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A theory of spin waves for the spin structures found 

in the rare earth metals of hcp crystal structure is described. 

The theory is developed for the conical spiral spin structure 

which contains the planar spiral, the nonplanar ferromagnet 

and the planar ferromagnet as special cases. Included in the 

Hamiltonian are isotropic and anisotropic exchange inter-

actions, single-ion crystal field terms, and magnetoelastic 

terms, both of the single-ion type and the two-ion type. 

Equations of motion for the spin operators are linearized 

with the help of the random phase approximation which makes 

it possible to express some spin-wave interaction effects 

in terms of powers of the reduced magnetization. Expressions 

for the spin-wave energies are given for the four structures 

under consideration. 
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CHAPTER 1 

INTRODUCTION 

1.1 Magnetic Interactions 

The magnetic moments on atoms in solids may inter

act with each other in a number of ways. However, the 

simplest model of magnetism in metals is the following: 

electrons in well localized magnetic d or f shells interact 

with one another via a Heisenberg exchange mechanism, while 

a distinct set of electrons in Bloch states accounts for the 

metallic properties. Hence, we distinguish between locali-

zed magnetic electrons which carry the major part of the 

bUlk magnetic moment and the itinerant conduction electrons 

which contribute little magnetic moment. The low-lying ex-

citations of spin systems coupled by exchange interactions 

are wave-like and are called spin waves. In a spin wave a 

small sinusoidally varying deviation of the moment from the 

completely ordered state travels through the lattice. The 

energy of a spin wave is quantized in units of energy called 

magnons and the excitation of a single magnon reduces the 

ordered moment of the system by one Bohr magneton. If the 

interactions between magnons are neglected then they have a 

well defined energy Eq and momentum t~. Exchange forces 

determine the dispersion relation E vs q primarily and hence 
q -~ 

1 
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a determination of the dispersion curve by neutron inelastic 

scattering will give information about the magnetic inter-

actions. 

In the past decade the heavy rare earth metals have 

stimulated a great deal of interest due to their rich variety 

of equilibrium magnetic configurations as revealed by neutron 

diffraction experiments. In all of the various moment 

arrangements, the moments of the ions lying in a given hex-

agonal layer are parallel. However, the direction of the 

moment changes from one layer to the next and this variation 

of the moment along the hexagonal axis can be described by 

a wave vector_]£
0 

whose direction is parallel to this axis. 

A complete description of these various moment arrangements 

can be found in a review article by Cooper (1968b). 

In order to discuss the differences in magnetic 

behaviour of the various members of the heavy rare earth 

group we can look upon each metal as consisting of a lattice 

of localized rare earth tripositive ions immersed in a sea 

of conduction electrons. Within each ion the intra-atomic 

Coulomb interaction produces states characterized by ~ and S 

where L is the total orbital angular momentum and S is the 

total spin angular momentum. When the spin-orbit interaction 

is added, only the total angular momentum J=~+~ is conserved. 

Upon forming the metal each atom lost its Sd 6s 2 electrons 

to the conduction bands leaving behind a highly localized 

moment at each lattice site due to the unfilled 4f shells. 



In general this moment is given by Hund's rules so that the 

total angular momentum J can be treated as a good quantum 

number. 
0 

Since the radius of the 4f shell is about 0.35 A, 

which is small compared to the interatomic distances of 
0 

about 3.5 A, the overlap of the 4f wave functions from two 

neighbouring atoms is very small and direct interaction 

between the magnetic moments is negligible. The observed 

magnetism must then involve the conduction electrons which 

must be capable of sustaining correlations of the moments 

over several interatomic distances. While a conduction 

3 

electron is near a particular lattice site the coupling with 

the localized f electrons is like an intra-atomic exchange, 

being summed over all f electrons at that site 

[ 1.1] r K s .sf= K s .S = K(g-l)s .J . 
f --c- --c- ~-

Here K is the intra-atomic exchange constant between the 4f 

and 6s electrons; ~ is the conduction electron spin; S 

is the total ionic spin; and (g-1)~ is the projection of S 

onto the total angular momentum of the ion. In second order 

perturbation theory this interaction causes an effective 

interaction between ionic moments. The localized 4f moments 

produce around them a spin polarization of the conduction 

system which in turn interacts with another localized moment 

and gives rise to an indirect exchange interaction between 

the two moments. It can be shown that the indirect exchange 
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may be writ~en as a Heisenberg exchange interaction (Ruderman 

and Kittel 1954, Kasuya 1956, Yosida 1957). 

[ 1. 2] ftex = l: 
i<j 

J .. (R .. )S .• S .• 
1] 1J -1 -J 

If the conduction electrons are treated using the free 

electron model, then J(R) has the following form: 

[ 1. 3a] 

[1.3b] 

J (R) 
2 

= 3z TI K {g-1)2 F(2kFR) 
2EF 

F{Y) = (YcosY - sin Y)/Y 4 

where K is the s-f exchange interaction; z is the number of 

conduction electrons; and EF is the Fermi energy. In order 

to consider the dependence of energy on ~ it is convenient 

to define the fourier transform of J(R) 

[ 1. 4] J {~) 
is_. {R. -R.) 

= ~ J{R ) -1 -J ~... .. e 
j 1] 

For the free electron model, this has the form: 

[ 1. Sa) J (q) = 3z K
2 

{g-l}2 {l + l-x
2 

log l+x} 
16EF ~ 1-x 

where, 

[l.Sb) X = q/2kF • 

Although J(R) is long ranged and oscillatory, the maximum of 



J(~) falls at ~=0. However, Yosida and Watabe (1962) have 

used a nearly free electron model for the conduction band 

5 

to show that J(~) can have its maximum at a non-zero wave 

vector ~ along the c-axis if the periodicity of the hexa

gonal close-packed lattice is considered. It is the exchange 

interactions which determine the periodicity of the equili-· 

brium magnetic moment arrangement. 

The exchange interaction is however not sufficient 

to describe the magnetism in the rare earths. Since the 

orbital angular momentum L of each ion is not quenched, the 

distribution of 4f electrons is not spherical but is expanded 

in a plane normal to J. This results in an anisotropic 

crystalline field (Elliott 1961, Miwa and Yosida 1961) which 

is large and cannot be neglected. If the neighbouring ions 

are treated as point charges, the crystal field can be 

expanded in terms of spherical harmonics and will have the . 

same symmetry as the ionic lattice. For the heavy rare earths 

this structure is hexagonal close-packed (hcp) with the c/a 

ratio between 1.57 and 1.59. Since the lowest J multiplet 

is usually more than about 0.1 eV below the next excited 

multiplet and since the splittings of these multiplets by 

the crystal field are of the order of 0.01 eV, we can consider 

the ions as being confined to the lowest J multiplet. The 

matrix elements of the crystal field within this J manifold 

are then easily evaluated using the method of operator equi

valents {see for example Hutchings 1964). 
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Another important contribution to the anisotropy 

energy is magnetostriction. The crystal structure in ferro

magnets is more or less distorted compared to the para

magnetic state and the distortion depends on the direction 

of the spontaneous magnetization. The deformation is ex

pressed by the change of linear dimension measured along 

a certain direction and is dependent on both the direction of 

magnetization and the direction of observation. In order to 

express the dependence of the anisotropy energy on the 

strain, we expand the energy in a Taylor's series in the 

strains. The terms linear in the strains refer to the 

deformed lattice which has lower symmetry than the unstrained 

crystal. This coupling between the strains and the direction 

of magnetization is called magnetoelastic coupling. These 

terms correspond to the anisotropic crystal field of the 

distorted lattice and can be expanded in terms of a complete 

set of spherical harmonics having the distorted lattice 

symmetry (Lindgard 1971). Thus they can be handled using 

the operator equivalent method also. 

Both the crystal field anisotropy and magnetostriction 

compete with exchange interactions to determine the equili

brium magnetic moment configuration. Exchange favours a 

spiral spin arrangement while axial anisotropy terms deter

mine whether the arrangement is planar or conical. Even when 

exchange favours a spiral spin arrangement, planar aniso

tropy terms and magnetostriction effects can overcome this 



tendency and give ferromagnetism. 

1.2 Scope of Thesis 

A general theory of spin waves for the helical spin 

structures found in the heavy rare earth metals was first 

developed by Cooper, Elliott, Nettel and Suhl (1962). 

Starting from a Hamiltonian consisting of Heisenberg ex

change coupling and single-ion crystal field terms they 

obtained expressions for the spin wave energies for various 

types of magnetic ordering. These expressions have often 

been used to analyze the results of magnetic resonance and 

inelastic neutron scattering experiments. 

7 

Recent experimental work has shown the need for a 

theory extending the work of Cooper et. al. in a number of 

ways. Firs~ there is the trivial point that the hcp crystal 

structure of heavy rare earth metals has two atoms per unit 

cell, whereas Cooper et. al. assumed a Bravais lattice for 

simplicity. As a result they did not obtain expressions 

for the higher spin-wave mode. Secondly, it is desirable 

to treat the crystal field terms more carefully than was done 

by Cooper et. al. whose expressions are correct only to the 

highest power of s, the total angular momentum. Careful 

manipulation of the spin commutation relations, however, 

yields expressions with desirable symmetry properties. 

Thirdly, it has been recognized in recent years (Turov and 

Shavrov 1965, Cooper 1968a) that the magnetoelastic coupling 

between the magnetic spins and the lattice has an important 
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influence on the spin-wave energies. In fact, the experi

mental work of Rhyne and Clark (1967) and of Nielsen et. al. 

(1970) shows the need to consider magnetoelastic contribu

tions of higher order than those discussed by Cooper (1968a). 

Finally, the temperature dependence of the spin-wave energies 

measured by magnetic resonance and neutron scattering ex

periments requires for its description a spin-wave theory 

incorporating in some approximate martner the effect of 

spin-wave interactions. While some of these extensions 

appear in recent theoretical papers concerned with terbium 

and dysprosium (Brooks, Goodings and Ralph 1968, Cooper 1968, 

Brooks 1970, Lindgard 1971) a theory having all these 

features has not so far been published. 

In the present work a~in-wave theory is presented 

for the general conical spiral structure which includes the 

improvements mentioned in the preceeding paragraph. This 

general magnetic structure contains the planar ferromagnet, 

the planar spiral and the nonplanar ferromagnet as special 

cases. Excluded from the theory are the distorted spiral 

and fan structures which result when a helical spin structure 

is placed in a magnetic field perpendicular to the hexagonal 

axis (Enz 1960), Cooper and Elliott 1963, Nagamiya 1967). 

Also excluded are the oscillatory z-component or sinusoidal 

spin arrangement found in erbium between 53.5°K and 85°K 

and in thulium between 40°K and 56°K, and the type of anti

phase domain structure found in thulium below about 40°K. 



In Chapter 2, the derivation of the spin wave 

energies is outlined. The equations of motion for the spin 

operators are linearized by means of approximations equiva

lent to the random phase approximation (Englert 1960, 

9 

Brooks 1970) , the effect of higher order terms being ex

pressed in an approximate way through powers of the reduced 

magnetization. In Chapter 3 higher order magnetoelastic 

terms corresponding to spherical harmonics with t=4 are 

discussed in detail and their contributions to the spin-wave 

energies are written down. Finally, in Chapter 4 explicit 

expressions for the spin-wave energies for the four magnetic 

structures under consideration are given. 



