30) 
I, ,J : INTFORM 
Sl STRING (INTFORM,3) 
S2 STRING (INTFORM,5) 
S3 STRING (INTFORM,7) 
OK LOGICAL 

BEGIN 
c 
C This program simply shows the nature of the references that 
C may be made to these variables and the translation of those 
C references. 
c 

TII.TRUNK (Il .KEY= l 
TSI.TRUNT< fi) .KEY (l) = l 
TSS.TRUNK (I) .VALUE (J) = l 
CALL TII.TRADD (TII,I,J,OKl 
CALL TSS.TRADD (TSS,Sl,S3,0K) 

END 
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FUNCTIONINTCMP(TYPE,Il,I2) 
INTEGERINTCMP 
INTEGERNAME(~) ,TYPE(1) 
DATA NAME/"I","N","T","C","M","P"/ 
LABEL=0 
IF(.NOT.(Il.LT.I2))GOTO 20 
CALL TEST01(LABEL,LINE, l, 9,NAME) 
GOTO ?.0 

30 CONTINUE 
INTCMP=-1 
GOTO 10 

20 CONTINUE 
IF(.NOT.(Il.EQ.I2))G0TO 40 
CALL TEST0l(LABEL,LINE, ?., l0,NAME) 
GOTO 40 

50 CONTINUE 
INTCMP=0 
GOTO 10 

40 CONTINUE 
IF(.NOT.(Il.GT.I2))GOTO 60 
CALL TEST01(LABEL,LINE, 3, l1,NAME) 
GOTO ~OJ 

70 CONTINUE 
INTCMP=l 
GOTO 10 

60 CONTINUE 
IF(LABEL.EQ.0)CALL ERR00l( 8,NAME) 
GOT0(30,50,70) ,LABEL 

10 CONTINUE 
RETURN 
END 

SUBROUTINEINTASGN(TYPE,I1,I?.) 
INTEGERNAME(7) ,TYPE(l) 
DATA NAME/"I","N","T","A","S","G","N"/ 
I2=I1 
RETURN 
END 

FUNCTIONSTRCMP(TYPE,Sl,S2) 
INTEGERS1 (l) ,82 (l) 

INTEGERSTRCMP 
INTEGERCOMPARE 
INTEGERNAME(6) ,TYPE(l) 
DATA NAME/"S","T","R","C","M","P"/ 
I=l 

80 CONTINUE 
IF(.NOT.(I.LE.TYPE(3)))G0TO 90 
IF( .NOT. (COMPARE (TYPE (TYPE (2)) ,Sl (DOPEl (LOCAL(4) ,I) *TYP 
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XE f t)) + 1) , S?. (DOPE 1 (LOCAL ( 1) , I) *TYPE ( t:1) + l) ) • EQ. 0) l G OTO 9 0 
I=I+1 
GOTO 8rl 

90 CONTINUE 
LABEL=0 
IF(.NOT.(I.GT.TYPE(ll))GOTO 
CALL TEST01(LABEL,LINE, 1, 
GOTO 110 

120 CONTINUE 
STRCMP=Cil 
GOTO 100 

110 
19, NAME) 

1.1_ 0 CONTINUE 
IF(.NOT.(I.LE.TYPE(3)))GOTO 110 
CALL TEST01(LABEL,LINE, 2, 40,NAME) 
GOTO 130 

140 CONTINUE 
STRCMP=COMPARE(TYPE(TYPE(2)) ,S1(DOPE1(LOCAL(4l ,I)*TYPE( 

Xl1) + 1) , S 2 (DOPE 1 (LOCAL ( 4) , I) *TYPE ( S l + 1) ) 
GOTO 100 

110 CONTINUE 
IF(LABEL.EQ.0)CALL ERR001( 1R,NAME) 
GOTO (1 20, 140) , LABEL 

100 CONTINUE 
RETURN 
END 

SUBROUTINESTRCPY(TYPE,S1,S2) 
INTEGERS1 (l l ,S2 (l) 

INTEGERCOMPARE 
INTEGERNAME(t)) ,TYPE(1) 
DATA NAME/"S","T","R","C","P","Y"/ 
I=1 

1501 CONTINUE 
IF(.NOT.(I.LE.TYPE(3lllGOTO 1110 
CALLASSIGN(TYPE(TYPE(2)) ,Sl(DOPE1(LOCAL(4) ,Il*TYPE(t:1l+1 

X l , S 2 (DOPE 1 (LOCAL ( 4) , I) *TYPE (C))+ 1) ) 
I=I+1 
GOTO 150 

1110 CONTINUE 
RETURN 
END 
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SUBROUTINETRINIT(TYPE,T) 
INTEGERT (1) 
INTEGERCOMPARE 
INTEGERNAME(~) ,TYPE(1) 
DATA NAME/"T","R","I","N","I","T"/ 
T(0+1)=0 
T(1+1)=1 
RETURN 
END 

SUBROUTINETRADD(TYPE,T,K,V,OK) 
INTEGERK (l) 
INTEGERV(1) 
INTEG ERT ( l) 
LOGICALOK,FOUND 
INTEGERADDRESS 
INTEGERCOMPARE 
INTEGERNAME(5) ,TYPE(1) 
DATA NAME/"T","R","A","D","D"/ 
CALLTRSRCH(TYPE,T(l) ,K(1) ,FOUND,ADDRESS) 
LABEL=0 
IF(.NOT.(FOUND))GOTO 180 
CALL TESTAl(LABEL,LINE, l, 90,NAME) 
GOTO 180 

l90l CONTINUE 
OK=.FALSE. 
GOTO 170 

180 CONTINUE 
IF(.NOT.(.NOT.FOUND))GOTO 200 
CALL TEST0l(LABEL,LINE, 2, 9l,NAME) 
GOTO 200 

?.lOl CONTINUE 
LABEL=0 
IF( .NOT. (T(1+1) .GE.TYPE(4) ')GOTO 230 
CALL TEST0l(LABEL,LINE, 1, 91,NAME) 
GOTO 230 

240 CONTINUE 
OK=.FALSE. 
GOTO 220 

:nOJ CONTINUE 
IF( .NOT. (T(1+l) .LT.TYPE(4)) )GOTO 250 
CALL TEST01(LABEL,LINE, 2, 94,NAME) 
GOTO ?.51i1 

2~11 CONTINUE 
N=T(1+1) 
T (1 + l) =T (1 + 1) + l 
CALLASSIGNrTYPE(TYPE(2)) ,K(1) ,T(2+DOPE1(TYPE(5) ,N)*TYPE 

x ( un +0+ 1') 
CALLASSIGN(TYPE(TYPE(3)) ,V(1) ,T(2+DOPE1(TYPE(5) ,N)*TYPE 
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X(l0'+TYPE(7)+1') 
T ( 2+DOPE 1 (TYPE ( 5' , N) *TYPE ( 1 QJ) +TYPE ( R '+ l' =0 
T(2+DOPE1 (TYPE (5) ,N) *TYPE (l0)+TYPE (9)+l)=0 
LABEL=0 
IF(.NOT.(ADDRESS.EQ.0))GOTO 280 
CALL TEST0l(LABEL,LINE, 1, 10l,NAME) 
GOTO 280 

?90 CONTINUE 
T(0+l)=N 
GOTO 270 

280 CONTINUE 
IF(.NOT.(ADDRESS.NE.0) )GOTO 300 
CALL TEST01(LABEL,LINE, 2, 102,NAME) 
GOTO 300 

310 CONTINUE 
D=COMPARE(TYPE(TYPE(2)) ,K(l) ,T(2+DOPE1 (TYPE(5) ,ADDRESS) 

X*TYPE(l0)+0+l)) 
LABEL=0 
IF(.NOT.(D.EQ.-l))GOTO 330 
CALL TEST0l(LABEL,LINE, 1, l05,NAME) 
GOTO 330 

340 CONTINUE 
T(2+DOPE1(TYPE(5) ,ADDRESS)*TYPE(l0)+TYPE(8)+l)=N 
GOTO 320 

330 CONTINUE 
IF(.NOT.(D.EQ.l))GOTO 350 
CALL TEST0l(LABEL,LINE, 2, 10~,NAME) 

GOTO 350 
3t:i0 CONTINUE 

T(2+DOPEl(TYPE(5) ,ADDRESS)*TYPE(l0)+TYPE(9)+1)=N 
GOTO 320 

350 CONTINUE 
IF(LABEL.EQ.0)CALL ERR001( l04,NAME) 
GOT0(341/1,3e}0) ,LABEL 

320 CONTINUE 
GOTO 27ril 

300 CONTINUE 
IF(LABEL.EQ.f/1)CALL ERR00l( l00,NAME) 
GOTO (290, 310) , LABEL 

270 CONTINUE 
GOTO 220 

250 CONTINUE 
IF(LABEL.EQ.0)CALL ERR00l( q2,NAME) 
GOT0(240,2t:i0) ,LABEL 

220 CONTINUE 
GOTO 170 

200 CONTINUE 
IF(LABEL.EQ.0)CALL ERR00l( R9,NAME) 
GOTO(l90,210) ,LABEL 



170 CONTINUE 
RETURN 
END 
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SUBROUTINETRSRCH(TYPE,T,K,FOUND,ADDRESS) 
INTEGERT (l) 
INTEGERK(1) 
LOGICALFOUND 
INTEGERADDRESS 
INTEGERCOMPARE 
INTEGERNAME(~) ,TYPE(1) 
DATA NAME/"T","R","S","R","C","H"/ 
ADDRESS=0 
NEXT=T (0+1) 

370 CONTINUE 
IF(.NOT.(NEXT.NE.0))GOTO 380 
D=COMPARE (TYPE (TYPE(?.)) ,K (1) ,T (2+DOPE1 (TYPE (5) ,NEXT) *TY 

XPE (l0)+0+l)) 
IF(.NOT.(D.NE.0))GOTO 380 
ADDRESS=NEXT 
LABEL=0 
IF(.NOT.(D.EQ.-l))GOTO 400 
CALL TEST0l(LABEL,LINE, l, l30,NAME) 
GOTO 400 

410 CONTINUE 
NEXT=T(2+DOPEl(TYPE(5) ,NEXT)*TYPEfl0)+TYPE(8'+l) 
GOTO 390 

400 CONTINUE 
IF(.NOT.(D.EQ.l))GOTO 420 
CALL TEST0l(LABEL,LINE, 2, 13l,NAME) 
GOTO 420 

430 CONTINUE 
NEXT=T(2+DOPEl(TYPE(5) ,NEXT)*TYPE(l0)+TYPE(9)+1) 
GOTO 390 

4?.0 CONTINUE 
IF(LABEL.EQ.0)CALL ERR001( l?.9,NAME) 
GOT0(410,430) ,LABEL 

390 CONTINUE 
GOTO 370 

380 CONTINUE 
LABEL=Of 
IF(.NOT.(NEXT.EQ.0))GOTO 450 
CALL TEST0l(LABEL,LINE, 1, 135,NAME) 
GOTO 450 

41:)0 CONTINUE 
FOUND=.FALSE. 
GOTO 440 

450 CONTINUE 
IF(.NOT.(NEXT.NE.0))G0TO 470 
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CALL TEST0l(LABEL,LINE, 2, 11~,NAME) 

GOTO 470 
480 CONTINUE 

FOUND=.TRUE. 
GOTO 440 

470 CONTINUE 
IF(LABEL.EQ.0)CALL ERR001( l14,NAME) 
GOT0(4n0,480) ,LABEL 

440 CONTINUE 
RETURN 
END 

INTEGER FUNCTION COMPARE(TYPE,Sl,S2) 
INTEGER TYPE (1) 
INTEGERINTCMP,STRCMP 
GOTO (l , 2) , TYPE (l) 

l CONTINUE 
COMPARE=INTCMP(TYPE,Sl,S2) 
GOTO 999 

?. CONTINUE 
COMPARE=STRCMP(TYPE,Sl,S2) 
GOTO 999 

999 RETURN 
END 

SUBROUTINE ASSIGN(TYPE,Sl,S2) 
INTEGER TYPE (1) 
GOTO(l,?.) ,TYPE(l) 

1 CONTINUE 
CALL INTASGN(TYPE,Sl,S2) 
GOTO 999 

2 CONTINUE 
CALL STRCPY(TYPE,Sl,S2) 
GOTO 999 

999 RETURN 
END 
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PROGRAMTEST 
INTEGERTII(82) 
INTEGERTIS (l (,)2) 
INTEGERTSI((,)?.) 
INTEGERTSS (:~ 1'1 :n 
INTEGERI (l) ,,J (l) 
INTEGERS1(1) 
INTEGERS2(5) 
INTEGERS3(7) 
LOGICALOK 
INTEGERLOCAL(94) ,NAME(4) 
DATA LOCAL/3,11,12,20,1,20,1,2,3,4,1,1,3,11,12,20,1,20, 

X1,1'1,7,R,l,2,7,5,1,5,1,1,3,11,18,1~,1,10,3,4,5,1'1,2,7,3,1 

X,3,1,1,1,3,11,18,30,1,30,3,10,11,12,2,7,3,1,3,1,1,2,7,7 
X,1,7,1,1,1,2,7,3,1,3,1,1,2,7,5,1,5,1,1,2,7,7,1,7,1,1/ 

DATA NAME/"T","E","S","T"/ 
TII (2+DOPE1 (LOCAL (5), I (l)) *4+0+1) =1 
TSI (2+DOPE1 (LOCAL (35), I (1)) *~+0+DOPEl (LOCAL (4) ,1) *TYPE ( 

X6)+1)=1 
TSS(?.+DOPE1(LOCAL(53) ,I(1))*12+3+DOPE1(LOCAL(4) ,J(1))*T 

XYPE(I1)+1)=l 
CALLTRADD (LOCAL (1) ,TII (l), I (l) ,,J (1), OK) 
CALLTRADD(LOCALf49) ,TSS(1) ,S1(1) ,S3(l) ,OK) 
RETURN 
END 



Appendix 8 

The Mytran symbol table is stored in a linked 

structure with variable length entries and links in two 

directions, called "down" and "across". Different entries 

contain different types of information. The following 

entries are used to store FORM descriptions. 

FormNameEntry contains 1) Name of FORM, 2) number of words 

in dope vector, 3) FORM number. It is joined across to the 

next FormNameEntry and down to the HeaderEntry. 

HeaderEntry contains 1) number of parameters, and is 

joined across to the DummyParmEntries and down to the 

StructureEntry. 

DummyParmEntry contains 1) the parameter name, 2) the 

parameter type (FORM or INTEGER) and is joined across to 

the next DummyParmEntry. 

StructureEntry contains 1) the type of structure (Record, 

Array, Fortran, Form, Parm or Current), 2) the size of the 

structure if it is known, 3) some information depending on 

the type of structure. This is the number of fields in a 

record, the number of ranges in an array, the type of a 

8-l 
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fortran scalar, the number of a parm or the pointer to the 

current form. The type of entry to which it is joined is 

also determined by the type of structure. A record entry 

is joined across to its FieldEntries. An array entry is 

joined across to its base StructureEntry, and down to its 

RangeEntries. A form entry is joined down to its 

FormSpecEntry. A parm entry is joined across to its parm 

name. 

FieldEntry contains 1) the field name, 2) the offset to 

the field if it is known. It is joined across to the next 

FieldEntry and down to its StructureEntry. 

RangeEntry contains 1) the type of entry which may be a 

value or a parameter, 2) the value or parameter number. 

It is joined down to the next RangeEntry. 

FormSpecEntry contains 1) the name of the FORM, 2) the 

starting address in the dope vector, 3) a pointer to the 

FORM. It is joined across to its ActualParmEntries. 

ActualParmEntry contains 1) the type of entry (FORM or 

INTEGER) and is joined across to the next ActualParmEntry 

and down to its value or FormSpecEntry. 
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ImportEntry contains 1) the number of FORM parameters 

which import something. It is joined across to its 

ImportFormEntries and down to the ExportEntry. 

ImportFormEntry contains 1) the FORM parameter name, 

2) the number of imported items, 3) the parameter number. 

It is joined across to the next ImportFormEntry and down 

to its ImportitemEntries. 

ImportitemEntry contains 1) the type of imported item 

(Subroutine, or Function) and is joined across to its 

ImportSubEntry and down to the next ImportitemEntry. 

ImportSubEntry contains 1) the subroutine or function 

name, 2) the number of parameters and if it is a function, 

is joined down to its type. 

ExportEntry contains 1) the number of exported items and 

is joined across to its ExportitemEntries. 

ExportitemEntry contains 1) its local name, 2) its alias 

name and is joined across to the next ExportitemEntry. 

The following entries are used to store variable 

declarations and their expanded type descriptions. 



VarNameEntry contains l) the variable name, 2) the address 

of the start of its dope vector. It is joined across to 

the next VarNameEntry and down to its StructureEntry. 

StructureEntry is the same as the StructureEntry for a 

FORM except that if the structure is the current form, it 

is joined down to an expanded StructureEntry for the 

current form. 

The FieldEntry, FormSpecEntry and ActualParmEntry are all 

the same as for a FORM except that where sizes and offsets 

are stored, they are now either known values or addresses 

in the dope vector. 

RangeEntry contains 1' the starting address in the dope 

vector of the range list. 

