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CHAPTER 0 

The following definitions will suffice to minimize ambiguity 

whenever ~..re refer to the separation axioms. 

Definitions: Let X be a topological space. X is said to be 

1. T if each singleton subset of X is closed. 
1 

2. T if each pair of distinct points in X have disjoint open 
2 

nbds. 

3. regular (abbreviated, r.) if for each point x in X and open 

nbd U of x, there is an open nbd V of x such that 

X E v c v cu. 

if it is both r. and 

5. completely regular (abbreviated, c.r.) if for each point x in 

X and closed set E in X not containing x there is a 

continuous function f: x-.. [0,1] 

and 1 on E. 

6. T3~ if it is both c.r. and T • 
1 

such that f is 0 on x 

7. normal (abbreviated, n.) if for each closed set E in X and 

open nbd U of E, there is an open nbd V of E such that 

E c V c V CU. 

if it is both n. and T • 
1 

The concept of a paracompact topological space emerged from 

that of a locally finite covering which was introduced by P. S. 

Aleksandrov in 1924 in [ 1] • Hm..rever, it was not until twenty years 

1 



later that this class of spaces was introduced by Dieudo~ in [ 7] • 

Notable observation. made at that time included the following: every 

paracompact T space is n.; ~ every separable metric space is 
2 

paracoepac t; the product of a paracompact space with a compact apace 

paracompact. At this time it was unknown whether metric spaces are 

paracompact or the product of two paracompact spaces is paracompact. 

Definitions: 

9. A collection of subsets of a topological space is said to be 

·locally finite (abbreviated, lf.) if each point in the space 

bas an operi nbd which intersects at most finitely many members 

of the collection. 

10. A topological space is said to be paracompact (abbreviated, p.) 

if each open covering of the space has an open lf. refinement. 

' 

In the meantime, J. W. Tukey in [29] had introduced a new 

class of spaces contained in the class of n. spaces which be called 

2 

is 

fully normal. An ~ortant theorem proved in this paper is that metric 

spaces are fully normal. This theorem by Tukey enabled A. H. Stone in 

1948 in [ 27] to solve the problem of whether metric spaces are p. by 

proving that in this class of T
2 

spaces the concepts of full 

normality and p. coincide. Newer and shorter proofs that metric spaces 

are p. were given in 1969 by Mary Rudin and D. Ornstein in [ 22] and 

[2 1] • 



Definitions: 

11. A refinement A of a collection B in a topological space X 

is said to be a delta refinement if A A refines 1!, where 

1::. 
~ = (St (x,~): x E X J and S t (x .~) = U ( A: x E A E ~ ) • 

Whenever a collection ~ refines a collection 1!, we write 

~ < 1!, and likewise ~!::. < B whenever a collection A is a 

delta refinement of a collection 1!· 

3 

12. A topological space is said to be fully normal (abbreviated,f.n.) 

·if each open covering of the space has an open delta refinement. 

Theorem 0.1 (A. H. Stone). A T2 space is p. iff it is f.n •• 

Corollary 0.1 (Dieudonne). Every p. T2 space is n •• 

Proof: 

I~mediate from Theorem 0.1 and Corollary 1.1 which will be 

given in Chapter 1. II 

Theorem 0.2 (J.W. Tukey). Every metric space is f.n •• 

Proof: 

Given on p. 53 in [29]. II 

Corollary 0.2 (A.H. Stone). Every metric space is ·p •• 

Proof: 

Inmediate from Theorem 0.1 and Theorem 0.2. II 



4 

At the same time K. Morita introduced the concept of a 

topological space with the star-finite property, or strongly paracompact 

spaces as they are now called, in [ 18]. Two of the most important 

theorems in this paper are that every Lindelof T3 space is strongly 

paracompact and a connected T3 space is strongly paracompact iff it 

is Lindelof. Although metric spaces are p., they need not be strongly 

paracompact, e.g. a star space with uncountable index as defined in 

Example III.7, p. 94 of [20]. However, both P.S. Aleksandrov and 

S. Kaplan proved that every separable metric space is strongly 

paracompact one year earlier in [2] and [ 12] , respectively. 

Definitions: 

13. A collection of subsets of a topological space is said to be 

star-finite (abbreviated, sf.) if each member intersects at 

most finitely many members of the collection. 

14. A topological space is said to be strongly paracompact 

(abbreviated, sp.) if each open covering of the space has an 

open sf. refinement. 

Theorem 0.3 (P~S. Aleksandrov and S. Kaplan). Every separable metric 

space is sp •• 

Theorem 0.4 (K. Morita). Every Lindelof T3 space is sp •• 

Theorem 0.5 (K. Morita). A connected T3 space is sp. iff it is 

Lindelof. 