CHAPTER 2 

SPIN WAVE THEORY 

Because the calculation of the spin-wave energies is 

rather lengthy we shall not quote any intermediate results. 

However, it should be clear from what follows how the final results 

were obtained. 

2.1 The Hamiltonian 

The magnetic properties of the rare earth metals of hcp 

structure are described by the Hamiltonian (Cooper, Elliott, Nettel 

and Suhl, 1962; Cooper l968a). 

~= - l: J .. s .• s. - l: K .. s~s~ + g )JB H.(l:S.) 
l.J -1. -J l.J l. J - . -1. i<j i<j l. 

+ 'Bo 
__, 

+ so - +so 
,.J 

+ J36 
-.J ,.., 

l: 0 20 l: 0 40 l: 0 60 ~ ( 0 6 6 +O 6- 6 ) 2 i 4 i 6 i 6 
1. 

- BY [£Y l: ~(s~2-sry2) + £Y l: ~ (S~S~+SryS~)] 
1 i l. l. 2 i l. l. l. l. 

[ 2. 1] -"£ -e: 
l: !<s~S~+S~Sry) -e: 

l:. !<s~S~+S~S~)] - B [ e: + £2 1 i 1. 1. 1. l. 
i 

1. l. l. 1. 

The first term is the usual Heisenberg exchange coupling predicted 

by the theory of indirect exchange (see the review article by 

Kittel (1968)) while the term inK .. is included to take account of 
l.J 

any anisotropic exchange which may be present. 

-o and B6 describe a crystal field with axial symmetry while the 

. -6 
term 1.n B6 describes the hexagonal anisotropy. To avoid confusion 

10 
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with the exchange constants s. is used for the total angular 
-1 

momentum of atom i, including orbital and spin contributions. The 

sns coordinate system has the s-axis along the hexagonal crystal 

axis and the s-axis directed toward a nearest neighbor atom in 

-the basal plane. The Otm are the spin operator equivalents 

tabulated by Buckmaster (1962) and Smith and Thornley (1966) and 

denoted ''Racah operator equivalents" by Birgeneau (1967) who has 

given numerical tables of their matrix elementst. 

tThe Otm are related to the operator equivalents of Stevens (1952) 

by constant factors chosen so that they transform under rotations 

in exactly the same way as do the spherical harmonics. As a result 

they satisfy the commutation relations (2.22) and (2.23) for 

tensor operators (Edmonds 1957, p.71) which greatly simplifies the 

algebra involved in the calculation. Note, however, that they do 

not contain the factor (2t+l/4rr) 1 / 2 which occurs in th~ usual 

definition of the spherical harmonics Ytm(S,¢). 

The operator equivalents o~ used by Brooks (1969, 1970), 

by Brooks and Goodings (1969) and by Brooks, Goodings and Ralph 

(1968) are exactly the same as -m 
the ot of Orbach (1961). The operator 

equivalents and crystal field parameters of the present paper are 

related to those in the earlier papers by 

- 1 0 -o 2B 0 0 20 = 2 °2' B2 = 2 
.-...J 1 0 -o aB 0 0 40 = 8 °4' B4 = 4 
..._; 1 0 -o 16B0 0 60 = IT 0 6' B6 = 

1 
6 1 - ......... 

[ (231) 2;16] 0~ -6 [16/ (231) 2] B6 0 66 + 0 6-6 = B6 = 6 
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The last two lines of [2.1] are magnetoelastic terms whose 

importance with regard to the spin wave energies of the rare earth 

metals and other crystals showing large magnetostrictive effects 

was first recognized by Turov and Shavrov (1965). They are 

written here in the form appropriate to the hcp lattice derived 

by Callen and Cal~en (1965) and discussed by Cooper (1968a). ]Y 
....,£ 

and B are phenomenological magnetoelastic coupling constants and 

ci, ci, £~ and £~ are symmetrized strains defined in Chapter 3. 

Furthermore we have assumed that the strains are "frozen" at their 

equilibrium values, an approximation referred to by Turov and 

Shavrov and Cooper as the frozen lattice approximation. A full 

discussion of magnetostrictive terms in the Hamiltonian, including 

the applicability of the frozen lattice approximation, is given in 

Chapter 3. All possible single-ion magnetoelastic terms linear 

in the strains and up to fourth order in sr, s{ and sr and all 

possible two-ion magnetoelastic terms linear in the strains and 

up to second order in the spin operators are considered in detail. 

The relationship between the equilibrium strains £I, si, E~ and E~ 

and the saturation magnetostriction constants is also given in 

Chapter 3. In this section of the paper, however, we shall 

include only the lowest-order single-ion magnetoelastic terms which 

make up the last two lines of [2.1]. 

2.2 Transformation to Equilibrium Coordinate Axes 

A spin wave theory is constructed by considering the 

deviations of each spin from its equilibrium direction. Therefore 
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we transform to local coordinate axes at each site (Yosida and 

Miwa 1961, Kaplan 1961, Cooper et. al. 1962) chosen so that the 

z.-axis lies along the equilibrium direction of s. and the Y.-axis 
l. -l. l. 

lies in the basal plane. The transformation is, 

[2.2a) s~ = s~ cose coscj>i - s'¥ sincj>i + s~ sine coscj>i 
l. l. l. l. 

[2.2b) s~ = s~ cose sincj>. + s¥ coscj>i + s~ sine sincj>i 
l. l. l. l. l. 

[2.2c) s~ = -s~ sine + s~ cose 
l. l. l. 

with e the cone angle and cj>i = ~o·~i+cj>, ~O being the wave vector 

of the spiral. Because of the experimental fact that the spins in 

each plane perpendicular to the hexagonal axis are aligned, ~O is 

assumed to be in the direction of the ~-axis. 

The transformation [2.2) is equivalent to a rotation of the 

~n~ coordinate system through the Euler angles a. = cj>., 8. = e, 
l. l. l. 

-.J 

yi = 0. Under these rotations the O~m transform according to 

[2.3) _. t,; n ~ 
On (S.,S.,S.) = L: x..m 1 1 1 m' 

D (~) (cp.eO) _, x y z 
I On ,(S.,S.,S.) m m 1 x..m 1 1 1 

where the D~~~{ai8iyi) are the standard rotation matrices {we 

follow the notation and conventions of Edmonds {1957)). The result 

of applying this transformation to the Hamiltonian gives rather 

...... 6 
lengthy expressions, particularly for the term in B

6 
for which the 

rotation matrices do not assume a simple form. These will 

be given in Appendix C. 



14 

The approximate ground state of the system at T=O, denoted 

!O>, is chosen to have m = -s for each spin, ie. s 

[2.4a] s~IO> = -slo> 
1 

[2.4b] s-:-lo> = o • 
1 

In what follows we shall make use of an expansion of S~ due to 
1 

Wortis (1963) 

[ 2. 5] s~ = -s + (2S) -ls:s-:- + (2s) - 2 (2S-l) -ls:s:s-:-s-:- + •••• 
1 1 1 1 1 1 1 

2.3 Transformation to Fourier-Transformed Spin Operators 

Since the hexagonal crystal structure can be decomposed 

into two interpenetrating sublattices, it is convenient to define 

two sets of Fourier-transformed spin operators, 

1 

[2.6a] 
+ -2 + s- = N l: s:- exp ( ± iq. r . ) 
'1 i 

1 - -1 

[2.6b] sz -1 l: s~ exp (-iq.r.) = N 
~ i 1 - -1 

1 
+ -2 + 

exp(±iq.r.) [2.6c] T- = N l: s-:-q j J - -J 

[2.6d] Tz -1 
l: s~ exp (-iq.r.) = N q j J - -J -

where s~ = s~ ± iS~ and the sum over i runs over one sublattice, 
1 1 1 

the sum over j over the other sublattice. N is the number of unit 

cells in the crystal. From the usual commutation rules of the spin 



operators one finds 

[2.7a] 

[2.7b] 

+ -
rs'l,s~~ J = 

+ - z with similar relations for the operators Tq' Tq and T . 
- q 
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Since 

the S -operators and T -operators involve spins on different sub-
'1 '1 

lattices they commute with each other. 

By means of the transformation inverse to [2.6] the 

Hamiltonian is expressed in terms of these Fourier transformed 

operators and the functions 

[2.8a] J <q> = E J. • I exp{iq. (r.-r. 1)} 
il ~~ - -~ -~ 

[ 2. 8b] J I (q) = E J .. exp { iq. ( r. -r . ) } - j ~J - -~ -J 

[2.8c] K ('1) = E K .. I exp{iq. (r.-r. 1 )} 
il ~~ - -~ -~ 

[ 2. 8d] K I (q) = E K., exp{iq. (r.-r.)} 
j ~J - -~ -J 

In these definitions i 1 runs over the same sublattice as i whereas 

j runs over the other sublattice. Here also we shall not give the 

expressions obtained. 

We note that the Fourier transform of the Wortis expansion 

[2.5] is, 

[ 2. 9] s+l s-~ + •.. 
q -q q - - -

with a similar expression for Tz. Since the z-axis at each ion q -
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makes an angle e with respect to the hexagonal axis, the component 

of the magnetization parallel to this axis is, 

[ 2 .10] Mil (T) = -2g 11 cose<Z:s~>/V B . 1 
1 

where V is the volume, < > denotes a thermal average and the factor 

of 2 compensates for the sum over i running over only one sub-

lattice. The reduced component of magnetization is therefore 

m11 (T) 

[ 2 • 11] 

M 11 (T) 

- M I/ ( 0) 
= -(NS)-l<LS~> 

. 1 
1 

= -S-l<Sz> 
0 

= -s-l<Tz> 
0 

Now if <S~>is approximated by the first two terms of [2.9] then one 

obtains the relation 

[2.12] 2 
2 S [ 1-m II ( T ) ] . 

The same relation.may be shown to hold for the case of a ferromagnet 

7T with the spins lying in the plane (e = 2), the total reduced 

magnetization m (T) replacing m fl (T) in this case (Brooks 1970). 

This relation provides a simple means of introducing some temperature 

dependence into the theory. 

2.4 Conditions for Stable Equilibrium 

By definition the equilibrium axis at each site must be such 

that the free energy is a minimum with respect to variation of e and 

¢ .. Since the present work includes some interaction effects, 
1 
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leading to temperature dependent spin-wave energies, it is 

necessary to include the entropy term in the free energy. In 

Appendix A it is argued that expressions consistent within the 

present theory are obtained by differentiating only those terms in 

<'l> which are explicit functions of 8 and ~i' excluding from the 

differentiation factors which depend implicitly on e and ~i through 

thermal averages. 

Let us consider the contribution to the thermal average 

<~> from two-ion terms. We first substitute the first two terms 

of the expansion [2.9] for Sz and Tz wherever they occur, 
q s 

discarding all terms beyond those quadratic in the operators s;, 
- + S , T and 
~ ':I 

discard all 

In fact the 

T • We then call on the random phase approximation to 
q 
- + - + -terms <S S > and <T T > except those with ~1=~2 . 

~1 ~2 s1 ~2 
only higher orders terms we retain are those involving 

+ -~<T T > since for these we can use the relation 
<.l ~ 'I 
as ~ J(q+k

0
)<S+S-> are not kept, for example, 

- - q a q - • 
because they cannot readily be expressed in terms of the reduced 

magnetization.) 