The rest of this appendix contains some graphic 

representations of the symbol tables for some of the FORMs 

and types described in the example in Appendix A. 
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FORTRAN 
STRING 

ASSIGN 2 

Symbol table for INTFORM and STRING FORMs. 
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Symbol table for TREE FORM, part i. 
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SUBROUTINE ASSIGN ?. 

Symbol table for TREE FORM, part ii. 
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TRUNK ? 

Symbol table for type of TII. 
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TRUNK 2 

FORTRAN 1 INTEGER 

Symbol table for type of TIS. 



Appendix C 

This appendix defines the syntax of Mytran. Any 

non-terminal ending in "Name" is equivalent to the 

non-terminal Name which is a letter followed by any number 

of letters or digits. The non-terminals Lower, Upper and 

Constant are equivalent to IntegerConstant which is a 

digit followed by any number of digits. 
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Forms 

Import/Export Procedures 

FormHead 

FormParmName 

FormParmType 

FormParmType 

INTEGER 
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Structure 

FieldList 

RangeList 

FormSpec 
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ActualFormParm 

Constant 

Import/Export 

Import ~----------------------------------------------------------

_ __..,.L~GMPOR~ormParmNam~mportLisV )) "" 

ImportList 

------~ AliasName 

Pa rmLi st 

Pa rmName ,___--,..,... 

Export 



C-5 

Procedures 

cGrocHea~eclarationr8) 

ProcHe ad 

ProcName 

Declarations 

Structure 

Body 



C-6 

Statement 

Assign 

--"'i Reference Expression r-~~ 

If 

Condition 

Loop 
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Call 

Reference,___..,.. 

Condition 

Expression 

Expression 

SimpleExpression 

Term 
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Factor 

Reference 

Subscript 

Field 
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ParameterList 

-r--~ Expression 1----r--~ 

AddOp 

MulOp 



Appendix D 

This appendix contains some of the code for the 

Mytran preprocessor. The routines which parse and 

generate the symbol table for FORMs, the routines which 

expand a form specification into a type, and the routines 

which generate access expressions from Mytran variable 

references, are included. The routines which parse and 

generate code for statements and expressions and all of 

the service routines are not included. 
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c 

SUBROUTINE FORM (OK) 
IMPLICIT INTEGER (A-Z) 
LOGICAL OK 
COMMON /T/ TOKEN 
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COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
COMMON /CURFRM/ FRMPTR, HDPTR, STRPTR, IMPPTR, EXPPTR 
COMMON /SCAN/ FORMM, DECL 
COMMON /FNUM/ FNUM 
LOGICAL FORMM, DECL 
INTEGER T (3) 

C Set LOCAL address to 0 and allocate a space for the 
C Form Number. 
c 

c 

WRITE (3,*) "Enter FORM" 
FORMM = .TRUE.; DECL = .FALSE. 
WRITE (6 ,*) " In FORM" 
CALL GETRACE 
IF (TOKEN .NE. @FORM) OK = .FALSE. 

(TOKEN .EQ. @FORM) 
CALL SETLOC 
ADDR = NEWLOC (1) 

C Scan the header, structure, import/export lists and 
C procedures of a form and join them together in the symbol table. 
c 

c 

CALL FORMHD (FRMPTR,HDPTR,OK) 
IF ( • NOT. OK) 

(OK) 
CALL JOINLL (FRMLST, FRMPTR, @ACROSS) 
FRMLST = FRMPTR 
CALL NEWLL (DUMPTR,l) 
CALL JOINLL (HDPTR, DUMPTR, @DOWN) 
CALL STRUCT (STRPTR, OK) 
CALL JOINLL (DUMPTR, STRPTR, @ACROSS) 

C Find out how many words in LOCAL were used by the form, 
C and store it in the table. 
c 

CALL GETLL (FRMPTR,T) 
T (2) = CURLOC (X); T (3) = FNUM 
CALL STORLL (FRMPTR,T) 
IF ( . NOT. OK) 

(OK) CALL IMPEXP (IMPPTR, OK) 
IF (.NOT. OK) 

(OK) 
CALL JOINLL (DUMPTR, IMPPTR, @DOWN) 
CALL SNAPLL 
CALL SNAPAS 



c 

FI 
FI 

FI 
FI 
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CALL PROC (OK) 
CALL RSETLL; CALL RSETAS 
VARLST = VARTAB 
IF (.NOT. OK) 

FI 

(OK) 
IF (TOKEN .EQ. @ENDFORM) CALL GETTKN 

(TOKEN .NE. @ENDFORM) OK = .FALSE. 
FI 

WRITE (3,*) "Leave FORM" 
RETURN 
END 

SUBROUTINE FORMHD (FRMPTR,HDPTR,OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (2?.) 
INTEGER T (2) 
LOGICAL OK 

C A form header is a name followed by 0 or more parameters. 
C Store the name in the form entry. The form entry points down 
C to the header enter. The header entry contains the number of 
C parameters and points across to the list of parameter entries. 
c 

WRITE (3,*) "Enter FORMHD" 
CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
CALL NEWLL (FRMPTR, 3) 
CALL ADDAS (FRMNAM, TKNSTR) 
T (1) = FRMNAM 
CALL STORLL (FRMPTR, T) 
CALL NEWLL (HDPTR, 1) 
CALL JOINLL (FRMPTR, HDPTR, @DOWN) 
PRMCNT = 0 
CALL GETTKN 
IF (TOKEN .NE. @LEFTP) 

(TOKEN .EQ. @LEFTP) 
LOOP GIVEN LSTPTR = HDPTR 

DO CALL FRMPRM (PRMPTR, OK) 
IF (.NOT. OK) 

(OK) CALL GETTKN 
CALL JOINLL (LSTPTR, PRMPTR, @ACROSS) 
LSTPTR = PRMPTR 



c 

FI 

FI 
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PRMCNT = PRMCNT + 1 
FI 

WHILE (OK .AND. TOKEN .EQ. @COMMA) 
END LOOP 
IF (OK .AND. TOKEN .EQ. @RIGHTP) CALL GETTKN 

(.NOT. OK .OR. TOKEN .NE. @RIGHTP) OK= .FALSE. 
FI 

T (1) = PRMCNT 
CALL STORLL (HDPTR, T) 
IF (.NOT. OK) 

(OK) CALL SKPEOS 
FI 

WRITE (3,*) "Leave FORMHD" 
RETURN 
END 

SUBROUTINE FRMPRM (PRMPTR,OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
INTEGER T (2) 
LOGICAL OK 

C A form dummy parameter is a name followed by a colon, followed 
C by a parameter type. Parameters may be either forms or integers. 
C Put the name and type in the symbol table in a 
C Parameter Entry. 
c 

WRITE (3,*) "Enter FRMPRM" 
CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
ADDR = NEWLOC (1) 
CALL NEWLL (PRMPTR, 2) 
CALL ADDAS (PRMNAM, TKNSTR) 
T (1) = PRMNAM 
CALL GETTKN 
IF (TOKEN .NE. @COLON) OK = .FALSE. 

(TOKEN .EQ. @COLON) 

FI 

CALL GETTKN 
IF (TOKEN.NE.@FORM .AND. TOKEN.NE.@INTEGER) 

OK = .FALSE. 

FI 

(TOKEN.EQ.@FORM .OR. TOKEN.EQ.@INTEGER) 
T (2) = TOKEN 
CALL STORLL (PRMPTR, T) 



c 
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FI 
WRITE (3,*) "Leave FRMPRM" 
RETURN 
END 

SUBROUTINE STRUCT (STRPTR, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /T/ TOKEN 
LOGICAL OK, EMPTY 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
COMMON /S/ STRSET (10), STTSET (12), EXPSET (10) 
LOGICAL SETMEM 
WRITE ( 3, *) "Enter STRUCT" 

C A structure definition has a recursive syntax. This is the 
C driver routine for the structure parsing routines. When a 
C recursive call is to be made, the calling routine pushes the 
C name of the routine to be called onto the stack and returns 
C to the driver, which looks at the stack and calls the 
C appropriate routine. When a return is to be made, the routine 
C removes its own entry from the stack and sets the direction 
C flag to UP. 
c 

LOOP 
GIVEN CALL PUSH (@STRUCTURE,l); OK= .TRUE. 

DOWN = .TRUE.; UP = .FALSE. 
LOOPBY CALL LOOKAT (TOP, 1, EMPTY) 
WHILE (.NOT. EMPTY) (OK) 

DO 
(SETMEM (STRSET, TOP)) 

IF 
(DOWN) 

IF 

FI 
(UP) 

IF 

(TOP .EQ. @STRUCTURE) CALL STRST (OK) 
(TOP .EQ. @RECORD) CALL RECST (OK) 
(TOP .EQ. @ARRAY) CALL ARRST (OK) 
(TOP .EQ. @FIELDEF) CALL FLDFST (OK) 
(TOP .EQ. @FORM) CALL FORMST (OK) 
(TOP .EQ. @PARM) CALL PARMST (OK) 

(TOP .EQ. @STRUCTURE) CALL STRND (OK) 
(TOP .EQ. @RECORD) CALL RECND (OK) 
(TOP .EQ. @ARRAY) CALL ARRND (OK) 
(TOP .EQ. @FIELDEF) CALL FLDFND (OK) 
(TOP .EQ. @FORM) CALL FORMND (OK) 



c 
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(TOP .EQ. @PARM) CALL PARMND (OK) 

FI 
END LOOP 

FI 

(TOP .EQ. @EXPAND) CALL EXPAND (@FORM) 
CALL POP (TOP,LEN) 

STRPTR = CURPTR 
WRITE (3,*) "Leave STRUCT" 
RETURN 
END 

SUBROUTINE STRST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /CURPTR/ CURPTR 
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP 
COMMON /F/ FORSET (10) 
COMMON /DIRECT/ UP, DOWN 
COMMON /TS/ TKNSTR (22) 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
COMMON /SCAN/ FORM, DECL 
LOGICAL FORM, DECL 
INTEGER NAM (2), STR (4), S (2), T (4) 
LOGICAL OK, SETMEM, FOUND, UP, DOWN 
WRITE (3,*) "Enter STRST" 

C A structure may be a Record, an Array, a Fortran scalar, or a 
C Form. If it is a Form it may be the Current Form, a Parameter 
C to the Current Form, or a previous Form. 
c 

c 

CALL NEWLL (PTR, 4) 
CURPTR = PTR 
IF 

C If it is a Record, make a Record Entry in the symbol table and 
C make a recursive call to the record parsing routine. 
c 

c 

(TOKEN .EQ. @RECORD) 
S (1) = @RECORD; S (2) = PTR 
CALL PUSH (S, 2) 
T (1) = @RECORD; T (2) = @KNOWN; T (3) = 0; T (4) = 0 
CALL STORLL (PTR, T) 

C If it is a Array, make a Array Entry in the symbol table and 
C make a recursive call to the array parsing routine. 
c 

(TOKEN .EQ. @ARRAY) 
S (1) = @ARRAY; S (2) = PTR 



c 
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CALL PUSH (S, 2) 
T (1) = @ARRAY; T (2) = @KNOWN; T (3) = 0; T (4) = 0 
CALL STORLL (PTR, T) 

C If it is a Fortran scalar, make a Fortran Entry and since there 
C can be no substructure, make a recursive return. 
c 

c 

(SETMEM (FORSET, TOKEN)) 
T (1) = @FORTRAN; T (2) = @KNOWN; T (3) = 1; T (4) = TOKEN 
CURSIZ = 1; CURKNO = @KNOWN 
CALL STORLL (PTR, T) 
CALL GETTKN 
DOWN= .FALSE.; UP= .TRUE. 

(TOKEN .EQ. @NAME) 
CALL GETLL (CURNAM,NAM) 
RESULT= ASCMP (TKNSTR,NAM (1)) 

C If it is the current form, make a current form structure 
C entry. It must have no parameters. 
C EXPAND will expand it into a type description. 
c 

c 

IF (RESULT .EQ. @EQUAL) 
T (1) = @CURRENT; T (2) = @UNKNOWN 
T (3) = 0; T (4) = 0 
CALL STORLL (PTR,T) 
CALL PUSH (@EXPAND,l) 
CALL EXPAND (@CURRENT) 
CALL POP (S,LEN) 
CALL GETTKN 
DOWN = .FALSE.; UP = .TRUE. 

(RESULT .NE. @EQUAL) 
CALL SRCHPM (TKNSTR,NUM,PRMPTR,FOUND) 

C If it is a parameter to the current form, make 
C structure entry. It must have no parameters. 
C parameter name with it for future searches. 

a parameter form 
Keep the 

c 
IF (FOUND) 

T (1) = @PARM; T (2) = @UNKNOWN 
T (3) = 0; T (4) = NUM 
CALL STORLL (PTR,T) 
CALL NEWLL (PNMPTR,l) 
CALL ADDAS (NAME,TKNSTR) 
T (1) = NAME 
CALL STORLL (PNMPTR,T) 
CALL JOINLL (PTR,PNMPTR,@ACROSS) 
CALL GETTKN 
CURSIZ = 0; CURKNO = @UNKNOWN 
DOWN= .FALSE.; UP= .TRUE. 
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(.NOT. FOUND) 
c 
C If it is a form, it must have been previously defined. Look 
C it up and get its structure entry. Use the size from this to 
C make a Form Spec Structure entry. 

c 

CALL SRCHLL (@ACROSS,TKNSTR,FRMTAB,FRMPTR,FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

(FOUND) 
STRPTR = FRMPTR 
CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@ACROSS) 
CALL GETLL (STRPTR,STR} 
STRKNO = STR (2) 
STRSIZ = STR (3) 
T (1) = @FORM; T (2) = STRKNO 
T (3} = STRSIZ; T (4) = 0 
CALL STORLL (PTR,T) 

C If this structure description is part of a variable declaration 
C rather than part of a Form structure, push a recursive call to 
C EXPAND, to be made after all the Form parameters have been parsed. 
c 

FI 
FI 

FI 

IF (DECL) CALL PUSH (@EXPAND,l) 
(FORM) 

FI 
S (1) =@FORM; S (2) = PTR 
CALL PUSH (S,2) 

(TOKEN .NE. @RECORD .AND. TOKEN .NE. @ARRAY .AND. 
X TOKEN .NE. @NAME) OK = .FALSE. 

FI 
RETURN 
END 

SUBROUTINE STRND (OK) 
IMPLICIT INTEGER (A-Z) 
LOGICAL OK 
WRITE (3,*) "Enter STRND" 
CALL POP (TOP,LEN) 
RETURN 
END 



c 

SUBROUTINE ARRST (OK) 
IMPLICIT INTEGER (A-Z) 
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C An array definition is a list of ranges, followed by a base 
C structure. The range list is not recursively defined, 
C so the parsing routine for it may be called directly. 
C Store the range size in the Array Entry, temporarily. 
C It will be used later to calculate the size of the array. 
C Make a recursive call to parse the base structure. 
c 

c 

COMMON /T/ TOKEN 
COMMON /CURPTR/ CURPTR 
INTEGER T (4) 
LOGICAL OK 
WRITE (3,*) "Enter ARRST" 
CALL RANGE (CURPTR,NUM,K,RNGSIZ,OK) 
IF ( • NOT. OK) 

(OK) 
CALL GETLL (CURPTR, T) 
T (2) = K; T (3) = RNGSIZ; T (4) = NUM 
CALL STORLL (CURPTR, T) 
CALL GETTKN 
IF (TOKEN .NE. @OF) OK = .FALSE. 

(TOKEN .EQ. @OF) 

FI 
FI 
RETURN 
END 

CALL PUSH (@STRUCTURE,l) 
CALL GETTKN 

SUBROUTINE ARRND (OK) 
IMPLICIT INTEGER (A-Z) 

C The base structure of the array has been scanned and its 
C structure is pointed at by CURPTR. Its size is in CURSIZ. 
C Join the base structure to the array entry in the table. 
C The range size is in the array entry. Multiply it by the 
C base size to get the total array size. If either the range 
C size or the base size is unknown at scan time, the array size 
C will be unknown. 
c 

COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
INTEGER S (2), T (4) 
LOGICAL OK 
WRITE (3,*) "Enter ARRND" 
CALL POP (S,LEN) 
ARRPTR = S (2) 



c 
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CALL JOINLL (ARRPTR, CURPTR, @ACROSS) 
CURPTR = ARRPTR 
CALL GETLL (ARRPTR,T) 
IF (T (2) .EQ. @KNOWN .AND. CURKNO .EQ. @KNOWN) 

RANGE = T (3) 
BASE = CURSIZ 
CURSIZ = RANGE * BASE 
T (3) = BASE 

(T (2) .EQ. @UNKNOWN .OR. CURKNO .EQ. @UNKNOWN) 
IF (CURKNO .EQ. @UNKNOWN) 

FI 

FI 

T (3) = NEWLOC (1); T (2) =@UNKNOWN 
(CURKNO .EQ. @KNOWN) 

T (3) = CURSIZ; T (2) = @KNOWN 

CURSIZ = 0; CURKNO = @UNKNOWN 

CALL STORLL (ARRPTR,T) 
RETURN 
END 

SUBROUTINE RANGE (PTR, NUM, K, RNGSIZ, OK) 
IMPLICIT INTEGER (A-Z) 

C A range list is a series of range entries separated by commas, 
C enclosed in parentheses. A range entry is a lower and upper 
C limit, separated by a colon, or just an upper limit, in which 
C case the lower is assumed to be 1. Limits may be integers or 
C form parameters. If any of the limits in a range list are 
C parameters, the range size cannot be calculated. 
c 

COMMON /T/ TOKEN 
COMMON /TV/ TKNVAL 
COMMON /TS/ TKNSTR (22) 
COMMON /SCAN/ FORM, DECL 
LOGICAL FORM, DECL, FOUND 
INTEGER T (2) 
LOGICAL OK 
WRITE (3,*) "Enter RANGE" 
CALL GETTKN 
IF (TOKEN .NE. @LEFTP) OK = .FALSE. 