Although it is obvious that p. spaces are closed hereditary, 

E. Michael was able to prove in 1953 in [16 ] that every F0 subset 

of a p. space is p •. Moreover, two other important theorems in this 

paper show that in r. spaces the refinement need not be open for p. to 

hold and that the union of a lf. collection of closed p. subsets of a 

T1 space is p •• It was discovered, however, by V. Trnkova in 1962 in 

[28 J that the latter result does not hold for sp. subsets, although 

5 

the union of two closed sp. subsets of a topological space is sp. if 

their intersection is locally Lindelof. Y. Yasui generalized this 

result of V. Trnkova in 1967 in [32] in a T
3 

space to an arbitrary 

closed collection (by a closed collection we mean a collection of 

subsets all of whose members are closed sets) such that the frontier of 

each member is locally Lindelof. This generalization utilizes a theorem 

of equivalent conditions for sp. given by Yu. M. Smirnov in 1956 ([25 ], 

p. 256). The question had already arisen as to ~vhich kinds of maps 

preserve p .• In 1956 in [19] K. Morita had been able to prove that p. 

perfect normality is preserved by closed continuous onto maps, and that 

the image under a closed continuous mapping of a p. and locally compact 

T2 space X is p. T~. The following year in [17] E. Michael 

published the more general theorem that a closed continuous image of a 

P· T2 space is p. T2 , a result analagous to the well-kno~ theorem of 

G. T. Whyburn for n. T
0 

spaces (Theorem 9 in [ 31] ) . Then in 1958 

Henriksen and Isbell in [11] made the observation that for a perfect 

map f: X ~ Y where X is c.r. and Y any topological space, X is 

p. iff f(X) is p •• S. Hanai obtained a stronger result in 1961 in 

[10] that a space which has a p. image under a perfect map must be p •• 



Definitions: 

15. A star-countable collection is defined analagously to a sf. 

collection. 

16. A collection of subsets of a topological space is said to be 

a -locally finite (abbreviated, a -lf.) if it can be decomposed 

into an at most countable number of lf. subcollections. 

Theorem 0.6 (E. Michael). Every Fa subset of a p. space is p •• 

Theorem 0.7 (E. Michael). Let X bear. space. Then the following 

conditions are equivalent. 

(i). X is p •• 

(ii). Every open covering of X has a a -lf. open refinement. 

(iii). Every open covering of X has a lf. refinement. 

(iv). Every open covering of X has a closed lf. refinement. 

Theorem 0.8 (E. Michael). A T1 space is p. T
2 

whenever it has a 

lf. closed covering by subsets which are p. T2 . 

Theorem 0.9 (Y. Yasui). Let I.= (Fa: a E A} be a lf. closed 

covering of a T
3 

space X 

Lindelof for each a E A. 

sp. for each a E A. 

such that Fr (F ) 
a 

Then X is ·sp. iff 

is locally 

F 
a 

is 

6 



Theorem 0.10 (Yu. M. Smirnov). Let X bear. space. Then the 

following conditions are equivalent. 

(i). X is sp •• 

(ii). Every open covering of X has a sf. closed refinement. 

(iii). Every open covering of X has a star-countable open 

refinement. 

(iv). Every open covering of X has a star-countable closed 

refinement. 

Theorem 0.11 (E. Michael). A closed continuous image of a p. 

space is p. T
2

• 

T 
2 

Theorem 0.12 (M. Henriksen & J. R. Isbell). Let f: X~ Y be a 

perfect map from a c.r. space X to a topological space 

Y. Then X is p. iff f(X) is p •• 

Theorem 0.13 (S. Hanai). Let f:X~ Y be a perfect map from a 

topological space X onto a p. space Y. Then X is 

also a p. space. 

7 



CHAPTER 1 

Definition 1: A collection of subsets of a topological space is said 

to be Roint-finit~ if each point in the space is 

contained in at most finitely many members of the 

collection. 

Theorem 1.1. Let X be a T
1 

space. Then the following are 

equivalent. 

(i). X is n •• 

(ii). For each point-finite open covering 

X there is an open refinement V = 

that V c U for each 
a a 

u ~· 0. 
a 

a E A and 

U= (U:aEAJ 
a 

(v a EA) a such 

V ~ 0 whenever a 

(iii). Every finite open covering of X has an open delta 

refinement. 