The contributions to <~ from the crystal field and single-

ion magnetoelastic terms are handled similarly, but as in the papers 

by Kittel and Van Vleck (1960) and Callen and Callen (1966), only 

terms with axial symmetry about the equilibrium direction of the 

spins are retained. From [2.3], 

[2.13a] 

[2.13b] 

_, . t,; n r;; 
<0 0 (S.,S.,S.)>= .>Vm 1 1 1 

(51,) - X y Z o0 (~. ,e,0)<0 00 (s. ,s. ,s. )> m 1 .IV 1 1 1 

1 
2 ...,J X y Z = [4TT/(2JI,+l)] Y0 (8,~.)<0 00 (S.,S.,S.)> .>Vm 1 .IV 1 1 1 
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where we are using the convention of Edmonds (1957). The thermal 

average on the right hand side of this equation is calculated in 

Appendix B, the temperature dependence being expressed through 

powers of the reduced magnetization. We find, 

[ 2. 14] <On 0 <s~,s~,s~)> ~ s S((t-l)/2)mt(t+l)/2 
IV 1 1 1 

where S(n) is defined below in [2.16]. 

Making these approximations and carrying out the differen-

tiation with respect to e we find the following condition for 

stable equilibrium, 

[2.15] 

where, 

[ 2. 16] 

[2.17] 

s sine cose[J(O)+K(O)+J' (O)+K' (O)-J(}S0 )-J' <!s 0 )Jm
2 

+ g ~B H~ sinem- g ~B(H~ cos~+ Hn sin~)cose m ok
0

, 0 

-BY sine cose(EY
1 

cos 2~ + EY
2
. sin 2~) S(l/2)m3 o 0 ~o' 

.-Je: ,-£ . -£ ) 3 --- B cos 2e c 1 s1n~ + c 2 cos~ S(l/2)m o 0 0 
lso' 

1 S (n) = (s-2) (S-1) ••. (S-n) 

1 

B~ = (231) 
2 B~/16 

H~, Hn and H~ are the components of the applied field in the original 
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coordinate system referred to crystalline axes. In [2.15] m stands 

for mH (T) when efrr/2 and for m(T) when e=rr/2, for the reason given 

m in section 2.3, and Pt stands for the associated Legendre function 

m P 0 (cose). The factor ok O has been introduced into the term in )(, -a, 
B~ in order to exclude the hexagonal anistropy from spiral 

structures, for the reason given in the next subsection. The 

magnetoelastic terms must also be excluded in considering spiral 

structures because homogeneous strains cannot be defined. The same 

factor 

result 

means 

[2.18] 

occurs in the magnetic field term involving H~ and 

of averaging over 

We shall find it 

of the recurrence 

2m cose Pm 
t 

all sites. 

useful to 1 pl and re-express p2' 4 

relation 

. m+l m-1 = Slne[PR. +(R.+m) (t-m+l)PR. ] 

H as a 
n 

pl 
6 

by 

After multiplying [2.15] by cote and rearranging the terms we obtain 

the condition for stable equilibrium in the form, 

[2.19] 

= s cos 2 e[J(O)+K(O)+J' (O)+K' (O)-J(!s
0
)-J' (~ 0 ) ]m2 

+ g ~B H~ cosem- g ~B(H~ cos~+Hn sin¢)cose cote rook 0 
<;, -0' 

-e: - B cos2e cote(£ 1e: sin~+£E2 cos~) S(l/2)m3 o 
~0,0 
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Since m varies with temperature this condition may be regarded as 

determining e as a function of temperature. 

It shouldbe mentioned at this point that the contribution 

to this condition from higher order magnetoelastic terms is set 

out in [ 3. 21] . 

The azimuthal angles ~- must also be such as to give a 
J. 

stable equilibrium. Instead of defining ~i = ~o-~i+¢ as in [2.2] 

we can let each ¢i be an independent parameter whose value is to 

be determined so as to minimize the free energy. The resulting 

stability condition at each site represents a balance of the forces 

due to exchange (tending to produce the spiral), hexagonal anisotropy, 

magnetostriction and applied field. As it also involves the ¢j 

at neighboring sites we must solve a set of coupled equations. 

Cooper et. al. (1962) treated such a set of equations by an 

iterative procedure starting from the zeroth order solution 

¢i=~o·£i' where ~O is defined to be the wave vector at which J(~) 

is a maximum. Although they encountered considerable difficulties 

(see section 3.4 of their paper) they succeeded in deriving an 

expression for the departure of ¢. from k(.r.which is first order 
J. -) -J. 

in H~ or B~. We shall not pursue this further but will simply 

assume that the structure is stable with respect to small variations 

in ¢i at each site. The value of ~O in spiral structures will be 

taken from experiment. 

In the simple case of a ferromagnetic structure (~0=0) , 

the angle ¢ of the transformation [2.2] is the same at each site. 
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Then the differentiation with respect to ~ gives, 

[2.20] 

where H~ and Hn may have arbitrary values. This expresses the 

competing effects of the hexagonal anisotropy and of the components 

of li in the hexagonal plane in determining the equilibrium value of 

~. The magnetoelastic terms of [2.1], evaluated in the frozen 

lattice approximation (section 3.2), do not contribute to this 

equation, but there is a contribution from higher order terms (see 

equation [3.22]). 

It should be added that equations [2.15] and [2.19] in the 

limit T=O may be obtained directly by keeping only the first term 

in the Wortis expansion [2.9]. In this limit they are essentially 

the same as the condition obtained by Cooper et. al. (1962) when 

allowance is made for the approximations of their paper. Further-

more equations [2.15] and [2.20] are exactly the conditions 

required to ensure that the terms in the transformed Hamiltonian 

+ - + -linear inS , S , T and T have vanishing coefficients, a property 
q q q q ... - - -

which is essential in constructing any spin-wave theory. 

2.5 Equations of Motion and their Linearization 

Equations of motion for the Fourier-transformed spin 

operators were first studied by Englert (1960) and by Ginzburg and 

Fain (1961) who linearized the equations by means of a simple 

random phase approximation. Th~ advantages of this method compared 
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with other methods for obtaining temperature-dependent spin-wave 

energies have b~en discussed by Brooks (1970) in a recent article 

concerned with spin-waves in terbium and dysprosium. We shall use 

this approach to obtain the spin-wave energies from the equations 

of motion, 

[2.2la] ih s = [S~,~] 
'l 

ih 
"+ + 
s = [s_<;I :')(.] -9. 

[2.2lb] 

ik T = [T~,XJ 
'l 

[2.2lc] 

ih 
"+ 

[T~<J ,'}{.] T = -s. [2.2ld] 

assuming that the operators vary with time according to exp(-iw t) 
q -

or exp(-iw t). 
-'l 

The commutators of the two-ion terms of~may be worked out 

using the commutation relations [2.7], while the commutators of 

the single-ion terms are most easily found using the standard 

relations for tensor operators (Edmonds 1957, p.71). 

1 

[2.22] +- 2-
[Si,O~m] =[.R.(.R.+l)-m(m±l)] O.R.m±l 

[2.23] 

In the case of spiral structures (~0~0) , the hexagonal anisotropy 

gives rise to terms in the equations of motion involving the 
+ + 

operators s;+Gk and s-_ 6k • The equations of motion of these 
.. -o ~ -o 

operators will, of course, couple to still others which differ in 



wave-vector by ±6ko· Thus unless 6~0 is commensurate with a 

reciprocal lattice vector, modes of wave-vector q are not well -

23 

defined, as was first pointed out by Cooper et. al. (1962). However, 

if B~ is weak relative to the axial crystal field constants, it 

+ 
should be a good approximation to neglect the terms in s-+ 6k in s.- -0 
the equations of motion. We restrict ourselves to this case and 

therefore neglect all terms in B~ for spiral structures. (This 

accounts for the presence of ok 0 in the B~ terms of equations 
-o, 

[ 2 . 15 ] and [ 2 . 19 ] . ) 

Following Englert (1960) and Brooks (1970) we linearized 

the equations of motion [2.21] by means of the same kind of 

approximations that were used in obtaining the stability conditions 

[2.19] and [2.20]. Having worked out the commutators in [2.21] and 

expressed them in terms of the Fourier-transformed operators, we 

replaced sz and Tz by the first two terms of the Wortis expansion 
q q 
- - + + 

[2.9]. Then after commuting the operators S and T to the left of q q - -
S~ and T~ and dropping terms in more than three operators, we 

linearized the remaining three-operator terms by the standard 

random phase approximations. 

expressed in terms of the reduced magnetization by means of [2.12], 

and powers of m were then obtained by the procedure exemplified by 

equation [B2]. Further details concerning these approximations are 

given in Appendix B. 

As a result of these approximations the linearized 

equations of motion take the form, 

[2.24a] ih s 
'1. 
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[ 2. 2 4b] di 
.+ 

-B s A s+ D T c T+ s = - - -
-<I s. ~ -1 -~ -s. q -s. -~ 

it * s+ * T+ T = c~ s + D + A T + B 
'! 1 -1 -s. q ~ s. -s.. -

[2.24c] 

i1l 
.+ * s+ T+ T = -D s - c - B T - A -s. s. 1 -q -s. '1 '! -g_ -s. [2.24d] 

where, 

[2.25] 

B:i = S[cos28(J(O)+K(O)+J' (O)+K' (0)-J()£0)-J' (1£ 0 )) 

I II 
- (B +B (q))ok 0+q ~BHrcos8-q ~B(Hccos~+H sin~)cos8cot8ok O me me - _ 0 , s s n _0 , 

[2.26] 

[2.27] 



[2.28] 

and, 

[2.29] 

II 
+ n (q)ok o me - _

0
, 

As in equations [2.15], [2.19] and [2.20], m stands for m11 (T) 

when e~TI/2 and for m(T) when e=TI/2, and P~ is the associated 

~5 

Legendre function P~(cose). It should be mentioned that the 

stability condition [2.i9] has been used in arriving at [2.26]. 

Finally, AI and BI are contributions from single-ion magnetoelastic me me 

terms while AII(q), BII(q), CII(q) and DII(q) are contributions from 
me - me - me - me -

two-ion magnetoelastic terms, which are discussed in detail in 

section 3. These terms and the hexagonal anisotropy terms are 

to be included in [2.25]-[2.28] only when considering ferromagnetic 

structures, for the reasons given earlier. For the lowest order 

single-ion magnetoelastic terms contained in [2.1] one finds in the 

frozen lattice approximation, 

[2.30] 
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where cY and c£ are elastic constants defined in [3.2] and [3.3]. 