(TOKEN .EQ. @LEFTP) 
LOOP 

GIVEN 
LSTPTR = PTR; NUM = 0; RNGSIZ = 1; K = @KNOWN 

DO 
CALL GETTKN 
IF (TOKEN .EQ. @NUMBER) 

Rl = @NUMBER; Vl = TKNVAL 
CALL GETTKN 



c 

FI 
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(TOKEN .EQ. @NAME) 
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) 
R1 = @NAME; V1 = PRMNUM 
CALL GETTKN 

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME) 
OK = .FALSE. 

IF ( • NOT. OK) 
(OK) 

IF (TOKEN .NE. @COLON) 
R2 = R1; V2 = V1 

FI 

R1 = @NUMBER; Vl = 1 
(TOKEN .EQ. @COLON) 

CALL GETTKN 
IF (TOKEN .EQ. @NUMBER) 

FI 

R2 = @NUMBER; V2 = TKNVAL 
CALL GETTKN 

(TOKEN .EQ. @NAME) 
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) 
R2 = @NAME; V2 = PRMNUM 
CALL GETTKN 

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME) 
OK = .FALSE. 

IF (.NOT. OK) 
(OK) 

C If this range list is part of a Form, then each upper and lower 
C bound gets stored in a Range Entry in the symbol table. 
C Storage is allocated in the dope vector and the starting address 
C of the range list is stored in the symbol table. 
c 

IF (FORM) 
ADDR = NEWLOC (1) 
IF (NUM .EQ. 0) 

CALL NEWLL (RNGPTR,2) 
T (1) = @KNOWN 
T (2) = ADDR 
CALL STORLL (RNGPTR,T) 
CALL JOINLL (LSTPTR,RNGPTR,@DOWN) 
LSTPTR = RNGPTR 

(NUM .NE. 0) 



c 
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FI 
CALL NEWLL (R1PTR,2) 
T ( 1) = R1; T ( 2) = V1 
CALL STORLL (R1PTR,T) 
CALL JOINLL (LSTPTR,R1PTR,@DOWN) 
CALL NEWLL (R2PTR,2) 
T ( 1) = R2; T ( 2) = V2 
ADDR = NEWLOC (1) 
CALL STORLL (R2PTR,T) 
CALL JOINLL (RlPTR,R2PTR,@DOWN) 
LSTPTR = R2PTR 

C If the range list is part of a declaration, then the values are 
C put in the dope vector. 
c 

FI 
c 

(DECL) 
ADDR = NEWLOC (1) 
CALL PUTLOC (ADDR,Vl) 
IF (NUM .EQ. 0) 

FI 

CALL NEWLL (RNGPTR,2) 
T (1) = @KNOWN;T (2) = ADDR 
CALL STORLL (RNGPTR,T) 
CALL JOINLL (LSTPTR,RNGPTR,@DOWN) 

(NUM .NE. 0) 

ADDR = NEWLOC (1) 
CALL PUTLOC (ADDR,V2) 

C If both bounds are known, check them and calculate the range size. 
c 

FI 
FI 

IF (Rl .EQ. @NUMBER .AND. R2 .EQ. @NUMBER) 
IF (V2 .LT. Vl) OK = .FALSE. 

FI 

FI 

(V2 .GE. Vl) 
IF (K .EQ. @UNKNOWN) 

(K .EQ. @KNOWN) 
RNGSIZ = RNGSIZ * (V2-Vl+l) 

FI 

(Rl .EQ. @NAME .OR. R2 .EQ. @NAME) 
RNGSIZ = 0; K = @UNKNOWN 

NUM = NUM + 1 
WHILE (OK .AND. TOKEN .EQ. @COMMA) 

ENDLOOP 
IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 

(TOKEN .EQ. @RIGHTP) 



c 

FI 
FI 
RETURN 
END 

SUBROUTINE RECST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
INTEGER S (5) 
LOGICAL OK 
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WRITE ( 3, *) "Enter RECST" 

C A record description is a list of field descriptions. 
c 

c 

S (1) = @FIELDEF; S (2) = CURPTR; S (3) = CURPTR 
s (4) = 0; s (5) = 0 
CALL PUSH (S,5) 
RETURN 
END 

SUBROUTINE RECND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
INTEGER S (5), REC (4) 
LOGICAL OK 
WRITE (3,*) "Enter RECND" 

C When a record definition is completed, put its size in CURSIZ. 
c 

CALL POP (S,LEN) 
PTR = S (2) 
CALL GETLL (PTR, REC) 
IF (REC (2) .EQ. @UNKNOWN) 

FI 

CURSIZ = 0; CURKNO = @UNKNOWN 
(REC ( 2) • EQ. @KNOWN) 

CURSIZ = REC (3); CURKNO =@KNOWN 

CURPTR = S (2) 
IF (TOKEN .NE. @ENDREC) OK = .FALSE. 

(TOKEN .EQ. @ENDREC) CALL GETTKN 
FI 
RETURN 
END 



c 

SUBROUTINE FLDFST (OK) 
IMPLICIT INTEGER (A-Z) 
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C A field definition is a list of names, separated by commas, 
C followed by a colon, and then a structure. 
c 

c 

COMMON /T/ TOKEN 
COMMON /CURPTR/ CURPTR 
INTEGER S ( 5) 
LOGICAL OK 
WRITE (3,*) "Enter FLDFST" 
CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
LAST = CURPTR 
CALL NAMLST (FRST, LAST, NUM, OK) 
CALL POP (S, LEN) 
S (3) = LAST; S (4) = FRST; S (5) = 
CALL PUSH (S, 5) 
IF (.NOT. OK) 

NUM 

(OK) 
IF (TOKEN 

(TOKEN 
CALL 
CALL 

.NE. @COLON) OK = .FALSE. 

.EQ. @COLON) 

FI 
FI 
RETURN 
END 

FI 

GETTKN 
PUSH (@STRUCTURE,!) 

SUBROUTINE FLDFND (OK) 
IMPLICIT INTEGER (A-Z) 

C The structure for the current field or fields is pointed at by 
C CURPTR. Its size is in CURSIZ. Join the structure to each 
C field entry. The offset for a field is the current record 
C size. Accumulate the record size by adding the size of each 
C field to it. 
c 

COMMON /T/ TOKEN 
COMMON /DIRECT/ UP, DOWN 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
INTEGER S (5), T (4), FLD (3) 
LOGICAL UP, DOWN 
LOGIC~L EOSTKN 
LOGICAL OK 
WRITE (3,*) "Enter FLDFND" 



c 

D-15 

CALL POP (S,LEN) 
RECPTR = S (2); LAST= S (3); FRST = S (4) 
NUM = S ( 5) 
CALL GETLL (RECPTR,T) 
NUMFLD = T (4) 
RECSIZ = T (3); RECKNO = T (2) 
STRPTR = CURPTR 
STRSIZ = CURSIZ; STRKNO = CURKNO 
LOOP GIVEN FLDPTR = FRST 

WHILE (FLDPTR .NE. 0) 
DO 

CALL JOINLL (FLDPTR,STRPTR,@DOWN) 
CALL GETLL (FLDPTR,FLD) 
IF (RECKNO .EQ. @UNKNOWN) 

FI 

FLD (2) = @UNKNOWN 
FLD (3) = NEWLOC (1) 

(RECKNO .EQ. @KNOWN) 
FLD (2) = @KNOWN 
FLD (3) = RECSIZ 

CALL STORLL (FLDPTR,FLD) 
IF (RECKNO .EQ. @KNOWN .AND. STRKNO .EQ. @KNOWN) 

RECSIZ = RECSIZ + STRSIZ 

FI 

(RECKNO .EQ. @UNKNOWN .OR. STRKNO .EQ. @UNKNOWN) 
RECSIZ = 0; RECKNO = @UNKNOWN 

NUMFLD = NUMFLD + 1 
LOOPBY CALL NEXTLL (FLDPTR,@ACROSS) 

END LOOP 
T (2) = RECKNO; T (3) = RECSIZ; T (4) = NUMFLD 
CALL STORLL (RECPTR,T) 
CURSIZ = RECSIZ; CURKNO = RECKNO 
IF (.NOT. EOSTKN (X)) 

( EOSTKN (X) ) 
CALL SKPEOS 

C If the next token is a name, then there is another field 
C definition. Get its name list and make a recursive call to get 
C their structure. 
c 

IF (TOKEN .NE. @NAME) 
(TOKEN .EQ. @NAME) 

DOWN= .TRUE.; UP= .FALSE. 
CALL NAMLST (FRST,LAST,NUM,OK) 
S (1) = @FIELDEF; S (2) = RECPTR; S (3) = LAST 
S (4) = FRST; S (5) = NUM 
CALL PUSH (S,5) 
IF ( • NOT. OK) 

(OK) 



c 

FI 
FI 
RETURN 
END 

FI 
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IF (TOKEN .NE. @COLON) OK = .FALSE. 
(TOKEN .EQ. @COLON) 

CALL GETTKN 
CALL PUSH (@STRUCTURE,l) 

FI 

SUBROUTINE NAMLST (FRST,LAST,NUM,OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMI'10N /TS/ TKNSTR ( 22) 
INTEGER T (3) 
LOGICAL OK 
WRITE (3,*) 11 Enter NAMLST 11 

C A name list is a list of names separated by commas. The names 
C are stored in the symbol table and joined together. 
c 

LOOP 
GIVEN NUM = 0; CALL NEWLL (PTR,3); FRST = PTR 
DO 

IF (TOKEN .NE. @NAME) OK = .FALSE. 

FI 

(TOKEN .EQ. @NAME) 
CALL ADDAS (NAME, TKNSTR) 
T (1) = NAME; T (2) = @KNOWN; T (3) = 0 
CALL STORLL (PTR, T) 
CALL JOINLL (LAST, PTR, @ACROSS) 
LAST = PTR 
NUM = NUM + 1 
CALL GETTKN 

WHILE (OK .AND. TOKEN .EQ. @COMMA) 
LOOPBY CALL GETTKN; CALL NEWLL (PTR, 3) 

END LOOP 
WRITE (3,*) 11 Leave NAMLST 11 

RETURN 
END 
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SUBROUTINE FORMST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 

N /TS/ TKNSTR (22) 
COMMON /CURPTR/ CURPTR 
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
INTEGER T (4), S (3), FRM (3) 
LOGICAL OK, FOUND 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
WRITE (3,*) "Enter FORMST" 
CALL POP (S,LEN); PTR = S (2); CALL PUSH (S,LEN) 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
C Get the number of words needed in LOCAL, from the Form Entry, 
C and allocate then. Put the form name, the LOCAL address, 
C and the form pointer into the Form Spec Entry. 
C If it has parameters, make a recursive call to parse them. 
c 

CALL NEWLL (SPCPTR,3) 
CALL ADDAS (NAME,TKNSTR) 
CALL SRCHLL (@ACROSS,TKNSTR,FRMTAB,FRMPTR,FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) 
T (1) = NAME 
CALL GETLL (FRMPTR,FRM) 
LOCSIZ = FRM (2) 
ADDR = NEWLOC (LOCSIZ) 
T (2) = ADDR; T (3) = FRMPTR 
CALL STORLL (SPCPTR,T) 
CALL JOINLL (PTR,SPCPTR,@DOWN) 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) 

FI 

S (1) = @PARM; S (2) = SPCPTR 
S (1) = SPCPTR 
CALL PUSH (S,3) 

(TOKEN .NE. @LEFTP) 
DOWN= .FALSE.; UP = .TRUE. 

FI 
RETURN 
END 



c 

SUBROUTINE FORMND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
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COMMON /CURSIZ/ CURSIZ, CURKNO 
INTEGER S ( 2) , SPEC ( 4) 
LOGICAL OK 
WRITE (3,*) "Enter FORMND" 

C When a Form is completely parsed, put its size in CURSIZ. 
c 

c 

CALL POP (S,LEN) 
CURPTR = S (2) 
CALL GETLL (CURPTR,SPEC) 
CURSIZ =SPEC (3); CURKNO =SPEC (2) 
RETURN 
END 

SUBROUTINE PARMST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TV/ TKNVAL 
COMMON /CURPTR/ CURPTR 
INTEGER S ( 3) , T ( 1) 
LOGICAL OK 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
WRITE (3,*) "Enter PARMST" 

C A parameter to a Form may be an integer constant or a Form 
C Specification. If it is an integer, store its value in the 
C symbol table. 
c 

c 

CALL GETTKN 
CALL NEWLL (PRMPTR, 1) 
CALL POP (S, LEN) 
LSTPTR = S (3) 
CALL JOINLL (LSTPTR, PRMPTR, @ACROSS) 
S (3) = PRMPTR 
CALL PUSH (S, 3) 
IF (TOKEN .EQ. @NUMBER) 

T (1) = @INTEGER 
CALL STORLL (PRMPTR, T) 
CALL NEWLL (VALPTR, 1) 
T (1) = TKNVAL 
CALL STORLL (VALPTR, T) 
CALL JOINLL (PRMPTR, VALPTR, @DOWN) 
DOWN= .FALSE.; UP= .TRUE. 
CALL GETTKN 
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C If it is a Form Spec, make a recursive call to parse it. 
c 

c 

(TOKEN .EQ. @NAME) 
T (1) = @FORM 
CALL STORLL (PRMPTR, T) 
CURPTR = PRMPTR 
S (1) = @FORM; S (2) = PRMPTR 
CALL PUSH (8,2) 

(TOKEN .NE. @NUMBER .AND. TOKEN .NE. @NAME) OK = .FALSE. 
FI 
RETURN 
END 

SUBROUTINE PARMND (OK) 
IMPLICIT INTEGER (A-Z) 
CO.MMON /T/ TOKEN 
INTEGER S (3), T (2) 
LOGICAL OK 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
WRITE (3 ,*) "Enter PARMND" 

C If a parameter is followed by a comma, there is another 
C parameter. If it is followed by a right paren, then the 
C parm list is complete. 
c 

CALL POP (S,LEN) 
IF (TOKEN .EQ. @COMMA) 

FI 

DOWN= .TRUE.; UP= .FALSE. 
CALL PUSH (S, 3) 

(TOKEN .EQ. @RIGHTP) 
CALL GETTKN 

(TOKEN .NE. @COMMA .AND. TOKEN .NE. @RIGHTP) OK = .FALSE. 

RETURN 
END 

SUBROUTINE IMPEXP (IMPPTR, OK) 
IMPLICIT INTEGER (A-Z) 
LOGICAL OK 
WRITE (3,*) "Enter IMPEXP" 
CALL IMPORT (IMPPTR, OK) 
IF (.NOT. OK) 

(OK) CALL EXPORT (EXPPTR, OK) 
FI 
CALL JOINLL (IMPPTR, EXPPTR, @DOWN) 
WRITE (3,*) "Leave IMPEXP" 
RETURN 
END 



c 
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SUBROUTINE IMPORT (IMPPTR, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
INTEGER T (2) 
LOGICAL OK, FOUND 
WRITE ( 3, *) n Enter IMPORT .. 

C The Import section is a list of parameters to the current form 
C each followed by a list of subroutines and functions which 
C it must support. The parameter name and number are stored in 
C the symbol table and its import list is joined to it. 
c 

CALL NEWLL (IMPPTR, 1); FRMCTR = 0 
IF (TOKEN .NE. @IMPORT) 

FI 

(TOKEN .EQ. @IMPORT) 
WRITE (6,*) nin IMPORTn 
CALL GETRACE 
LOOP 

GIVEN CALL GETTKN; LAST = IMPPTR 
WHILE (TOKEN .EQ. @FROM) 

DO 
(OK) 

CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
CALL SRCHPM (TKNSTR,PRMNUM,PRMPTR,FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) 
CALL NEWLL (FRMPTR, 3) 
CALL JOINLL (LAST, FRMPTR, @ACROSS) 
LAST = FRMPTR 
CALL ADDAS (NAME, TKNSTR) 
CALL IMPLST (FRMPTR, NUM, OK) 
T (1) = NAME; T (2) = NUM; T (3) = PRMNUM 
CALL STORLL (FRMPTR, T) 
FRMCTR = FRMCTR + 1 

FI 
ENDLOOP 

T (1) = FRMCTR 
CALL STORLL (IMPPTR, T) 
WRITE (3,*) .. Leave IMPORT .. 
RETURN 
END 



c 
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SUBROUTINE IMPLST (FRMPTR, NUM, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
COMMON /F/ FORSET (10) 
INTEGER T (2) 
LOGICAL OK 
LOGICAL EOSTKN, SETMEM 
WRITE ( 3, *) "Enter IMPLST" 

C An import list is a list of subroutine and function names and 
C parameter lists, and for functions, result types. The name 
C and type of each imported item is kept in the symbol table. 
C In addition a separate matrix of imports and the forms that 
C export them is kept for use in generating alias caller routines. 
C NEWIMP and SETYPE are used to set up this matrix. 
c 

LOOP 
GIVEN CALL GETTKN; LAST = FRMPTR; NUM = 0 
WHILE (TOKEN .EQ. 0NAME) 

DO 
(OK) 

CALL NEWIMP (TKNSTR) 
CALL ADDAS (NAME, TKNSTR) 
CALL NEWLL {ITMPTR, 1) 
CALL JOINLL (LAST, ITMPTR, @DOWN) 
LAST = ITMPTR 
T (1) = NAME; CALL STORLL (ITMPTR, T) 
CALL NEWLL (SUBPTR, 2) 
CALL JOINLL (ITMPTR, SUBPTR, @ACROSS) 
CALL GETTKN 
IF 

(TOKEN .EQ. @LEFTP) 
CALL PRMLST (SUBPTR, NUMM, OK) 
IF ( • NOT. OK) 

(OK) 
IF (TOKEN .NE. ~RIGHTP) OK = .FALSE. 