Proof: 

(i). ~ (ii).: Proposition C, p. 82, in [20] 

(i). ~ (iii).: Exercise 7, p. 103 in [ 20] • II 

Corollary 1.1. Every f.n. space is n •• 

Proof: ---
Immediate from Theorem 1.1 and the definition of f .n •• II 

Notation: locally compact is abbreviated as l.c .• 

8 
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Theorem 1.2. For each closed compact subset E of a r., l.c. apace X, 

there is a closed compact nbd F of E such that EC F. 

Proof: 

Theorem 18, p. 146 in [ 13] • II 

The following five propositions are elementary and the proofs 

are trivial. The reader is referred to [ 8 ] for details. 

Proposition 1.1. Let X be a topological space. Then the following 

conditions are equivalent. 

(i). X is r •• 

(ii). Each x EX and closed set E not containing x have 

disjoint open nbds. 

(iii). For each x EX and closed set E not containing x, there 

is an open nbd U of X with U n E • f. 

Proposition 1.2. Let X be a topological space. Then the following 

conditions are equivalent. 

(i). X is n •• 

(ii). Each pair of disjoint closed subsets of X have disjoint 

open nbds. 

(iii). Each pair of disjoint closed subsets of X have disjoint 

open nbds whose closures do not intersect. 



Proposition 1.3. Let f: X~ Y be a closed map (not necessarily 

continuous) from a topological space X to a 

topological space Y. Given any subset B of Y 

and any open subset U of X containing f-1 (B), 

there exists an open set V in Y containing B 

such that f-l (V) c U. 

Proposition 1.4. A map f: X ~ Y (not necessarily continuous) from a 

topological space X to a topological space Y is 

closed continuous iff f(A) = f(A) for each subset 

A of X. 

Proposition 1.5. A map f: X~ Y from a topological space X to a 

topological space Y is continuous iff 

f-l(B) c f-l(B) for each subset B of Y. 

The follmving definitions were introduced by Ky Fan and 

N. Gottesman in [9] for the purpose of obtaining generalizations of 

compactifications of Freudenthal and Wallman. 

Definitions: 

2. A base B for a topological space X is said to be ~ormal if 

the following three conditions are satisfied. 

(Bl). U, V E ~ 

(B2). U E B 

implies u n v E ~· 

implies X \ U E B. 

(B3). For any open set W of X and any U E B such that 

10 

Uc W, there exists a V E B such that Uc V c Vc W. 



3. Let X be a topological space with normal base B. A binding 

family on 

ul n u2 n 

B is a nonempty family of sets of B such that 

for any finite number of sets 

of the family. By Zorn's lemma, every binding family on B is 

contained in at least one maximal binding family on B. 

4. Maximal binding families on a normal base B of a topological 

space X will be denoted by letters x*, y*, We denote 

by X* the set of all maximal binding families on ~- For 

each U E ]., we define 

h(U) = ( x* E X''<': there exists a V E x'" with V E U ) • 

B* = ( h(U): U E ~) can be taken as a base to topologize X* 

(the proof is given in [ 9] ) • 

The following theorem is the main result in this paper by 

Ky Fan and N. Gottesman. The more recent results in [ 30] by 

F. J. Wagener are analagous to those in [ 9] _, but the approach is 

with ~-filters rather than with just normal bases B. 

11 

Theorem 1.3 (Ky Fan and N. Gottesman). Let X be a T3 space with a 

normal base ~· Then X is homeomorphic to a dense subset 

of a compact T2 space X*, where the points of X* are 

the maximal binding families on the base ~. and ].* is 

the base for the topology of X*. 
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Definition 5: Let N be a positive integer. A compactification z(X) 

of a topological space X is called an N-point 

compactification if z(X) \ X consists of exactly 

N points. 

N-point compactifications were introduced by K. D. Magill, Jr.· 

in [ 15] and studied exhaustively. The following theorem is the first 

in that paper. 

Theorem 1.4 (K.D. Magill, Jr.). A topological space X has an 

N-point compactification iff X is l.c. and contains a 

compact subset K whose complement is the union of N 

mutually disjoint, open subsets Gi, i = 1, .•• , N such 

that K U Gi is not compact for each i. 

Definition 6: Let X and Y be topological spaces, A eX, and 

f: X ~ Y be a continuous map. We say that A is 

P-embedded in X if every continuous pseudometric on 

A can·be extended to a continuous pseudometric on X. 

We say that f is paraperfect if f is closed 

continuous, and f-l(y) is p. and P-embedded in X for 

each y E Y. 



P-embeddings were introduced by H. L. Shapiro in [ 23] , and 

paraperfec t maps were introduced by H. L. Shapiro in [ 24] • These 

maps relate to p. as perfect maps relate to compa~tness. Counter

examples are given in [ 24] to prove that all four conditions are 

essential in the definition of paraperfect maps in order for the 

following two theorems to hold. 