Although the expressions [2.25]-[2.28] are rather complicated, 

it can be seen that they possess a great deal of symmetry. Moreover 

they become much simpler in various special cases, such as, 

(i) the limit T=O, obtained by setting m=l 

(ii) ferromagnetic structures, obtained by setting ~0=0 

(iii) planar structures, obtained by setting 6=I 

(iv) the case of isotropic exchange only, obtained by setting 

(v) the Bravais lattice approximation, obtained by setting 

J I (<;a) = K I ( ~) = 0 

2.6 Solution of the Eigenvalue Problem 

The frequencies of spin wave modes of wave vectors ~ and 

-~ are found by requiring that - + + the operators S , S T and T 'l -s_, s. -q 

have the same time variation. Equation [2.24] then becomes an 

eigenvalue equation, the resulting determinantal equation having 

exactly the same form as that discussed by Lindgard, Kowalska and 

Laut (1967). In the present problem, since J(-~) = J(s_) and J 1 (-~) = 

* J 1 (~) with similar relations for K(~) and K 1 (~), we have, 

[2.32a] A_q-Aq = s cose[J(~-~0 )-J(~+~0 >l - -
[2.32b] 



[2.32c] 

[2.32d] 

* c_~-c~ = s cose [J' (1-~0 )-J' (~+~0 )] 

* D 
-~ 
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It is instructive first to consider the eigenvalue problem 

in the Bravais lattice approximation. In this case the eigenvalues 

are 

[2.33] 1 E = -(A -A ) 
'l 2 g_ -~ 

which is the form found by Cooper et. al. (1962). It is clear 

from this expression and [2.32a] that in general E ~E . In order 
-~ ~ 

that there be one positive eigenvalue for E~ and one positive 

eigenvalue for E we require that -s_ 
1 

[2.34] [ (As.+A_'l) 
2-41 B'll

2
] 
2 

> I A~ -A-q I 

Then the (positive) spin wave energies are 

[2.35a] E = g_ 

[2.35b] E = -g_ 

1 

!(A -A )~[(A +A ) 2-4IB 1
212 

2 q -q 2 q -q q - - - - .... 
1 

-!(A -A )+!_[(A +A ) 2-41 B 12 ] 2 2 q -q 2 q -q q - - ... -. --
it being arbitrary which is called E<.i and which E 

-:I 
In solving the general problem of equation [2.24] we must 

allow E~ and E_~ to be unequal. One then has to solve a quartic 

equation of the form 

[2.36] E4 + f 3 (q)E3 + f 2 (q)E 2 + f 1 (q)E + f 0 (q) = 0 • 
~ - ~ -<.I. -'I -
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By detailed examination it can be shown that f 2 (~) and f 0 (~) are 

even functions of~ while f 1 (~) and f 3 (~) are odd functions of~· 

It follows that if E is a solution of [2.36], then (-E ) is a 
~ ~ 

solution of the corresponding equation with -~ replacing ~ 

(Bar'yakhtar and Maleev, 1963). Thus among the roots of both 

equations there will be four positive roots, two of which belong 

to E and two to E . Unfortunately we cannot express these in a 
~ -~ 

closed form, although, of course, they can be found nu~erically 

by standard methods. 

However, a simplification occurs if c~ and ·D~ are both 

real. Thus, from [2.27] and [2.28], we need to know the wave-

vectors for which J' (~) and K' (~) are real. Let us rename the~-, 

n- and ~-axes of the original coordinate system, denoting them as 

a-, b- and c-directions respectively. (The a-direction is toward 

a nearest-neighbour atom in the hexagonal plane.) The corresponding 

components of ~will be denoted (qa,qb,qc). Fig. 1 shows the 

fundamental one twenty-fourth part of the Brillouin zone with the 

usual labels for the symmetry points. fK is the a-direction, 

fM is equivalent to the b-direction and fA is the c-direction. 

Now since the crystal structure has mirror planes perpendicular 

to the a-direction and the c-direction it follows that J' (q) and 

K' (~) are real for any ~-vector of the form (q , 0 ,q ) • Thus they a c 

are both real for.any ~in the plane fKHA of Fig. 1. They are 

also real for any ~ in the plane KMLH since this plane is equivalent 

to an extension of the plane fKHA in the repeated zone scheme. 

Since ~O for spiral structures is along the c-direction, we conclude 
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c 

b 

FIG. 1. First Brillouin Zone for hcp Structure 
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that for all the structures considered in this paper C and D 
<i :i 

are real for q's lying in the planes fKBA and KMLB of Fig. 1. -
Then it can be shown with the help of standard minipulations of 

the secular determinant of [2.24] that the solution is the same 

as the Bravais lattice solution [2.33] with A~ replaced by 

A TC and B replaced by B ~D • s.s. s.. ~cr 
Thus by the same reasoning which 

led to [2.35] we obtain the following expressions for the (positive) 

spin-wave energies: 

[2.37a] E (i) = 
<i 

[2.37b] E (i) 
-s. = 

The lower sign gives the lower spin-wave branch (labelled i=l) 

while the upper sign gives the upper branch (i=2) . 

We note that when C and D are real it can be shown from s. s. 
[2.37] that the Bravais lattice solution [2.35] correctly gives 

the lower spin-wave branch provided that the lattice sums J(~) and 

K(~) that occur in [2.25] and [2.26] are taken to include all 

atoms, not just those on the same sublattice. Furthermore, as is 

well known, the upper mode in the c-direction can be obtained by 

extending the Bravais lattice solution in the double zone scheme. 

The same device cannot be used, however, in the a-direction. 

In addition to the case just described, analytic solutions 

may be obtained under other special conditions. From [2.32a] and 

[2.32c] and the structure of J(<r) and J' (9) it is clear that 
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* A =A and C =Cq if any of the following conditions are satisfied: 
-~ ~ -~ -

(i) ~ lies in the basal plane (ie. ~ is perpendicular to ~0 ) 

(ii) 1s0=o 

(iii) 8=7T/2 . 

Then it can be shown that f1 (~) and f 3 (~) are zero and equation 

[2.36] reduces to a quadratic equation in E~. The (positive) 

solutions are (Lindg!rd et. al. 1967), 

[2.38] = ( R + IS)~ 
':! 9. 

[2.39a] 

[2.39b] 

= I2A c -{B +B*>o 1
2 - lc o*-c*o 1

2 
q q q q q q q q q - - ~ - - - ~ - -

where i again labels the spin wave branches corresponding to the 

* + signs. The property D =D has been used to obtain the last -q q - -
line of [2.39b]. It is worth emphasizing that this solution is 

valid for all 9.-vectors in all spin structures under consideration 

with one exception, -- the case of a conical spiral with ~ having 

a component parallel to t,0 • (However, in this case one still has 

the solution [2.37] for ~·s in the planes fKHA or KMLH of Fig. 1.) 

Finally, if the conditions for the solution [2.37] and 

those for the solution [2.38]-[2.39] are satisfied simultaneously 



(ie. A =A , c =C and both C'l and D<i are real) then both solu-q q -q q - - - -. 
tions simplify to 

[2.40] (A +c +IB +o I>~<A +c -IB +o I>~ q q q q q q q q 
~ - - ~ - - - -
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CHAPTER 3 

MAGNETOELASTIC EFFECTS OF HIGHER ORDER 

Turov and Shavrov (1965) and Cooper (1968a) have demon-

strated how magnetostrictive terms in the Hamiltonian contribute 

to the spin-wave energies. In Cooper's paper the lowest order 

single-ion magnetoelastic terms (quadratic inS~, S~ and Si~) 
1. 1. 

are treated microscopically following the theory of Callen and 

l; Callen (1965), but the higher order terms (fourth order in s., 
1. 

S~ and S~) are treated macroscopically. 
1. 1. 

The present formulation is entirely microscopic. All 

possible single-ion magnetoelastic terms linear in the strains and 

l: n ~ up to fourth order in the spin operators s., s. and s
1
. are written 

1. 1. 

down and the form of the contribution that each makes to the spin-

wave energies and the conditions for stable equilibrium is deter-

mined. It will be found that some of these terms have the same 

form as the crystal field terms while others have different forms. 

The contributions of two-ion magnetoelastic terms linear in the 

strains and second order in the spin operators are also examined. 

3.1 The Theory of Callen and Callen 

Our description of magnetostrictive effects is based on 

the general theory of Callen and Callen (1965). The homogeneous 

strains which transform according to the irreducible representations 

ra' ry and r£ of the (chemical) point group of the hcp lattice 

are, in the notation of Callen and Callen and of Cooper (1968), 

a.,l 
£ = 

33 



[3 .lb) £a,2 = £ 1 a,l 
- -£ 

r;z;; 3 

[3 .lc) E:y 1 = 2(e:~~-e:nn) 1 

(_3 .ld) E:y = e:~n 2 

[3 .le) 
£ 

£1 = e:nz;; 

(3 .lf1 
£ 

£2 = £~1;; 

where e: .. = ~r(au./ar.) + (au./ar.~, i,j = ~,n,z;; and:!:!. is the 
1] L 1 J J 11 

displacement of a point relative to its equilibrium position. 

Then the elastic energy associated with the homogeneous strains 

is 

(3. 2) 

Following Callen and Callen, we omit the nonhomogeneous strains 

or phonon modes from the Hamiltonian, so that~ is purely e 

classical. The cr's are the elastic stiffness constants which 

are related to the five independent Cartesian elastic constants 

by 

(3. 3.il 

(3. 3b] 



[2. 3c) a 1 
cl2 = J(-cll-cl2+cl3+c33) 

~-3d) cy = 2 (cll-cl2) 

l3. 3e1 
E 

4c44 c = . 

Callen and Callen consider two types of magnetoelastic 

terms linear in the strains. The first is single-ion terms 

formed by taking products of the symmetry strains and spin func-

tions belonging to the same irreducible representation. Instead 

of adopting their expression, as in our equation (2 .1), we mall 

express the spin functions in terms of the operator equivalents 

)5 

'V 
Otm introduced in section 2.1. For t=2 and 4 it can be shown that 

the linear combinations 

(3. 4a} 

(3. 4b] ~ -
tm 

1 '}.. 'V = -2 . ( 0 n -on ) 1. ;vm ;v-m 

transform according to particular irreducible representations 

of the point group 6m2. (Odd powers of the spin operators do not 

occur in the Hamiltonian because they are not invariant under 

time reversal.) In terms of these functions we can write the 

single-ion magnetoelastic terms as, 

g.sa] 

~ 0 I ( i) 
t'\me 

rt I = Elt I ( i) 
me . me 

l. 

= -Met, 1 a, l':\.1 _ Met, 2 a, 2':\.1 ME r: E ( . ':\.1+ ) E ( . ':\.1- )~ 
20 E 0 20 20 E 0 20 - 21 [1 1021 + E2 -l.02l'J 
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_ Ma, 2 a ,2() 
40 £ 40 

The operators <5: 3 and ()~ 3 do not appear in this expression as they 

transform according to irreducible representations of 6m2 other 

than r ' r and r . a Y £ 

r 
The M~m's are phenomenological magneto-

elastic coupling constants introduced in the same spirit as the 

crystal field parameters B~. Those for ~=2 are related to the 

Callen and Callen constants by 

(3.6a,} 
rva (3)~ Ma,l rva ( 3) ~ Ma,2 
Bl2 = B22 = 20 20 

(3. 6b) ~y (l) ~ y ~£ {l) ~ £ = M22 = M21 2 2 

The two-ion magnetoelastic terms linear in the strains 

and second order in the spin operators are,in the notation of 

Callen and Callen, 

~0 II(i ') 
r'-me 'J 

0\J II = l: '\J II ( i . ) 
f\me .. ~me ,J 

~<] 

~a a,25 5 rva a,2( '3/2 ) (ssss lc 5 ) 
- u21 · ,£ · • · - 0 22 · ,£ v..l. • ·-=3 · • · 1] -1 -J ~J 1 J -1 -] 
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[3. 7b) 'V£ r E:L n l; l; n £ · ~ l; l; ~ ~ - D .. e: 1 -:2 ( S . S . +S . S . ) + e: 2 !:i ( S. S . +S . S . ) • 
1] 1 J 1 J . 1 J 1 J 

The equilibrium values of the strains are found by mini-

. . 0\.t ~ ~II d m1z1ng~ + +n , an e e me this can be carried out in two limiting 

approximations, which will be discussed separately. It should be 

mentioned before going further that the assumption of homogeneous 

strains requires that the magnetization be uniform, and this means 

that the above forms of the magnetoelastic coupling are not 

applicable to spiral structures (although particular terms may 

be in special cases) . Therefore we shall consider only ferro-

magnetic structures in what follows. 