(TOKEN .EQ. @RIGHTP) 
CALL GETTKN 
IF (TOKEN .NE. @COLON) 

CALL SETYPE (@SUBROUTINE) 
T (1) = @SUBROUTINE 
T (2) = NUMM 
CALL STORLL (SUBPTR, T) 

(TOKEN .EQ. @COLON) 
T (1) = @FUNCTION 
T (2) = NUMM 
CALL STORLL (SUBPTR, T) 
CALL GETTT:<N 



c 

FI 
FI 

FI 
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IF (.NOT. SETMEM (FORSET,TOKEN)) 
OK = .FALSE. 

FI 

(SETMEM (FORSET,TOKEN)) 
CALL SETYPE (TOKEN) 
CALL NEWLL (TYPPTR, 1) 
CALL JOINLL (SUBPTR, TYPPTR, @DOWN) 
T (1) = TOKEN 
CALL STORLL (TYPPTR, T) 
CALL GETTKN 

(TOKEN .EQ. @COLON) 
T (1 ) = @FIELD; T ( 2 ) = 0 
CALL STORLL (SUBPTR, T) 
CALL GETTKN 
CALL STRUCT (STRPTR, OK) 
CALL JOINLL (SUBPTR, STRPTR, @DOWN) 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @COLON) 
FI 

LOOPBY NUM = NUM + 1 
IF (.NOT. EOSTKN (X)) OK = .FALSE. 

(EOSTKN (X)) CALL SKPEOS 
FI 

END LOOP 
WRITE ( 3, *) "Leave IMPLST" 
RETURN 
END 

SUBROUTINE PRMLST (SUBPTR, NUM, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
INTEGER T (1) 
LOGICAL OK 
WRITE (3,*) "Enter PRMLST" 

C Parameter names are stored in the symbol table. ADDPL adds the 
C name to the parameter list in the Import/Export matrix. 
c 

LOOP 
GIVEN CALL GETTKN; LSTPTR = SUBPTR; NUM = 0 
DO 

IF (TOKEN .NE. @NAME) OK = .FALSE. 
(TOKEN .EQ. @NAME) 

CALL ADDPL (TKNSTR) 
CALL NEWLL (NAMPTR, 1) 
CALL ADDAS (NAME, TKNSTR) 



c 
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T (1) = NAME 
CALL STORLL (NAMPTR, T) 

FI 

CALL JOINLL (LSTPTR, NAMPTR, @ACROSS) 
LSTPTR = NAMPTR 
NUM = NUM + 1 
CALL GETTKN 

WHILE (OK) (TOKEN .EQ. @COMMA) 
LOOPBY CALL GETTKN 

END LOOP 
WRITE ( 3, *) "Leave PRMLST" 
RETURN 
END 

SUBROUTINE EXPORT (EXPPTR, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
COMMON /FNUM/ FNUM 
INTEGER T (2), ACTNAM (22) 
LOGICAL OK 
LOGICAL EOSTKN 
WRITE (3,*) "Enter EXPORT" 

C The export section is a list of subroutines 
C supported by the form and the aliases under 
C being exported, for import by other forms. 
C pair is stored in the symbol table and also 
C which sets up the Import/Export matrix. 

and functions 
which they are 
Each actual/alias 
passed to NEWEXP 

c 
CALL NEWLL (EXPPTR, 1) 
LSTPTR = EXPPTR; NUM = 0 
IF (TOKEN .NE. @EXPORT) 

(TOKEN .EQ. @EXPORT) 
LOOP 

GIVEN CALL GETTKN 
WHILE (OK) (TOKEN .EQ. @NAME) 
DO 

CALL NEWLL (ITMPTR, 2) 
CALL ADDAS (LOCNAM, TKNSTR) 
LOOP GIVEN I = 1 WHILE (I .LE. TKNSTR (1)+2) 

DO ACTNAM (I) = TKNSTR (I) LOOPBY I = I + 1 
END LOOP 
CALL GETTKN 
IF (TOKEN .NE. @AS) OK = .FALSE. 

(TOKEN .EQ. @AS) 
CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 



c 

FI 

FI 
END LOOP 

FI 
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CALL NEWEXP (FNUM,ACTNAM,TKNSTR) 
CALL ADDAS (GENNAM, TKNSTR) 
T (1) = GENNAM; T (2) = LOCNAM 
CALL STORLL (ITMPTR, T) 
CALL JOINLL (LSTPTR, ITMPTR, @ACROSS) 
LSTPTR = ITMPTR 
NUM = NUM + 1 
CALL GETTKN 
IF (.NOT. EOSTKN (X)) OK= .FALSE. 

(EOSTKN (X)) CALL SKPEOS 
FI 

WRITE (3,*) "Leave EXPORT" 
T (1) = NUM 
CALL STORLL (EXPPTR, T) 
RETURN 
END 

SUBROUTINE PROC (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
LOGICAL OK 
WRITE (3,*) "Enter PROC" 

C A procedure is a heading, followed by declarations, 
C followed by a body of statements. 
c 

LOOP 
WHILE (TOKEN.EQ.@SUBROUTINE .OR. TOKEN.EQ.@FUNCTION .OR. 

X TOKEN.EQ.@PROGRAM) 
DO 

CALL PROCHD (OK) 
IF ( • NOT. OK) 

(OK) 
CALL DECLS (OK) 
IF ( • NOT. OK) 

(OK) 

FI 

CALL BODY (OK) 
IF (.NOT. OK) 

(OK) 
CALL SKPEOS 

FI 

FI 
END LOOP 
WRITE ( 3, *) "Leave PROC" 



RETURN 
END 
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SUBROUTINE PROCHD (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /CURSTR/ CURSTR 
COMMON /TS/ TKNSTR (22) 
COMMON /NAME/ NAME (22) 
COMMON /INFORM/ INFORM 
LOGICAL INFORM, OK, EOSTKN 
INTEGER TYPE (6), PROG (7), SUBR (10), FUNC (8) 
DATA TYPE /4,4,"T","Y","P","E"/ 
DATA SUBR /"S","U","B","R","O","U","T","I","N","E"/ 
DATA FUNC /"F","U","N","C","T","I","O","N"/ 
DATA PROG /"P","R","O","G","R","A","M"/ 
DATA LP,RP,COMMA /"(",")",","/ 
WRITE (3,*) "Enter PROCHD" 

IF (TOKEN .EQ. @SUBROUTINE) CALL NEWSTR (CURSTR,SUBR,10) 
(TOKEN .EQ. @FUNCTION) CALL NEWSTR (CURSTR,FUNC,8) 
(TOKEN .EQ. @PROGRAM) CALL NEWSTR (CURSTR,PROG,7) 

FI 
CALL GETTKN 
IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
CALL ADDSTR (CURSTR,TKNSTR) 
LOOP GIVEN I = 1 WHILE (I .LE. TKNSTR (1)+2) 

DO NAME (I) = TKNSTR (I) LOOPBY I = I + 1 
END LOOP 
CALL GETTKN 
IF (TOKEN .NE. @LEFTP) 

IF (.NOT. INFORM) 

FI 

(INFORM) 
CALL ADDCHR (CURSTR,LP) 
CALL ADDSTR (CURSTR,TYPE) 
CALL ADDCHR (CURSTR,RP) 

(TOKEN .EQ. @LEFTP) 
CALL ADDCHR (CURSTR,LP) 
IF (.NOT. INFORM) 

(INFORM) CALL ADDSTR (CURSTR,TYPE) 
FI 
LOOP 

GIVEN CALL GETTKN 
DO IF (TOKEN .NE. @NAME) OK = .FALSE. 

(TOKEN .EQ. @NAME) 
CALL ADDCHR (CURSTR,COMMA) 
CALL ADDSTR (CURSTR,TKNSTR) 
CALL GETTKN 
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FI 
WHILE (OK) (TOKEN .EQ. @COMMA) 
LOOPBY CALL GETTKN 

FI 

END LOOP 
IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 

{TOKEN .EQ. @RIGHTP) 

FI 

CALL ADDCHR (CURSTR,RP) 
CALL GETTKN 

IF (.NOT. EOSTKN (X)) OK = .FALSE. 
(EOSTKN (X)) CALL SKPEOS 

FI 
FI 

IF (.NOT. OK) (OK) CALL FORSTR FI 
WRITE (3,*) "Leave PROCHD" 
RETURN 
END 

SUBROUTINE DECLS (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
COMMON /SCAN/ FORM, DECLL 
COMMON /CURSTR/ CURSTR 
COMMON /CURFRM/ FMPTR,HDPTR,STPTR,IMPTR,EXPTR 
COMMON /INFORM/ INFORM 
COMMON /NAME/ NAME (22) 
LOGICAL FORM, DECLL, INFORM 
INTEGER T (1) 
LOGICAL OK 
LOGICAL EOSTKN 
INTEGER LP (l), RP (1), COM (1) 
INTEGER INT (7), REL (4), LOG (7) 
INTEGER VNAME (22), STR (5), VAR (1) 
INTEGER SL (l), LOC {f1), NME (5), TYPE (7), DL (11), DN (10) 
INTEGER FNAME (22), ITEM (1), I2 (1), FNC (2), F2 (2), TYP (1) 
LOGICAL FOUND 
DATA COMMA,SLASH,SL,QUOTE /",","/","/",""""/ 
DATA LOC /"L","O","C","A","L","("/ 
DATA NME /"N","A","M","E","("/ 
DATA TYPE /"T","Y","P","E","(","1",")"/ 
DATA DL /"D","A","T","A"," ","L","O","C","A","L","/"/ 
DATA DN /"D","A","T","A"," ","N","A","M","E","/"/ 
DATA LP, RP, COM/"(",")",","/ 
DATA INT /"I","N","T","E","G","E","R"/ 
DATA REL /"R","E","A","L"/ 
DATA LOG /"L","O","G","I","C","A","L"/ 



c 

WR I T E ( n , * ) " I n DEC L S " 
CALL GETRACE 
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WRITE (3,*) "Enter DECLS" 

C Declarations are lists of variable names followed by 
C a structure description. 
c 

c 

FORM= .FALSE.; DECLL = .TRUE. 
CALL SETLOC 
LOOP 

WHILE (OK) (TOKEN .EQ. @NAME) 
DO 

C A list of names is parsed, each name being entered into 
C the symbol table and joined to the last name. 
c 

c 

LOOP 
GIVEN 

DO 

CALL NEWLL (VARPTR, 1) 
FRST = VARPTR 

IF (TOKEN .NE. ~NAME) OK = .FALSE. 

FI 

(TOKEN .EQ. @NAME) 
CALL ADDAS (VARNAM, TKNSTR) 
T (1) = VARNAM 
CALL STORLL (VARPTR, T) 
CALL JOINLL (VARLST, VARPTR, @ACROSS) 
VARLST = VARPTR 
CALL GETTKN 

WHILE (OK) (TOKEN .EQ. @COMMA) 
LOOPBY CALL GETTKN; CALL NEWLL (VARPTR, 1) 

ENDLOOP 

C The structure is parsed and its symbol table entry is joined 
C to each variable name entry. A Fortran declaration is 
C generated for each variable. Fortran scalars are declared 
C with no change. Any non-scalar is declared as a 
C one dimensional Fortran array of Integers. 
c 

IF (.NOT. OK) 
(OK) 

IF (TOKEN .NE. @COLON) OK = .FALSE. 
{TOKEN .EQ. @COLON) 

CALL GETTKN 
CALL STRUCT (STRPTR, OK) 
IF (.NOT. OK) 

(OK) 
LOOP GIVEN VARPTR = FRST 
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DO CALL JOINLL (VARPTR, STRPTR, @DOWN) 
LOOPBY CALL NEXTLL (VARPTR, @ACROSS) 
WHILE (VARPTR .NE. 0) 

ENDLOOP 
CALL GETLL (STRPTR,STR) 
IF 

(STR (1) .EQ. @FORTRAN) 
DIM = 0 
IF 

FI 

(STR (4) .EQ. @INTEGER) 
CALL NEWSTR (CURSTR,INT,7) 

(STR (4) .EQ. @REAL) 
CALL NEWSTR (CURSTR,REL,4) 

(STR (4) .EQ. @LOGICAL) 
CALL NEWSTR (CURSTR,LOG,7) 

(STR (1) .NE. (aFORTRAN) 

FI 
LOOP 

CALL NEWSTR (CURSTR,INT,7) 
IF 

FI 

(STR (2) .EQ. @KNOWN) 
DIM = STR (3) 

(STR (2) .EQ. @UNKNOWN) 
DIM = 1 

GIVEN VARPTR = FRST 
DO 

CALL GETLL (VARPTR,VAR) 
VARNAM = VAR (1) 
CALL GETAS (VARNAM,VNAME) 
CALL EMPSTR (TEMP) 
CALL ADDSTR (TEMP,VNAME) 
IF 

FI 

(DIM .EQ. 0) 
(DIM .NE. 0) 

CALL NEWSTR (TEMP2,LP,l) 
D = DIM 
CALL NUMSTR (TEMP3,D) 
CALL NEWSTR (TEMP4,RP,1) 
CALL JOINST (TEMP3,TEMP4) 
CALL JOINST (TEMP2,TEMP3) 
CALL JOINST (TEMP,TEMP2) 

CALL JOINST (CURSTR,TEMP) 
LOOPBY CALL NEXTLL (VARPTR,@ACROSS) 

IF (VARPTR .EQ. 0) 
(VARPTR .NE. 0) 

CALL NEWSTR (TEMP,COM,1) 



c 

FI 
END LOOP 

FI 
FI 
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CALL JOINST (CURSTR,TEMP) 
FI 

WHILE (VARPTR .NE. 0) 
END LOOP 
CALL FORSTR 
IF (.NOT. EOSTKN (X)) OK= .FALSE. 