Theorem 1.5 (H.L. Shapiro). Let X be r. and f: ·X~ Y be a 

paraperfect map from a topological space X into a 

topological space Y. Then X is p. iff f(X) is p •• 

Proof: 

Given in [24]. II 

13 

Theorem 1.6 (H.L. Shapiro). Let f: X~ Y be a closed continuous map 

from a p. space X to a T1-space Y. Then f is 

paraperfect. 

Proof: 

Given in [ 24] • II 



CHAPTER 2 

Definitions: 

1. A topological space is said to be locally paracompact 

(abbre·viated, l.p.) if each point in the space has an open nbd 

whose closure is p •• 

2. A topological space is said to be strongly locally paracompact 

(abbreviated, s.l.p.) if each closed p. subset in the space has 

·an open nbd whose closure is p •• 

3. A topological space is said to be c-locally Lindelof if each 

point in the space has an open nbd whose closure is Lindelof. 

Before giving examples concerning l.p. and s.l.p. spaces, some 

propositions concerning the basic properties of these spaces shall be 

considered. 

Proposition 2.1. Every l.p. T
2 

space is r •• -

Proof: 

Let X be a Lp. T 
2 

space, X E X, and F be a closed set 

not containing x. Since X is l.p.' X has a closed p. nbd, 

say E. Suppose E n F 1: 0. E, being P· T2' is r •. Since 

is not contained in the closed set E n F in E, E n F and 

x must have disjoint nbds open in E, say V* and U* 

respectively. Since E is a nbd of x in X, there is an 

open set W in X containing x, and contained in E. 

X 

U* = U n E for some open subset U of X. Thus U n W is an 

14 



open set in X containing x which is disjoint from V*. 

V* = V n E for some open subset V of X. Hence U n W, 

V U (X\ E) are the required disjoint open nbds of x, F, 

respectively. If En F = 0, then W, X \E are the required 

disjoint open nbds of x, F, respectively. Hence X is r •• II 

Proposition 2.2. 

(i). l.p. T
2 

spaces are both open and closed hereditary. 

(ii). s.l.p. T
2 

spaces are closed hereditary. 

Proof: 

(i). Let X be a l.p. T2 space, F be a closed subspace of X, 

and X EF be arbitrary. Since X is l.p.) X has an open 

nbd u in X with p •. closure. Since u n F is a closed 

subspace of the p. space u, it is p. 0 Hence u n F is an 

open nbd of X in F with p. closure in F. Therefore F 

is l.p •• Hence X is closed hereditary with respect to l.p •• 

Let V be an open subspace of X, and x E V be arbitrary. 

By Proposition 2.1 we know that X is r •• Therefore there is 

an open subspace U of X such that x E U c uc V. Since 

X is l.p., x has an open nbd W in X with p. closure. 

Let w~-c = W n U. Then w~-c = W n U c W n U c U c V. 

w n u is p., being a closed subspace of the p. space w. 

W* is p., being a closed subspace of the p. space W n U. 
Since X E w~~' and we conclude that v is 

l.p.. Hence X is opEL hereditary with respect to l.p •• 

15 



(ii). 

16 

Let X be a s.l.p. T2 space, F be a closed subspace of X, 

and E be an arbitrary closed p. subspace of F. Clearly E 

is also a closed p. subspace of X. Since X is s.l.p., E 

has an open nbd u in X with P· closure. Since 

EC unFcunF, and unF is P•' being a closed subspace 

of the p. space u, we conclude that u n F is an open nbd 

E in F with p. closure in F. Therefore F is s.l.p •• 

Hence X is closed hereditary with respect to s.l.p •• II 

of 

Proposition 2.3. 

(i). The topological sum of an arbitrary collection of l.p. spaces 

is l.p •• 

(ii). The topological sum of an arbitrary collection of s.l.p. T2 

spaces is s.l.p •• 

(i). Let (Xa: aE P:_} be an arbitrary collection of l.p. spaces, 

X = U Xa be the top.ological sum of this collection, and 
aE P:_ 

x E X be arbitrary. Then x E X for some a E A. 
a 

Since 

Xa is l.p., there is an open subset Ua of Xa containing 

x whose closure in Xa is p •• Note that Clx(Ua) = Clx (Ua). 
a 

Hence X is l.p •• 

(ii). Let ( Xa: a E P:_} be an arbitrary collection of s .l.p. 

spaces, x= u xa be the topological sum of this collection, 
aE P:_ 

and E be a closed p. subset of X. Then E =En X a a is 

closed p. for each a E P:_, being a closed subspace of the 



p. space E. Since each X 
a 

is s .l.p., each E 
a 

17 

has an 

open nbd U 
a 

in X with p. closure. 
a 

Clearly u = u u 
aE A a 

is an open nbd of E, and ( U : a E A J 
a -

is a lf. 

collection. Since (u : a E ~ J is lf.' it is closure-a 

preserving, i.e. u = u ( u a E A} Hence it follows 
a 

from Theorem 0.8 that u is p •• Therefore X is s.l.p •• 

Proposition 2.4. 