3.2 The Frozen Lattice Approximation 

If it is assumed that the strains are "frozen" at their 

equilibrium values, which do not vary with time, one obtains the 

frozen lattice approximation discussed by Turov and Shavrov (1965) 

and Cooper (1968a). The spin functions in (3.5) and [3.7) are 

replaced by thermal averages which may be regarded as containing 

the effect of averaging with respect to time. Then by minimizing 

~ +'\t i +~oii b . h . 1 .b . . -a,l -a,2 
~ one can o ta1n t e equ1 1 r1um stra1ns e: , e: , e me me 

-y -Y -e: -e: e: 1 , e: 2 , e: 1 and e: 2 . It is apparent that with these expressions 

substituted into (3. s] and (3. 7) certain terms have exactly the 

same dependence on spin operators as crystal field terms or iso-

tropic and anisotropic exchange terms. We can drop these terms 

fromi(I and~II by redefining, 
me me 

~O to contain - (Ma,l-a,l+Ma, 2-a, 2 ) 
t to e: to e: ' t=2,4 
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J. . to contain r~all . . - ( 2/!) -~~().12 .1~, 1 
1J L 1] 1~ 

[3. s1 

It is of interest to note that these magnetoelastic contributions 

to the parameters are temperature dependent since the equilibrium 

strains ~,land ~' 2 consist of terms which vary as m2 , m3 and 

m10 when evaluated by the usual approximations. 

For the magnetoelastic terms that remain, after evalu-

ating the thermal averages with the aid of the usual approxi-

mations, one obtains for the equilibrium strains 

\). 9b) 

where the symbol ~~m stands for an unnormalized spherical harmonic 

which is related to the usual normalized spherical harmonic Y~m 

by the relation 
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-(Thus the Y~m have the same constant factors as the Racah operator 

equivalents ()~m·> Note that our definition of the ~~m or the Y~m 
m -y (Edmonds 1957) contains a factor (-1) for m>O. The symbols D 

and DE in [3.9b] and [3.9d] remain to be defined. It is convenient 

to introduce at this point the definitions 

[3.lla] -y D .. 1 exp [ iq. ( r. -r. 1 ) ] 
11 - -1 -1 

[3.llb] 1)Y I <s..> = -y l: D .. exp[iq. (r.-r.)] 
• 1] - -1 -J 
J 

with similar definitions forDE(1) and DE
1 <s>· Here i 1 runs over 

the same sublattice as i while j runs over the other sublattice. 

Then the constants ~ and DE are defined by 

[3.12a] 

[3.12b] 

Each of the terms in [3.9] is easily identified with one of 

th t . ~ 0 I '\0 I I e erms 1n~ or~ . me me It can be seen that the single-ion 

magnetoelastic terms follow the ~(~+1)/2 power law while the two

ion terms vary as m2 (Callen and Callen 1966). We note that the 

equilibrium strains depend on the direction of the magnetization 

-through the spherical harmonics Y~m(6,~) with e and ~ as in equation 

[2.2]. 

It is useful to express the equilibrium strains in terms 

of the saturation magnetostriction constants. Instead of using 

the ones defined by Callen and Callen (see their equation [4.27]), 

we find it more convenient for the present discussion to define a 
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set of constants relative to an expansion in spherical harmonics: 

ot/t 

[3.13] 

Here ot/t is the fractional change in length of the crystal measured 

in the direction (S~,Sn,Br;;) when the magnetization is in the 

direction (8,¢). The magnetostriction constants AY and A£ employed 

by Callen and Callen and by Clark,De Savage and Bozorth are related 

to these by 

[3.14] 

The magnetostriction constants defineJby Mason (1954) and employed 

1our terms in AX 4 do not correspond solely to Mason's terms in A; 

in addition they contribute an amount Ay (70) 112/16 to D and 44 

by Rhyne and Legvold (1965) and Rhyne and Clark (1967) are given 
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by 1 

[3.15a] A = - [ (70) 2/8] AX 4 
1 

[3.15b] ·B = [7 (10) 2 /8] AX 2 
1 1 

[3.15c] c = [ "( 6 ) 2 I 4 ] A y -
22 [(lo)

2
/8]AX2 

1 1 

[3.15d] H = (6) 2A t:: - [3(5) 2/2]A~l 21 
1 

[3.15e] I = [7(5) 2/2]A~l 

Note that these vary with temperature through the reduced magneti-

zation according to equation [3.19] below. 

The connection between the magnetostriction constants and 

the equilibrium strains is established through the relation (see, 

for example, Birss (1964), p.l84) 

[ 3 .16] ~,v = x,y,z 

which may be rewritten in terms of the symmetry strains [3.1] as 

[3.17] 

Comparing [3.13] and [3.17] we find 

[3.18a] 

[3 .18b] 
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[3.18c] -Y 
£1 = y -A22Re{Y22} y -+ A42Re{Y42} y -+ A44Re{Y4-4} 

[3 .18d] -Y 
£2 = y -A22Im{Y22} y -+ A42Im{Y42} 

y . -
+ A44Im{Y4-4} 

[3.18e] -£ E: ...., 
E: -

£1 -· A21Im{ (-Y21)} + A41Im{(-Y41)} 

[3.18f] -£ E: - . E: -
£2 = A21Re{(-Y21)} + :\41Re{(-Y41)} 

These are the required relations expressing the equilibrium strains 

in terms of the experimentally measurable magnetostriction constants. 

The magnetostriction constants are related to the 

phenomenological magnetoelastic coupling constants by 

1 

[3.19a] y 
:\22 = (2NS/cy) [M~ 2 S(l/2)m3+(2/3) 2~sm2 ] 

[3.19b] t.l2 = (2NS/cy>MX 2s(3/2)m10 

y 
(2NS/cY)Ml 4s(3/2)m 10 

:\44 = [3.19c] 

1 
E: (2NS/c£) [M~ 1s(l/2)m3+(2/3) 2o£sm2 ] :\21 = [3.19d] 

E: (2NS/c£)M~ 1S(3/2)m 
10 

:\41 = [3.19e] 

-y ""'£ where D and D are defined in [3.12]. These result from comparing 

equations [3.9] and [3.18]. The single-ion contributions again 

follow the £(£+1)/2 power law as expected from the analysis of 

Kittel and Van Vleck (1960), while the two-ion terms vary as 2 m • 

The relations [3.19] enable one to express the (microscopic) 
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magnetoelastic coupling constants in terms of the (macroscopic) 

magnetostriction constants in a fairly direct manner. For example, 

if the two-ion magnetoelastic effects are neglected [3.19a] and 

[3.19d] can be written in the form 

[3. 20a] 

[3.20b] 

where we have used the Callen and Callen definitions [3.6] and [3.14]. 

(At T=O [3.20a] differs from Cooper's result by a factor of (2/3), 

as pointed out by Brooks (1970). Note that the number of atoms in 

the crystal is 2N.) 

Having found expressions for the equilibrium strains in the 

frozen lattice approximation and the connection between the 

magnetoelastic coupling constants and the magnetostriction constants, 

0\JI 41\DII we now turn to consider the contributions that~e andnme make to 

the stability conditions and to the spin-wave energies. 

At this point it is useful to define the functions listed 

in Table 1, which by means of [3.15] and [3.18] can be expressed 

r in terms of either the A~m's or Mason's A,B,C 1 H and I. It can be 

seen that they are composed of terms having either axial or 

hexagonal symmetry. The temperature dependence of these functions 

follows from [3.19]. However, in the analysis of experimental 

results it may be preferable to use magnetostriction constants 

whose temperature dependence has been determined by experiment. 



Function Definition 

·f£ ( 8) -£ -£ £1sin¢+£ 2coscj> 

y 
fl (8 ,¢) "Elcos2¢+"E~sin2¢ 

y 
f2(8,¢) "Elcos4¢-"E~sin4¢ 

y 
gl (8 ,¢) £isin24>-£~cos2<P 

g~(8,cp) "Elsin4cp+"E~cos4¢ 

TABLE 1 

Expresse? in terms 
of the .A.R.m's 

£ ~ £ .A21(- 21( 8 ,0))+.A41(-Y41( 8 ,0)) 

.A~2~22( 8 ,0)+.A~2~42( 8 ,0) 

+ cos6¢.A~ 4~44 (8,0) 

.A~ 4~44 (8,0)+cos6¢[.A1 2 

X ~22(8,0)+A~2~42(8,0)] 

>..l 4~ 44 (8,0)sin6¢ 

[.A12~22< 8 ,o>+.AX2~42<e,a)] 

x sin6cp 

Expressed in terms of 
Mason's A,B,C,H,I. 

~sin8cos8(H+Icos 2 8) 

(Bcos 28+C) sin 28 

- cos6cj>(~Asin 4 8) 

- ~A sin48+cos6¢ 

x (Bcos 28+C)sirt28 

- ~Asin 4 8sin6¢ 

(Bcos 2B+C)sin28sin6cj> 

""' ""' 
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Considering now the stability condition for the angle 8, 

equation [2.19], we find that the last two lines of [2.19] must 

be replaced by 

1 1 

-[cY/(2NS)]fi(e,~} [(3/2)I~~ 2cos 2 e+(5/2)I~l 2 <7cos 2 e-4}cos 2 e]6k 0 -o' 
1 

-[cy /(2NS} ]f~ (8 ,~) [ (35/8) I~~ 4sin2 8cos 2 e] 6~ 0 , 0 
1 1 

-[cE/(2NS)]fE(8) [(3/2)I~~ 1cos28cot8+(5/16)I~~l (28cos 48-27cos2 8+3)cot8]ok 
-o 

[3.21] 

Similarly, the stability condition for ~which replaces [2.20] is, 

[3.22] y y y -+ 6 [ c 1 < 2Ns > 1 g 2 < e , ~ > ~ 4 4 Y 4 4 < 8 , o > = o 

Equations [3.18] and [3.19] have been used in arriving at these 

results. (We note that in the T=O limit with 8=; equation [3.22] 

can be shown to be equivalent to equation [3] of Nielsen et. al. 

(1970).) 