(EOSTKN (X)) CALL SKPEOS 
FI 

C Generate declarations for Imported functions 
c 

LOOP 
GIVEN 

NXTFRM = IMPTR 
LOOPBY CALL NEXTLL (NXTFRM,~ACROSS) 

WHILE (NXTFRM .NE. 0) 
DO 

LOOP 
GIVEN NXTITM = NXTFRM 
LOOPBY CALL NEXTLL (NXTITM,@DOWN) 
WHILE (NXTITM .NE. 0) 
DO 

FNCPTR = NXTITM 
CALL NEXTLL (FNCPTR,@ACROSS) 
CALL GETLL (FNCPTR,FNC) 
IF 

(FNC (1) .NE. @FUNCTION) 
(FNC (1) .EQ. @FUNCTION) 

CALL GETLL (NXTITM,ITEM) 
FNCNAM = ITEM (1) 
CALL GETAS (FNCNAM,FNAME) 
LOOP 

GIVEN FRM2 = IMPTR; FOUND = .FALSE. 
LOOPBY CALL NEXTLL (FRM2,@ACROSS) 
WHILE 

(FRM2 .NE. NXTFRM) 
CALL SRCHLL (@DOWN,FNAME,FRM2,ADDR,FOUND) 
(.NOT. FOUND) 

ENDLOOP 
IF 

(FOUND) 
(.NOT. FOUND) 

TYPTR = FNCPTR 
CALL NEXTLL (TYPTR,@DOWN) 
CALL GETLL (TYPTR,TYP) 



c 

FI 
END LOOP 

END LOOP 

FI 

IF 
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(TYP (1) .EQ. ~INTEGER) 
CALL NEWSTR (STR,INT,7) 

( TYP ( 1 ) • EQ. @REAL) 
CALL NEWSTR (STR,REL,4) 

(TYP (1) .EQ. @LOGICAL) 
CALL NEWSTR (STR,LOG,7) 

FI 
CALL ADDSTR (STR,FNAME) 
CALL FORSTR 

C Generate declarations and data statements for dope vectors. 
c 

CALL NEWSTR (CURSTR,INT,7) 
L = CURLOC (X) 
IF ( L • EQ. 0) 

FI 

( L • GT. 0) 
CALL NEWSTR (TEMP,LOC,6) 
CALL JOINST (CURSTR,TEMP) 
CALL NUMSTR (TEMP,L) 
CALL ADDCHR (TEMP,RP) 
CALL ADDCHR (TEMP,COMMA) 
CALL JOINST (CURSTR,TEMP) 

CALL NEWSTR (TEMP,NME,5) 
CALL JOINST (CURSTR,TEMP) 
CALL NUMSTR (TEMP,STRLEN (NAME)) 
CALL ADDCHR (TEMP,RP) 
IF ( • NOT. INFORM) 

FI 

(INFORM) 
CALL ADDCHR (TEMP,COMMA) 
CALL NEWSTR (TEMP2,TYPE,7) 
CALL JOINST (TEMP,TEMP2) 

CALL JOINST (CURSTR,TEMP) 
CALL FORSTR 
L = CURLOC (X) 
IF ( L • EQ. 0) 

(L .GT. 0) 
CALL NEWSTR (CURSTR,DL,11) 
CALL LOCSTR (TEMP) 
CALL JOINST (CURSTR,TEMP) 
CALL NEWSTR (TEMP,SL,l) 
CALL JOINST (CURSTR,TEMP) 
CALL FORSTR 
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FI 
CALL NEWSTR (CURSTR,DN,l0) 
LOOP 

GIVEN I = l 
DO 

CALL ADDCHR (CURSTR,QUOTE) 
CALL ADDCHR (CURSTR,NAME (I+2)) 
CALL ADDCHR (CURSTR,QUOTE) 

WHILE (I .LT. NAME (1)) 
LOOPBY I = I + 1 

CALL ADDCHR (CURSTR,COMMA) 
ENDLOOP 
CALL ADDCHR (CURSTR,SLASH) 
CALL FORSTR 
RETURN 
END 



c 
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SUBROUTINE EXPAND (TYPE) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP 
COMMON /DIRECT/ UP, DOWN 
COMMON /EXSET/ EXSET (12) 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG 
LOGICAL EMPTY, OK, UP, DOWN, SETMEM 
INTEGER S ( 4) 
WRITE (3,*) "Enter EXPAND" 

C These routines expand a Form Specification into a type. 
C This is done by tracing the Form structure and generating a 
C copy of it. Wherever a reference to a dummy parameter 
C occurs in the Form, The actual parameter from the Form 
C Spec is used in the copy. Any values which were unknown 
C when the Form was parsed, due to parameterisation, will 
C now be known, so the dope vector for the type is generated. 
c 

LOOP 
GIVEN 

IF (TYPE .EQ. @FORM) 

FI 

SPCPTR = CURPTR; CALL NEXTLL (SPCPTR,@DOWN) 
CURFLG = .FALSE. 
S (1) =@FORM; S (2) = SPCPTR; S (3) = 0; S (4) = 0 
CALL PUSH (S,4) 
DOWN= .TRUE.; UP= .FALSE. 

(TYPE .EQ. @CURRENT) 
CURFLG = .TRUE. 
S (1) = @CURRENT; S (2) = CURSTR; S (3) = 0; S (4) = 0 
CALL PUSH (S, 4) 
DOWN= .TRUE.; UP= .FALSE. 

LOOPBY CALL LOOKAT (TOP,l,EMPTY) 
WHILE (.NOT. EMPTY) 

DO 
(SETMEM (EXSET,TOP)) 

IF 
(DOWN) 

IF 
(TOP .EQ. @FORM) CALL XFRMST 
(TOP .EQ. @PARM) CALL XPRMST 
(TOP .EQ. @RECORD) CALL XRECST 
{TOP .EQ. @FIELD) CALL XFLDST 
(TOP .EQ. @ARRAY) CALL XARRST 
(TOP .EQ. @STRUCTURE) CALL XSTRST 
(TOP .EQ. @ACTUAL) CALL XACTST 
(TOP .EQ. @CURRENT) CALL XCURST 



c 

FI 
(UP) 

IF 
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(TOP .EQ. @FORM) CALL XFRMND 
(TOP .EQ. @PARM) CALL XPRMND 
(TOP .EQ. @RECORD) CALL XRECND 
(TOP .EQ. @FIELD) CALL XFLDND 
(TOP .EQ. @ARRAY) CALL XARRND 
(TOP .EQ. @STRUCTURE) CALL XSTRND 
(TOP .EQ. @ACTUAL) CALL XACTND 
(TOP .EQ. @CURRENT) CALL XCURND 
(TOP .EQ. @RESET) CURFLG = .TRUE.; CALL POP (TOP,LEN) 

FI 
FI 

END LOOP 
STRPTR = CURPTR 
RETURN 
END 

SUBROUTINE XFRMST 
IMPLICIT INTEGER (A-Z) 

C Get the unexpanded Form Spec Entry. This will contain 
C a pointer to the form and the starting address in LOCAL. 
C Get the form number from the Form Entry. Store the starting 
C address, the form pointer, and the form number in the expanded 
C Form Spec Entry. Put the form number in LOCAL. Get the 
C first unexpanded parameter pointer and make a recursive call 
C to expand it. 
c 

c 

COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
INTEGER XSPEC (4), S (5), SPC (3), NAM (22), FRM (3) 
LOGICAL FOUND 
WRITE (3,*) "Enter XFRMST" 
CALL POP (S,LEN) 

C Get the unexpanded Form Spec Entry. This will contain 
C a pointer to the Form and the starting address in LOCAL. 
c 

c 

SPCPTR = S (2) 
CALL GETLL (SPCPTR,SPC) 
ADDR = SPC (2) 
FRMPTR• = SPC ( 3) 
CALL GETLL (FRMPTR,FRM) 

C Get the Form number from the Form Entry. Store the Form 
C number, the Form pointer and the starting address in the 
C expanded Form Spec Entry. 
c 



c 
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FRMNUM = FRM ( 3) 
XSPEC (1) = FRMPTR; XSPEC (2) = ADDR; XSPEC (3) = FRMNUM 
CALL NEWLL (XSPECP,3) 
CALL STORLL (XSPECP,XSPEC) 

C Put the Form number in the dope vector LOCAL. 
c 

c 

CALL PUTLOC (ADDR,FRMNUM) 
S (3) = XSPECP 
CALL PUSH (S,4) 

C Get the first unexpanded parameter pointer and make a 
C recursive call to expand it. 
c 

c 

S (1) = @PARM 
PRMPTR = SPCPTR; CALL NEXTLL (PRMPTR,@ACROSS) 
S (2) = PRMPTR; S (3) = XSPECP; S (4) = XSPECP 
s (5) = 1 
CALL PUSH (S,5) 
RETURN 
END 

SUBROUTINE XFRMND 
IMPLICIT INTEGER (A-Z) 

C There are two stages to expanding a form spec. One is expanding 
C the parameters. The second is expanding the structure. 
c 

c 

COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
INTEGER T (4), S (4), XSPEC (3) 
WRITE (3,*) "Enter XFRMND" 
CALL POP (S,LEN) 
IF ( S ( 4) . EQ. 0) 

C If s (4) is 0, then the parameters have been expanded. 
C Get the expanded Form Spec Entry which contains the 
C Form pointer. Get the unexpanded structure pointer via 
C the form pointer. Make a recursive call to expand the 
C structure. 
c 

s (4) = 1 
CALL PUSH (S,4) 
XSPECP = S (3) 
CALL GETLL (XSPECP,XSPEC) 
FRMPTR = XSPEC {1) 
STRPTR = FRMPTR 



c 
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CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@ACROSS) 
S (1) = @STRUCTURE 
S (2) = STRPTR 
S (3) = XSPECP 
CALL PUSH (S,3) 
DOWN= .TRUE.; UP= .FALSE. 

C If S (4) is 1, the the structure has been expanded and is pointed 
C at by CURPTR. S (3) has the expanded form spec pointer. Generate 
C a form structure entry. 
c 

c 

(S (4) .EQ. 1) 
T (1) = @FORM; T (2) = @KNOWN; T (3) = CURSIZ; T (4) = 0 
CALL NEWLL (XSTRP,4) 
CALL STORLL (XSTRP,T) 
XSPECP = S (3) 
CALL JOINLL (XSTRP,XSPECP,@DOWN) 
CALL JOINLL (XSPECP,CURPTR,@DOWN) 
CURPTR = XSTRP 

FI 
RETURN 
END 

SUBROUTINE XPRMST 
IMPLICIT INTEGER (A-Z) 

C Get the unexpanded parm pointer off the stack. If it is 0, the 
C parm list is finished. If it is not 0, get the parm entry. 
C This may be an Integer or a Form parameter. If it is an 
C Integer, generate an expanded parameter entry containing 
C the value. Join this to the expanded parm list. If it is a 
C Form, get its unexpanded Form Spec pointer and make a recursive 
C call to expand it. 
c 

COMMON /DIRECT/ UP,DOWN 
LOGICAL UP, DOWN 
INTEGER XSPEC (4), SPC (3), S (5), PRM (1), VAL (1) 
WRITE (3,*) "Enter XPRMST" 
CALL POP (S,LEN) 
PRMPTR = S (2) 
XSPECP = S (4) 
CALL GETLL (XSPECP,XSPEC) 
ADDR = XSPEC (2) 
PRMNUM = S (5) 
IF (PRMPTR .EQ. 0) 

CALL PUSH (S,LEN) 
DOWN= .FALSE.; UP= .TRUE. 



c 
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(PRMPTR .NE. 0) 
CALL GETLL (PRMPTR,PRM) 
IF (PRM (1) .EQ. @INTEGER) 

PRMLST = S (3) 

FI 
FI 
RETURN 
END 

CALL NEWLL (XPRMP,1) 
CALL STORLL (XPRMP,PRM) 
CALL JOINLL (PRMLST,XPRMP,@ACROSS) 
PRMLST = XPRMP 
VALPTR = PRMPTR 
CALL NEXTLL (VALPTR,@DOWN) 
CALL GETLL (VALPTR,VAL) 
CALL PUTLOC (ADDR+PRMNUM,VAL) 
CALL NEWLL (XVALP,l) 
CALL STORLL (XVALP,VAL) 
CALL JOINLL (XPRMP,XVALP,@DOWN) 
CALL NEXTLL (PRMPTR,@ACROSS) 
S (2) = PRMPTR; S (3) = PRMLST 
CALL PUSH (S,S) 

(PRM (1) .EQ. @FORM) 
CALL PUSH (S,S) 
S (1) = @FORM 
SPCPTR = PRMPTR; CALL NEXTLL (SPCPTR,@DOWN) 
S (2) = SPCPTR; S (3) = 0 
CALL PUSH (S,3) 
CALL GETLL (SPCPTR,SPC) 
ADDR2 = SPC (2) 
CALL PUTLOC (ADDR+PRMNUM,ADDR2-ADDR+l) 

SUBROUTINE XPRMND 
IMPLICIT INTEGER (A-Z) 

C If the current parm pointer is 0, then 
C If not, then a form parm has just been 
C expanded parm entry to the parm list. 
C parm pointer and make a recursive call 
c 

the parm list is finished. 
expanded. Join the 
Get the next unexpanded 
to expand it. 

COMMON /CURPTR/ CURPTR 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
INTEGER S (5), XPRM (1) 
WRITE (3,*) "Enter XPRMND" 
CALL POP (S,LEN) 
PRMPTR = S (2) 
IF (PRMPTR .EQ. 0) 

(PRMPTR .NE. 0) 



c 

PRMLST = S (3) 
XSTRP = CURPTR 
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CALL NEWLL (XPRMP,l) 
XPRM (1) = @FORM 
CALL STORLL (XPRMP,XPRM) 
CALL JOINLL (PRMLST,XPRMP,@ACROSS) 
CALL JOINLL (XPRMP,XSTRP,@DOWN) 
PRMLST = XPRMP 
S (3) = PRMLST 
CALL NEXTLL (PRMPTR,@ACROSS) 
S (2) = PRMPTR 
PRMNUM = S (5) 
PRMNUM = PRMNUM + 1 
S (5) = PRMNUM 
CALL PUSH (S,5) 
DOWN= .TRUE.; UP= .FALSE. 

FI 
RETURN 
END 

SUBROUTINE XSTRST 
IMPLICIT INTEGER (A-Z) 

C An unexpanded structure may be a Record, Array, Fortran scalar, 
C a Form, a Form parameter, or the Current Form. 
c 

c 

COMMON /CURFRM/ CURNAM,CURHDR,CURSTR,CURIMP,CUREXP 
COMMON /CURFLG/ CURFLG 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /DIRECT/ UP, DOWN 
INTEGER S (4}, STR (4) 
LOGICAL CURFLG, UP, DOWN 
WRITE (3,*) "Enter XSTRST" 
CALL POP (S,LEN) 
STRPTR = S (2); CALL GETLL (STRPTR,STR) 
XSPECP = S (3) 
CALL PUSH (S,LEN) 
IF 

C If it is a Record, make a recursive call to expand it. 
c 

c 

(STR (1) .EQ. @RECORD) 
S (1) = @RECORD; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP 
CALL PUSH (S,4) 

C If it is an Array, make a recursive call to expand it. 
c 

(STR (1) .EQ. @ARRAY) 



c 
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S (1) = @ARRAY; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP 
CALL PUSH (S,4) 

C If it is a Form, turn the current form flag off. Get the 
C unexpanded form spec entry and make a recursive call 
C to expand it. 
c 

c 

(STR (1) .EQ. @FORM) 
IF (CURFLG) 

FI 

CALL PUSH (@RESET,l) 
CURFLG = .FALSE. 

(.NOT. CURFLG) 

S (1) = @FORM 
CALL NEXTLL (STRPTR,@DOWN) 
S (2) = STRPTR 
s (3) = 0 
CALL PUSH (S,3) 

C If it is a Fortran scalar, copy the unexpanded entry to the 
C expanded entry. 
c 

c 

(STR (1) .EQ. @FORTRAN) 
CALL NEWLL (XSTRP,4) 
CALL STORLL (XSTRP,STR) 
CURPTR = XSTRP 
CURSIZ = 1 
CURKNO = @KNOWN 
DOWN= .FALSE.; UP= .TRUE. 

C If it is a Parameter, make a recursive call to expand it. 
c 

c 

(STR (1) .EQ. @PARM) 
S (1) = @ACTPARM; S (2) = STRPTR; S (3) = 0; S (4) = XSPECP 
CALL PUSH (S,4) 

C If it is the current form, make a recursive call to expand it. 
c 

(STR (1) .EQ. @CURRENT) 
CURFLG = .TRUE. 

S (1) = @CURRENT; S (2) = CURSTR; S (3) = 0; S (4) = XSPECP 
CALL PUSH (S,4) 

FI 
RETURN 
END 



c 

SUBROUTINE XSTRND 
IMPLICIT INTEGER (A-Z) 
INTEGER S (4) 
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WRITE (3,*) "Enter XSTRND" 
CALL POP (S,LEN) 
RETURN 
END 

SUBROUTINE XARRST 
IMPLICIT INTEGER (A-Z) 

C Get the pointer to the unexpanded array and generate an entry 
C for the expanded array. Expand the range entries and get the size. 
C Store the size in the expanded array entry. Get the unexpanded 
C structure entry for the base type and make a recursive call 
C to expand it. 
c 

c 

INTEGER S ( 4) , T ( 4) 
WRITE (3,*) "Enter XARRST" 
CALL POP (S,LEN) 
STRPTR = S (2); XSPECP = S (4) 
CALL NEWLL (XSTRP,4) 
CALL XRANGE (STRPTR,XSTRP,XSPECP,RNGSIZ) 
T (1) = @ARRAY; T (2) = @KNOWN; T (3) = RNGSIZ; T (4) = 0 
CALL STORLL (XSTRP,T) 
S (3) = XSTRP; CALL PUSH (S,4) 
S (1) = @STRUCTURE 
CALL NEXTLL (STRPTR,@ACROSS) 
S (2) = STRPTR; S (3) = XSPECP 
CALL PUSH (S,3) 
RETURN 
END 

SUBROUTINE XARRND 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG 
INTEGER S ( 4) , XSTR ( 4) , STR ( 4) , XSPEC ( 4) 
WRITE (3,*) "Enter XARRND" 
CALL POP (S,LEN) 
STRPTR = S (2); XSTRP = S (3); XSPECP = S (4) 
CALL GETLL (XSTRP,XSTR) 
CALL GETLL (STRPTR,STR) 
XSTR (4) = STR (4) 

C If this is the current form, and the size is unknown, 
C then store this fact in the expanded structure entry. 



c 

c 
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IF (STR (2) .EQ. @UNKNOWN .AND. CURFLG) 
XSTR (2) = @UNKNOWN; XSTR (3) = STR (3) 
CALL STORLL (XSTRP,XSTR) 
CALL JOINLL (XSTRP,CURPTR,@ACROSS) 
CURSIZ = 0; CURKNO = @UNKNOWN; CURPTR = XSTRP 

C If this is not the current form, or if the size is 
C known, calculate the array size and store the base 
C size in the expanded structure entry. 
c 

c 

(STR (2) .EQ. @KNOWN .OR .• NOT. CURFLG) 
RNGSIZ = XSTR (3) 
BASE = CURSIZ 
ARRSIZ = BASE * RNGSIZ 
XSTR (3) = BASE 
CALL STORLL (XSTRP,XSTR) 
CALL JOINLL (XSTRP,CURPTR,@ACROSS) 
CURPTR = XSTRP; CURSIZ = ARRSIZ; CURKNO = @KNOWN 