Proof: 

Let X be 

arbitrary. 

Every c-locally Lindelof T 
3 

space is l.p •• 

a c-locally Lindelof T3 space and X EX be 

There is a closed Lindelof and T 
3 

nbd, say E, 

of X since X is c-locally Lindelof T . By Theorem 0.4 
3 

we cone lude that E is p •• Hence X is l.p.. \1 

Although it was proved in Proposition 2.2 that s.l.p. T
2 

spaces are closed hereditary, it is unknown ~vhether they are also open 

hereditary. We shall now give an example of a s.l.p. T
2 

space 

which is neither l.c. nor p., and an example of a l.p. T2 space 

which is not s.l.p. (in fact even l.sp.). Note that every s.l.p. T
2 

space ~vhich is not open hereditary has an open subspace which is l.p. 

but not s .l.p •• 

Definition 4: A topological space is said to be locally strongly 

paracompact (abbreviated, l.sp.) if each point in the 

space has an open nbd whose closure is sp •• 

II 
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Example 2.1. We shall give an example of a topological space which is 

s.l.p. T but neither p. nor 
2 

A = ] - co , 0 [ n Q where Q 

l.c.. Let 

denotes the set of 

rational numbers, and B = [0, 0[ We shall define a 

topology on A by taking the induced topology, and a 

topology on B by taking as a basis, subsets of the form 

[ 0, a] and ]a,(3] as given in [ 8 ], p. 66. Let 

X be the topological sum of A and B. Obviously X 

is T • From Proposition 2.3-(ii) we conclude that X 
2 

is s.l.p. since A is hereditarily p., and B is l.c. 

and therefore also s.l.p. (the latter result an immediate 

consequence of Theorem 1.2). X is not l.c. since no 

point of A has an open nbd in X whose closure is 

compact in X. X is not p. since the closed subspace 

[ 0' 0 [ is not p. (Example 3, p. 162 in [8]). 

Example 2.2. We shall give an example of a topological space which is 

l.sp. T
2 

but not s.l.p.. Let 

X= [0,0] X [0, w] \ ( 0, w) have the topology 

generated by declaring open each point of 

A = [0, 0 [ X [0' w [ together with the sets 

u = ( ( (3,\) ) : a < \) ~ w) and a,(3 

v a, (3 = ( ( \),(3 ) :a<\)~ 0} Clearly this space X 

is T2 X is not n. (see Example 89, pgh 2 in 

[ 26 ] ) and therefore not p. by Corollary 0.1. 
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X is l.sp.: Let ( a,f3)E X be arbitrary. 

If ( a , f3 ) E A, there is nothing to prove. Therefore 

we may assume that ( a , f3 )ft. A. Then either a=n 

or f3=w 0 Suppose a= n 0 Let v be any ordinal 

strictly less than n. Then v 
V,f3 

is the required 

closed sp. nbd of ( a ' f3 ) = < n , f3 ) . The result is-

analagous for f3 = w 0 

X is not s.l.p.: Consider the closed subspace 

E = X \A of X. E is discrete and therefore alsop •• 

Since no nonempty subspace of E is open in X, every 

open nbd U of E in X must contain for each 

( 0, n) (respectively, ( n, w )) in E, a basic open 

set v 
a,n 

(respectively, ua ) ,n 
where a is 

strictly less than 0 (respectively, w ). Let 

V = (X \ ( ( 0 , n ) : 0 ~ n ( LU ) ) n U and 

V = [ V ) U [ V n U: 0 ~ n < w). Then V is 
a,n 

an open covering of U having no lf. refinement: For if 

W refines y, we may define for each integer 

ordinal a to be the least ordinal such that 
n 

n 

V a n 
n' 

is contained in exactly one member of w. 

Let a = sup a . n 

(Note that a is strictly less than 0 .) 

an 

Then every open nbd of ( a , w ) intersects infinitely 

many members of W. Therefore E is a closed p. 

subspace of X having no closed p. nbd. 

Hence X cannot be s.l.p •• 



CHAPTER 3 

The topological space given in Example 2.1 does not have an 

Aleksandrov one point compactification since it is not l.c •• However, 

we shall observe that it has a one point paracompactification which is 

constructed parallel to the Aleksandrov one point compactification 

since it is s.l.p. T • This interesting property holds for all s.l.p. 
2 

r
2 

spaces as given in Theorem 3.1 below. 