Turning now to the equations of motion the commutators of 

the single-ion magnetoelastic terms~e are calculated in the same 

way as the single-ion crystal field terms. One obtains the 

following contributions to A~ and B~ (equations [2.25] and [2.26]): 

I y y - 2 y - 9 Arne= f 1 (8,~) [3M22Y22 (B,O} S(l/2)m + lOM42Y42 (B,O) S(3/2)m] 

E E- 2 E __, 9 + f (8)[3M21 C-Y21 (8,0)) S(l/2)m + lOM41 (-Y 41 (B,O)) S(3/2)m] 

[3.23a] 



I -2 y y - 2 2 Bme = (sine) {f
1 

(8,4>) [M22Y22 (8,0) (3sin 8-4)S(l/2)m 

y- 2 9 
+ M4

2
Y42 (8,0) (lOsin 8-4)S(3/2)m] 

y y- 2 9 + f
2

(8,4>) [M
44

Y
44 

(8,0) (lOsin 8-16)S(3/2)m] 

£ £ - . 2 2 + f (8) [M
21 

(-Y
21 

(8,0)) (3sl.n 8-l)S(l/2)m 

£ - 2 9 + M
41 

(-Y
41 

(8,0)) (lOsin 8-l)S(3/2)m ] } 

+ i(cot8/sin8){gi(8,<f>) [2M~2Y'22 (8,0)S(l/2)m2 

1 
y- 9 2y- 9 + 6M
42

Y
42

(8,0)S(3/2)m -4(15) M
42

Y
22

(8,0)S(3/2)m] 

The two-ion magnetoelastic terms~II are handled in the 
me 

4.6 

same manner as the exchange terms. Their contributions to A , Bq' 
'1 

C'l and D~ (equations [2.25]-[2.28]) are, 

[3.24a] 

[3.24b] 

1~ I 2 · £ 1-£ I = f 1 (8 ,4>) [:4D (<;I) sin 8] Sm+f (8) [:4D (g) sin 28] Sm 

[3.24c] 



4.7 

[3.24dl - igi(8,¢) [¥y' (q_)cos8]sm 

-y -£ £ y where D and D are defined in [3.12], and f (8), f 1 (8,¢) and 

gr(8,¢) are given in Table 1. 

Finally, for use in the next section, we form the combina-

tions which enter the two brackets of the expression for the spin

wave energy E~i), equation [2.40], in the special case that B~ 

and D are real: s. 
[3.25a] AI + BI +All()+ BII() ± [CII( )+DII( )] 

me me me 'l me S. me <i me ~ 

[3.25b] 

where, 

£ 2 £ £ - . 2 = [ c 1 ( 2NSms in 8) 1 f ( 8) [A 
21 

Y 
21 

( 8 , o) ( 1-6 s 1n 8 ) 

£- . 2 + ;x. 
41 

Y 
41 

( e, o) ( 1-2 o s 1n 8) 1 

y 2 y y- . 2 + [c /(2NSmsin 8)] f 1 (8,¢) [;x. 22 Y22 (8,0) (6s1n 8-4) 

[3.26a] y· 2 y y- .2 + [c /(2NSmsin 8)] f 2 (e,¢) (;x. 44 Y 44 (e,O) (20s1n 8-16)] 
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[3.26b] 
y 2 y y ~ + [ c 1 ( 2NSms in e) ] f 

2 
( e, ¢) [ 16:\4 4 Y 4 4 ( e, o) l 

[3.27a] P (i) (q) = Sm[2De:-De: (q) ±De: 
1 

(q)] 
me - - -

[3.27b] Q (i) (q) = Sm (2DY -DY (q_) ±Of 
1 

(CI)] 
me - ~ 

The various symbols occurring in these equations are defined in 

[3.10]-[3.13] and in Table 1. Regarding the ± signs in [3.25] and 

[3.27] we note that the plus sign taken throughout pertains to 

the upper spin-wave mode (labelled i=2) while the minus sign 

throughout pertains to the lower spin-wave mode (labelled i=l). 

3.3 The Mobile Lattice Approximation 

If the strains associated with magnetostriction can follow 

the nearly uniform magnetization in the long wave-length spin-

wave modes one has the other limiting approximation, which for 

simplicity we denote the "mobile lattice approximation". Cooper 

(1968a) has discussed this approximation from a macroscopic point 

of view. For a magnetoelastic coupling linear in e:I and e:J and 

up to fourth power in the direction cosines of the (uniform) 

magnetization he found that the resulting Hamiltonian consists of 

two parts, one axially symmetric about the hexagonal axis, the 

other having hexagonal symmetry about this axis. These terms will 
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then affect the spin-wave energies in a manner similar to that of 

the crystal field terms of corresponding symmetry. 

As an aid to describing the mobile lattice approximation 

in the present formulation of the magnetostrictive terms we 

introduce local strain functions cr(S.) each of which depends on 
-1 

the instantaneous direction of gi. The direction of lii is given 

by angles (e.,~.) with respect to the crystal axes while (8,~) will 
1 1 

as usual specify the direction of the static magnetization. 

Requiring.that the local strains depend on ~i implies that the 

strains closely follow the motion of the spins. Of course, this 

is consistent with the original assumption of uniform strains only 

for the ~=0 spin-wave mode in which the spins ~i precess in phase. 

However it is precisely for this case that the mobile lattice 

approximation appears to be useful (Cooper 1968a, Brooks 1970). 

Let us confine our attention to the terms in~e and1l!e 

belonging to the irreducible representation ry. Then the 

magnetostrictive terms in the Hamiltonian may be written as 

[3.28] 

[3.29] 

-My y ~ y ...,_ 
44 ~[£l(S.)044(S.)-c2(S.)044(S.)] . -1 -1 -1 -1 

1 



so 

Minimizingi{ +1t1 with respect to the local strains one e me 

obtains 

[3.30a] Eyl(S.) 
-~ 

[3.30b] 

We note in passing that the frozen lattice approximation can be 

obtained directly from these expressions by taking a time average 

(or, equivalently, a thermal average) at each site, with the result 

that the equilibrium strains depend only on the direction of the 

magnetization expressed by (8,¢). 

On substituting equation [3.30] for the local strains back 

into~e and~e one obtains for the resulting Hamiltonian sums of 

terms like, 

[3.31] 

which transform under rotations of the vector s. in the same way as 
-~ 

[3.32] 

Such combinations can then be decomposed using the spherical 

harmonic addition theorem. One finds that the resulting terms 

have either axial symmetry or hexagonal symmetry, ~xactly as in 

Cooper's calculation. Of course these terms can be put back into 

operator equivalents and it is clear that they then look like the 

McMASTtR UNIVERSITY LIBRARY 
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axial and hexagonal crystal field terms. For example, the magneto

strictive terms make an effective contribution to B~ of 

1 1 

[3.33] 
2 (7)2 y y 

-(2Nicy) [(1~~) M~2Mx4- ~ M42M44] 

We note that this is a temperature independent constant. If it 

is desired to express it in terms of measurable quantities the 

relations [3.19] at T=O can be used, giving, 
1 1 

[3.34] 

2 y y (105) A22 (0)A 44 (0) 
- [ c y I ( 2N) ] [----:::-------

32S2S(li2)S(312) 

2 y y 
(7) A42 (O) A44 (O) 
---=-------] 
24S 2S(312)S(312) 

At this point our work differs in philosophy from that of Cooper 

in that we do not relate the "dynamic strains" of equation [3.30] 

to the saturation magnetostriction constants through a relation 

of the type [3.16]. In our view the magnetostriction constants, 

which depend on temperature, are related to the equilibrium strains 

of the last subsection obtained from thermal averages of the spin 

operators. Consequently our expression above contains factors 

s 2s(li2)S(312) and s 2s(312)S(312) in the denominators arising 

from the thermal averages. Cooper introduced temperature 

dependence into his expression for the spin-wave energy by 

allowing the magnetostriction constants to vary with temperature 

according to the Callen and Callen theory. The magnetoelastic 

contribution to B~ in his theory is, in our notation, 

1 

[3.35] - [c y 1 (2N> 1 r (105) 2132] A1 2 <T> AX 4 <T> 
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13 which varies as m at low temperatures. (Note that Cooper did not 

include a magnetoelastic term corresponding to MX 2 in his calcu

lation.) In our work, however, the magnetoelastic contribution to 

B~ in the mobile lattice approximation is temperature independent, 

but, like the crystal field part of B~, enters the expression for 

the spin-wave energy with a dependence going as m21 

We conclude that the mobile lattice approximation yields 

for the lower ~=0 spin-wave energy in the case of a planar 

ferromagnet a result of the form, 

1 

[3.36] tw(O) = (L)I(g pBH-36B: cos 

where L stands for a sum of large axial crystal fields and magneto

elastic terms, and B~ contains a temperature independent contribu

tion [3.33] or [3.34]. (It has been assumed that the direction of 

the magnetization coincides with that of the applied field.) Thus 

by applying a field along a hard direction (¢=0 if B~ is positive; 

¢=TI/6 if B~ is negative) the resonance frequency can be reduced to 

zero. The same is true in Cooper's theory but the temperature 

dependence of the magnetoelastic contribution is different. For 

magnetic resonance at frequencies below about 40 GHZ the corresponding 

value of tw(O) is considerably below the gap which occurs in the 

frozen lattice approximation. For such cases the mobile lattice 

approximation provides a plausible explanation of the experimental 

results (Cooper 1968a, Brooks 1970). 



CHAPTER 4 

ANALYSIS OF PARTICULAR SPIN STRUCTURES 

In this section we shall discuss separately the different 

spin structures to which the theory we have presented is applicable. 

The relevant equations of the preceding sections are the conditions 

for stable equilibrium, equations ~ .19) and (2. 2~ ; equations 

(2. 25) - ~. 28j and [3. 24} - ~. 27) for coefficients of the linearized 

equations of motion; and the solutions to the eigenvalue problem, 

equations (2. 37} - {.2. 4Ql in appropriate circumstances. The express

ions which we give for the spin-wave energies in different cases 

will be used in subsequent work to analyze the results of in-

elastic neutron scattering and magnetic resonance experiments. 

Here we examine only briefly the form of the contributions from 

different sources such as anisotropic exchange, applied field and 

magnetoelastic effects. 

4.1 The Planar Ferromagnet 

The low temperature phases of Tb and Dy are ferromagnetic 

with the spins lying in the hexagonal plane. The easy axis of 

magnetization is the b-direction in Tb (~=TI/6) and the a-direction 

inDy (~=0). Equations (2.25}- t_2.29l and (3.241- ~.27) simplify 

on putting ~0=0 and ~=TI/2. In particular B~ is real, and 

(4.1) 

(4. 21 o = -sr~K' (q)-(!) (~Acos6~-c)!>Y· (q)lm 
<I L - 4 -'J 

where A and c are Mason's temperature-dependent mag~etostriction 

53 
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constants, equations (3 .15~ and t3 .15c1 , and ()Y' <s.> is defined 

in ~.11~. In general cq and D~ are complex and therefore the 

expressions (2. 381- (2. 39.) -must be used for the spin-wave energies. 