C If the base size was previously unknown, put it in 
C the dope vector. 
c 

c 

IF (STR (2) .EQ. @KNOWN) 

FI 
FI 
RETURN 
END 

(STR (2) .EQ. @UNKNOWN) 
ADDR = STR (3) 
CALL GETLL (XSPECP,XSPEC) 
B = XSPEC (2) 
CALL PUTLOC (ADDR+B-l,BASE) 

SUBROUTINE XRANGE (STRPTR,XSTRP,XSPECP,RNGSIZ) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG 
INTEGER RSTRT (2), XSTRT (2), XSPEC (4), RNG (2) 
WRITE (3,*) "Enter XRANGE" 

C This routine expands the range list and puts it in the 
C dope vector. If this is the current form, then the 
C starting address of the rangelist is copied from the 
C unexpanded entry. If this is not the current form then 
C the starting address for the range list is determined. 
c 

RNGPTR = STRPTR 
CALL NEXTLL (RNGPTR,@DOWN) 



c 
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CALL GETLL (RNGPTR,RSTRT) 
LOCADD = RSTRT (2) 
IF (CURFLG) 

FI 

ADDR = LOCADD 
XSTRT (1) = @UNKNOWN 

( • NOT. CURFLG) 
CALL GETLL (XSPECP,XSPEC) 
BASE = XSPEC (2) 
ADDR = LOCADD + BASE - 1 
XSTRT (1) = @KNOWN 

XSTRT (2) = ADDR 
CALL NEWLL (XSTRTP,2) 
CALL STORLL (XSTRTP,XSTRT) 
CALL JOINLL (XSTRP,XSTRTP,@DOWN) 

C The routine XRNG gets the value for each bound. These 
C values are checked and the range size is accumulated, and 
C they are put into the dope vector. 
c 

IF (CURFLG) 
( . NOT. CURFLG) 

LOOP GIVEN RNGSIZ = 1 
LOOPBY CALL NEXTLL (RNGPTR,@DOWN) 
WHILE (RNGPTR .NE. 0) 
DO 

CALL XRNG (RNGPTR,Rl,XSPECP) 
CALL NEXTLL (RNGPTR,@DOWN) 
CALL XRNG (RNGPTR,R2,XSPECP) 
IF (R2 .LT. Rl) STOP "BAD RANGE" 

(R2 .GE. Rl) 
RNGSIZ = RNGSIZ * (R2-Rl+l) 

FI 
CALL PUTLOC (ADDR,Rl) 
ADDR = ADDR + 1 
CALL PUTLOC (ADDR,R2) 
ADDR = ADDR + 1 

END LOOP 
FI 
RETURN 
END 



c 
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SUBROUTINE XRNG (RNGPTR,RNGVAL,XSPECP) 
IMPLICIT INTEGER (A-Z) 
INTEGER RNG (2), PRM (1), VAL (1) 
WRITE (3,*) "Enter XRNG" 

C If a bound value is a number, its value is returned. 
C If it is a parameter, it is looked up in the list of 
C actual parameters, which are joined to the expanded 
C Form Spec Entry. The value of the actual parameter 
C is returned. 
c 

c 

CALL GETLL (RNGPTR,RNG) 
IF (RNG (1) .EQ. @NUMBER) 

RNGVAL = RNG (2) 
(RNG (1) .EQ. @NAME} 

LOOP 
GIVEN NEXTP = XSPECP; I = 0 
WHILE (I .LT. RNG (2)) (NEXTP .NE. 0) 
LOOPBY CALL NEXTLL (NEXTP,@ACROSS); I= I+ 1 

END LOOP 
IF (NEXTP .EQ. 0) STOP "NOT ENOUGH PARMS" 

( I • EQ. RNG ( 2 ) ) 

FI 
FI 
RETURN 
END 

CALL GETLL (NEXTP,PRM) 
IF (PRM (1) .NE. @INTEGER) STOP "WRONG TYPE OF PARM" 

FI 

(PRM (1) .EQ. @INTEGER) 
CALL NEXTLL (NEXTP,@DOWN) 
CALL GETLL (NEXTP,VAL) 
RNGVAL = VAL (1) 

SUBROUTINE XRECST 
IMPLICIT INTEGER (A-Z) 

C Get the unexpanded record pointer. Make an expanded Record Entry. 
C Get the first unexpanded field entry and make a recursive call 
C to expand it. 
c 

INTEGER S (5), T (4) 
WRITE (3,*) "Enter XRECST" 
CALL POP (S,LEN) 
STRPTR = S (2); XSPECP = S (4) 
T (1) = @RECORD; T (2) = @KNOWN; T (3} = 0; T (4) = 0 
CALL NEWLL (XSTRP,4) 
CALL STORLL (XSTRP,T) 
S (3) = XSTRP 



c 

CALL PUSH (S,4) 
S (1) = @FIELD 
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FLDPTR = STRPTR; CALL NEXTLL (FLDPTR,@ACROSS) 
S (2) = FLDPTR; S (3) = XSTRP; S (4) = XSTRP; S (5) = XSPECP 
CALL PUSH (S,5) 
RETURN 
END 

SUBROUTINE XRECND 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG 
INTEGER S (4), XSTR (4), STR (4), XSPEC (4) 
WRITE (3,*) "Enter XRECND" 

C Get the size from the expanded structure entry. 
c 

c 

CALL POP (S,LEN) 
XSTRP = S (3); STRPTR = S (2); XSPECP = S (4) 
CALL GETLL (XSTRP,XSTR) 
CURSIZ = XSTR (3) 
CURKNO = @KNOWN 
CURPTR = XSTRP 
CALL GETLL (STRPTR,STR) 
STRKNO = STR (2) 
IF (STRKNO .EQ. @KNOWN) 

(STRKNO .EQ. @UNKNOWN) 
IF (CURFLG) 

FI 
FI 
RETURN 
END 

XSTR (2) = @UNKNOWN; XSTR (3) = STR (3) 
CALL STORLL (XSTRP,XSTR) 
CURSIZ = 0; CURKNO = @UNKNOWN; CURPTR = XSTRP 

( • NOT. CURFLG) 

SUBROUTINE XFLDST 
IMPLICIT INTEGER (A-Z) 

C Get the unexpanded field pointer from the stack. Get the 
C unexpanded field entry, and put the name address into the 
C expanded field entry. Store the expanded field entry. Join 
C it to the expanded field list. Push the unexpanded structure 
C pointer for the field and make a recursive call to 
C expand it. 
c 



c 
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INTEGERS (5), FLD (3), XFLD (3) 
WRITE ( 3, *) "Enter XFLDST" 
CALL POP (S,LEN) 
XSPECP = S (5); FLDPTR = S (2) 
CALL GETLL (FLDPTR,FLD) 
XFLD (1) = FLD (1); XFLD (2) = @KNOWN; XFLD (3) = 0 
CALL NEWLL (XFLDP,3) 
CALL STORLL (XFLDP,XFLD) 
XFLSTP = S (4) 
CALL JOINLL (XFLSTP,XFLDP,@ACROSS) 
XFLSTP = XFLDP 
S (4) = XFLSTP 
CALL PUSH (S,5) 
S (1) = @STRUCTURE 
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN) 
S (2) = STRPTR; S (3) = XSPECP 
CALL PUSH (S,3) 
RETURN 
END 

SUBROUTINE XFLDND 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /CURFLG/ CURFLG 
COMMON /DIRECT/ UP, DOWN 
LOGICAL CURFLG, UP, DOWN 
INTEGER S (5), XREC (4), XFLD (3), FLD (3), XSPEC (4) 
WRITE (3,*) "Enter XFLDND" 
CALL POP (S,LEN) 
FLDPTR = S (2); XRECP = S (3) 
XFLSTP = S (4); XSPECP = S (5) 
CALL JOINLL (XFLSTP,CURPTR,@DOWN) 
CALL GETLL (XFLSTP,XFLD) 
CALL GETLL (FLDPTR,FLD) 

C If this is th~ current form, or the size is unknown, 
C store this fact in the expanded structure entry. 
c 

c 

IF (FLD (2) .EQ. @UNKNOWN .AND. CURFLG) 
XFLD (2) = @UNKNOWN; XFLD (3) = FLD (3) 
CALL STORLL (XFLSTP,XFLD) 

C If this is not the current form, or if the size 
C is known, then the offset to this field is the current 
C record size. Add the field size to the record size. 
C Store the offset in the expanded Field Entry and 
C store the record size in the expanded Record Entry. 
c 



c 
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(FLD (2) .EQ. @KNOWN .OR •. NOT. CURFLG) 
CALL GETLL (XRECP,XREC) 
RECSIZ = XREC (3) 
OFFSET = RECSIZ 
XFLD (3) = OFFSET 
RECSIZ = RECSIZ + CURSIZ 
XREC (3) = RECSIZ 
CALL STORLL (XFLSTP,XFLD) 
CALL STORLL (XRECP,XREC) 

C If the offset was previously unknown, put it in the 
C dope vector. 
c 

FI 
c 

IF (FLD (2) .EQ. @KNOWN) 

FI 

(FLD (2) .EQ. @UNKNOWN) 
ADDR = FLD (3) 
CALL GETLL (XSPECP,XSPEC) 
BASE = XSPEC (2) 
CALL PUTLOC (ADDR+BASE-l,OFFSET) 

C If there is another field, make a recursive call to expand it. 
c 

c 

CALL NEXTLL (FLDPTR,@ACROSS) 
IF (FLDPTR .EQ. 0) 

(FLDPTR .NE. 0) 
S (1) = @FIELD; S (2) = FLDPTR 
S (3) ~ XRECP; S (4) = XFLSTP; S (5) = XSPECP 
CALL PUSH (S,5) 
DOWN = .TRUE.; UP = .FALSE. 

FI 
RETURN 
END 

SUBROUTINE XACTST 
IMPLICIT INTEGER (A-Z) 

C This routine expands structures which are parameters. 
C The actual parameters have already been expanded so it is 
C simply a matter of getting the pointer to the expanded 
C structure. 
c 
C Get the unexpanded Structure Entry, which contains the parm number. 
C Get the expanded spec entry, which points across to the 
C expanded actual parameters. Loop across until the right parm 
C is reached. Its structure has been expanded already. Make 
C a recursive return and pass it back. 
C stack. 



c 

c 
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COMMON /DIRECT/ UP, DOWN 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG, UP, DOWN 
INTEGER S ( 4) , STR ( 4) 
WRITE ( 3, *) "Enter XACTST" 
IF (CURFLG) 

DOWN= .FALSE.; UP= .TRUE. 
( • NOT. CURFLG) 

CALL POP (S,LEN) 
STRPTR = S (2); XSPECP = S (4) 
CALL GETLL (STRPTR,STR) 
PRMNUM = STR (4) 
LOOP 

GIVEN 
XPRMP = XSPECP 
I = 0 

LOOPBY I = I + 1; CALL NEXTLL (XPRMP,@ACROSS) 
WHILE (I .LT. PRMNUM) (XPRMP .NE. 0) 

ENDLOOP 
IF (XPRMP .EQ. 0) STOP "NOT ENOUGH PARMS" 

FI 
FI 
RETURN 
END 

(XPRMP .NE. 0) 
XSTRP = XPRMP; CALL NEXTLL (XSTRP,@DOWN) 
S (3) = XSTRP 
CALL PUSH (S,4) 
DOWN= .FALSE.; UP= .TRUE. 

SUBROUTINE XACTND 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
COMMON /CURSIZ/ CURSIZ, CURKNO 
COMMON /CURFLG/ CURFLG 
LOGICAL CURFLG 
INTEGER STR (4), XSTR (4), XSPEC (4), S (4), T (4) 
WRITE (3,*) "Enter XACTND" 

C If this is the current form that is being expanded, it has 
C no actual parameters, so generate a Parm Structure Entry 
C with unknown size. 
c 

CALL POP (S,LEN) 
IF (CURFLG) 

STRPTR = S (2); CALL GETLL (STRPTR, STR) 
PRMNUM = STR (4) 
CALL NEWLL (XSTRP1,4) 



c 
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T (1) = @PARM; T (2) = @UNKNOWN; T (3) = 0; T (4) = PRMNUM 
CALL STORLL (XSTRP1,T) 
NAMPTR = STRPTR; CALL NEXTLL (NAMPTR,@ACROSS) 
CALL JOINLL (XSTRP1,NAMPTR,@ACROSS) 
CURPTR = XSTRP1; CURSIZ = 0; CURKNO = @UNKNOWN 

C Get the size from the expanded parameter structure. 
c 

FI 

(.NOT. CURFLG) 
XSTRP = S (3); XSPECP = S (4) 
CALL GETLL (XSTRP,XSTR) 
SIZE = XSTR (3) 
CURPTR = XSTRP; CURSIZ = SIZE; CURKNO = @KNOWN 

RETURN 
END 

SUBROUTINE XCURST 
IMPLICIT INTEGER (A-Z) 
COMMON /CURFRM/ CURNAM,CURHDR,CURSTR,CURIMP,CUREXP 
INTEGER S (4), T (4) 
WRITE ( 3, *) "Enter XCURST" 
CALL POP (S,LEN); XSPECP = S (4) 
T (1) = @CURRENT; T (2) = @UNKNOWN; T (3) = 0; T (4) = 0 
CALL NEWLL (XSTRP,4) 
CALL STORLL (XSTRP,T) 
S (3) = XSTRP 
CALL PUSH (S,4) 
S (1) = @STRUCTURE; S (2) = CURSTR; S (3) = XSPECP 
CALL PUSH (S,3) 
RETURN 
END 

SUBROUTINE XCURND 
IMPLICIT INTEGER (A-Z) 
COMMON /CURPTR/ CURPTR 
INTEGER S (4) 
WRITE (3,*) "Enter XCURND" 
CALL POP (S,LEN) 
XSTRP = S (3) 
CALL JOINLL (XSTRP,CURPTR,@DOWN) 
CURPTR = XSTRP 
RETURN 
END 



c 

SUBROUTINE REFST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURSTR/ CURSTR 
COMMON /T/ TOKEN 
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COMMON /TS/ TKNSTR (22) 
COMMON /DIRECT/ UP, DOWN 
COMMON /SYMTAB/ FRMTAB, FRMLST, VARTAB, VARLST 
COMMON /CURFRM/ CURNAM, CURHDR, CURST, CURIMP, CUREXP 
COMMON /CALL/ CALL 
COMMON /REFLOC/ REFLOC 
COMMON /REFTYP/ REFTYP, TYPSET 
LOGICAL CALL, TYPSET 
INTEGER S (6), STR (4) 
LOGICAL FOUND, OK, UP, DOWN 

C TKNSTR contains the current variable name, look it up. 
C If it is found, it has a var Name Entry in the symbol table. 
C The Var Name Entry points down to a Structure Entry. 
C Get this and put the pointers to the Var Name Entry and 
C its Structure Entry onto the stack. A ref may be followed 
C by a subscript list, a parameter list, or a field name. 
C This may be determined by the next token. REFGNl generates 
C the necessary stack entries if it is a left paren, and REFGN2 
C does the same for a period. If the reference is not followed 
C by either a paren or a period, then the reference is complete. 
c 

c 

WRITE (3,*) "Enter REFST" 
CALL = .FALSE. 
TYPSET = .FALSE. 
CALL POP (S,LEN) 
S (f)) = REFLOC 
CALL SRCHLL (@ACROSS, TKNSTR, VARTAB, VARPTR, FOUND) 
IF (FOUND) 

STRPTR = VARPTR 
CALL NEXTLL (STRPTR,@DOWN) 
CALL GETLL (STRPTR, STR) 
S (3) = VARPTR; S (4) = STRPTR 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) CALL REFGNl (S, STRPTR, STR, OK) 

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK) 
IF (.NOT. OK) (OK) CALL GETTKN FI 

FI 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD) 
S (2) = @REFERENCE; CALL EMPSTR (S(5)) 
CALL PUSH (S,6) 
CALL EMPSTR (CURSTR) 
DOWN= .FALSE.; UP= .TRUE. 

C If the name was not found, it may be an integer parameter 
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C to the current form. If it is found in the parameter list, 
C put its parm number on the stack. 
c 

c 

(.NOT. FOUND) 
CALL SRCHPM (TKNSTR,NUM,PRMPTR,FOUND) 
IF (FOUND) 

S (2) = @PARM 
S (3) = NUM 
CALL PUSH (S,5) 
CALL GETTKN 
DOWN= .FALSE.; UP= .TRUE. 

C If the name was not found, assume that it is an undeclared 
C Fortran variable, function or subroutine. It may still be 
C followed by a paren, and if it is, this must contain a 
C parameter list. 
c 

c 

FI 
RETURN 
END 

FI 

(.NOT. FOUND) 
CALL ADDAS (NAME, TKNSTR) 
S (3) = @FORTRAN; S (4) = NAME 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) 

FI 

S (2) = @PARMLIST; CALL PUSH (S,6) 
S (1) = @PARMLIST; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 

(TOKEN .NE. @LEFTP) 
S ( 2) = 0; CALL PUSH ( S, 6) 
DOWN= .FALSE.; UP= .TRUE. 