Theorem 3.1. Let X be a s.l.p. r
2 

space. Then there exists a 

-topological space X such that 

(i). X is p. T2• 

-(ii). Cl-- (X) = X. 
X 

(iii). X is a subspace of X, and x\ X= 0 in case X is already 

Proof: ---

p., otherwise X\ X is a singleton set. 

-If X is already p., we define X= X. We can now assume that 

X is s .l.p. but not p.. Let 00 = {X} and X = X U { CJ) } 

Define a subset 1' of the power set of X as follows: U E T 

if u is open· in x· 
' 

v Er if V=X\F where F is a 

-closed p. subset of X. 'T defines a topology on X: Clearly 

0 , x belong to T Let { Va I aE ~} be a collection of 

members of 'T such that each v contains oo . For each a 

of X. Let V = U V • 
aE ~a 

a 

where F is a closed p. subset 
a 

Then V = (X \ n Fa) U { 00 } 

aE ~ 
VET since 

n Fa is a closed p. subset of X, being a closed subspace of 
aE !:_ 

20 
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each of the p. spaces F a' Similarly, let ( v ' ... ' v ] be 
1 n 

a finite collection of members of T such that each v. 
1 

n n 
contains CXl Let w = n v .. Then w = (X\ U F. U [co] 

1 1 i=l i=l 

X, being s.l.p. T
2 

and hence also l.p. T
2

, is r. by 

n 
Proposition 2.1. Therefore U F. is a closed p. subset of 

i=l 1 

X by Theorem 0.8. It is now clear that WET Let u be 

a member of T not containing CXl and v be a member of T 

containing CXl Then v = (X \ F) ciJ{coJ for some closed p. 

subset F of X. Then u n v = u n (X \F), being open in X, 

is a member of T Also, u u v = u U (X \ F) U (co) = 

(X \ [(X \ U) n F J ) U ( co) (X\ U) n F, being a closed 

subspace of the p. space F, is a closed p. subspace of X. 

Hence U U VET This completes the proof that T is a topology 

on X. 

We shall proceed to show that CL (X) = X, or 
X 

equivalently that (oo] is not a member ofT Suppose that 

The~ (oo} =X\ F for some closed p. subset F of 

X. Hence F = X, contradicting the hypothesis that X is not 

p •. Thus ( co]ft T • Hence Cl,... (X) = x. 
X 

In order to show that x is p. ' we shall first show 

that 'X is r •• Let xEX and E be a closed set in ~ not 

containing x. If x =co then E c X. E must be p. in X 

by definition of X. Therefore, since X is s.l.p., there is 

an open set U in X and a closed p. subset F of X such 
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that E c U c F. Hence X\ F and U are the required 

disjoint open nbds in X of x and E, respectively. If 

X :f. co , then either E is closed p. in X and co f. E, or 

E\(coJ is closed in X and CX) E E. In the first case there 

is nothing to prove since X is r •• In the second case, since 

X is s.l.p., there is an open set u in X and a closed p. 

subset F of X such that x E U c F. x has an open nbd V 

in X such that Cl (V) n (E \(co)) = 0 since X is r •• 
X 

Therefore C lX (U n V) C C 1 (F n V) C C 1 (F) n Cl (V) so that 
X X X 

Cl (F n V) n (E \ (co)) = 0. ClX(F n V) is closed p. in X, 
X 

being a closed subspace of the p. space F. Therefore U n V 

and X \ Cl (F n V) are the required disjoint open nbds in }t 
X 

of x and E, respectively. Hence X is r. as claimed. 

It remains to show that X is p •• Let U be an 

open covering of X. We may assume that exactly one member 

of Q, say u0 , contains co , for if others do we can remove 

the co 1 s from them. X \ u0 is a closed p. subset of X. 

Then Q n (X \ u
0

) , being an open covering of X \ U 
0

, has a 

refinement, say ~' lf. in x \ u 
0 

and hence also in X by 

the p. of X \ U , where 
0 

N is lf. in X since the open nbd 

u0 of co in X intersects no members of N. Then 

M = N U ( u
0

) is a lf. refinement of U in X. Therefore 

by Theorem 0. 7 we conclude that X is p.. II 

Corollary 3~1. Every s.l.p. T
2 

space is c.r •• 

Proof: 

Obvious. II 



CHAPTER 4 

Analagous to the definitions of a normal base for a topological 

space as defined by Ky Fan and N. Gottesman in [ 9 J, we have the 

definition of a weakly normal base which is weaker than that of a 

normal base. 