However, when ~ lies in the plane rKHA or the plane KMLH of Fig. 1, 

equation (2.46} can be used. With the help of the stability 

condition L2 .19} we obtain in this case, 

(4. 31 E (i) = {S (J(O) -(J(<j)+K(<J.) )+J' (0) ± (J' (<a)+K' (<j) >1 m-2~(7f/2) s. 

x {s [J (O) -J <ca> +J' (0) ±J' <s_>] m-36B~S (~) cos6¢m
20 

+ a~B(H cos¢+Hbsin¢)+N (7r/2,¢)+~(~Acos6¢-C)Q(i) (q) }~ 
~ a me me -

where Q(i)(q) is defined in r3.27b1 and 
me - \.; 1J 

(4. 5) 

[4. 6} 

Here A, B and C are Mason's temperature-dependent magnetostriction 

constants (equation (3 .15] ) • Knowing these and the elastic constant 

cY, as well as the reduced magnetization m, one can readily cal-

culate Mme(TI/2,¢) and Nme(TI/2,¢). These magnetoelastic contribu-

tions to E(i) are exactly the same as those given by Nielsen et al (197o). 
<I 



The two-ion magnetoelastic contribution involving Q(i) (q), which 
me -

occurs in the same bracket as the hexagonal crystal field, is a 

S-5 

new result. It has exactly the same form as the isotropic exchange 

terms but is multiplied by the temperature-dependent factor 

(~Acos6¢-C) . The fact that this term enters only the second bracket 

of (4. 31 while the anisotropic exchange terms K <s> and K' (~) 

enter only the first bracket has a simple interpretation. Terms 

in the first bracket other than from isotropic exchange and applied 

field represent an effective field along the hexagonal axis, 

while terms in the second bracket other than from isotropic 

exchange and applied field represent an effective field in the 

hexagonal plane. Viewed semiclassically, it is these two effect-

ive fields perpendicular to the magnetization which are experi-

enced by the spins in precessing at the increased amplitude of 

the spin-wave excitation. Note, however, that the applied field, 

which was assumed to lie in the hexagonal plane (since a component 

He is inconsistent with the assumption e=;), enters both brackets 

in the same way, a result consistent with elementary spin-wave 

theory for a Hamiltonian consisting only of isotropic exchange 

6. 5 
and applied magnetic field. (Note also that an amount -6B6S(2) 

cos6¢m20 from the hexagonal crystal field enters both brackets, 

acting in this respect like an applied field.) Finally, it is 

worth pointing out that if the direction of magnetization coincides 

with the direction of H the magnetic field terms in (4. 3] reduce 

to g~BH with H the magnitude of the field. 

The crystal field contributions to (4. 3) are usually 
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estimated from measurements of the anisotropy coefficients. In 

making such estimates, however, it is necessary to exclude mag-

netostrictive contributions to the anisotropy coefficients, a 

task which is difficult to carry out in practice. We shall not 

discuss this further in this paper. 

It remains to be mentioned that the ± signs in (4. 3) give 

the two spin-wave modes which we label by i=l,2. It can be shown that 

-yl -E:I 
J 1 (<,I) , D (<]) , D (<;1) , and K 1 (<;1) vanish at all points in the plane AHL and 

along the line KH of Fig. 1. As a result the modes are degenerate 

at these points. 

Of particular interest are the frequencies for magnetic 

resonance which follow from (4. 3] putting <,I=O. These are 

+ N (n/2,~)+(~Acos6~-C)soY'(O)m}~ me 

where v1 is the lower frequency and v
2 

the higher frequency. Here 



M0 is the saturation magnetization at T=O (M0=2Ng~BS) . We have 

introduced the demagnetizing fields (Kittel 1948, Keffer 1966, 

Cooper et. al. 1962, Brooks et. al. 1968) whose effect is relatively 

(4j7 

more important for the resonance frequencies than for spin-waves 

away from q=O. Nx, NY and Nz are the usual demagnetizing factors -
(Nx+Ny+Nz=4TI), Nz_referring to the direction of magnetization, Nx 

to the direction along the hexagonal axis and NY to a mutually 

perpendicular direction lying in the hexagonal plane. 

4.2 The Nonplanar Ferromagnet 

This structure, in which the magnetization makes an angle 

e~n/2 with the hexagonal axis, occurs in Tb and Dy when a magnetic 

field is applied along the c-axis, and there is evidence (Jordan 

and Lee 1967) that even in zero applied field Dy has this structure 

below 90K. Also the fan structure, which appears in the low 

temperature phases of Ho and Er for a moderately large field in 

the hexagonal plane, will approach a pure ferromagnet at higher 

field strengths. In each case the angle 8 will be given by the 

stability condition (2.19) with ]i0=o. 

For general ~·s and arbitrary ~ the spin-wave energies 

must be determined from equations (2. 38] - \7. 39) , as in the case 

of the planar ferromagnet. However, if ~=0 and if ~ is in the 

plane fKHA or KMLH of Fig. 1, then C and D are real and equation 
<i <i 

(2. 40) can be used. The condition ~=0 also makes BS. real. Then 

under these conditions equation [2.40] gives 



where 

~.10] 

+ 2g~BH cos8+g~BH (sin2 e-cos 28)/sin8 + M (8,0) c a me 

+ [c Y sin2e; (8NSm~ [ 2 (C+Bcos 2e) -Asin
2

e1[ 2C (6sin
2

8-4) 

+ 4B(sin28+10sin2 ecos 28-2)-4Asin2 e(Ssin
2
e-41 

Nme(8,0) = (c£cos 2 8/(8NSm~ (H+Icos
2

e)
2 

~(8) is defined in (2.29) and f£(8), fy(8,0) are given in Table 1. 

The applied field has been assumed to have components H and H a c 

only, consistent with the assumption ~=0. Of course most of the 

remarks following equation (4. 6) in the last subsection are 

applicable to equation (4. a1 as well. We note that in the present 



case the modes are degenerate at all points in the plane AHL and 

along the line KH of Fig. 1. 

4.3 The Planar Spiral 

This type of structure occurs in Tb in the temperature 

range 220-228K, in Dy in the temperature range 85-i79K, and in 

Ho in the temperature range 20-133K. In equations (2. 251- (2. 28) 

we put 8=n/2 and omit the terms involving the hexagonal aniso-

tropy (for the reason mentioned in section 2.5) and the magnetic 

field (since a component H is inconsistent with the assumption c 

8=n/2, and the effect of components Ha and Hb averages to zero). 

We also omit the magnetoelastic terms since homogeneous strains 

do not exist in a spiral spin configuration. 
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As in the preceding cases cq and Dq are complex in general, 

requiring the use of equations (2. 3i)- t2. 3~ • However, when ~ 
lies in the plane fKHA or the plane KMLH, equation t2. 40l may 

be used, giving, 

f.4.li} E~i) = {S(J(~0 )-(J(~)+K(<a) )+J' (J$0 ) ±(J' (~)+K' (9_) >] m-2~(TI/2) }~ -

where ~(n/2) is given in ~.4). It may easily be seen that the 

lower spin-wave branch is zero at 9.=0 as must be the case for a 

spiral structure (Elliott and Lange 1966). The energy of the 

upper spin-wave branch at ~=0 is 
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[ 4 • 12 J h v 
2 

= { s [ J ( ~ 
0 

) - ( J ( o ) + K ( o ) ) +J 1 
( 1s,

0 
) + ( J 1 

( o ) + K 1 
( o ) ) ] m- 213 ('rr 1 2 ) } ~ 

x {2SJ 1 <t0 )m}~ • 

At the point Kin the Brillouin zone, J 1 {~), K 1 (~), 

J 1 (<J.+~ 0 > and Jl(s_-~0 ) are all zero. Hence the modes are degen

erate at this point. 

4.4 The Conical Spiral 

This structure occurs in Ho and Er below 20K. The mag-

nitude of the spiral wave vector t 0 is 2rr/(5.5c) and 2rr/(4.lc) 

respectively and ·the cone angle e at 20K is approximately 79° 

in Ho (Koehler et. al. 1966) and 28.5° in Er (Cable et. al. 1965). 

It is also evident that the planar spiral of the last subsection 

will become a conical spiral when a magnetic field is applied 

along the c-axis. 

As discussed in section 2.6, the spin-wave energies cannot 

be given in a closed form for general ~ 1 s in this structure. 

However, if q is in either of the planes fKHA or KMLH of Fig. 1 -
then equation [2.37] may be used and the spin-wave energies are, 

[4.13a] E~i) = ~sm cose[J(~+~0 )-J(<;I-~ 0 )±(JI (~+~0 )-JI <~-~o>>J 
~ + ~ (F lF 2) 

[4.13b] E~~) =-~sm cos6[J(~+]S0 )-J(~-~0 )±(JI(<J.+~0 >-JI(~-~0 >>J -
+ ~(FlF2)~ 

where 
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[4.14b] F 2 = 4Sm cos 2e[J(O)+K(O)+J'(O)+K'(0)]-2Sm cos28[J(~0 )+J' (~ 0 >1 

- sm cos 2 e [J(<J.+~ 0 )+J(9_-~0 >+CJ' (9_+~0 )+J' <<r-~ 0 > 1 

- 2Sm sin28[J(q)+K(q)+(J'(q)+K'(q))] ... .. - -

Here ~(8) is given by [2.29] and He is the component of the 

magnetic field along the c-axis. The components of ~ in the 

hexagonal plane average to zero, and the hexagonal crystal field 

and magnetoelastic terms have been omitted as in the last subsection. 

A closed expression also exists when ~ lies in the plane 

fKM. Then the solution [2.38]-[2.39] is applicable and since in 

this case ~is perpendicular to ~0 one has J(~+~0 )=J(~-~0 ) and 

J' <~+!s.o> =J' <9.-~o> • 

Finally, if ~ is along either of the lines fK or KM, [4.13] 

reduces to 

[4.15] E ( i ) = E ( i) = ~(F F ) ~ 
<.! -s. 1 2 

with slightly simplified expressions for F 1 and F 2 • We note that 

at the point K, J'(~), K'(~), J' (~+~0 ) and J'<s.-~0 ) are all zero. 

Hence the modes are degenerate at this point, as they are in the 

other structures. 



APPENDIX A 

STABILITY CONDITION AT FINITE ~EMPERATURES 

At finite temperatures the condition for stable equilibrium 

is that the free energy is a minimum with respect to variation of 

the angles e and cf> •• If the E(i) are the temperature dependent 
~ ~ 

spin wave energies determined either by the equations of motion method 

of the present paper or by the free energy variational principle 

(Brooks et. al. 1968), the density matrix for the magnetic spin 

system is 

[Al] -1 
I: E(i) n(i)] p = Z exp[-8 

q,i ~ ~ -
z = Tr{exp[-8 I: E (i) n(i)]} 

q,i :! q -
[A2] 

-
From this the approximate free energy <~>+kT<ln p> may be shown to 

be equal to 

[A3] ln[l-exp(-8E(i))] 
q -

where E0 is the energy of the system at T=O. Thus, differentiating 

with respect to e, for example, one obtains the stability condition, 

[A4] aE 0/ae + I: (3E(i) /38)<n(i)> = 0 
~,i 

q q - -
[A5] <n(i)> (i) -1 = [exp(8Eq )-1] 

~ -
62 



63 

But since 

[A6] <lt> 

we interpret [A4] in the following way: the stability condition 

at T>O may be obtained by differentiating with respect to the angular 

variable only those terms in ~> which depend explicitly on that 

variable, ignoring in the differentiation the implicit angle 

dependence of thermal averages such as <n~i)>. In other words the 

terms involving a<n(i)>/38 which arise fr~m differentiating [A6] with 
~ 

respect to 8 are exactly cancelled by the contribution from the 

entropy term. 

In the present work ~> is expressed in terms of thermal 

averages of the spin operators. The demonstration above makes it 

plausible to ignore the implicit angle dependence of such thermal 

averages in arriving at the condition for stable equilibrium. 



APPENDIX B 

RANDOM PHASE APPROXIMATION AND LINEARIZATION OF 
THE EQUATIONS OF MOTION 

In this appendix we elaborate on the details of the random 

phase approximation which enables one to express the temperature 

dependence in terms of powers of the reduced magnetization. The 

approximations involved in linearizing the equations of motion are 

also described in.more detail. 