SUBROUTINE REFND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURSTR/ CURSTR 
COMMON /T/ TOKEN 
COMMON /DIRECT/ UP, DOWN 
COMMON /CALL/ CALL 
COMMON /REFLOC/ REFLOC 
INTEGER TAIL (2), S (6), STR (4), VAR (2), VARNAM (22) 
LOGICAL CALL, OK, UP, DOWN 
INTEGER TYPE ( 5) 
DATA TYPE /"T","Y","P","E","("/ 
DATA TAIL /"1",") "/, LB /"("/, RB /") "/ 

C The Reference Entry on the stack contains an indication of 
C which structure has just been parsed. If it was a subscript 
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C list, it may be followed by a further subscript, or a field. 
C REFGNl and REFGN2 will generate the necessary stack entries. 
C If it is not followed by a subscript or field, generate 
c 
c 
c 
c 
c 
c 

c 

an access expression 
varname (access+l) 

The routine WRAP determines whether a type changing function 
must be wrapped around the reference. 

WRITE (3,*) "Enter REFND" 
CALL POP (S,LEN); LAST= S (2) 
CALL JOINST (S (5) ,CURSTR) 
IF (LAST .EQ. @SUBSCRIPT) 

IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 

FI 

(TOKEN .EQ. @RIGHTP) 
STRPTR = S (4) 
CALL NEXTLL (STRPTR,@ACROSS) 
S (4) = STRPTR 
CALL GETLL (STRPTR, STR) 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) 

FI 

CALL REFGNl (S, STRPTR, STR, OK) 
IF ( • NOT. OK) 

(OK) DOWN= .TRUE.; UP= .FALSE. 
FI 

(TOKEN .EQ. @PERIOD) 
CALL REFGN2 (S, STRPTR, STR, OK) 
IF (.NOT. OK) 

FI 

(OK) DOWN= .TRUE.; UP = .FALSE.; 
CALL GETTKN 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD) 
VARPTR = S (3) 
CALL GETLL (VARPTR, VAR) 
CALL GETAS (VAR (1), VARNAM) 
CALL EMPSTR (CURSTR) 
CALL ADDSTR (CURSTR,VARNAM) 
CALL ADDCHR (CURSTR,LB) 
CALL JOINST (CURSTR,S (5)) 
CALL NEWSTR (TEMP, TAIL, 2) 
CALL JOINST (CURSTR,TEMP) 
REFLOC = S (6) 
CALL WRAP 

C If the last structure was a field, then the reference is 
C complete. Generate an access expression as above. 
c 



c 
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(LAST .EQ. @FIELD) 
IF (CALL) CALL = .FALSE. 

(.NOT. CALL) 
VARPTR = S (3) 
CALL GETLL (VARPTR, VAR) 
CALL GETAS (VAR (1), VARNAM) 

FI 

CALL EMPSTR (CURSTR) 
CALL ADDSTR (CURSTR,VARNAM) 
CALL ADDCHR (CURSTR,LB) 
CALL JOINST (CURSTR,S (5)) 
CALL NEWSTR (TEMP, TAIL, 2) 
CALL JOINST (CURSTR,TEMP) 
REFLOC = S (6) 
CALL WRAP 

C If the last structure was a reference, then there were 
C no subscripts or fields. The routine TYPREF looks at the 
C structure and if it is a Fortran scalar, records it. 
C If this is a Fortran scalar reference, then the access 
C expression is varname, if not it is varname (1). 
c 

c 

(LAST .EQ. @REFERENCE) 
VARPTR = S (3) 
STRPTR = VARPTR; CALL NEXTLL (STRPTR,@DOWN) 
CALL TYPREF (STRPTR) 
CALL GETLL (VARPTR, VAR) 
CALL GETAS (VAR (1), VARNAM) 
CALL EMPSTR (CURSTR) 
CALL ADDSTR (CURSTR,VARNAM) 
CALL GETLL (STRPTR,STR) 
REFLOC = S (6) 
IF (STR (1) .EQ. @FORTRAN) 

FI 

(STR (1) .NE. @FORTRAN) 
CALL ADDCHR (CURSTR,LB) 
CALL JOINST (CURSTR,S (5)) 
CALL NEWSTR (TEMP, TAIL, 2) 
CALL JOINST (CURSTR,TEMP) 

CALL WRAP 

C If the last structure was a parmlist, then the 
C access expression has already been generated. 
c 

(LAST .EQ. @PARMLIST) 
IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 

(TOKEN .EQ. @RIGHTP) CALL GETTKN 
FI 

(LAST .EQ. 0) 
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c 
C If the last structure was a 0, then this is an 
C undeclared Fortran scalar, so just generate its name. 
c 

c 

NAME = S (4) 
CALL GETAS (NAME, VARNAM) 
CALL EMPSTR (CURSTR) 
CALL ADDSTR (CURSTR,VARNAM) 

C If the last structure was a parameter then this is an 
C integer parameter to the current form. Its value will 
C be in the passed dope vector TYPE so generate 
C TYPE (parm#+l) 
c 

c 

(LAST .EQ. @PARM) 
CALL NEWSTR (CURSTR,TYPE,5) 
PRMNUM = S (3) 
P = PRMNUM + 1 
CALL NUMSTR (TEMP,P) 
CALL ADDCHR (TEMP,RB) 
CALL JOINST (CURSTR,TEMP) 

FI 
RETURN 
END 

SUBROUTINE REFGNl (S, STRPTR, STR, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /TS/ TKNSTR (22) 
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP 
INTEGER STR (4), FRM (3), S (6) 
LOGICAL OK 

C REFGNl generates stack entries for the situation where a 
C reference or a field is followed by a left parenthesis. 
C This may indicate a subscript list, or a parameter list. 
C This cannot be determined syntactically, but may be 
C determined semantically, based on the structure of the 
C preceding reference or field. 
c 
C If the structure is an array, this must be a subscript list. 
c 

c 

WRITE (3,*) "Enter REFGNl" 
IF (STR (1) .EQ. @ARRAY) 

S (2) = @SUBSCRIPT; CALL PUSH (S,6) 
S (1) = @SUBSCRIPT; S (2) = @ARRAY; S (3) = STRPTR 
CALL EMPSTR (S (4)) 
CALL PUSH (S,4) 

C If the structure is a form, this must be a subscript list. 
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C Form structure has been expanded. Get form pointer from spec 
C entry and structure pointer is below that. 
c 

c 

(STR (1) .EQ. @FORM) 
PTR = STRPTR 
CALL NEXTLL (PTR,@DOWN) 
CALL GETLL (PTR, FRM) 
FRMPTR = FRM (1) 
CALL NEXTLL (PTR,@DOWN) 
STRPTR = PTR 
S (4) = STRPTR 
S (2) = @SUBSCRIPT 
CALL PUSH (S,6) 
S (1) = @SUBSCRIPT; S (2) = @FORM; S (3) = FRMPTR 
CALL EMPSTR (S (4)) 
CALL PUSH (S,4) 

C If the structure is the current form, this must be a subscript list. 
C Current structure is expanded. Use current form pointer and 
C get structure pointer below current structure pointer. 
c 

c 

(STR (1) .EQ. @CURRENT) 
FRMPTR = CURNAM 
CALL NEXTLL (STRPTR,@DOWN) 
S (4) = STRPTR 
S (2) = @SUBSCRIPT 
CALL PUSH (S,6) 
S (1) = @SUBSCRIPT; S (2) = @CURRENT; S (3) = FRMPTR 
CALL EMPSTR (S (4)) 
CALL PUSH (8,4) 

C If the structure is a Fortran scalar, this must be a parameter list. 
c 

{STR (1) .EQ. @FORTRAN) 
CALL ADDAS (NAME, TKNSTR) 
S (2) = @PARMLIST; S (3) = @FORTRAN; S (4) = NAME 
CALL PUSH (S,6) 
S (1) = @PARMLIST; CALL EMPSTR (S (2)) 
CALL PUSH (8,2) 

(STR (1) .EQ. @RECORD .OR. STR (1) .EQ. @PARM) OK= .FALSE. 
FI 
RETURN 
END 
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SUBROUTINE REFGN2 (S, STRPTR, STR, OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /CURFRM/ CURNAM, CURHDR, CURSTR, CURIMP, CUREXP 
INTEGER PRM (4), NAMSTR (22), S (6), STR (4), FRM (3), T (1) 
LOGICAL OK, FOUND 

C REFGN2 generates stack entries for the situation where a 
C reference or a field is followed by a period. This may indicate 
C a field name or a subroutine or function name. This can be 
C determined semantically from the structure type of the 
C preceding reference or field. 
c 
C If the structure is a record, this must be a field. 
c 

c 

WRITE (3,*) "Enter REFGN2" 
IF (STR (1) .EQ. @RECORD) 

S (2) = @FIELD; CALL PUSH (S,6) 
S (1) = @FIELD; S (2) = @RECORD; S (3) = 0; S (4) = STRPTR 
CALL EMPSTR (S (5)) 
CALL PUSH (S,6) 

C If the structure is a previously defined form, or the current 
C form, this may be a field, or a subroutine or function. Put a 
C pointer to the form on the stack, so that the field parsing 
C routine can determine which. 
c 

c 

(STR (1) .EQ. @FORM) 
PTR = STRPTR; CALL NEXTLL (PTR,@DOWN) 
SPCPTR = PTR 
CALL NEXTLL (PTR,@DOWN) 
STRPTR = PTR 
S (4) = STRPTR 
S (2) = @FIELD 
CALL PUSH (S,6) 
S (1) = @FIELD; S (2) = @FORM; S (3) = STRPTR; S (4) = SPCPTR 
CALL EMPSTR (S (5)) 
CALL PUSH (S,6) 

(STR (1) .EQ. @CURRENT) 
FRMPTR = CURNAM 
CALL NEXTLL (STRPTR,@DOWN) 
S (4) = STRPTR 
S (2) = @FIELD 
CALL PUSH (S,6) 
S(1) =@FIELD; S(2) = @CURRENT; S(3) = STRPTR; S(4) = FRMPTR 
CALL EMPSTR (S (5)) 
CALL PUSH (S,6) 

C If the structure is a parameter form, then this must be an 
C imported subroutine or function. Find the form name in the 
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C import list, so that the field parser can look up the 
C rout i n e n am e • 
c 

FI 

(STR (1) .EQ. @PARM) 
S (2) = @FIELD; CALL PUSH (S,6) 
CALL GETLL (STRPTR,PRM) 
PRMNUM = PRM (4) 
PRMPTR = STRPTR; CALL NEXTLL (PRMPTR,@ACROSS) 
CALL GETLL (PRMPTR,T) 
NAMADD = T (1) 
CALL GETAS (NAMADD, NAMSTR) 
CALL SRCHLL (@ACROSS, NAMSTR, CURIMP, LSTPTR, FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) S (1) = @FIELD; S (2) = @PARM 
S (3) = PRMNUM; S (4) = LSTPTR 
CALL EMPSTR (S (5)) 
CALL PUSH (S,f>) 

(STR (1) .EQ. @FORTRAN .OR. STR (1) .EQ. @ARRAY) OK = .FALSE. 

RETURN 
END 

SUBROUTINE FLDST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /TS/ TKNSTR (22) 
COMMON /DIRECT/ UP, DOWN 
INTEGER FLDNAM (22), S (6), STR (4), EXP (2), IMPFRM (3), FLD (3) 
INTEGER IMP (2) 
LOGICAL OK, FOUND, UP, DOWN 
INTEGER SPC (3), TYPE (4), LOCAL (6), TYPE2 (10) 
DATA TYPE /"T","Y","P","E"/ 
DATA LOCAL /"L","O","C","A","L","("/ 
DATA RIGHT/")"/ 
DATA TYPE2 /"T","Y","P","E"," (","T","Y","P","E","("/ 

c 
C TKNSTR holds the current field name. The stack entry holds 
C the type of the last structure parsed, and an appropriate 
C pointer. This 'field' may be a field or a subroutine or 
C function reference. 
c 

c 

WRITE (3,*) "Enter FLDST" 
CALL POP (S,LEN) 
LAST = S (2) 
PTR = S (4) 

C If the last structure was a record, then the pointer is to 
C the head of the field list. Search for the field name and 
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C get its structure. Put this info back on the stack. This 
~ C field may be followed by another field or a subscript. This 

C can be determined by looking at the next token. REFGNl and 
C REFGN2 will set up the necessary stack entries. 
c 

c 

IF (LAST .EQ. @RECORD) 
CALL SRCHLL (@ACROSS, TKNSTR, PTR, FLDPTR, FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

FI 

(FOUND) 
S (3) = FLDPTR 
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN) 
CALL GETLL (STRPTR, STR) 
S (4) = STRPTR 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) CALL REFGNl (S, STRPTR, STR, OK) 

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK) 
IF (.NOT. OK) (OK) CALL GETTKN FI 

FI 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD) 
S (2) = 0; CALL EMPSTR (S(5)) 
CALL PUSH (S,6) 
CALL EMPSTR (CURSTR) 
DOWN= .FALSE.; UP= .TRUE. 

C If the last structure was a parameter form, then the pointer 
C is to the head of the import list. Look up the routine name, 
C and put a pointer to it on the stack. It will be followed by 
C a parameter list. 
C A call to an imported subroutine or function must pass 
C the dope vector of the variable through which it is 
C called. This is contained in the dope vector TYPE but 
C must be referenced indirectly through a pointer which 
C is also in TYPE. This is because different instances 
C of a form may have different length dope vectors. 
C So generate TYPE(TYPE(parm*+l)) 
c 

(LAST .EQ. @PARM) 
CALL SRCHLL (@DOWN, TKNSTR, PTR, ENTPTR, FOUND) 
IF (.NOT. FOUND) OK= .FALSE. 

(FOUND) 
PRMNUM = S (3) 
S (3) = @PARM 
S (2) = @PARMLIST 
CALL GETLL (ENTPTR,IMP) 
NAME= IMP (1); S (4) =NAME 
CALL EMPSTR (S (5)) 
CALL PUSH (S,6) 
S (1) = @PARMLIST 
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FI 

c 
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CALL GETTKN 
CALL NEWSTR (S (2), TYPE2, 10) 
P = PRMNUM + 1 
CALL NUMSTR (TEMP,P) 
CALL ADDCHR (TEMP,RIGHT) 
CALL ADDCHR (TEMP,RIGHT) 
CALL JOINST (S (2), TEMP) 
CALL PUSH (S,2) 
WRITE (3,1001) (TKNSTR(I+2) ,I=l,TKNSTR(l)) 
FORMAT (45X,"Generate call to ",20Al) 

C If the last structure was a previously defined form, or the 
C current form, then this may be a field name or a subroutine 
C or function name. Get the structure of the form and if it is 
C a record, look for the field name. If it is there, get its 
C structure and put this info on the stack. It may be followed 
C by a further field or subscript list. This may be determined 
C by looking at the next token. REFGNl and REFGN2 will set up 
C the necessary stack entries. 
c 

c 

(LAST .EQ. @FORM .OR. LAST .EQ. @CURRENT) 
STRPTR = S (3) 
CALL GETLL (STRPTR, STR) 
IF (STR (1) .EQ. @RECORD) 

FI 

CALL SRCHLL (@ACROSS, TKNSTR, STRPTR, FLDPTR, FOUND) 
( STR ( 1) • NE. @RECORD) FOUND = • FALSE. 

IF (FOUND) 
CALL GETLL (FLDPTR, FLD) 
CALL GETAS (FLD (1), FLDNAM) 
S (3) = FLDPTR 
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN) 
CALL GETLL (STRPTR, STR) 
S (4) = STRPTR 
CALL GETTKN 
IF (TOKEN .EQ. ~LEFTP) CALL REFGNl (S, STRPTR, STR, OK) 

(TOKEN .EQ. @PERIOD) CALL REFGN2 (S, STRPTR, STR, OK) 
IF (.NOT. OK) (OK) CALL GETTKN FI 

FI 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD) 
CALL PUSH (S,6) 
DOWN= .FALSE.; UP= .TRUE. 