Definition 1: A base B for a topological space X is said to be 

weak~ormal if in addition to (Bl) and (B2) given in 

Definition 2 of Chapter 1, the following condition is 

satisfied. 

(B4). For any closed nbd E in X and any U E B 

such that U c Int (E), there exists a 

V E ~ such that UcVcVcE. 

Topological spaces which are l.p. and s.l.p. are characterized 

for the most part by their p-hases which are introduced below. 

Definition 2: Let X be a l.p. topological space. By the E~bas~ 

for X we mean the basis for the topology of X 

consisting precisely of those open subsets of X whose 

closures are p. or whose complements are p •• 

The following two propositions give important properties of 

the p-hases of these spaces. 

Proposition 4.1. The p-hase of a s.l.p. T1 space is weakly normal. 

23 
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Let X be a s.l.p. T
1 

space and B be its p-hase. Suppose 

U, V E ~ in order to demonstrate (Bl). To show that 

U n V E ~ we must consider three cases: 1.) U and V are p.; 

2 • ) X \ U and X \ V are p. ; 3. ) X \ U and V are p •• 

Case 1. U n V , being a closed subspace of the p. space 

V,isp •• Hence unvEB. 

Case 2. U n V E B since X \ (U n V) = (X \ U) U (X\ V) 

is p •• 

Case 3. Proof is identical to that for Case 1. 

Thus (Bl) has been proved. To demonstrate (B2), let 

U E ~· We must show that X \ U E B. Since the case where U 

is p. is trivial, we may assume X\ U is p •• It suffices to 

show that X \ U = Int(X \ U) is p.. Int(X \ U) is p. since it 

is a closed subspace of the p. space X\ U. Thus (B2) has been 

proved. To demonstrate (B4), let E be a closed nbd in X, 

G = Int(E), and U be a member of B such that Uc G. We 

need to consider two cases: 1.) U is p.; 2.) X\ U is p •• 

Case 1: Since U is p. and X is s.l.p., there is an open set 

v in X containing u with P· closure. v n G, being a closed 

subspace of the p. space v, is p •• Hence v n G E B. Moreover, 

u c v n G cvnGc E. Case 2: X\ G is P· since it is a 

closed subspace of the P· space x\ u. Hence GE B. Moreover, 

Uc G c G c E. Thus (B4) has been proved. Since (Bl), (B2), 

and (B4) are satisfied, B is weakly normal as required. \1 
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Proposition 4.2. The p-hase of a s.l.p. T space is normal. 
2 

Proof: ---
By Proposition 4.1 \ve already know that (Bl) and (B2) hold. To 

demonstrate (B3), let W be open in a s.l.p. T
2 

space X 

with p-hase B and U E ~ such that U e W. We need to 

consider two cases: 1.) U is p.; 2.) X\ U is p •• 

Case 1: Since U is p. and X is s.l.p., there is an open 

subset V of X containing U with p. closure. V, being 

p. T
2

, is also n. by Corollary 0.1. Since V n W is an open 

nbd of U in V, there is a set G open in V such that 

U e G e Cl_(G) e (v n W). Since G is open in V, there is 
v 

an open set G* in X such that G = V n G*. Let H = V n G*. 

Note that Cl (G) = Cl (G) 
- X 
v -

since Cl_(G) 
v 

is closed in the 

closed subspace V of X and therefore also in the whole 

space X. Therefore H = vn G* e v n G* = G e v n we w. Since 

H is a closed subspace of the p. space V, it is alsop .• Hence 

HE~ and U e He HeW. Case 2: X\ W, being a closed 

subspace of the p. space X\ U, is p .• Since X is s.l.p., 

there is an open set V in X containing X \ W with p. 

closure. V, being p. T , is also n •• 
2 

Since v n (X\ U) 

an open nbd of X\ W in V, there is a set G open in V 

is 

such that X\ We G eCl_(G) = Ge V n(x \U). Since G is 
v 

open in V, there is an open set G* in X such that 

G = V n G*. Let H = V n G*. Then 

H = vnc~·c eV n G~~ = G e v n (X \ U) e X \ u. Therefore 

X \We He H eX\ u. Hence U e X\ He X\ H e W. 
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X\ H = Int(X \H) ex\ H cw. H, being a closed subspace of 

the p. space V, is p •• Hence X \ H e ~ since (B2) holds. 

Moreover, U c X \ H c X \ H c W. Thus (B4) has been proved. 

Hence B is normal as required. II 

Corollary 4.1. Let X be a s.l.p. T space and B its p-base. 
2 

Proof: 

Then X is homeomorphic to a dense subset of a compact 

T space X*, where the points of x~-r are the maximal 
2 

binding families on the p-base ~. and B* is the base 

for the topology of X*. 