Let us first consider the evaluation of thermal averages in 
,..,_, 

connection with the stability conditions. For the operators o20 , 

- - z o 40 and o60 which involve pO\oTers of Si the following relation was 

found to be useful: 

[Bl] 

This is easily derived from the Wortis expansion [2.5] using the 

spin commutation relations to place all s: operators to the left 
1 

of s~ operators before dropping terms in more than three operators. 
1 -For example, in the case of o20 this gives 

~ 

<~{3st 2 -s (S+l) }> [B2a] <020(§i)> = 

[B2b] 
'V· S(S-~)<{l-(3/2S 2 )s:s~}> 'V 

"' S(S-~){l-(3/2NS 2 ) + -[B2c] "' !:<S S >} 
q q q 

[B2d] "' 1 
"' S(S--){1-3(1-m)} 

2 

[B2e] "' 1 3 
"' S(S--)m 2 
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where in the last steps we used equation [2.12] and expressed the 

result as a power of m following the procedure of Callen and Callen 

(1966) and others. In addition to this being valid for m close 

to unity, it also ensures that ~o20 > goes correctly to zero at the 

Curie temperature. In general we have, 

[B3] -- X y Z <0 00 (s. ,s. ,S. )> 
JV 1 1 1 

Q, ( t+ 1) 

~ S S <
1

; 1
)m 

2 ,t~2 

where S(n) is defined in [2.16]. 

A similar approach is taken in linearizing the equations 

of motion. For the crystal field and single-ion magnetoelastic 

terms, the commutators are most easily evaluated using equation 

[2.22]. Thus, for example, we obtain 

1 -1 

[ B4] = [t (t+l) -m(m-1)] 2 N2 L 0: 1 (S.) exp (-ig. r.) 
i "m- -1 -1 

z Substituting the first two terms of the Wortis expansion for S. 
1 

and T~, or using [Bl] to express powers of s~ and T~, we find for 
1 1 1 

t=2, 

[B5a] - S(l/2){1-(3/2S2 ) 
+ -0 20(gi) = s s.s.} 
1 1 

1 - {3/2) 2 + . -1 + + -0 2±l(§i) = ± S(l/2){S7 - (2S S(l/2)) s.s-:-s.} 
1 1 1 1 

[B5b] 

1 
~ 

( 3/8) 2 + + 
0 2t2(§i) = s-:-s-: 

1 1 
[B5c] 

When these are inserted into [B4] and the spin operators are Fourier 

transformed, the following random phase approximations are 



used: 

[B6a] 

[B6b] 
-1 

N 

-1 - + -2N S {f. <S ,S ,>} 
<:! q' q q 

-1 + - -+ N S {J. <S ,S ,>} 
-~ q I q -~ 

-1 - + + + N S {f. <S ,S ,>} 
q_ q' q -q: 

+ + + + The thermal averages E<S S >, E<T T >, E<S S > and E<T T > are 
q -q CJ -q q -q q -q 

. g - + - q - - + 9 - - q --. -
taken to be zero wh1le E<S S > and E<T T > are expressed 1n terms 

q q q q ~ q 
of the reduced magnetization by means of [2.12]. Hence the only 

non-zero commutators are 

[B7a] [S-,!. 020 (§i)] -3 S(l/2)m 2 s = q . q 
- 1 

[B7b] [S-,l. 022(§i)] 16 S(l/2}m 2 s+ = q . -q 
- 1 

[B7c] [S-, E - 9 0 4o<§i}] = -10 s (3/2)m s q . '1. - 1 

- --- 9 s+ [B7d] [S ,E ·o
42 

(S.)] = 3110 S(3/2)m q . -1 -q 
- 1 

[S-,f. 
,..._, 20 [B7e] 0 6o<ei}] = -:21 S(S/2)m s q . q 

- 1 

[S-,1: 
__, 20 s+ [B7f] 0 62(§i)] = 21105 S(S/2}m q . -q 

- 1 

with similar expressions for s+ T and T+ . -q' q -cr 
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The following commutators are also non-zero, giving constant 

terms in the equations of motion: 

[B8a] 

[B8b] 

[B8c] 
- ,....-

[ s ' L: 061 ( s . ) ] q . -1 
- l 

= /6 s S(l/2)m3 IN o o q, 

= 215 s S(3/2)m10 IN o q,O 

= 142 s S(5/2)m21 IN o q,O 

However, when all these constant terms are grouped together, the 

stability conditions [2.15] and [2.20] cause them to vanish. 

The two-ion terms in the Hamiltonian are best handled by 

first Fourier transforming them and then using the commutation 

relations of the spin-wave operators. The random phase approximation 

is then applied to [2.9] yielding the simple result. 

[B9] sz = -sm o 
q q,O 

Hence the equivalent commutation relations are 

+ -
0 [S ,S ,] = -2Sm '!' ,g q q [BlOa] 

[BlOb] [Sz s± 1 ±N-1 + 
= s- o 

q' q' q' q,O -

which is the form used by Englert (1960). 



APPENDIX C 

TRANSFORMATION OF SPIN OPERATOR EQUIVALENTS 

In this appendix the relevant transformations are 

given for the crystal field and single-ion magnetoelastic 

terms. Using equation [2.3] the operator equivalents ~~m 

can be rotated to equilibrium coordinates at each lattice 

site. However it is more convenient to write the results 

in terms of the linear combinations ~;m and ~~m defined in 

equation [3.4]. In general the transformations have the form, 

'1-+ £: n s [Cla] 0 0 (S.,S.,S.) .x..m 1 1 1 
R

+ i = ~ cos m~i ~m + 2 sin m~i R~m 

'1>- r n r: [ c lb] (J () ( s .J 's . 's .>) = .x..m 1 1 1 

+ -
where RQ.m and R£m are functions of the cone angle 8 and the 

equilibrium coordinates sx sY s~. 
i' i' 1 

For the crystal field terms, only axial and hexa-

genal terms appear. The corresponding functions are, 

+ 0'1- 2/6 1 .':11- 16 2'1-+ 
[C 2 ] R20 = 2p2°20 + -3- P2( 102l) + 3 p2°22 
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[C4] 

[C5] + /231 2 3~ 2/42 (l-x2) 5/2 (i~~l) R66 = 16 { ( 1-x ) 60 - --x 
7 

+ /105 
7 

(l-x 2 ) 2 (l+x2 )~+ -
62 

21~~5 (l-x2)3/2(3x+x3) (i~~3) 

+ 114 (l-x
2

) (1+6x2+x 4 >~:4 -
2/77 (l-x 2 ) ~ ( Sx+ 10x 3+x 5 ) ( i25~ 5 ) 

7 ---::;-::;-

+ /231 (1+15x 2+15x4+x6 )~:6 } 231 

- /231 {- 21~2 (l-x2)5/2~: 1 2/105 2 2 rv-
[C6] R66 = + ( 1-x ) x (i062) 16 7 

21f5 (l-x2) 3/2 (1+3x2>o"'+63 + /714 (1 2) (4 +4 3) (·a"'- ) -x X X 1 64 

where P~ is an associated Legendre function P~(cos 0) and x 

is uqual to cos 11. Notu that R; 0 docs not contribute to [Cl]. 

In Chapter 3, we considered magnetoelastic terms 

only up to ~=4. For the sake of completeness, the relevant 

functions up to ~=6 are written down below. 

[C7] + - . ~+ 2 ~ .~-
R21- 2xo21 + 2(1-x ) (1o22 ) 
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+ 16 2 '11 2 ~ .. '11- 2 '11+ [C9] R
22 

= 2 (1-x )o
20

- 2x(l-x) (1.o
21

) + (1+x )o22 

-
[C10] R

22 
= 

+ 1 2 '11+ 12 2 k 2 '11- 17 2 '~+ [C11] R
41 

= 2x(7x -3)o
41 

+ 2 (1-x ) 2 (7x -1(io
42

) + 2 (1-x ) (3x)u 43 

2 k 3 '11+ 17 2 2 '11-+ /2(1-x ) 2 (7x -4x)o
42 

+ 2 (1-x ) (4x -1) (io
43

> 

+ 114 (1- 2)3/2'11+ 
2 X X 044 

+ /IO 2 2 '11 2 k 3 'l!-[C13] R
42 

= -
4
- (1-x ) (7x -1)o

40 
- /2 (1-x ) 2 (7x -4x) (io

41
) 

2 4 'V+ /14 2 k 3 . 'V 
+ (1-6x +7x )o

42 
+ -

2
- (1-x ) 2 (2x) (1.0 43 ) 

+ 17 (1 2) (1 2)0'V+ 2 -x +x 44 

- 12 2 ~ 2 '11+ 3 .'l!-[C14] R
42 

= 2 (1-x ) (7x -1)o
41 

+ (7x -Sx) (1.0
42

) 

+ 114 ( 1 2) ~ ( 3 2 1) '11+ 17 ( 1 2) ( 2 ) ( . '1-- ) 2 -x x - 043 + 2 -x x l.044 
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17 2 2 ~+ + ~ (1-x ) (1+x )u
42 

12 2 k 3 ~- 1 2 4 ~+ ~ ( 1-x ) 2 
( 3x+x ) ( i 4 3 ) + 4 ( 1 + 6x +x ) 4 4 

+ 1 5 3 ~+ 110 2 ~ 4 2 ~-[C17] R
61 

= 4 (33x -30x +5x)u
61 

+ """'40 (1-x ) (165x -90x +5) (iu62 > 

3/IO 2 3 ~+ 13 2 3/2 2 ~-+ -
8
- ( 1-x ) ( 11x - 3x) u 

6 3 
+ 4 ( 1-x ) ( 2 2 x - 2 ) ( i 0 6 4 ) 

142 1~ 1 6 4 2 . ~-
[C18] R61 = - ~ P

6
u

60 
+ '4(198x -285x +100x -5) (1u61 ) 

3/IO 2 4 2 ~-+ -
8
- (1-x ) (22x -15x +1). (iu

63
> 
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1 6 4 2 ~+ + 
16 

(495x -735x +289x -17)o
62 

3 2 ~ 5 3 .~-+ 8(1-x ) (55x -sox +llx) (~o63 > 

1 5 3 ~- 3 2 ~ 4 2 ~+ + IT (330x -372x +74x) (io
62

) + 8 (1-x ) (55x -42x +3)u63 

130 2 4 2 ~+ + -r6 (1-x ) (33x -lOx +l)o
62 

130 2 ~ 5 3 ~-- - 8- (1-x ) (llx +2x -Sx) (io
63

> 



+ [C23] R65 

1 6 4 . 2 ~+ + 8 (33x +35x -65x +13)o 64 

+ 166 (1 2) (1 6 2 4)~0+ 16 -x + x +x 66 

1 5 3 . ~- 122 2 !.,: 4 ~+ + 8 (88x -BOx +8x) (1064 ) + - 8- (1-x ) 2 (lOx -2) o65 

[C24] R65 = 3/787 (l-x2)5/2x~60 + ~86 (1 2)2(6 2 1) (.~- ) o ~x x - 1o61 
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1 6 4 2 . '11-+ 8 (6x +35x -20x -5) (1065 ) 

13 2 ~ 3 5 '11+ + 8 (1-x ) (5x+l0x +x )u66 . 

+ + Note that the functions R4 3 and R6 3 are not included 

for the reasons stated in section 3.1. 
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