C If the form structure is not a record, or the name is not in 
C the field list, then this must be a subroutine or function 
C reference. It may be a reference to an exported or a local name. 
C Look for it in the export list. If it is there, get the local 
C name, else assume that it is a local name already. 
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C The dope vector of the variable through which it is being 
C called must be passed. If its type is the current form 
C then pass the dope vector TYPE, else pass the appropriate 
C part of the dope vector LOCAL. 
c 

FI 
FI 
RETURN 
END 

( • NOT. FOUND) 
WRITE (3,1001) (TKNSTR(I+2) ,I=l,TKNSTR(l)) 
IF (LAST .EQ. @FORM) 

FI 

SPCPTR = PTR 
CALL GETLL (SPCPTR,SPC) 
ADDR = SPC (2) 
FRMPTR = SPC (1) 
CALL NEWSTR (TEMP,LOCAL,6) 
CALL NUMSTR (TEMP2,ADDR) 
CALL ADDCHR (TEMP2,RIGHT) 
CALL JOINST (TEMP,TEMP2) 

(LAST .EQ. @CURRENT) 
FRMPTR = PTR 
CALL NEWSTR (TEMP,TYPE,4) 

NEXT = FRMPTR 
CALL NEXTLL (NEXT,@DOWN) 
CALL NEXTLL (NEXT,@DOWN) 
CALL NEXTLL (NEXT,@DOWN) 
CALL NEXTLL (NEXT,@DOWN); EXPPTR =NEXT 
CALL SRCHLL (@ACROSS, TKNSTR, EXPPTR, ENTPTR, FOUND) 
IF (FOUND) CALL GETLL (ENTPTR, EXP); NAME= EXP (2) 

(.NOT. FOUND) CALL ADDAS (NAME, TKNSTR) 
FI 
S (2) = @PARMLIST; S (3) = @FORM; S (4) = NAME 
CALL EMPSTR (S (5)) 
CALL PUSH (S,6) 
S (1) = @PARMLIST; S (2) = TEMP 
CALL PUSH (S,2) 
CALL GETTKN 



c 

SUBROUTINE FLDND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
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COMMON /DIRECT/ UP, DOWN 
COMMON /CURSTR/ CURSTR 
INTEGER S (6) 1 STR (4) 1 FLD (3) 1 FLDNAM (22) 
INTEGER TYPEOF (5), TAIL (2), RIGHT (1) 
LOGICAL OK, UP, DOWN 
DATA TYPEOF /"T","Y","P","E","("/ 
DATA TAIL/")","+"/, PLUS /"+"/ 
DATA LEFT/"("/, RIGHT/")"/ 
WRITE (3,*) "Enter FLDND" 

C The Field Entry on the stack contains an indication of 
C structure has just been passed. If it was a subscript 
C list, it may be followed by another subscript list or 
C a field. REFGNl and REFGN2 set up the necessary stack 
C entries for these cases. If it is not followed by a 
C subscript or a field, then generate an access expression. 
c 

c 

CALL POP (S,LEN) 
CALL JOINST (S (5),CURSTR) 
IF (S (2) .EQ. @SUBSCRIPT) 

IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 
(TOKEN .EQ. @RIGHTP) 

STRPTR = S (4) 
CALL NEXTLL (STRPTR,@ACROSS) 
S (4) = STRPTR 
CALL GETLL (STRPTR, STR) 
CALL GETTKN 
IF (TOKEN .EQ. @LEFTP) 

CALL REFGNl (S, STRPTR, STR, OK) 
IF ( • NOT. OK) 

(OK) DOWN = .TRUE.; UP = .FALSE. 
FI 

(TOKEN .EQ. @PERIOD) 
CALL REFGN2 (S, STRPTR, STR, OK) 
IF ( • NOT. OK) 

FI 

(OK) DOWN = .TRUE.; UP= .FALSE.; 
CALL GETTKN 

C The offset to the field is in the symbol table. If it 
C is known then generate the value and join it to the rest 
C of the current access expression. If it is unknown then 
C it will be in the dope vector TYPE, so generate 
C TYPE(offsetaddress)+ 
c 

(TOKEN .NE. @LEFTP .AND. TOKEN .NE. @PERIOD) 



FI 
FI 

c 
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FLDPTR = S (3); CALL GETLL (FLDPTR,FLD) 
K = FLD ( 2) 
IF (K .EQ. @KNOWN) 

OFFSET = FLD (3) 

FI 

CALL NUMSTR (CURSTR,OFFSET) 
CALL ADDCHR (CURSTR,PLUS) 

(K .EQ. @UNKNOWN) 
ADDR = FLD (3) 
CALL NEWSTR (CURSTR,TYPEOF,5) 
CALL NUMSTR (TEMP,ADDR) 
CALL JOINST (CURSTR,TEMP) 
CALL NEWSTR (TEMP,TAIL,2) 
CALL JOINST (CURSTR,TEMP) 

CALL JOINST (CURSTR,S (5)) 

C If the last structure was a field then generate an access 
C expression for it as above. The routine TYPREF looks at 
C the type of the current field and records it if it is 
C a Fortran scalar. 
c 

c 

(S (2) .EQ. @FIELD) 
FLDPTR = S (3); CALL GETLL (FLDPTR,FLD) 
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN) 
CALL TYPREF (STRPTR) 
K = FLD (2) 
IF (K .EQ. @KNOWN) 

OFFSET = FLD (3) 

FI 

CALL NUMSTR (CURSTR,OFFSET) 
CALL ADDCHR (CURSTR,PLUS) 

(K .EQ. @UNKNOWN) 
ADDR = FLD (3) 
CALL NEWSTR (CURSTR,TYPEOF,5) 
CALL NUMSTR (TEMP,ADDR) 
CALL JOINST (CURSTR,TEMP) 
CALL NEWSTR (TEMP,TAIL,2) 
CALL JOINST (CURSTR,TEMP) 

CALL JOINST (CURSTR,S (5)) 

C If the last structure was a parm list then generate 
C name(parmlist) 
c 

(S (2) .EQ. @PARMLIST) 
IF (TOKEN .NE. @RIGHTP) OK = .FALSE. 

(TOKEN .EQ. @RIGHTP) 
CALL GETTKN 



FI 
c 
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CALL GETAS (S (4), FLDNAM) 
CALL EMPSTR (TEMP) 
CALL ADDSTR (TEMP,FLDNAM) 
CALL ADDCHR (TEMP,LEFT) 
CALL JOINST (TEMP,CURSTR) 
CURSTR = TEMP 
CALL NEWSTR (TEMP,RIGHT,l) 
CALL JOINST (CURSTR,TEMP) 

C If the last structure was none of the above then generate 
C an access expression as above but there will be no 
C accumulated access expression to join it to. 
c 

c 

(S (2) .NE. @SUBSCRIPT .AND. S (2) .NE. @FIELD .AND. 
X S (2) .NE. @PARMLIST) 

FLDPTR = S (3); CALL GETLL (FLDPTR,FLD) 
STRPTR = FLDPTR; CALL NEXTLL (STRPTR,@DOWN) 
CALL TYPREF (STRPTR) 
K = FLD (2) 
IF (K .EQ. @KNOWN) 

OFFSET = FLD (3) 

FI 
FI 
RETURN 
END 

CALL NUMSTR (CURSTR,OFFSET) 
CALL ADDCHR (CURSTR,PLUS) 

(K .EQ. @UNKNOWN) 
ADDR = FLD (3) 
CALL NEWSTR (CURSTR,TYPEOF,S) 
CALL NUMSTR (TEMP,ADDR) 
CALL JOINST (CURSTR,TEMP) 
CALL NEWSTR (TEMP,TAIL,2) 
CALL JOINST (CURSTR,TEMP) 

SUBROUTINE PLSTST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /REFLOC/ REFLOC 
COMMON /DIRECT/ UP, DOWN 
LOGICAL UP, DOWN 
INTEGER S (2) 
LOGICAL OK 
WRITE (3,*) "Enter PLSTST" 

C A parm list consists of a left paren followed by 1 or 
C more expressions separated by commas and terminated by 
C a right paren. 



c 

c 
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IF (TOKEN .NE. @LEFTP) 
DOWN= .FALSE.; UP= .TRUE. 

FI 

(TOKEN .EQ. @LEFTP) 
REFLOC = @PARM 
S (1) =@EXPRESSION; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 

RETURN 
END 

SUBROUTINE PLSTND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /REFLOC/ REFLOC 
COMMON /DIRECT/ UP, DOWN 
COMMON /CURSTR/ CURSTR 
COMMON /CALL/ CALL 
INTEGERS (5), COMMA (1) 
LOGICAL CALL, OK, UP, DOWN, EMPTY, EMPTST 
DATA COMMA /lH,/ 
WRITE (3,*) "Enter PLSTND" 

C As each parameter is completed add its string to the 
C parameter list string, separating them with commas. 
C if the next token is a comma, then get another parm. 
c 

CALL POP (S,LEN) 
EMPTY= EMPTST (S (2)) 
IF (EMPTY) 

FI 

CALL JOINST (S (2) ,CURSTR) 
(.NOT. EMPTY) 

CALL NEWSTR (TEMP,COMMA,l) 
CALL JOINST (TEMP,CURSTR) 
CALL JOINST (S (2) ,TEMP) 

IF (TOKEN .EQ. @COMMA) 
CALL PUSH (S,2) 
REFLOC = @PARM 
S (1) =@EXPRESSION; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 
DOWN= .TRUE.; UP= .FALSE. 

(TOKEN .NE. @COMMA) 
CURSTR = S (2) 
CALL = .TRUE. 

FI 
RETURN 
END 



c 

SUBROUTINE SUBST (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /REFLOC/ REFLOC 
INTEGER S (4), STR (4) 
LOGICAL OK 
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WRITE (3,*) "Enter SUBST" 

C A subscript list is any number of simple expressions, 
C separated by commas and enclosed in parentheses. 
C If the last structure was a Form, make sure that the 
C structure of the Form is an array. 
c 

REFLOC = @SUBSCRIPT 
CALL POP (S,LEN) 
LAST= S (2); PTR = S (3) 
IF (LAST .EQ. @ARRAY) 

CALL PUSH (S,4) 
S (1) = @SIMPLEXP; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 

(LAST .EQ. @FORM .OR. LAST .EQ. @CURRENT) 
NEXT = PTR; CALL NEXTLL (NEXT,@DOWN) 
CALL NEXTLL (NEXT,@DOWN) 
CALL NEXTLL (NEXT,@ACROSS); STRPTR =NEXT 
CALL GETLL (STRPTR,STR) 
IF (STR (1) .EQ. @ARRAY) 

FI 
FI 
RETURN 
END 

S (2) = @ARRAY; S (3) = STRPTR 
CALL PUSH (S,4) 
S (1) = @SIMPLEXP; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 

(STR (1) .NE. @ARRAY) OK = .FALSE. 

SUBROUTINE SUBND (OK) 
IMPLICIT INTEGER (A-Z) 
COMMON /T/ TOKEN 
COMMON /REFLOC/ REFLOC 
COMMON /DIRECT/ UP, DOWN 
COMMON /CURSTR/ CURSTR 
INTEGER TAIL (2), DIGIT (10), LOCAL (6), TYPEOF (5), DOPE (4) 
INTEGER ARR (4), S (4), RNG (2) 
LOGICAL OK, UP, DOWN 
DATA TAIL/")","*"/ 
DATA DIGIT /"0","1","2","3","4","5","6","7","8","9"/ 
DATA LEFT/"("/, RIGHT/")"/, COMMA/","/ 
DATA LOCAL /"L","O","C","A","L"," ("/ 
DATA TYPEOF /"T","Y","P","E","("/ 



c 
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DATA DOPE /"D","O","P","E"/ 
DATA PLUS /"+"/ 
WRITE (3,*) "Enter SUBND" 

C If the next token is a comma, then there are more 
C subscripts to follow. Add the expression string to 
C the subscript list string. 
c 

c 

IF (TOKEN .EQ. @COMMA) 
CALL POP (S,LEN) 
CALL JOINST (S (4) ,CURSTR) 
CALL ADDCHR (S (4) ,COMMA) 
CALL PUSH (S,4) 
REFLOC = @SUBSCRIPT 
S (1) = @SIMPLEXP; CALL EMPSTR (S (2)) 
CALL PUSH (S,2) 
DOWN = .TRUE.; UP= .FALSE. 

C If it is not a comma, then the subscript list is complete. 
C Generate an access expression as follows 
C DOPEn(rangelist,parmlist)*basesize 
C n is the number of ranges in this array. The rangelist is 
C the upper and lower bounds for this array. If this array 
C is part of the current form, then the rangelist will be 
C in the dope vector TYPE. If not, then it will be in the 
C dope vector LOCAL. The base size is in the symbol table 
C entry for this array. If it is known then generate the 
C value, if not generate TYPE (addr) • 
c 

(TOKEN .NE. @COMMA) 
CALL POP (S,LEN) 
ARRPTR = S (3) 
STRPTR = ARRPTR; CALL NEXTLL (STRPTR,@ACROSS) 
CALL TYPREF (STRPTR) 
CALL GETLL (ARRPTR,ARR) 
NUMRNG = ARR (4) 
CALL NEWSTR (TEMP,DOPE,4) 
CALL ADDCHR (TEMP,DIGIT (NUMRNG+l)) 
CALL ADDCHR (TEMP,LEFT) 
RNGPTR = ARRPTR; CALL NEXTLL (RNGPTR,@DOWN) 
CALL GETLL (RNGPTR,RNG) 
IF (RNG (1) .EQ. @KNOWN) CALL NEWSTR (TEMP2,LOCAL,6) 

(RNG (1) .EQ. @UNKNOWN) CALL NEWSTR (TEMP2,TYPEOF,5) 
FI 
CALL JOINST (TEMP,TEMP2) 
ADDR = RNG (2) 
CALL NUMSTR (TEMP2,ADDR) 
CALL ADDCHR (TEMP2,RIGHT) 
CALL ADDCHR (TEMP2,COMMA) 



c 

D-65 

CALL JOINST (TEMP,TEMP2) 
CALL JOINST (TEMP,CURSTR) 
CURSTR = TEMP 
CALL NEWSTR (TEMP,TAIL,2) 
CALL JOINST (CURSTR,TEMP) 
IF (ARR (2) .EQ. @KNOWN) 

FI 
FI 
RETURN 
END 

BASE = ARR (3) 
CALL NUMSTR (TEMP,BASE) 
CALL ADDCHR (TEMP,PLUS) 
CALL JOINST (CURSTR,TEMP) 

(ARR (2) .EQ. @UNKNOWN) 
CALL NEWSTR (TEMP,TYPEOF,5) 
ADDR = ARR (3) 
CALL NUMSTR (TEMP2,ADDR) 
CALL ADDCHR (TEMP2,RIGHT) 
CALL ADDCHR (TEMP2,PLUS) 
CALL JOINST (TEMP,TEMP2) 
CALL JOINST (CURSTR,TEMP) 

SUBROUTINE WRAP 
IMPLICIT INTEGER (A-Z) 
COMMON /REFLOC/ REFLOC 
COMMON /REFTYP/ REFTYP, TYPSET 
COMMON /CURSTR/ CURSTR 
COMMON /T/ TOKEN 
LOGICAL TYPSET 
INTEGER CVTR (5), CVTL (5), RP (1) 
DATA CVTR /"C","V","T","R","("/ 
DATA CVTL /"C","V","T","L","("/ 
DATA RP /")"/ 

C All form type variables are generated as vectors of integers. 
C Any non-scalar variables or components can only be operated 
C on by subroutines or functions. However Fortran scalars may 
C be operated on by infix arithmetic. This causes a problem 
C since a reference to a real or logical component will be 
C generated as a reference to an integer array. In order to 
C correct this, a type changing function is wrapped around 
C the reference. 
c 

WRITE (3,*) "In WRAP 11 

IF 
(REFLOC .EQ. @LHS) 
(REFLOC .NE. @LHS) 

IF 



c 

(.NOT. TYPSET) 
(TYPSET) 
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TYPSET = .FALSE. 
IF 

(REFTYP .EQ. @INTEGER) 
(REFTYP .NE. @INTEGER) 

IF 
(REFLOC .EQ. @PARM .AND. (TOKEN .EQ. @COMMA .OR. 

X TOKEN .EQ. @RIGHTP)) 
(REFLOC .NE. @PARM .OR. (TOKEN .NE. @COMMA .AND. 

X TOKEN .NE. @RIGHTP)) 

FI 
FI 
RETURN 
END 

FI 
FI 

WRITE (3,*) "Wrapping" 
IF 

FI 
IF 

(REFLOC .NE. @PARM) 
(REFLOC .EQ. @PARM) 

REFLOC = @RHS 

(REFTYP .EQ. @REAL) 
CALL NEWSTR (TEMP,CVTR,5) 

(REFTYP .EQ. @LOGICAL) 
CALL NEWSTR (TEMP,CVTL,5) 

FI 
CALL JOINST (TEMP,CURSTR) 
CURSTR = TEMP 
CALL NEWSTR (TEMP,RP,l) 
CALL JOINST (CURSTR,TEMP) 

SUBROUTINE TYPREF (PTR) 
IMPLICIT INTEGER (A-Z) 
COMMON /REFTYP/ REFTYP, TYPSET 
LOGICAL TYPSET 
INTEGER STR (4), SPC (3) 

C This routine records the type of a reference if it is 
C a Fortran scalar or a form which is a Fortran scalar. 
c 

WRITE ( 3, *) "In TYPREF" 
STRPTR = PTR 
CALL GETLL (STRPTR,STR) 
IF {STR (1) .NE. @FORM) 

(STR (1) .EQ. @FORM) 
LOOP 
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WHILE (STR (1) .EQ. @FORM) 
LOOPBY 

CALL NEXTLL (STRPTR,@DOWN) 
CALL GETLL (STRPTR,SPC) 
STRPTR = SPC (1) 
CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@DOWN) 
CALL NEXTLL (STRPTR,@ACROSS) 
CALL GETLL (STRPTR,STR) 

END LOOP 
FI 
IF (STR (1) .NE. @FORTRAN) 

(STR (1) .EQ. @FORTRAN) 
TYPSET = .TRUE. 
REFTYP = STR (4) 

FI 
RETURN 
END 