By Proposition 4.2 we conclude that X has a normal p-base B. 

We know by Proposition 2.1 that X is a T 
3 

result is now im:nediate from Theorem 1.3. II 
space. The 

Definition 3: The compact space X* obtained in Corollary 4.1 for a 

s.l.p. T
2 

space with p-base shall be called the 

E-com~actification of X. 

Corollary 4.2. Let X be a s.l.p. T space which is neither p. nor 
2 

l.c •• Then the p-compactification of X is not an 

N-point compactification for any positive integer N. 

In particular, the p-compactification is neither the 

Aleksandrov one point compactification nor the one point 

paracompactification. 

Proof: ---
l1Th'1lediate from Corollary 4.1 and Theorem 1.4. II 



CHAPTER 5 

Analagous to the definition of a paraperfect map as defined by 

H. L. Shapiro in [ 23 ] , we have the definition of a weakly paraperfect 

map which is weaker than that of a paraperfect map. 

Definition 1: Let f: X~ Y be a map from a topological space X to 

a topological space Y. We say that f is weakly 

f f f . 1 d . d f-l (y) paraper ect i ~s c ose cont~nuous an 

is p. for each y E Y. 

We have the following three propositions which show that weakly 

paraperfect and paraperfect maps preserve l.p. and s.l.p. under suitable 

conditions. 

Propos it ion 5 • 1. Let f: X ~Y be a weakly paraperfect map from a 

Proof: 

s.l.p. T 
2 

space X onto a T space 
1 

Y. Then y 

is l.p •• 

Let y E y be arbitrary. f-\y) is P· since f is weakly 

paraperfec t; 
-1 

f (y) is closed since f is continuous and 

the singleton ( y J is closed in the T space Y. Since 
1 

f-1 (y) is closed p. and X is s.l.p., there is an open nbd 

U of f-l(y) with p. closure. By Proposition 1.3 there is an 

open set V in Y containing y such that 
-1 

f (V) c U. 

Therefore V = ff- 1
(v) c f(U). Since U is p., by Theorem 

0.11, ~.Je conclude that f(U) is p.. By Proposition 1.4 we 

27 
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have f(U) ; f(U). V, being a closed subspace of the p. space 

f(U), is p •• Hence V is an open nbd of y with p. closure. 

Therefore Y is 1. p. as required. II 

Proposition 5.2. Let f: X~ Y be a paraperfect map from a s.l.p. 

Proof: 

T space X onto a topological space Y. Then Y 
2 

is s .1. p •• 

Let E be a closed p. subset of Y. Since X is s.l.p. T 
2' 

it is r. by Proposition 2.1. Therefore f-l (E) is r •• 

-1 
Therefore by Theorem 1.5 we conclude that f (E) is P• • 

-1 
f (E) is closed since £ is continuous. Since X is s.l.p., 

f -l(E) h b £ h as an open n d U o X wit p. closure. The 

remainder of the proof is exactly as in Proposition 5.1, except 

"E" appears where "y" was present. Hence Y is s.l.p. as 

required. II 

Proposition 5.3. Let f:x~ Y be a paraperfect map from a T 
3 

space 

Proof: 

X onto a l.p. (respectively, s.l.p.) space Y. 

Then X is l.p. (respectively, s.l.p.). 

Let Y be l.p. and x EX be arbitrary. Since Y is l.p., 

-1 
f(x) has an open nbd U in Y with p. closure. f (U) is an 

open nbd of x since £ is continuous. Since U is p., by 

-1-
Theorem 1.5 we conclude that f (U) is p. since f is 

paraperfect. By Proposition 1.5 we have C 1 (U) c £-l(U) since 

f is continuous. £- 1 (u) is p. since it is a closed subspace of 
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the p. space 
-1 -

f (U). Hence is an open nbd of x with 

p. closure. Therefore X is l.p. as required. 

On the other hand, let Y be s.l.p., and E be a 

closed p. subset of X. Since f is paraperfect and therefore 

also closed continuous onto, by Theorem 0.11, we conclude that 

f(E) is closed p. in Y. Since Y is s.l.p., f(E) has an 

open nbd U in Y with p. closure. The remainder of the 

proof is exactly as above, except "E" appears where "x" was 

present. Therefore X is s.l.p. as required. II 

Combining Proposition 5.2 and one half of Proposition 5.3 

gives the following corollary. 

Corollary 5.1. Let f: X - Y be a paraperfect map fuom a T 
3 

space 

X onto a topological space Y. Then X is s.l.p. 

iff Y is s.l.p .• 
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